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ABSTRACT. 27 

Early detection of invaders requires finding small numbers of individuals across large landscapes. It has been 28 

argued that the only feasible way to achieve the sampling effort needed for early detection of an invader is 29 

to involve volunteer groups (citizen scientists, passive surveyors, etc.). A key concern is that volunteers may 30 

have a considerable false-positive and false-negative rate. The question then becomes whether verification 31 

of a report from a volunteer is worth the effort. This question is the topic of this paper. Since we are 32 

interested in early detection we calculate the Z% upper limit of the one sided confidence interval of the 33 

incidence (fraction infected) and use the term maximum expected plausible incidence for this. 34 

We compare the maximum plausible incidence when the expert samples on his/her own, , and the 35 

maximum plausible incidence when the expert only verifies cases reported by the volunteer surveyor to be 36 

infected, . The maximum plausible incidences  and  are related as, 37 

 38 

where θfp and θfn are the false positive and false negative rate of the volunteer surveyor, respectively. We 39 

also show that the optimal monitoring programme consists of verifying only the cases reported by the 40 

volunteer surveyor if, 41 

  , 42 

where TN is the time needed for a sample taken by the expert and TX is the time needed for an expert to verify 43 

a case reported by a volunteer surveyor. 44 

Our results can be used to calculate the maximum plausible incidence of a plant disease based on 45 

reports of passive surveyors that have been verified by experts and data from experts sampling on their own. 46 

The results can also be used in the development phase of a surveillance project to assess whether including 47 

verifying passive surveyor reports is useful in the early detection of exotic invaders. 48 

 49 

 50 

Keywords: Early detection, volunteers, surveillance, false positive, false negative, cost. 51 
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 52 

INTRODUCTION. 53 

Early detection is a key requirement for successful eradication or containment of exotic invasive species 54 

(Ferguson et al., 2001). Early detection requires finding small numbers of individuals across large landscapes. 55 

The sampling effort and budget needed to achieve this are often well beyond the capacity of regulatory 56 

surveys. Volunteer data are frequently the first records of invading species. For example, Epanchin-Niell et al 57 

(2021) found that in the US around 25% of exotic invaders were detected by the general public and individual 58 

operators, in New Zealand the figure was even around 60%. In their review of existing and emerging tools for 59 

early detection of exotic invaders, Larson et al (2020) concluded: ‘’Programs that promote public 60 

participation in large-scale biodiversity identification and monitoring (such as iNaturalist and eBird) may be 61 

the best resources for early detection’’. Dickinson et al (2010)  argues that the only feasible way of achieving 62 

the sampling effort needed to meet the biosecurity objective of early detection is to involve volunteer groups 63 

in data collection.  64 

A key concern with sightings of exotic invaders reported by volunteers is the quality of the data. It is 65 

to be expected that sightings by non-specialists have a considerable false-positive and false-negative rate. In 66 

their assessment of data from the iNaturalist platform, one of the most widely used citizen science platforms, 67 

Soroye et al (2022) found that poor data quality is one of the key risks in volunteer data gathering. A study 68 

on the ability of citizen scientists to identify bumblebee species, for example, showed that, depending on the 69 

observer, as few as 20% of the bumblebees were named correctly (Falk et al. 2019). For a range of amphibians 70 

it was found that the false-positive rate ranged from 0.01 to 0.09 (Cruickshank et al., 2019), although high, 71 

considerably better than the bumblebee recognition. Moreover, Given invasive pests are novel species, 72 

misidentification rates and are likely to be on the upper end of misidentification rates. This implies that a first 73 

report of an invader by a volunteer cannot be taken as conclusive proof that the invader has entered the area 74 

of interest. Verification of the sightings by an expert is essential, but comes at a cost.  75 

The question then becomes whether verification of a report from a volunteer is worth the effort or 76 

if it is more effective when experts go directly into the field themselves to sample. What is the value of 77 

volunteer reporting for the early detection of an exotic invader if the volunteer is error-prone? That question 78 
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is the central topic of this paper. We will restrict our attention to pests and diseases of plants. In the paper 79 

we will use the terminology of an infectious plant disease, but the results hold for insect plant pests as well. 80 

 81 

Detection surveys for  invading plant pathogens proceeds in two stages: 82 

1. Disease freedom. Surveillance is started when the pathogen is believed to not yet be present. This implies 83 

that for one or more surveillance rounds no detections are made. However, since sampling is a stochastic 84 

process it might be that the pathogen is present but missed by chance. The important question is thus, what 85 

could be the true incidence (fraction of plants infected), although still missed by chance, when no detections 86 

are made. 87 

 88 

2. First detection. At some point in the sequence of surveillance rounds an infected plant will be found for the 89 

first time. This establishes that the invader has arrived. The question, then, is whether the surveyor found 90 

the very first case or that a considerable fraction of the plants are already infected. 91 

