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Abstract

Rare event estimation is the problem of quantifying how unlikely is the occurrence

of an event which is already known to be unlikely. Rare event problems are found in

many areas of study, including finance, chemistry, biology, and physics (a foundational

problem for the field was the neutron shielding problem in physics: how likely is a

particle to cross a material barrier without being absorbed or deflected?).

The type of rare event problem this thesis is concerned with is that of determining the

probability that a continuous-time Markov process hits a certain known set before a

certain stopping time. Numerous algorithms exist for this class of problems, requiring

sample paths of the Markov process. Many of these algorithms are known to produce

unbiased estimates for the rare event probability, and sometimes considerable effort has

been spent to establish that they do so (for example, Bréhier et al. [2016]).

Many continuous-time Markov processes, such as diffusion processes, must be discre-

tised in time to be simulated on a computer. But usually, access to a complete, con-

tinuous sample-path of the process is necessary to determine the course of a rare event

algorithm. For the discretised samples which are usually used in practice then, the

resulting rare event estimator cannot be guaranteed to be unbiased, although this is

rarely acknowledged explicitly.

Recent work in the exact and ε-strong simulation of diffusions, and in unbiased infer-

ence for diffusions, seems to suggest solutions to this problem is some contexts. The

contribution of this thesis will be to show how this synthesis can be carried out, and

investigate the effectiveness of the resulting algorithms.

ix



Chapter 1

Introduction

This thesis is concerned with developing and investigating methods for the exact and

unbiased simulation and estimation of rare events for continuous-time processes. A

rare event is one which has a very low probability of occurrence. These events are

challenging to conduct inference on using conventional Monte Carlo methods, since it

typically requires prohibitively many samples to observe a single instance of such an

event.

Inference is further complicated in the continuous-time setting, since even when compu-

tationally feasible algorithms are available, theoretical guarantees of unbiasedness are

typically justified by continuous-time theory, whereas the corresponding numerical sim-

ulations are usually carried out using time-discretised numerical approximations. Such

methods introduce an approximation error whose size is difficult to quantify, which can

be an especially sensitive issue when a very small probability is involved.

Several techniques are available for efficient inference in the rare event setting, many

of which fall into the framework of Sequential Monte Carlo methods, or are closely

related to this framework. Roughly speaking, these methods improve on conventional

Monte Carlo simulation by systematically selecting and promoting simulated trajecto-

ries which are heading towards the rare event, and demoting those which do not. In this

way, computational effort is concentrated on trajectories for which the rare event is in

fact observed. When the corresponding statistical estimator is finally constructed, the

weighting towards these favoured trajectories is accounted for “post hoc”. We consider

several methods in this class in this thesis.

On the other hand, methods of simulating continuous-time processes which mitigate or

avoid the bias and error introduced by conventional time-discretisation methods have

received wide attention recently. Unbiasedness is an attractive property for several

reasons. For example, it removes the effort of analysing the magnitude of the approxi-

mation error in an approximate scheme. It is also possible to run unbiased estimators

in parallel and average them to obtain a lower-variance estimator for a given computing

time.
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Many approaches to achieving unbiased estimation for continuous-time processes have

been considered. One can attempt to devise methods to simulate without approxima-

tion the finite-dimensional marginals of a diffusion process, leading to (for example) the

exact methods following Beskos and Roberts [2005], Beskos et al. [2006]. Exact meth-

ods have been successfully combined with SMC algorithms in the context of particle

filtering in the work of Fearnhead et al. [2008].

To estimate functionals which depend on more than finite-dimensional marginals - for

example, functionals of a whole continuous-time path - it may be useful to simulate

further information about the process, as with the ε-strong methods for diffusions and

other processes following Beskos et al. [2012]; Pollock et al. [2016].

Alternatively, one might accept the convenience of numerical discretisation while at-

tempting to minimise the resulting error for a given computational cost, leading to the

multilevel Monte Carlo methods following Heinrich [2001], Giles [2008]. These methods,

and other biased methods, may sometimes be de-biased entirely, for example following

the randomisation methods of McLeish [2011]; Rhee and Glynn [2012].

In this thesis we consider the application of appropriate unbiased and exact simula-

tion methods to certain rare event estimation methods. Multilevel splitting, a popular

algorithm for estimating the probability of rare events, is formulated as a sequence of

problems of deciding whether a process has crossed a given barrier. Since deciding

whether a process has crossed a barrier depends on its whole path rather than finite

dimensional marginals, the class of ε-strong methods are an attractive proposition for

removing approximation error in this setting.

On the other hand, the large-deviations inspired genealogical particle method of Del

Moral et al. [2015] for estimating rare event probabilities has a less discrete internal

structure: it is a Sequential Monte Carlo method for which particles closer to the rare

event are strongly promoted for resampling. A binary assessment of whether the process

has reached the rare event is made only at the end of the simulation process. In this

case, we consider the possibility of a de-biased Multilevel Monte Carlo algorithm, whose

variance can then be quantified (the corresponding analysis would be more challenging

in the splitting setting).

1.1 Thesis structure

The main example of continuous-time processes considered in this thesis are diffusion

processes. Chapter 2 provides a brief overview of this class of processes, together with a

short overview of conventional numerical discretisation techniques and their properties.

The rest of the chapter is devoted to ε-strong methods, which are presented first in an

abstract framework, followed by several detailed examples. We give space for a longer

exposition in particular of the method of Blanchet et al. [2017], which uses a different

idea from the earlier literature. Rather than concentrating on its technical details,

we attempt to motivate and explain its broader construction in relatively elementary

2



terms.

Chapter 3 introduces first the multilevel splitting algorithm for rare event estimation

in a direct fashion, together with several closely-related variants. Subsequently, con-

nections are drawn to the Sequential Monte Carlo (SMC) framework, which provides a

substantial body of established results and literature to which appeal can be made. We

close the chapter by describing the mathematical framework of Feynman-Kac models,

of which SMC algorithms can be considered particle approximations.

In chapter 4, we describe how to combine ε-strong simulation with multilevel split-

ting and its SMC variant to obtain new implementable exact algorithms, requiring

no numerical discretisation of the continuous-time process. We consider both the one-

dimensional and multi-dimensional cases, and establish the unbiasedness of the resulting

algorithms together with numerical examples in simple settings.

Chapters 5 and 6 consider a different rare event algorithm, and a different method of

addressing approximation error. In chapter 5, we introduce the Multilevel Monte Carlo

method and its associated de-biased estimator, and describe how to apply it to the rare

event setting of Del Moral et al. [2015]. In Chapter 6, we investigate the variance of

this estimator, and discuss the computational challenges of implementing it. We finally

provide some numerical investigations and discuss following Jasra et al. [2020] how an

approximate implementation can still be useful.

3



Chapter 2

Simulating diffusion processes

2.1 Diffusion processes and their approximations

This thesis is concerned with methods for the unbiased estimation and simulation of

rare events for continuous-time processes. The central example of a continuous-time

process to which we repeatedly refer is a diffusion process. We set down here some

basic definitions and properties of this class of processes.

We are also concerned with the problem of approximation error in simulating these

processes. Traditionally simulation has been carried out using methods which divide

the time dimension into a discrete grid, upon which (approximate) values of the process

are simulated. The properties of these discretisation methods are of some concern to us

in chapters 5 and 6, so we also set down some definitions, simple examples and basic

results relating to these schemes.

Recent developments in the exact and ε-strong simulation of diffusions do away entirely

with the issue of approximation error, usually at the cost of a more computationally

expensive algorithm. We consider the application of these methods to rare event prob-

lems in chapter 4. For this reason, we take the time to describe in some detail a few

important examples at the end of this section.

2.1.1 Motivation

Following the treatment of Øksendal [1992], the motivation for developing a theory of

stochastic integration (that is, a theory of integrals against random variables) comes

from the desirability of solving certain problems which are most naturally formulated

as differential equations containing random or noise terms. A fairly general form that

such a model might take is

dX(t) = a(t,X(t))dt+ b(t,X(t))W (t)

on the time interval t ∈ [0, T ], where X(t) is the quantity being modelled, a, b are

deterministic functions, and W (t) is allowed to be a random variable.

4



One way to proceed with constructing a solution to this equation is to postulate some

desirable properties for W . In particular, the requirement that W (t) is a mean-0,

stationary process with W (s) independent of W (t) for s ̸= t suggests the following

reformulation as a discrete summation on the partition 0 = t0 < . . . < tn = T : given

X̂(t0) = x0, for k = 1, . . . , n,

X̂(tk) = X̂(t0) +
k∑

j=1

a(tj−1, X̂(tj−1))(tj − tj−1) +
k∑

j=1

b(tj−1, X̂(tj−1))(B(tj)−B(tj−1))

(2.1)

where B(t) is Brownian motion, the unique mean-0, stationary process with indepen-

dent increments and continuous paths. Here we assume B is defined on the probability

space (Ω,F), and a, b are functions R≥0 × Ω→ Rd for some d > 0.

As long as a is of bounded variation (see Section 2.1.2 below), one may then take a

limit of
∑k

j=1 a(tj−1, X̂(tj−1))(tj−tj−1) over increasingly fine time grids to get the Rie-

mann integral
∫ t
0 a(s,X(s))ds. The question is then how to take a similar limit for the

second term above, and more generally for sums of the form
∑k

j=1 b(tj−1, ω)(B(tj , ω)−
B(tj−1, ω).

Before settling this question, we begin by recalling some important results from the

deterministic theory of integration. These will be directly useful in motivating one of

the ε-strong constructions in section 2.2, and are also useful in clarifying by contrast

some important properties of integrals against random variables.

2.1.2 Deterministic integration

Let g : [0, 1] → R be a function. A partition P of [0, 1] is defined from a sequence

0 = t0 < t1 < . . . < tn = 1 by taking P = {[tj−1, tj ] : j = 1, . . . , n}. The mesh

size of P is |P | = sup[s,t]∈P (t − s) > 0. Write P for the set of all partitions of

[0, 1]. To define integrals, we need a sequence (P (n))∞n=1 of partitions of [0, 1] with

mesh |P (n)| → 0. (There is nothing special about the interval [0, 1], which we use for

notational convenience.)

Given another function f : [0, 1] → R, the Riemann-Stieltjes integral of f against g is

the limit of the following Riemann sums, when this limit exists:∫ 1

0
fdg := lim

n→∞

∑
[s,t]∈P (n)

f(s)(g(t)− g(s))

The following theorem gives the required condition on g for a Riemann-Stieltjes integral

to exist for every continuous integrand f :

Theorem 1. [Burkill and Burkill, 1970, Section 6.5] Say that g is of bounded variation
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if supP∈P
∑

[s,t]∈P |g(t)− g(s)| <∞. Then the Riemann sums

Sn =
∑

[s,t]∈P (n)

f(s)(g(t)− g(s))

converge to a limit independent of (P (n)) for every continuous f if and only if g is of

bounded variation.

Informally speaking, the requirement that g is of bounded variation is a strong re-

striction on the “roughness” of g. Many functions against which one would like to

define integrals are not of bounded variation. In particular, it is well-known that

paths of Brownian motion are (almost surely) not of bounded variation (see for exam-

ple [Mörters and Peres, 2010, Theorem 1.35]), so it is not possible to define integrals

against Brownian paths as Riemann-Stieltjes integrals for all continuous f .

One way to try to get past the above result is to weaken the requirement that we are

able to integrate all continuous f against g. A classical result in this line is a theorem of

Young. For a paramater α > 0, say f is α-Hölder continuous if |f(s)−f(t)| < C|s− t|α
for some constant C, and all s, t ∈ [0, 1].

Theorem 2. Young [1936] Let f, g : [0, 1]→ R be α, β-Hölder continuous respectively,

with α+ β > 1, and (P (n)) as above. Then the Riemann sums

Sn =
∑

[s,t]∈P (n)

f(s)(g(t)− g(s)) (2.2)

converge to a limit independent of (P (n)). The Young integral
∫ 1
0 fdg may then be

defined as the limit as n→∞ of the sums Sn.

It is immediately clear from this definition that the Young integral coincides with the

Riemann integral of f against g when the latter exists. For the particular case with

f, g both α-Hölder continuous, this means that the integral of f against g can be

constructed if α > 1/2. Brownian motion just misses this condition, being α-Hölder

continuous for all α < 1/2 ([Mörters and Peres, 2010, Corollary 1.20]). The Young

integral is therefore inadequate for defining the integral of a Brownian path against

itself, which is too restrictive for our purpose.

2.1.3 The Ito integral and stochastic differential equations

A further step to get around Theorem 1 is to weaken the required mode of convergence,

as well as restricting the class of integrands. The Ito integral against Brownian motion

may be constructed as a limit in L2 of Riemann sums as follows.

Let B be the Borel σ-algebra on R, and let B be Brownian motion in R defined on the

probability space (Ω,F). For all t ∈ [0, 1], let Ft be the sigma algebra generated by

{B(s) : s ≤ t}. Say H : [0,∞)×Ω→ R is adapted to (Ft)
1
t=0 if the maps ω → H(t, ω)

are Ft-measurable for all t ∈ [0, 1].
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Theorem 3. [Øksendal, 1992, Chapter 3] Suppose that H is adapted, that (t, ω) →
H(t, ω) is B × F-measurable for each t ∈ [0, 1], and that E

∫ 1
0 H(t, ω)2dt < ∞ for all

ω ∈ Ω . Then there is a sequence of functions

ϕn(t, ω) =
∑
j

en,j(ω)1[tnj ,tnj+1)
(t)

satisfying

E
∫ 1

0
(H(t, ω)− ϕn(t, ω))2dt→ 0 as n→∞,

and for these ϕn it holds that∑
j

en,j(ω)(B(tnj+1, ω)−B(tnj , ω)) (2.3)

converges in L2 as n→∞.

The Ito integral
∫ 1
0 H(s)dB(s) of H against B is then defined to be this L2 limit. In a

sense, one gets around the problem of pointwise convergence of the Riemann sums by

defining the limiting random variable on all of Ω at once.

The Ito definition may be further extended to a wider class of functions H than that

specified in this result (see [Øksendal, 1992, Chapter 3] for details). One important

point is that in the Riemann sums specified in Theorem 3, H(s) cannot be replaced by

H(r) for any r ∈ (s, t] without altering value of the limit, and so changing the definition

of the integral. This is one respect in which the Ito integral fundamentally differs from

the Riemann integral.

Armed with the Ito integral, we can then define the following stochastic differential

equation (SDE) against Brownian motion

dX(t) = a(t,X(t)) + b(t,X(t))dB(t) (2.4)

given the initial value X(0) = X(0) as equivalent to the integral equation

X(t) = X(0) +

∫ t

0
a(s,X(s))ds+

∫ t

0
b(s,X(s))dB(s),

where the final integral is an Ito integral. The functions a and b are usually known as

the drift and volatility respectively.

Sufficient conditions on a, b and X(0) for the existence of a unique solution X with

continuous sample paths to this equation may be found in [Øksendal, 1992, Theorem

5.2.1]. We assume the existence of such a solution throughout. Of particular interest

are SDEs whose drift and volatility do not depend explicitly on the time parameter:

dX(t) = a(X(t)) + b(X(t))dB(t). (2.5)
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A solutionX to such an equation is called a diffusion process (or an Ito diffusion process

if it is necessary to emphasise the choice of H(s) in the Riemann sums).

An important identity for the Ito integral is Ito’s formula (or Ito’s lemma), which we

state below in its less common integral form (we reference it only once in section 2.2.3,

using this form):

Theorem 4. [Kloeden and Platen, 2013, Theorem 3.3.2] Let X be the Ito solution

to the stochastic differential equation (2.4), and g(t, x) a function g : R≥0 × R → R
continuously differentiable in t and twice continuously differentiable in x. Then writing

Y (s) = g(s,X(s)),

Y (t)− Y (0) =

∫ t

0

(
∂g(s,X(s))

∂s
+ a(s,X(s))

∂g(s,X(s))

∂x
+

1

2
b2(s,X(s))

∂2g(s,X(s))

∂x2

)
ds

+

∫ t

0

∂g(s,X(s))

∂x
b(s,X(s))dB(s).

By rearranging, this makes it possible to write an Ito integral against Brownian motion

in terms of Riemann integrals.

A fact which we rely on heavily throughout is that an Ito diffusion X is a Markov

process: the future behaviour of X conditional on its history up to time t depends on

that history only through X(t). A formal statement of this fact is the following:

Theorem 5. [Øksendal, 1992, Theorem 7.1.2] Let f be a bounded Borel function R→
R, and let Ex denote expectation with respect to the measure defined by the SDE (2.5)

with X0 = x. Then

Ex [f(X(t+ h))|Ft] (ω) = EX(t,ω) [f(X(h))] .

Finally, we note that the integration theory for deterministic and stochastic integrals in

dimension one can of course be extended to theories over Rd for any integer d, which is

covered in the sources cited earlier in this section. We take this for granted throughout.

2.1.4 Numerical schemes

A diffusion process X is an infinite-dimensional random variable. That is, for each time

t in some interval [0, T ] it takes a value X(t). This means it does not (except in trivial

cases) admit a finite-dimensional representation, and so it cannot be fully simulated or

stored on a computer. In order to carry out simulations relating to these processes, it

is usual to make a finite-dimensional approximation by dividing [0, T ] into a regularly

spaced grid 0 = t0 < . . . < tn = T with tj − tj−1 = ∆ for all j and some (small)

constant ∆.

An approximate sample X̂ = (X̂(t0), . . . , X̂(tn)) from the law of (X(t0), . . . , X(tn)) is

then constructed on this discrete grid. (Since X is Markov, it often makes sense to do
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this recursively.) A continuous-time path X̂(0 : T ) is then constructed on the whole

interval [0, T ] by interpolating between the X̂(tk).

A natural example is to return to the discretisation (2.1) used to define the Ito integral,

which we now write in a form relating X̂(tk) to X̂(tk−1):

X̂(tk) = X̂(tk−1) + a(tk−1, X̂(tk−1))∆ + b(tk−1, X̂(tk−1))∆Bk, (2.6)

where ∆Bk = B(tk)−B(tk−1) ∼ N (0,∆) are independent and identically distributed.

This implies a numerical scheme for simulating X approximately, known as the Euler-

Maruyama scheme: initiate X̂(t0) = x0, and then in sequence sample ∆Bk, followed

by X̂(tk) given X̂(tk−1). Finally, a continuous-time path may be obtained by taking

the path to be piecewise constant on intervals [tk−1, tk). This is detailed in Algorithm 1

below.

Algorithm 1 Euler-Maruyama scheme

Given X̂(t0) = x0:
1. For k = 1, . . . , n:

(a) Simulate ∆Bk ∼ N (0,∆)
(b) Calculate

X̂(tk) = X̂(tk−1) + a(tk−1, X̂(tk−1))∆ + b(tk−1, X̂(tk−1))∆Bk.

2. Form X̂(0 : T ) by defining for all t /∈ {t0, . . . , tn}:

X̂(t) = X̂(tj) for j = {max k : tk < t}.

The Euler-Maruyama scheme is sufficiently simple and attractive as to be very widespread

in the practical simulation of diffusion paths, especially when no detailed study of the

induced approximation error is to be made. Often, however, it is desirable to be more

selective about the accuracy of a chosen scheme. Two useful characterisations of the

quality of the resulting approximation are the strong convergence order and weak con-

vergence order of the scheme. (We here follow [Kloeden and Platen, 2013, Section

9.6-9.7]).

Let X̂∆(0 : T ) be a discrete approximation to X0:T generated by a recursive method

such as the Euler-Maruyama scheme on the regular time grid t0, . . . , tn with tj− tj−1 =

∆. Then we say that X̂∆ converges strongly to X with strong order s > 0 at time T

if there are constants ∆0, C > 0 such that for all ∆ < ∆0,

E
∣∣∣X(T )− X̂∆(T )

∣∣∣ ≤ C∆s.

That is, the strong convergence rate is a measure of the absolute error in the approxi-

mation of the path X itself.

Sometimes we are not interested so much in approximating X itself as the expected

value of some functional φ of X. We say that X̂∆ converges weakly to X with respect
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to φ with weak order w > 0 at time T if there are constants ∆0, C > 0 such that for

all ∆ < ∆0, ∣∣∣E[φ(X(T ))]− E[φ(X̂∆(T ))]
∣∣∣ ≤ C∆w.

We set down here as a matter of record that the Euler-Maruyama scheme of Algorithm 1

has weak order of convergence w = 1, and strong order s = 0.5. Many schemes with

superior convergence rates have been constructed and studied; [Kloeden and Platen,

2013, Chapters 10-15] describes many alternatives in some detail. In general, these

higher-order schemes are designed to ensure either good strong or weak convergence

properties, but not both.

One weakness of discrete numerical schemes in general is the approximation error they

induce and the high computational cost of decreasing this error by reducing the grid

size ∆. A second, less obvious problem is that interpolation between the discrete

samples (X̂∆(t0), . . . , X̂
∆(tn)) is entirely insufficient for evaluating certain interesting

functionals φ of the entire sample path X(0 : T ).

