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processed with a Qmax of 40 Å−1. Corresponding fits are shown in

Figures 6.13 and 6.14. . . . . . . . . . . . . . . . . . . . . . . . . 200

6.3 Refined parameters from Rietveld refinements

against variable temperature XRD patterns of

La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4 y = 0.0. Asterisks

indicate data collected during a separate measurement. . . . . . . 207

6.4 Refined parameters from Rietveld refinements

against variable temperature XRD patterns of

La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4 y = 0.1. Asterisks

indicate data collected during a separate measurement. . . . . . . 208

xxv



LIST OF TABLES

6.5 Refined parameters from Rietveld refinements

against variable temperature XRD patterns of

La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4 y = 0.2. Asterisks

indicate data collected during a separate measurement. . . . . . . 210

6.6 Refined parameters from Rietveld refinements

against variable temperature XRD patterns of

La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4 y = 0.3. Asterisks

indicate data collected during a separate measurement. . . . . . . 212

6.7 Refined parameters from Rietveld refinements

against variable temperature XRD patterns of

La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4 y = 0.4. . . . . . . . . . . . 214

6.8 Refined parameters from Rietveld refinements

against variable temperature XRD patterns of

La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4 y = 0.5. . . . . . . . . . . . 216

6.9 Minimum and maximum distance restraints used in RMCProfile

for refinements against La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4 PDFs.225

xxvi



Acknowledgments

I would first and foremost like to thank my supervisors Mark Senn and Nick

Funnell for all the encouragement and support throughout my PhD. I genuinely

could not have wished for better supervisors. Mark—thank you for imparting

even a fraction of your knowledge of crystallography and irreps, and for champi-

oning a healthy work-life balance. Nick—thank you for your assiduous approach

to all my stupid questions and anything requiring feedback, and also for always

immediately spotting the errors in my FORTRAN code.

I have been very lucky to collaborate with a number of knowledgeable and

helpful people throughout my PhD. So, thank you to the rest of the PEARL

team; Craig Bull and Chris Ridley, not only for assistance with experiments and

collecting data, but for instilling a deep understanding that 10 am and 3 pm is

coffee time. Thank you to Andrew Goodwin, Harry Geddes and Gabrielle Sosso

for their helpful discussions and contributions to the high-pressure total scattering

work on correcting for a PTM. A big thanks also goes to David Keen and Wojciech
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Abstract

Studying the average structure of functional materials as a function of tempera-
ture or chemical substitution can provide insight into structure-property relation-
ships. Pressure provides another external control parameter, now routinely used
in conjunction with diffraction. Local symmetry-breaking, or order-disorder type
behaviours sometimes must be considered, for example, using total scattering,
however, this is challenging for high-pressure measurements. This Thesis adds
insight into structure-property relationships using this conventional paradigm and
develops high pressure total scattering techniques, demonstrating applicability to
ferroelectric phase transitions in BaTiO3.

Variable-pressure neutron total scattering is complicated by contaminant scat-
tering from pressure-transmitting media. This Thesis details an approach to
account for the presence of a methanol:ethanol medium in PDFs, measured on
PEARL (ISIS). Proof-of-principle measurements are demonstrated with Ni and
MgO, in addition to the first neutron local structure measurements and analysis
of α-quartz under hydrostatic pressure.

The local structure of ferroelectric BaTiO3 under hydrostatic pressure has
been interrogated using neutron total scattering, across its tetragonal to cubic
transition. Small-box modelling, using local rhombohedral, tetragonal, and cubic
distortions, shows that rhombohedral-type distortions become suppressed with
pressure. The transition in high-temperature BaTiO3 is best described with an
order—disorder model, whereas the high-pressure results indicate that the struc-
ture is better described by the harmonic approximation.

The average and local structures of the superconductor La1.875Ba0.125CuO4

have been investigated using temperature, pressure, and chemical substitution
of JT-inactive Mg2+ for JT-active Cu2+ cations. The anomalous suppression
of superconductivity coincides with a transition to a low-temperature tetragonal
phase. Increased Mg2+ concentration is found to stabilise this phase, but prevents
its coexistence with a superconductivity-hindering low-temperature orthorhombic
phase, observed in the parent LBCO compound. X-ray total scattering indicates
dynamic rotation of the Cu/MgO6 octahedra at 400 K, and average structure
measurements show a transition to a ‘high-temperature’ tetragonal phase occurs
almost immediately with applied pressure.
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Introduction

1.1 Crystalline structures

Within solid-state chemistry there is a continual search for crystalline materials

with enhanced functional properties which can be utilised in functional devices

such as batteries,1 solid oxide fuel cells,2 and memory storage.3 Such materials

exhibit highly-correlated structure-property relationships which are central to

materials science, and, understanding how structure can influence properties such

as magnetism,4 superconductivity5 and thermal expansion6 forms a large effort

of the solid-state community.

The design of functional solid-state materials has been facilitated by the abil-

ity to efficiently describe the structure of said materials crystallographically.7

Crystalline structures are usually described via a unit cell—a parallelepiped—

and its contents, or, motif. When translational symmetry operators are applied,

an infinite crystal structure is then propagated in three-dimensional space. The

unit cell is typically defined as the smallest repeating unit which contains the

full symmetry of the structure, although this definition is not a requirement; unit

cells and their origins are often chosen to emphasise certain symmetries or to

allow comparisons to other similar structures.

Mathematical descriptions of the symmetry of a crystal can be used to ratio-

nalise temperature- and pressure-induced phase transitions and even to predict

physical properties of a crystal. For example, properties such as ferroelectric-

ity depend on the material being able to develop a spontaneous polarisation

(e.g., generate a polar vector [x,y,z]). Its associated point group symmetry may

not posses any collection of symmetry operators that that lead to its cancellation

([−x,−y,−z]). As such, a crystal with ferroelectric properties is incompatible

with space group symmetry that inverts the structure.

The periodic, ordered arrangements of atoms in crystalline materials makes

them suitable for analysis by diffraction techniques, used in a number of fields
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Figure 1.1: Diffraction pattern of a simple crystalline material with illustrations of

representative Bragg planes.

to investigate average structures of single crystal and polycrystalline samples.

Diffraction of X-rays by crystal structures was discovered a century ago by Max

von Laue, with father and son W. H. and W. L. Bragg proposing the theory

of diffraction from planes in the crystal in 1913.7 Diffraction experiments us-

ing X-rays, neutrons or electrons result in strong Bragg reflections, or peaks

for polycrystalline experiments (illustrated in Figure 1.1), providing information

about the average crystal structure symmetry, unit cell dimensions and other key

crystallographic properties. Such average structure determination has played an

important role in understanding structure-property relationships.

There is however, an increasing awareness of the role that disorder plays in

structure-property relationships of crystalline materials. This generates chal-

lenges for the crystallographic description which relies on long-range periodicity

and the ability of the average structure to accurately describe the local structure.

Deviations from the structure described by a relatively simple unit cell picture

can obfuscate more complex local behaviour.

3
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1.2 Deviations from crystallinity

Disorder within crystal structures presents itself in a number of different ways.

Thermally-induced atomic displacement represents the most fundamental form

of disorder. At temperatures above 0 K, thermal energy increasingly contributes

to atomic vibrations, causing greater instantaneous deviations from the average

symmetry (Figure 1.2(a)). Collective dynamic movements of atoms within the

lattice can give rise to characteristic low energy vibrations called phonons with

energies and populations that may in principle be calculated in the harmonic

approximation. In this case, when averaging over time, the local symmetry will

resemble an average symmetry.

Glassy materials such as silica (SiO2) adopt a highly disordered structure com-

posed of SiO4 tetrahedra randomly orientated with shared corners (Figure 1.2(b))

or edges. The structure is well-defined over a few Ångströms, after which the

periodicity is lost. A measured diffraction pattern would contain only diffuse

scattering features and no strong Bragg reflections.

Other less extreme examples of disorder, are present in crystalline structures

which exhibit, for example compositional or orientational disorder. Composi-

tional disorder describes the situation where atomic positions are randomly oc-

cupied by certain atoms (Figure 1.2(c)) (or vacancies) such that the chemical

composition remains unchanged. Materials with compositional disorder such as

semiconducting and insulating alloys are used for applications such as thermo-

electric converters where low thermal conductivity is a key property.8 The alloy

Si0.5Ge0.5 has been found to exhibit significantly reduced thermal conductivities

compared to pure Si, largely on account of the disordered arrangement of Si and

Ge atoms.9,10

Orientational disorder, such as the ‘misorientation’ of polyatomic units (SO4)

in potash alum (KAl(SO4)2.12H2O) leads to anomalous materials properties such

4
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Figure 1.2: Illustration of different types of disorder, a) thermal disorder, b) structural, c)

compositional and d) orientational. e) and f) are examples of correlated disorder arising in a

hypothetical square ice structure and the Ising triangular lattice respectively. The former has

correlated orientations of oxygen atoms (yellow circles) within rows and columns, and the

later is a compromise of opposing spins (blue versus red circles) where on average, four

nearest neighbour spins are in an opposite state, and the remaining two are aligned and forced

to be ‘frustrated’.

as reversible amorphisation under pressure. It is found that samples with a higher

degree of disorder exhibit a reversible amorphisation whereas samples with low

5
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Figure 1.3: The apparent Si–O bond shortening observed of the average structure of

β-cristobalite is due to an averaging of a distribution of bent O–Si–O configurations. The

figure is recreated from Reference 13.

disorder exhibit a distinct phase transition to an ordered phase.11

In the examples above, there is a marked difference between the local and

average symmetry of the system. The average structure—i.e., the time- and

space-averaged structure—will appear to have higher symmetry than the local

structure and this can lead to an unphysical interpretation of local coordination

environments of materials. For example, the average structure of β-cristobalite

would apparently have linear O–Si–O bonds, which counter-intuitively shorten

with increasing temperature. This atomic arrangement is known to be energeti-

cally unfavourable through simple valence shell electron pair repulsion theory, and

experiments probing the local structure12 have found that the O–Si–O bonds are

in fact bent and the apparent linearity is due to averaging of the distribution of

Si positions, shown in Figure 1.3.

Whilst disorder in crystalline materials is sometimes random; physical in-

teractions between atoms can result instead in non-random, correlated disorder.

Correlated disorder appears to arise via two scenarios—an underconstrained con-

figuration with degenerate ground states, such that a unique ordering pattern
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is not realised, or, an incompatibility between the interactions that govern the

geometry of a lattice, also known as ‘geometric frustration’.14 Disorder arising

from the former of these is illustrated by the example of hypothetical square ice

(Figure 1.2(e)), as described by Keen and Goodwin.14 Short-range interactions

between O and H atoms means that, in this two-dimensional representation, there

are ordered arrangements of O–H bonds along rows and columns but there is no

requirement for order between them, hence there is correlated disorder.

Disorder arising from geometric frustration is illustrated by the Ising triangu-

lar antiferromagnet problem.15 Ising spins (occupying one of two ‘up’, or ‘down’

states) arranged on a triangular lattice are frustrated where energy minimisation

is driven by neighbouring spins occupying opposite states, but cannot be fully

minimised due to the third spin necessarily aligning with another. Figure 1.2(f)

represents a solution for opposing spins (depicted by blue and red circles) placed

on a triangular lattice where on average four nearest neighbours are in an oppo-

site spin state and two are forced to be frustrated. Although the long-range order

is lost, the spin states are not random and are correlated.

In many functional materials, correlated deviation from perfect periodicity is

found to play a significant role in governing functionality, for example in BaTiO3,

the subject of Chapter 3, which will be discussed later in detail.

1.2.1 Measuring disordered structures

There are a number of local structure probes useful for exploring solid-state struc-

tures. Spectroscopic techniques such as X-ray absorption near edge structure

(XANES)16 and extended X-ray absorption fine edge structure (EXAFS)17,18

provide information about specific elements, oxidation states and the coordina-

tion geometry of a targeted site within a material. Nuclear magnetic resonance

(NMR) spectroscopy19 is used to study the local environments of specific nu-

7
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Figure 1.4: (a) The total scattering structure factor of Ni with an inset to highlight the

region under which diffuse scattering is observed. (b) The corresponding PDF with an

indication of specific atom–atom distances giving rise to the peak positions.

clei. Raman spectroscopy20 also provides local structure information through

the identification of vibrational modes—the number and character of which place

constraints on the local symmetry. While the methods outlined above all have

their individual strengths, they are limited, in that they can only identify very

short-range structures (i.e., first coordination spheres or individual molecules).

The technique of total scattering, however, probes all pair-wise interactions

providing an instantaneous snapshot of all atom–atom distances within a ma-

terial. Whilst in average-structure analysis, diffuse scattering is modelled, and

discarded, as ‘background’, in total scattering, both the Bragg and diffuse scatter-

ing are considered together, as a ‘total scattering’ pattern (Figure 1.4(a)). Fourier

transformation of a total scattering gives a pair distribution function (PDF) (Fig-

ure 1.4(b)) which can be defined as a weighted histogram of all the atom–atom

distances within a material.

Following the definitions described by Keen21 (and with respect to neutron

scattering), the partial PDF, g(r), describes the distances between two atom

types i and j:

gij(r) =
nij(r)

4πr2drρj
, (1.1)

where nij(r) are the number of particles of type j between distances r and r + dr
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from a particle of type i, and ρj is the weighted number concentration of particle

j (ρj = cjρ0, where cj is the proportion of species j).

Where there is more than one type of atom, the total radial distribution

function, G(r) describes all the distances within the material and is the weighted

sum of the partial PDFs (gij(r)):

G(r) =
n∑

i,j=1

cicj b̄ib̄j[gij(r) − 1], (1.2)

where ci is the proportion of species i, b̄i is the scattering length of species, i.

A PDF, G(r), is related to the average structure factor F (Q) via a sine Fourier

transformation as follows;

G(r) =
1

(2π)3ρ0

∫ ∞

0

4πQ2F (Q)
sinQr

Qr
dQ. (1.3)

There are a number of normalisation types used for total scattering patterns

and PDFs, each with their own merit, for example, the D(r) normalisation (de-

fined below) progressively enhances the longer range structure.

Whilst F (Q) has limiting values of F (Q → 0) = −
∑n

i=1 cib̄
−2
i +η and F (Q →

∞) = 0, the normalised total-scattering structure factor,

S(Q) =
F (Q)

(
∑n

i=1 cib̄i)
2

+ 1, (1.4)

has limiting values of S(Q → 0) = −
∑n

i=1 cib̄
−2
i /(

∑n
i=1 cib̄i)

2 + η and S(Q →

∞) = 1, where the lower limit is essentially zero.

PDF normalisations used in this Thesis are:

G′(r) = G(r)/(
n∑

i=1

cib̄i)
2 + 1 (1.5)

9
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and

D(r) = 4πrρ0G(r), (1.6)

and their limiting values are tabulated in Table 1.1. The G′(r) normalisation

means that for PDFs measured of solely positively scattering atoms (neutrons

can be scattered negatively), the PDF is completely non-negative. This has been

particularly significant for the work reported in Chapter 2, where treatment of

data has required non-negative PDFs.

Table 1.1: Upper and lower limiting values for the alternative PDF normalisations used

within this Thesis.

Notation (r < r0) (r → ∞)
G(r) −(

∑n
i=1 cib̄i)

2 0
G′(r) 0 1
D(r) −4πrρ 0

A good quality PDF, suitable for structural analysis is dependent on a number

of requirements of the total scattering experiment; good signal to noise ratio, a

reasonable dQ (diffraction resolution), accounting for any non-sample scattering,

and a high maximum Q value (Q = 4πsin(θ)/λ), since the resolution (∆r) of a

PDF is inversely related to the maximum Q value (Qmax), ∆r = 2π/Qmax. A

laboratory Ag-source diffractometer will provide a Qmax of 22 Å−1 at 2θ = 90°,

although, data collection may take days to provide sufficient counting statistics.

Synchrotron X-ray sources can provide intense, high energy X-rays, with Qmax

values of up to 40 Å−1 and data collected in the order of seconds. Neutron time of

flight (ToF) sources are often considered the ‘gold standard’ for PDF experiments

due to the availability of short wavelength neutrons—providing Qmax values of

up to 50 Å−1—and the fact that neutrons continue to scatter strongly at high Q,

whereas X-rays do not.

One of the strengths of total scattering is that the PDF can be used to perform

quantitative analysis. Therefore, structural models can be compared with, and

10
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refined against the measured PDF. Not only will the PDF provide short (to

medium)-range local structure of a material (tens-to -hundreds of Ångströms22),

but the ability to refine a structural model against both the PDF and Bragg data

allows both local and average structure pictures to be reconciled, simultaneously.

The technique of total scattering has provided insight into a number of func-

tional crystalline materials. Negative thermal expansion (NTE) is useful for many

applications including for aerospace engineering, but the phenomenon whereby

the volume of a material decreases on warming23,24 is puzzling when observed with

average structure techniques. The archetypal NTE material, ZrW2O8—when

characterised with conventional X-ray diffraction—indicates that bond lengths

unphysically shorten with increasing temperature.25 Using PDF analysis, which

is sensitive to correlated displacements of pairs of atoms, rather than individual

atoms, it was found that the NTE behaviour was due to rotations of rigid units

of ZrO6 and WO4 polyhedra.26

The La1−xCaxMnO3 series, studied for its colossal-magnetoresistance (CMR)

property,27 is another example of where total scattering has provided impor-

tant structural information. Short-range correlated ordering of the Jahn-Teller

(JT) distorted MnO6 octahedra is only visible using local methods, and PDF ex-

periments28–30 have shown that whilst the average structure remains essentially

unperturbed despite changes in the CMR behaviour, the local structure contains

domains of ordered JT-distorted MnO6 units.

Ongoing experimental development means that PDF measurements are in-

creasingly used for in operando 31–34 and in situ studies.35,36 For example, using

in operando cell cycling, Hua et al. were able to measure the local structure of

anode materials; Fe and Mn oxide, finding differences in the reaction mechanisms

that had previously accepted within the field.37

11
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1.3 Phase transitions

Temperature and pressure are common means of driving structural change

through the addition or removal of thermal energy, or by minimising the free

volume.38–40 For example, the ZrW2O8 NTE26,41 material previously mentioned

not only exhibits temperature-induced functionality but also possesses useful

pressure-related properties.42,43 The disappearance of Bragg peaks indicates that

under pressures of more than 1.5 GPa, the material goes through pressure-induced

amorphisation.44 Keen et al.45 found through PDF measurements that new W–O–

W bonds were formed on the application of pressure, and that the amorphisation

mechanism was not unlike that found for the NTE behaviour, with correlated

rotations and translations of the polyhedral units.46

Many of the property-inducing phase transitions of functional materials can

be described as either displacive47 or order-disorder (OD) type (depicted in Fig-

ure 1.5). The former involves concerted motions of atoms that change the symme-

try of the crystal structure, for example, in PbTiO3, Pb2+ and Ti4+ cations break

inversion symmetry by moving along the [001] direction above the phase transi-

Figure 1.5: A schematic of displacive and order-disorder phase transitions showing the

time-averaged positions of the atoms in the unit cells, where TC is the phase transition

temperature.
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tion temperature.48,49 After an OD phase transition, atoms that were in a disor-

dered arrangement above the transition temperature become ordered on specific

crystallographic sites below the transition temperature, resulting in a lowering of

the crystallographic symmetry, whilst the local environments remain largely un-

changed across the transition. This type of phase transition is exemplified by the

calcite (CaCO3) material, where a temperature-induced orientational OD phase

transition is found due to temperature-induced ordering of CO2−
3 molecular ions

in the [001] direction above 1260 K.50,51

Crystalline SiO2 on heating, provides another example of displacive phase

transitions.12 At 573 °C a subtle phase transition from α-quartz to a β phase

occurs, where the connectivity of SiO4 tetrahedra remains the same and no bonds

are formed or broken, although the tilting and symmetry of the system is altered.

Above 870 °C, another phase transition occurs, to β-tridymite and again, at

1470 °C to β-cristobalite. The low-temperature α–to–β transition is an example

of a displacive transitions where no bonds are formed or broken, whereas the

higher-temperature phase transitions are reconstructive and involve a significant

rearrangement of the structure where bonds can be formed and broken.

Ehrenfest classifications52 may be used to classify a phase transition, based

on how chemical potential (or Gibbs free energy, G) changes with the phase

transition. Gibbs energy can be defined as:

G = U + PV − TS, (1.7)

where U is the internal energy, P is the pressure, V is the volume, T is the

temperature and S is the entropy. An abrupt change in both volume and en-

tropy/enthalpy results in a discontinuity in the first derivative of Gibbs versus

temperature or pressure - this defines a first order phase transition. First-order
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transitions involve a latent heat and therefore hysteresis is often observed, with

a difference in transition temperature on heating compared to cooling. Another

characteristic of a first order phase transition is phase coexistence. A second

order phase transition is where the volume, enthalpy and entropy do not change

abruptly at the phase transition—there is a discontinuity in the second derivative

of the free energy with respect to temperature or pressure.

Phase transitions can also be categorised as discontinuous or continuous, de-

pending on definitions defined by Landau and Ginzburg.47 Simple Landau models

can be used to predict how the entropy will change across a phase transition as-

suming an order parameter (OP), η, that tends to zero at the phase transition

temperature, TC (on warming). This OP can be used to describe the distortion

of the structure compared to the higher symmetry structure. For example, a

phase transition in a perovskite ABO3 might occur due to ordered tilting of BO6

octahedra, in which case, the angle of the tilt may be used as the OP. The intro-

duction of an OP for the description of phase transitions allows the link between

thermodynamic properties and crystallographically OPs to be made.

The phenomenological Landau theory uses the assumption that the free energy

of the system, G(η), can be approximated as a function of η:

G(η) = G0 +
1

2
Aη2 +

1

4
Bη4 +

1

6
Cη6 + ..., (1.8)

where A, B and C are constants and G0 is the free energy of the system when

η = 0. For continuous phase transitions where there is only one OP, the free

energy of a system can be expressed as a sum of only even powers (as shown

in Equation 1.8), and often only terms up to the fourth power are found to be

necessary. It is important to note that the relationship described by Equation 1.8

is only expected to accurately describe the free energy behaviour close to the
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Figure 1.6: (a) Plot of Landau free energy curves for a system with OP, η showing that at

T<TC, the solution ±η0 minimises the free energy whereas at T>TC, η = 0 is the only

solution. (b) Plot of Equation 1.10 (provided in the text) of the evolution of parameter η with

temperature.

phase transition.47

Figure 1.6(a) shows three free-energy curves for a second-order displacive

phase transition. For T>TC, the solution of the function is η = 0, and when

T<TC, η = 0 becomes a local maximum. Or in terms of the structural phase

transition, for temperatures above the phase transition a free energy curve corre-

sponds to a parabola centred at η = 0 which means that the undistorted structure

is stable. Cooling through the phase transition temperature results in the mini-

mum of the parabola shifting to a non-zero value of the OP, hence the distortion

becomes energetically favourable.

In Landau theory it is generally assumed that a phase transition may be

described by a temperature dependent coefficient of the second-order term of the

OP,

A(T ) = a(T − TC), (1.9)

and by substitution and subsequently solving G(η), a solution is found for when
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T<TC. It can be shown that an expression for the variation of η with T is realised:

η = η0(TC − T )1/2. (1.10)

This relationship, plotted in Figure 1.6(b) can be used to predict the behaviour

of a second-order phase transition when there is one OP driving the transition,

and has been used in Chapter 4.

A more complex treatment of Landau theory can be used for discontinuous

(first order) phase transitions and a full explanation can be found elsewhere.53

1.3.1 Representation analysis

Group theory is another useful mathematical tool for describing the relationship

of symmetry elements in a crystal structure. Symmetry elements are grouped

into types, or, ‘conjugate’ sets when B = X−1AX, i.e., A and B are conjugate.

The operations of a symmetry element and the resulting change on a physical

system can be expressed as a combination of vectors and matrices. This type of

mathematical description is said to be a representation of a given group and the

symmetry elements act as linear operators to result in specific representations of

the group.

Character tables contain information about how specific distortions will break

the symmetry of a point group, or, how the distortion transforms after the appli-

cation of each symmetry operation of the group. Information about the retention

or loss of symmetry is contained within the table and shows how many classes or,

irreducible representations (irreps.) there are. An irrep. of a point group is then

said to be a unique symmetry-breaking of an aristotype structure and cannot be

broken down into smaller representations. Irreps. are orthogonal to each other

which means that symmetry-breaking distortions described by OPs are orthogo-
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nal to each other—this feature is exploited for analysing phase transitions using

Landau theory.

The irreps of space groups are based on Bradley-Cracknell54 notation, K
+/−
n ,

where K is the symbol for the high-symmetry points in reciprocal space, n is an

identification number (with no other significance) and +/− denotes a conserva-

tion (+) or breaking (−) of symmetry. For example the irrep. Γ−
4 of the parent

group Pm3̄m describes a vector, k of [0,0,0] and the minus sign indicates that

the irrep. breaks inversion symmetry. Additional information is provided by the

order parameter direction (OPD) in the case of Γ−
4 , the general OPD is described

by (a, b, c), indicating that it is a triply degenerate irrep. This can be under-

stood by considering the correlated displacements along x, y and z, which can

be transformed to be equivalent under the operators of m3̄m. Although there is

no symmetry-based constraint requiring the three dimensional basis that spans

the triply degenerate irrep to coincide with lattice directions, the irrep matri-

ces are usually chosen such that this is the case. Therefore, an OPD of (a,a,0)

for example would describe a distortion acting in equal magnitude along the a

and b lattice directions. It is important to realise that in general, irreps. and

OPs can have dimensions exceeding three, and therefore there is not always a

straightforward correspondence between the basis of the lattice vectors and the

distortion-describing irrep.