3. We are thus concerned with situations in which the observations consist of cases of no detections and cases 92 

of the earliest detections of an infected tree  or other plant; in other words, situations where the invasive 93 

species is not yet recognised to be invaded yet. These cases limit the contribution volunteers can make to 94 

this process. In the case of no detection or first detection it is incorrect to assume that a report by a volunteer 95 

of an infected host is an actual positive, as described above. An expert will always have to verify whether the 96 

report concerns a true positive. In that sense a volunteer can only provide information, that after the expert’s 97 

verification, is redundant. From the moment the first true positive is established, so it is certain the species 98 

has invaded, further effort to delineate the outbreak and/or estimate incidence or density, information from 99 

the volunteer can be incorporated (including the appropriate methods to deal with probabilities on false 100 

positives and negatives in the estimates) without the need of verifying every single report . Moreover, for 101 

delineating an outbreak and estimating population densities volunteer reports from areas inaccessible to 102 

experts (e.g. private lands) or further afield than possible for experts to visit, are a valuable volunteer 103 

contribution. 104 

 105 
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Eradication and containment programs are very expensive and their total cost depends on the disease 106 

incidence at the start of the management programme. If initially too few resources are allocated to the 107 

eradication/containment programme the disease will escape control and the costs to get the outbreak 108 

eventually under control increase sharply (Cuthbert et al 2022). Therefore, it is of key importance to allocate 109 

enough resources when the invader is detected, implying we need to be sure that the actual incidence of the 110 

outbreak is smaller than our estimated incidence. More precisely, we are interested in the upper limit of the 111 

Z% one sided confidence interval of the incidence. Figure 1a illustrates this where the probability P, of 112 

incidence q, is plotted. Throughout the paper we will calculate such upper limits,  of the incidence to be 113 

expected. We refer to this as the maximum plausible incidence. This upper limit is (figure 1a) calculated from, 114 

 .      (1) 115 

<figure 1 around here> 116 

 Several methods have been published about repeated sampling of populations to estimate incidence 117 

(Cameron & Baldock, 1998; Cannon 2022; Coulston et al., 2008). In these papers the disease incidence is 118 

assumed to be constant. In reality, for invading pathogens, the pathogen population and equivalently the 119 

population of infected hosts will often grow exponentially during the early period of invasion. Following the 120 

ideas developed by Metz (1983) several authors have studied the cases of disease freedom and first detection 121 

with exponential growth of the number of infected hosts (Bourhis et al., 2018; Parnell et al., 2015; Mastin et 122 

al., 2017; Bourhis et al., 2019). These authors studied the scenario in which an expert does multiple 123 

surveillance rounds, in which they assess several plants for the presence/absence of disease, and with a fixed 124 

time interval between surveillance rounds. From the data gathered, the maximum plausible incidence, , (as 125 

defined above) is calculated. 126 

The scenario we study in this paper is one where the expert verifies reports from the volunteer and 127 

we compare that with the scenario where experts sample for themselves without prior scouting by 128 

volunteers. We assume the expert can assess the infection status with certainty for example because they 129 

can bring samples into the laboratory and perform any diagnostics needed (also see the discussion for more 130 

details about this assumption). We derive expressions for the maximum plausible incidence, , and compare 131 
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this maximum plausible incidence when the expert verifies volunteer reports, ,  with the scenario where 132 

the expert goes into the field and chooses their own hosts to assess for disease, . By this comparison, we 133 

will be able to quantify the value of volunteer reporting for the early detection of an invader. Our purpose is 134 

to derive general results which explain how these various quantities combine to determine the value of 135 

voluntary surveillance. 136 

 Our key aim is to derive simple explicit equations for the maximum plausible incidence. This will 137 

enable practitioners developing surveys to use our results without having to take recourse to extensive 138 

numerical computations for which they the need to involve a computer expert. We also aim at deriving simple 139 

equations measuring the value of volunteer reporting that, again, can directly be used by practitioners 140 

developing surveys. Therefore, we restrict, in this paper, our attention to a set of cases that does yield simple 141 

explicit expressions for the maximum plausible incidence. In the discussion, we will describe further 142 

extensions. 143 

In the material and methods, we describe the model for sampling to establish disease freedom and first 144 

detection. These lead to the use of numerical procedures to calculate the maximum plausible incidence. To 145 

find simple explicit expressions we derive a series of approximations that yield explicit expressions and give 146 

insight into the value of volunteer surveillance for early detection. We will assess the accuracy of the 147 

approximations by comparing the maximum plausible incidence calculated from the full model and from 148 

these approximations. 149 

 Although we use ‘the volunteer’ and ‘the expert’ in the text there usually are more volunteers and 150 

experts involved. The key assumption here is that the inter-observer variation in detection skill is not taken 151 

into account (see discussion).  152 

 153 

MATERIAL AND METHODS. 154 

We use  and  to denote the upper limit of the confidence interval of q0 for sampling by experts only and 155 

for verifying reports of volunteer surveyors, respectively. We use  for surveys including both experts 156 

sampling on their own and validation of reports of volunteers. In the sections where approximations are 157 
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compared with exact solutions we will use  and , where ∙ can be E or V, to denote the exact 158 

and the approximated upper limit, respectively. 159 

 160 

Preamble: 161 

1. The probability for a volunteer surveyor to report a positive host: 162 

Disease incidence (the proportion of trees or plants, referred to generically as “hosts”, in a survey area that 163 

are infected) is denoted by q. The probability that a volunteer surveyor observes an infected host to be 164 

uninfected, known as the false negative rate, is fn. The probability that the volunteer surveyor observes an 165 

uninfected host to be infected, known as the false positive rate, is fp. We denote the uninfected as 0 and 166 

the infected as 1. Table 1, the confusion matrix, summarises the probabilities.  167 

  <table 1 around here> 168 

The probability for the volunteer surveyor to observe an infected, 1, host is, 169 