An example of such a functional which is of importance in this thesis is the “barrier

crossing” functional φ(X(0 : T )) = 1(supt∈[0,T ] V (X(t)) ≥ a), where V : Rd → R is

continuous and a ∈ R.

If it happens that V (X̂∆
k ) ≥ a for some k, then it is clear that φ(X̂∆(0 : T )) =

φ(X(0 : T )) = 1. On the other hand, if V (X̂∆
k ) < a for all k, it remains undetermined

which value φ(X(0 : T )) takes for the underlying process X. Figure 2.1 illustrates the

trouble one can run into when using discretisation methods to approximate barrier-type

functions. Chapter 4 considers this problem in more detail.

Figure 2.1: Same underlying diffusion path approximated by discretely at two different
levels of fineness (the coarser in solid orange, and the finer in dashed pink). The
question of which barrier is crossed first is answered differently by each, as shown by
the vertical dotted lines. Using the finer discretiation it would be concluded that the
lower barrier was hit first at around time 4, whereas using the coarser the conclusion
would be that the upper barrier was hit first and at around time 9.
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2.2 ε-strong methods

We have mentioned the shortcomings associated with numerical discretisation schemes

in certain situations. In this section, we describe two classes of methods which address

these shortcomings, both of which have been the focus of much recent work. Exact

simulation methods ensure that samples of a diffusion process X on some discrete grid

0 = t0 < . . . < tk = T obey the marginal joint law of (X(t0), . . . , X(tk)) induced by the

stochastic differential equation 2.4.

These first received attention in the work of Beskos and Roberts [2005] and the simpli-

fied construction of Beskos et al. [2006], and have received continued further attention

(for example Chen and Huang [2013]; Pollock et al. [2016]). We do not focus on these

methods in this chapter since we do not use them directly in this thesis. However, we

do note that the method of Beskos et al. [2006] is closely related to that of the second

ε-strong algorithm we describe below in section 2.2.3.

As we noted earlier, exact methods are not always sufficient to evaluate the expectation

E [φ(X(0 : t))] of a functional f of a complete diffusion path X(0 : t) (for example, the

barrier-crossing functional described previously). ε-strong methods provide instead in-

formation constraining the range of the path between the discrete grid times t0, . . . , tk.

This is not a fully general solution to the problem of evaluating expectations of func-

tionals. However, it is sufficient to address barrier-crossing problems, and it is these

which we will consider in chapter 4.

2.2.1 ε-strong simulation

Formally, following the definition given in Blanchet et al. [2017], an ε-strong algorithm

is a joint construction of X together with a family of processes X̃ε indexed by ε > 0

(defined on the same probability space) over an interval [s, t] such that the following

four properties hold:

1. Almost surely, supr∈[s,t] ∥X(r)− X̃ε(r)∥ ≤ ε for an appropriate norm ∥ · ∥;

2. X̃ε is piece-wise constant and left-continuous on [s, t], taking only finitely many

values and so can be fully stored on a computer;

3. X̃ε can be simulated exactly. (That is, to sample X̃ε it is necessary to sample

certain intermediate random variables, and this criterion requires that this can

be done without approximations); and

4. Given any finite sequence of tolerances ε1 > ε2 > · · · > εm > 0, for 1 ≤ k < ℓ ≤ m
it holds almost surely for all r ∈ [s, t] that

{x : ∥X̃εℓ(r)− x∥ ≤ εℓ} ⊂ {x : ∥X̃εk(r)− x∥ ≤ εk},

and moreover it is possible to sample explicitly X̃εℓ conditional on X̃εk .

An ε-strong algorithm produces a chain (in time) of finitely many ∥ · ∥-balls, each of
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which almost surely constrains the sample path of X over the corresponding interval

of time. Moreover, by applying Property 4 the radius of these balls can be iteratively

reduced, constraining X progressively more tightly by employing a greater number of

balls. An example (in two spatial dimensions) of how ε-strong sampling may be used

is given in Figure 2.2.

It is often advantageous to apply Property 4 selectively in order to get tight constraints

on X at certain locations of interest, while allowing looser constraints elsewhere. For

example, Figure 2.2(c) shows the result of applying Property 4 to the first two ε1-balls

of the initial ε1-sample in 2.2(b).

The choice of a weak inequality in 1) differs slightly from the presentation in Blanchet

et al. [2017]. The reason is simply that in chapter 4 our application requires calculating

suprema and infima of a continuous function ξ over regions C(t) = {x : ∥X̃(t)−x∥ ≤ ε},
and the weak inequality ensures that these extrema are attained in the regions C(t).

The insistence in Property 2 that X̃ε be piece-wise constant is not strictly necessary

since other processes which admit finite-dimensional representations could fill the same

role. For example, continuous and piece-wise linear/polynomial X̃ε are possible alter-

natives. However, we will assume throughout that X̃ε is piece-wise constant.

We now briefly describe some important examples, some of which we used in the sim-

ulations of Chapter 4. These cover the cases of i) Brownian motion (Section 2.2.2), ii)

diffusions with volatility which can be transformed to unity via the Lamperti transform

(Section 2.2.3), and iii) diffusions in multiple dimensions (Section 2.2.4).

Several other examples of ε-strong exist, and their construction is an active area of

research. Examples include methods for SDEs driven by fractional Brownian motion

in Chen et al. [2019], for the Bessel process in Deaconu and Herrmann [2021], and for

the convex minorants of stable processes in González Cázares et al. [2020].

2.2.2 Example: Brownian motion

The first example of an ε-strong algorithm was the construction for Brownian motion

given in Beskos et al. [2012]. Let B denote a standard Brownian motion in R, and let

0 ≤ s < t with B(s) = x,B(t) = y. Let Ms,t = supr∈[s,t]Br and ms,t = infr∈[s,t]Br.

Finally, take L ≤ x∧y ≤ x∨y ≤ U . Then the probability p that B escapes the interval

[L,U ] before time t admits a certain alternating series representation

p(t− s, x, y, L, U) = P (ms,t < L or U < Ms,t|B(s) = x,B(t) = y) =

∞∑
i=1

(σi − τi) ,

where σi(x, y, t − s, L, U), τi(x, y, t − s, L, U) > 0, and have explicit forms in terms of

standard functions (see [Beskos et al., 2012, Section 4], and Pötzelberger and Wang

[2001] for a full derivation. We omit these expressions and other details which are not

directly relevant for the contributions of this thesis in the interest of brevity.) Note

that for any L,U which do not fall into the specified range, this probability is 0.
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x0

X

X0

T

(a) Initial value X0 = x0, and target path X

ε1ε1

ε1

X̃

X̃

T

0

(b) ε1-strong sample and constraining regions

ε2

(c) Partial ε2-strong sample

(d) Full ε2-strong sample

Figure 2.2: An illustration of ε-strong simulation. The left column shows shows the
ε-strong process X̃ developing as conditional samples are made first with tolerance ε1,
followed with ε2 < ε1. The right column shows the fixed target path X, and how the
ε-strong constraints relate to it. Pale circles indicate superseded constraints from the
previous step.
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The partial sums Sj are given by adding each σi and subtracting each τi alternately,

so that S0 = 0, and for k ≥ 1, S2k−1 = S2k−2 + σk and S2k = S2k−1 − τk. Writing

p := p(t− s, x, y, L, U), these sums satisfy

S2k ≤ S2k+2 ≤ p ≤ S2k+1 ≤ S2k−1. (2.7)

This expansion can be be used to sample p exactly: first, sample a standard uniform

random variable V , and then calculate sufficient terms in the convergent series to

determine whether V is greater than or less than p. This technique is known as the

alternating series method (Devroye [1981]) and elsewhere as retrospective Bernoulli

sampling. It is given in Algorithm 2:

Algorithm 2 Retrospective Bernoulli sampling

Given a probability p and an alternating series (Sn)n∈N satisfying (2.7), returns 1 with
probability p and 0 otherwise.

1. Simulate V ∼ U [0, 1].
2. Take initial lower and upper bounds p0 = 0, q0 = 1 for p, and set n = 0.
3. While V ∈ [pn, qn]: set pn+1 = S2n ∨ 0, qn+1 = S2n+1 ∧ 1, and update n← n+ 1.
4. If V < pn return 1; else return 0.

The alternating series representation Sn for p can be used to derive similar alternating

representations for the probabilities of more complex events. For example, writing

Px,y
s,t for the law of Brownian motion conditional on B(s) = x,B(t) = y, and writing

q(r, x, y, L, U) = 1 − p(r, x, y, L, U), the probability that the maximum and minimum

of B lie within specified intervals is

Px,y
s,t

(
ms,t ∈ [L↓, L↑],Ms,t ∈ [U↓, U↑]

)
= q(L↓, U↑)− q(L↓, U↓)− q(L↑, U↑) + q(L↑, U↓)

(where the dependence of q on (t− s), x, y has been suppressed). Therefore

Rn = Sn(L
↓, U↑)− Sn+1(L

↓, U↓)− Sn+1(L
↑, U↑) + Sn(L

↑, U↓)

is an alternating series for Px,y
s,t

(
ms,t ∈ [L↓, L↑],Ms,t ∈ [U↓, U↑]

)
, and so events of this

probability may be sampled exactly using Retrospective Bernoulli Sampling (Algo-

rithm 2).

Again, to avoid reproducing details incidental to the primary purpose of this thesis

we refer the reader to Beskos et al. [2012] for explicit constructions of the sampling

schemes for various other events. For our purpose it is sufficient to know that the

following three sampling operations can be carried out exactly using developments

along the above lines:

1. Initial layers ([Beskos et al., 2012, Section 5.3]): given B(s), it is possible to

sample B(t) together with the initial constraints (L↓
s,t, L

↑
s,t, U

↓
s,t, U

↑
s,t).

2. Refine layers ([Beskos et al., 2012, Section 5.3]): given s, t, B(s) = x,B(t) =
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y, and (L↓
s,t, L

↑
s,t, U

↓
s,t, U

↑
s,t), it is possible to narrow the constraints: that is, to

sample an indicator random variable for the event L↓
s,t < ms,t < L∗

s,t for any

L∗
s,t ∈ [L↓

s,t, L
↑
s,t], and likewise for Ms,t.

3. Bisect layers ([Beskos et al., 2012, Sections 5.1, 5.2]): given s, t, B(s) = x,B(t) =

y, and (L↓
s,t, L

↑
s,t, U

↓
s,t, U

↑
s,t), it is possible to sample the mid-point1 B(s∗) for s∗ =

1
2(s+ t), together with new constraints (L↓

s,s∗ , L
↑
s,s∗ , U

↓
s,s∗ , U

↑
s,s∗) and

(L↓
s∗,t, L

↑
s∗,t, U

↓
s∗,t, U

↑
s∗,t). In fact, it is possible to do this for all r ∈ (s, t).

These sampling procedures are made clearer by Figure 2.3.

These procedures are combined as follows to obtain an ε-strong sample for B: after

sampling the initial layers, alternate between bisecting each available interval [s, t]; and

iteratively refining to tighten each existing constraint until each is smaller than a chosen

threshold. A more formal description is given in Algorithm 3 below.

Algorithm 3 ε-strong sampling for Brownian motion

Given B(0) = 0 and ε > 0:

1. Simulate B(T ) ∼ N (0, T ) and L↓
0,T , L

↑
0,T , U

↓
0,T , U

↑
0,T . Store all these variables

together with B(0) = 0 in I0,T , and let I = {I0,T }.
2. While supI

(
U↑
s,t − L↓

s,t

)
> 2ε:

(a) Bisect the layers of each Is,t ∈ I (procedure 3), and remove Is,t from I and
replace it with Is,s∗ and Is∗,s.

(b) Refine the layers of each new Is,t ∈ I (procedure 2) until

max
(
L↑
s,t − L↓

s,t, U
↑
s,t − U↓

s,t

)
<

√
1

2
(t− s).

Procedure 3 allows B to be sampled on an increasingly fine dyadic time-grid conditional

on all the constraints on its maxima and minima. Procedure 2 ensures (probabilisti-

cally) that the fluctuations of B between the sampled points become more and more

tightly constrained. It is established in [Beskos et al., 2012, Section 3] that this proce-

dure converges in the sense that supI(U
↑
s,t − L↓

s,t) → 0 almost surely as n → ∞, and

that the choice
√

1
2(t− s) of threshold is optimal for fast convergence.

It will be observed that Algorithm 3 samples more detail about the Brownian path

than is strictly needed for an ε-strong algorithm as defined in Section 2.2.1. To extract

an ε-strong sample B̃ε in this sense from Algorithm 3, we take

B̃ε(r) =
∑

(s,t)∈I

1(r ∈ [s, t))
1

2
(U↑

s,t + L↓
s,t)

where I is as defined in Algorithm 3 (see figure).

1The method described in Section 5.1 of Beskos et al. [2012] to sample the mid-point is not in fact
quite exact, since it involves sampling from a density by numerically inverting its (analytically derived)
CDF. Several genuinely exact methods for carrying out this particular procedure are described in
[Pollock, 2013, Section 6.3.2], designed to be efficient in various regimes. These methods were used for
the simulations in Chapter 4.
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(a) B(0), B(1) and initial layers.

(b) Bisection at t = 0.5, with new layers on either side

(c) Refinement of layer

Figure 2.3: An illustration of ε-strong simulation of one-dimensional Brownian motion.
Orange dots are exactly sampled points of the Brownian motion, which the black dashed
line interpolates linearly. Pink shaded regions are layers [L↓, L↑], [U↓, U↑]. The blue
line define a region of interest - we might wish to know whether the Brownian motion
escapes the region, and if so on which side it first escapes.
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Figure 2.4: After several iterations of Algorithm 3. Red dots are exactly sampled values
of Brownian path, red lines are linear interpolation between them. Upper and lower
processes in black are sequences of U↑ and L↓ respectively, which define upper and
lower bounding processes for the underlying path.

It is then clear that all the required properties detailed in Section 2.2.1 are available.

However, this construction is rather coarse in throwing away the extra information given

by the L↑s and U↓s, and for the problems we will consider in chapter 4, something closer

the full algorithm will be found useful.

Finally, we note that Brownian motion in Rd may be simulated in an ε-strong fashion by

carrying out the procedures detailed in this section for each dimension independently.

This is the example we actually use for the 2D simulations in Chapter 4, due to its

relative computational simplicity.

2.2.3 Example: Diffusions with unit volatility

The next important contribution to the ε-strong sampling literature was a method for

diffusion processes, described in Pollock et al. [2016]. The technique is to use Brownian-

type ε-strong proposals, which are accepted or rejected according to an appropriate

scheme. Consider the one-dimensional diffusion process X(0) = X(0),

dX(t) = a(X(t))dt+ b(X(t))dB(t).

The crucial result which is exploited in order to make the rejection sampling scheme

tractable is the Lamperti transform ([Kloeden and Platen, 2013, Chapter 4.4]).

Theorem 6. Lamperti transform: Suppose a is continuously differentiable, b is strictly

positive and twice continuously differentiable, and for some C > 0 and every x ∈ R

|a(x)|2 + |b(x)|2 ≤ C(1 + |x|2).
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Let Y (t) = η(X(t)) =
∫ X(t)
x

du
b(u) , where x is arbitrary. Then

dY (t) =

[
a(η−1(X(t)))

b(η−1(X(t)))
− b′(η−1(X(t)))

2

]
dt+ dB(t),

ie. Y is a diffusion process with unit volatility.

This allows us, when the given assumptions are met and the transform and its inverse

can be calculated, to work with stochastic differential equations with unit volatility

b(X(t)) = 1:

dX(t) = a(X(t))dt+ dB(t). (2.8)

The benefits of doing so are made immediately apparent by the following observation:

writing Qx
0:T for the law induced by 2.8 over [0, T ] with X(0) = x, and Zx

0:t for the

law of Brownian motion over [0, T ] with initial value x, the Radon-Nikodym derivative

dQ/dZ has the form

dQx
0:t

dZx
0:t

(X) = exp

(∫ T

0
a(X(s))dB(s)− 1

2

∫ T

0
a2(X(s))ds

)
= exp

(∫ X(t)

x
a(u)du− 1

2

∫ T

0

(
a2(X(s)) + a′(X(s))

)
ds

)

where the second line follows from applying Ito’s formula.

The difficult term in this expression is
∫ X(t)
x a(y)dy. It may be removed by taking the

RN-derivative of Q with respect to a slightly different measure. Define the probability

density h by

h(y;x, T ) ∝ exp

(∫ y

0
a(u)du− (y − x)2

2T

)
,

and let Wx
0:T be the path-space measure of the Brownian bridge W with W0 = x and

B(t) ∼ h(·). Then

dQx
0:t

dWx
0:t

(X) =
dQx

0:t

dZx
0:t

(X)

(
dWx

0:t

dZx
0:t

(X)

)−1

= exp

(
−1

2

∫ T

0
a2(X(s)) + a′(X(s))ds

)
=: exp

(
−
∫ T

0
ϕ(X(s))ds

)
where ϕ(X(s)) = (a2(X(s)) + a′(X(s)))/2.

Suppose ϕ(x) > Φ for all x. Then the beginnings of a rejection sampler for the solution

path associated with Q becomes apparent (we explain how this extends to a ε-strong

sampler shortly). Writing Zx,y
0:T for the law of Brownian motion over the interval (0, T )

with starting value x and terminal value y, that is

1. Draw X(t) ∼ h(·)
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2. Draw X(0:T ) ∼ Zx,y
0:T

3. Accept path X with probability

p(X) = exp

(
−
∫ T

0
ϕ(X(s))ds

)
exp (ΦT ).

The first step can often be carried out by constructing an appropriate rejection sampling

procedure to obtain samples from h. The problem with this sketch is that neither the

second nor third step is tractable: it is not possible to sample an entire continuous-time

path, nor to calculate the requisite integral. However, one solution to these problems

also provides a way to draw ε-strong samples rather than simply finite-dimensional

marginals.

The insight is that if step 2 in the above is replaced with an ε-strong proposal of the

Brownian bridge using Algorithm 3, then the ε-strong bounds can be used to construct

upper and lower bounds ϕ↑, ϕ↓ for p(X). For example, having sampled the proposal

path

Xε
prop =

∑
[s,t) in I

1(r ∈ [s, t))Xε
s,t,

one has immediately the upper and lower bounds for ϕ of

ϕ↓ = exp

− ∑
[s,t) in I

sup
v∈Xε

s,t±
ε
2

(ϕ(v)− Φ)(t− s)

,
ϕ↑ = exp

− ∑
[s,t) in I

inf
v∈Xε

s,t±
ε
2

(ϕ(v)− Φ)(t− s)

.
By defining a sequence of tolerances εn → 0, we obtain in the same way sequences

(ϕ↓n), (ϕ
↑
n) of upper and lower bounds.

ϕ↓n = exp

− ∑
[s,t) in In

sup
v∈Xεn

s,t±
εn
2

(ϕ(v)− Φ)(t− s)

,
ϕ↑n = exp

− ∑
[s,t) in In

inf
v∈Xεn

s,t±
εn
2

(ϕ(v)− Φ)(t− s)

,
each converging to p(X). These sequences can be used to accept or reject the ε-

strong path with the exact probability p(X) using retrospective Bernoulli sampling

(Algorithm 2). Algorithm 4 illustrates this procedure.

[Pollock et al., 2016, Algorithm 4] is also suggested to be employed as an ε-strong

algorithm, and they observe that numerically it is superior in convergence speed to

Algorithm 4.
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Algorithm 4 ε-strong rejection sampler (Algorithm 10 of Pollock et al. [2016])

Given X(0) = x:
1. Simulate y = X(T ) ∼ h(·).
2. Simulate initial layers

(L↓
0,T , L

↑
0,T , U

↓
0,T , U

↑
0,T ) ∼Wx,y

0,T

according to procedure (1) of Section 2.2.2, and calculate ϕ↓1, ϕ
↑
1.

3. Simulate V ∼ U [0, 1].

4. Then while ϕ↓n ≤ V ≤ ϕ↑n:
(a) Find

[s, t) = arg max
[s′,t′)∈I

 sup
v∈Xn

s′,t′±
1
2
εn
s′,t′

ϕ(v)− inf
v∈Xn

s′,t′±
1
2
εn
s′,t′

ϕ(v)

 (t′ − s′)

 .

(b) Simulate a midpoint and new layers over the interval [s, t] according to pro-
cedure (2) of Section 2.2.2.

(c) Refine this layer according to procedure (3) of Section 2.2.2.

(d) Set n← n+ 1, update Xn+1 and calculate ϕ↓n, ϕ
↑
n.

5. Accept Xn if V ≤ ϕ↓n, else reject and return to step 1.

We note that despite the use of the Lamperti transform, as for the Brownian motion

example this method is not entirely restricted to one-dimensional diffusion processes.