There are a number of online tools such as the Bilbao Crystallographic

Server,55–57 designed to aid the routine representation analysis of crystal struc-

tures. Representation analysis is particularly useful for the study of displacive

phase transitions, where a symmetry-breaking distortion can be described by a

single or combination of ‘irreps.’, or for probing the local OPD to distinguish be-

tween OD and displacive transitions. The online tool ISODISTORT58 has been

used for mode decomposition and analysis throughout this Thesis.
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1.4 Structure-property relationships of metal

oxides

Solid oxide materials are ubiquitous in modern day technologies and are used in

a multitude of functional devices such as solar cells,59 fuel cells,60 superconduc-

tors, to name a few. They exhibit a wide variety of physical properties due to

their rich chemistry. Chapters 3 and 4 report the average and local structures

of the perovskite material, BaTiO3 and a A2BO4 Ruddlesden-Popper structure,

respectively. Their structures and degrees of freedom relevant to this Thesis

are discussed in this section. The perovskite structure is popular for exploring

functionality in solid state materials due to its apparent chemical and structural

flexibility. The most simple perovskite structure (Figure 1.7) has the chemical

formula ABX3 where A and B denote cations and X denotes an anion, most

typically an O2− ion and henceforth labelled as such. The A–site is generally oc-

cupied by larger alkali or rare-earth metals and coordinated by twelve O2− ions,

and the smaller B-site—usually occupied by transition metals—is octahedrally

coordinated by six neighbouring O2− ions with these octahedra joined at their

corners, forming a network which plays a key role in the functionality of the

Figure 1.7: The highest-symmetry perovskite structure, where the B cation sits in exactly

the centre of the unit cell, resulting in the highest symmetry cubic structure.
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Figure 1.8: The crystal structures of Ruddlesden-Popper phases, (a) A2CuO4 (n = 1) and

(b) Ca3Ti2O7 (n = 2).

perovskite family.

Perovskite-related materials include Ruddlesden-Popper (RP) phases.61,62

These structures consist of two-dimensional perovskite-type layers, interleaved

with rock-salt layers. They have the general formula An+1BnX3n+1 where n cor-

responds to the number of octahedral layers. Notable examples of n = 1 and

n = 2 RP phases (Figure 1.8) include A2CuO4 and Ca3Ti2O7 respectively. The

A2CuO4 material forms the basis of many high-temperature superconductor ma-

terials, with the A–site occupied by combinations of divalent (Ba, Sr, etc) and

trivalent (La, Y, etc) atoms. Ca3Ti2O7 (and Ca3Mn2O7) has received recent

attention due to the property of ‘hybrid improper ferroelectricity’, wherein two

nonpolar distortions of the structure couple to a polar mode, generating an overall

polar structure.63

The A– and B–sites of the perovskite and RP structures can accommodate

a vast variety of elements, allowing the modification and design of specific mag-
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netic, electronic and mechanical properties.64,65 There are a number of ways the

structure and property of a metal oxide can be influenced. Perhaps the simplest

alterations can be made through size effects, where the chemical composition can

be designed such that the ionic radii of the cations are slightly too large or too

small.66,67 This size mismatch for perovskites is often described and quantified by

Goldschmidt’s tolerance factor,68

t =
rA + rO√
2(rB + rO)

(1.11)

where rA, rB and rO are the radii of the A, B and O ions respectively and

a t value of 1 would describe an ideal undistorted (cubic) structure. Deviations

from t = 1 result in a distortion of the perovskite structure through cation dis-

placements, and—when t<1—flexibility via octahedral tilts and rotations often

facilitate property-inducing phase transitions.

Where there are multiple atom-types occupying a single A- or B-site, ordering

may occur–often described as rock salt, columnar or layered order.69 If the two

species are of similar charge and size, they are likely to be disordered. In the

double perovskites, Sr2FeMoO6 and Pb2ScTaO6, disordering of the B-site cations

is found to affect their physical properties of magneto-transport and dielectricity

respectively.70,71 Additionally, in the AMnO3 material, the metal-insulator tran-

sition temperature is found to have a linear relationship with the A-site radius

variance (where the average radii and charge is maintained).64,65

More complex effects such as orbital ordering can influence the physical prop-

erties and phase changes in solid metal oxides through orbital overlap and subse-

quent electronic effects. The orbitally-driven structural distortions of transition

metals in octahedral geometries—ubiquitous in perovskite structures—are usu-

ally described by the Jahn-Teller (JT) distortion.
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Figure 1.9: Diagram of the Jahn-Teller d-orbital splitting that occurs for a typical

octahedral complex. The complex possesses a degenerate electronic ground state (middle),

and distorts to remove the degeneracy, forming a lower energy system. Left, the z-ligands are

compressed and right, the z-ligands are elongated.

The JT effect is a geometric distortion of a non-linear system and for octa-

hedral complexes, the five d-electron orbitals are split into two degenerate states

(labelled t2g and eg, shown in Figure 1.9). When the d-orbitals are filled asym-

metrically, then JT effects occur where axial and equatorial bond lengths will

lengthen or shorten to remove the degeneracy by distorting the octahedra. This

acts to lower the overall free energy of the system via symmetry lowering. JT

distortions often compete with other effects, including crystal strain, Coulombic

repulsions and entropy, since at high temperatures, configurational degeneracy is

favored. All of these factors can lead to a complex orbital ordering pattern of

JT-elongated or compressed metal-oxygen bond lengths. Therefore, determining

the average crystallographic structure reveals the orbital ordering of the structure

to an extent, but deconvolution of the exact behaviour of the orbitals from any

properties that arise from this effect is difficult. Understanding how the geomet-

ric JT effect couples with the crystal structure and functional phase transitions

is one of the aims of this Thesis.

The second-order JT effect72,73 (also known as the pseudo JT effect)—a key

instability of the prototypical ferroelectric BaTiO3—also results in distortions of

the octahedral geometry. The second-order JT distortion is the result of interac-
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tions between filled and empty molecular orbitals that are symmetry forbidden.

Symmetry-breaking allows the highest-energy occupied orbitals to interact with

lowest-energy unoccupied orbitals, and therefore an off-centre distortion of the

central atom is favoured.

In perovskites, the second-order JT effect can arise either due to the presence

of cations with a non-bonding lone pair or, the presence of d0 metal ions. The

latter is responsible for the ferroelectrically-significant off-centre displacement of

the Ti4+ cation of the BaTiO3 perovskite structure, where the hybridisation of

empty Ti d-orbitals with filled O p-orbitals results in a near-degenerate state. JT

distortion arising from non-bonding lone pairs is more common of heavier main-

group elements (for example, BiFeO3) and instead involves hybridisation of s and

p-orbitals of the metal with the p-orbitals of the O anion.

1.5 Measuring average and local structure

1.5.1 Synchrotron X-ray sources

Although laboratory X-ray sources are useful in providing accessible X-rays, par-

ticle accelerators can produce brilliant, high flux light, with the ability to perform

high-resolution measurements very quickly, allowing in-depth studies of the av-

erage and local structures of functional materials. Diamond Light Source (DLS)

and the Taiwan Photon Source (TPS) were utilised for experiments presented in

this Thesis. The two facilities are comparable, both being 3 GeV third-generation

light sources, so-named because of the use of insertion devices—magnets designed

to ‘wiggle’ or ‘undulate’ the electrons to produce intense sources of light. A syn-

chrotron light source (schematically shown in Figure 1.10) produces ‘synchrotron

light’ by using an electron gun to propel electrons down a linear accelerator (linac)

into a booster ring where the electrons are accelerated to relativistic speeds. The
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Figure 1.10: Left, a schematic of a synchrotron layout. Right, diagrams of synchrotron light

being produced by a bending magnet, wiggler and undulator. The different colours of the

magnetic devices indicate a change in magnetic pole.

electrons then enter the storage ring, where a series of bending magnets keep the

beam focused and travelling around the ring. Synchrotron light is produced when

the electrons change direction; either when they pass through bending magnets or

insertion devices (Figure 1.10, right) the latter of which produce a more intense,

tuneable light. The insertion device is either a wiggler—typically used where very

high energies (up to 100 keV) are required—or an undulator, which produces a

more intense beam with a much narrower radiation bandwidth. As the electrons

change direction, they emit a beam of radiation which enters the optics hutch of

the beamline, where the beam is focussed and collimated by optic devices such as

monochromators and mirrors, before ultimately arriving at the sample position.

Two types of dedicated X-ray beamline were used for the work reported in

this Thesis. The X-ray PDF beamline (I15-1, DLS) was used for local structure,

total scattering experiments and high-resolution diffraction beamlines I11 (DLS),

09A and 19A (both at TPS) were used for variable-temperature average structure

determination.
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Pair distribution function beamline

The dedicated X-ray PDF beamline I15-174 at DLS was used for the local struc-

ture study reported in Chapter 4. The I15-1 beamline optics and end-station

have been optimised to produce high energy X-rays, high flux and low back-

ground required for high quality PDFs. A wiggler device is used to produce

high-energy X-rays and the combination of a Laue monochromator,75 composed

of three silicon crystals such that one of three energies can be chosen (40.0, 65.4

or 76.6 keV), with a focussing mirror76 means that high energy X-rays and high

flux are achieved. I15-1 utilises two large area detectors with one placed close to

the sample at 45° to provide higher Qmax values (up to 40 Å−1 at 76.7 keV). A

second detector is mounted further from the sample, allowing the simultaneous

measurement of higher-resolution Bragg data.

The fact that X-ray scattering factors decrease as a function of diffraction

angle means that the measured scattering factor must be divided by the square

of the atomic form factor77 in order to remove the scattering angle-dependency

and to enhance the scattering at higher angles (high Q).78 Often, the decay in

intensity at high Q and resulting degradation of the signal-to-noise ratio means

that PDFs generated from X-rays are, in practice, limited to a Qmax value below

the theoretical experimental capability.

I15-1 is equipped with a Oxford Instruments Cryojet5 and a hot air blower,

providing a combined temperature range of 85–1100 K, enabling investigation

of local structure using non-ambient and variable temperature. Data reduction

techniques must consider the changing sample environment, but otherwise remain

the same.
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High-resolution powder diffraction beamlines

Although a number of high-resolution powder diffraction beamlines (09A and

19A at the Taiwan Photon Source (TPS) and I11 (DLS)) were used for the work

reported in Chapter 4, the experimental set-up and beamline design is essentially

the same and the details for I1179 are reported here.

The high flux afforded by synchtrotron light allows very high resolution diffrac-

tion data suitable for Rietveld analysis to be collected in a matter of seconds where

data collection on laboratory diffractometers take on the order of hours. On I11,

an undulator device is used to provide high-intensity X-rays, with energy tunable

to a range of 5–25 keV (0.4–2.1 Å), along with a Si monochromator to select

the specific energy. Position sensitive detectors (PSD) based on Si-strip modules

are utilised for fast data collection and are particularly useful for in situ and in

operando studies of functional materials under non-ambient conditions.

I11 is equipped with an Oxford Cryostream800+ and a hot air blower, with a

combined temperature range of 100–1200 K. Beamlines 09A and 19A are capable

of reaching temperatures down to 10 K through the use of an ESRF DynaFlow

cryostat and therefore were vital for identifying the low temperature (<100 K)

phase transitions reported in Chapter 4.

1.5.2 Time-of-flight neutron sources

Unlike X-rays, neutrons used for diffraction experiments cannot be produced in

a laboratory and are instead generated at large-scale facilities either by nuclear

fission at a reactor source (such as Institut Laue-Langevin, France), or spallation

(at the Spallation Neutron Source, U.S.A. or ISIS Neutron and Muon Source,

UK, for example). Neutrons produced by fission are high energy (MeV-region)

and therefore must be moderated to wavelengths suitable for diffraction. Reac-

tor sources are constant wavelength sources, whereas spallation, or, ToF flight
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Figure 1.11: The layout of ISIS, the target stations and the instruments that surround each

target.

sources use a range of neutron wavelengths, which is advantageous for particular

experimental set ups, constrained to a 90° scattering geometry (i.e., high pressure

environments, discussed in detail below).

ISIS is a spallation facility and was the sole neutron source used for the work

reported within this Thesis. Figure 1.11 shows the current layout of ISIS and its

instruments. H− ions are produced by an ion source (Cs vapour mixed with H2

gas) using an electric discharge. The negative hydrogen ions are accelerated be-

fore being passed through a thin alumina foil which removes the electrons, leaving

a beam of protons. The protons are accelerated further and then collided with a
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tungsten target. As the tungsten target is bombarded with high energy protons,

neutrons are released from the nuclei of the target atoms, a process called ‘spalla-

tion’. This results in an intense neutron beam which is moderated by hydrogen,

methane, or water moderators to slow the neutrons to useful wavelengths for

experiments. ISIS is a pulsed ToF neutron source, and therefore the time taken

for the neutron to reach the detectors from the moderator, t, is measured and

related to d-spacing (d) and the flight path (L) by:

d = 1.9777 × 10−3t[Lsinθ]−1. (1.12)

While X-rays are scattered by the electron cloud of each atom and suffer a

fall-off in intensity at higher scattering angles (Figure 1.12), neutrons are scat-

tered by the nuclei of atoms, which can be treated as point scatterers. Therefore,

scattered neutrons do not suffer from decreasing scattering power as a function of

scattering angle, so strong peaks are still obtained at high 2θ values, particularly

for experiments carried out at low temperatures where smearing out of nuclear

density due to thermal motion will be negligible. Another consequence of ‘point

Figure 1.12: Left: Scattering lengths of X-rays and neutrons as a function of atomic

number, Z. X-rays have a strong dependence on both Z and the scattering angle, θ, where

neutrons do not. Right: The angular dependence of the X-ray and neutron scattering factors.
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scattering’ is that there is no dependence on Z values (shown in Figure 1.12),

due to the fact the scattering is governed by nuclear rather than electromagnetic

interactions. The nuclear interactions instead depend heavily on the makeup of

the nuclei (number of protons, neutrons, etc). Unlike X-rays, there is no clear

relationship between scattering power and nucleus composition. A fortunate con-

sequence of this is that neutron diffraction is a useful technique for studying light

atoms (particularly perovskite materials where often oxygen-containing octahe-

dra play a key role in functionality), or materials with atoms of similar Z numbers

which would not otherwise be distinguished using X-ray diffraction techniques.

Neutron scattering lengths indicate how strongly elements and isotopes will scat-

ter, and can be either positive or negative, for example the scattering length of

Ti is −3.438×10−15 m and O is 5.803×10−15 m.

Scattering lengths can vary greatly between isotopes of the same element, and

this isotope sensitivity is exploited by techniques such as selective labelling, to in-

vestigate localised environments in samples such as organic molecules.80 Another

useful property of neutrons is that they are highly penetrating and therefore there

are generally less restrictive requirements of sample environment, compared with

an analogous X-ray experiment. An unfortunate drawback of neutron scattering

is that 1H is an incoherent scatterer which leads to increased background and

therefore most hydrogen-containing samples must be deuterated (substituted for

2H), though this can be exploited for isotope substitution experiments.

As previously stated, ToF sources generally produce very good quality PDFs,

where instruments such as GEM at ISIS achieve Qmax values of up to 50 Å−1,

resulting in a ∆r of ca. 0.1 Å.
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High-pressure neutron diffraction beamline

The dedicated high-pressure beamline PEARL was used to study the pressure-

dependent local structure of BaTiO3 (Chapter 3) and the average structure of

Mg-substituted La1.875Ba0.125CuO4 (Chapter 4). Chapter 2 is dedicated to the

development of novel procedures to allow local structure techniques to be carried

out more routinely, specifically using PEARL and measuring crystalline materials.

PEARL is a diffractometer (Figure 1.13) located on Target Station 1.81 The

instrument is supplied with neutrons via a liquid methane moderator set at 110 K,

after which the beam is collimated using B4C jaws which shape the beam to be

5×5 mm2 at the sample position. Detector efficiency can be accounted for by

normalising each detector by an incident beam scintillation monitor. Variation

in flux with wavelength is normalised for by a vanadium measurement.

The instrument has been designed specifically to accommodate the Paris-

Edinburgh (PE) press which is used to perform in situ high pressure measure-

ments. The PE press is contained within an evacuated tank, 12.8 m from the

methane detector, which can be translated along the beam path to ensure the

Figure 1.13: Schematic of the high-pressure instrument PEARL. The PE press sits in the

beam and is surrounded by transverse detector banks.
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Figure 1.14: A PE press attached to the flange used to lower and seal the press into the

evacuated sample tank. The ZTA anvil and gasket assembly is shown schematically on the

right.

ToF path remains constant when pressure is increased. PEARL has nine trans-

verse detectors which are normal to the incident beam, with a 81.2° ≤ 2θ ≤

98.8° diffracting angle range defined by the opening angle of the anvils used. The

transverse detectors observe d-spacing in the range 0.3–4.1 Å corresponding to a

Q-range of 1.5–20.3 Å.

In situ variable-pressure diffraction measurements are achieved using large-

volume PE press (shown in Figure 1.14), with Bridgman-type opposed anvils

with a toroidal profile.82 Samples are typically loaded into a null-scattering TiZr

(designed such that the negative and positive scattering lengths of Ti and Zr

respectively, cancel out) gasket which sits in the centre of two opposing anvils,

designed to have a geometry that accommodates the shape of the gasket. The

anvils then sit inside the PE press, which is fitted with a boron nitride insert

for collimation and boron-coated collimation ‘ears’ through which the scattered

neutron beam will pass. The press is orientated towards the incident neutron

beam, such that the neutron beam passes through the anvil and the scattered
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Figure 1.15: Schematic of the anvil and gasket assembly used on PEARL, with incident

and diffracted beams indicated. The Figure is modified from Figure 3 in Reference 81.

beam is received by the 90° transverse detectors (shown in Figure 1.15). Load

is applied to the gasket via an oil or pentane-driven piston towards one of the

anvils. Due to the inverse relationship between volume and pressure, high pres-

sure experiments notoriously require small sample volumes in order to achieve

high pressure conditions, however, neutron experiments require sufficiently large

sample volumes to negate the effect of weakly interacting neutrons and low flux

compared to that of X-ray sources. Therefore there is a balance to be struck

between counting statistics and attaining multi-GPa pressures. Standard sample

volumes on PEARL are 66 mm3, as per the design of the gasket and anvils which

deliver high pressure.

The pressure applied to the sample is measured via known relationships be-

tween the pressure, temperature and volume of a measured material, or, an ‘equa-

tion of state’ (EoS). The Birch-Murnaghan (BM) EoS83 is widely used by the

high-pressure community and has been utilised in this Thesis both to determine

experimental pressures and to derive the compressibility (bulk moduli values) of
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materials with otherwise unknown EoS’s. Where the EoS of a material is un-

known, a pressure marker must be used. For neutron diffraction this is most

commonly either a Pb pellet or NaCl powder.

The inclusion of a hydrostatic medium is important particularly for high-

pressure measurements of crystalline materials, where non-hydrostatic conditions

can result in sample strain, often evidenced by broadening Bragg peaks. Common

hydrostatic media include methanol:ethanol mixtures, iso-n-pentanes and gases

such as helium and argon.84

1.6 Thesis outline

Although total scattering techniques are now well established and used quite rou-

tinely, experimental requirements of respective (neutron) high-pressure and total

scattering techniques means that, thus far, no such studies have been performed

for crystalline materials under hydrostatic conditions. The inclusion of a PTM

in order to afford hydrostatic pressure presents difficulties in that signal from the

PTM will also be present in the measured PDF. The work reported in Chapter 2,

is a facility development project, funded by the Science and Technology Facilities

Council, and aims to address the difficulties of performing such an experiment.

Simple crystalline materials Ni and MgO are first used as proof-of-principle ex-

amples and subsequent results derived from measurements of a more flexible

crystalline material, α-quartz represent the first science-case of hydrostatic local

structure high-pressure measurements on PEARL.

The type of significant structural insight available from high-pressure local

structure experiments on PEARL is then illustrated by the study reported in

Chapter 3, where the pressure-induced ferroelectric phase transition of BaTiO3

has been investigated. Whilst the temperature-induced tetragonal-to-cubic phase
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transition has been found to progress as an OD-type transition, experiments and

analysis reported in this Thesis shows that the application of pressure recovers a

more displacive behaviour. Careful modelling of local structure distortions over

different ranges of the measured PDFs has allowed significant structural insight

to be gained from relatively low resolution PDFs (Qmax = 20.32 Å−1).

The anomalous behaviour of the high-temperature superconductor material,

La1.875Ba0.125CuO4 (LBCO)—where there is a dip in the superconducting tem-

perature for the specific ‘0.125’ Ba doping—has been explored using and compo-

sition, temperature and pressure. The substitution of the JT-active Cu2+ cations

with JT-inactive Mg2+ has enabled the role of the anisotropic JT distortion to

be scrutinised. Variable-temperature high resolution XRD measurements have

shown that a low temperature phase coexistence of tetragonal and orthorhombic

phases, observed for LBCO, is removed when Mg2+ is substituted into the struc-

ture. Additionally, it is found that higher Mg-content increases the lower tem-

perature first-order and higher temperature second-order phase transition tem-

peratures. X-ray PDFs of the high temperature phase provide valuable insight

into the nature of the high temperature local structure behaviour. Further av-

erage structure experiments using high-pressure neutron diffraction have allowed

the pressure-induced phase transition to be explored and fundamental pressure-

induced structural changes such as compressibility to be investigated.
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Chapter 2

Recovering local structure

information from high-pressure

total scattering
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2.1 Introduction

PDF analysis of crystalline materials offers a complementary view to the time-

averaged structural information provided by more conventional diffraction exper-

iments. In many instances, material properties can only be understood fully by

considering local distortions that cannot be adequately described by an average-

structure representation.1 PDF analysis has proved crucial in fully characterising

numerous functional materials, for example, oxide ion conductors,2 negative ther-

mal expansion compounds,3 and the archetypal ferroelectric BaTiO3.
4

There are now a great number of facilities capable of making PDF measure-

ments: instruments such as I15-1 (XPDF) at Diamond Light Source, UK, 11-

ID-B at the Advanced Photon Source, USA, NOMAD at the Spallation Neutron

Source, USA, and GEM and POLARIS at the ISIS Neutron and Muon Facility,

UK5–9 enable high-quality data collection, while also providing average structure

measurements. The ability to measure both Bragg and diffuse scattering simul-

taneously means that both local and average information are encoded within the

same scattering pattern, where reciprocal and real space information are straight-

forwardly related by Fourier transform. Thus, in principle, in situ experiments

can be conducted for local structure measurements using the same methods as for

routine powder diffraction. For the most part, this is indeed the case—variable

temperature measurements are carried out in capillary mode with little change

to the experimental set up and in situ experiments (for cell cycling, gas flow,

etc.10–12) are designed such that non-sample scattering is reduced as much as

possible. The only caveat is that, for generated PDFs to be physically meaning-

ful, parasitic scattering arising from the sample environments must be accounted

for by subtracting the scattering signature of the empty equipment.13–15

Crystalline materials are often probed by temperature or pressure, to explore

their fundamental physical properties via observation of structural changes and
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phase transitions. Pressure, in particular, can be varied to the extent that it can

drive very pronounced structural changes, as crystal structures are forced to rear-

range themselves to minimise volume, or avoid unfavourable interactions.16–18 In

general, high-pressure techniques are well-established19,20 and are no longer the

domain of specialist groups, but their use to obtain local structure information

remains under-explored as significant technical challenges exist. Accessing the gi-

gapascal regime requires very small sample volumes, jeopardising signal-to-noise;

however, longer counting times and improved detector efficiencies can mitigate

this. More problematic is the complication that arises from the use of a pressure-

transmitting medium (PTM) to ensure hydrostatic compression—it has its own

local structure signal that also changes with pressure. Common media include

light organic materials such as methanol/ethanol, and pentane/isopentane mix-

tures.21 This is not such an issue for X-ray experiments, where the scattering of

the organic PTM is often negligible relative to that of the sample, and successful

PDF measurements have been performed mostly using diamond anvil cells,22,23

as well as the large-volume Paris–Edinburgh (PE) press—albeit over a very small

pressure range.24 For pressure measurements with neutrons, the PE press is more

commonly used but, critically, the PTM must be deuterated to avoid incoherent

scattering. The strong coherent scattering of deuterium by neutrons means the

PTM contribution to the PDF cannot be ignored.

To date the only neutron total scattering experiments that have been car-

ried out successfully are those that omit a PTM entirely—i.e., experience non-

hydrostatic compression—by using a PE press. Amorphous/glassy materials ac-

count for the bulk of these studies because these are not particularly susceptible

to the effects of strain.25,26 Recently, Playford et al.27 showed, using the PEARL

instrument at ISIS, that useable PDFs can be obtained for some simple crystalline

systems. However, even some of these exhibited signs of strain broadening. Al-
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though this will not impact the low-r region of the PDF where information about

the shortest atom–atom distances is found, strain will affect the longer-range

structure. Lack of hydrostaticity remains a significant obstacle to measuring lo-

cal structure in crystalline materials at pressure, and the work reported in this

Chapter aims to address precisely this limitation.

This Chapter presents a method for correcting PDFs of crystalline materials

measured on the PEARL instrument for the presence of the most commonly used

PTM: a 4:1 volume mixture of deuterated methanol and ethanol. The correc-

tion method involves applying an empirical correction based on a combination

of molecular dynamics-informed PDFs and a non-negative matrix factorisation

(NMF) approach to separating sample–PTM scattering contributions.28,29 Sim-

ple crystalline materials—Ni and MgO are used as proof-of-principle, through

comparing corrected PDFs to model PDFs where the assumption is made that

the compressibilities and structural simplicity means that their local structures

can be described by their known average crystalline structures. The method is

then applied to α-quartz—an example of an apparently simple crystalline mate-

rial with a local structure that is known to deviate from its average structure with

temperature. This type of neutron PDF study has not previously been possible

and these measurements represent an expansion of high-pressure local structure

capabilities.

2.2 Experimental details

Crystalline samples of Ni, MgO and SiO2, obtained commercially and used as re-

ceived, were measured on the high-pressure instrument PEARL at the ISIS Neu-

tron Facility.30 Powdered samples were loaded into null-scattering TiZr single-

toroid gaskets31 with a 4:1 volume mixture of perdeuterated methanol:ethanol
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(ME) PTM.21 A PE press,19 equipped with zirconia-toughened alumina (ZTA)

anvils, was used to apply loads of 2, 25 and 50 tonnes to each sample; in each

case the pressure was determined from the known equation of state for each ma-

terial.32–34 Neutron powder diffraction patterns were collected for a minimum of

nine hours each. Analogous data collections were performed for a vanadium pel-

let and for a ME mixture on its own, also at loads of 2, 25 and 50 tonnes. It

was difficult to quantify the mass of ME in each sample loading because it evap-

orates rapidly, meaning the gasket must be sealed by the PE press to prevent

this happening. The gasket and sample were weighed prior to addition of the

ME, to determine their respective masses. Following the experiment, the decom-

pressed, now-sealed gasket assembly (i.e., sample and ME) was weighed to obtain

an estimate of the ME mass.