 .   (2) 170 

 171 

The probability to observe an uninfected, 0, host is, 172 

 .    (3) 173 

  174 

After some rearrangement we see from (2) and (3) that the probability of a volunteer-reported positive 175 

detection being a false positive, k1, is, 176 

 .     (4) 177 

 178 

2. Multiple monitoring rounds. 179 

We assume that the epidemic is growing exponentially in time with rate r. This assumption is reasonable 180 

because we are only interested in small values of q. The incidence increases as , where qin is 181 

the initial incidence.  We want to estimate the incidence at the most recent monitoring round, q0. At each 182 

previous monitoring round the incidence was smaller (figure 1b). We will number the monitoring rounds 183 
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starting with 0 for the most recent monitoring round. The time interval between two previous rounds i and 184 

i-1 is Δ. From the exponential growth we find that , and thus . λ can be 185 

interpreted as the multiplication factor of the incidence in a Δ time step, figure 1b. 186 

 187 

 188 

Disease freedom sampling. 189 

1. Regulatory survey only. 190 

The probability of species detection by experts from a regulatory agency is modelled to depend only on the 191 

prevalence of the pest and the number of hosts sampled. In a monitoring programme of K rounds (where the 192 

most recent round is round 0 and the first round is round K) the expert samples NK, NK-1, …., N2, N1, N0 hosts.  193 

The expert concludes that none of these hosts are positive for the invasive species. We denote the number 194 

of true positives in monitoring round i by YNi. When the incidence is qi the probability of not finding any 195 

infected hosts in a sample of size Ni is (1-qi)Ni. Therefore, the probability of not finding any infected hosts in 196 

all K monitoring rounds is given by, 197 

.     (5) 198 

We will use Bayes’ equation to calculate P(q0|yNi=0), 199 

 .     (6) 200 

We assume that there is no pre-existing knowledge of the incidence and thus the prior, , is taken as a 201 

uniform density between 0 and 1, also known as an uninformative prior (more details surrounding this choice 202 

of prior is given in the see the discussion for notes on the prior). This results in, 203 

 .    (7) 204 

 205 

Using equations (1) and (7), and noting that qi=λ-iq0, we can now numerically calculate the upper limit of the 206 

Z% confidence limit of q0,  . This is informally called, as discussed above, the maximum plausible 207 

incidence. 208 



9 
 

 209 

2. Volunteer surveillance only. 210 

The volunteer surveyor reports xK, xK-1, …., x2, x1, x0 , xi>0, infected hosts.  We denote the number of true 211 

positives in monitoring round i by yxi. In the absence of disease all hosts reported by the volunteer surveyor 212 

are verified by the expert and found not infected, . The probability of not finding any infected hosts in 213 

all K monitoring rounds is thus given by, 214 

.     (8) 215 

Using Bayes’ equation to calculate P(q0|yxi=0) as above we find, 216 

 .  (9) 217 

Using equations (1) and (9), and noting that qi=λ-iq0, we can numerically calculate the upper limit of the Z% 218 

confidence limit of q0, . 219 

 220 

3. Combined volunteer surveillance and regulatory survey. 221 

In the situation where the incidence is very small, the volunteer surveyor reports xK, xK-1, …., x2, x1, x0 hosts as 222 

infected and all of these are verified by the expert. On top of this the expert samples NK, NK-1, …., N2, N1, N0 223 

hosts themselves. In this case, 224 

 .   (10) 225 

and using Bayes’ equation to calculate P(q0|yi=0) as above we find, 226 

.    (11) 227 

From which we can, numerically, calculate the upper limit of the Z% confidence limit of q0, . 228 

 229 

First detection. 230 

1. Regulatory survey only. 231 
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Following Parnell et al (2012) the expert samples NK, NK-1, …., N2, N1, N0 hosts.  In the survey rounds K to 1 232 

none of the sampled hosts is infected, (1-qi)Ni, i∈[K,…,1]. Only in the last round, round i=0, one or more 233 

sampled hosts turn out to be infected, (1-(1-q0)N0). We have, 234 

 .       (12) 235 

As in the disease freedom case we calculate  using Bayes’ equation with a uniform 236 

prior and find, 237 

  .       (13) 238 

Using equations (1) and (13) we can numerically calculate the upper limit of the Z% confidence limit of q0 , 239 

. 240 

 241 

2. Volunteer surveillance only. 242 

The volunteer surveyor again reports xK, xK-1, …., x2, x1, x0 cases. All reported cases in surveillance round K to 243 

1 turn out to be not infected after the expert verifies the finds, 244 

, i=[K,1]. In the surveillance round 0 one or more reported cases are confirmed to be infected after 245 

expert verification, . We then get, 246 

 .        (14) 247 

As in the case of  disease freedom we calculate  using Bayes’ equation with a uniform 248 

prior, 249 

  .       (15) 250 

From which we can numerically calculate the upper limit of the Z% confidence limit of q0,  251 

 252 

3. Combined volunteer surveillance and regulatory survey. 253 

The volunteer surveyor reports xK, xK-1, …., x2, x1, x0 hosts as infected and all of these are verified by the expert. 254 

On top of this the expert samples NK, NK-1, …., N2, N1, N0 hosts themself. In survey rounds K to 1 all hosts turn 255 
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out to be uninfected. In the most recent round, round 0, one or more hosts are found to be infected. We 256 

then have, 257 

 . (16) 258 

Using Bayes’ equation to calculate P(q0| ) as above we find, 259 

 .      (17) 260 

Using equations (1) and (17) we can numerically calculate the upper limit of the Z% confidence limit of q0, 261 