It is also applicable to multi-dimensional processes whose diffusion coefficients can be

transformed to unity. A class of such processes are, for example, those with diffusion

coefficient a multiple of the identity matrix.

2.2.4 Example: Multidimensional diffusions via rough paths

A very general algorithm for ε-strong simulation of solutions to multi-dimensional

stochastic differential equations has been constructed in Blanchet et al. [2017]. It

is based on quite different ideas, derived from the theory of rough paths. Rough path

theory provides a comprehensive theory of integration against Hölder-continuous func-

tions which embraces much of the older principle theories of integration, including the

Riemann-Stieltjes and Young integrals discussed in 2.1.2, and the Ito integral discussed

in 2.1.3. Since we are mainly concerned with SDEs driven by Brownian motion, we

will try to present the results we require in fairly elementary terms and avoid any more

abstract formalism.

The attractiveness of rough path theory as a tool for constructing ε-strong algorithms

for SDEs is that its definition of an integral both i) takes the form of a limit of a

Riemann-like sum, and ii) makes the integral a continuous function of the driving

Brownian motion (in a sense to be made precise below). By sampling the driving

Brownian motion on a fine discrete grid to obtain a close approximation to the whole

Brownian path, and then passing this discrete sample through a discretisation scheme

derived from the the Riemann-like sum (analogously to (2.3) for the Ito integral),
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one might hope that the continuity guarantees a result “close” to the SDE solution.

Remarkably, the paper under discussion shows this idea can be made to work: in

particular, it provides the necessary quantitative estimates of continuity constants to

establish how fine a discrete grid is necessary, and provides an algorithm for carrying

out the simulations.

It is not proposed to address much of the algorithmic detail in the paper itself here,

since it is quite involved, but rather to give a short, self-contained account motivating

the use of rough paths for ε-strong estimation, and briefly detailing some background

material in rough paths useful for understanding a crucial definition in it.

Unfortunately, computational considerations meant we were unable to use this algo-

rithm directly in chapter 4. The issue we encountered is briefly touched on in Section

7, item 2 on pg. 43 of the paper, and relates to the trade-off between two tuning

parameters α and β which must be chosen under the constraints that α ∈ (1/3, 1/2)

and β ∈ (1 − α, 2α). Theorems 2.1 and 2.2 quoted below imply that the further both

α and β are from 1/2, the finer the dyadic grid on which the Brownian path must be

simulated. Conversely, the upper bound required by [Blanchet et al., 2017, Lemma

5.2, condition (5.9)] is forced to be small by values of α and β near 1/2, and is largest

(and therefore weakest) for α near 1/3 and β near 2/3. Thus values of α, β nearer 1/2

require sampling on a very fine grid Dn to meet condition (5.9), whereas values of α

nearer 1/3 and of β nearer 2/3 also require sampling on a very fine grid Dn to ensure

that G∆2α−β
n in Theorems 2.1 and 2.2 is smaller than the chosen ε.

In practice, it was found that by choosing α very near to 1/3, it was possible to

meet condition (5.9) reasonably easily, but that ensuring the resulting G∆2α−β
n was

sufficiently small required a prohibitively large n for the extensive simulation required

by our multilevel splitting algorithms. However, increasing α towards 1/2 resulted in

difficulties meeting condition (5.9) arising before a sufficient compensating decrease in

G∆2α−β
n was obtained. It is possible that a more careful computation implementation

could mitigate this issue.

However, we hope the account below complements the exposition of Blanchet et al.

[2017] and is of some independent interest.

Some motivational remarks

Here we begin with the stochastic differential equation

dX(t) = a(X(t))dt+ b(X(t))dB(t) (2.9)

on the interval t ∈ [0, 1], where B(t) is d-dimensional Brownian motion, b : Rd′ → Rd′×d,

a : Rd′ → Rd′ . We take the initial condition X(0) = x0, and write (for example) Bi for

the i-th component of the vector B.

Rather than the usual Ito solution, X is defined to be a solution to this equation under
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the following condition (see Blanchet et al. [2017, p. 31]). Let Ai,j : [0,∞)2 → R for

i, j = 1, . . . , d be functions satisfying

Ai,j(r, t) = Ai,j(r, s) +Ai,j(s, t) + (Bi(s)−Bi(r))(Bj(t)−Bj(s)), (2.10)

for any s ∈ (r, t). More succinctly, this may be written

A(r, t) = A(r, s) +A(s, t) + (B(s)−B(r))⊗ (B(t)−B(s)) (2.11)

where ⊗ is the tensor product ⊗ : (Rd)2 → Rd×d. Then X is a solution to the SDE if

X(0) = X(0), and for each i = 1, . . . , d, almost surely

|Xi(t)−Xi(s)− ai(X(s))(t− s)−
d′∑
j=1

bi,j(X(s))(Bj(t)−Bj(s))

−
d′∑
j=1

d∑
ℓ=1

d′∑
m=1

∂ℓbi,j(X(s))bℓ,m(X(s))Am,j(s, t)| = o(t− s). (2.12)

The restriction (2.10) should be viewed in light of the important case with

Ai,j(r, t) =

∫ t

r
(Bi(u)−Bi(r))dBj(u), (2.13)

where
∫
·dBj is the Ito integral, for which the relation is easily verified:∫ t

r
(Bi(u)−Bi(r))dBj(u) =

∫ s

r
(Bi(u)−Bi(r))dBj(u) +

∫ t

s
(Bi(u)−Bi(r))dBj(u)

= Ai,j(r, s) +

∫ t

s
(Bi(u)−Bi(s))dBj(u) +

∫ t

s
(Bi(s)−Bi(r))dBj(u)

= Ai,j(r, s) +Ai,j(s, t) + (Bi(s)−Bi(r))(Bj(t)−Bj(s)).

It may be observed that with this choice of Ai,j , the definition (2.12) takes on the

appearance of a higher-order local approximation resulting from a Taylor expansion. A

detailed exposition of this notion of a solution may be found in [Davie, 2008; Friz and

Victoir, 2010, Ch. 8], both of which assume some familiarity of the reader with Terry

Lyons’ theory of rough paths. We provide some motivation below.

The resulting Euler scheme

Before developing this mathematical background, we note the Euler scheme implied

by the above definition. Just as the conventional definition of the Ito integral implies

the following Euler scheme for an SDE, transforming an approximation Bn(ω) of a

Brownian path on the dyadic grid Dn into an approximate solution path X̂n(ω):

X̂n
i (t

n
k+1) = X̂n

i (t
n
k) + ai(X̂

n(tnk)) +
d′∑
j=1

bi,j(X̂
n(tnk))(B

n
j (t

n
k+1)−Bn

j (t
n
k)),
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the rough path-inspired definition implies the following embellished scheme:

X̂n
i (t

n
k+1) =X̂

n
i (t

n
k) + ai(X̂

n(tnk)) +
d′∑
j=1

bi,j(X̂
n(tnk))(B

n
j (t

n
k+1)−Bn

j (t
n
k))

+
d′∑
j=1

d∑
ℓ=1

d′∑
m=1

∂ℓbi,j(X̂
n(tnk))bℓ,m(X̂n(tnk))A

n
m,j(t

n
k , t

n
k+1).

This scheme is intractable if we take An
m,j to be the first iterated integrals described

above, since they cannot be calculated for m ̸= j. For the case m = j, we do however

have that

An
m,j(r, t) = An

m,m(r, t) =

∫ t

r
(Bn

m(u)−Bn
m(r))dBn

m(u)

=
1

2
((Bn

m(t)−Bn
m(r))2 − (t− r)).

In order to obtain a tractable scheme therefore, one can define

Ãn
i,j =

{
1
2

(
(Bn

i (t)−Bn
i (r))

2 − (t− r)
)

if i = j;

0 otherwise.

and use the modified scheme

X̂n
i (t

n
k+1) =X̂

n
i (t

n
k) + ai(X̂

n(tnk) +
d′∑
j=1

bi,j(X̂
n(tnk))(B

n
j (t

n
k+1)−Bn

j (t
n
k)) (2.14)

+
d′∑
j=1

d∑
ℓ=1

d′∑
m=1

∂ℓbi,j(X̂
n(tnk))bℓ,m(X̂n(tnk))Ã

n
m,j(t

n
k , t

n
k+1). (2.15)

This in fact is what is used (see [Blanchet et al., 2017, Eqn 2.4]). Replacing the

intractable off-diagonal terms with 0 introduces an approximation error in X̂n beyond

that which is to be controlled by the following rough path considerations. This error

is a technical detail which can be controlled, but the analysis is a departure from our

outline of the role of rough path theory in constructing ε-strong approximations and

we refer the reader to the discussions of the parameter ΓR in Blanchet et al. [2017,

Section 6], in particular Proposition 6.2.

Pathwise integration, the Ito integral and rough paths

Our procedure falls into four steps. First, we motivate and define a new type of integral,

known as a rough integral. We will see that this definition allows integrating a very

large class of functions against Brownian paths. Next, we quote a result demonstrating

that in fact the new definition coincides exactly with the Ito integral when both exist.

Thirdly we show that the new integration map is in some sense a continuous function of

the driving noise. We will see that although the integral cannot be a continuous function
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of the driving Brownian pathB(ω) alone, it is a continuous function of Brownian motion

together with its first iterated integrals. The final step is to apply this integration theory

to the stochastic differential equation.

Recall that the more common Ito solution to (2.9) is defined using the Ito integral

with respect to Brownian motion. An alternative to the construction presented in

Section 2.1.3 is the following: for a function f : R≥0×Ω→ Rd which is right-continuous,

adapted and locally bounded, and a sequence of partitions (Pn) with mesh → 0 and

n → ∞, the Ito integral may be constructed as the limit in probability of Riemann

sums of random variables [Friz and Hairer, 2014, Proposition 5.1]:∫ t

s
f(r)dB(r) = plim

n→∞

∑
Pn

f(tj−1)(B(tj)−B(tj−1)). (2.16)

This definition is usually extended beyond the class of right-continuous f , but this is

sufficient to note that the limit is not constructed pointwise for each ω ∈ Ω as the limit

of the real sequence

“ lim
n→∞

∑
Pn

f(tj−1, ω)(B(tj , ω)−B(tj−1, ω))
′′, (2.17)

which in general does not exist.

Write ϕ for the solution map (Ito map) defined by Equation 2.16, taking a driving

Brownian path B(ω) to its corresponding Ito solution path X(ω). Then a consequence

of using the weaker probabilistic limit (rather than a pointwise real limit) is that ϕ

cannot be made continuous for any choice of norm on the space of Brownian paths (see

[Lyons, 1991, Theorem 3] and [Friz and Hairer, 2014, Proposition 1.1]). The question of

how [
∫
fdB](ω) is related to the Riemann series

∑
Pn
f(tj−1, ω)(B(tj , ω)−B(tj−1, ω))

along any particular sequence of partitions P (n) is not at all clear.

Suppose it were possible to define an integral against Brownian paths pointwise, with

a continuous solution map. Then an application for ε-strong simulation suggests itself.

Write Φ for this new continuous solution map. Then by simulating a sufficiently close

approximation B̂n(ω) to the Brownian path B(ω) (ie. B̂n is simulated on a sufficiently

fine dyadic grid Dn), the continuity of Φ guarantees that the solution paths Φ(Bn(ω))

and Φ(B(ω)) can be made arbitrarily close in an appropriate sense. Rough path theory

provides a construction for exactly such a Φ, known as the Ito-Lyons map, in a rather

general setting. Here we are concerned only with constructing Φ for SDEs driven by

Brownian motion, which turns out to be the simplest case.

The reason for this, together with an informal justification for the solution defini-

tion (2.12), should be made apparent by the following discussion. Recall that when

discussing the Young integral, we quoted the fact that for f, g : [0, 1] → R which are
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α, β-Hölder continuous respectively with α+ β > 1, the Riemann sums

Sn =
∑

[s,t]∈P (n)

f(s)(g(t)− g(s)) (2.18)

converge to a limit independent of (P (n)).

The insight of rough path theory in this setting is that the Riemann sums in Equa-

tion (2.18) fail to converge for α, β < 1/2 because the “rectangular approximation”

f(s)(g(t) − g(s)) for the contribution to the integral between s and t is too loose.

Moreover, convergence can be ensured for these “rougher” paths by using higher order

approximations for the local contributions. The case in which f, g are α-Hölder con-

tinuous for some 1/3 < α ≤ 1/2, as holds for two paths of Brownian motion, turns out

to be the simplest. It requires only a second order approximation to obtain convergent

Riemann-type sums. The reason for this may be illustrated informally as follows:

Suppose initially that f(t) = h(g(t)) for some continuously differentiable function h

first. Then we might want

“

∫ t

s
f(u)dg(u)” = “

∫ t

s

[
f(s) + (f(u)− f(s))

]
dg(u)”

≈ h(g(s))(g(t)− g(s)) + h′(g(s))“

∫ t

s
(g(u)− g(s))dg(u)”

If we are able to define the iterated integral of g against itself,
∫ t
s (g(u) − g(s))dg(u),

this suggests an altered Riemann-type sum to define the LHS integral. In the case of

Brownian paths with g(u) = B(u), it is easy to define this integral: we can simply take

B(ω; s, t) =
∫ t

s
(B(u, ω)−B(s, ω))dB(u, ω)

to be the usual Ito integral. But instead of defining
∫ T
0 h(B(ω))dB(ω) in the Ito sense,

we instead try to define it as the limit as n→∞ of the sequence

Sn(ω) =
∑
[s,t]

[
h(B(s, ω))(B(t, ω)−B(s, ω)) + h′(B(s, ω))B(ω; s, t)

]
.

The intuition here2 is that since Brownian motion is α-Hölder continuous for all 1/3 <

α < 1/2, neither B(t)− B(s) ∼ |t− s|α nor B(s, t) ∼ |t− s|2α vanish as the mesh size

|P (n)| → 0; hence including the additional iterated integral term is necessary. On the

other hand, all higher order terms ∼ |t− s|3α,∼ |t− s|4α, . . . do vanish in the limit, so

this single additional term should be sufficient.

2made formal in Lemma 9 below; see also [Friz and Hairer, 2014, p. 16].
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The rough integral, and rough SDEs

We’ll now formally define the rough integral against Brownian motion that was infor-

mally described above. In order to do this, we will rely on two crucial facts: first,

the already noted α-Hölder continuity of Brownian paths for all α ∈ (1/3, 1/2); and

second, an analogous property of the iterated integrals, which we now establish. We

denote the space of α-Hölder functions [0, T ] → Rd by Cα([0, T ],Rd). Say a function

F : [s, t]2 → Rd is in C2α
2 ([0, T ]2,Rd) if

||F ||2α := sup
s<t

||F (s, t)||
|t− s|2α <∞ ,

which can be interpreted as a “diagonal” Hölder condition, in that F is required not

to be Hölder continuous in s or t individually, but between s and t.

Recall the classical Kolmogorov continuity theorem:

Theorem 7. Suppose that the random variable X : [0, T ]→ Rd is such that

E|Xs,t|γ ≤ K|t− s|β

for some γ > 0, β > 1, constant K > 0, and all s, t ∈ [0, T ]. Then X has a continuous

modification, and in particular a modification which is α-Hölder continuous for all

α < (β − 1)/γ.

A more general form of this theorem can be used to establish the “diagonal Hölder”

condition.

Theorem 8. Extended Kolmogorov continuity theorem ([Friz and Hairer, 2014, The-

orem 3.1]): suppose that X : [0, T ]→ Rd, X : [0, T ]2 → Rd are such that

E|Xs,t|γ ≤ K1|t− s|β ,
E|Xs,t|

γ
2 ≤ K2|t− s|2β

for some γ > 0, β > 1, K1,K2 > 0, and all s, t ∈ [0, T ]. Then (X,X) has a modification

such that X is α-Hölder continuous, and X is diagonal 2α-Hölder continuous, for all

α < (β − 1)/γ.

The following lemma establishes that Theorem 8 applies to the pair (B,B) for all

α ∈ (1/3, 1/2) almost surely.

Lemma 9. [Friz and Hairer, 2014, Theorem 3.4] The extended Kolmogorov continuity

theorem applies to (B,B) for all β > 1, with γ = 2(β − 1).

E|Xs,t|γ ≤ K1|t− s|β ,
E|Xs,t|

γ
2 ≤ K2|t− s|2β

Writing Cα([0, T ],Rd) for the space of pairs (X,X) with X ∈ Cα([0, T ],Rd), X ∈
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C2α
2 ([0, T ]2,Rd), this establishes that, almost surely, rough Brownian paths are in Cα

for all 1/3 ≤ α < 1/2. We now quote a result which avers the existence of the rough

integral against Brownian motion for suitable paths.

Again taking 1/3 ≤ α < 1/2, say that X(ω) ∈ Cα([0, T ],Rd′) is controlled by B(ω) if

there exists an X ′(ω) ∈ Cα([0, T ],Rd′×d) and R(s, t;ω) with ||R(s, t;ω)||2α < ∞ such

that

X(t, ω)−X(s, ω) = X ′(s, ω)(B(t, ω)−B(s, ω)) +R(s, t;ω).

Here X ′ is an extended notion of the derivative of X. The case X = F (B), X ′ =

(DF )(B) is a concrete example. In general, X ′ is known as a Gubinelli derivative of

X and may not be unique. We write D2α
B(ω) for the space of pairs (X,X

′)(ω) controlled

by B(ω).

Theorem 10. [Friz and Hairer, 2014, Prop. 5.1] Let H1 be the null set on which

Lemma 9 fails, and let (X,X)(ω) ∈ D2α
B(ω) for all ω outside the null set H2. Let also

(P (n)) be a sequence of partitions with |P (n)| → 0. Then the sums

Sn(ω) =
∑

[s,t]∈P (n)

(
X(s, ω)(B(t, ω)−B(s, ω)) +X ′(s, ω)Bs,t(ω)

)
converge to a limit independent of the sequence (P (n)) for all ω ∈ (H1 ∪ H2)

c. The

rough integral of X against B = (B,B) is then defined by∫ T

0
X(u)dB(u) = lim

n→∞
Sn.

Moreover, we have almost surely the equality∫ T

0
f(B(u)))dB(u) =

∫ T

0
f(B(u))dB(u),

where the integral on the left is the rough integral, and that on the right is the Ito

integral.

We sketch here the short proof of the almost sure equality of the rough and Ito integrals,

since this is the main point of our discussion:

Proof. For any sequence of partitions P (n), the convergence in probability of∑
[s,t]X(s)(B(t) − B(s)) implies the convergence almost surely along a sub-sequence

of the same, where the particular domain of almost sure convergence depends on the

sequence of partitions.

It is sufficient then to show that E[(
∑

[s,t]X
′(s)B(s, t))2] → 0 as |P (n)| → 0. Then for

P (n) = (t0, . . . , tm), writing

Sk =

k−1∑
i=0

X ′(ti)B(ti, ti+1))
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then Sk is a martingale, so we have

E[(
∑

X ′(s)B(s, t))2] = E[(
∑

(Sk − Sk−1))
2]

=
∑

E[(Sk − Sk−1)
2]

≤ sup
s,ω
|X(s, ω)|2

∑
E[B(s, t)2]

≤ C
∑

(s− t)2

→ 0 .

We now quote the main theorem characterising rough solutions to stochastic differential

equations (we do not concern ourselves here with the second component of the rough

solution described in this result):

Theorem 11. [Friz and Hairer, 2014, Theorem 9.1] Let a : Rd → Rd be Lipschitz

continuous, b : Rd → (Rd)2 three times continuously differentiable. Let also X(0) ∈ Rd.

Then almost surely there is a unique rough solution (X,X) to

dX(t) = a(X(t))dt+ b(X(t))dB(t)

with the initial condition X(0) = X(0), and its first component X is a solution to

the corresponding Ito stochastic differential equation. Moreover, X(ω) is a continuous

function of the driving Brownian motion (see [Friz and Hairer, 2014, Theorem 8.5]).

Finally, the connection to the Euler scheme of Equation 2.12 is drawn in [Friz and

Hairer, 2014, Section 8.7]: suppose (X, f(X)) ∈ D2α
B ; then by an analysis of the size

of the error in the rough approximation, it can be shown ([Friz and Hairer, 2014, Eqn

8.13]) that

X(s)−X(t) = f(X(s))(B(t)−B(s)) + (Df)(X(s))f(X(s))B(s, t) + o(|t− s|).

This idea is developed in Davie [2008] for numerical approximations.

The continuity argument

Recall that earlier in this section, we suggested that by simulating a “sufficiently close”

approximation Bn(ω) to the Brownian path B(ω), continuity of the Ito-Lyons solution

map Φ guarantees that the solution paths Φ(Bn(ω)) and Φ(B(ω)) can be made close

in an appropriate sense. We now give a little detail on this point.