2.3 Data processing

Data collected by the main, transverse detector banks were reduced using the

MANTID software package35 over two different diffraction angle ranges—90±3.5°

and 90±7° and Rietveld refinement was carried out using TOPAS Academic v6.36

MANTID routines were also used for correcting for the effects of attenuation by

the ZTA anvils and data were normalised by vanadium to account for flux profile

and detector efficiencies. It was found that processing scattering data from a

wider diffraction angle resulted in a greater contribution from the ZTA anvils

relative to the sample scattering, evident by the change in peak intensities (shown

for the lowest pressure MgO scattering data in Figure 2.1). All diffraction data

were therefore focused from the reduced angle range to lessen the contribution

from non-sample scattering.

Total scattering structure factors (S(Q)) of the sample with PTM were pro-
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Figure 2.1: Neutron diffraction patterns of MgO measured in a PE press, with data focused

from two different scattering angle ranges. Inset figure shows a representative range of data

that best shows the difference in relative peak intensities of the sample (middle peak) and

sample environment (indicated by asterisks).

duced by subtracting measurements of the sample environment (gasket and anvil

assembly) scattering and applying a scale factor and y-offset (S(Q)×scale + off-

set) such that S(Q) → 1 at Qmax. The sample environment was accounted for by

measuring a vanadium pellet at equivalent pressures to those of the sample mea-

surements.27 The aim of these measurements was to produce as-close-as-possible

scattering geometries to those of the sample at each pressure, such that they can

be subtracted as ‘background’ scattering. The resulting corrected S(Q)s were

then Fourier transformed to produce PDFs, using the program StoG, distributed

with the RMCProfile package.37 A Fourier-filter was used, applying a minimum

distance for the first real peak.

A slight offset between the sample environment Bragg peaks in the sample,

and empty data, results in a spike in the difference curve after the subtraction is

made. This is most notable in the highest pressure MgO data at low Q, shown

in Figure 2.2, left. Artificial smoothing of these features was performed and the

resulting PDF was found to be indistinguishable from the PDF produced from

the uncorrected data (Figure 2.2, right).
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Figure 2.2: Left: Total scattering patterns of MgO at high pressure with and without

artificial smoothing to remove features arising due the subtraction of slightly mismatched

sample environment peaks. Right: PDFs produced from the smoothed and as-measured total

scattering patterns. The essentially flat difference line shows that features due to the

mismatch of ZTA Bragg peaks have a negligible effect on the resulting PDF.

For each sample, density and composition were estimated from the difference

between the masses of the loaded gasket pre- and post-compression, and were

used to normalise PDFs for subsequent treatment. As part of a simplified data

treatment, and following established data reduction procedures,27 inelasticity ef-

fects were not corrected for, as these were likely to be small for the relatively

heavy sample materials, nor were corrections made for sample absorption since

the attenuation due to the press would likely dominate over any sample effects.

In justification of this assumption, absorption corrections were not required to

obtain high-quality Rietveld fits.

PDF modelling was carried out using TOPAS Academic v6.36 Simulated PDFs

were convolved with a sin(Qmaxr/r) function where Qmax = 20.32 Å−1. To account

for the instrumental characteristics, previously-measured near-ambient pressure

Ni27 (without a PTM) was used to determine a dQ damping factor of 0.045 Å−1.

SiO2 PDFs were analysed using ‘large-box’ modelling techniques via the RM-

CProfile software.37 The refinements used a 5 × 9 × 8 supercell of the Rietveld-

refined unit cell, containing 6480 atoms, and near cubic-dimensions. Eleven in-
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Figure 2.3: Variable pressure PDFs of Ni in ME, measured in the PE press. The black

arrow indicates the peak due to the shortest atom–atom distance of crystalline Ni, as

indicated on the right.

dependent refinements were carried out for each run to improve the statistical

significance of subsequent structural analysis. Potentials-based restraints were

applied to the Si–O nearest neighbour distances and O–Si–O angles to maintain

tetrahedral geometry (see Appendix for details).

2.4 Average structure and uncorrected PDFs of

Ni and MgO

The average crystal structures of Ni and MgO were confirmed via Rietveld anal-

ysis of the measured neutron diffraction patterns—Rietveld fits for all structures

at each pressure measured are available in the Appendix. The known EoS’s32,38

were used to calculate sample pressures of 0.033(3), 1.49(9), and 3.6(2) GPa for

Ni and 0.171(6), 1.84(1), and 3.849(19) GPa for MgO, though the errors on the

pressure measurements are likely underestimated due to unaccounted-for errors

in alignment of the PE press. Figure 2.3 shows the variable pressure Ni PDFs

and Figure 2.4 shows the MgO PDFs. The PDFs exemplify the composite nature

of the sample, with a prominent peak at ca. 1 Å arising from C–D and O–D pair
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Figure 2.4: Variable pressure PDFs of MgO in ME measured in the PE press. The black

arrow indicates the peak due to the shortest atom–atom distance of crystalline MgO, as

indicated on the right.

correlations in the ME PTM in addition to underlying, unstructured correlations

which contribute significantly up to ca. 3.5 Å. Prominent Fourier ripples at low

r are also present due to the finite Q-range of the data. The G′(r) normalisation

is important for data treatment described later in this Chapter and therefore the

PDFs are shown in this form. A comparison of the different PDF functions is re-

ported in the Introduction of this Thesis and discussed in detail by Keen, 2001.39

2.5 Variable-pressure modelling of

methanol/ethanol PDFs

Once scattering from the PE press is accounted for, the PDF resulting from a

variable-pressure hydrostatic measurement (such as is shown in Figure 2.4) is

comprised of three components: i) correlations in the bulk of the pure crystalline

material, ii) correlations within the ME and iii) crystalline–ME pairwise interac-

tions. The initial assumption is made that the last of these is in sufficiently low

concentration that it can be ignored—this will later be shown to be the case. An-
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other assumption is made that the structural behaviour of the ME is independent

from the sample it is being used to compress. In this way, the ME PDF can be de-

scribed using an analytically-derived function, calculable for any pressure between

0–10 GPa—the approximate hydrostatic range of ME seen experimentally.21 A

NMF approach is then used to assign relative weights to functions describing

the ME and crystalline sample, such that they are straightforwardly separated.28

This procedure is implemented in a Fortran90 routine (see Appendix), which takes

variable-pressure, environment-corrected, PDFs and user-determined pressure as

an input.

2.5.1 Generating methanol:ethanol PDFs from atomistic

models

The following calculations were carried out by Dr Gabrielle Sosso, and subse-

quent analysis of the large-box simulations were performed by myself. Molecu-

lar dynamics (MD) simulations were performed using the GROMACS package

(version 5.1.4, single precision).40 The CHARMM36 (Nov18)41 force field was

used to model methanol/ethanol mixtures. The equations of motions were inte-

grated using a leap-frog integrator, with a time step of 2 fs. The van der Waals

(non-bonded) interactions were taken into account up to 10 Å, with a switching

function bringing them to zero at 12 Å. The particle-mesh-Ewald framework

was used to deal with electrostatic interactions.42 To mimic the experimental

conditions, the isobaric-isothermal NPT (constant pressure) ensemble was sam-

pled: the stochastic velocity rescaling thermostat of Bussi-Donadio-Parrinello43

was used to enforce room temperature conditions, via a weak coupling constant

of 1 ps. The Berendsen barostat44 was employed to apply isotropic pressure on

the (cubic) simulation boxes, with a coupling constant of 2 ps. The P-LINCS al-

gorithm45 was used to constrain O–H bonds. The system (Figure 2.5) contained
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Figure 2.5: A representative 0 GPa MD simulation box, containing 1200 methanol

molecules and 200 ethanol molecules.

1200 methanol molecules and 200 ethanol molecules (9000 atoms in total; molar

ratio 6:1, corresponding to a volume ratio of 4.18:1) and was equilibrated at room

temperature and 0 GPa for 20 ns. The pressure was subsequently increased in

increments of 0.5 GPa up to 10 GPa (20 steps in total). At each step, the system

was first equilibrated for 10 ns, with the following 10 ns then used to calculate

PDFs of the resulting atomistic configuration.

A Fortran program was written to calculate all atom–atom distances (nij),

using periodic boundary conditions, and applying the correct normalisations, as

described by Keen,39 to calculate the partial pair distributions, g(r), as per Equa-

tion 4.28, reported in Chapter 1. The partial PDFs were then summed and

normalised appropriately to give the G′(r) PDF form according to;

G′(r) =
(( n∑

i,j=1

cicj b̄ib̄j[gij(r) − 1]
)
/(

n∑
i=1

cib̄i)
2
)

+ 1, (2.1)

where ci is the proportion of species i and b̄i is the coherent bound neutron

scattering length of species i.

PDFs were generated from each ME simulation box, i.e., in 0.5 GPa steps
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Figure 2.6: Calculated ME PDFs from each MD simulation at pressures from 0–10 GPa in

steps of 0.5 GPa. The inset figure shows the subtle features between 2–4 Å more clearly.

These PDFs are free of any instrumental effects—particularly peak broadening which arises

due to the limited instrument Qmax.

between 0 and 10 GPa, and are shown in Figure 2.6. It is important to note

that the relevant MD forcefield parametrisations for the methanol and ethanol

molecules have been obtained at ambient pressure only. As such, one cannot

assume a priori that the force field will yield sufficiently accurate results at the

high-pressure conditions considered in this work. However, the corrected PDFs,

presented later, are indicative of the adequacy of this computational setup.

A notable difference between the simulated and experimental PDFs is the

substitution of 1H with 2H in the experimentally measured ME, in order to avoid

the effects of incoherent scattering by neutrons. Whilst forcefields for isotopically-

normal methanol and ethanol are readily available, the same cannot be said for

the 2H-versions of these molecules.46 In light of the relatively low resolution of the

PDF data, the difference in 1H /2H has been accounted for by shifting the O—H

peak position at 0.97 Å (which remains constant across all pressures) by 0.03 Å,

corresponding to the difference in H/D covalent bond distances identified by Soper
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et al.47 The C–H bonds were not adjusted, in accordance with observations by

Kuchitsu & Bartell48 and Allinger & Flanagan;49 in any case the magnitude of

the shifts involved is almost negligible, being nearly commensurate with the bin

width of the PDFs (0.02 Å).

The PDFs generated thus far only describe ME at discrete pressure intervals

of 0.5 GPa. It is however desirable that the ME PDFs should be calculable for

any pressure between 0–10 GPa—the approximate hydrostatic range of ME seen

experimentally.21

2.5.2 Modelling PDF pressure dependence

Initial attempts to model the variable-pressure ME PDF involved fitting a func-

tion that describes the compression of the PDF such that a canonical (lowest

pressure) PDF was used to describe each PDF at any pressure up to 10 GPa.

The ME PDF calculated at 0 GPa is described well by the sum of ten Gaussians

and an additional function that accounts for the underlying shape of the G′(r)

normalisation (shown in Figure 2.7, and named ‘analytical PDF’ hereafter);

G′
ME(r) =

10∑
i=1

aiexp

[
−(r − µi)

2

2σ2
i

]
+

[
1 − exp

(
− r

k

)β
]
. (2.2)

Figure 2.7: An MD PDF for ME at 0 GPa, calculatd from MD simulations, overlaid with

the analytical PDF comprised of ten Gaussians and a shape function.
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ai, µi and σi are the parameters for the ith Gaussian, and k and β describe

the underlying shape of the PDF. All parameters were determined via a least-

squares fitting procedure implemented using TOPAS. The Gaussians do not have

any physical significance—they are simply used as a means to recreate the PDF

empirically.

When an organic, molecular system is compressed, the shortest atom–atom

correlations, corresponding to covalent bonds, should not change, whereas longer,

intermolecular atom–atom distances will decrease. In a PDF this is reflected in

unchanging peaks at low r and peaks at high r shifting to lower r values.

The following function describes this type of change in peak position for vari-

able pressure PDFs;

αij = 1 + (ρj − 1)[erf(ri/rc)]
v, (2.3)

where i refers to the ith Gaussian, j refers to the pressure, ρj is a pressure-

dependent parameter describing the degree of peak shifting, and rc and v globally

describe the change in compression behaviour on moving between the regions

corresponding to intra- and intermolecular interactions.

As shown in Figure 2.8 (for only the lowest and highest pressure PDFs for

Figure 2.8: Gaussian fits to the MD simulated PDFs at 0 and 10 GPa using the function

described by Equation 2.3.
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clarity), although the stretch function does indeed result in a shift of the broader

Gaussian peaks to lower r, the sum of Gaussians no longer describes the overall

shape well. Additionally, there are decreases in intensity of the more defined

peaks that cannot be accounted for by only altering peak positions and as such,

applying a global pressure-dependence to all Gaussian peaks was found to be too

simplistic.

Instead, the following approach was used to relate experimentally determined

pressure to the form of the local structure scattering signature. Each MD PDF,

Figure 2.9: Gaussian and shape function parameters (ai,p, µi,p, σi,p, kp and βp) for the ith

Gaussian at pressure p, used to calculate the ME PDFs. Note the difference in y-axis scale

between the plots.
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at pressure p, is, as described before, approximated as the sum of ten Gaussians

and an additional function that accounts for the underlying shape of the G′(r)

normalisation. When allowing the Gaussian parameters to vary freely on fitting,

it was found that they displayed a pressure-dependence proportional to exp(−p).

Therefore, the parameters were constrained to follow this form, as shown in Fig-

ure 2.9, in order to reduce the number of variables required to model the MD

PDFs. Each Gaussian and shape function parameter (here x is used to denote a

parameter ϵ {ai,p, µi,p, σi,p, kp and βp}) then has a pressure-dependence;

x(p) = xmax + (x0 − xmax)exp

(
−p

p0

)
(2.4)

where x0 and xmax are the parameter values at zero and maximum pressures

(10 GPa), respectively, and p0 captures the rate of change for these values. Values

of x0 and xmax for each parameter, and global p0 values for ai,p, µi,p, σi,p, kp and βp

values (a total of 68 parameters), were determined by carrying out a simultaneous

least-squares refinement in TOPAS against the series of MD PDFs.

Representative examples of the analytical PDFs are shown in Figure 2.10 for

Figure 2.10: Calculated ME PDFs from the 0, 5, and 10 GPa MD simulation and

corresponding analytical PDFs, composed of 10 Gaussian peaks and an underlying shape

function, offset in the y-direction.
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0, 5 and 10 GPa against to the corresponding MD PDFs (see Appendix for the

full data range). Compared to Figure 2.8, the analytical PDFs describe the MD

PDFs much better and the broader features and peak intensities of the more

defined peaks are well described by the 10 Gaussian functions.

Thus, with this approach, an end user need only specify a pressure to generate

the relevant ME PDF. Finally, the ME PDF is degraded to account for the finite Q

limit encountered experimentally by convolving with a user-defined sin(Qmaxr)/r

term (where Qmax = 20.32 Å−1 for the examples presented here). The resulting

function then more closely matches what is actually measured in the diffraction

experiment. The purely empirical nature of the function to describe the ME

means that, in principle, it could straightforwardly be adapted to other pressure-

transmitting media, or MD simulations using alternative forcefields.

Figure 2.11: Measured variable-pressure ME PDFs (colours) compared to the analytical

ME PDFs (black). Determining the pressure from an equation of state is not possible with

ME and therefore corresponding modelled PDFs were chosen by comparing the 1–6 Å region

and selecting the PDF with the best fit.
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As an assessment of how closely the analytical PDFs represent the local struc-

ture of ME, they are compared to the PDFs of ME experimentally measured on

PEARL (Figure 2.11). The convolved analytical PDFs were generated for es-

timated pressures of 0.3, 3.0 and 4.5 GPa, as a pressure marker was not used

and only the applied loads of 2, 25, and 50 tonnes were known. There is very

good agreement between the measured and modelled PDFs—peak positions and

intensities in the low r region are well-replicated, as are broader features at longer

length-scales. Intensity mismatches in low r are due the application of a Fourier-

filter to the experimental data, and at high r, these differences are likely within

error of each other.

Although the analytical function does not reproduce subtle features of the

MD model in the 2–4 Å region, convolution with sin(Qmaxr)/r, blurs this fine

detail, and comparisons of convolved MD with convolved analytical PDFs shown

in Figure 2.12 confirm this. If neutron instruments with significantly larger Qmax

values were used such that these details were more clearly resolved, this might

necessitate additional Gaussian functions to adequately model the PDF.

Figure 2.12: MD PDFs and analytical PDFs, convolved with sin(Qmax/r), where

Qmax = 20.32 Å−1. PDFs at 0, 5, and 10 GPa are shown, offset in the y-direction. The

comparisons of peak positions and intensities show excellent agreement between calculated

MD PDFs and analytical PDFs.

58



Recovering local structure information from high-pressure total scattering

2.6 Extracting the sample PDF via non-

negative matrix factorisation

Now that the ME PDF can be described at any pressure between 0–10 GPa,

a NMF approach can then be used to assign relative weights to functions de-

scribing the ME and crystalline sample, such that they are straightforwardly

separated.28 This procedure has been implemented in a Fortran90 routine (see

Appendix), which takes variable-pressure, environment-corrected, PDFs and a

user-determined pressure as an input. The procedural steps are outlined in more

detail below.

PDFs of composite systems such as amorphous solid dispersions and battery

materials have been successfully separated into their constituent components us-

ing NMF methods.28,29 Ordinarily, this approach recovers the relative scatter-

ing contributions of individual components to a series of composite PDFs, with

continually-evolving relative concentrations. The key difference with these mea-

sured variable-pressure PDFs is that the form of the individual PDFs changes with

pressure. A modified version of the NMF approach outlined by Geddes et al.28

(and described below) has been used to extract scattering from the sample. Very

simple materials (Ni and MgO) with relatively large bulk moduli (K0 = 177 and

180 GPa, respectively50,51) have been measured, where there should be little devi-

ation between the local and average structures, and therefore the extracted PDFs

can be verified by comparing to ‘small-box’ models generated by the average crys-

tallographic structures, completely independent of any refinement procedures.

Once the pressure-dependent ME PDF has been defined (as described above),

the next step of the correction procedure is to determine the relative weighting of

ME and sample component PDFs for each measured PDF individually. |G′
calc(r)−

G′
exp(r)|2 is minimised where
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G′
calc(r) = G′

C(r)w + G′
ME(r)(1 − w), (2.5)

G′
exp(r) is the experimentally-observed PDF, G′

C(r) is the unknown crys-

talline sample PDF, and w is the weight of the crystalline component. The sum

of weights is constrained to unity so that the G′(r → ∞) = 1 limiting value

is maintained and G′
ME(r) is fixed as the ME PDF calculated via the method

outlined above. A non-negative constraint is also applied to both the G′
C(r) and

w parameters. Minimisation of |G′
calc(r) −G′

exp(r)|2 is achieved by a Metropolis

Monte Carlo procedure, randomly selecting G′
C(r) and w values at each iteration

of the refinement. Simulated annealing is used,52 where acceptance criteria be-

come increasingly strict until convergence occurs and a best fit to data is realised.

When performing the fit, the intensity assigned to the unknown crystalline com-

ponent is completely unconstrained and so, without guidance, the optimal fit will

always results in the unknown crystalline material accounting for the entire PDF.

The strongest signature of the ME PDF is found at ca. 1 Å, corresponding to C–D

and O–D pair correlations. Neither the Ni nor MgO test cases have correlations

in this region, so the G′
C(r) components were only fitted above the shortest atom–

atom distance rmin expected for the sample, and G′
ME(r) was fitted over the full

data range. This highlights a couple of limitations: i) this approach is unlikely to

work well for any sample with a significant number of covalently-bound deuterium

(or hydrogen) atoms, and ii) knowledge of the immediate bonding environment

in the sample is needed in advance, though this a reasonable assumption for most

experiments covering the 0–10 GPa range.

By design, the refinement preserves a constant sample:ME ratio across a pres-

sure series, though the ability to recover this trend directly was examined. When

the weights are allowed to refine independently of other pressure points, they do

show reasonable consistency across the pressure series: 0.55, 0.55 and 0.51 for
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the Ni sample; and 0.29, 0.30 and 0.29 for MgO. These deviations, though small,

are at odds with the experiment – namely that the sample concentration cannot

change over the course of compression. The benefit of using the NMF approach

to fit to all pressure points simultaneously lies in ensuring that a single, optimal,

sample concentration is determined.

Once a best fit has been achieved, and G′
C(r) and w have been refined, the as-

measured PDF can be corrected for the PTM contribution. The calculated ME

PDF, weighted by the refined (1 − w) value is subtracted from the as-measured

PDF, and then corrected by multiplying by 1/w. All the steps above are per-

formed by a Fortran90 routine which has been made available through publica-

tion.53

2.7 Correction and validation of Ni and MgO

PDFs

There is no means of straightforwardly validating the corrected PDFs – there are

no hydrostatic measurements to compare directly against and therefore materials

have been chosen such that their local structures can be anticipated (free of any

interference from ME) as their local structures are known to be highly similar to

their average structures. Corrected and simulated PDFs should be similar if the

effects of ME have been properly removed and therefore the performance of the

correction method can be bench-marked against the simulated PDF from average

structure.

Figures 2.13 and 2.14 show the corrected variable-pressure Ni and MgO PDFs

respectively, plotted against fits generated using ‘small-box’ modelling and aver-

age crystallographic structures for Ni and MgO (Fm3̄m). The low r regions for

both samples are particularly noisy. This arises because the sample contribution

61



Recovering local structure information from high-pressure total scattering

Figure 2.13: Corrected Ni PDFs (colours) compared with small-box simulated model PDFs

(black) derived from average structure starting models. The grey low-r region indicates where

sample peaks are not expected and the PDFs have not been modelled.

to the PDF has not been fitted below rmin and therefore any naturally-occurring

Fourier ripples have been exaggerated in the corrected PDF and, additionally, the

ME PDF imposes large Fourier ripples due to convolution by the sin(Qmaxr)/r

function. Since the method requires that there should be no sample peak overlap

with the ca. 1 Å ME peak, any features in the region r < rmin are accepted as

unrelated to the sample and are ignored.

In both cases, the level of agreement between the simulated and corrected-

Figure 2.14: Corrected MgO PDFs (colours) compared with small-box simulated model

PDFs (black) derived from average structure starting models. The grey low-r region indicates

where sample peaks are not expected and the PDFs have not been modelled.
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experiment PDFs is good and shows that physically sensible PDFs can be re-

covered for simple crystalline materials. This shows immediately that for these

simple test cases, the following assumptions hold true: first, that the measured

PDF can be treated as two, independent components; there are no significant

sample–ME correlations present and these can be safely ignored; and, second,

the empirical relationship between the form of the ME PDF and pressure is ap-

propriate.

2.8 Extracting pressure from local structure

To investigate the sensitivity of the PDFs to the user-defined pressure and there-

fore modelled ME PDF, the correction procedure described above was performed

on the MgO PDFs using ME PDFs generated for a number of pressures. For

the lowest pressure PDF measured at 0.171(6) GPa, ME PDFs were generated at

pressures from 0.021–0.421 GPa in steps of 0.05 GPa. The calculated difference

between the minimised |G′
calc(r) − G′

exp(r)|2 value for each tested ME PDF and

that found for a ME PDF generated at the known pressure of 0.171(6) GPa and

is denoted ∆E, where a negative value shows an improvement, or, a better fit of

weighted G′
C(r) and G′

ME(r). The left-hand panel of Figure 2.15 shows the ∆E

for the lowest pressure PDF and initially suggests an interesting sensitivity of the

correction procedure to the modelled PTM. A negative ∆E value at 0.121 GPa is

physically reasonable—this value is realistically within error of the experimental

pressure 0.171 GPa—where the errors of these calculated pressures are under-

estimated. The quadratic form of the ∆E values suggests that an exact pressure

could be calculated solely from the fitting of a ME PDF component, rather than

having to first determine an EoS by performing an additional average structure

experiment with a pressure marker.
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Figure 2.15: Calculated differences (∆E) in minimised |G′
calc(r)−G′

exp(r)|2 between the

value found for the experimentally determined pressure of MgO measurements and the

‘tested’ pressure indicated by the x-axis.

However, the results for the intermediate and highest pressure refinements

shown in Figure 2.15 are less convincing. For the PDF measured at 1.84(1) GPa,

ME PDFs were generated at pressures of 0.34–4.34 GPa in steps of 0.5 GPa

and for the measurement at 3.849(19) GPa, ME PDFs were generated at 1.349–

6.349 GPa, also in steps of 0.5 GPa. At the highest pressure, modelling the ME

PDF up to 6.3 GPa resulted in a better fit, as shown by the negative ∆E value,

but a pressure 2 GPa higher than that calculated using the MgO EoS are well

beyond those expected for loads of 50 tonnes and are not within error of the

experimentally determined pressure of 3.8 GPa.

The results for the lower pressure measurement suggest that there may be a

sensitivity to the pressure-dependent modelled ME PDFs that could be exploited

for low pressure PDF measurements where the EoS of a material is unknown,

however, this work is ongoing.

2.9 Local structure of α-quartz under pressure

Having confirmed the validity of the correction approach using simple crystalline

materials, the next step is to test a more flexible system and one for which local
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structure is perhaps not as well described by the average structure. α-Quartz is

such a system with a much smaller bulk modulus (K0 = 37 GPa)54 than Ni and

MgO. It has been widely studied using variable-temperature total-scattering ow-

ing to the fact that the conventional crystallographic analysis presents a geometry

and Si–O bond distance that does not accurately describe the true silicate struc-

ture.55,56 Instead, local structure methods have been used in conjunction with

‘big-box’ RMC modelling methods to reveal the structural changes and phase

transitions driven by temperature changes.55 Local structure measurements under

pressure have until now been inaccessible and therefore the correction described

above was applied to α-quartz. The sample was measured on PEARL using the

same procedure as for Ni and MgO. Rietveld analysis of the diffraction patterns

confirmed the P3121 crystal structure57 at all three pressures (plots provided in

the Appendix).

The absence of pronounced Bragg peak broadening (i.e., strain) in the diffrac-

tion patterns confirms hydrostatic compression of the sample, in contrast to mea-

surements of α-quartz without a PTM.27 This is further supported by the strong

structural correlations observed in the PDFs shown in Figure 2.16(a), at high r,

whereas these are damped for samples experiencing strain. Sample pressures at

the three applied loads were found to be 0.0766(11), 1.337(2) and 3.757(4) GPa

using the refined lattice parameters and EoS.34 The first PDF peak at ca. 1.6 Å,

corresponding to the Si—O distance, is sufficiently distinct from the 1 Å ME

peak. Corrected PDFs of α-quartz were generated using the NMF approach de-

scribed above, and are shown in Figure 2.16(b) and more clearly in (c) for the

r-range 1–4 Å. The change in the relative intensities of the strong sample peaks at

ca. 1.60 and 2.62 Å upon subtracting the PTM scattering, shown in Figure 2.16(d)

illustrates the effect of the more subtle, underlying ME correlations.