. 262 

 263 

Approximations. 264 

Equations (7), (9), (11), (13), (15) and (17) can be approximated to give simple expressions for the Z% upper 265 

limit of the one sided confidence interval for q0, the maximum plausible incidence. First, we write, 266 

. (18) 267 

Since we are only interested in small values of q0 we can write, 268 

 .    (19) 269 

and finally, using a Taylor expansion, 270 

 .   (20) 271 

Moreover since we are only interested in small values of q0 we use, 272 

 and 273 

. 274 

 275 

For the Disease freedom situation, equations (7), (9) and (11), we find that the probability distribution of the 276 

incidence, P(q0), is of exponential form, 277 

 .      (21) 278 
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And using equation (1) we get    and equating this with Z/100 we find  279 

the upper limit of the Z% confidence interval for q0, is, 280 

 .     281 

 (22) 282 

Where  can be ,  or  depending on the case under consideration, and α is as defined in Table 2 283 

where equation (20) is used throughout.  284 

 285 

<Table 2 around here>   286 

 287 

For the First Detection cases, equations (13), (15) and (17), we find that the probability distribution is a hypo-288 

exponential density, of form, 289 

𝑃(𝑞0) =  
1

1

𝐴
−

1

𝐵

 (𝑒−𝐴𝑞0 − 𝑒−𝐵𝑞0).     (23) 290 

Using equation (1) to calculate the upper limit  does not give an explicit expression of  in the model 291 

parameters and to obtain an approximation, we appeal to the law of large numbers and the z-score of the 292 

standard normal distribution to arrive at an approximation for . The mean and variance of the hypo-293 

exponential distribution are 𝐸(𝑞0) =  
1

𝐴
+  

1

𝐵
  and 𝑟(𝑞0) =  

1

𝐴2 + 
1

𝐵2 , respectively. Now assume that for a 294 

large number of samples, the hypo-exponential density can be approximated by a normal density. Then the 295 

z-score, , is, 296 

 297 

  .      (24) 298 

Which for the 95% tail =1.64, for the 99% tail =2.33. Solving for  we find, 299 

 300 

 .     (25) 301 
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Where  can be ,  or  depending on the case under consideration, and A and B are defined in Table 302 

2. 303 

 304 

The accuracy of the approximations. 305 

We will calculate for a range of epidemic and surveillance parameters the upper limit of the confidence 306 

interval for q0, for the distributions (7), (9), (11), (13), (15) and (17),  and for their approximating 307 

distributions, , given in Table 2. The relative difference between the two tells us about the accuracy 308 

of the approximation. For this analysis we need realistic values of the epidemic growth rate of plant diseases. 309 

Table 3 summarises the growth rate of six tree diseases, some from natural systems and some from 310 

production orchard systems. The graphs to assess the accuracy of the approximations will be made for a 311 

pathogen with a large epidemic growth rate, citrus canker, and for one with a small epidemic growth rate, 312 

ash dieback. 313 

  <Table 3 around here> 314 

 315 

 316 

Time budgets of the expert and volunteer surveillance. 317 

Money and time are key constraints in monitoring programmes. It may take experts less time to sample a 318 

host themselves than to verify a report from a volunteer surveyor, for instance because of the time 319 

requirements to transfer the information from the volunteer surveyor to the expert and for the expert to 320 

verify that the validation survey is located correctly. In other cases it may take less time to verify a report, for 321 

example when sufficiently clear photographic material is available. In this case, however, the expert needs 322 

to trust the volunteer that the photo was taken where the volunteer says it was taken. Here, we assume the 323 

expert has in total T time units to do the work. To sample one host themselves an expert takes TN time units, 324 

while to verify a reported plant it takes  TX time units. Then, 325 

 .      (26) 326 

Which is the same as, 327 



14 
 

 .      (27) 328 

Now consider the probability that the incidence of the disease is smaller than a value q*, which is given by, 329 

  .     (28) 330 

q* can for example be a threshold incidence below which the disease can still be controlled. Obviously with 331 

the monitoring programme, one wants to maximise the probability P(q*) that the incidence is below this q*. 332 

Equation (28), which is a function of N and X, allows us to plot contour lines of equal value of P(q*) in the N-333 

X plane (see figure 5). By superimposing the time constraint (27) on that plot it is possible to identify the 334 

conditions under which it is time effective to verify reports of volunteer surveyors. 335 

 336 

RESULTS. 337 

Approximations. 338 

Table 2 summarises the approximations to the upper limit of the Z% confidence interval of q0, which we 339 

termed the maximum plausible incidence. Given that the false-positive and false-negative rates of the 340 

volunteer surveyor are known, these equations enable us to calculate the maximum plausible incidence, both 341 

in the case of disease freedom and in the case of first detection. With this information, we can address the 342 

question of the value for experts to verify reports of volunteer surveyors, instead of sampling themselves. If  343 

in both cases the expert samples/verifies Ni trees, so Ni=xi we see from table 2 that in both the situation 344 

where the disease is absent and for the first detection case, 345 

 346 

 347 

Thus, the maximum plausible incidence becomes smaller or larger by a factor of    when the 348 

experts verify reports of volunteer surveyors, than when the experts sample on their own. Figure 2a shows 349 

lines of equal value of this factor as a function of the false-positive and the false-negative rate. We note that 350 