Let Dn = {tnk : k = 0, . . . , 2n−1+1} be the dyadic rationals of order n, andWn
i,k a system

of independent standard normal random variables for i = 1, . . . , d′, n = 1, . . . ,∞,

k = 1, . . . , 2n−1. The Lévy construction of Brownian motion ([Mörters and Peres,
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2010, Section 1.1.2]) uses the approximating sequence (Bn) where

Bn(tn2k+1) =
1

2

(
Bn−1(tn−1

k ) +Bn−1(tn−1
k+1)

)
+ 2−

n+1
2 Wn

k+1,

(together with linear interpolation between these points, which we need not worry

about). The right notion of “sufficiently close” then turns out to be “using Bn with

n sufficiently large that the constants K1, K2 in the Extended Kolmogorov continuity

theorem can be sampled explicitly”. Constructing these upper bounds K1 and K2 is

where much of the detailed algorithmic constructions fall, which we do not develop

here. [Blanchet et al., 2017, Sections 4-5] contain the relevant details.

The main theorem may be summarised in the following way:

Theorem 12. [Blanchet et al., 2017, Theorems 2.1, 2.2] i) It is possible to sample

explicitly and exactly the constants K1(ω), K2(ω) in the extended Kolmogorov criterion

so that

sup
s,t∈[0,T ]

||Bs,t(ω)||∞ ≤ K1(ω)|t− s|α and

sup
s,t∈[0,T ]

||Bs,t(ω)||∞ ≤ K2(ω)|t− s|2α ,

jointly with an n-th dyadic approximation (Bn(s, ω))0≤s≤T to a Brownian path for any

n sufficiently large.

ii) Let X̂n(ω) be the corresponding approximation to X(ω) obtained by using the Euler

scheme, and let β ∈ (1− α, 2α). Suppose that

||a||∞, ||∇a||∞, ||b||∞, ||b′||∞, ||b′′||∞, ||b′′′||∞ ≤M

for some constant M . Then it is possible to find a constant G(ω) in terms of K1,K2

and M , which does not depend on n, such that

sup
t∈[0,T ]

||X(t, ω)− X̂n(t, ω)||∞ ≤ 2−n(2α−β)G(ω)

iii) As an immediate corollary to ii), given ε > 0 and having sampled G(ω), it is possible

to choose an n so that

sup
t∈[0,T ]

||X(t, ω)− X̂n(t, ω)||∞ ≤ ε .

As an immediate consequence, given any finite sequence ε1 > ε2 > · · · > εm > 0, and

having sampled G(ω), it is possible to find a sequence of positive integers n1, . . . , nm

so that condition iii) is satisfied with each pair (εk, nk), so this theorem outlines a true

ε-strong algorithm in the sense of section 2.2.1.

The full procedure is described in Algorithm 5.
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Algorithm 5 Epsilon-strong simulation via rough paths (based on Blanchet et al.
[2017]

Given ε > 0, and M as above:
1. Simulate N sufficiently large that the Hölder continuity constants ||X||α, ||A||2α

can be bounded by K1,K2 respectively, together with K1,K2 themselves, and
also {Wn

k : n = 1, . . . , N}.
2. Calculate G(K1,K2), and if necessary simulate N2 ≥ N such that

G · (2−N2)2α−β < ε,

along with extra Wn
i,k for n = 1, . . . , N2.

3. Form the discrete Brownian path BN2 using the Wn
k , via the Levy construction.

4. Pass BN2 through the discretisation scheme (2.14) to obtain the ε-strong approx-
imation approximation X̃ε.
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Chapter 3

Multilevel splitting and

Sequential Monte Carlo

3.1 Introduction

This chapter begins by introducing rare event estimation, and in particular the mul-

tilevel splitting (MLS) family of algorithms, which provide algorithmic framework for

rare events we consider in Chapter 4. The unbiasedness of the algorithms is discussed,

along with variants and some properties of interest.

We note that one variant of MLS, fixed effort splitting, is a Sequential Monte Carlo

(SMC) algorithm. Since in chapter 5 we consider a different rare event algorithm which

falls into this framework, and since the SMC literature provides various guarantees of

useful properties such as unbiasedness and central limit theorems, we take some space

to describe SMC algorithms more generally.

SMC algorithms may be viewed as particle approximations of mathematical models

known as Feynman-Kac models. Since we use the Feynman-Kac framework extensively

in our exposition and analysis in chapters 5 and 6, we conclude by introducing these

models and connecting them to SMC and rare event estimation.

3.2 Splitting for Rare Events

3.2.1 Overview

Rare events are those which have (very) low probability of occurrence. Estimating the

probability of rare events is important, among other places, throughout the natural and

social sciences; see, for example, Rubino and Tuffin [2009, Part II] for a broad range of

applications. The case of interest in this thesis is that where the rare event corresponds

to a continuous-time Markov process hitting a particular “rare” set of interest before

(or at) a specified stopping time. (Such rare event problems are sometimes known as

dynamic rare events, as distinguished from static rare events for which one considers
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whether the whole path of X falls inside a specified rare set; this distinction is drawn

for example in Johansen et al. [2006].)

We consider two types of stopping time. In chapter 4, the stopping time is the hit-

ting time for the process for another positive recurrent set. In chapters 5 and 6, we

also consider the case where the stopping time is simply a chosen constant. These

settings, especially the former, have attracted considerable attention in the literature,

and general solutions centre around simulation-based methods.

The principal approaches for estimation in these settings fall into two broad categories:

importance sampling and splitting. In importance sampling, one simulates from a pro-

cess for which the event of interest is more likely to occur, and corrects for the change of

sampling distribution using importance weights. With splitting methods, trajectories

which approach the rare set (in an appropriate sense) are replicated (or split) to allow

lower-variance estimation of the target probability. This chapter and the following are

concerned with splitting methods, in particular with implementing such methods with

no bias for a broad class of continuous-time processes. Existing methods depend upon

time-discretisation and hence introduce a difficult to quantify bias. We show in chap-

ter 4 that the adaptation of ideas from the field of ε-strong simulation to this context

allows this bias to be avoided.

Let (X(t) : t ≥ 0) be a continuous-time Markov process in Rd, and let A,B ⊂ Rd

be disjoint sets, with A positive recurrent for X. The problem of interest is that

of efficiently estimating the probability that X reaches set B before set A when this

probability is very small. That is, writing τS for the first hitting time of a set S, the

objective is to estimate

p = P(τB < τA)≪ 1.

The assumption that p≪ 1 rules out direct Monte Carlo estimation, since the compu-

tational cost of generating the event {τB < τA} enough times to get a reliable estimate

will be impractically high. As noted in 3.3.1, the relative variance of the naive esti-

mator obtained from N Monte Carlo simulations is p(1− p)/N · p−2 ≈ 1/(Np) for p

sufficiently close to 1, suggesting that a large multiple of p−1 ≫ 1 trials is needed to

get a reasonable variance.

Multilevel splitting (MLS) is a popular algorithm based on targeting the rare event via

a sequence of more likely events. The idea goes back to the 1951 paper Kahn and Harris

[1951] (which in turn attributes the idea to von Neumann), discussing an application

to the transmission of particles through an impeding barrier in the context of nuclear

shielding. The method is to choose a sequence of nested sets B1 ⊃ B2 ⊃ · · · ⊃ Bm = B,

all disjoint from A, and use a particle system to sequentially estimate P(τBi < τA).

Starting with a particle system of a large enough size, N , a reasonable fraction will

reach B1, allowing an estimate of p1 = P(τB1 < τA). Then, by branching (or “splitting”)

those which do into Ri copies, a healthy population can be maintained to estimate the

subsequent probabilities (as explained below).
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Splitting algorithms have been independently rediscovered many times and in many

variants since the work of Kahn and Harris [1951]. Prominent examples include the

repetitive simulation trials after reaching thresholds (RESTART) algorithm of Villén-

Altamirano and Villén-Altamirano [1994], developed for modelling packet loss proba-

bilities in telecommunications, and the pruning-enriched Rosenbluth method (PERM)

of Grassberger [1997] for simulating polymer chains.

The basic MLS algorithm we present as Algorithm 6 in Section 3.2.2 is that found in

Garvels [2000], in which various implementation issues such as the choice of levels and

importance function are also addressed. The unbiasedness of the algorithm for discrete-

time processes is shown rigorously in Amrein and Künsch [2011], which identifies and

resolves an issue in the original argument of Garvels [2000]. The construction of con-

fidence intervals and the optimal choice of tuning parameters under cost constraints

are addressed in Lagnoux-Renaudie [2006, 2008]. A characterization of the asymptotic

properties of this algorithm, including a central limit theorem, are given in Del Moral

and Lezaud [2006].

Choosing the nested sets and other parameters of the algorithm to maintain a particle

population of stable size, rather than one which dies out or explodes, can be difficult.

One practical variant which removes the difficulty of choosing the splitting ratios Ri in

advance is that of Lagnoux-Renaudie [2009], in which a first particle system is used to

estimate the Ri, and a second system uses these estimated values to estimate p. An

alternative idea is to construct the levels Bi adaptively, for example via the scheme of

Cérou and Guyader [2007]. A generalisation of this scheme has recently been shown be

unbiased in Bréhier et al. [2016].

The proof of unbiasedness in Amrein and Künsch [2011] also holds for a variant in

which the initial system of N particles is kept at fixed size by sampling new trajectories

uniformly at random (with replacement) from the surviving trajectories at each level.

This variant is a type of Sequential Monte Carlo method and can be understood within

the framework of Del Moral [2004]; this approach is also discussed in Garvels [2000]

and elsewhere under the name of fixed effort splitting. It is presented as Algorithm 7

in Section 3.2.2.

In this version the sets Bi are still chosen in advance, but the number of particles is

fixed at N for the duration of the algorithm. Rather than independently “splitting”

each path which survives to Bi into a pre-determined number of offspring, exactly

N particles are resampled (i.e. sampled with replacement) from among the surviving

particles. This removes the difficulty of choosing a suitable splitting ratio in order to

arrive at a stable population size, but it is more difficult to understand the variance

properties of this algorithm and even the asymptotic variance expression is somewhat

more complex than that of the simple algorithm.

Other resampling schemes have also been considered. For example, Amrein and Künsch

[2011] describes a variant in which at each level, new trajectories are sampled uniformly
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at random from the successful pool and propagated until fixed number of successes at

the next level are achieved (in this case, they demonstrate that unbiasedness continues

to hold). A very similar idea is the Alive particle filter for SMC algorithms with {0, 1}-
valued potential functions of Del Moral et al. [2015]. These also provide unbiased

estimates of normalizing constants the rare event probability. We did not experience

difficulties with extinction of the particle system in our experiments, and in this thesis

we concentrate only on the basic fixed-splitting and fixed-resampling schemes already

described. However, incorporating this approach within the exact MLS framework that

we present would be interesting because it would automatically mitigate the influence

of poorly chosen intermediate levels, though at the cost of further randomizing the

computational cost.

Related to this last point, we observe explicitly that all these splitting-type rare event

algorithms have a random computational cost, since trajectories are sampled not over

a fixed time interval but for as long as necessary until one or another set is hit. (Indeed

this is true also of the naive Monte Carlo rare event estimate described at the beginning

of this section). Several approaches to reducing the cost associated with long excursions

(particle trajectories which take a very long time to reach Bi∪A) have been developed.

One group of techniques known as truncation methods, neatly summarised in [L’Ecuyer

et al., 2007, Section 1.2.2], relies on killing trajectories which reach Bi for some i and

then return back to Bi−β for some integer β. The most straightforward implementation

simply kills all trajectories which fall back down β levels. Naturally this introduces

a bias into the estimator. More sophisticated variations, known as Russian roulette

methods, restore unbiasedness by a combination of killing trajectories which fall back

β levels with a certain probability, and assigning appropriate weights to the particles.

Detailed examples of such approaches, together with proofs of their unbiasedness, may

be found in [L’Ecuyer et al., 2007, Section 2.7].

The trade-off in using truncation methods is increased variance in the estimator, ei-

ther from introducing random particle weights, from inducing more variance in the

number of simulated chains, or by inducing stronger correlations between the particle

trajectories. An additional limitation is that truncation methods remain vulnerable to

trajectories which take long excursions without crossing either up or down levels.

An alternative approach is to impose a strict limit tmax on the length of time for which

the user is willing to wait for a trajectory to reach Bi∪A, having reached Bi−1. Again,

the simplest approach of simply killing trajectories which fail to achieve this before time

tmax introduces bias into the estimator. This is known as user-impatience bias, and is

discussed for example in Thönnes [1999] in the context of the coupling-from-the-past

technique for perfect simulation of Markov chains.

In the wider SMC context (see section 3.3), a more careful alternative to killing trajec-

tories which have run for too long may be found in Anytime Monte Carlo techniques,

described for Sequential Monte Carlo in Paige et al. [2014] and Murray et al. [2021].
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Rather than being assigned a fixed number of particles and requiring a random run-

time, such anytime algorithms start with a fixed computing budget. They maintain a

running estimate, which improves as more computation is carried out within the fixed

budget. Moreover, like the conventional MLS Algorithm 6 but unlike its SMC alterna-

tive Algorithm 7, there is no need to wait for all particles to reach a certain level before

resampling.

Paige et al. [2014] modifies the standard Sequential Monte Carlo method (Algorithm 10)

in such a way that there is no need to wait for all N sampling steps to terminate at

steps (1) and (4a). Instead, samples are split into multiple copies immediately as they

arrive, with the number of copies and assignation of weights to each copy chosen in

such a way as to ensure unbiasedness of the resulting estimator. Applied to SMC-

Multilevel Splitting (Algorithm 7), this results in something similar to conventional

MLS (Algorithm 6), although the details of splitting numbers differs considerably.

Murray et al. [2021] shows that if simulating from qk in Algorithm 10 (SMC) can be

too expensive, any maximum simulation time tmax may be stipulated, and approximate

simulations from qk obtained at tmax, with exact simulation from qk guaranteed in the

limit tmax → ∞. However, this does not appear to be directly applicable to splitting

for rare events, since the unnormalised importance weights at level i for Algorithm 7

are simply 0 or 1 according to whether the particle reached level i or not, whereas the

approximate samples from qk are not guaranteed to lie in A ∪Bi.

3.2.2 Multilevel splitting

Multilevel splitting requires the specification of a sequence of nested events Rd ⊃ B1 ⊃
B2 ⊃ · · · ⊃ Bm = B in such a way that the probabilities

pi :=

P(τB1 < τA) , i = 1

P(τBi < τA | τBi−1 < τA) , 2 ≤ i ≤ m

are large relative to p, and may consequently be estimated more efficiently.

In order to do this, it is convenient to assume the existence of a continuous function

ξ : Rd → R of which the boundaries of A and Bi are level sets. That is, we suppose

that there are real numbers zA < z1 < z2 < · · · < zm = zB such that

A = ξ−1 ((−∞, zA]) , Bi = ξ−1 ([zi,∞)) ,

with boundaries ∂A = ξ−1({zA}), ∂Bi = ξ−1({zi}). The function ξ has numerous

names in the literature, including the reaction co-ordinate, and is typically defined

such that higher values represent locations closer to B, as it is throughout this paper.

We take (X(t) : t ≥ 0) to be a continuous-time Markov process with almost surely

continuous sample paths (the central example of diffusion processes will be the focus of

our algorithmic constructions). We take X(0) to be distributed according to an initial

35



A

B

B1
B2 B3

Figure 3.1: An illustration of multilevel splitting for a single particle system. The par-
ticle begins at the black node, and each branch splits into two i.i.d copies upon reaching
a set Bi for the first time. Branches which reach A terminate there. Those which reach
B are used to form an estimate of the rare event probability P(process hits B before A).

distribution λ, where the support of λ is contained in ξ−1 ([zA, zB)) (so X may begin on

the boundary ∂A of A; this choice is made for notational convenience, and the support

of λ may be taken instead to be all of Rd with only minor modifications). Except where

necessary, dependence upon λ will be suppressed from our notation.

Write τi for τBi , and define σi = τA ∧ τi to be the first hitting time of A ∪ Bi for X.

Note that τA, τi, σi are equivalently the hitting times for the one-dimensional process

[ξ(X)]s = ξ(Xs) of {zA}, {zi} and {zA, zi} respectively. In an algorithmic implementa-

tion, it is often more convenient to use ξ(X) to decide when a level has been crossed

if X has dimension greater than one. We remark that the process ξ(X) is not in gen-

eral a Markov process, so it is not possible to reduce all problems of this form to the

univariate Markovian process setting.

The idea of MLS is to run a particle system in which each particle splits into several,

say Ri, copies immediately upon first reaching a set boundary ∂Bi; alternatively, it is

terminated upon reaching ∂A. The splitting is managed so that a healthy system of

particles is available for estimating each pi. Since p =
∏m

i=1 pi, if we have an estimator

p̂i for each pi, then
∏m

i=1 p̂i is a natural estimator for p. The p̂i are defined as follows:

suppose that we begin with N0 particles, of which N1 reach level B1 before A. Then

we estimate p1 with

p̂1 =
N1

N0
.

Suppose that each of these N1 surviving particles is split into a constant number R1 of

copies immediately upon reaching B1, and that N2 of the branched trajectories reach

B2 before A. Then we estimate p2 with

p̂2 =
N2

R1N1
.

Continuing in this way, one obtains a sequence of estimators p̂1, . . . , p̂m of p1, . . . , pm

which may be multiplied together to give the estimate

p̂ =

m∏
i=1

p̂i =
Nm

N0
∏m−1

i=1 Ri

for p.
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This estimator is unbiased; a proof may be found in [Amrein and Künsch, 2011, Section

3, Proposition 3.1]. We quote this result and its proof shortly, since we use a similar

argument in Proposition 4.4.3 in Section 4.4.3 to establish the unbiasedness of the

splitting-type algorithm which we develop later.

Provided that zi and Ri are well-chosen, this estimate can be much more efficient than

näıve Monte Carlo estimation. For instance, choosing zi such that pi = p1/m, and

choosing Ri with small variance (but i.i.d for each particle) such that E[Ri] = p−1
i , the

relative variance of p̂ is reduced to approximately O(p−1/m). See Glasserman et al.

[1999]; Lagnoux-Renaudie [2006], for more detail on parameter choice and asymptotic

variance calculations.

It is convenient to work with the discrete-time pair-process Ui = (σi, X(σi)), i =

1, . . . ,m, i.e. the values of X at its splitting times together with the splitting times

themselves. (Note that ifX hits A before Bi, then σj = τA for every j ≥ i, so (σi, X(σi))

is an absorbing state). Let S be the Borel sigma algebra associated with R≥0 × Rd,

and let Mi : (R≥0 × Rd) × S → [0, 1] denote the Markov kernels of this discrete-time

process. Finally, we define potential functions Gi : R≥0 × Rd → {0, 1} on the state

space of this pair process as indicators of the sets Bi for the process (Ui):

Gi(t, x) =

1, if ξ(x) ≥ zi,
0, otherwise.

A full description of multilevel splitting is given in Algorithm 6.

Algorithm 6 Idealised Multilevel Splitting

Given λ together with Gi, Mi for i = 1, . . . ,m, an initial number of particles N0, and
splitting ratios R1, . . . , Rm−1:

1. For each j = 1, . . . , N0, draw independently Xj
1(0) ∼ λ and U j

1 ∼
M1

((
0, Xj

1(0)
)
, ·
)
.

2. Let S1 = {U j
1 : G1(U

j
1 ) = 1} be a list of the the surviving paths, and setN1 = |S1|.

3. For i = 2, . . . ,m:
(a) If Ni−1 = 0, return p̂ = 0.

(b) Else given Si−1 = {Ū j
i−1}

Ni−1

j=1 , for all (j, k) ∈ {(j′, k′) :

1 ≤ j′ ≤ Ni−1, 1 ≤ k′ ≤ Ri−1} sample independently U j,k
i ∼Mi(Ū

j
i−1, ·).

(c) Let Si = {U j,k
i : Gi(U

j,k
i ) = 1}, and Ni = |Si|.

4. Return

p̂ =
Nm

N0
∏m−1

i=1 Ri

.

Proposition 1. [Amrein and Künsch, 2011, Appendix B.2]

E[p̂] = p.

Proof. We consider the discrete-time Markov process (Ui)
m
i=0. Let Mi denote the tran-

sition kernels of this process at time i. Let alsoMi:j =Mj ◦Mj−1◦· · ·◦Mi+1 denote the
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elements of the associated two-parameter dynamic semigroup, describing the evolution

of the process from time i to j. Note that for every i, ∆ = R × A is an absorbing set

for Mi since if X(σi) ∈ A, σj = σi for all j > i.

Define F0 to be the sigma algebra generated by {U j
0 : j = 1, . . . , N0}, Fk = Fk−1 ∨

Σ(U j
k : 1 ≤ j ≤ Nk) for k = 2, . . . ,m, so that (Fk)

m
k=1 is the natural filtration of the

process (Ui)
m
i=0.