RMC modelling, using the RMCProfile program,37 yielded satisfactory fits
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Figure 2.16: (a) As-measured PDFs of α-quartz, offset with increasing pressure. (b)

Corrected PDFs and their corresponding RMC fits (black line). Fourier ripples are present

and modelled between the first two sample peaks at 1.60 and 2.62 Å. (c) Expanded region of

(b) showing the 1–4 Å region more clearly. (d) Comparisons of the as-measured and corrected

1.60 and 2.62 Å PDF peaks, highlighting the effect of ME on the relative peak intensities.

The as-measured PDFs have been scaled to aid visual comparison. (e) Si–O–Si bond angle

distributions from RMC models, corresponding to deformation of the α-quartz structure, with

the horizontal arrow indicating angle distribution progression with increasing pressure. The

left-hand inset shows the crystal structure connectivity of the SiO4 units, and the right-hand

inset shows an approximate mode of deformation.

to the corrected PDFs. Though some intensity mismatch is evident, particu-

larly in the 0–1.5 Å region, this is a consequence of refining an overall scaling

parameter which helps mitigate against the difficulties in performing an exact

normalisation of the data at each pressure point. The rigidity of the individual

SiO4 units is well-known and these have been restrained accordingly; the accurate

reproduction of all r-dependent features in the fits is a strong indication that the

corrected PDFs are indeed fit for purpose. Interrogation of inter-tetrahedral angle

distributions (>46900 angles, Figure 2.16(e)), extracted from RMC-refined con-

figurations, shows a contraction of the Si–O–Si angle that appears consistent with

the angle compressibility seen in the average structure; 0.012 and 0.011 GPa−1,
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respectively. These represent the first experimental measurements of the α-quartz

local structure under hydrostatic pressure. Quartz is one of the most well-studied

materials in the solid-state community but, until now, analysis of its local struc-

ture under pressure has been restricted to computational studies or experimental

measurements that are accompanied by strain-induced broadening. Though the

RMC models suggest a minimal difference between the local and average angle

compressibilities in this instance, the viability of exploring local structure in other

hydrostatically-compressed, flexible, crystalline systems is exciting.

2.10 Conclusions

Local structure analysis has previously proven crucial in properly identifying

structural features/distortions that underpin material behaviour in a wide va-

riety of systems, be it determining local structure mechanisms of battery materi-

als,15,58 defects in metal-organic frameworks59,60 or the nature of phase transitions

in multiferroic materials.61 Thus far, analogous experiments have not been possi-

ble for hydrostatic high-pressure neutron experiments, restricting exploration of

local structure in crystalline materials to near-ambient pressure. The approach

described in this Chapter mitigates against the PTM limitation where ME sig-

nal contributes to the PDF and it is hoped that this correction procedure might

now make high-pressure PDF measurement of a multitude of crystalline systems

viable. An obvious extension of this work would be to explore transferability of

the analytical ME function to more complex, flexible materials, e.g., frameworks,

where the sample PDF would change more rapidly as a function of pressure,

than seen for the relatively-simple systems here. For example, the NTE material

ScF3,
62,63 where the application of pressure could provide insight into its complex

expansion behaviour would be an ideal candidate. The focus on the 4:1 deuterated
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ME mixture here reflects its common usage, but this method could in principle

be applied to other PTMs if their pressure dependence can be straightforwardly

expressed as an empirical function.
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3.1 Introduction

BaTiO3 is often presented as a classic example of a ‘proper ferroelectric’ where,

due to the second-order Jahn-Teller effect, an off-centring of the Ti4+ cation from

the centre of the octahedron results in a net polarisation.1 The resulting ferroelec-

tric properties and high dielectric constant make BaTiO3 a very attractive mate-

rial for use in devices such as capacitors,2 and the perovskite-structured material

has become the ‘prototypical’ ferroelectric; intensively studied to understand the

link between ferroelectricity and crystal structure.3 Above its Curie temperature

(TC), BaTiO3 adopts a cubic structure. Below TC, the average structure is re-

duced to a tetragonal symmetry and on decreasing temperature further, BaTiO3

transforms to orthorhombic and, finally, rhombohedral structures.3–6

Despite many decades of study, there remains an ongoing debate about the

nature of the ferroelectric phase transition. A popular theory, suggested by

Cochran5 in 1960 describes a displacive model whereby Ti4+ cations are dis-

placed along 〈100〉, 〈110〉, and 〈111〉 directions for the tetragonal, orthorhombic

and rhombohedral phases respectively. This model, however, fails to address key

Figure 3.1: The phase diagram of the average structure of BaTiO3, recreated from the work

of Ishidate et al.7 Open circles represent the pressures at which BaTiO3 was measured for this

local structure study and filled circles represent previously measured ambient pressure data.
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observations such as the strong diffuse X-ray scattering which is present in all but

the rhombohedral phase8–10 and the presence of first-order Raman excitations in

the cubic phase.11 The displacive model also does not account for the orthorhom-

bic and rhombohedral phase transitions, which do not follow a group-subgroup

relationship which is otherwise present for this type of transition. In 1968, Comés

et al.8 proposed an order-disorder (OD) model, also commonly referred to as the

‘eight-site’ model, where the crystallographically-rich phase diagram of BaTiO3

(Figure 3.1) is rationalised due to correlations of local Ti displacements along

the eight 〈111〉 directions. The displacement of Ti from the centre of its TiO6

coordination environment is locally favoured due to the second-order Jahn-Teller

effect. Correlated 〈111〉 displacements of the Ti atom in successive 〈100〉 di-

rections give rise to the observed average symmetry, and it is this underlying

disorder that appears to simultaneously reconcile the perceived average sym-

metry with the anomalous experimental results. However, the observation of

heavily-damped modes12–14 appears at odds with an OD model, and supports

the soft-mode explanation. Furthermore, there is not yet consensus—within the

OD interpretation—on the exact nature of the disordered local arrangements of

Ti cations, where some reports (via solid state NMR15) suggest a local tetragonal

distortion and others support a rhombohedral16,17 distortion.

Since the first proposal of these two contending models, a multitude of exper-

imental and computational studies have favoured either one of these two possible

scenarios. Local probes tend to support an OD model.15,16,18 Such studies in-

clude a variable temperature neutron total scattering study, performed on GEM

at ISIS.19 High quality PDFs (Qmax = 40 Å) measured at 15, 150, 210, 250,

293, 350, 410 and 500 K (Figure 3.2) were analysed using a symmetry-motivated

approach, showing that the Ti displacements are rhombohedral-like at every mea-

sured temperature.
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Figure 3.2: Variable temperature PDFs of BaTiO3 measured on GEM, analysed and

published by Senn et al.19 in support of the order-disorder model.

More recently, additional work has come out in support of the soft mode

model,10 where diffuse scattering is attributed to the overdamped anharmonic

soft phonon branch. This results in a local probability distribution for the Ti

atoms that has a minimum coinciding with the average crystallographic position

and a maximum along 〈111〉 directions with an average magnitude of ca. 0.15 Å. It

seems that a wealth of experimental and computational observations can either

be explained by invoking an OD scenario or considering highly over-damped,

anharmonic, soft phonon modes that imply the Ti atoms spend a substantial

amount of time off-centre. Consideration of the long range ordering of dynamic

〈111〉 Ti displacements projected onto the 〈100〉 directions as ‘chains’ of correlated

local rhombohedral Ti displacements (shown in Figure 3.3) appears to reconcile

these two models.19 Regardless of the perspective adopted, it is clear that the local

symmetry deviates substantially from the average crystallographic symmetry over

short length scales and long time periods,20 indicating a significant departure from

the harmonic soft mode/displacive picture.

Clearly, the investigation of the temperature-induced phase transitions of

BaTiO3 has been extensive, and a wide range of techniques have been utilised to

investigate the average and local structure of the perovskite structure.21 Investi-
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Figure 3.3: Arrows representing the local 〈111〉 Ti displacements correlated along a [100]

direction (a) and uncorrelated (b), with no common distortion direction.

gation of the pressure-induced phase transition is important too as the application

of pressure is known to induce phase transitions in perovskites22 and therefore can

be used to tune functionality. However, challenges associated with in situ high

pressure measurements—outlined in Chapter 2—have perhaps limited investiga-

tion of the local structure of BaTiO3 in other regions of the phase diagram.

Modest hydrostatic pressure will initially act to suppress ferroelectric distor-

tions in ABO3 perovskites due to the increasing influence of short-range elec-

tronic repulsions over long-range Coulomb ionic interactions which favour polar

distortions.23 The well-established average structure phase diagram (Figure 3.1)

of BaTiO3 indicates that at ambient temperature, there is a tetragonal-to-cubic

phase transition at ca. 2 GPa.6,7,24 High-pressure Raman studies show evidence

for persistent disorder within the cubic phase, with the suggestion that this dis-

order results from off-centre Ti atoms and grain boundary/intergrain stress.25

X-ray absorption spectroscopy (XAS) of the Ti K edge also suggests that Ti re-

mains displaced until 10 GPa, above which the Ti is centred and local and average

symmetries are reconciled.26 Together, these results might imply that the high
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temperature and high pressure behaviour mimic each other. However, neither of

these studies appear to have allowed for robust refinement of competing models

against the local probe data.

PDFs generated from total scattering experiments and their sensitivity to

short-range atom–atom correlations are well suited to this kind of modelling and

therefore interrogation of the local structure behaviour of BaTiO3. Thus, this

Chapter reports the first analysis of neutron total scattering measurements of

BaTiO3 at pressures up to 4.2 GPa, in order to directly investigate the nature of

the pressure-induced tetragonal-to-cubic phase transition of BaTiO3 over a range

of length scales.

Building on the newly developed symmetry adapted PDF analysis (SAPA)27

technique, whereby distortion modes grouped by irreducible representation are

refined against local structure measurements, the high-pressure PDF data have

been analysed, revealing pressure-induced suppression of the local Ti displace-

ments. The same modelling approach is applied to previously-published vari-

able temperature PDFs19 in order to determine how the departure of local from

average symmetry compares for pressure versus temperature. This analysis of

ambient temperature, variable-pressure PDFs points toward a gradual pressure-

induced suppression of the anharmonic potential implicit in describing the OD

behaviour of BaTiO3, towards a more harmonic-like soft-mode picture.

3.2 Experimental details

Polycrystalline BaTiO3 (also used for the variable-temperature study carried

out using the GEM instrument) was measured on the high-pressure instrument

PEARL,28 at the ISIS Neutron and Muon Facility. An argon gas pressure trans-

mitting medium (PTM) was chosen as argon is a relatively weak neutron scatterer
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(with a neutron scattering length of 1.909×10−15 m compared to 5.803×10−15 m

of oxygen). BaTiO3 was loaded into a null-scattering TiZr gasket29 which was

placed between ZTA anvils inside a clamp device, designed for use with gas load-

ing apparatus.30 The clamp was left unsealed, and placed in the loader which was

then filled with argon gas and compressed to ca. 2 kbar. The clamp was sealed

shut, removed from the gas loader, and placed into the oil-driven PE press with

which loads of 3, 25, 40 and 50 tonnes were applied to the sample. Stacked vana-

dium discs were loaded in the same way, with an argon PTM. Ideally the same

ZTA anvils would have been used for the vanadium measurement however exper-

imental restrictions of the gas-loader meant that the gaskets had to be loaded

and sealed by their respective anvil assemblies before the experiment.

Applying the same loads to different gasket assemblies (i.e., BaTiO3 powder

and vanadium discs) does not necessarily realise the same pressure as gasket

packing will vary between loading. Normally a pressure marker or sample with

a known EoS would be used to determine the pressure, as is the case with the

BaTiO3 measurements, however, including a pressure marker to the vanadium

would only complicate correction procedures for generating PDFs, for the same

reasons detailed in Chapter 2.

Instead, the load applied to the vanadium discs was incrementally increased

and the diffraction pattern measured for sufficient time to determine peak posi-

tions and approximate background levels. The diffraction pattern of the vana-

dium measurement was compared to the BaTiO3 measurement and the load was

increased until the positions of the ZTA anvil Bragg peaks matched, as shown in

Figure 6.12 for the lowest pressure data collection (analogous figures for the three

higher pressure data collections are provided in the Appendix). The vanadium

was subsequently measured under loads of 8, 20, 30, 45 tonnes, corresponding to

pressures roughly equivalent to those of the measured BaTiO3 data.
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Figure 3.4: Neutron diffraction patterns of BaTiO3 (blue) and vanadium (yellow) measured

on PEARL at three and eight tonnes respectively. The inset plot shows a comparison of the

two diffraction patterns and the Bragg scattering from the ZTA anvils more clearly.

Neutron powder diffraction patterns were collected for a minimum of 11 hours

each to ensure sufficient signal-to-noise ratio at high Q. Data were reduced using

the MANTID software package31 to correct for the effects of attenuation by the

ZTA anvils and normalised against a vanadium sphere measurement, performed

at the start of each cycle, to account for flux profile. Small-box PDF modelling

and Rietveld refinements were carried out using TOPAS Academic v6.32 Si and

CeO2 standards, also measured at the start of the cycle, were used to refine

diffractometer constants and peak shape parameters, respectively.

3.3 High-pressure average structure

Neutron diffraction patterns indicated that the measured average structures of

BaTiO3 at high pressures were consistent with previous literature.6,24,33 The neu-

tron diffraction patterns (Figure 3.5) at 0.24 and 1.19 GPa exhibited peak split-

ting, clearly observed at a d-spacing of ca. 2.0 Å, corresponding to the (200)/(002)

peaks. This is indicative of tetragonal symmetry, and Rietveld refinements con-

firmed a P4mm average crystal structure. Above 2 GPa, BaTiO3 transforms to
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Figure 3.5: Rietveld fits of as-measured neutron diffraction patterns of BaTiO3 at

increasing pressure.

an average cubic symmetry (Pm3̄m), confirmed again by Rietveld refinement at

2.55 and 4.18 GPa, and accompanied by an absence of ‘tetragonal’ peak splitting.

At 4.18 GPa an additional reflection is observed at a d-spacing of ca. 2.7 Å. This

was tentatively assigned to the most intense reflection (111) of cubic (Fm3̄m)

argon, although it is important to note that the absence of any significant peak

broadening in the diffraction pattern confirmed that the sample remained under

hydrostatic conditions throughout the experiment.
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3.4 Generating and modelling PDFs

Total scattering data were collected and treated using largely the same proce-

dure described by Playford et al.34 and in Chapter 2, and summarised again

here for completeness. The total scattering pattern (S(Q)) was produced by sub-

tracting the scattering pattern of the vanadium measurement from the BaTiO3

measurement to account for scattering from the gasket and anvil assembly, and

the subsequent scattering pattern was corrected by applying a scale factor and

an offset value such that the resulting S(Q)→1 at Qmax. PDFs (Figure 3.6) were

obtained via Fourier transform of the S(Q) function using the program StoG,

distributed with the RMCProfile package.35

There was no evidence of an argon contribution to the PDF. A cubic crys-

tal structure would result in a shortest atom–atom correlation of ca. 3.4 Å at

4.18 GPa and above the level of Fourier artefacts there are no such peaks and

later small-box modelling revealed no misfitting around this r region. In each

PDF, r -dependent broadening that arises from correlated thermal motion was

modelled using a simple quadratic, i.e., br = bi + αr + βr2, where α and β

are constant across all atomic sites and bi is element dependent. For this work,

Figure 3.6: Variable-pressure PDFs measured on PEARL, with a zoomed section and grey

region highlighting the negative peak due to the Ti–O correlation.
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β was fixed at zero as it is found to refine to negligible values.36 Damping of

the PDF intensity at high r—due to Q resolution (dQ) was accounted for with

dQ = 0.045 Å−1. The lattice parameters of BaTiO3 were determined from Ri-

etveld refinement against the Bragg data and the known equation of state reported

by Bull et al.24 was used to calculate sample pressures of 0.24(2), 1.19(2), 2.55(6)

and 4.18(8) GPa—corresponding to two lower pressure measurements in the aver-

age tetragonal regime, and two high pressure measurements in the average cubic

regime.

The effect of the finite and limited Q-range of PEARL on the resulting PDFs

is apparent in Figure 3.6. Below 4 Å there are clear Fourier termination ripples

either side of the negative Ba–Ti peak at ca. 3.3 Å and although the ‘key’ negative

Ti–O peak (zoomed plot in Figure 3.6) displays some very pronounced differences,

the features appear affected by the Fourier artefacts.

3.5 Validation of PDF sensitivity

The lack of high pressure neutron PDF studies of BaTiO3, and of crystalline

materials more generally can be attributed to the often opposing requirements

of high pressure and PDF experiments. It is only relatively recently that high-

pressure neutron PDF measurements have been achieved for crystalline materi-

als,34,37 therefore the study reported within this Chapter represents an emerging

capability of high-pressure neutron total scattering, and exemplifies the types of

local structure information that an experiment on PEARL may provide.

Requirements of high-quality PDF experiments include minimisation (and/or

subtraction) of any non-sample scattering and a large Qmax where the reso-

lution of a PDF is inversely related to the maximum experimental Q value

(∆r = 2π/Qmax). PEARL has a limited Qmax (20.32 Å−1), due to a combi-
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nation of instrument characteristics and PE press geometry—where scattering

is constrained to 90°—compared to instruments typically used to measure local

structure on such materials, where Qmax values are more commonly in the range

40–50 Å−1. Therefore it is first necessary to establish whether the data with re-

duced Qmax have sufficient r -resolution to allow investigation of the ferroelectric

modes of BaTiO3.

In order to evaluate the sensitivity of the symmetry-adapted small-box mod-

elling approach to limited Qmax values, PDFs were processed from room tem-

perature S(Q)s measured on GEM (previously published by Senn et al.19) with

artificially reduced Qmax values of 10–40 Å−1 in steps of 5 Å−1, as shown in Fig-

ure 3.7. Even with a low Qmax of 15 Å−1, the PDF is remarkably similar to that

of the highest resolution PDF, however there are clear and substantial differences

at low r, particularly of the Ti–O peak shown inset in Figure 3.7. The position

of the peak minimum remains constant at 1.90 Å within the histogram bin size

(0.02 Å) of the PDF between 40–25 Å−1. The peak minimum shifts by 0.04 Å at

20 Å−1 and by 0.12 Å at 15 Å−1. This gives confidence that the PDFs mea-

Figure 3.7: BaTiO3 PDFs produced from the total scattering data measured on GEM at

293 K19 with artificially reduced maximum Qmax values indicated by the legend. The zoomed

section and grey region highlights the negative peak due to the Ti–O correlation. Note that

the PDFs generated with a Qmax of 35 Å−1 and 40 Å−1 are not clearly visible as there is only

a marginal change.
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Figure 3.8: PDFs of BaTiO3 measured on PEARL at 0.24 GPa, processed with a Qmax of

20.32 Å−1, and on GEM at ambient pressure and temperature, processed with Qmax values of

20 and 40 Å−1 (the latter is offset in the y-direction for clarity).

sured on PEARL with Qmax = 20.32 Å−1 are not significantly impacted by the

relatively low Q.

Figure 3.8 shows that PDFs measured on GEM and PEARL (i.e., in a vana-

dium can and PE press respectively) and processed with the same Qmax very

closely agree, again, validating the high-pressure data.

To further test the validity of the PDF, the models were refined following

previously published work, where previous analysis by Senn et al.19 of the vari-

able temperature GEM PDFs showed that the Γ−
4 irrep. (which essentially de-

scribes the displacement of the Ti atom) could be identified as the best fitting

irrep. at all temperatures compared to all other symmetry-lowering distortion

modes. Therefore, in order to test the sensitivity of the variable-Qmax PDFs to

the known Γ−
4 distortion (i.e., whether Γ−

4 is still identified as the best fitting

irrep.), a ‘symmetry-adapted pair distribution function analysis’ (SAPA)27 was

performed.

The SAPA approach, developed within the Senn group,27 is a symmetry-

motivated small box modelling method whereby symmetry-based constraints are

used in order to probe specific distortions within a material. A parent cell is
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chosen that exhibits the highest symmetry that structural class can crystallise

in—for a perovskite this is Pm3̄m. The potential symmetry lowering distortions

are then described by considering an expanded P1 supercell. The online tool

ISODISTORT38 is then used to describe the various symmetry lowering required

to reach this supercell in terms of distortion modes transforming as irreps. of the

parent Pm3̄m structure. These irreps. are then in turn either fixed to zero or

allowed to refine against the PDF data, with initial amplitudes randomised and

refinements repeated many times (100–500 cycles) in order to ensure the local

minima is reached. Analysis of fitting statistics and refined mode amplitudes

enable a robust evaluation of lattice dynamics and local distortions. For analysis

of the BaTiO3 PDFs, using the same approach previously applied to the ambi-

ent pressure GEM PDFs, the distortion modes were generated using a 2 × 2 × 2

high symmetry supercell Pm3̄m structure and the lattice parameters were con-

strained to those of the average tetragonal structure of BaTiO3 at 293 K. The

irreps. listed in Figure 3.9 were refined against the PDFs with 500 cycles at each

Qmax value, where at the start of each cycle the mode amplitudes defined for the

irrep. are randomised (within the range −0.05 to 0.05), in order to ensure the

Figure 3.9: Fitting statistics (Rw) for irreps. tested against PDFs of BaTiO3 as a function

of Qmax value.
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global minimum had been reached.

Figure 3.9 shows the fitting statistics Rw for the 20 irreps. tested against the

variable-Qmax PDFs. It is unsurprising that the Γ−
4 irrep. results in the best fit, as

indicated by a lower Rw value, for the higher resolution PDFs. At Qmax = 20 Å
−1

the Γ−
4 irrep. reassuringly still results in the best fit, indicating sufficient PDF

peak resolution for this type of mode analysis. By Qmax = 15 Å
−1

, the Γ−
4 and

Γ−
5 irreps. result in equally good fits and by Qmax = 10 Å−1, the X+

5 apparently

fits the best and sensitivity to the ferroelectric mode is evidently lost. The key

finding here is that Qmax = 20 Å−1 is sufficient for recovering the known OP, Γ−
4 .

In order to ascertain the OPD and nature of the local Ti displacements—the

main goal of this work—a more directed modelling approach can be taken. To

ensure that the PEARL PDFs were sensitive to the OPD, further analysis was

performed. The local structure was modelled using a P1 unit cell, with only

polar distortion modes associated with Ti and O (transforming as the Γ−
4 irrep.)

refined, and Ba modes set to zero to fix the floating origin of the unit cell. The

most general OPD associated with this irrep is three dimensional (a, b, c). The

Ti(T1u), O(A2u) and O(Eu) modes, that form a basis of this irrep, thus have three

branches each, where particular constraints on the branched mode amplitudes

correspond to higher symmetry OPDs. Since ambient pressure BaTiO3 has been

shown to exhibit a local rhombohedral-type distortion, the OPDs of the modes

can be constrained to (a, a, a) rhombohedral symmetry.

The rhombohedral model was fitted to this contiguous series of variable-Qmax

PDFs, over the r-range 1.2–10 Å, with lattice parameters fixed to those deter-

mined by Rietveld refinement. The resulting mode amplitude values for Ti are

shown in Figure 3.10. They again show notable consistency over the Q-range

20–40 Å−1, and—since a 293 K total scattering measurement of BaTiO3 on the

GEM instrument is the closest comparison to the lowest pressure (0.24(2) GPa),
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Figure 3.10: Refined mode amplitude values for rhombohedrally constrained Ti and O

distortions for a room temperature BaTiO3 PDF measured on GEM and processed with Qmax

values ranging from 10–40 Å−1 in steps of 5 Å−1 (filled markers). The unfilled markers

represent the mode amplitude values for the lowest pressure (0.24(2) GPa), ambient

temperature measurement of BaTiO3 on PEARL. The grey section represents the Qmax

region for which refined mode distortions behave unphysically.

ambient temperature PEARL measurement—the PEARL data can be directly

compared. Crucially, it is found that the modes refined against the 0.24 GPa

PEARL data with Qmax = 20.32 Å−1 (open symbols in Figure 3.10) are in ex-

cellent agreement with the 20 Å−1 GEM results, falling well within error of each

other. As found with the full SAPA analysis, at Qmax = 15 Å−1 the values become

inconsistent with those found for higher resolution PDFs.

These specific (a, a, a) OPD results establish the lower limit in Qmax with re-

spect to extracting physically meaningful displacements in this study and validate

the sensitivity of the high pressure PDFs with respect to the local OPs that are

key in this local structure investigation.

3.6 Constrained small box modelling

A significant strength of total scattering is the ability to investigate the structure

over a range of length-scales and as a function of r. A PDF can be generated
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with very large rmax values, dependent on the sample and instrumental effects. In

order to explore the information contained, as a function of correlation distance,

within the PDF, different r-ranges of PDF were investigated. Variable-range

modelling21,39 has been used whereby the minimum of the fitting range (rmin)

is kept constant and the maximum (rmax) is increased sequentially. A similar

technique is so-called ‘box-car’ fitting40,41 where the fitting range is held constant

and shifted along the PDF, resulting in the progressively reduced influence of the

immediate local structure on the refined small-box model—results from this type

of analysis have been reported in the Appendix.

Small-box variable range PDF refinements were performed with an rmin of

1.2 Å and an rmax increasing from 4 to 30 Å in steps of 1 Å. Therefore, the

overall fitting range was varied between 2.8 and 28.8 Å, such that progressively

large length-scale atom–atom correlations were probed as rmax→ 30 Å.

Lattice parameters—determined from Rietveld refinements of the diffraction

patterns—were fixed for all subsequent small-box PDF refinements, constraining

the metric symmetries to those known from the average structures. Rather than

allowing the distortion modes to refine freely, the OPD was constrained to be

consistent with cubic (0, 0, 0), tetragonal (a, 0, 0) or rhombohedral (a, a, a) sym-

Figure 3.11: Behaviour of the modes belonging to the Γ−
4 irrep. in the indicated OPD. The

black arrows indicate the atom displacement arising from the Ti(T1u) mode and the blue

arrows correspond to the combination of the O(A2u) and O(Eu) modes. White spheres are Ba

atoms.
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metries in order to test these three specific local distortion behaviours, shown in

Figure 3.11. Other OPDs such as (a, a, 0), (a, b, 0) or (a, a, b) were not consid-

ered as the aim of this work was to resolve the OD behaviour of BaTiO3 at the

tetragonal to cubic phase transition.