θfp is also known as the false positive proportion, FPP, and, 1-θfn is also known as the true positive proportion, 351 

TPP. The FPP/TPP ratio measures the value of volunteer surveillance.  352 

𝑞𝑉̃ =  
𝜃𝑓𝑝

1−𝜃𝑓𝑛
  𝑞𝐸̃.    (29) 
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 353 

The accuracy of the approximations. 354 

The accuracy of the approximation of  was quantified by , 355 

.     (30) 356 

Where , is the upper limit of the Z% confidence interval for q0 in the full model and  is the 357 

upper limit calculated for the approximation. The accuracy of the approximations  for experts sampling on 358 

their own has been studied (Parnell et al., 2015; Mastin et al., 2017). Therefore, we study the accuracy of the 359 

scenario where experts verify the reports of volunteer surveyors only.  Figure 3 shows the results of the 360 

analysis. Clearly, both the approximation for the disease freedom case and for the first detection case are 361 

more accurate for smaller epidemic growth rates, for shorter time intervals between samples, and for larger 362 

sample sizes. The approximations are however surprisingly accurate. Even for survey intervals of 3 months, 363 

for samples larger than, the difference between the approximation and the full model is less than 5%. For 364 

samples larger than around 15 the difference is less than 10%. 365 

  <figure 3 around here> 366 

 367 

Accuracy of the  ratio. 368 

The  ratio quantifying the gain of involving volunteer surveillance into a programme to detect exotic 369 

invaders is derived from the approximations. To see whether this ratio is also a good description of the gain 370 

of involving volunteer surveyors when the full models are used, we calculated the upper limit of the 371 

confidence intervals of q0, for the full model of the expert sampling on their own, , and the full model for 372 

the expert verifying reports of the volunteer surveyor, . The ratio of these two, , was compared 373 

with the  ratio. Figure 4 shows the results of this analysis. As with the accuracy of the approximation of 374 

the upper limit of the confidence interval for q0, the  ratio is less than 5% different from   when 375 
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more than 35 samples are taken. The ratio is less than 10% different from when more than 20 samples 376 

are taken for less than 100 days between samples.   377 

  <Figure 4 around here> 378 

 379 

Difference between disease freedom and first detection. 380 

Figure 2b shows the maximum plausible incidence in the case of disease freedom sampling and in the case 381 

of first detection for the disease with a small epidemic growth rate (Ash dieback) and for the disease with a 382 

large epidemic growth rate (Citrus canker). The figure shows that the estimated incidence in the case of first 383 

detection is between 1.5 (for low epidemic growth rate) and 2.5 (for high epidemic growth rate) times the 384 

incidence in the case of disease freedom. 385 

 386 

Time budgets of the expert and volunteer surveillance. 387 

Disease freedom. 388 

From (28) we find, 389 

 ,    (31) 390 

and, with A given in Table 2,  solving for x we get, 391 

 .   392 

   (32) 393 

Equation (32) is a straight lines in the x-N plane, with intercept  and slope 394 

. 395 

Figure 5 shows both (27) in orange and (32) in blue for different values of P. Maximising P maximises the 396 

probability that the epidemic has an incidence at or below q*, which can be taken as a threshold value below 397 
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which the epidemic can still be controlled. From the graphs we conclude that the optimal surveillance 398 

programme is to 399 

 400 

 401 

 402 

 403 

Readers should refer to the contour line values in Fig 2's left panel to get a sense of the values of the right 404 

hand side of these inequalities. Large values of TN/TX indicate longer verification time and large values of the 405 

right hand side indicate large error rates. This implies that error rates need to be quite low for very time 406 

intensive verification to be worthwhile. 407 

   <Figure 5 around here> 408 

First detection. 409 

From (28) we get, 410 

 ,   (34) 411 

where     and 412 

 . 413 

In this case it is not possible to express X as function of N and model parameters. Contour lines were drawn 414 

numerically. An example is given in figure 5. The contour lines for equal P from (34) are virtually 415 

indistinguishable from straight lines (supplementary materials I gives a large set of graphs showing the 416 

generality of this statement). Moreover, the slope of the lines is virtually indistinguishable from  . 417 

This implies that in practice the same conclusion is reached for the case of first detection as that derived for 418 

the disease freedom case.  419 

 420 

DISCUSSION. 421 

(i) Survey by the expert only if    
𝑇𝑁

𝑇𝑋
<  

𝜃𝑓𝑝

(1−𝜃𝑓𝑛)
 

(33) 

(ii) Verify volunteer surveyor reports only if    
𝑇𝑁

𝑇𝑋
>  

𝜃𝑓𝑝

(1−𝜃𝑓𝑛)
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In this paper we developed a method to include volunteer surveillance in efforts for the early detection of 422 

exotic invaders. Explicit equations relating the maximum plausible incidence to model parameters and 423 

number of volunteer reports were derived. These equations can be used by non-experts in the development 424 

of surveillance programmes to determine if volunteer data would be cost effective for a given species. We 425 

also quantified the value of volunteer surveillance and derived an expression showing how the ratio of time 426 

for an expert to sample a host and the time for an expert to validate a volunteer report, compared with the 427 

false positive and false negative rate of the volunteer, determines whether volunteer reports should be 428 

validated or left outside the regulatory survey.  Volunteer surveillance accumulates potentially valuable 429 

datasets for research and outbreak response (Encarnacao et al., 20121). False-positive and false-negative 430 

observations are, however, a concern about the usefulness of the data. Using statistical techniques, it is 431 

possible to estimate false-positive and false-negative rates and correct for them as shown by Palmer et al. 432 