The following recursion holds for the number of particles successfully reaching Bi given

Fi−1, which is immediate from the definition ofMi: that for any function hk : R×Rd →
R which is equal to 0 on ∆:

E
[Ri−1Ni−1∑

j=1

hi

(
U j
i

) ∣∣∣∣Fi−1

]
= Ri−1

∑
k:G̃i−1(Uk

i−1)=1

∫
hi(u)Mi

(
Uk
i−1, du

)
. (3.1)

(taking R0 = 1) which follows since each U j
i which is a descendent of any particular

Uk
i−1 has the same marginal law.

Recall the estimators p̂i for pi:

p̂i =

N1
N0
, i = 1, and

Ni
Ri−1Ni−1

, 2 ≤ i ≤ m.

It holds that for 1 ≤ k,

E

[
m∏
i=k

p̂i

∣∣∣∣∣Fk−1

]
=

1

Nk−1

∑
j:G̃k−1(U

j
k−1)=1

(
1−M(k−1):m

(
U j
k−1,∆

))
,

by backwards induction on k, starting with the case k = m. Note that for the case

k = 1, each term in the sum on the RHS is the probability that a particle with a given

starting value successfully reaches B before A. The result is then obtained upon taking

a further expectation over the starting value.

The case k = m:

p̂m =
Nm

Rm−1Nm−1

=
1

Rm−1Nm−1

Rm−1Nm−1∑
j=1

G̃m

(
U j
m

)
and the result then follows from taking the conditional expectation, and applying (3.1)

with hi (σ,X (σ)) = IBj (X(σ)).

Now supposing the result holds for k + 1, we show that it holds also for k. We have
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the following chain of equalities (with the convention that G0(U
j
0 ) = 1):

E

[
m∏
i=k

p̂i

∣∣∣∣∣Fk−1

]
= E

[
p̂kE

[
m∏

i=k+1

p̂i

∣∣∣∣∣Fk

]∣∣∣∣∣Fk−1

]
(3.2)

= E

 Nk

Rk−1Nk−1
· 1

Nk

∑
j:G̃k(U

j
k)=1

(
1−Mk:m

(
U j
k ,∆

))∣∣∣∣∣∣∣Fk−1

 (3.3)

=
1

Nk−1

∑
j:G̃k−1(U

j
k−1)=1

(∫
(1−Mk:m (u,∆))Mk

(
U j
k−1, du

))
(3.4)

=
1

Nk−1

∑
j:G̃k−1(U

j
k−1)=1

(
1−

∫
Mk:m (u,∆)Mk

(
U j
k−1, du

))
(3.5)

=
1

Nk−1

∑
j:G̃k−1(U

j
k−1)=1

(
1−M(k−1):m

(
U j
k−1,∆

))
(3.6)

where (3.2) follows from the tower rule, and noting that p̂k is Fk-measurable; (3.3)

from the induction hypothesis; (3.4) from (3.1); (3.5) from expanding and integrating

over Mk(U
j
k−1, du); and (3.6) from the semigroup property.

Moreover, putting k = 1 we have

(3.6) =
1

Nk−1

N0∑
j=1

(
1−M0:m

(
U j
0 ,∆

))

Since
(
1−M0:m

(
U j
0 ,∆

))
= P (τB < τA|X(0)), we see that

E [p̂] = E

[
m∏
i=1

p̂m

]
= P(τB < τA)

as desired.

A small modification to Algorithm 6 gives a variant commonly known as fixed effort

splitting, which can be viewed as a Sequential Monte Carlo algorithm. This connection

has been exploited previously by Cérou et al. [2006] (note that these algorithms are

distinct from those which use SMC to approximate static rare events which depend

upon the trajectory of a process only over a fixed time interval, see Cérou et al. [2012];

Del Moral and Garnier [2005]; Johansen et al. [2006]). In this variant, a number of

particles N to be maintained throughout is chosen in advance, and the splitting of

each individual surviving particle is replaced with resampling from the set of surviving

particles. This is useful in that the procedure does not requite the specification of

tuning parameters R1, . . . , Rm−1. A full description is given in Algorithm 7.

The particle system in Algorithm 7 has the structure of an SMC sampler (see sec-
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Algorithm 7 Idealised MLS via SMC

Given λ together with Gi, Mi for i = 1, . . . ,m, and a fixed number of particles N :
1. For each j = 1, . . . , N , draw independently Xj

1(0) ∼ λ and

U j
1 ∼M1

((
0, Xj

1(0)
)
, ·
)
.

2. Record N1 =
∑N

j=1G1(U
j
1 ).

3. For i = 2, . . . ,m:
(a) If Ni−1 = 0, return p̂SMC = 0.
(b) For j = 1, . . . , N sample independently

U j
i ∼

∑N
k=1Gi−1(U

k
i−1)Mi(U

k
i−1, ·)∑N

k=1Gi−1(Uk
i−1)

.

(c) Record Ni =
∑N

j=1Gi(U
j
i ).

4. Return

p̂SMC =
m∏
i=1

(
Ni

N

)
.

tion 3.3.3 below), with step 3b combining multinomial resampling with propagation

via Mi. The unbiasedness proof of Amrein and Künsch [2011] also applies to Algo-

rithm 7. An alternative but more general point of view from which this derives is the

general theory of SMC estimators in the Feynman-Kac framework described above; see

in particular [Del Moral, 2004, Theorem 7.4.2].

The rare event probability of interest can be interpreted as the normalizing constant

of an excursion-valued Feynman-Kac flow in the sense of [Del Moral, 2004, Section

12.2.6]. This flow has transition densities specified in terms of the underlying dynamics

and stopping times, and zero-one-valued potential functions indicate whether crossing

occurs into Bi or A at each level. Consequently, the SMC variant of MLS admits an

interpretation as a mean field approximation of this flow and the estimator benefits from

the usual theoretical analysis of these, see Del Moral [2004]. This includes inheriting a

strong law of large numbers, a central limit theorem and a proof of unbiasedness. This

theory does not apply directly, however, to the estimator of Algorithm 6.

3.3 Sequential Monte Carlo

As we have noted, many (though not all) popular algorithms for rare event estimation

can be understood as examples of Sequential Monte Carlo methods. These methods

have been closely studied since their introduction in Gordon et al. [1993], and their

properties have been well-described across a large body of literature. Moreover, analysis

of rare event algorithms which fall under the SMC framework is often presented in the

language and context of this wider SMC literature. For this reason, we begin with a brief

description of these methods, and a statement of some important results concerning

them. The material in this section follows the treatments in Doucet and Johansen

[2011] and the recent book Chopin and Papaspiliopoulos [2020].
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3.3.1 Monte Carlo methods

Let η be the density function of a distribution over the sample space X , and let X be

distributed according to η. Our object of interest is the expected value of a function

φ : X → R of X:

I(φ) = Eη[φ(X)] =

∫
φ(x)η(x)dx.

Often it is not possible to calculate this integral directly, but it is possible to sample

i.i.d. instances X1, . . . , XN ∼ η for an integer N . In this case, the Monte Carlo

estimator of I(φ) is

ÎMC(φ) =
1

N

N∑
i=1

φ(Xi) =

∫
φ(x)η̂(x)dx (3.7)

where

η̂(x) =
1

N

N∑
i=1

δXi(x).

This can be understood as approximating η by the discrete mass function η̂ using

equally-weighted point masses at each sampled location Xi, and taking an expectation

with respect to η̂. The attractive properties of the estimator ÎMC are that it is unbiased,

and that its variance

Var[ÎMC(φ)] =
1

N

(
E[φ(X)2]− I(φ)2

)
is of order O(1/N) regardless of the dimension of the sample space X .

Algorithm 8 Monte Carlo estimation

1. For i = 1, . . . , N , sample Xi ∼ η.
2. Estimate ÎMC(φ) = 1

N

∑N
i=1 φ(X

i)

It is immediately evident, however, that this type of estimator is not suited to a rare

event problem such as estimating the probability p = P(X ∈ A ⊂ X ) where p≪ 1, for

example. (This corresponds to the choice φ(x) = 1(A).) The relative variance (ie. the

ratio of the variance to the squared mean) of the estimator is p(1− p)/N · p−2 ≈ 1/(Np)

for p sufficiently close to 1. This suggests that a prohibitively large multiple of p−1 ≫ 1

trials is needed for an estimate with a reasonable variance.

This is one example among several of the difficulties posed by this type of straight-

forward Monte Carlo estimation. Other difficulties may be that η requires too much

computing power to sample from in a reasonable algorithm, or is intractable to sample

from at all. All these issues may be dealt with by Sequential Monte Carlo methods.

3.3.2 Sequential Importance Sampling

One way to begin motivating Sequential Monte Carlo is to consider targeting the “in-

accessible” density η (in one of the senses described above) using a sequence of bridging
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densities (ηk)
n
k=1, with ηk : Rk → R+, such that the n-th marginal of ηn coincides with

η: ∫
x1,...,xn−1

ηn(x1:n) = η(xn),

and the ηk have the following sequential structure:

ηn(x1:n) = ηn(xn|x1:n−1)ηn−1(x1:n−1)

= η1(x1)

n∏
k=2

ηk(xk|x1:k−1). (3.8)

We could then obtain samples from η by drawing X1
1 , . . . , X

N
1 ∼ η1, and sequentially

Xi
k ∼ ηk(·|Xi

1:k−1) for i = 1, . . . , N and k = 1, . . . , n. Finally, the Xi
n can be plugged

into the estimator defined in (3.7). This is still an inflexible algorithm, however.

One generalisation is to allow that it may not be possible to sample directly from the

conditional densities ηk(·|x1:k−1). Instead, we relax the requirement (3.8) on the ηk,

and instead specify a sequence of proposal distributions (qk)
n
k=1, qk : Rk → R+ such

that

(qk(x1:k) = 0) =⇒ (ηk(x1:k) = 0)

and which satisfy the same sequential factorisation

qn(x1:n) = q1(x1)
n∏

k=2

qk(xk|x1:k−1).

Sampling directly from the conditional densities ηk(·|x1:k−1) can then be replaced by

importance sampling from the qk(·|x1:k−1). That is, at time 1 one draws a sample

X1
1 , . . . , X

N
1 ∼ q1 and calculates the associated unnormalised and normalised impor-

tance weights w(Xi
1) =

η1
q1
(Xi

1), W
i
1 = w(Xi

1)/
(∑N

j=1w(X
j
1)
)
. The motivation here is

that since

I1(φ) = Eη1 [φ(X)] = Eq1 [φ(X)
η1
q1

(X)],

then
∑N

i=1W
i
1φ(X

i
1) is an unbiased estimator for I1(φ).

Likewise, one could continue to sample Xi
k ∼ qk(·|Xi

1:k−1) and calculate the associated

unnormalised weights

w(Xi
1:k) =

ηk
qk

(Xi
1:k) =

ηk(X
i
1:k)

ηk−1(X
i
1:k−1)qk(X

i
k|Xi

1:k−1)
w(Xi

1:k−1)

and the normalised weights W i
k = w(Xi

k)/
(∑N

j=1w(X
j
k)
)

for i = 1, . . . , N and k =

1, . . . , n. Finally, one would so obtain the unbiased estimate
∑N

i=1W
i
nφ(X

i
n) for In(φ).

Since doing so requires being able to evaluate ηk pointwise, we gain further flexibility

by allowing the densities ηk to be known only up to a normalising constant. That is,

rather than (ηk)
n
k=1, we use a bridging sequence (γk)

n
k=1 with γk = Zkηk, where Zk =
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∫
x1:k

γk(x1:k) is the normalising constant. This more general algorithm is presented as

Sequential Importance Sampling in Algorithm 9. It provides estimates for both In(φ)

and Zn.

Algorithm 9 Sequential Importance Sampling

1. For i = 1, . . . , N , sample Xi
1 ∼ q1(·) and calculate the (unnormalised) importance

weights w1(X
i
1) = γ1(X

i
1)/q1(X

i
1).

2. Calculate also the normalised weights W i
1 =

w1(Xi
1)∑N

j=1 w1(X
j
1)
.

3. For k = 2, . . . , n:
(a) For i = 1, . . . , N , sampleXi

k ∼ qk(·|Xi
1:k−1) and calculate the (unnormalised)

importance weights

wk(X
i
1:k) =

γk
qk

(Xi
1:k) =

γk(X
i
1:k)

γk−1(X
i
1:k−1)qk(X

i
k|Xi

1:k−1)
wk−1(X

i
1:k−1).

(b) Calculate also the normalised weights W i
k =

wk(X
i
1:k)∑N

j=1 wk(X
j
1:k)

4. Estimate

ÎSISn (φ) =

N∑
i=1

W i
nφ(X

i
n),

ẐSIS
n =

1

N

N∑
i=1

w(Xi
n).

We note here that there is nothing special about the final time step n in this algorithm.

Estimators ÎSISk (φ) and ẐSIS
k may be constructed sequentially for each k ≤ n, and in

some applications these intermediate estimators may be of interest in their own right.

However, the variance of the SIS estimators is known to scale extremely poorly with n.

The following section describes how a simple modification to SIS results in an algorithm

with considerably better variance properties.

3.3.3 Sequential Monte Carlo

The main reason for the poor variance behaviour of SIS is that particles which attain

low importance weights at any step k are propagated through to step n. The fix is to

insert an extra step known as resampling between the iterations of SIS, in which the

particle system (Xi
k)

N
i=1 with normalised weights (W i

k)
N
i=1 is replaced by a new system

(X̄i
k)

N
i=1 with equal weights 1/N .

In the simplest form of resampling, this system simply consists of N i.i.d draws from the

empirical measure
∑N

i=1W
i
kδXi

k
(·). In other words, the importance samples and their

weights are leveraged to form an approximate sample from ηk. It should be noted that

other resampling schemes from the SMC literature can also be used; see Gerber et al.

[2019] for a detailed analysis of schemes which might be expected to reduce estimator

variance without introducing any bias.
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The interleaving of SIS and resampling is known as Sequential Monte Carlo, and is

presented in Algorithm 10.

Algorithm 10 Sequential Monte Carlo

1. For i = 1, . . . , N , sample Xi
1 ∼ q1(·) and calculate the (unnormalised) importance

weights w1(X
i
1) = γ1(X

i
1)/q1(X

i
1).

2. Calculate also the normalised weights W i
1 =

w1(Xi
1)∑N

j=1 w1(X
j
1)
.

3. Resampling : resample {Xi
1,W

i
1}Ni=1 to obtain {X̄i

1,
1
N }Ni=1.

4. For k = 2, . . . , n:
(a) For i = 1, . . . , N , sampleXi

k ∼ qk(·|Xi
1:k−1) and calculate the (unnormalised)

importance weights

wk(X
i
1:k) =

γk
qk

(Xi
1:k) =

γk(X
i
1:k)

γk−1(X
i
1:k−1)qk(X

i
k|Xi

1:k−1)
wk−1(X

i
1:k−1).

(b) Calculate also the normalised weights W i
k =

wk(X
i
1:k)∑N

j=1 wk(X
j
1:k)

(c) Resampling : resample {Xi
k,W

i
k}Ni=1 to obtain {X̄i

k,
1
N }Ni=1.

3.3.4 Feynman-Kac formalism

Feynman-Kac models are mathematical models of which Sequential Monte Carlo algo-

rithms such as Algorithm 10 are particle approximations. The exposition of the theory

and practice of Sequential Monte Carlo methods from the point of view of Feynman-Kac

models is the subject of several comprehensive books, in particular Del Moral [2004,

2013]; Chopin and Papaspiliopoulos [2020]. In this thesis it is of relevance mainly in

chapters 5 and 6, in which all the analysis is carried out in terms of these models and

their particle approximations.

Following [Del Moral, 2013, Section 1.4.2], Feynman-Kac models can be motivated as

an extensions of the notion of “change of measure”. Suppose one has a Markov chain

Xp taking values in a sequence Ep of state spaces, and write Pn for the measure of the

path (X0, . . . , Xn). Suppose one also has a sequence Gp : Ep → R+ of non-negative

potential functions. The Feynman-Kac measure Qn is the measure which accounts for

‘twisting” or “re-weighting” the chain Xp by the potential Gp after each transition

([Del Moral, 2013, Equation 1.37]):

dQn =
1

Zn

n−1∏
p=0

Gp(Xp)dPn,

where Zn is the normalising constant ensuring that Qn is a probability measure. The

corresponding unnormalised Feynman-Kac measure is dΓn = ZndQn. Of more interest

to us are the n-th time marginals: for a bounded test function f , the n-th marginal
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measure γn of Γn satisfies

γn(f) = E

f(Xn)

n−1∏
p=0

Gp(Xp)

 , (3.9)

and the corresponding marginal ηn of Qn satisfies ηn(f) = γn(f)/γn(1). If Xn has

transition densities Mn and X0 ∼ λ(·), then (3.9) can equally be written

γn(f) =

∫
f(xn)λ(dx0)G0(x0)

n−1∏
p=1

M(xp−1, dxp)Gp(xp).

For γn we have the immediate recursion

γn(dxn) = γn−1(dxn−1)Gn−1(xn−1)Mn(dxn−1, xn),

from which it immediately follows ([Del Moral, 2013, Lemma 3.2.1, Equation (1.48)])

that

γn(f) = ηn(f)
n−1∏
p=1

ηp(Gp).

The corresponding recursion for ηn is

ηn(dxn) =
ηn−1((Gn−1Mn(·, dxn))

ηn−1(Gn−1)
,

(These basic properties will all be repeatedly used in chapters 5 and 6.)

The close relation between Feynman-Kac models and SMC may be briefly sketched as

follows. Suppose, as in section 3.3.2, one wishes to estimate ηn(φ) for some test function

φ. Take a selection of particles ξ0 = (ξ10 , . . . , ξ
N
0 ) ∼ η0, and a sequence of potential

functions Gp. For time step p = 1, 2, . . . , n, given ξp one resamples a new population

ξ̂p = (ξ̂1p , . . . , ξ̂
N
p ) independently at random from ξp, choosing ξ

j
p proportional to Gp(ξ

j
p).

One then samples ξip+1 ∼Mp+1(ξ̂
i
p, ·) for i = 1, . . . , N . At each time p, one defines the

empirical measure

ηNp (·) = 1

N

N∑
i=1

δξip(·).

Then at time n, one estimates ηn(φ) using the empirical measure ηNn (φ). On the

one hand, it is clear that this is a particle approximation of the Feynamn-Kac model

defined in this section. On the other hand, it coincides with Algorithm 10, with the

potential functions corresponding to the unnormalised weights wk. Hence SMC may

be used for inference wherever an underlying Feynman-Kac model is specified. A more

detailed exposition of the relation between Feynamn-Kac formula and SMC algorithms

can be found in [Del Moral, 2013, Section 4.3], and throughout the book Chopin and

Papaspiliopoulos [2020].

In connection with rare event estimation and multilevel splitting, we note following
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[Del Moral, 2013, Section 1.4.2.2] that with the choice Gp = 1Bp , it follows that γn(1) =∏n−1
p=0 ηpGp = P(Xp ∈ Bp, p = 0, . . . , n). In other words, the SMC variant of multilevel

splitting targets the normalising constant γn(1) of the corresponding Feynman-Kac

model. More details on the connection between rare event estimation and Feynman-

Kac models can be found in [Del Moral, 2004, Section 12.2.5], [Del Moral, 2013, Section

2.7] (including a treatment of multilevel splitting), and [Chopin and Papaspiliopoulos,

2020, Section 17.2.4].
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Chapter 4

Exact multilevel splitting

4.1 Introduction

In this chapter, we describe several algorithms for exact, unbiased estimates of rare

event probabilities for continuous-time Markov processes in the splitting setting. Each

is based on combining the ε-strong sampling procedures introduced in Section 2.2 with

one of the rare event algorithms described in chapter 3.

In 4.1.1, we begin with a slightly fuller discussion of discretisation error and the bar-

rier crossing problem introduced in Section 2.1.4. In 4.4, we set down the notational

scheme that we will employ to describe the action of ε-strong algorithms applied to

existing ε-strong paths. In 4.2, we describe efficient multilevel splitting algorithms in

one dimension which leverage the properties of the ε-strong algorithms of 2.2.2 and

2.2.3 in one dimension. In 4.3, we set down algorithms for the more general multi-

dimensional setting, and establish their unbiasedness. Finally, we illustrate both the

one-dimensional and higher-dimensional algorithms with numerical examples in 4.5.