3.6.1 Ti and O distortion modes

Figure 3.12 shows the Rw and mode amplitude values for (0, 0, 0), (a, 0, 0) and

(a, a, a) modes refined against the variable-pressure PDFs. The atomic displace-

ment parameters described by the simple quadratic function were fixed to values

as discussed in the next section. The fitting statistics indicate that a rhombo-

hedral model provides a consistently improved fit over all rmax values at the two

lower pressures, however, the individual mode amplitudes behave unphysically

for some pressures and fitting ranges. At 0.24 GPa, the mode amplitudes of the

Ti(T1u) mode are consistently positive and the amplitudes of the O(A2u) and

O(Eu) modes are either negative, or within error of, negative values. This +−−

coupling of the Ti and O atoms must be maintained in order to correctly describe

the relative displacements of the atoms (e.g., as in Figure 3.11). The necessary

coupling is progressively lost with higher pressure PDF refinements, particularly

for those measured at 2.55 and 4.18 GPa, where for rmax>10 Å, Ti and O atoms

refined to displace in the same, rather than opposite, directions.

In order to maintain the correct relative displacements associated with the

modes, the ratio describing relative Ti(T1u):O(A2u):O(Eu) displacements was con-

strained. A rhombohedral (a, a, a) model was refined against high quality diffrac-

tion data measured at 15 and 293 K on GEM and the Ti(T1u):O(A2u):O(Eu) ratios

were found to be 1:−1.46:−1.10 and 1:−1.74:−1.43. These values were simplified

to a combined representative ratio; 1:−1.6:−1.3, which was subsequently used to

constrain the modes in order to test against the correct and as-described local
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Figure 3.12: Fitting statistics (Rw) and refined Γ−
4 mode amplitudes against high pressure

PDFs for Ti(T1u) (circles), O(A2u) (triangles) and O(Eu) (stars) modes, where the

displacements related to the Ti and O atoms are unconstrained. Constrained order parameter

directions are indicated by the legend. Rw values for tetragonal and rhombohedral modes at

2.55 and 4.18 GPa are almost exactly coincident, and cannot be visually distinguished.

structure distortions. Although the refined |Q(Γ−
4 )| values differ slightly depend-

ing on the precise ratio used, it was found that the relative values and fitting

statistics of each refinement remain essentially constant. Rather than reporting

the refined mode amplitudes for each of the constrained Ti(T1u), O(A2u) and

O(Eu) distortions, the mode amplitude values reported herein refer to the overall

AP values defined in ISODISTORT,38 as the parent-cell-normalized amplitude,

and are assigned the notation |Q(Γ−
4 )|.

3.6.2 Atomic displacement parameters

Figure 3.13 shows the Rw, |Q(Γ−
4 )| and isotropic displacement parameters from

variable-range refinements against the PEARL PDFs. For these refinements, the

ratios between the Ti(T1u):O(A2u):O(Eu) displacements were fixed as described

previously and the displacement parameters describing each atom individually

(Biso) and globally (α) were allowed to refine. Particularly for the lower pres-
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Figure 3.13: Fitting statistics (Rw), |Q(Γ−
4 )| values, and atomic displacement parameters

(Biso and α) for mode-constrained, variable-range refinements against high-pressure BaTiO3

PDFs. Rw values for tetragonal and rhombohedral modes at 2.55 and 4.18 GPa are almost

exactly coincident, and cannot be visually distinguished.

sure PDFs, it seems that atomic displacement parameters compensate for when

|Q(Γ−
4 )| has an apparently over-constrained OPD. This is perhaps expected for

the (0, 0, 0) model, where at 0.24 GPa, the local structure is known to adopt a

rhombohedral local symmetry and therefore artificially larger displacement pa-

rameters compensate for the over-constrained symmetry. Less convincing though,
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are the higher Ti Biso values for the (a, 0, 0) model at 0.24 and 1.19 GPa where

the |Q(Γ−
4 )| values tend toward zero with increasing r. Other erroneous behaviour

is observed at low rmax values, where a Ti Biso of zero (as seen in the (a, a, a)

models) is unphysical.

In order to avoid the influence of erratic Biso values on the refined models,

seven models with different fixed Biso values, summarised in Table 3.1 were tested.

The α value was fixed at 0.01 for all seven models. Although the following

constraints produce less erratic trends, the conclusions described in Section 3.7

are consistent with those derived from models using unconstrained Biso values.

Table 3.1: Atomic displacement parameters (Biso) used to model correlated thermal

motion. Biso values were fixed for seven models and tested against variable pressure PDFs (α

was fixed to 0.01 and the r2 coefficient was fixed at zero).

Biso (Å2)
Model Ba Ti O

1 0.1 0.2 0.2
2 0.2 0.3 0.2
3 0.5 0.5 0.4
4 0.4 0.3 0.3
5 0.3 0.3 0.3
6 0.3 0.2 0.3
7 0.3 0.4 0.3

In order to evaluate the seven models, variable-range fitting was carried out

in the same way as previously reported, with fixed mode ratios and lattice pa-

rameters fixed to those refined by Rietveld analysis of the average structure.

Figure 3.14 shows the Rw values for each atomic displacement parameter model,

applied to the three (0, 0, 0), (a, 0, 0) and (a, a, a) local symmetry models, and

tested against each variable-pressure PDF. Models 1, 2 and 3 mostly result in

worse fits, suggesting over– (models 1 and 2) or under– (model 3) constrained

displacement parameters.

Figure 3.15 shows the |Q(Γ−
4 )| values refined against each variable pressure

PDF and described by either an (a, 0, 0) or (a, a, a) OPD. Fitting statistics have
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Figure 3.14: Rw for each of the seven atomic displacement models, tested against each

variable-pressure PDF, modelling constrained (0,0,0), (a, 0, 0) and (a, a, a) OPDs. For models

4–7, in some plots Rw values are almost exactly coincident, and cannot be visually

distinguished.

already indicated that models 1–3 produce worse fits, and the |Q(Γ−
4 )| values

show that these models result in maximum and minimum |Q(Γ−
4 )| ranges for

each PDF and local symmetry. Models 4–7 result in very similar |Q(Γ−
4 )| values

at 0.24 and 1.19 GPa, but at 2.55 and 4.18 GPa there is a larger discrepancy

between them, with model 5 representing an approximate average of the refined

values from models 4–7. At these higher pressures, the fitting statistics indicate

that model 5 best describes the atomic displacement parameters for (a, 0, 0) and

(a, a, a) local symmetries. Model 5, corresponding to Biso parameters of 0.3 for
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Figure 3.15: Refined |Q(Γ−
4 )| values for each of the seven atomic displacement models,

tested against each variable pressure PDF, modelling constrained (a, 0, 0) and (a, a, a) OPDs.

For models 4–7, in some plots Rw values are almost exactly coincident, and cannot be visually

distinguished.

Ba, Ti and O atoms, was therefore chosen to model the atomic displacement

parameters at all pressures.

3.7 Modelling the local structure of BaTiO3

Having established constraints on the mode and Biso parameters, models of cubic,

tetragonal and rhombohedral local symmetries were fitted to the variable pressure

PDFs. Refined models for the local structure of BaTiO3 at high pressure were

compared to analogous results for the thermally-induced phase transition, where

the average structure of BaTiO3 is known to be tetragonal at 293 and 350 K

and cubic at 410 and 500 K, inviting a comparison of the local structure of

BaTiO3 at high pressure and high temperature. The same modelling approach

was therefore applied to PDFs measured at 293, 350, 410 and 500 K using the
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GEM instrument at ISIS (which were processed with Qmax = 20 Å−1 for a fairer

comparison), and previously published in support of persistent OD behaviour

at high temperature.19 Atomic displacement parameters were allowed to refine

against the GEM data as these were found to behave more stably than those

found for the PEARL data. Refined displacement parameters (provided in the

Appendix) are found to increase with higher applied temperature and if they were

to be held fixed (as has been done with the PEARL data), the models would have

to be more complex to compensate for this reduction in parameter space.

3.7.1 Variable-range modelling

Refining small-box models over an increasing range of r (Å) of the PDF provides

information on the correlation length scale. This is particularly relevant for ma-

terials with OD behaviour such as BaTiO3 where a local rhombohedral distortion

may be observed over a short length scale—for example one unit cell—however,

longer length scales will increasingly tend towards the average structure. Com-

parisons of fitting statistics (Rw) and |Q(Γ−
4 )| values for cubic, tetragonal and

rhombohedral models, refined against variable pressure (PEARL) and variable

temperature (GEM) PDFs are shown in Figure 3.16. The results show the evo-

lution of local displacements of Ti and O atoms as a function of pressure and

temperature.

At 0.24 and 1.19 GPa, consistent improvements in Rw over all rmax indicate

that the local and medium-range structure of BaTiO3 is best described by a

rhombohedral displacement of the Ti atom. The refined |Q(Γ−
4 )| values for an

(a, 0, 0) OPD are approximately
√

3/2 smaller than those of an (a, a, a) OPD

suggesting that the (a, 0, 0) model is essentially resolving a projection of the [111]

type displacement onto the [100] direction.

The results for the local structure of BaTiO3 at 1.19 GPa are very similar to
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Figure 3.16: Rw and |Q(Γ−
4 )| values for variable-range refinements for cubic (0,0,0),

tetragonal (a, 0, 0) and rhombohedral (a, a, a) OPDs against variable pressure (left) and

temperature (right) PDFs. Rw values for tetragonal and rhombohedral modes in the high

pressure cubic data are almost exactly coincident, and cannot be visually distinguished.

those found for the structure at 0.24 GPa and a decrease in |Q(Γ−
4 )| of ca. 15%

points towards a small pressure-induced hardening of the local potential describ-

ing the off-centre displacements. These results are in line with those of the vari-

able temperature PDFs, measured at 293 and 350 K. Rw values at 293 and 350 K

again favour rhombohedral-type displacements up to rmax = 10 Å, above which,

fitting statistics favour the tetragonal model, indicating sensitivity of the PDF

to the average, long-range structure. |Q(Γ−
4 )| values are in good agreement with

the variable pressure results. Again, relative |Q(Γ−
4 )| values for (a, 0, 0) compared

to (a, a, a) OPDs suggest the resolution of the [111] type displacement onto the

[100] direction.

However, this analysis reveals a clear divergence of the local structure at

higher pressures from those observed at lower pressures and indeed, higher tem-

peratures where the average structure has the same symmetry. At 2.55 and

4.18 GPa, |Q(Γ−
4 )| at rmax = 4 Å becomes suppressed by ca. 50% (cf. 0.24 GPa)

and the magnitudes of |Q(Γ−
4 )| with OPD (a, 0, 0) and (a, a, a) are approximately

equal. Over all rmax there is negligible difference between the Rw values for mod-
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els of tetragonal and rhombohedral Ti displacements. At 2.55 GPa the difference

between cubic models and models with off-centre displacements decreases approx-

imately linearly until rmax = 20 Å, after which the difference in Rw falls below

significance, whereas at 4.18 GPa this occurs at rmax = 10 Å. At 4.18 GPa, by

16 Å, |Q(Γ−
4 )| refines to zero, suggesting that the correlation length of the Ti

displacements is below four unit cell lengths, although this correlation length is

affected by the sensitivity of the PDF to all directions and not only the [100]

correlation, as discussed in further detail below. Nevertheless, the suppression

of |Q(Γ−
4 )|, isotropy of the displacement with respect to the different OPD, and

the relative reduction in correlation lengths are all consistent with the ferroelec-

tric instability in BaTiO3 being well-described by the harmonic approximation

at elevated pressures.

Conversely, previously-published results19 for high temperature PDF data at

410 and 500 K clearly favour an (a, a, a) OPD, consistent with the model of

chains of rhombohedrally displaced Ti, which retain substantial correlations along

〈100〉 directions. Refined |Q(Γ−
4 )| values over rmax = 4–10 Å are similar to those

observed at lower temperatures (at rmax = 4 Å, |Q(Γ−
4 )| at 293 K = 0.094 Å,

350 K = 0.074 Å, 410 K = 0.071 Å, 500 K = 0.071 Å), but fall to values that

are ca. 2/3 of those observed over longer rmax. The persisting sensitivity to

displacements in the high temperature cubic regime is consistent with the model

of correlated chains of [111] displacements projected along the [100] axis and lends

further support to the OD model for the temperature-induced phase transition.

3.7.2 Comparison with literature

The high pressure trends found here agree with the work of Ravy et al.9 who

report diminishing diffuse scattering lines at high pressure and broadening of the

diffuse features, indicative of a decrease in correlation length of Ti chains, which
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they discuss in the wider context of pressure-induced Ti-centring. Correlation

lengths of ca. six unit cell lengths (24 Å) implied by the breadth of diffuse features

at ca. 4 GPa are also in good agreement with our results. Where structured diffuse

scattering is sensitive to chain correlations, the PDF method will average chain

and non-chain interactions resulting in apparently shorter correlation lengths.

Furthermore, observed correlation lengths arising from this high pressure neutron

PDF work, broadly agree with domain sizes determined from high pressure X-

ray PDFs42 measured up to 6.85 GPa. Whilst these PDFs were presented in

support of tetragonal domains, it is likely that the insensitivity of X-rays to

the lighter oxygen atoms means that it is more challenging to resolve the level

of atomic positional accuracy that neutron radiation provides. Although XAS

measurements26 suggest continual off-centre Ti displacements up to 10 GPa, the

sensitivity of the technique is limited to the immediate local environment of the

probe atom, extending as far as the next-nearest neighbour only. This makes

it difficult to judge how these results differ from those expected from the root

mean square displacement of a harmonic oscillator—estimated to be 0.05 Å at

4.18 GPa from the rmax = 4 Å variable-range refinements.

It is perhaps interesting to speculate on the differing local structure behaviour

of high temperature and high pressure BaTiO3. Given that polar distortions

are in general coupled to the expansion of the lattice, it is understandable that

the application of pressure will act to reduce the magnitude of the Ti and O

displacements until they are consistent with those expected within the harmonic

approximation, in which, displacements along [111], [100], or indeed any other

lattice direction, necessarily carry the same energy penalty. On the other hand,

above the tetragonal to cubic phase transition positive thermal lattice expansion

dominates and no resulting hardening of the anharmonic potential that describes

the Ti off-centring is observed.
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3.8 Conclusions and further work

These results not only lend weight to the narrative that the OD behaviour of

BaTiO3 is suppressed at high pressure, but also adds to an emerging research

direction on neutron local structure measurements of crystalline materials un-

der hydrostatic pressure,34,37 where local structure analysis approaches such as

the simplified SAPA method can be applied. Such experiments would likely pro-

vide fundamental insight into the pressure-induced phase behaviour of framework

materials such as Prussian blue analogues.43,44

Although it might be tempting to conclude from the average structures that

the high temperature and high pressure tetragonal and cubic phases behave in

an analogous manner, in terms of the local structure, this high pressure PDF

study shows that this is not the case. The SAPA method of interrogating the

local structure of BaTiO3 reveals that at high pressure, the OD model provides

a less satisfactory description. Significant suppression of the mode over short

rmax, isotropy of the OPD, and loss of sensitivity to correlated Ti displacements

at high pressure all point towards more harmonic character, which contrasts the

high temperature behaviour.
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4.1 Introduction

A property of key interest arising in solid oxide materials is superconductivity.

A superconducting material shows no electrical resistance and expulsion of mag-

netic fields when cooled below a characteristic critical temperature, TC. The

phenomenon was discovered in 1911 by Heike Kamerlingh Onnes who found that

the resistance of a mercury wire dropped to zero at TC 4.2 K.1

A significant breakthrough was made in 1986 when Georg Bednorz and Alex

Müller discovered that La5−xBaxCu5O5(3−y) exhibited superconductivity at 28 K.2

Shortly after, La1.85Ba0.15CuO4 was identified with TC = 30 K, La1.85Sr0.15CuO4

with TC = 38 K,3 YBa2Cu3O7 with TC = 93 K4 and HgBa2Ca2Cu3O8 with a re-

markable TC = 134 K.5 Superconductors with TC >77.2 K are particularly useful

as they can be cooled using liquid nitrogen and therefore have applications for

devices such as magnetic resonance imaging scanners, nuclear magnetic resonance

spectrometers and potentially future fusion reactor tokamaks.6–8

Despite the technological importance of higher TC materials, significant at-

tention has remained focused on the lower TC cuprate materials due to a poor

understanding of the origin and mechanism of superconductivity, and the anoma-

lous behaviour of the Ba-doped cuprate, La2−xBaxCuO4. Where isostructural

La2−xSrxCuO4 exhibits superconductivity in the compositional region x = 0−0.2,

with a maximum at ca. 0.15, La2−xBaxCuO4, is found to have a suppressed TC at

x = 0.125, commonly referred to as the ‘1/8th anomaly’9 (shown in Figure 4.1).

It appears that a low temperature tetragonal (LTT) structural phase is coinci-

dent with the suppression of superconductivity, and much of the research on the

high-TC cuprates material remains focused on the potential coupling of this ad-

ditional phase transition to electronic phenomena such as charge-density waves

(CDW) and spin-ordered states.10–12 Despite significant research, the relationship

between such electronic and structural behaviours is still not well understood.
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Figure 4.1: The temperature versus Ba-doping phase diagram of LBCO. The blue, orange

and yellow regions show the HTT, LTO and anomalous LTT average structures respectively

and the green regions show the temperatures and Ba-doping levels for which

superconductivity (SC) arises.

Understanding the origin of the anomalous behaviour of LBCO will provide sig-

nificant insight into the origin of superconductivity in these high-TC cuprates,

and will aid the design of future high-TC superconductors.

The average structure symmetries of La2−xBaxCuO4 with x = 0.125 (hereafter

referred to as LBCO) and the corresponding temperature-dependent phase transi-

tions are well known.13 Above ca. 240 K,14,15 LBCO adopts a ‘high temperature

tetragonal’ (HTT) I4/mmm phase (Figure 4.2(a)) where the CuO6 octahedra

are arranged in staggered layers stacked along the c-axis of the Ruddlesden-

Popper (RP) structure. On cooling below 240 K, LBCO goes through a sec-

ond order phase transition to a ‘low temperature orthorhombic’ (LTO) phase.

The CuO6 octahedra rotate alternately about the [110] direction (with respect

to the HTT structure), as shown in Figure 4.2(b), resulting in Bmab symme-
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Figure 4.2: The crystal structure of LBCO, where La/Ba atoms are shown as green spheres,

Cu atoms as blue spheres and O atoms as red spheres. (a) Unit cell in the HTT phase

(I4/mmm), with CuO6 octahedra and 9-coordinate La/BaO9 polyhedra highlighted.

Rotation directions of the CuO6 octahedra in (b) the LTO phase (Bmab) and (c) the LTT

phase P42/ncm, with respect to the HTT cell. (d) The unit cell of the LTO and LTT phases.

try. This Bmab structure is a supercell with respect to HTT, with a basis of

[aHTT + bHTT],[−aHTT + bHTT],[cHTT] and no change of origin (shown in Fig-

ure 4.2(d)). The rotation of the CuO6 octahedra can be described by the X+
3

irrep. of I4/mmm with an OPD, (a, 0). The distortion results in a buckling of

the CuO2 planes which is reportedly coupled with the superconductivity that

arises at specific doping levels of the cuprate materials.

Below ca. 80 K, LBCO goes through a second phase transition from LTO

to the LTT phase described in the space group P42/ncm, with the same basis

as LTO with respect to HTT. In this phase the octahedra instead rotate along

the [100] and [010] directions (with respect to the HTT structure) with alternate

CuO2 layers rotating in opposite directions, preserving tetragonal symmetry. The

rotation is described again by the X+
3 irrep, but now with an OPD of (a, a) that

describes an equal rotation magnitude about a and b. Since there is no group-
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Figure 4.3: Schematic diagram of CDW stripe order within the LTO (left) and LTT (right)

phases.

subgroup relationship between the LTT and LTO phases, the phase transition is

necessarily first order, displaying a coexistence of phases over a finite temperature

range.16

A large focus of investigation into the 1/8th suppression of superconductivity

has centred around the appearance of CDW ordering—observed by both neutron

and X-ray scattering17 which reportedly competes with the superconductivity

of the system. The fact that CDW formation temperature is coincident with

the LTT phase transition has attracted significant attention. The structural

anisotropy, and related rotation of the CuO6 octahedra is thought to pin charge

stripes.17,18 The theory is that whilst an aligned stripe orientation allows super-

conductivity within the CuO2 planes in LTO, the structural anisotropy of the

LTT phase induces a 90° rotation of the charge stripes in alternating CuO2 layers

(shown in Figure 4.3), disrupting Josephson coupling and therefore suppressing

the superconducting properties.19,20

Unpublished work carried out within the Senn group has shown through

single-crystal and high-resolution powder XRD studies that there is a pronounced

coexistence of the LTT and LTO phases at low temperature. Fitting the data

with a two-phase model indicated that there is an increased rotation of the CuO6

octahedra in the LTT phase, resulting in larger buckling of the CuO2 planes

and presumably reduced band gaps. This finding suggests that the low temper-
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Figure 4.4: Diagram of two corner-sharing CuO6 octahedra, showing the ϕ and ω angles

used to characterise the magnitude of the octahedral tilt.

ature behaviour of LBCO and the relationship between superconductivity and

electronic effects such as charge pinning must be revisited.

Work on the local structure of LSCO using single-crystal neutron scattering

experiments, points towards a displacive phase transition of LTO to a HTT phase

with weakly-ordered rotations (ϕ, shown in Figure 4.4) of ca. 0.4°—determined

via the analysis of diffuse scattering reflections.21 Similar analyses of the diffuse

scattering arising from an XRD experiment on LBCO found a local rotation

magnitude of ca. 0.25° in the HTT phase.22

The use of direct local structure probes indicate slightly larger rotation mag-

nitudes. A PDF study on LSCO reported that local LTO-type rotation angles of

ca. 1.5° persist in the 10 K HTT phase23 (above x = 0.2) and for LBCO, studies

using neutron PDF and XAFS techniques suggested that in all three average LTT,

LTO and HTT phases, the CuO6 octahedra continue to rotate locally in an LTT-

like manner, ordered over ca. 10 Å.24,25 This would suggest that the HTT→LTO

and LTO→LTT phase transitions are better described as being order-disorder,

although this interpretation contradicts the displacive behaviour evident through

average structure techniques.16,26

Pressure, rather than temperature, is another important variable that can be
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used to drive structural changes and phase transitions, therefore tuning properties

of superconducting materials.27–29 Shortly after the discovery of superconductiv-

ity in the BaxLa5−xCu5O5(3−y) ceramic, Chu et al.30 found that TC could be

increased from 30 to 40 K through the application of modest pressure (1.3 GPa).

Pressure suppresses the LTO phase in LSCO, where the change in TC is

highly correlated to the stabilisation of the HTT phase and flattening of the

CuO2 planes.31 The same pressure-dependent phase behaviour is found for LBCO,

where the application of hydrostatic pressure results in the suppression of the LTT

and LTO phase transitions completely by 1.85 GPa,22 although the recovery of

TC is slow and remains at low at ca. 10 K for x = 0.125.10,31

Despite the significant amount of work on the LBCO system, there is much

left to discover about the structure-property relationships and in particular the

nature of the anomalous LTT phase. Thus far, the role of the A-site cation

has been thoroughly studied,32,33 but there is surprisingly little investigation into

the role of the B-site Cu ion. Charge balancing at the x = 0.125 doping level

requires that 87.5% of the Cu ions have the 2+ the oxidation state, and the

remaining 12.5% are 3+. The population of JT-active cations may be altered

by adjusting the Ba-content, although this will also have a significant affect on

the hole doping levels. Substituting Cu2+ with Mg2+ provides a way of directly

investigating the influence of the JT distortion associated with the Cu2+ cation

on the observed structural symmetries of LBCO, as Mg2+ has almost the same

ionic radius as Cu2+ (0.72 Å versus 0.73 Å34) and therefore differs only in the

lack of JT activity.

The aim of this Chapter is to investigate the link between the JT activity of

the Cu2+ cation and structural symmetry by preparing a series of Mg-substituted

LBCO (La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4) samples. Variable-temperature

PXRD studies on the Mg-substituted series, reported in this Chapter, have shown
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than the transition temperatures of the LTT and LTO phases are strongly cou-

pled to the local anisotropy of the Cu2+ state, proving that there is an interplay

between doping and structural symmetry beyond tolerance factor effects. Fur-

thermore, this work has found that Mg substitution completely suppresses the

LTO–LTT phase coexistence at lower temperatures, suggesting that it is a by-

product of the competition between electronic instabilities (such as CDW and

superconductivity) that are only expected to be present in the pristine LBCO

system. Further structural investigations were carried out through a high tem-

perature total scattering experiment, performed on the I15-1 beamline—probing

the local structure of the HTT phases of Mg-substituted LBCO—and a high-

pressure neutron diffraction experiment, to understand the effects of hydrostatic

pressure on a Mg-substituted LBCO.

4.2 Experimental

4.2.1 Solid-state synthesis of Mg-substituted

La1.875Ba0.125CuO4

La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4 (y = 0−0.7, in 0.1 steps) was synthesised

by mixing predried La2O3 (99.99%, Sigma Aldrich), BaCO3 (99.95%, Alfa Aesar),

CuO (99.999%, Sigma Aldrich) and MgO (99.99%, Sigma Aldrich) in the stoi-

chiometric ratios detailed in Table 4.1. Powders were ground into a homogenous

mixture and then pressed into pellets using a Specac 10 tonne die press. Pellets

were placed into a zirconia crucible and calcined in air at 900°C for 20 hours.

Three heating cycles were then carried out, at 1050°C for 15 hours, 1100°C for

20 hours and 1200°C for 20 hours, with pellets cooled to room temperature,

ground and re-pressed between each cycle. The error of the Mg-content y arising

from weighing of the reactants was calculated to be ±0.002.

113



The average and local structure of Mg-substituted La1.875Ba0.125CuO4

Table 4.1: Reactants and their stoichiometric y-dependent ratios.

Reactant Ratio
La2O3 0.9375
BaCO3 0.125
CuO 0.875(1 − y)+0.125
MgO 0.875y

4.2.2 Variable-temperature XRD

Variable-temperature powder diffraction patterns of the Mg-LBCO series were

measured using high-resolution XRD beamlines at DLS and TPS, with different

experimental details for each sample. Data from TPS was collected by Dr Wei-Tin

Chen. All variable temperature measurements were performed on warming. All

data were collected using a MYTHEN detector. All wavelengths and instrument-

dependent parameters (peak shapes and axial divergence) were determined via

Rietveld refinements of a Si NIST standard.

y = 0.0

Low temperature data were collected using beamline 09A (TPS), using an energy

of 20 keV (0.62059 Å). The sample was loaded into a 0.2 mm diameter quartz

capillary and the temperature controlled using an ESRF DynaFlow cryostat, with

data measured at temperatures from 10–130 K in steps of 10 K (ramp rate of

1.67 K/min).

Further data were obtained from 90–300 K in 10 K steps, also using beamline

09A, with an energy of 20 keV (0.61990 Å). The sample was loaded into a 0.1 mm

diameter Lindemann glass capillary and the temperature was controlled using an

Oxford Cryostream 800+ with a ramp rate of 2.5 K/min.