(2017), Brown et al. (2017) and Cruickshank et al (2019). All three of these examples use volunteer surveyor 433 

data, calculate a measure of the false-positive and false negative rate and in using the data include the 434 

measured error rates in the calculation of density and trend. The present case of early detection of invading 435 

exotic species is different in that a reported observation of an exotic invader cannot lead automatically to 436 

the assumption of the presence of the invader. The reporting will always need to be verified by an expert. 437 

The question thus is what the value is of volunteer surveillance reports. Should they be used as a preselection 438 

of sites/trees to be visited or is that not an effective use of the expert’s time? 439 

 440 

We have assumed that the expert has a zero or negligibly small false positive and false negative rate. For 441 

plant diseases this is often a valid assumption. The development of molecular diagnostics, culturing 442 

techniques, etc. is routine and the expert can take samples to the laboratory for diagnosis as needed. 443 

Nevertheless there will be cases where the assumption of zero false positive and negative rate is too crude 444 

an assumption. In that case the calculations become more involved as each possible series of correct positive, 445 

correct negative, false positive and false negative rate the volunteer reports needs to be taken into account 446 

since for each report there is a non-zero probability that an error-prone expert classifies it as positive.  This 447 
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case does not lend itself for the derivation of an explicit expression for the maximum plausible incidence and 448 

thus is not examined here. 449 

 450 

We made a range of other assumptions that could be explored using the methods developed in the paper. 451 

Inter-volunteer variation in false positive and false negative rates is an important aspects that we did not 452 

include, again for the reason we did not manage to derive a simple explicit relationship between incidence 453 

and survey results. We assumed the host population to have a constant exponential growth rate. Population 454 

growth rates may vary substantially, particularly in early phases of invasion, due to stochastic environmental 455 

or demographic effects, for example. We also assumed that q scales constantly with the population density, 456 

which is a simplification because species may have variable  false positive and negative rates the change as a 457 

function of population density. What the effects of these factors is on the estimation of the maximum 458 

plausible incidence is not clear at first sight and will be the subject of future work.  459 

 460 

In previous work which was concerned with surveys by experts we also developed the work in two phases. 461 

Parnell et al (2012) developed the simple rule of thumb that the expected incidence at first detection is the 462 

population’s intrinsic growth rate divided by the sampling rate. This, surprisingly simple equation was 463 

subsequently, Parnell et al (2015), tested against a spatially explicit stochastic epidemiological model and it 464 

was tested against a data set. It was shown that the simple equation performed well against model and data. 465 

We envisage the same further work including variability in volunteer skills, variations in epidemic growth 466 

rates and false positive and false negative rates of the experts involved to examine the robustness of the 467 

simple approximations derived in the current work. Only after it has been shown that these simple 468 

expressions give accurate estimates as compared with more elaborate, realistic models can the simple 469 

expressions be widely used in practice.  470 

 471 
We assumed that the expert will only verify reports of volunteers where they found an infected host. 472 

Plausibly, the more common error among volunteers early in an invasion will be for false negatives, and it 473 

may be worthwhile to verify some putative negative samples. However, negatives are seldom reported by 474 
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completely amateur volunteers. In some well trained volunteer groups, for example those associated with 475 

horticultural societies, taxonomy groups, or state-run programs  it may be possible to have volunteers report 476 

when they did not find anything. Thus, the number of these negative reports is usually so small that we 477 

ignored them in the present case.  478 

 479 

We have used the homogeneous density as our prior. As motivated in Dixon (2005) a Beta -distribution may 480 

be a more appropriate prior than a homogeneous density. Dixon was able to specify such a prior because, 481 

although the species under consideration was very rare, it was observed on a number of occasions. In the 482 

current work we used an uninformative prior in the derivation of the results since it made the analytical 483 

solutions tractable. The question then arises as to whether the results are robust to the substitution of 484 

informative priors. We do not have any prior information as the species has not been detected yet and thus 485 

need a prior that is uninformative. Dixon (2005) suggested the use of a Beta distribution with both 486 

parameters a little larger than 1 as a suitable uninformative prior.  This places the prior close to the uniform 487 

distribution (in the interval [0,1]), which corresponds to a Beta distribution with both parameters equal to 1. 488 

Analytically, using the Beta distribution as a prior in the case where experts verify volunteer reports 489 

(equations 8 and 9)  we find the posterior distribution becomes , 490 

    ,    (35). 491 

Where B(α,β) is the beta-function and α and β are the parameters of the Beta distribution. It is noted that by 492 

using a Beta prior distribution, certain special cases can be derived explicitly. For example, when there is a 493 

single monitoring round in the disease freedom case of regulatory surveyor only, the posterior distribution 494 

for q0 is itself a Beta distribution with parameters α and β + N0. However, upon extensions to incorporate 495 

volunteer surveillance, multiple monitoring rounds or first case detection, such conjugacy is lost as in 496 

equation (35) above. Thus, the use of the Beta prior lends itself to numerical calculations only. In general, 497 

early in an invasive epidemic when disease incidence is low, the appropriate prior will be characterised with  498 