4.1.1 Discretisation error for continuous-time processes

In the description of multilevel splitting in section 3.2.2, we assumed that we are able

to simulate without approximation the pair Ui = (σi, X(σi)). Since these depend upon

full sample paths of X, it is not apparent that this can be done except when X has an

exceptionally simple form, for example if X is a piece-wise deterministic process. In

practice it is usual to resort to a discretisation scheme (see section 2.1.4). For example,

suppose that X is described by X(0) ∼ λ and

dX(t) = a (X(t)) dt+ b (X(t)) dB(t) (4.1)

for t ∈ [0, T ], where B is e-dimensional Brownian motion for some e ∈ N, and a :

Rd → Rd, b : Rd → Rd×e are sufficiently regular to guarantee the existence of a strong

Itô solution (see for example, [Kloeden and Platen, 2013, Section 4.5] for suitable

conditions).
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We might use an Euler-Maruyama scheme such as the following, defined on a chosen

time-grid tj ∈ P for a partition P of [0, T ]:

X̂(tj+1) = X̂(tj) + a
(
X̂(tj)

)
(tj+1 − tj) + b

(
X̂(tj)

)
(B(tj+1)−B(tj)) . (4.2)

with X̂(0) ∼ λ. Such a scheme can then be used to implement an approximation

of Algorithm 6 as follows: rather than drawing samples from Mi in Steps 1 and 3b,

one runs the discrete scheme until a crossing into A or B is observed at time σ̂i =

minj{tj : X̂(tj) ∈ A ∪ B}, and approximates Ui using (σ̂i, X̂(σ̂i)). Writing M̂i for the

Markov transition kernels of the sequence (Ûi)
m
i=0 =

(
(σ̂i, X̂(σ̂i))

)m
i=0

, this is described

in Algorithm 11.

Algorithm 11 Discretised Multilevel Splitting (Euler-Maruyama method)

Given λ together with Gi, M̂i for i = 1, . . . ,m, an initial number of particles N0, and
splitting ratios R1, . . . , Rm−1:

1. For each j = 1, . . . , N0, draw independently X̂j
1(0) ∼ λ and Û j

1 ∼
M̂1

((
0, X̂j

1(0)
)
, ·
)
.

2. Let S1 = {Û j
1 : G1(Û

j
1 ) = 1} be a list of the the surviving paths, and setN1 = |S1|.

3. For i = 2, . . . ,m:
(a) If Ni−1 = 0, return p̂ = 0.

(b) Else given Si−1 = {Ū j
i−1}

Ni−1

j=1 , for all (j, k) ∈ {(j′, k′) :

1 ≤ j′ ≤ Ni−1, 1 ≤ k′ ≤ Ri−1} sample independently Û j,k
i ∼ M̂i(Ū

j
i−1, ·).

(c) Let Si = {Û j,k
i : Gi(U

j,k
i ) = 1}, and Ni = |Si|.

4. Return

p̂ =
Nm

N0
∏m−1

i=1 Ri

.

This practice is very common in the splitting literature, and more generally when

simulating diffusion processes. For example, in Cérou and Guyader [2007] a formal

algorithm is developed in a continuous-time setting, but the numerical example is dis-

cretised “[finely] enough to avoid clipping the process, which could introduce a bias in

the estimation”. Lagnoux-Renaudie [2009] acknowledges explicitly the bias induced by

discretisation in their application, and proposes a small modification to reduce, but not

eliminate, it. Even Bréhier et al. [2016], which focuses on establishing the unbiasedness

of a particular adaptive multilevel splitting framework in some generality ultimately

invokes time-discretisation to apply the framework to continuous-time processes such

as over-damped Langevin diffusions.

With such a numerical scheme, one is forced to assess the level-crossing problem accord-

ing to the discrete sample paths of X̂. But the law P̂ of X̂ will not in general coincide

with the true finite-dimensional marginal law Pk of (Xt1 , . . . , Xtk) induced by (4.1).

And even if it were possible to get a finite-dimensional sample from P restricted to the

times of the partition, for example by exact simulation, this would give no information

about the sample path over the open intervals (tj , tj+1), during which a crossing may

(or may not) occur.
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The quantities that are needed to carry out Algorithms 6 and 7 are U j
i = (σji , X

j
i (σ

j
i ))

and Gi(U
j
i ). Using ε-strong simulation as described in section 2.2, it is possible to

sample exactly Gi(U
j
i ) without access to U

j
i itself. Later, we show also that the modi-

fication to Algorithms 6 and 7 made necessary by using this approximation does not

affect the unbiasedness of the resulting estimates.

4.2 In one dimension

Before describing a general algorithm for exact rare event simulation, we first briefly

deal with the special case of dimension one. As detailed in sections 2.2.2 and 2.2.3, in

this case we have access to samplers which produce more information about the process

than is generated by general ε-strong samplers. This additional information may be

exploited to construct considerably more efficient rare event estimators.

For clarity of exposition, and since our main concern is the multi-dimensional case, we

concentrate on the use of the algorithm of section 2.2.2. The extension of the methods

to this section to the second algorithm may be accomplished by leveraging, for example,

[Pollock et al., 2016, Algorithm 23]; see also the accompanying examples.

In one dimension, the distinction drawn in 3.2 between the process X and its projection

under a reaction co-ordinate is not meaningful. Without loss of generality we take ξ to

be the identity function, and simply consider the probabilities

P(X hits zi before zA|X hit zi−1 before zA).

4.2.1 Crossing a single barrier

We begin by considering the simpler problem of sampling exactly an indicator random

variable for the event that X hits some target zD during the fixed time interval [0, t],

given that X0 = x0 for some x0 ∈ (−∞, zD). Using the properties described in Sec-

tion 2.2.2, we can immediately write down pseudocode for a procedure which does this,

given in Algorithm 12.

Algorithm 12 Single barrier crossing, 1-D Brownian motion

1. Give Xs = xs, sample Xt ∼ N (xs, t− s).
2. If Xt ≥ zD, return +1. Otherwise, sample bounds

L↓
s,t ≤ ms,t ≤ L↑

s,t, U
↓
s,t ≤Ms,t ≤ U↑

s,t

for X conditional on Xs, Xt.
3. (a) If U↓

s,t ≥ zD, return +1.

(b) If instead U↑
s,t ≤ zD, return −1.

(c) If neither hold, apply Step 2 of 2.2.2 with U∗ = zD and return ±1 accord-
ingly.

In fact, even this algorithm is redundant in that step 2 can be modified to check the

crossing directly. To explain this, we need to look more closely at Step 1 of 2.2.2:

49



• Given B0 = 0, it is possible to sample Bt together with initial layers

(L↓
0,t, L

↑
0,t, U

↓
0,t, U

↑
0,t).

In fact, one has substantial control over the choice of constraint. Given two increasing

unbounded sequences (an)
∞
n=0, (bn)

∞
n=0 with a0 = b0 = 0, the set

R \ (B0 ∧Bt, B0 ∨Bt)

is the disjoint union of all sets of the form

((B0 ∧Bt)− ai+1, (B0 ∧Bt)− ai] ∪ [(B0 ∨Bt) + bj , (B0 ∨Bt) + bj+1),

i, j = 0, . . . ,∞.

By placing an ordering I1 = (i1, j1), I2 = (i2, j2), . . . on the pairs (i, j), the layers can

be initialised by sampling exactly the events

PB0,Bt
0,t (ms,t ∈ [(B0 ∧Bt)− ain+1, (B0 ∧Bt)− ain ],

Ms,t ∈ [(B0 ∨Bt) + bjn , (B0 ∨Bt) + bjn+1])

in sequence n = 1, 2, . . . until a success is obtained. (Recall that we demonstrated

how to sample this type of event by retrospective Bernoulli sampling in Section 2.2.2.)

Sampling the first success at In is equivalent to sampling the initial layers

(L↓, L↑,U↓, U↑) =

((B0 ∧Bt)− ain+1, (B0 ∧Bt)− ain , (B0 ∨Bt) + bjn , (B0 ∨Bt) + bjn+1) .

Then by choosing b1 = zD − (B0 ∨Bt), the initial upper layer immediately determines

whether M0,t ≥ zD. In this case, step 3c of Algorithm 12) is never reached and the

algorithm terminates in a single step.

4.2.2 Crossing a two-sided barrier

Next, we need a procedure to decide which of two given barriers is crossed first. Let

zA < zB be the barriers, and assume X0 = x0 for x0 ∈ (zA, zB). Again, we get a more

efficient algorithm by targeting the barriers when sampling the initial layers. In the

notation of the previous section, we take a1 = zA + (X0 ∧ Xt), b1 = zD − (X0 ∨ Xt).

The initial layers then immediately determine whether X crosses into A or B or both

or neither over the interval [0, t].

4.2.3 Exact splitting in one dimension

Algorithm 13 can be used to specify an exact multilevel splitting algorithm in dimension

one, which is given in Algorithm 14. We assume here a recurrent set (∞, zA], and a

sequence of barriers zA < z1 < . . . < zm, where P(X hits zm before zA) is the rare

event in question.
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Algorithm 13 Double barrier crossing, 1-D Brownian motion

Given barriers zA < zB and Xs = xs ∈ (zA, zB),
1. Sample Xt ∼ N (Xs, t− s).
2. Sample bounds

L↓
s,t ≤ ms,t ≤ L↑

s,t, U
↓
s,t ≤Ms,t ≤ U↑

s,t

for X conditional on Xs, Xt.
3. (a) If zA ≤ L↓

s,t, U
↑
s,t ≤ zB, set (s, t)← (t, 2t− s) and return to 2.

(b) If L↑
s,t ≤ zA and U↑

s,t ≤ zB, return 0.

(c) If L↓
s,t ≥ zA and U↓

s,t ≥ zB, return +1.

(d) If L↑
s,t ≤ zA and U↓

s,t ≥ zB, apply property 3 of section 2.2.2. Using the
new information over the interval [s, t∗], check conditions (b)-(d) of step 4
again, following the listed consequences. If condition (a) holds, repeat with
the information from [t∗, t]. If (a) holds again, set (s, t) ← (t, 2t − s), and
return to 2.

A significant simplification which fails to hold in multiple dimensions is that since the

barrier zD is a single number, knowing that X hits the barrier immediately entails

knowing where it hits the barrier, namely at the only possible location zD itself. (By

contrast, simply knowing that a 2D process Y hits a line, say, gives no information

about where it hits the line.)

Since X is assumed to be a Markov process, this allows us to dispense with saving

most of the details of the path of X. Starting from each level zi, it suffices to determine

whether X hits zA or zi+1 first using Algorithm 13, and to split the successful paths at

the “correct” location zi+1. This is exactly what is exploited below.

Algorithm 14 Exact multilevel splitting, 1-D Brownian motion

Given barriers zA < z1 < . . . < zm, splitting numbers R1, . . . , Rm−1, and x0 ∈ (a, b1):
1. For j = 1, . . . , N , set Xj

0 = x0. Initiate N1 = 0.

2. For j = 1, . . . , N0, sample Gj
1 ∼ Algorithm.13(zA, zi, X

j
0), and update N1 ←

N1 +Gj
1.

3. For i = 2, . . . ,m:
(a) For j = 1, . . . , Ri−1Ni−1, set X

j
i = zi. Initiate Ni = 0.

(b) For j = 1, . . . , N , sample Gi
j ∼ Algorithm.13(zA, zi, X

j
i ), and update Ni ←

Ni +Gj
i .

4. Estimate

p̂ =
Nm

N0
∏m−1

i=1 Ri

.

4.3 Exact simulation of rare events in multiple dimensions

In multilevel splitting, one tracks the progress of X towards A and B using the reaction

co-ordinate ξ, declaring a crossing at level i when the process ξ(X) reaches either zA

or zi. In this section we describe methods for sampling such barrier crossing events

exactly, for Markov processes X with almost surely continuous sample paths for which

an ε-strong method for sampling X exists. Combining these with a slight modification
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of Algorithms 6 & 7 provides a method of obtaining unbiased estimates of rare event

probabilities. Much of what follows is geometrically intuitive, though notationally

cumbersome, and Figures 2.2 and 4.1 are intended to illustrate the intuition which

motivates the accompanying specifications.

Throughout the rest of this chapter we take X to be a diffusion

dXt = a(Xt)dt+ b(Xt)dBt

together with the conditions assumed in Section 2.1.3. For simplicity, we assume further

that X has volatility bounded away from 0, which ensures that X crosses any given

boundary with positive probability over any time interval. We assume also that an

ε-strong algorithm as described in 2.2 has been chosen and is used to carry out the

sampling in Algorithms 15, 16 and 18.

4.4 Notation and operations on ε-strong paths

With Property 4 of Section 2.2 in mind, let (εℓ)
∞
ℓ=1 be a decreasing sequence of tolerances

converging to 0. Write X̃ℓ[s : t] for the ε-strong path X̃εℓ [s : t]. Let (t1, . . . , tK) be the

jump-times of this path, and let t0 = s, tK+1 = t. It is useful to define the associated

discrete-time process (X̃ℓ
k)

K
k=0 where X̃

ℓ
k = X̃ℓ(tk). We define also an augmented process

called the skeleton of X̃ℓ to be the discrete-time process (Z̃ℓ
k)

K
k=0 such that

Z̃ℓ
k = (tk, tk+1, X̃

ℓ
k, ℓ).

(This is, in a way, rather a backwards definition since an ε-strong path itself is typically

constructed from its skeleton.) Given the skeleton Z̃ as defined above, the (almost)

unique ε-strong path associated with it is defined by

X̃ℓ(u) =

K∑
k=0

I[tk,tk+1)(u)X̃
ℓ
k.

for u ∈ [s, t), and we may take X̃ℓ(t) = X̃ℓ
K . The skeleton is somehow a more

computationally-motivated object than its associated path, and we will refer primarily

to the paths themselves outside of our algorithmic pseudo-code. It is useful to define

also Ck = {x : ∥x− X̃ℓ
k∥ ≤ εℓ}, the constraining region for X over [tk, tk+1].

Say two skeletons (Z̃i,1
k )Kk=0, (Z̃

j,2
m )Lm=0 defined on [r, s] and [s, t] respectively, and with

constraining regions (C1
k)

K−1
k=0 , (C

2
m)L−1

m=1 respectively, are compatible if C1
K ∩ C2

0 ̸= ∅.
For two compatible skeletons, we define their concatenation Z̃3 = Z̃i,1 ⊕ Z̃j,2 to be the

process (Z̃3
n)

K+L+1
n=1 with

Z̃3
n =

Z̃
i,1
n , 0 ≤ n ≤ K,

Z̃j,2
n−K−1, K + 1 ≤ n ≤ L+K + 1.
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Analogously, for two compatible ε-strong paths X̃i,1, X̃j,2 defined on [r, s], [s, t] respec-

tively, and with skeletons (Z̃i,1
k )Kk=0, (Z̃

j,2
m )Lm=0, we define their concatenation as follows.

Take the skeleton Z̃3 = Z̃i,1 ⊕ Z̃j,2, and writing Z̃3
n = (tn, tn+1, X̃

ℓ(n)
n , ℓ(n)) set

(X̃i,1 ⊕ X̃j,2)(u) =

K+L+1∑
n=0

I[tn,tn+1)(u)X̃
ℓ(n)
n

for u ∈ [s, t). Define the end-point by (X̃i,1 ⊕ X̃j,2)(t) = X̃
ℓ(L+K+1)
L+K+1 .

Two paths which are themselves concatenations of ε- strong paths may be concate-

nated analogously. We will exploit the fact that the binary concatenation operation

is associative to allow us to write concatenations of more than two processes without

ambiguity. We also find it convenient to adopt the convention that for k1 ≥ k2, the

degenerate sub-skeleton (Z̃k)
k2
k=k1

acts as the identity for this binary operation, so that

for any skeleton Ỹ , (Zk)
k2
k=k1

⊕ Ỹ = Ỹ ⊕ (Zk)
k2
k=k1

= Ỹ .

Typically ε-strong algorithms require more information about the process than we have

made explicit in our definition of a skeleton, for example those of Pollock et al. [2016].

For ease of exposition, we have suppressed this since we do not need to refer to it for

the development of the algorithms in this paper, but it should be understood that our

skeletons contain any extra information required for the stated ε-strong conditions to

hold.

4.4.1 Crossing a single barrier

We begin with the simpler problem of sampling exactly an indicator random variable for

the event that X crosses into a set D = ξ−1([zD,∞)) when started from its complement

Dc = ξ−1((−∞, zD)), over the fixed time interval [0, t]. To this end, we suppose that

X(0) ∼ λ where the support of λ is contained in Dc. Assume that X is sufficiently

regular that (almost surely) a path X[0 : t] which crosses into D attains a maximum

distance dmax(X,Dc) > 0 from Dc, and conversely, a path X[0 : t] which does not cross

into D has (almost surely) minimum distance dmin(X,D) > 0 from D. A sufficient

condition to ensure that this is true is Pt(x,B) > 0 for (almost) all x ∈ Rd, since A is

positive recurrent for X.

Consider the ε-strong path X̃ε1(0 : t) for a tolerance ε1, and let 0 = t0 < · · · < tK+1 = t

be its jump-times. For k = 0, . . . ,K, inside each time interval [tk, tk+1] the ball Ck =

{x : ∥x − X̃ε1(tk)∥ ≤ ε1} almost surely constrains the path of X associated with

X̃ε1 . So if ε1 < max(dmax(X,Dc), dmin(X,D)), then either i) Ck ⊂ D for some k (if

X does make a crossing), or ii) Ck ⊂ Dc for all k (if X does not make a crossing).

By checking each Ck in turn, we can determine which of these conditions holds, and

thereby construct the desired indicator random variable.

Of course, it is not possible to choose a suitable ε1 in advance, since the underlying

path X and its minimum and maximum distances from D and Dc are not known.

Instead, we can specify a sequence (εℓ)
∞
ℓ=1 of tolerances with εℓ → 0. If Xℓ turns out
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to be insufficient to determine the crossing, we can apply Property 4 of section 2.2.1

to sample Xℓ+1 conditional on Xℓ as necessary until a sufficiently small tolerance is

found.

It is very wasteful, however, to construct a finitely-representable path X̃[0 : t] which

is very close to X[0, t] on the whole interval [0 : t]. It is likely that even when X

crosses into D, much of the time X is not near the boundary ∂D, and we need only

approximate X closely where it is near ∂D. For this reason, as suggested in 2.2.1, it

useful to work instead with paths of mixed tolerance

X̃ =
J⊕

j=1

X̃ℓ(j)[sj−1, sj ],

where (0 = s0, s1, . . . , sJ) is a partition of [0, t] with sJ = t, and (εℓ(j))
J
j=1 is a selection

from (εℓ)
∞
ℓ=1. Such a path is the result, for example, of applying Property 4 with ε2 < ε1

to a constant segment X̃1(tk−1, tk) of X̃
1, and the result in this case would be

X̃ = X̃1[0 : tk−1]⊕ X̃2[tk−1 : tk]⊕ X̃1[tk : t].

For later convenience, our formalisation in Algorithm 15 of the algorithm under de-

scription takes an X̃ of this kind, or rather the skeleton of such a path, as input.

The three possible relationships between Ck and D,Dc can be described in terms of

ξ, the reaction co-ordinate: supx∈Ck
ξ(x) < zD is equivalent to X[tk, tk+1] ⊂ Dc, and

similarly infx∈Ck
ξ(x) ≥ zD is equivalent to X[tk, tk+1] ⊂ D. The third possibility, that

inf
x∈Ck

ξ(x) < zD, sup
x∈Ck

ξ(x) ≥ zD ,

gives no definite information about the location of X[tk, tk+1] with respect to D. It is

consistent with X[tk, tk+1] falling entirely in D, entirely in Dc, or partially in both. We

categorise the behaviour of the process in this time interval by defining:

nk :=


−1, if supx∈Ck

ξ(x) < zD

0, if infx∈Ck
ξ(x) < zD, supx∈Ck

ξ(x) ≥ zD
+1, if infx∈Ck

ξ(x) ≥ zD

. (4.3)

Algorithm 15 samples exactly an indicator for the event that X crosses into D.

It may be noted that in Step 4a) of Algorithm 15, it is not strictly necessary to choose

k minimal. There may be computational advantages to using a different system, such

as attempting choose an k for which Ck ∩ D is large (indicating a high probability

of crossing). This can be computationally preferable, at the expense of providing less

information about τA (see Section 4.4.3).

The assumption that supx∈Ck
ξ(x) and infx∈Ck

ξ(x) can be calculated is rather strong,
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Algorithm 15 Single barrier crossing

function((Z̃k)
K
k=0, D):

1. Calculate the sequence (nk)
K
k=0.

2. If nk = −1 for all k = 1, . . . ,K, return (0, Z̃) to indicate no crossing into D.
3. If nk = +1 for some k, return (+1, Z̃) to indicate a crossing into D.
4. Else:

(a) Set j = min{k ∈ {0, . . . ,K} : nk = 0}, and consider

Z̃ℓ(j) := Z̃
ℓ(j)
j = (tj , tj+1, X̃j , ℓ(j)). Use the refining Property 4 of

section 2.2.1 to sample Z̃ℓ(j)+1 conditional on Z̃ℓ(j).
(b) Update

Z̃ ← (Z̃k)
j−1
k=0 ⊕ Z̃ℓ(j)+1 ⊕ (Z̃m)Km=j+1,

and update K ← (#jump-times of Z̃) + 1. Return to Step 1.

but holds for many realistic scenarios. For example, supposing X takes values in Rd

and, taking the norm ∥x∥ = maxi∈1,...,d | xi |, these quantities can be calculated

if ξ is monotonic in each argument. As a specific example, in Section 4.5, we take

d = 2, ξ(x, y) = min(x, y). Another example of a tractable reaction coordinate, which

illustrates that monotonicity is not necessary, is ξ(x, y) =| x− y |.