High temperature data were collected from 300–400 K in steps of 10 K using

beamline I11 (DLS). An energy of 15 keV (0.82686 Å) was used and an Oxford

Cryostream+ used to control the temperature with a ramp rate of 6 K/min.
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y = 0.1

Data were collected using beamline I11 (DLS) with an energy of 15 keV

(0.82686 Å). The sample was loaded into a 0.3 mm diameter borosilicate glass

capillary and data were collected from 100–400 K in 10 K steps. The temperature

was controlled using an Oxford Cryostream Plus.

y = 0.2

Low temperature data were collected using beamline 09A (TPS), using an energy

of 20 keV (0.61993 Å). The sample was loaded into a 0.3 mm diameter quartz

capillary and the temperature controlled using an ESRF DynaFlow cryostat, with

data measured at temperatures from 10–120 K in steps of 10 K (ramp rate of

1.67 K/min).

Higher temperature data were collected from 90–400 K in steps of 10 K also

using beamline 09A. The sample was loaded into a 0.1 mm Lindemann glass cap-

illary. An energy of 12 keV (1.03342 Å) was used and an Oxford Cryostream800+

used to control the temperature with a ramp rate of 2.5 K/min.

y = 0.3

Low temperature data were collected using beamline 19A (TPS), using an energy

of 20 keV (0.61990 Å). The sample was loaded into a 0.3 mm diameter quartz

capillary and the temperature controlled using an ESRF DynaFlow cryostat, with

data measured at temperatures from 20–110 K in steps of 10 K (ramp rate of

1.67 K/min).

Higher temperature data were collected from 90–400 K in steps of 10 K using

beamline 09A. The sample was loaded into a 0.1 mm Lindemann glass capillary.

An energy of 12 keV (1.03342 Å) was used and an Oxford Cryostream800+ used

to control the temperature with a ramp rate of 2.5 K/min.
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y = 0.4 and 0.5

Data were collected from 90–400 K in steps of 10 K using beamline 09A. The

samples were loaded into 0.1 mm Lindemann glass capillaries. An energy of

12 keV (1.03342 Å) was used and an Oxford Cryostream800+ used to control the

temperature with a ramp rate of 2.5 K/min.

y = 0.6 and 0.7

Ambient temperature diffraction patterns were measured using I11 (DLS), with

an energy of 15 keV (0.82686 Å). The samples were loaded into 0.3 mm diameter

borosilicate glass capillaries.

4.2.3 Total scattering

Total-scattering measurements were carried out using the I15-1 (XPDF) beamline

at DLS. Powdered samples of La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4 (y = 0−0.5,

in steps of 0.1) were loaded in borosilicate capillaries which were mounted on

an XY sample stage and spun at 10 Hz. X-rays with an energy of 76.6 keV

(0.1617 Å) and PerkinElmer XRD 16611 CP3 and PerkinElmer XRD 4343 CT

detectors were used to collect data corresponding to the local, and average, crystal

structure simultaneously. An empty capillary was measured to account for non-

sample scattering contributions. All samples were measured at 400 K using a hot

air blower. The total scattering data were Fourier transformed using a Qmax of

25 Å−1 with GUDRUNX.35 Rietveld refinements of the XRD data were carried

out using TOPAS, and small and big-box modelling were performed using TOPAS

Academic v636 and RMCProfile37 respectively.
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4.2.4 High-pressure neutron diffraction

High-pressure neutron diffraction patterns of

La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4 with y = 0.0 (LBCO) and 0.5 were

collected using the PEARL beamline at ISIS.38 Powdered samples were loaded

into an encapsulated null-scattering TiZr gasket,39 which was placed into a PE

press, equipped with ZTA anvils. Hydrostatic compression was achieved by using

a 4:1 deuterated methanol:ethanol mixture40 and a lead pellet was included as

a pressure calibrant via the known EoS. Data were reduced using the MANTID

software package41 to correct for the effects of attenuation by the ZTA anvils

and normalised by a vanadium standard to account for flux profile. Rietveld

refinements were carried out using TOPAS Academic v6,36 and Si and CeO2

standards, measured at the start of the cycle, were used to refine diffractometer

constants and peak shape parameters, respectively.

For the LBCO (y = 0.0) sample, data were collected at the following applied

loads: 5.5 tonnes, then 9.5–27.5 in steps of 2 tonnes, and finally, 30–60 in steps of

5 tonnes. The corresponding calculated pressures shown in Figure 4.5 indicated

Figure 4.5: Pressure-load relationships for LBCO and the two loadings of Mg-LBCO, where

the second loading showed an improvement in the pressure-load curve over the first loading.

Error bars are shown but are smaller than the symbols.
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that at 60 tonnes an upper pressure of 5.53(1) GPa was achieved. The plateauing

observed for the last three load increments is characteristic of the upper limit of

the load capabilities of the ZTA anvils.

For La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4 y = 0.5, data were collected at

9 tonnes, then from 15–37 tonnes in steps of 2 tonnes. The pressure-load curve,

shown in Figure 4.5, indicated poor pressure performance for the first loading; this

was attributed to an under-packed gasket. A second compression was carried out

with another instance of the sample, which showed much improved performance.

For the second loading, data were collected at 9, 19, 24, 26 tonnes and then

30–60 tonnes in steps of 5 tonnes. The resulting pressure-load curve was much

improved and an upper pressure of 5.752(7) GPa was achieved.

4.2.5 Refinement protocol

Structure modelling for Rietveld refinements against the variable-temperature

XRD data and small-box modelling of X-ray PDFs was carried out using the

approach outlined below unless stated otherwise, using TOPAS Academic v6.36

A symmetry-adapted approach was used whereby for all LTT, LTO and HTT

phases, refinements were performed using a common subgroup, Pccn with appro-

priate symmetry constraints on atom displacements and lattice parameters. This

means that all phases were modelled using the supercell structure depicted in Fig-

ure 4.2(d) so that refined parameters of the HTT structure—which conventionally

would be described by a smaller unit cell—can be directly compared. The OP

associated with the previously-described octahedral rotation is described by the

irrep. X+
3 with an OPD (a, b). For the HTT phase, the OPD is (0,0)—where there

is no rotation in the average structure, for the LTO phase, the OPD is (a, 0), and

for LTT the OPD is (a, a), corresponding to the rotations shown in Figure 4.2. A

second distortion is active within all HTT, LTO and LTT phases—the Γ+
1 mode
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Table 4.2: Ratio between the La/Ba, O1 (apical) and O2 (equatorial) distortion modes

described by the X+
3 and Γ+

1 irreps.

Irrep La/Ba O1 O2
X+

3 1 -3.0232 1.3905
Γ+
1 1 -1.1026 n/a

(with OPD (a))—which describes a symmetry-conserving distortion where La/Ba

and apical O atoms displace with a combined stretching motion along the c-axis.

In each model, two distortion parameters were refined, one describing the

La/Ba X+
3 distortion, and another describing the La/Ba Γ+

1 distortion. All

other modes transforming as the same irrep, acting on the oxygen atoms, were

fixed to a ratio which was based on values determined from previous, unpub-

lished single crystal studies (carried out within the Senn group) of isostructural

La1.675Eu0.2Sr0.125CuO4 (LESCO) and reported in Table 4.2. The X+
3 distortion

acts on two distinct oxygen positions; the apical oxygen denoted ‘O1’, and the

equatorial oxygen, denoted ‘O2’, whereas the Γ+
1 distortion acts only on the apical

O1 oxygen position.

Constraining oxygen distortions to the La distortions was vital for maintaining

the octahedral geometry since freely refined modes resulted in incorrect coupling

of the individual components due to the insensitivity of X-rays to the lighter

oxygen atoms. The reported X+
3 mode amplitudes are the parent-cell-normalized

amplitudes (AP values) defined by ISODISTORT.42

The atomic displacement parameters of the equatorial oxygen atoms were

constrained to be equal, regardless of the phase symmetry and those describing

the apical oxygen atoms were constrained to be 1.8× of the equatorial oxygen

atoms (again, informed by single crystal LESCO data). Atomic displacement

parameters for the remaining atom site types (A and B site atoms) were allowed to

refine freely with no further constraints. Modelling of anisotropic peak broadening

was carried out using the symmetry-dependent Stephens strain model43 for each
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phase in all samples.

4.3 Mg concentration limit in La1.875Ba0.125CuO4

Rietveld analysis of the La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4 (y = 0.0 − 0.7)

samples showed that the solid-state synthesis yielded pure (greater than 99%)

polycrystalline samples for y values up to 0.5. Samples synthesised with y = 0.6

and 0.7 (Rietveld fits are shown in Figure 4.6) yielded purities of 93.88% and

83.72% respectively, with impurity phases identified as La(OH)3, La2O3 and MgO,

which meant that the synthesised Mg-LBCO sample was non-stoichiometric. The

La(OH)3 impurity found for y = 0.6 is a result of unreacted La2O3 decomposing in

air to the hydroxide form. Efforts to synthesise pure samples by increasing heating

Figure 4.6: Rietveld fits of La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4, y = 0.6 and y = 0.7,

showing the impurity phases of La(OH)3, La2O3 and MgO present in samples with

increasingly large Mg content.
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cycle times and temperatures were unsuccessful, and persisting impurities for the

attempted synthesis of high Mg-content LBCO indicated a Mg concentration limit

of y = 0.5 using conventional solid-state methods.

4.4 Variable temperature Mg-substituted

La1.875Ba0.125CuO4

An in-depth structural analysis was performed on the Mg-LBCO samples with

y values up to 0.5. Rietveld analysis performed on the XRD patterns of the

pure samples (shown in Figure 4.7) indicated that at 300 K the un-substituted

sample, y = 0 (LBCO) adopted a HTT I4/mmm phase, as expected from previ-

ous literature.16 This was evidenced by the absence of any splitting of the (200)

reflection, shown inset in Figure 4.7. This (200) reflection will be used to illus-

trate phase transition evolution regularly throughout this Chapter. Diffraction

patterns and Rietveld refinements of the Mg-substituted LBCO samples showed

that for y = 0.1 and 0.2, the structures were also in the HTT phase at 300 K,

Figure 4.7: Diffraction patterns of La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4 measured at

300 K. Inset figure shows the (113) and (200)/(020) peaks and the legend indicates the y

values. Differences in observed background scattering are due to differences in capillary

packing fraction. All peaks are indexed with respect to the Pccn supercell.
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Figure 4.8: An X-ray intensity heat map of the evolution of the (113) and (200/020) Bragg

peaks of La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4 with temperature. White sections reflect

temperatures at which data were not collected and changes in contrast between low and high

temperatures are a result of different scattering intensities between data collected from

different experiments.

whereas the samples with y = 0.3, 0.4 and 0.5 adopted the LTO Bmab phase—

shown clearly for the y = 0.5 sample by the splitting of the (200) peak (where the

HTT structure is indexed with respect to the Pccn cell) to a (200)/(020) peak in

Figure 4.7.

The apparent influence of Mg-substitution on the phase of the LBCO struc-

ture, was then investigated via an in-depth variable-temperature powder XRD

study. The heat maps of Figure 4.8 shows the temperatures that were investi-

gated for each sample. The Figure shows the evolution of the (113) and (200)
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Bragg peaks, the latter of which, for all samples, shows a clear discontinuous

jump, and splitting, at low temperatures, followed by a continuous evolution to

convergence again at high temperatures. These trends are indicative of a low-

temperature first-order phase transition and a high-temperature second order

phase transition, as reported in the literature for LBCO (y = 0).

Rietveld refinements against data of all samples at 400 K confirmed a HTT

structure. For all samples, sequential refinement against data from decreasing

temperatures continued to provide a good fit to the HTT structure, until peak

splitting due to the second-order phase transition occurred, and an LTO model

was used where lattice parameters were constrained to orthorhombic symmetry

and the constrained X+
3 distortion with OP (a, 0) was refined. The phase transi-

tion temperature was found to vary between compositions and is discussed further

below. On further temperature decrease, the orthorhombic splitting of the LTO

structure increased until a second phase was observed and the diffraction pat-

terns required a two phase model to produce a good fit to the data. Again, this

lower temperature phase transition did not occur at the same temperature across

the different Mg-substitution levels. Large increases in Rwp values were used

to identify the onset of the LTO→LTT phase transition, and the temperatures

at which a two phase regime was first observed is reported in Table 4.3 for the

corresponding y values.

Table 4.3: The highest measured temperatures at which a two phase regime was observed

for La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4.

Mg-content (y) T (K)
0.0 70
0.2 100
0.3 120
0.4 150
0.5 170
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4.4.1 The second-order low temperature orthorhombic to

high temperature tetragonal phase transition

The following section is focused on the single phase LTO and HTT regime, which

precedes the first order phase transition to the LTT phase.

The occurrence of a second-order LTO→HTT phase transition in the Mg

substituted cuprates is further evidenced by trends in the unit cell lattice pa-

rameters. The gradual convergence of the refined a and b lattice parameters

of the LTO phase to a single value in the HTT phase can be described by an

‘orthorhombicity’ parameter η,

η =

∣∣∣∣2(a− b)

(a + b)

∣∣∣∣, (4.1)

where an increasingly large value corresponds to a more orthorhombic structure

and a value of zero corresponds to a tetragonal structure.

The η values plotted in Figure 4.9 indicate that the continuous, second order

phase transition from LTO to HTT persists for all levels of Mg substitution. The

shifts of the orthorhombicity ‘curves’ to higher temperatures shows an increase

Figure 4.9: Temperature evolution of the lattice orthorhombicity (η) for

La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4, where the legend indicates y.
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in the LTO→HTT phase transition temperature. The orthorhombic strain at the

lower temperature limit immediately preceding the LTO→LTT phase transition

temperature does not show any clear relationship with Mg-content, suggesting

that the phase transition is not induced by a specific orthorhombic strain.

In order to determine the phase transition temperature more precisely than

otherwise allowed by the minimum temperature step used in the experiment

(10 K), Landau theory has been used.44 The X+
3 mode is known to be the OP driv-

ing the second-order phase transition and its temperature-dependent evolution in

the vicinity of the second-order transition temperature (TC) can be approximated

as:

|X+
3 (T )| = |X+

3 |t=0

[
TC − T

TC

]1/2
, (4.2)

where |X+
3 |t=0 is the saturation value of X+

3 . In theory, this relationship may

be used and refined against variable temperature, experimentally determined OP

values in order to determine TC.

The refined X+
3 AP values for LBCO and the Mg-substituted samples are

shown in Figure 4.10. Whereas mode amplitudes refined for LBCO tended to-

wards zero on approaching the phase transition—in agreement with Landau the-

Figure 4.10: The X+
3 mode amplitude of La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4 (with y

values indicated in the legend) in the LTO phase, as a function of temperature.
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ory for a second order phase transition—the modes refined for the Mg-substituted

samples do not. This could be due to insensitivity of the XRD technique to the

mode, resulting in a non-zero amplitude at temperatures above the phase tran-

sition. This means that it is challenging to extract meaningful information from

the X+
3 mode amplitudes of the Mg-LBCO sample.

Instead, the secondary order parameter, strain (η) may be used:

η(T ) = ηt=0

[
TC − T

TC

]
, (4.3)

where η is the previously defined strain. This was tested against the refined pa-

rameters for the LBCO (y = 0.0) sample where simultaneous fits to X+
3 and η

were carried out, and are shown in Figure 4.11. Least squares fitting was per-

formed using TOPAS between 180–250 K i.e., a finite range close to the apparent

phase transition temperature, in accordance with Landau theory. The refined

phase transition temperature of 254(1) K is slightly higher than the commonly-

reported literature value for LBCO (240 K14,15) but is still in good agreement.

After confirming that fitting a linear relationship to the secondary OP η is

Figure 4.11: Plots of refined X+
3 mode amplitudes (left) and orthorhombicity, η (right) for

LBCO, represented by red triangles and the fits of relevant Landau relationships (dashed

lines) as described in the text.
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Figure 4.12: Plots of the orthorhombicity, η, of La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4

(with y values indicated above each graph) and the fitted linear Landau relationship (dashed

line) for each sample, described by Equation 4.3. Grey boxes show the finite temperature

range used for the linear fit.

a valid approach for identifying the phase transition temperature, the same re-

finements were carried out for the Mg-substituted LBCO samples, using only

the orthorhombicity parameter as a proxy for the true OP. The resulting fits are

shown in Figure 4.12 and the resulting refined phase transition temperatures are

reported in Table 4.4 and plotted in Figure 4.13. The reported errors of between

1–2 K are likely underestimated as the fitting procedure did not account for errors

in the temperature or refined lattice parameters. The values show an approxi-

mately linear change in phase transition temperature with Mg-content, where the

fit suggests a TC increase of 26.7 K as a progression through the series.

Table 4.4: The LTO phase transition temperatures (TC) of

La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4.

Mg-content (y) TC (K)
0.0 254(1)
0.1 276(1)
0.2 291(2)
0.3 332(2)
0.4 366(2)
0.5 380(2)
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Figure 4.13: Refined LTO-to-HTT phase transition temperatures (TC) for

La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4, where the legend corresponds to the y value and the

error bars are smaller than the data points.

Octahedral rotation in the low temperature orthorhombic regime

The functionally-important octahedral rotations of the Cu/MgO6 have also been

investigated. The angle ϕ describes the rotation of the octahedra away from the

[001] direction and ω describes the buckling of the bridging Cu–O–Cu bonds. The

rotation angles have been calculated from the refined atomic positions, and the

ϕ angles refined for the LTO structures shown in Figure 4.14.

Since the X+
3 irrep. describes the rotational distortion, the angle magnitudes

Figure 4.14: Plot of the temperature-dependence of the octahedral rotation magnitude ϕ

for La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4, where the legend corresponds to y.
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follow exactly the same temperature and sample dependent trends as the mode

amplitudes shown in Figure 4.10. It is important to note that the X+
3 distortion

is highly constrained with respect to the La/Ba atom positions, and therefore

refined oxygen positions and octahedral rotations are inferred from the La/Ba

positions, rather than freely-refined. Nevertheless, analysis of these constrained

distortions provides useful insight into the average crystallographic structure. At

the lower temperature LTO limit (chosen such that structural parameters are

comparable between phases), the ϕ angle of LBCO is 1.87(15)°. The rotation

magnitudes reported in the literature for the LTO phase are typically ca. 3.5°45

and determined using neutron techniques. The discrepancies between the angle

magnitudes could be due to X-rays being less sensitive to the oxygen positions.

The ϕ angles found for the Mg-substituted LBCO show a positive trend, where

an increase in Mg content results in an increase in the rotation magnitude and

the same is found for the ω buckling angle.

Table 4.5: The octahedral rotation magnitude angle, ϕ, and buckling angle, ω, of Mg-LBCO

at the lowest temperature at which there is a single phase of LTO for each sample.

Mg-content (y) Temperature (K) ϕ(°) ω(°)
0.0 80 1.87(15) 2.16(18)
0.1 100 1.95(15) 2.23(16)
0.2 110 2.03(7) 2.34(8)
0.3 130 2.42(6) 2.74(6)
0.4 160 2.55(4) 2.82(6)
0.5 180 2.77(4) 3.04(6)

Reduced Jahn-Teller distortion

Since Rietveld analysis of the measured XRD patterns provides an average struc-

ture, where there are partial occupancies, only averaged atomic positions and

bond lengths can be determined. Therefore, increased Mg2+ content should, on

average, reduce the apparent JT distortion of the Cu/MgO6 octahedra. First-
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Figure 4.15: Left: JT distortion modes, Q3, of La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4.

with temperature. Right: The distortion modes of the lowest temperature LTO phase for each

sample. The legend corresponds to y.

order JT distortions can be described by the Q3 mode.46 The mode describes the

JT instability related to a tetragonal-like distortion which is present in the LTO

and HTT phases of LBCO:

Q3 =
2(l − s)√

2
, (4.4)

where l and s refer to long and short Cu–O bond lengths, respectively.

The Q3 modes calculated for the LTO and HTT phases of Mg-substituted

LBCO are shown in Figure 4.15 and comparisons of the Q3 modes of the lowest

temperature LTO structure for each sample, indicates that there is a near linear

suppression of the JT distortion with increasing substitution with Mg. Extrap-

olation of the mode at the LTO limit to y = 1.0 reveals a distortion magnitude

of ca. 0.52 which suggests that the RP structure has a mismatch between the

La/BaO rock salt layers and the perovskite Cu/MgO6 layers which can only be

accommodated by an elongation of the Cu/MgO6 octahedra. It therefore appears

that a large proportion of the Q3 in the y = 0.0 sample is due to the structural

effects rather than the JT distortion.
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4.4.2 The first-order low temperature tetragonal to low

temperature orthorhombic phase transition

A study previously carried out by the Senn group has shown using high-resolution

powder XRD that there is a pronounced and persisting phase coexistence of LTT

and LTO in LBCO to at least 10 K. It was found that there is a ca. 57% LTO

phase fraction, determined by Rietveld analysis, at 10 K. Phase coexistence has

also been reported elsewhere within the literature although with much lower LTO

levels of ca. 10%.24,47

The pronounced phase coexistence in the substituted LBCO sample was in-

terrogated as part of this structural study. As previously stated, the phase

coexistence was first observed at 70 K, i.e., below 80 K—the widely reported

LTO→LTT phase transition temperature (TLTT). The diffraction patterns mea-

sured below 80 K were modelled with separate LTT and LTO phases, and the

resulting fits to the (200)/(020) peaks for three representative temperatures are

shown in Figure 4.16. The refined percentage of LTO at 10 K was 44.47%, de-

termined by Rietveld analysis, and in good agreement with the aforementioned

findings carried out within the Senn group.

Figure 4.16: Plots of Rietveld fits of a two-phase, LTT and LTO model to the (200)/(020)

peak of LBCO (y = 0.0) at the temperatures indicated.
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Disappearance of the low temperature phase coexistence in Mg-

substituted La1.875Ba0.125CuO4

The same two-phase modelling approach was applied to the diffraction patterns

measured of Mg-LBCO; plots of the (200)/(020) peaks are shown in Figure 4.17.

Initially, refined phase fractions for all measured Mg-substituted samples suggest

that the pronounced two-phase region is not unique to the LBCO structure. How-

ever, increasingly broadened LTO diffraction peaks and lattice parameter discon-

tinuities when LTO was no longer the majority phase, were indicative of a system

with a strain component—for example between misaligned LTT domains—rather

than a distinct LTO phase.

The left-hand panel of Figure 4.18 shows the (200) peak fitting of the y = 0.4

Mg-LBCO (chosen as a representative sample) measured at 90 K. The diffraction

pattern is fitted to a single phase of LTT and although the experiment peak is

generally well-described by the model, there is a misfitted shoulder at high Q.

Fitting to a two phase model of LTT and LTO improves the fitting (shown in the

Figure 4.17: Plots of the (200)/(020) peaks from the lowest temperature diffraction patterns

measured of La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4. The LTO→LTT phase transition

temperature is evident via an additional peak appearing with a decrease in temperature. The

y = 0.1 sample was not measured at temperatures low enough to observe the phase transition.
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Figure 4.18: Plots of Rietveld fits of a two-phase, LTT and LTO model to the (200)/(020)

peak of a representative Mg-LBCO sample (y = 0.4) at the temperatures indicated.

top panels for 90, 140 and 150 K), where the lattice parameters and anisotropic

strain are refined freely. However, the LTO peak shapes at 90 K are significantly

broadened and to a greater degree than those of the LBCO two-phase fit shown

in Figure 4.16.

Therefore the following question arises—is the low temperature phase coexis-

tence of Mg-substituted LBCO the same as the un-substituted LBCO material,

i.e., are the LTT and LTO structures comparable at the point of phase coexis-

tence between LBCO and Mg-LBCO samples? To investigate the low tempera-

ture phase coexistence further, four two-phase models were tested against the low

temperature diffraction patterns of all measured LBCO and Mg-LBCO samples:

1. LTT+LTO - the previously-described model, where refined lattice parame-

ters and microstrain are allowed to refine freely.

2. LTT+LTO (fixed a:b) - a and b lattice parameters of the LTO phase were
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constrained such that the orthorhombicity (a:b ratio) was fixed to the value

determined by the LTT+LTO refinement prior to the LTO% falling below

50%.

3. LTT+LTO (fixed strain) - the anisotropic strain parameters for LTO were

fixed to the values found from the LTT+LTO refinement prior to the LTO%

falling below 50%.

4. LTT+LTO (fixed a:b and strain) - both the LTO a and b lattice parame-

ters and the anisotropic strain parameters were constrained as previously

described.

Figure 4.19 shows the fitting statistics (Rwp) and refined phase fraction of the

LTO phase for the four models at temperatures below TLTT. The Rwp values for

a single phase LTT model are also shown for comparison. The results for LBCO

Figure 4.19: Top, percentage difference in fitting statistics, Rwp relative to the best Rwp

value and bottom, refined percentage of the LTO phase for the four two-phase models as

described in the text.
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(y = 0.0) show that the low temperature two-phase region is well described by the

most constrained LTT+LTO (fixed a:b and strain) model, where Rwp between the

less, and more constrained models, are very comparable. The refined LTO% is

stable between the tested models, and has lattice and anistropic strain parameters

that are consistent with those observed in the single-phase LTO regime.

The Mg-LBCO samples (y = 0.1–0.5) exhibit different trends compared to

LBCO, although within themselves, the behaviour is consistent. The uncon-

strained LTT+LTO models provide better fitting statistics, unsurprisingly, and

might lead one to conclude that there is a persisting phase coexistence of ca. 40%

at the lowest measured temperatures for each sample. Constraining the a:b ra-

tio results in Rwp values comparable to the unconstrained two-phase model and,

on average, a reduction in the LTO phase fraction. Applying constraints to the

strain parameter generally results in higher Rwp values which are accompanied

by a decrease in LTO%, by up to 30%, and the most constrained model (a:b and

strain) follows similar trends.