α << β, resulting in a heavily right-skewed distribution with the majority of the probability density covering 499 
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an interval close to 0. Choice of the specific parameter values in particular cases may rely on expert opinion 500 

and numerical analysis in such cases would allow for the sensitivity in predicted outcomes in the surveillance 501 

effort to differences in the choice of parameter values to be examined. Exploration of that topic lies outside 502 

the scope of this paper.    503 

 504 

We have shown that the maximum plausible incidence of the disease when volunteer surveillance reports 505 

are verified is a factor  smaller (or larger) than the maximum plausible incidence when the expert 506 

samples on their own. Given that both the false-positive and the false negative rates are small, including 507 

volunteer surveyor into surveillance programmes can potentially be of great benefit. There is, however, a 508 

possibility that including volunteer surveyors has a negative effect. When the false-negative rate is large, the 509 

factor  can be bigger than 1 (Figure 2a). It is not entirely clear whether that will happen in practice. If, 510 

for example, the false positive rate is 0.2, as in the amphibian example (Cruickshank et al., 2019), the false 511 

negative rate needs to be close to 0.8 before the  ratio becomes larger than 1, which seems prima facie 512 

unlikely. It is much more to be expected that false positive and false negative rates are smaller than 0.5; the 513 

equivalent of flipping a coin. In that case the gain from including volunteer surveyors into surveillance 514 

programmes for the early detection of exotic invaders will always be positive. This is a useful result since 515 

doing better than coin flipping in assigning infected/infested status is the mildest minimum capability 516 

criterion one could imagine for this type of activity and performance far in excess of this is likely to be a 517 

requirement in any practical situation. 518 

 519 

We have developed a range of approximations on the basis of which the maximum plausible incidence can 520 

be calculated when the false-positive and false-negative rates are known.  521 

For both types of calculations we need an estimate of the epidemic growth rate, r, and of the false-negative 522 

and false-positive rates for the volunteer surveyor. For invading pathogens, the epidemic growth rate is not 523 

normally known. In such cases information on past invasions and/or invasions at other places can be used 524 
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together with mechanistic insight into the effect of the difference in the environments is likely to have on 525 

differences in epidemic growth rate (Parnell et al., 2015; Gottwald 2010) to produce estimates of r 526 

heuristically.  527 

 Estimating false-positive and false-negative rates has been done in some recent cases (Falk et al., 528 

2019; Cruickshank et al., 2019; Brown et al., 2017). Spatial resampling techniques have been used in 529 

ecology to approximate false positive and false negative rates of surveys of endemic species (Banks-Leite et 530 

al 2014; Welsh et al 2013; Sólymos et al 2013). These models adjust for imperfect detection. They are 531 

reviewed by Banks-Leite et al (2014). Since the false positive and false negative rates of volunteers cannot 532 

be estimated in areas where the invader has not arrived yet, the case we are considering here, the 533 

volunteers need to go to an area or country where the invader has established to use these approaches. 534 

Other approaches could be that volunteer surveyors assess hosts, samples of hosts or photo material that 535 

has also been assessed by experts. The expert assessment then can be used as the gold standard and the 536 

false-positive and false negative rates of volunteer surveyors estimated. The need for expert assessment is 537 

often the most costly part of the exercise. It would be worthwhile to investigate whether a technique to 538 

estimate false positive and false negative rates for diagnostic tests, the latent class analysis (Turechek et al., 539 

2013), can be used in this case as well. For that analysis no gold standard is needed. A group of volunteers 540 

is asked to assess the disease status of a group of hosts, the technique then both separates the hosts into 541 

an uninfected and an infected group as well as estimating the false positive and false negative rates of each 542 

of the volunteers. 543 

 544 

Several authors (Parnell et al., 2015; Bourhis et al., 2019) have assessed the accuracy of the approximations 545 

for the plausible mean incidence and the maximum plausible incidence in the cases where the expert samples 546 

on their own. Here we have quantified the accuracy for the cases where experts verify reports of volunteer 547 

surveyors (figure 3). In both cases it was shown that for the range of epidemic growth rates observed in 548 

reality, (i.e. values of r between 0.002 and 0.02 per day) the approximations deviated less than 5% from the 549 

full model when the number of samples assessed was larger than 50. The approximations deviated from the 550 

full model by less than 10% when the number of samples exceeded 25. We conclude that the approximations 551 
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are accurate enough to be useful in a practical situation where other stochastic factors are likely to add 552 

uncertainty to the detection process. The approximations resulted in equations relating the maximum 553 

plausible incidence with the model parameters and survey results. This enables non-modelling-specialists to 554 

use them in the development of surveillance programmes and in the evaluation of survey data sets. The 555 

explicit relationship between the ratio of time needed for an expert to sample a host and the time needed 556 

to verify a volunteer report compared with the false positive and false negative rate can help decide whether 557 

including volunteer reporting in regulatory surveys is worth the effort. Parnell and Bourhis arrived at very 558 

similar conclusions for the approximations to methods where the experts sample on their own. 559 

 560 

Finally, we investigated whether verifying volunteer surveyor reports is time effective or whether the expert 561 

going into the field on their own to sample hosts is the more time effective method. We have shown a very 562 

simple rule for when reports of volunteer surveyors should be verified. This rule say that if the ratio of the 563 

time an expert needs to sample a host themselves  and the time needed to verify a report of a volunteer 564 

surveyor and is larger than the factor  , the most time effective method is to dedicate experts’ time only 565 

to verification of the work of volunteer surveyors. This gives a clear criterion for when verifying reports by 566 

volunteer surveyors should be included in the development of regulatory surveillance programmes.  567 