4.4.2 Crossing a two-sided barrier

We consider next a two-sided barrier problem, with regions A = ξ−1((−∞, zA]), B =

ξ−1([zB,∞)), with X(0) ∼ λ such that zA ≤ ξ(X(0)) < zB, and the problem of

sampling an indicator random variable for the event that X crosses into B before A.

Here we work over over a random interval [0, σ] where σ is the hitting time for A ∪ B
of X, rather than over a fixed interval as in the previous section.

In this case, we can declare a level crossing into A (for example) at the first k for which

sup
x∈Ck

ξ(x) < zA and max
j<k

sup
x∈Ck

ξ(x) < zB,

if such an k exists.

Informally, we can declare the crossing into A when i) some ε-ball lies entirely in set A,

which guarantees that X has reached A; and ii) no preceding ε-ball intersects set B,

which guarantees that X has not reached B. (The conditions for a crossing into B are

analogous). If there is no such k, it is necessary to carry out further simulations using

Property 4 of 2.2.1.

As in the previous section, we associate a number nk ∈ {−2,−1, 0, 1, 2} with each ball

Ck, according to the categorisation in Table 4.1. In order to simplify the categorisation

and presentation of the algorithm, we make the assumption that our initial tolerance ε1

is sufficiently small that i) Ck intersects at most one of A, B; and that ii) if Ck∩A ̸= ∅,
then Ck+1 ∩ B = ∅ (likewise with A,B interchanged); this can be assured by refining

the initial tolerance until it is satisfied. With this assumption, the categorisation in

Table 4.1 is complete, and the sequence (nk) satisfies nk+1 ∈ {nk − 1, nk, nk + 1}.
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nk Condition Meaning

−2 supx∈Ck
ξ(x) ≤ zA X remains within A on [tk, tk+1]

−1 infx∈Ck
ξ(x) ≤ zA, supx∈Ck

ξ(x) > zA X may enter A in [tk, tk+1]
0 infx∈Ck

ξ(x) > zA, supx∈Ck
ξ(x) < zB X does not enter A or B in [tk, tk+1]

1 supx∈Ck
ξ(x) ≥ zB, infx∈Ck

ξ(x) < zB X may enter B in on [tk, tk+1]
2 infx∈Ck

ξ(x) ≥ zB X remains within B on [tk, tk+1]

Table 4.1: Enumeration of possible Ck-locations with respect to a two-sided barrier.

Suppose we have calculated the sequence (nk)
K
k=0 associated with the path X̃[s : t].

In order to determine which of A and B has been crossed first, it is necessary to

consider segments of X̃[s : t] in which a crossing of one or the other barrier may have

occurred, but a crossing of both barriers cannot have occurred. By checking each of

these segments in turn, the decision can be made. In terms of the sequence (nk), these

segments are constructed as follows. We write J for the number of segments, where

the definition of J is contained in the construction. We define recursively the sequence

of indices which mark the beginning of a new segment in which a crossing may occur,

as the sequence (κ(j))Jj=0. Let κ(0) = 0, and while κ(j − 1) < K + 1, set

κ(j) =

min {k > κ(j − 1) : nk = 0} ∧ (K + 1) if nκ(j−1) ̸= 0

min {k > κ(j − 1) : nk ̸= 0} ∧ (K + 1) if nκ(j−1) = 0.

Each element of this sequence is taken to denote the beginning of a block Bj ⊂ (nk) of

consecutive elements, so Bj = {nk : κ(j − 1) ≤ k < κ(j)}. By construction, each Bj
consists of a string of elements of exactly one of the sets {−2,−1}, {0}, {1, 2}. Each

block therefore corresponds to a segment of X̃[s : t] in which X crosses into at most one

of A and B. For example, in the case that (ni) = (1, 1, 0, 0,−1,−2,−1), J = 3 and the

blocks are B1 = (1, 1),B2 = (0, 0),B3 = (−1,−2,−1), which in this case correspond to

“possible crossing into B”, “no crossing” and “definite crossing into A”, respectively.

The two-sided barrier crossing procedure is given in Algorithm 16, in which the output

is an indicator random variable for the event that X hits B before A. An illustration

is given in Figure 4.1.

In general, it may be computationally inefficient to use a sufficiently small initial ε for

the whole sample path of X, for example when X crosses a barrier at a very early time.

We note that there are many variations of Algorithm 16 which will also sample the

outcome correctly and may avoid doing so for computational efficiency. Our choice has

been made for clarity of exposition.

We have assumed throughout for convenience that the sample paths with which we

deal are almost surely continuous. Relaxing this requirement is straightforward but

slightly complicates the implementation. Given an ε-strong algorithm for a jump-

diffusion or similar piece-wise-continuous process, an appropriate alteration to the rule

for beginning a new block will give an equally correct algorithm.
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x

A

B

(a) Full realisation of a process
X over a fixed time-horizon

A

B

(b) Initial ε-strong constraints;
possible crossing in highlighted
ball

A

B

(c) A finer resolution of the
highlighted ball in 4.1(b) deter-
mines that the first crossing is
into B

A

B

(d) Alternative realisation ofX,
together with initial ε-strong
constraints

A

B

(e) One-stage resolution inde-
terminate

A

B

(f) Further resolution deter-
mines first crossing into A

Figure 4.1: Two illustrations of Algorithm 16. The first row shows: 4.1(a) a realisation
of X over a finite time horizon, 4.1(b) an initial ε-strong simulation and 4.1(c) a re-
finement which is sufficient to show the process crossing into B. The second row shows
4.1(d) an alternative sample path consistent with the same initial ε-strong simulation,
4.1(e) an inconclusive refinement and 4.1(f) a further refinement sufficient to conclude
that the process has crossed into A.
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Algorithm 16 Two-sided barrier crossing

function((Z̃k)
K
k=0, A,B), for Z̃ a skeleton over the interval [s, t]:

1. Initialise Z̃ full as an empty skeleton.
2. Calculate the sequence (nk)

K
k=0 associated with Z̃.

3. Divide (nk)
K
k=0 into blocks B1, . . . ,BJ using the sequence (κ(j))J+1

j=0 as described
above.

4. For j = 1, . . . , J :
(a) If (−2) ∈ Bj , set D = (−1) to indicate a crossing into A, and skip to 6.
(b) If (+2) ∈ Bj , set D = (+1) to indicate a crossing into B, and skip to 6.

(c) If (−1) ∈ Bj , sample (I, Z̃ ′)← Algorithm.15 ((Z̃k)
κ(j)−1
k=κ(j−1), A) to decide if

the first crossing is into A, and set

Z̃ ← (Z̃k)
κ(j−1)−1
k=0 ⊕ Z̃ ′ ⊕ (Z̃k)

K
k=κ(j),

and K ← (#jump-times of Z̃) + 1. If I = (+1), set D = (−1) and skip to
6.

(d) If (+1) ∈ Bj , sample (I, Z̃ ′)← Algorithm.15 ((Z̃k)
κ(j)−1
k=κ(j−1), B) to decide if

the first crossing is into B, and update Z̃,K as in c). If I = (+1), set
D = (+1) and skip to 6.

5. Here, we know that no crossing is made in the interval [s, t] spanned by Z̃, so it
is necessary to sample a continuation of the path. Let Z̃ full ← Z̃ full ⊕ Z̃. Writing
(tK , t, x, ε) = Z̃K , update (s, t)← (t, 2t− s), and sample a new X̃ε1(s : t].
Record its skeleton (Z̃k)

K
k=1, and return to 2.

6. Set Z̃ full ← Z̃ full ⊕ Z̃, and return (D, Z̃ full).

4.4.3 Exact MLS

Finally, we turn to an exact implementation of multilevel splitting. The main point of

difference with Algorithm 6 is that since an ε-strong sample X̃[s, t] merely constrains

the corresponding path X[s, t], there is no easy way to determine the hitting location

and time of any given barrier. In particular, we will not have access to the hitting times

σi, τi nor the hitting locations X(τi) defined in Section 3.2.

Suppose we use Algorithm 16 to sample an indicator random variable for the event

that X hits B1 before A, for instance, with initial simulation interval [0, T ]. Suppose

that a positive result is returned over the interval [0, cT ], for some random c ∈ N
corresponding to the number of passes through Algorithm 16. We must then choose

when and where to split this path of X̃. In this section, we show that if the splitting

is carried out at time cT , this does not affect the unbiasedness of the MLS estimate.

In general, write σ̃i for a random time which serves as an upper bound on the first

hitting time of A ∪Bi for X̃, which is defined as:

σ̃i = T ·min{c ∈ N : cT ≥ σi},

i.e. the time to which X̃ is sampled in Algorithm 16 (so σ̃i is a multiple of T ) in

order to establish that a crossing into A or Bi has occurred. Similarly, let τ̃i be the
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corresponding upper bound on the first hitting time of Bi. To understand the exact

MLS we describe later in this section, it is helpful to have in mind an idealised splitting

scheme slightly different from MLS as presented in Section 3.2, which we call idealised

splitting with coupling.

As in idealised MLS, we assume that it is possible to sample complete continuous paths

of X up to a given stopping time. But rather than split these paths into independent

copies at times τi, the split paths are coupled in the following way: from time τi until

time τ̃i, the “split” paths are set to be identically equal, and after this time they evolve

conditionally independently given Xτ̃i .

For i = 1, . . . ,m, let M̃i denote the transition kernels for the discrete time quadruple

process Vi = (σi, σ̃i, X(σi), X̃(σ̃i)). Note that these are Markov kernels: in particular,

(σi, X(σi)) depends only on either (σ̃i−1, X̃(σ̃i−1)) if σ̃i−1 ≤ σi, or on
(σi−1, σ̃i−1, X(σi−1), X̃(σ̃i−1)) if σ̃i−1 > σi (since in this last case, for all j < i − 1 it

holds that either σ̃j = σ̃i or σ̃j < σi−1 - intuitively, “X̃ doesn’t move until X catches

up to it”).

Define also G̃i(Vi) = IBi(X(σi)). The details are given in Algorithm 17. Call the

estimator for p resulting from this algorithm p̃.

A

B

x0

B1
B2 B3

Figure 4.2: An illustration of Idealised Splitting with Couplings for a single particle
system. The particle begins at the node labelled x0. Level crossings are indicated by
empty nodes, whereas splittings occur at the filled nodes. Between any empty node
and the following filled node, the particle trajectories are coupled identically. Compare
with Figure 3.1.

Of course, it is not possible to implement Algorithm 17 as written, since we cannot

simulate full paths of X, nor make splits at times τi. But the construction of MLS

with couplings means that an algorithm which splits paths at the tractable time τ̃i in-

stead (and allows them to propagate independently from that point) produces identical

estimators q̃i for pi.

It is possible that a particle crosses several barriers zi, zi+1, . . . before time τ̃i. In this

case, the particle splits as normal at each barrier, each new copy remaining identically

coupled, until the splitting time τ̃i after which they proceed independently.

The following proposition establishes that this framework gives rise to unbiased es-

timates. In order to simplify the analysis, we make a further assumption about the

ε-strong method being used: that over any interval [s, t], we have
(
X̃(t) | X̃(s) = xs

)
is equal in distribution to (X(t) | X(s) = xs). In other words, we assume that the
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Algorithm 17 Idealised Splitting with Coupling

Given λ together with G̃i, M̃i for i = 1, . . . ,m, an initial number of particles N0, and
splitting ratios R1, . . . , Rm−1:

1. For j = 1, . . . , N0:

(a) Draw Xj
1(0) ∼ λ, V j

1 ∼ M̃1

((
0, 0, Xj

1(0), X
j
1(0)

)
, ·
)
.

2. Let S1 = {V j
1 : G̃1(V

j
1 ) = 1} be a list of the the surviving paths, and N1 = |S1|.

3. For i = 2, . . . ,m:
(a) If Ni−1 = 0, return p̃ = 0.

(b) Otherwise given Si−1 = {V j
i−1}

Ni−1

j=1 , for each (j, k) ∈ {(j′, k′) :
1 ≤ j′ ≤ Ni−1, 1 ≤ k′ ≤ Ri−1}:
i. Sample V j,k

i ∼ M̃i(V
j
i−1, ·)

(c) Let Si = {V j,k
i : G̃i(V

j,k
i ) = 1}, and set Ni = |Si|.

4. Estimate

p̃ =
Nm

N0
∏m−1

i=1 Ri

.

end-points of ε-strong samples are from the true distribution of X. This holds in the

schemes developed in Beskos et al. [2012] and Pollock et al. [2016], for example, but not

for the scheme of Blanchet et al. [2017]. But provided there is some way of extending

an ε-strong path from the interval [s, t] to [s, t′] for t′ > t, a similar analysis should

continue to hold.

Given the MLS with couplings scheme, it is now possible to establish this result with

only minor modification of the existing arguments of Amrein and Künsch [2011]; this

result paves the way for the methodology which we introduce and in principle allows for

unbiased estimation of rare event probabilities in continuous time whenever ε-strong

simulation of the process of interest is possible.

Proposition 2. p̃ is an unbiased estimator for p: E[p̃] = p.

Proof. We consider the discrete-time Markov process (Vi)
m
i=0. Let M̃i denote the tran-

sition kernels of this process at time i. Let also M̃i:j = M̃j ◦M̃j−1◦· · ·◦M̃i+1 denote the

elements of the associated two-parameter dynamic semigroup, describing the evolution

of the process from time i to j. Note that for every i, ∆ = R2×A×Rd is an absorbing

state for M̃i since if X(σi) ∈ A, σj = σi for all j > i.

Define G0 to be the sigma algebra generated by {V j
0 : j = 1, . . . , N0}, Gk = Gk−1∨Σ(V j

k :

1 ≤ j ≤ Nk) for k = 2, . . . ,m, so that (Gk)mk=1 is the natural filtration of the process

(Vi)
m
i=0.

We observe the following recursion for the number of particles successfully reaching

Bi given Gi−1, which is immediate from the definition of Mi: that for any function

hi : R2 × (Rd)2 → R which is equal to 0 on ∆:
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E
[Ri−1Ni−1∑

j=1

hi

(
V j
i

) ∣∣∣∣Gi−1

]
= Ri−1

∑
k:G̃i−1(V k

i−1)=1

∫
hi(u)M̃i

(
V k
i−1, du

)
. (4.4)

(taking R0 = 1) which follows since each V j
i which is a descendent of any particular

V k
i−1 has the same marginal law.

Define estimators p̃i for pi in Algorithm 17, namely

p̃i =

N1
N0
, i = 1, and

Ni
Ri−1Ni−1

, 2 ≤ i ≤ m.

We show that for 1 ≤ k,

E

[
m∏
i=k

p̃i

∣∣∣∣∣Gk−1

]
=

1

Nk−1

∑
j:G̃k−1(V

j
k−1)=1

(
1− M̃(k−1):m

(
V j
k−1,∆

))
,

by backwards induction on k, starting with the case k = m. Note that for the case

k = 1, each term in the sum on the RHS is the probability that a particle with a given

starting value successfully reaches B before A. The result is then obtained upon taking

a further expectation over the starting value.

The case k = m:

p̃m =
Nm

Rm−1Nm−1

=
1

Rm−1Nm−1

Rm−1Nm−1∑
j=1

G̃m

(
V j
m

)
and the result then follows from taking the conditional expectation with respect to Gm,

and applying (4.4) with hi

(
σ, σ̃,X (σ) , X̃(σ̃)

)
= IBi (X(σ)).

Now supposing the result holds for k + 1, we show that it holds also for k. We have
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the following chain of equalities (with the convention that G0(U
j
0 ) = 1):

E

[
m∏
i=k

p̃i

∣∣∣∣∣Gk−1

]
= E

[
p̃kE

[
m∏

i=k+1

p̃i

∣∣∣∣∣Gk
]∣∣∣∣∣Gk−1

]
(4.5)

= E

 Nk

Rk−1Nk−1
· 1

Nk

∑
j:G̃k(V

j
k )=1

(
1− M̃k:m

(
V j
k ,∆

))∣∣∣∣∣∣∣Gk−1

 (4.6)

=
1

Nk−1

∑
j:G̃k−1(V

j
k−1)=1

(∫ (
1− M̃k:m (u,∆)

)
M̃k

(
V j
k−1, du

))
(4.7)

=
1

Nk−1

∑
j:G̃k−1(V

j
k−1)=1

(
1−

∫
M̃k:m (u,∆) M̃k

(
V j
k−1, du

))
(4.8)

=
1

Nk−1

∑
j:G̃k−1(V

j
k−1)=1

(
1− M̃(k−1):m

(
V j
k−1,∆

))
(4.9)

where (4.5) follows from the tower rule, and noting that p̃k is Gk-measurable; (4.6) from

the induction hypothesis; (4.7) from (4.4); (4.8) from expanding and integrating over

Mk(V
j
k−1, du); and (4.9) from the semigroup property.

Moreover, putting k = 1 we have

(4.9) =
1

Nk−1

N0∑
j=1

(
1−M0:m

(
V j
0 ,∆

))

Since
(
1−M0:m

(
V j
0 ,∆

))
= P (τB < τA|X(0)), we see that

E [p̃] = E

[
m∏
i=1

p̃m

]
= P(τB < τA)

as desired.

In this algorithm we have taken the simple choice to split paths of X̃ at the first

(random) multiple of T after which a crossing is guaranteed, τ̃i. Since this could

result in a long gap between the crossing time and the splitting time, i.e. a large

(τ̃i − τi), this may introduce some unwanted variance into the estimation and various

other approaches to splitting could be implemented. One simple alternative is to choose

in advance a reasonably fine deterministic time-grid, and to split at the first location

on the time-grid after which crossing is guaranteed.

The estimate pex given by Exact Multilevel Splitting (Algorithm 18) is exactly the same

as that given by Idealised Splitting with Coupling (Algorithm 17), since the particle

systems defined by these algorithms are essentially identical.

Corollary 1. E[p̂ex] = p for all N ≥ 1.
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Algorithm 18 Exact Multilevel Splitting

Given λ together with G̃i, M̃i for i = 1, . . . ,m, an initial number of particles N0, and
splitting ratios R1, . . . , Rm−1:

1. Initialise S1 = · · · = Sm = ∅.
2. For j = 1, . . . , N0:

(a) Draw X̃j
0(0) ∼ λ, and simulate X̃j

0 [0 : T ] together with its skeleton Z̃j
0 as

per section 2.2.1.
(b) Sample (G̃1(Z̃

j
1), Z̃

j
1) ∼ Algorithm.16(Z̃j

0 , A,B1). If G̃1(Z̃
j
1) = 1, add Z̃j

1 to
S1.

3. Record N1 = |S1|.
4. For i = 2, . . . ,m:

(a) if Ni−1 = 0, return the estimate p̂ex = 0 of p.

(b) Otherwise, given Si−1 = {Z̃j
i−1}

Ni−1

j=1 , for all pairs {(j, k)}1≤k≤Ri−1

1≤j≤Ni−1
sample

independently

(G̃i(Z̃
j,k
i ), Zj,k

i ) ∼ Algorithm.16(Z̃j
i−1, A,Bi),

and if G̃i(Z̃
j,k
i ) = 1, add Z̃j,k

i to Si.
(c) Set Ni =| Si |.

5. Return

p̂ex =
Nm

N0
∏m−1

i=1 Ri

.

Similarly to Algorithm 7, a Sequential Monte Carlo variant of Algorithm 18 may be

constructed by replacing the splitting step with resampling: this is illustrated in Algo-

rithm 19. Its advantages over Algorithm 18 are the same as the advantages of Algo-

rithm 7 in Section 3.2, namely that there are no splitting ratios Ri which need to be

calibrated to ensure a stable particle system.

Algorithm 19 Exact Multilevel Splitting via SMC

Given λ together with G̃i, M̃i for i = 1, . . . ,m, and a fixed number of particles N :

. . .
4(b)′. Otherwise, given Si−1 = {Z̃j

i−1}
Ni−1

j=1 , sample a1, . . . , aN independently and uni-
formly at random (with replacement) from 1, . . . , Ni−1, and sample independently
(Z̃j

i , G̃i(Z̃
j
i )) ∼ Algorithm.16(Z̃

aj
i−1, A,Bi).

. . .
5. Estimate

p̂SMC =

∏m
i=1Ni

(N)m
=

m∏
i=1

(
Ni

N

)
.