The differences in Rwp and LTO% found for LBCO compared to Mg-

substituted LBCO using models where the strain is constrained confirms that

any phase coexistence behaviour, once Mg is substituted into the structure, is

distinctly different from that of LBCO. Although the refined LTO% values for

Mg-LBCO at low temperature do not to refine to zero, it seems probable that

the residual phase fractions for y ≥ 0.2 observed in the most constrained LTT

and LTO model are simply accounting for complex microstrain rather than an

intrinsic phase coexistence. A ca. 30 K region of coexistence can therefore be

identified for Mg-LBCO samples, where for y = 0.2, 0.3, 0.4 and 0.5, the phase

transition to LTT is complete by 60, 80, 110 and 130 K, respectively.

The disappearance of the intrinsic phase existence for Mg-substituted LBCO

suggests that the two-phase behaviour of LBCO is likely a direct result of the
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competition between electronic phenomena (CDW and superconductivity), nei-

ther of which are expected for a Mg-substituted structure. This suggests that

suppression of the phase segregation (macroscopic disorder) found in LBCO be-

low 70 K, results in an LTO-favoured state and an increased TC.

While octahedral rotation angles could not be extracted from the two phase

models due to unstable refinement of the X+
3 distortion, rotation angles from

the single LTT phase for Mg-LBCO provide insight into the low temperature be-

haviour. Octahedral rotation (ϕ) and B–O–B buckling (ω) angles found for single

phase LTT 70 K below the low temperature phase transition of each sample are

reported in Table 4.6. The angles are calculated from refined oxygen positions,

which have be constrained to the La/Ba distortion, and therefore any conclu-

sions must be treated with caution. Nevertheless, the angles show an increase in

magnitude with increasing Mg content, as observed with the LTO phase, but are

smaller than those found for LBCO at 10 K (ϕ = 3.9° and ω = 7.8°). The increase

in magnitude across the series is likely due to shorter apical Mg–O bonds accom-

modating greater buckling of the La/BaO rock salt layer, where the shorter axial

Cu/Mg–O bond length can cause a Cu/MgO6 rotation of a larger angle whilst

effecting the buckling less than a longer axial Cu/Mg–O bond.

Table 4.6: The octahedral rotation, ϕ, angles and buckling, ω, angles of LTT Mg-LBCO at

70 K below the LTO→LTT phase transition temperature.

Mg-content (y) Temperature (K) ϕ (°) ω (°)
0.2 40 2.68(4) 4.33(9)
0.3 60 2.75(6) 4.40(12)
0.4 90 3.06(3) 4.80(7)
0.5 110 3.07(4) 4.78(8)
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4.5 The local structure of high tem-

perature tetragonal Mg-substituted

La1.875Ba0.125CuO4

The local structure of Mg-substituted LBCO has been investigated using X-ray

PDF, where the HTT structures have been interrogated with the aim of un-

derstanding the effect of increased Mg content on the short-range atom–atom

distances, and how the local structure of the HTT phase is altered by the substi-

tution with JT-inactive Mg2+ cations.

The PDFs of La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4 (y = 0.0–0.5 in steps of

0.1) measured at 400 K (where all samples are in the HTT phase) are shown in

Figure 4.20. The bottom panel shows a calculated PDF of LBCO (y = 0), using

an I4/mmm space group where lattice parameters were determined via Rietveld

refinement of the average structure. Visual comparison of the calculated and

measured PDFs shows that PDF peak positions and intensities are, in general,

reproduced by the average HTT structure. At higher r (>6 Å), gradual changes

in the measured PDF peak positions and intensities as a function of increasing

Mg content are consistent with increasing a- and decreasing c-lattice parameters,

observed in the average structure. A noticeable difference between the modelled

and measured PDFs however, lies in the 2.1–3.0 Å region, highlighted by the grey

box in Figure 4.20.

One difficulty of analysing PDFs is peak overlap arising from different atom–

atom correlations. Within the r region highlighted by the grey box in Figure 4.20

there are apparently two distinct PDF peaks in the calculated PDF. There is a

smaller peak at ca. 2.4 Å which arises due to the apical Cu–O distance of the

JT-distorted octahedra and the shortest (apical) La/Ba–O distance. The more
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Figure 4.20: Top: X-ray PDFs of La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4 measured at

400 K with increasing Mg content, where the legend indicates the y values, offset vertically for

clarity. Bottom: A calculated X-ray PDF of y = 0 LBCO using the average HTT structure.

The grey section spanning 2.1–3.0 Å highlights the most prominent differences between the

experimental and calculated PDFs.

intense peak at ca. 2.7 Å is due to the eight longer La/Ba–O distances, which are

constrained by symmetry to two crystallographically-inequivalent bonds, whereas

in the LTT structure, the reduction in symmetry results in six inequivalent bond

lengths. The feature at 2.7 Å, observed across the measured PDFs, is signifi-

cantly broadened compared to the HTT PDF model and requires investigation

via structural modelling. The substitution of Cu results in additional pairwise

correlations, which should manifest most strongly at low r. The JT-distorted

Cu–O bonds are split into two long (ca. 2.4 Å) and four short (ca. 1.9 Å) dis-

tances, whereas the two axial and four equatorial Mg–O distances are expected

to be more similar to each other producing a single peak. However, the relatively

poor scattering of the Mg and O atoms, combined with the reduced occurrence

of this correlation means that this intermediate peak is not clearly visible in the

data.
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4.5.1 Small box analysis

To investigate the local symmetry-lowering distortions—and whether the mea-

sured X-ray PDFs are sensitive to the known X+
3 irrep.—expected to be a

soft phonon mode in the HTT phase—SAPA analysis48 (as described in Chap-

ter 3) was performed. Distortion modes were generated that lower the sym-

metry for the high-symmetry I4/mmm structure to a P1 structure with basis

[aHTT + bHTT],[−aHTT + bHTT],[cHTT], such that the symmetry-breaking distor-

tions of the lower temperature Bmab and P42/ncm phases were contained within

the decomposed modes. Lattice parameters were constrained to preserve the av-

erage tetragonal symmetry. The Γ+
1 modes—corresponding to inherent apical

displacements of La/Ba and O atoms—were refined against the high resolution

average structure data (collected at TPS and I11, DLS) and the refined values

then held fixed for all SAPA refinements. The remaining 16 irreps. listed in

the legend of Figure 4.21 were refined, in turn, against the variable Mg-content

PDFs over a fitting range of 1.0–15 Å such that the PDF contained all atom–atom

distances described by the small-box model. To account for correlated thermal

motion, and the resulting r -dependent broadening, the simple quadratic relation-

ship was used, as described in Chapter 3. Atomic displacement parameters (Biso)

for La and Ba atoms were constrained to be equal, as were the parameters for

Cu and Mg. The displacement parameters for apical (O1) and equatorial (O2)

oxygen atoms were allowed to refine independently.

Figure 4.21 shows the difference in Rw compared to the worst fitting irrep. for

each composition such that a more negative value corresponds to a better-fitting

irrep. The results indicate that the M−
5 , X+

2 , X+
1 and Γ−

5 irreps. consistently pro-

vide an improved fit across the compositional series. These irreps. point toward

a different local symmetry than that described by the known X+
3 distortion. The

X+
2 , X+

1 , and Γ−
5 irreps. result in highly distorted Cu/MgO6 octahedra shown in
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Figure 4.21: Percentage change in fitting statistics of each irrep. as a function of

Mg-content, y. The change in Rw is calculated with respect to the worst-fitting irrep. for each

y value such that a more negative value represents a better fit.

Figure 4.22.

The improved fits from the above distortion modes might lead one to conclude

that the Cu/MgO6 octahedra are highly distorted in the HTT phases of LBCO

and Mg-LBCO, however, it may be that there is an occupancy disorder that

happens to be modelled well by these distortions. This perhaps highlights a

limitation of the small-box SAPA approach when considering the local structure,

Figure 4.22: Representative structural distortions of the first layer of Cu/MgO6 octahedra

in the RP structure arising from the refined modes described by the M−
5 , X

+
2 , X

+
1 and Γ−

5

irreps. For clarity the intermediate layer of octahedra are shown for the distortion described

by the X+
2 irrep. Cu/Mg atoms are shown as blue spheres and O atoms as red spheres.

140



The average and local structure of Mg-substituted La1.875Ba0.125CuO4

particularly where the crystal structure has partially-occupied sites, by different

atoms.

None-the-less, it is promising that the X+
3 modes are consistently pulled out as

the ca. fifth best fitting irrep, and therefore small-box modelling was performed

to investigate the local structure using the constrained X+
3 and Γ+

1 distortions

used for the average structure XRD study. Refinements were carried out using

the Pccn space group and constraints appropriate to the LTT, LTO, and HTT

models, as described in Section 4.2.5. Atomic displacement parameters were

constrained in the same way as for the SAPA analysis and initial r-range of 1.0–

15 Å was chosen such that it encompassed the longest atom–atom distance within

the unit cell.

Fitting of the X-ray PDFs to LTT, LTO and HTT models shows to what

extent the structures deviate over local length scales, with respect to the long-

Figure 4.23: Small box fits to the X-ray PDF of LBCO

(La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4, y = 0), using LTT, LTO and HTT models. The

low r-range is plotted with a separate y-axis for clarity.
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Figure 4.24: Small box fits to the X-ray PDF of La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4,

y = 0.5, using LTT, LTO and HTT models. The low r-range is plotted with a separate y-axis

for clarity.

range average structure. Figures 4.23 and 4.24 show the fits of the LTT, LTO

and HTT models to the y = 0 and 0.5 compositions, respectively (fits for the

intermediate compositions are available in the Appendix). The small-box models

all appear to describe the local structure well, however, it is particularly evident

that the peaks below 3.0 Å are not well described by any of the three models, with

the smallest peak corresponding to the shortest Cu–O distance at ca. 1.9 Å being

almost undetectable in the model PDFs.

Visually, there is almost no difference between the fits of the three models

against the PDF data and this is reflected in the fitting statistic (Rw) values,

reported in Table 4.7. The very small differences in Rw would suggest that

the X+
3 distortion describing the Cu/MgO6 octahedral rotation in the LTT and

LTO structures does not improve the local structure model compared to the

undistorted HTT structure. However, there are informative trends in atomic
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displacement parameters and rotation angle magnitudes refined for the models

with higher degrees of freedom.

Table 4.7: Fitting statistics (Rw), displacement parameters (Biso with units of Å
2
, and α)

and octahedral rotation angles ϕ and ω from LTT, LTO and HTT model small-box

refinements over 1.0–15 Å against X-ray PDFs of La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4

measured at 400 K.

y Rw Biso(A) Biso(B) Biso(O1) Biso(O2) α ϕ (°) ω (°)

LTT

0.0 11.717 0.25(2) 0.45(3) 3.5(2) 1.8(1) 0.031(2) 1.77(18) 3.0(5)
0.1 11.655 0.24(2) 0.44(3) 3.4(2) 2.0(2) 0.033(2) 1.93(18) 3.2(4)
0.2 11.388 0.25(2) 0.44(3) 3.4(2) 2.2(2) 0.033(2) 2.04(19) 3.3(3)
0.3 11.352 0.24(2) 0.46(3) 3.5(2) 2.7(2) 0.034(2) 2.14(17) 3.5(4)
0.4 11.823 0.24(2) 0.47(3) 3.8(2) 3.0(2) 0.035(3) 2.21(18) 3.5(4)
0.5 11.379 0.28(2) 0.50(3) 4.1(3) 3.2(2) 0.033(3) 2.27(19) 3.6(3)

LTO

0.0 11.700 0.26(2) 0.45(3) 3.6(2) 1.7(1) 0.031(2) 1.7(3) 2.0(4)
0.1 11.637 0.24(2) 0.45(3) 3.4(2) 2.0(2) 0.033(2) 1.8(3) 2.1(3)
0.2 11.370 0.25(2) 0.44(3) 3.4(2) 2.3(2) 0.032(2) 1.8(3) 2.1(3)
0.3 11.356 0.25(2) 0.45(3) 3.5(2) 2.8(2) 0.034(2) 1.9(2) 2.1(3)
0.4 11.825 0.24(2) 0.47(3) 3.9(2) 3.0(3) 0.035(3) 2.2(3) 2.4(4)
0.5 11.370 0.28(2) 0.50(3) 4.2(3) 3.2(2) 0.033(3) 2.2(2) 2.5(3)

HTT

0.0 11.828 0.27(2) 0.44(3) 3.6(2) 1.7(1) 0.030(2) 0 0
0.1 11.790 0.26(2) 0.43(2) 3.5(2) 2.0(2) 0.032(2) 0 0
0.2 11.510 0.26(2) 0.43(2) 3.5(2) 2.3(2) 0.032(2) 0 0
0.3 11.557 0.26(2) 0.45(3) 3.6(2) 2.8(2) 0.034(2) 0 0
0.4 12.083 0.26(3) 0.46(3) 3.9(2) 3.4(3) 0.034(2) 0 0
0.5 11.596 0.29(2) 0.48(3) 4.2(2) 3.6(3) 0.034(3) 0 0

Table 4.7 shows the Biso values for the A (La/Ba)- and B (Cu/Mg)-site cations,

which fall within the range 0.25–0.48 Å
2
, whereas the values for the oxygen atoms

are more than twice as large. The larger refined thermal displacement parameters

of the oxygen atoms are indicative of disorder within the Cu/MgO6 octahedra

and La/BaO9 cluster and explain the broadening of the measured low r PDF

peaks, especially the lowest r peak which is broadened almost below detection.

The refined octahedral rotation (ϕ) and buckling (ω) angles (see Table 4.7) are

consistent between the LTT and LTO models and show a near linear positive

trend with increased Mg content. Note that all measurements were performed

at 400 K, and therefore the samples have been measured at varying degrees of

proximity to the LTO-to-HTT phase transition temperature, with y = 0.5 being

in closest proximity to the phase transition with TC = 380 K, and y = 0.0 being

furthest away with TC = 254 K. The apparent rotation of Cu/MgO6 octahedra in
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the local structure and the increase in angle magnitude found from the constrained

small-box models could be due to dynamic rotation distortions, which are larger

in the y = 0.5 sample due to the associated phonon mode being softer in energy.

Refining the LTT, LTO and HTT models over a limited r-range (1.6–3.1 Å)

such that only the shortest La/Ba–Cu/Mg and Cu/Mg–O atom–atom distances

are considered results in an improved fit (Figures 4.25 and 4.26, Figures for inter-

mediate compositions are available in the Appendix) and smaller displacement

parameter values for the oxygen atoms. The O1 and O2 Biso values reported

Table 4.8 are smaller than those reported in Table 4.7 and, are consistent with

values expected for a high temperature refinement.49

Whilst the fitting statistics for the small-box modelled over a larger r-range of

1.0–15 Å show very little improvement between the LTT, LTO and HTT models,

the Rw values for the smaller r-range (1.6–3.1 Å) consistently support a local

LTO-type rotation of the Cu/MgO6 octahedra. The representative fits of the

Figure 4.25: Small box fits to the X-ray PDF of La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4,

y = 0.0, using LTT, LTO and HTT models, over a short r-range of 1.6–3.1 Å.
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Figure 4.26: Small box fits to the X-ray PDF of La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4,

y = 0.5, using LTT, LTO and HTT models, over a short r-range of 1.6–3.1 Å.

y = 0.0 and y = 0.5 samples (Figures 4.25 and 4.26) show that the short-range

modelling results in a much improved fit of the feature spanning 2.2–3.0 Å. The

peak at ca. 1.9 Å is still poorly fitted although the intensity is best reproduced

by the LTO models in both samples.

The refined rotation (ϕ) and buckling (ω) parameters also increase signifi-

cantly compared to their values when refined against a larger r-range. An in-

crease in Cu/MgO6 rotation magnitude is also observed over the series observed

over the shorter r-range.

Refining the local structure over variable length scales has been shown to pro-

vide important insight into the true local structure of solid-state materials.50,51

In this case, it would appear that considering only the shortest atom–atom dis-

tances, resolves a local LTO-type structure in the average HTT phase of LBCO

and Mg-LBCO. One might conclude that this is indicative of an anharmonic

mode—describing dynamic rotations of the Cu/MgO6 octahedra—a theory which
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Table 4.8: Fitting statistics (Rw), displacement parameters (Biso with units of Å
2
, and α)

and octahedral rotation, ϕ, and buckling, ω, angles from LTT, LTO and HTT small-box

refinements over 1.6–3.1 Å against X-ray PDFs of La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4

measured at 400 K.

y Rw Biso(A) Biso(B) Biso(O1) Biso(O2) α ϕ (°) ω (°)

LTT

0.0 15.367 0.63(2) 0.002(10) 0.6(3) 1.3(2) 0.000(9) 3.23(19) 4.3(4)
0.1 11.821 0.65(1) 0.002(7) 0.9(2) 1.4(1) 0.000(5) 3.67(16) 5.0(3)
0.2 10.733 0.71(4) 0.000(22) 1.1(2) 1.5(1) 0.002(12) 3.96(17) 5.6(3)
0.3 10.403 0.67(1) 0.001(3) 1.1(2) 1.6(1) 0.000(2) 3.85(16) 5.3(3)
0.4 9.8864 0.77(3) 0.002(13) 1.3(3) 1.6(1) 0.000(8) 4.13(18) 5.8(4)
0.5 10.270 0.78(7) 0.001(27) 0.90(4) 1.5(1) 0.012(364) 4.44(18) 6.7(4)

LTO

0.0 14.388 0.82(3) 0.001(1) 0.5(2) 1.2(1) 0.000(1) 4.7(3) 4.6(3)
0.1 10.772 0.67(1) 0.000(1) 0.4(1) 1.2(1) 0.001(1) 4.4(3) 4.2(3)
0.2 8.5244 0.74(2) 0.000(1) 0.5(1) 1.2(1) 0.000(1) 4.9(2) 4.8(3)
0.3 9.5775 0.76(1) 0.000(1) 0.6(1) 1.2(1) 0.000(1) 4.9(3) 4.8(3)
0.4 9.7642 0.95(2) 0.006(9) 0.6(2) 1.1(1) 0.000(84) 5.5(3) 5.4(3)
0.5 10.063 0.96(1) 0.002(7) 0.6(2) 1.1(1) 0.000(6) 5.5(3) 5.5(3)

HTT

0.0 16.300 0.72(1) 0.001(5) 2.5(4) 1.7(2) 0.000(4) 0 0
0.1 12.798 0.73(39) 0.000(181) 3.4(5) 1.9(2) 0.005(153) 0 0
0.2 11.139 0.64(51) 0.00(294) 3.5(4) 1.9(2) 0.023(189) 0 0
0.3 11.045 0.80(20) 0.000(136) 3.7(5) 2.0(2) 0.003(73) 0 0
0.4 10.731 0.82(39) 0.026(148) 4.3(7) 2.1(2) 0.000(163) 0 0
0.5 10.992 0.73(66) 0.001(311) 4.4(7) 2.0(2) 0.026(305) 0 0

is supported by the apparent softening of the mode reflected in the increase in

rotation magnitude at closer proximity to the phase transition. Another inter-

pretation is that the local structure of the HTT phases is of the order-disorder

type, with harmonic LTT and LTO-type dynamic distortions, with equal magni-

tude. This interpretation is supported by the degeneracy of small box models over

longer r-ranges—which will contain atom–atom distances arising due to correla-

tions of octahedral rotations. These results must be treated tentatively though,

as the small-box models are highly constrained and the refined distortions are

based on the La/Ba atom positions. Further work including modelling the struc-

ture using a larger configuration (supercell) might provide a way of investigating

potential disordered arrangements of LTT or LTO local structures.

4.5.2 Big box modelling

While there is essentially no contrast between the X-ray form factors of La com-

pared to Ba, it may be possible to distinguish between the lighter Mg and Cu

atoms. Small-box modelling treats the A and B sites as averaged La/Ba and
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Cu/Mg atoms, with variable occupancies, and therefore cannot provide informa-

tion about specific Mg and Cu atom–atom distances. Big box modelling provides

a means of accounting for structures with long-range and/or more complex dis-

order and multiple A/B-site occupancies. As such, refinements were performed

using the RMCProfile software37 with the aim of obtaining information about

distinct Mg and Cu environments. The refinements used a 8 × 8 × 4 supercell

(producing near-cubic supercell dimensions) of the HTT Rietveld-refined unit cell

for each Mg-substituted LBCO sample and atomistic configurations were gener-

ated by randomly replacing La and Cu atoms with Ba and Mg, respectively,

according to their occupancies. Minimum and maximum distance restraints were

applied to the A–O and B–O atom–atom distances to prevent unphysical bond

distances (details provided in the Appendix) and simultaneous fitting to recip-

rocal (F (Q)) space data was carried out in order to constrain average-structure

characteristics.37

Figure 4.27(a) shows representative RMC fits to the LBCO (y = 0.0) and Mg-

LBCO (y = 0.5) PDFs (fits for the intermediate compositions are presented in

Figure 4.27: a) RMC fits of La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4, y = 0 and y = 0.5

X-ray PDFs measured at 400 K. b) The collapsed unit cell of the final configuration refined

for the y = 0 sample showing a significant degree of disorder within the cuprate structure.

Grey atoms represent La and Ba, yellow atoms represent Cu and represent O atoms.
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the Appendix). The fits, overall, are excellent, and the misfit of the low r slope—

which predominantly affects the first PDF peak at ca. 2 Å—can be attributed to

difficulties in putting the X-ray total scattering data on an absolute scale. The

collapsed unit cell of the refined atomic positions for LBCO shows a structure

with a significant amount of disorder, as observed by the small-box modelling.

Figure 4.28 shows the partial PDFs g(r) of the Cu–O and Mg–O correlations

calculated from the RMC configurations for all samples. The distribution of Mg–

O atom distances is apparently greater than the distribution of Cu–O distances,

however, it is expected that there should be distinct Mg–O distances where a

MgO6 octahedron is expected to have six equivalent bond lengths rather than four

short and two long bond lengths, as with CuO6. It is apparent that the shortest

atom–atom distances cannot be resolved using this approach, and this big-box

modelling method would benefit from a neutron total scattering experiment which

would be more sensitive to the light atom positions.

The X-ray PDF study of Mg-substituted LBCO reported in this Chapter

Figure 4.28: Partial Cu–O and Mg–O PDFs, g(r) for

La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4.
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tentatively indicates a preference for a HTT structure with Cu/MgO6 octahedra

rotations persisting above the LTO phase transition temperature. A preference

for an LTT- or LTO-type distortion could not be definitively resolved from this

work, although refined atomic displacement parameters derived from different

modelled length scales might suggest dynamic distortions, with a softening of an

anharmonic mode. Further work is required using other local structure techniques

such as EXAFS to directly probe the Cu versus Mg atom–atom distances, and

particularly neutron total scattering in order to explore the extent of oxygen

displacement more thoroughly.

4.6 High-pressure neutron diffraction

As a continuation of the previous finding that the substitution of Cu has a sig-

nificant effect on the LTT and LTO phase transition temperatures, two samples,

La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4 with y = 0.0 (LBCO) and 0.5 (hereafter

referred to as Mg-LBCO) were measured at ambient temperature on the high-

pressure neutron diffraction instrument PEARL. The sample with the greatest

Mg-substitution level was chosen as the structure exhibits the largest structural

difference from the LBCO sample and, as Mg-LBCO is known to exist in the

LTO phase at 300 K, the aim was to observe a pressure-induced LTO→HTT

phase transition.

4.6.1 La1.875Ba0.125CuO4

The measured high-pressure diffraction patterns for LBCO are shown in Fig-

ure 4.29. The two most intense peaks ((111) and (200) reflections) arising from

the lead pressure marker are indicated with asterisks. Sample peaks shift to lower

d-spacing values, reflecting an increasingly compressed structure.
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Figure 4.29: Neutron diffraction patterns of LBCO collected on the PEARL instrument,

offset in the y-direction with increasing pressure. Reflections due to the lead pressure marker

are indicated by asterisks.

At ambient temperature and pressure, LBCO is known to exist in the HTT

phase, and this was confirmed in the lowest pressure measurement via Rietveld

refinement, where modelling as described in Section 4.2.5 was performed. The

HTT structure was fitted to the neutron diffraction pattern of the lowest pressure

(0.037(6) GPa) measurement along with additional Al2O3 and ZrO2 phases due

to the ZTA anvil and a Pb pressure marker phase. The refinement resulted in an

excellent fit, shown in Figure 4.34.

Sequential refinement of all diffraction patterns confirmed that there was no

phase transition and, fitting to a HTT structure continued to provide excellent

fits to the data up to 5.53 GPa (also shown in Figure 4.34).

4.6.2 Mg-substituted La1.875Ba0.125CuO4

The high-pressure neutron diffraction patterns of Mg-LBCO from the first and

second sample loading are shown in Figure 4.31. The difference in relative inten-

sities between anvil and sample reflections between the first and second loading

are due to differing microstructures and strains of the ZTA anvils used between

the first and second loading experiments. The average structure study reported
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Figure 4.30: Rietveld fits of the lowest and highest pressure measurements of LBCO. The

LBCO peaks were fitted using the HTT structure and all remaining peaks were fitted using

Al2O3 and ZrO2 phases to account for scattering from the anvils, or a Pb pressure marker

phase.

earlier in this Chapter found that at 300 K, Mg-LBCO adopts the LTO structure

with a = 5.41270, b = 5.43003 and c = 13.02571 Å. Peak splitting indicative

of orthorhombic symmetry was not observed and therefore diffraction patterns,

using peak shape parameters refined from standard CeO2 measurements, were

modelled to investigate the differences in Bragg peak shapes expected from an

LTO compared to a HTT structure measured on PEARL.

The (200)/(020) peak splitting expected for the structure of Mg-LBCO at

300 K has been compared to the splitting expected for the variable temperature

Mg-LBCO structure with the largest degree of orthorhombicity (using lattice

parameters determined from variable temperature XRD measurements at 180 K),

and to the (200) peak arising from a tetragonal (HTT) structure (using lattice

parameters from the 380 K measurement). The peaks are plotted in Figure 4.32

and show that while the (200) and (020) reflections arising from the anticipated
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Figure 4.31: Neutron diffraction patterns of Mg-LBCO collected on the PEARL

instrument, offset in the y-direction with increasing pressure. Reflections due to the lead

pressure marker are indicated by asterisks, blue arrows point to the (006) peak, and red

arrows point to the (200) peak.

orthorhombic structure at 300 K cannot readily be distinguished by eye, there is

clear peak broadening that may originate from multiple peaks.