 568 

 569 
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  683 

Figure 1: 1a, probability density of the incidence q0.  is the upper limit of the Z% confidence interval of q0. 684 

This upper limit is termed the maximum plausible incidence. 1b, development of the incidence through time. 685 

The incidence growth exponentially. We are interested in estimating the incidence q0 when our most recent 686 

sample takes place. A period  earlier a sample was taken ad the incidence at that time was q0Z1, a period  687 

before that a sample was taken and the incidence was q0Z2, etc. 688 

 689 

 690 

Figure 2: Left-hand panel: Contour lines of for rate values of fn and fp. Right-hand panel: The 691 

maximum plausible incidence (i.e. the right hand boundary of the 95% confidence interval for q0) as function 692 

of the number of cases reported by the volunteer surveyor. Drawn lines are for a pathogen with an epidemic 693 

growth rate of 0.018 (comparable to Citrus Canker), the dashed line for a pathogen with growth rate 0.0024 694 

(comparable to Ash Dieback). The maximum plausible incidence is shown both for (i) the case where during 695 

all monitoring rounds the expert, verifying reports of volunteer surveyors, does not find any host to be infected 696 

(disease freedom), and (ii) when in the last monitoring round the expert, verifying reports of the volunteer 697 

surveyor, detects an infection for the first time. 698 

 699 

Figure 3: A comparison between the maximum plausible incidence, q0, as calculated from the approximation 700 

and as calculated from the full model. Both disease freedom and first detection is considered for a range of 701 

false-positive and false-negative rates for two tree diseases, Citrus Canker and Ash Dieback. On the left-hand 702 

side of the black line, the value of q0 calculated from the approximation is more than 10% different from that 703 

of the full model. On the left-hand side of the grey line, the value calculated from the approximation is more 704 

than 5% different from the full model. 705 

 706 

Figure 4: The accuracy of the factor .   707 

 From the full model we calculate  and . The ratio of these is compared to the factor . Both 708 

disease  freedom and first detection is considered On the left-hand side of the black line the value of the factor 709 

is more than 10% different from that calculated from the full model. On the left-hand side of the grey line the 710 

value of the factor is more than 5% different from that calculated from the full model. 711 

 712 

Figure 5: Lines of equal probability that the disease is found before incidence q. each drawn line is the contour 713 

line for a value of q0. The hashed line is the contour line for equal total time of the monitoring programme. 714 

The left hand graph shows a case where the optimal monitoring programme consists of experts only verifying 715 

the reported cases of the volunteer surveyor. The right-hand panel shows a case where the optimal surveillance 716 

programme consists of experts going into the field themselves to sample. 717 
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 719 

 720 
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Table 1: The confusion matrix. Table of the disease status and the observation of infected, 1, and uninfected, 722 

0, hosts. The incidence of disease in the host population is q. fp is the false positive rate of the observations. 723 

fn is the false negative rate of the observations. 724 

 Disease status 

1-q q 

0 1 

observation 0 (1-q)(1-fp) qfn 

1 (1-q)fp q(1-fn) 

 725 

 726 

 727 

 728 
 729 
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Table 2: Approximations to the probability densities of the incidence of disease in the most recent survey 731 
round, P(q0). Densities are given for the case of disease freedom, where all survey rounds return no positive 732 
finds, and for first detection where in the most recent survey round one of more positives is found. For the 733 
disease freedom cases the right-hand column gives the upper limit of the Z% confidence interval for the 734 
incidence. For the case of first detection this upper limit is approximated using the z-score. 735 

DISEASE FREEDOM Probability density Max. incidence 

 
Expert only 

 
  

 
Volunteer  

surveillance  
only 

 
  

 
Combined expert 

sampling and 
volunteer 

surveillance 

 

 

 

 

   

 736 

FIRST DETECTION Probability density Max. incidence 

 
 
 
Expert only 

 

 

 and 

 

 

 is the z-score for the 
standard normal distribution. 

For the 95% tail =1.64, for 

the 99% tail =2.33 
 
 

Volunteer 
surveillance only 

 

 

 and 

  

 

 is the z-score for the 

standard normal distribution.  

 
Combined expert 

sampling and 
volunteer 

surveillance 

 

 

 and 

  

  

 

 is the z-score for the 
standard normal distribution.  

 737 

 738 

 739 

 740 

 741 



32 
 

 742 

Table 3: Epidemic growth rate of 6 tree diseases of natural forests and agricultural orchard. 743 

Disease organism Mean epidemic 
growth rate day-1 

references 

Ash dieback Hymenoscyphus fraxineus 0.0024 Alonso Chavez et al. 
2016 

Sudden oak death Phytophthora ramorum 0.0033 Alonso Chavez et al. 
2016 

Citrus canker Xanthomonas citri 0.0184 Alonso Chavez et al. 
2016 

Huanglongbing Candidatus Liberibacter spp. 0.0072 Alonso Chavez et al. 
2016 

olive quick decline 
syndrome 

Xylella fastidiosa 0.0122 Mastin et al in press 

Pine pitch canker Fusarium circinatum 0.0019 Wikler et al 2003; 
Reynolds et al 2019 
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Figure 1. 751 
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Figure 2 757 
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Figure 3 761 
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Figure 4 766 
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Figure 5 769 