Assuming non-hkl dependent broadening, differences should be observed

between the full width half maxima (FWHM) of (h00) peaks (of the HTT

Figure 4.32: Simulated (200)/(020) peak shapes using a PEARL instrument resolution

function and lattice parameters of Mg-LBCO with varying degrees of orthorhombicity

(η = 0.005, 0.003 and 0.000 for measurements at 180, 300, and 380 K respectively).
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structure)—where broadening due to orthorhombicity is expected—and (00l)

peaks which are independent of changes to the a and b lattice parameters. There-

fore, potential peak broadening—indicative of (200)/(020) peak splitting—was in-

vestigated by comparing the FWHM of pseudo-Voigt functions, implemented in

TOPAS, fitted to the (200) reflection (indicated by the red arrow in Figure 4.31),

to the FWHM of the (006) reflection (indicated by the blue arrow in Figure 4.31).

It was necessary to fit both the (115) and (006) peaks due to peak overlap, but

these are clearly distinct from each other.

The measured FWHM of the (200) and (006) peaks, as a function of pres-

sure, are plotted in Figure 4.33. Although there are differences in the FWHM

within the pressure region 0.1–1.5 GPa compared to the higher pressure values,

there is no significant broadening of the (200) peak relative to the (006) peak

at the pressures measured up to 5.752(7) GPa. More notably, the peak shape

parameter values of the peaks measured at the lowest pressure, ca. 0.12 GPa are

within error of each other. Analysis of the peak shape parameters found at the

lowest measured pressure of the first loading (0.01(8) GPa) confirmed the same

result. The low errors on the pressure values are likely underestimated due to

Figure 4.33: Plots of pressure-dependent FWHM of fitted pseudo-Voigt functions,

implemented in TOPAS, to the (200) and (006) diffraction peaks.
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unaccounted-for errors in alignment of the PE press and therefore it is possible

the the pressures applied to the sample were in reality slightly higher. Neverthe-

less, these results suggest that the application of a small amount of pressure can

be used to drive the LTO phase towards the HTT phase. In addition, the small

differences in variable-temperature lattice parameters observed by the XRD ex-

periment suggest that applying pressure can produce a more drastic effect on the

unit cell and that the LTO phase observed at ambient temperature exists over a

very small pressure region within the phase diagram.

The low pressure phase transition of Mg-LBCO means that the compressibil-

ity and structural behaviour in the high-pressure HTT phase can be compared

directly to that of LBCO. The variable-pressure diffraction patterns were fitted

with the HTT structure, which again provided good fits up to the highest pressure

Figure 4.34: Rietveld fits of the lowest and highest pressure measurements of Mg-LBCO.

The Mg-LBCO peaks were fitted using the HTT structure and all remaining peaks were fitted

using Al2O3 and ZrO2 phases to account for scattering from the anvils, or a Pb pressure

marker phase. A small amount of La2O3 impurity was found.
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measured (ca. 5.74 GPa). The Rietveld fits for the lowest and highest pressure

measurements are shown in Figure 4.34. An additional peak at d = 2.28 Å, which

was not attributed to sample or environment scattering, was found to be due to

a small impurity phase of La2O3—a reactant material used in the solid-state

synthesis of the sample.

4.6.3 Comparison of high-pressure behaviour

Figure 4.35 shows the unit cell volume (V ) of LBCO and Mg-LBCO as a function

of pressure. The volume compresses smoothly and the HTT structure is found

to be stable up to pressures of at least ca. 6 GPa for both samples.

The EoS of ambient temperature LBCO and Mg-LBCO was determined, by

fitting a third order BM EoS using the EoSfit software.52,53 The resulting values

are reported in Table 4.9. The bulk modulus B0 of 142.2 GPa found for LBCO

reflects a relatively incompressible structure (Ni and MgO with K0 = 177 and

180 GPa were studied in Chapter 2 in part for their hardness). The linear com-

pressibilites (κ) of the a and c lattice directions were calculated, using the program

PASCal,54 and determined to be κa = 2.123(9) TPa−1 and κc = 2.000(9) TPa−1

Figure 4.35: The unit cell volume of LBCO and Mg-LBCO as a function of pressure at

ambient temperature. Dashed lines show the fits of the data to a third order BM equation of

state. The calculated BM parameters for LBCO and Mg-LBCO are reported in Table 4.9.
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Figure 4.36: A schematic of the reduction of local octahedra rotation, induced by increased

hydrostatic pressure.

showing that the a-axis is slightly more compressible than the c-axis. This is

surprising since the JT distortion of the CuO6 and longer Cu–O bonds along

the c-direction might be expected to result in a higher compressibility. The in-

creased compressibility in the a-direction is therefore rationalised by considering

the potential disordered and dynamic arrangement of octahedra tilted away from

the c-direction, observed by PDFs of the HTT LBCO structure. Increased pres-

sure is expected to result in a reduction in a dynamic distortion (Figure 4.36),

as electrostatic interactions increasingly favour aligned octahedra and the local

and average structures become increasingly similar. The slight difference in a-

and c-direction compressibilities is therefore thought to be due to the rotation of

rigid octahedra—a similar effect has been observed in the isostructural system

La1.48Nd0.4Sr0.12CuO4.
55

Table 4.9: BM coefficients for LBCO and Mg-substituted LBCO.

Mg content (y) B0 (GPa) B′ (GPa) V0 (Å3)
0.0 142.2076 9.0852 380.7106
0.5 (1st loading) 113.7439 18.978 382.6481
0.5 (2nd loading) 118.7138 14.4900 383.1270
0.5 (combined) 128.1451 12.4417 382.6514

For Mg-LBCO, measurements were carried out over two loadings so individual

EoS’s were calculated as well as a ‘combined’ EoS for all data. The calculated
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bulk moduli vary quite significantly, highlighting the importance of measuring

data over a wide range of pressures. The largest of the three calculated B0 (the

‘combined’ value) is smaller than that of the value reported for LBCO, suggesting

that Mg-LBCO is more compressible. The calculated linear compressibilities

were calculated to be κa = 2.74(12) KPa−1 and κc = 1.71(6) KPa−1 showing

that compared to LBCO, Mg-LBCO is more compressible in the a-direction and

less compressible in the c-direction. The reduction in anisotropy of the a- and

c-direction compressibilities between the LBCO and Mg-LBCO is due to the

replacement of JT-distorted CuO6 octahedra for MgO6 octahedra with six equal

Mg–O bond lengths, such that the average equatorial B–O bond length is longer

and the apical length is shorter.

The smaller bulk modulus of Mg-LBCO in the HTT phase additionally sup-

ports a model of a dynamic soft mode of rotated Cu/MgO6 octahedra with in-

creased rotation magnitude compared to LBCO. In this model, the compressibility

of Mg-LBCO is enhanced by a larger range in motion of the Cu/MgO6 octahe-

dra which can therefore be compressed more than LBCO, where the disordered

rotation magnitude is found to be smaller.

More fundamentally, the EoS of the previously unreported Mg-LBCO struc-

ture would now allow high pressure measurements to be carried out without a

pressure marker—a particularly important consideration for future local structure

measurements. Such measurements would prove valuable in determining whether

the compressibility of Mg-LBCO in the HTT phase can be ascribed to increased

octahedral rotation over short correlation lengths.
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4.7 Conclusions

Solid-state synthesis of a novel Mg-substituted LBCO series and subsequent struc-

tural analysis has provided insight into the appearance of the anomalous LTT

phase in LBCO. Variable-temperature XRD analysis of the average structure of

Mg-substituted LBCO revealed a stabilisation of the LTT and LTO phases with

increased Mg-content. Rotation angles of the Cu/MgO6 octahedra calculated

from constrained oxygen distortions suggests that increased Mg content also re-

sults in a larger average rotation magnitude.

Systematic testing of two-phase LTT and LTO models over the first-order low

temperature phase transition has shown that the pronounced phase coexistence

observed for LBCO can be suppressed through the substitution of Cu for Mg. This

holds significance for revealing the origin of the suppressed superconductivity

in LBCO and suggests that there is an intrinsic coupling between the phase

coexistence disorder and anomalous suppression of functionality.

Investigation of the local structure via X-ray PDF measurements has revealed

a HTT phase of LBCO and Mg-substituted LBCO with dynamic rotation of

Cu/MgO6 octahedra, however its not clear if or how much these deviate from

what would be expected of soft phonon modes of this character within the har-

monic approximation. Small-box modelling of only the shortest atom–atom dis-

tances such that octahedral rotation correlations are not considered shows a slight

preference for an LTO-type local structure. Further measurements using neutron

instruments, capable of a larger Qmax, might enable distinct Mg–O and Cu–O

distances to be resolved, and variable temperature experiments would reveal how

the structure evolves throughout the phase transitions identified through average

structure measurements.

High-pressure average structure measurements have shown that the LTO-to-

HTT phase transition is driven by pressures of <0.1 GPa, showing that the LTO
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phase is much more stable with respect to temperature than pressure. The com-

parison of LBCO and Mg-substituted LBCO compressibilities has revealed that

Mg substitution results in a more compressible a-lattice direction and a less com-

pressible c-direction (compared to LBCO). This is due to a hardening of the

average apical Cu/Mg–O bond relative to the equatorial Cu/Mg–O bond, and

reflects the type of structural properties that may be designed through cation

substitution.
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The work reported in this Thesis is focussed on tuning the atomic structure of

functional solid oxide materials, where the average and local structures have been

manipulated using temperature, pressure, and/or chemical composition. Explo-

ration of the structures of functional crystalline materials has historically relied

on conventional crystallographic measurements, which provide a useful, but also

limited, time-averaged interpretation of the structure. The technique of total scat-

tering provides a method of simultaneously accounting for correlations over short

and long-range length scales, and its value for studying crystalline structures ex-

hibiting disorder is increasingly appreciated within the solid-state community.1–5

The structural studies of perovskite and Ruddlesden-Popper solid oxides pre-

sented in Chapters 3 and 4 exemplify the types of order-disorder and displacive

phase transitions respectively that can be better understood by considering their

local structures. The former Chapter reports a cross-over from order-disorder,

to displacive behaviour in BaTiO3 that has not yet been fully appreciated de-

spite decades of study of the well-known perovskite material, and, highlights the

contrasting behaviour of temperature versus pressure-induced phase behaviour.

A particularly useful tool for exploring the structure of functional materi-

als is pressure, where small changes in pressure can induce significant structural

change. For example, the pressure-induced volume difference of LBCO observed

in Chapter 4 was 4.3× the change induced by temperatures of 10–400 K. This

provides scope to tune materials across a broad range of previously unexplored

phases and symmetries, and gives further insight into structure-property rela-

tionships. Combining neutron total scattering and high-pressure techniques of

crystalline materials has previously been limited to non-hydrostatic conditions,

where a pressure transmitting medium has been omitted. It is envisaged that the

correction procedure described in Chapter 2 will allow future users of PEARL to

perform high-pressure local structure measurements at hydrostatic pressure using

165



Conclusions and future work

the commonly used medium, methanol:ethanol.

The Fortran routine for correcting PDFs requires minimal input from users

such as measured pressure and fitting ranges. The routine is currently specific to

a ME PTM although other types of media are often required where the solubility

of the sample is incompatible with ME. The advantage of the approach outlined

in Chapter 2 is that the methods by which the ME PDFs have been parameterised

can, in principle, be straightforwardly applied to other systems. Therefore other

PTMs such as pentane mixtures may be modelled using the same empirical func-

tion approach as applied to ME.

The study of α-quartz and the resulting reverse Monte Carlo models, refined

against corrected PDFs, represents the first scientific results derived from hy-

drostatic local structure measurements on PEARL, where Si–O–Si bond angle

compressibilities were extracted. The difference in angle distribution compared

with previous work in a non-hydrostatic environment further highlights the im-

portance of using a PTM for measuring the local structure of crystalline materials.

Further work is required in order to extend this approach to more complex and

compressible systems, but the study of α-quartz provides a representative exam-

ple of the types of flexible structural systems that would be suited to this type

of experiment.

Previous neutron total scattering measurements of BaTiO3 have shown that

the temperature-induced ferroelectric tetragonal-to-cubic phase transition at TC

is of the order-disorder type and can be attributed to correlated, local, rhombohe-

dral distortions below TC. The application of judicious constraints to symmetry-

motivated distortions allowed the behaviour of high-pressure BaTiO3 to be inter-

rogated over multiple length-scales, extracting information that otherwise would

not have been apparent using more simplistic models. A phase transition bet-

ter described by the harmonic approximation was identified through comparison
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of rhombohedral, tetragonal and cubic local distortions over different ranges of

the PDF, and highlighted the importance of considering the information encoded

within different lengths-scales of the PDF.

There is perhaps further insight to be gained by performing high pressure

total scattering experiments on BaTiO3 up to 10 GPa in order to explore the

literature suggestion that a local distortion persists up to these pressures. The

successes of the local structure measurements reported in Chapter 3 have shown

that the limited Qmax available on the PEARL instrument is sufficient for probing

the magnitude and direction of local distortions. Is is noteworthy that, despite

decades of study, there are still novel discoveries to be made as experimental

capabilities are developed.

The microscopically-driven order-disorder phase transition of BaTiO3 where

local distortions of Ti and O atoms are coupled with neighbouring atoms contrasts

with the macroscopically-driven disorder found in LBCO. In this case, the study

reported in Chapter 4 has identified that a phase coexistence of the LTT and LTO

average structures below the low temperature first order phase transition can

be suppressed through chemical substitution. The substitution of Mg2+ for JT-

active Cu2+ additionally stabilises the low temperature phases; the introduction of

MgO6 octahedra with shorter apical bonds and longer equatorial bonds, compared

with CuO6, results in a structure predisposed toward the octahedral rotations

present in the LTT and LTO phases. The disappearance of the low temperature

phase coexistence—which is otherwise observed in the parent LBCO compound—

when Cu is replaced by Mg, suggests that it plays an important role in the

anomalous suppression of superconductivity in the LBCO material. It would be

interesting to perform physical property measurements on LBCO and the Mg-

LBCO series to see if the physical properties can be reconciled with structural

observations.
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X-ray PDFs measured from LBCO and Mg-substituted LBCO samples sug-

gested that the local structure of the HTT phase is comprised of anharmonic, dy-

namic rotations of the Cu/MgO6 octahedra. Although this type of structure with

significant, apparently-uncorrelated disorder is challenging to model, carefully-

constrained and symmetry-motivated modelling again can extract meaningful in-

formation about structures with significant disorder. In this case, modelling has

revealed a mode softening of the X+
3 -type distortion as the HTT-to-LTO phase

transition is approached.

A high-pressure study of the average structures of LBCO and Mg-substituted

LBCO showed that the ambient temperature LTO-to-HTT phase transition of

Mg-LBCO occurs at pressures as low as <0.1 GPa and that the transition is

facilitated by pressure to a greater extent than temperature. Further investiga-

tion of the pressure-temperature phase diagram of Mg-substituted LBCO could

be achieved by low-temperature, high-pressure measurements and allow for ad-

ditional comparison of the structural behaviour of LBCO versus Mg-substituted

LBCO.

It would be interesting to explore the influence of enhanced sensitivity to the

oxygen positions using the scattering contrast offered by neutrons and instru-

ments such as GEM or POLARIS at ISIS. The increased PDF resolution and

peak intensity of the lighter atoms would perhaps allow the distinction of such

atom–atom distances and more robust modelling. Variable temperature mea-

surements across all LTT, LTO, and HTT phases would also show how the local

environment evolves as the soft rotation mode becomes frozen in.

The structural investigation of the well-known and widely-studied BaTiO3

and LBCO materials, over multiple length scales, using a variety of tools to alter

their structure, has provided novel insight into these functional materials. It is

clear that high pressure neutron scattering will form an important emerging area

168



Conclusions and future work

in the local structure community, where neutron experiments can provide the

necessary sensitivity to lighter elements that the equivalent X-ray measurements

do not.
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6.1 High-pressure total scattering on PEARL

Figure 6.1: Rietveld fits to diffraction patterns of Ni measured in a Paris-Edinburgh press

at pressures of 0.0, 1.5 and 3.6 GPa. Alumina and zirconia peaks are due to scattering from

the ZTA anvils.
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Figure 6.2: Rietveld fits to diffraction patterns of MgO measured in a Paris-Edinburgh

press at pressures of 0.2, 1.8 and 3.8 GPa. Alumina and zirconia peaks are due to scattering

from the ZTA anvils.
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Figure 6.3: Rietveld fits to diffraction patterns of α-quartz (SiO2) measured in a

Paris-Edinburgh press at pressures of 0.1, 1.3 and 3.8 GPa. Alumina and zirconia peaks are

due to scattering from the ZTA anvils.
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Figure 6.4: Calculated ME PDFs from each MD simulation and corresponding analytical

PDFs, composed of 10 Gaussian peaks and an underlying shape function, at pressures from

0–10 GPa in steps of 0.5 GPa offset in the y-direction. The PDFs are free of any instrumental

effects—particularly peak broadening which arises, primarily, because of limited instrumental

Qmax values.
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Figure 6.5: Zoomed comparison of variable pressure MD PDFs (0–10 GPa, as above).
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Figure 6.6: MD PDFs and analytical PDFs, convolved with sin(Qmax/r), where

Qmax = 20.32 Å−1. PDFs from 0–10 GPa in steps of 1 GPa are shown, offset in the

y-direction.
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Figure 6.7: Zoomed comparison of convolved MD and analytical PDFs (0–10 GPa in steps

of 1 GPa).
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Figure 6.8: Neutron S(Q) of Ni in ME at 0.0, 1.5 and 3.6 GPa offset in the y-direction.

Figure 6.9: Neutron S(Q) of MgO in ME at 0.2, 1.8 and 3.8 GPa offset in the y-direction.
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Figure 6.10: Neutron S(Q) of α-quartz in ME at 0.1, 1.3 and 3.8 GPa offset in the

y-direction.

Figure 6.11: Neutron S(Q) of a 4:1 deuterated methanol:ethanol mixture at applied loads

of 6, 25 and 50 tonnes, offset in the y-direction.
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6.1.1 RMCProfile settings

RMCProfile configurations for α-quartz were generated using 5× 9× 8 supercells

of the Rietveld-refined average structure unit cells. Eleven independent runs were

performed for each pressure point, running for three days each, ensuring fit con-

vergence. Closest approach (CA) constraints were applied between atom pairs;

their respective values were informed by peak tails in the PDFs at each pres-

sure. Additional potentials-based restraints (invariant with pressure) were used

to preserve approximate tetrahedral connectivity of the SiO4 units. The values

used are given in Table 6.1 below. Angle and distance energies were unavailable

for SiO4 units in the RMCProfile manual; the values used here were informed by

other similar, rigid, tetrahedral groups.

Table 6.1: Atom–atom constraints used in RMCProfile.

Atom pair CA 0.1 GPa CA 1.3 GPa CA 3.8 GPa
Si–Si 2.00 2.00 2.00
Si–O 1.45 1.40 1.35
O–O 2.40 2.35 2.38

Atoms Distance/Å Angle/° Energy/eV
Si–O 1.60 N/A 2.00

O–Si–O N/A 109.5 7.60
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Appendix

6.2 Recovery of harmonic–like behaviour of the

polar mode in BaTiO3 at high pressures

Figure 6.12: Neutron diffraction patterns of BaTiO3 and vanadium measured on PEARL.

The inset plots shows a comparison of the two diffraction patterns and the Bragg scattering

from ZTA anvils more clearly.
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Table 6.2: The irreps. modelled using the SAPA method and corresponding number of

modes per irrep. which were tested against BaTiO3 PDFs measured on GEM. Rwp values are

for fits against a PDF processed with a Qmax of 40 Å−1. Corresponding fits are shown in

Figures 6.13 and 6.14.

Irrep. Rwp Number of modes per irrep.
R+

5 6.475189 3
R−

2 6.481642 1
X+

1 6.498266 6
X+

2 6.549475 3
R−

3 6.393098 2
R−

4 6.493399 6
M+

1 6.5221 3
R−

5 6.489462 3
M+

4 6.329031 3
M−

2 6.177942 6
M−

3 6.493417 3
M+

3 6.33423 3
M+

5 6.850279 6
M+

2 6.485019 3
M−

5 6.097319 18
X−

5 6.504651 12
X+

5 6.013227 18
Γ−
4 5.226887 12

Γ−
5 5.886725 3

X−
3 6.456776 6
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Figure 6.13: Fits to a BaTiO3 PDF, measured at 300 K on GEM (Qmax = 40 Å−1) against

distortions described by the SAPA approach. The irreps. of the corresponding distortions of a

cubic Pm3̄m structure are as indicated on the right. The low r-region (1.4–2.5 Å) is plotted

on a separate x and y axis for clarity. Continued...
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Figure 6.14: Continued... Fits to a BaTiO3 PDF, measured at 300 K on GEM

(Qmax = 40 Å−1) against distortions described by the SAPA approach. The irreps. of the

corresponding distortions of a cubic Pm3̄m structure are as indicated on the right. The low

r-region (1.4–2.5 Å) is plotted on a separate x and y axis for clarity.
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Figure 6.15: Fitting statistics (Rw), |Q(Γ−
4 )| values and thermal parameters (Biso and α, as

described above) for constrained mode variable range refinements against variable

temperature BaTiO3 PDFs measured on GEM, and processed with a Qmax of 20 Å−1.
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6.2.1 Box-car modelling

An alternative approach to probing different lengths scales in a material is through

‘box-car’ fitting. Rather than increasing the r -range of the refinement to progres-

sively model larger length-scales, the range is held constant and shifted along the

PDF. In contrast to the variable-range fitting, sensitivity to the local Ti and

O distortions is lost as longer length-scales are probed by the modelling range.

Where variable-range refinements remain influenced by the shortest atom–atom

correlations, the higher r refinements of box-car modelling are not, and beyond

ca. 4 Å, already model the average of local Ti and O distortions.

A 10 Å-range box-car refinement was carried out on the variable pressure and

temperature PDFs, such that the region modelled was progressed from 0–10 Å to

30–40 Å, in steps of 2 Å. Figure 6.16 shows the Rw and |Q(Γ−
4 )| values and rmax

describes the uppermost r value fitted to but now, rmax = 30 Å corresponds to

a refinement over 20–30 Å, rather than 1.2–30 Å as described in the previous

section. Note that the first data point at rmax = 10 Å actually corresponds to a

9 Å range since the 0–1 Å region of the PDF is typically difficult to fit due to

features introduced when modelling the effects of finite Q.

The variable pressure and temperature results are again comparable to each

other in the tetragonal regime. At 0.24 and 1.19 GPa, low Rw values indicate that

an (a, a, a) OPD is favoured below ca. 22 Å, and at 293 and 350 K the (a, 0, 0)

OPD is favoured (as seen in Figure 6.16), also up to ca. 22 Å. |Q(Γ−
4 )| tends

to zero at rmax = 30 Å in the tetragonal regime, supporting an order–disorder

model, where for higher rmax, refined atom–atom distances will be a result of

averaging rhombohedrally-displaced atoms.

In the cubic regime at 2.55 and 4.18 GPa, and 410 and 500 K, there is virtually

no difference between the Rw values, in agreement with comparable variable-range

results for rmax > 10 Å. As previously seen, |Q(Γ−
4 )| at 4.18 GPa at the smallest
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Figure 6.16: Rw and |Q(Γ−
4 )| values for 10 Å box-car refinements for cubic (0,0,0),

tetragonal (a, 0, 0) and rhombohedral (a, a, a) OPDs against variable temperature and

pressure PDFs. The data point indicates the maximum r-value encompassed by the box-car

fitting range.

rmax is suppressed by ca. 1/2. At 500 K |Q(Γ−
4 )| appears to decrease by ca. 0.65,

although this is no different to the results found for the variable-range refinements

where, for 1.2–10 Å, |Q(Γ−
4 )| also decreases by ca. 0.68 between 293 and 500 K.

The loss of sensitivity to the distortion modes at relatively low r (rmax = 14 Å

at both 500 K and 4.18 GPa) is surprising given the distinctly different results

given by the variable-range refinements for the high pressure compared to high

temperature refinements. This highlights a seemingly influential constraint placed

on the model by the short-range data.
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6.3 The average and local structure of Mg-

substituted La1.875Ba0.125CuO4
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(Å

)
c
(Å
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Appendix

Figure 6.17: Representative Rietveld fits of La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4,

y = 0.0, at the labelled temperatures with the labelled phases.

Figure 6.18: Representative Rietveld fits of La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4,

y = 0.1, at the labelled temperatures with the labelled phases.
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Appendix

Figure 6.19: Representative Rietveld fits of La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4,

y = 0.2, at the labelled temperatures with the labelled phases.

Figure 6.20: Representative Rietveld fits of La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4,

y = 0.3, at the labelled temperatures with the labelled phases.
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Figure 6.21: Representative Rietveld fits of La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4,

y = 0.4, at the labelled temperatures with the labelled phases.

Figure 6.22: Representative Rietveld fits of La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4,

y = 0.5, at the labelled temperatures with the labelled phases.
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Appendix

Figure 6.23: Small box fits to the X-ray PDF of La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4,

y = 0.1, using LTT, LTO and HTT models.

Figure 6.24: Small box fits to the X-ray PDF of La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4,

y = 0.2, using LTT, LTO and HTT models.
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Figure 6.25: Small box fits to the X-ray PDF of La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4,

y = 0.3, using LTT, LTO and HTT models.

Figure 6.26: Small box fits to the X-ray PDF of La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4,

y = 0.4, using LTT, LTO and HTT models.
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Figure 6.27: Small box fits to the X-ray PDF of La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4,

y = 0.1, using LTT, LTO and HTT models over the r-range 1.6–3.1 Å.

Figure 6.28: Small box fits to the X-ray PDF of La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4,

y = 0.2, using LTT, LTO and HTT models over the r-range 1.6–3.1 Å.
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Figure 6.29: Small box fits to the X-ray PDF of La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4,

y = 0.3, using LTT, LTO and HTT models over the r-range 1.6–3.1 Å.

Figure 6.30: Small box fits to the X-ray PDF of La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4,

y = 0.4, using LTT, LTO and HTT models over the r-range 1.6–3.1 Å.
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Appendix

6.3.1 RMCProfile settings

Table 6.9: Minimum and maximum distance restraints used in RMCProfile for refinements

against La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4 PDFs.

O–O O–Cu O–Mg O–Ba O–La

Minimum distance (Å) 2.2 1.6 1.6 2.1 2.1
Maximum distance (Å) 3.2 2.6 2.6 3.0 3.0
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Figure 6.31: RMC fits of La1.875Ba0.125(Cu1−yMgy)0.875Cu0.125O4 X-ray PDFs measured

at 400 K with y value labelled on the plots.
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