4.5 Illustrations

The examples in this section were carried out using a single core on an Intel Xeon

E5-2440 processor with an advertised clock speed of 2.40GHz.
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4.5.1 Brownian motion in one dimension

Our first illustrative example uses the ε-strong scheme for Brownian motion of Beskos

et al. [2012]; Pollock et al. [2016], in a setting in which the exact solution is known. In

one dimension, the reaction co-ordinate may be taken to be the identity function. We

choose A = (−∞, 0], B = [318,∞), Bi = [3i,∞) for i = 1, . . . , 17, with initial point

x0 = 1. It is well-known that for real 0 < a < b, the probability that a Brownian

path started at a reaches b before 0 is a/b — as can be verified with a simple optional

stopping argument. Therefore the target probability is 3−18 ≈ 2.58× 10−9.

The ε-strong scheme in question has some additional features which allow a substantial

improvement in speed to that given in Algorithm 19 in this exceptionally simple setting.

See sections 2.2.2 and 4.2; we are in fact implementing Algorithm 14. Over a given

time interval [s, t], for a Brownian motion (X(r))r∈[s,t] it is possible to sample bounds

L↓(s, t) ≤ inf
r∈[s,t]

X(r) ≤ L↑(s, t) , U↓(s, t) ≤ sup
r∈[s,t]

X(r) ≤ U↑(s, t).

An ε-strong algorithm over [0, T ] in the sense given in section 2.2.1 can be recovered

by choosing partitioning [0, T ] into suitably small time intervals [sk, tk], and taking

X̃ε(r) =
1

2
(U↑(sk, tk)− L↓(sk, tk))

for r ∈ [sk, tk]. This corresponds to taking Ck = [L↓(sk, tk), U
↑(sk, tk)] in the notation of

Section 4.4.1. This does not make use of the extra information available in (L↑, U↓). In

particular, to assess whether X has crossed above the point b over [sk, tk], it is sufficient

to find that U↓(sk, tk) > b, since this guarantees the maximum of X is large enough.

This is easier to check than the stricter condition that Ck ⊂ (b,∞), or equivalently

that L↓(sk, tk) > b.

We compare the exact estimator to Euler-Maruyama-type schemes (see (4.2)) with three

levels of resolution. The initial step sizes for the schemes are taken to be 0.01, 0.005 and

0.001. In this example we exploit the simplicity of the problem at hand and the time-

scaling property of Brownian motion to allow the Euler-Maruyama scheme to maintain

a constant level of relative error over time: in each scheme, when level Bi is reached

the step size is multiplied by 32 = 9. This scaling which depends upon analytical

techniques which would not be available in more realistic problems was essential in

order to achieve a reasonable calculation time (this choice ensures the expected number

of Euler-Maruyama steps until a crossing is decided remains constant as the scale of the

problem grows). 500 estimators were produced for each procedure, each with population

of 1000 particles. The results are shown in Figure 4.3.

Typical run-times for a single sample were 19s for the exact-MLS algorithm, 32s

for the Euler-Maruyama-0.005 scheme, 157s for the Euler-Maruyama-0.001 scheme.

This demonstrates that in favourable circumstances exact MLS can yield estimates

of rare event probabilities at significantly lower computational cost than that at which
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Figure 4.3: Kernel density estimates for the various schemes. The mean of each density
estimate is shown as a coloured vertical line. The black dot on the ordinal axis indicates
the true probability.

discretisation-based methods can reach an acceptable level of bias. In other settings the

cost of exact methods can be somewhat higher, as the next example will demonstrate.

4.5.2 A bivariate example

Our second example illustrates Algorithm 19 in a pure form, is a two-dimensional

problem. The random process is again taken to be Brownian motion initialised at

W0 = (12 ,
1
2). The reaction co-ordinate is chosen to be ξ(x, y) = min(x, y), and the

levels are chosen to be A = ξ−1((−∞, 0)), B = ξ−1((2
20
2 ,∞)), Bi = ξ−1(2(

i
2
+1),∞)) for

i = 1, . . . , 18. We are not aware of any simple means by which the rare event probability

can be analytically obtained in this case.

The ε-strong algorithm used is that of Beskos et al. [2012]; Pollock et al. [2016], in

the same fashion as Section 4.5.1. Again, the exact estimator is compared to three

Euler-Maruyama schemes of (4.2) with increasing degrees of fineness, in this case with

initial step-sizes 0.1, 0.05 and 0.01. The step-sizes were again re-scaled at each new

level to ensure an approximately constant relative error, this time by a factor of 22 = 4.

For each scheme, 250 trials were simulated, each using 100 particles. Typical running

times were 13s for the Euler-Maruyama-0.1 scheme, 21s for the Euler-Maruyama-0.05

scheme, 1m 45s for the Euler-Maruyama-0.05 scheme and 534m for the exact scheme.

Although the running time for exact MLS is significantly longer than that of the discrete

schemes in this case, we believe that a more careful attempt to tune and adapt its

parameters could substantially reduce the difference. However, the optimal choice of

parameters will depend on the particular application, and since our aim is to provide

65



Algorithm

Euler (0.01)
Euler (0.05)
Euler (0.10)
Exact

0.0

0.1

0.2

0.3

151050

E
st
im

at
ed

D
en
si
ty

/
10

6

P (τ < σ)/10−6

Figure 4.4: Kernel density estimates for exact MLS and for an Euler-Maruyama-
discretisation-based method with three different discretisation step sizes. The mean
of each density estimate is shown as a coloured vertical line.

proof-of-concept validation of the generic methodology developed in this paper we have

not made extensive attempts to do so.

Figure 4.4 shows a kernel density estimate of the sampling distribution of the resulting

estimators obtained using the geom density function of ggplot2 Wickham [2016], using

its default choice of bandwidth. As the Euler-Maruyama scheme increases in fineness,

the resulting estimate appears closer to the estimate from exact MLS.

4.6 Discussion

We have presented the first algorithm for the exact estimation of a class of rare event

probabilities for continuous-time processes. Our method has been to directly replace

discrete approximations of continuous-time sample paths with ε-strong samples of the

same paths, in order to obtain the sequence p̂i of conditionally unbiased estimates

required for multilevel splitting.

There is considerable ongoing effort in the development of ε-strong simulation methods

for a broad class of stochastic processes, and their application (see for instance Mider

et al. [2019]). It is likely that further development in this area will allow the approach

described within this paper to be applied with greater efficiency to a broader class

of stochastic processes. Naturally, it is likely that the exactness of this approach will

always come at the expense of a computational cost that exceeds that of discretisation-

based schemes. This cost can be partially offset against the need to assess the bias

inherent in such schemes.

One important assumption that we have made is the ability to calculate infima and
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suprema of the reaction co-ordinate over the sets Ck which constrain a sample path

X. The problem of assessing whether these Ck intersect the MLS sets Bi has links to

the problem of collision detection studied in computer graphics (see eg Kockara et al.

[2007]). Insight from this field might allow a more careful classification of suitable ξ for

a given Ck, or for the assumption to be weakened in certain circumstances.

As we noted in section 3.2, one strength of this method is that other quantities relating

to the distribution of paths which reach the rare event set B may also be estimated.

These require the sort of detailed information given by ε-strong simulation. However, if

the rare event probability is the only quantity of interest, it is possible that approaches

to obtaining unbiased estimates of rare event probabilities without requiring the full

machinery of unbiased MLS implementations are sufficient.

The construction of computable unbiased estimators via a sequence of asymptotically

biased estimators has received much attention in recent years, following Glynn and

Rhee [2014]. This technique has been directly extended to estimating expectations of

functionals of SDE paths in Rhee and Glynn [2015], and recently this approach has

been further extended to non-linear filtering problems in Jasra et al. [2020]. It is to

this idea that we turn in the subsequent chapters.
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Chapter 5

A de-biased algorithm for rare

events

5.1 Introduction

So far, we have relied on exact and ε-strong sampling of diffusion processes to address

the discretisation bias described in section 4.1.1. An alternative to these methods

is to make use of recent techniques for de-biasing statistical estimators - specifically,

de-biasing estimators whose bias arises from the numerical discretisation of diffusion

processes.

In this chapter, we describe an algorithm for de-biasing a certain rare event estimator

using these techniques. In section 5.2, we describe the de-biasing method in the context

of multilevel Monte Carlo (MLMC) estimation for functionals of diffusion processes. In

section 5.3, we describe following Del Moral and Garnier [2005] the rare event setting

we will work in, for which the estimator falls in the SMC framework described in terms

of Feynman-Kac formulae. In section 5.4, we describe following Jasra et al. [2017]

and Jasra et al. [2020] the application of MLMC and de-biasing to this context, and

establish a de-biased estimation procedure for this setting.

5.2 Unbiased estimation for SDEs

De-biasing techniques may be illustrated by the example of modifying the (biased) mul-

tilevel Monte Carlo (MLMC) methods introduced in Heinrich [2001] and Giles [2008].

We describe this in the context of the discrete simulation of diffusions. As usual, let

dX(t) = a(X(t))dt+ b(X(t))dB(t) (5.1)

be the defining equation for the diffusion process X over the time interval [0, T ], as-

suming X0 = x0, and taking the usual conditions on a, b. For ℓ = 0, 1, . . . let Xℓ denote

the process defined by an Euler-Maruyama discretisation of (5.1) using the step-size
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hℓ = 2−ℓ. Let π be the law of X, and πℓ the law of Xℓ. Suppose that φ : Rd → R is a

function for which πℓ(φ)→ π(φ) (as a real sequence) as ℓ→∞.

Naive Monte Carlo estimation of π(φ) might consist of choosing a discretisation level

L ∈ N and generating N samples X(i),L ∼ πL, i = 1, . . . , N to produce the estimator
1
N

∑N
i=1 φ(X

(i),L). The insight of MLMC is that the seemingly innocuous observation

πL(φ) = π0(φ) +
L∑

ℓ=1

(
πℓ(φ)− πℓ−1(φ)

)
(5.2)

offers a way to more carefully design an estimator so as to minimise the cost required

to obtain a given mean-squared error.

The idea is to produce independent Monte Carlo estimates of each term on the right side

of (5.2), using Nℓ Monte Carlo samples for the term πℓ−πℓ−1 where the Nℓ are tuning

parameters of the algorithm. An individual Monte Carlo estimate for one of these

difference terms is constructed by producing coupled samples (Xℓ
1, X

ℓ
2) whose left and

right marginals are distributed according πℓ, πℓ−1 respectively, using two discretisations

of the same driving Brownian motion on the dyadic grid Dn (see Algorithm 20 below):

Algorithm 20 Coupled Euler scheme

Given Xℓ
1(t0), X

ℓ
2(t0) = x0, and independent standard normal random variables Wk:

1. For k = 0, . . . , (2nT − 1):
(a) If k even, set

Xℓ
1(tk+1) = Xℓ

1(tk) + a(Xℓ
1(tk))hℓ + b(Xℓ

1(tk))
√
hℓWk.

(b) If k odd, set

Xℓ
1(tk+1) = Xℓ

1(tk) + a(Xℓ
1(tk))hℓ + b(Xℓ

1(tk))
√
hℓWk,

Xℓ
2(tk+1) = Xℓ

2(tk−1) + a(Xℓ
2(tk−1)) · (2hℓ) + b(Xℓ

2(tk−1)) ·
√
hℓ(Wk +Wk−1)

We shall sometimes refer to Xℓ
1 as the fine process and Xℓ

2 as the coarse.

These coupled samples can be used to obtain low-variance estimates of each term(
πℓ(φ)− πℓ−1(φ)

)
. Using Nℓ such samples for each term on the right side of (5.2), we

define the MLMC estimator1

π̂MLMC(φ) =
1

N0

N0∑
i=1

φ(X0,i) +

L∑
ℓ=1

1

Nℓ

Nℓ∑
j=1

(
φ(Xℓ,j

1 )− φ(Xℓ,j
2 )
)
.

One then chooses L and N0, . . . , NL to minimise the MSE for a given cost. More

1The term multilevel has an entirely different meaning in this context than it does in multilevel
splitting ; in the latter case the “levels” are nested intermediate sets surrounding a rare set of interest,
whereas in the former “levels” refers to the discretisation levels hℓ = 2−ℓ.
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precisely, writing

Ξ0 =
1

N0

N0∑
i=1

φ(X0,i), Ξℓ =
1

Nℓ

Nℓ∑
j=1

(
φ(Xℓ,j

1 )− φ(Xℓ,j
2 )
)
,

the MSE can be decomposed as

E
∣∣π̂MLMC(φ)− π(φ)

∣∣2 = L∑
l=0

E
∣∣∣Ξℓ − (πℓ(φ)− πℓ−1(φ))

∣∣∣2 + (πL(φ)− π(φ))2

:=
L∑

ℓ=0

Vℓ
Nℓ

+B2
L (5.3)

(directly from the definition; see eg. [Jasra et al., 2017, Eqn (8)]). Here the first term

on the right hand side is a sum of variances over the levels ℓ ≤ L, and the second term

is the squared bias governed purely by the final level L. To obtain an MSE of roughly

ε2, one can tune the bias and variance terms to contribute roughly ε2/2 each.

If BL is of order O(hαL), it is immediate that L = −
(
log ε/

√
2
)
/(α log 2)+ log(c1) gives

the correct contribution for the bias term, for some constant c1. Then for any fixed

VL :=
∑L

ℓ=0 Vℓ/Nℓ, supposing Vℓ = O(hβℓ ) and the cost to sample Xℓ is O(h−γ
ℓ ), one can

minimise the total cost C =
∑L

ℓ=0Nℓh
−γ
ℓ subject to the variance using (for example)

Lagrange multipliers, yielding Nℓ ∝ N02
−ℓ(γ+β)/2. Finally, tuning N0 to obtain the

desired VL = ε2/2 gives N0 ∝ ε−2
∑L

l=0 2
ℓ(γ−β)/2. This defines three natural regimes

for the total cost C, depending on the sign of (γ − β) (see for example [Jasra et al.,

2017, Table 1]).

The value of γ depends only on the discretisation scheme. For the Euler-Maruyama

scheme, it is known that γ = 1. The values of α, β depend both on the discretisation

scheme and the nature of the test function φ. A case of special interest which is

frequently referenced is the Euler-Maruyama scheme for Lipschitz test functions of the

terminal value of the SDE: φ(X) = φ(XT ). Here α = β = 1. Also of interest with

reference to the calculations in Chapter 6 is where φ is allowed a point of discontinuity,

in which case it remains true that α = 1, but β is reduced to 1/2. All these results

may be found in [Giles, 2008, Section 3], alongside a more detailed exposition of the

above calculations. A more comprehensive overview of the properties, variants and

applications of MLMC estimators may be found in Giles [2015].

Our interest here is not, however, in cost-variance trade-offs but in genuinely unbiased

methods estimation methods. An insight of McLeish [2011], which has been applied

to the discretisation of SDEs in Rhee and Glynn [2012] and Rhee and Glynn [2015], is

that an MLMC estimator may be modified into an unbiased estimator as follows. Let

now X0 denote any unbiased estimator for π0(φ), and for each ℓ ∈ N let Ξℓ similarly

be unbiased for πℓ(φ)−πℓ−1(φ). Let L be a sample from some strictly positive density
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P (·) over the non-negative integers. Then the estimator

p̂ub =
ΞL

P (L)

is unbiased for p since

E[p̂ub] =
∞∑
ℓ=0

P (ℓ)
E[Ξℓ]

P (ℓ)

= π0(φ) +
∞∑
ℓ=1

(
πℓ(φ)− πℓ−1(φ)

)
= π(φ)

by the assumption that πℓ(φ)→ π(φ).

As suggested by our prior description of MLMC, an appropriate choice of Ξℓ for this

setting might be

Ξℓ =

 1
N0

∑N0
i=1 φ(X

0,i) L = 0,

1
Nℓ

∑Nℓ
j=1 φ(X

ℓ,j
1 )− φ(Xℓ,j

2 ) ℓ > 0,

where the (Xℓ,j
1 , Xℓ,j

2 ) are coupled Euler samples as above. (The reason we use the

more abstract Ξℓ notation is that in more complex settings such as particle filtering, an

unbiased estimator of the difference terms remains all that is required, though it might

take a more complicated specific form.)

These de-biased MLMC estimators have been the subject of considerable further study.

Conditions for finite variance of the estimators have been established in Rhee and Glynn

[2015] and Blanchet et al. [2019], alongside numerical experiments in a wide range of

applications. We quote the following useful result from Vihola [2018]:

Proposition 3. [Vihola, 2018, Theorem 3] If

∞∑
ℓ=0

E[Ξ2
ℓ ]

P (ℓ)
<∞,

then p̂ub is a finite-variance unbiased estimator for p.

It is worth noting that in contrast to the exact estimator of the previous chapter, the

de-biased estimator above can be negative, though it estimates a probability which

is necessarily non-negative. In our context this causes no concern, but in some ap-

plications (eg. for use in the pseudo-marginal algorithms introduced in Andrieu and

Roberts [2009]), one wishes to avoid negative values of the estimator. The problem

of constructing unbiased estimators taking only non-negative values is addressed for

example in Jacob and Thiery [2015].

MLMC methods have been applied to Sequential Monte Carlo algorithms in several
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places: for example, to the filtering problem in Jasra et al. [2017], to the estimation of

normalising constants in Jasra et al. [2018], and to Bayesian inverse problems in Beskos

et al. [2017]. The de-biasing technique has also been applied in several related recent

papers Jasra et al. [2020b,a]; Heng et al. [2021], and in particular to the filtering setting

in Jasra et al. [2020]. This is closest in spirit to the problem analysed in this chapter

and the following. The distinction is that the rare event setting we study (introduced

below in section 5.3) involves estimating the unnormalised measure of a discontinuous

function of an historical process, rather than the normalised (probability) measure of

a Lipschitz test function of the time-marginal process. We expand on this point in

Section 5.4 after introducing the appropriate notation.

5.3 Setting

Let Z = (Z(t))t∈[0,T ] be the solution to a stochastic differential equation in Rd for some

T ∈ R, subject to the initial condition X0 ∼ η0:

dZ(t) = a(Z(t))dt+ b(Z(t))dB(t). (5.4)

Here Bt is d-dimensional Brownian motion, a : Rd → Rd, b : Rd → Rd×d, and the

following regularity conditions are satisfied:

1. Ellipticity : b(z)b(z)T is positive definite.

2. Lipschitz continuity : for some C > 0 it holds that

max(||a(z)− a(w)||, ||b(z)− b(w)||) < C||z − w||.

3. Bounded initial moments: E||Z0||p <∞ for every p ≥ 1.

Fix n ∈ N. Let K : (Rd)2 → R≥0 denote the density of the transition kernel for Z

over time increments of length T/n, so writing Xp = Z pT
n

we have that (Xp)
n
p=0 is a

discrete-time chain with initial distribution η0 and transition kernel K.

Let V : Rd → R be a reaction co-ordinate which we require to be Lipschitz continuous,

and to satisfy for some c > 0 that c−1 < V (x) < c for all x. Let a ∈ R, and A =

V −1([a,∞)) ⊂ Rd a rare set of interest. Our concern is to estimate the probability of

the rare event

pn = P(Xn ∈ A).

A scheme for efficiently estimating pn for the discrete-time chain (Xp) is described in

Del Moral and Garnier [2005]. It works as follows: writing Pn for the path measure of
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(Xp)
n
p=o, consider for λ ∈ R+ the twisted probability measure

dPλ
n ∝ exp(λV (Xn))dPn

=
n∏

p=1

exp{λ(V (Xp)− V (Xp−1))}dPn

assuming that V (X0) = 0. This corresponds to the twisting of section 3.3.4 with the

sequence of potentials Gp(X0, . . . , Xp) = exp(λ(V (Xp)− V (Xp−1))). It is immediately

evident that the rare event is much more likely under Pλ
n than Pn, since the potentials

Gp give very high weight to high values of V . This intuition may be quantified as

follows:

pn = Pn(Xn ∈ A) = En[1A(V (Xn))] = Eλ
n[1A(V (Xn))

dPn

dPλ
n

]

= Eλ
n

[
1A(V (Xn))

E[exp(λV (Xn))]

exp(λV (Xn))

]
≤ exp(−λa)E[exp(λV (Xn))]Eλ

n [1A(V (Xn))]

= exp(−λa)E[exp(λV (Xn))]Pλ
n(Xn ∈ A).

Define the historical process (Yp)
n
p=0 associated to (Xp) by

Yp = (X0, . . . , Xp).

We denote the transition kernel from Yp−1 → Yp by Mp, p = 1, . . . , n. Since the

historical process is defined on the sequence of spaces Rd×(p+1), Mp is a function

Rd×(p+1) → Rd×(p+2) (and so really depends on p), and we have the identification

Mp ((y1, . . . , yp−1), (z1, . . . , zp−1, zp)) =

K(yp−1, zp) (z1, . . . , zp−1) = (y1, . . . , yp−1),

0 otherwise.

For any sequence of potential functions Gp : Rd×p → R+, define the Feynman-Kac

measure (see section 3.3.4) for a test function f ∈ Bb(Rd×n) by

γp(f) = E

f(Yp) p−1∏
q=1

Gq(Yq)

 .
Define also ηp(f) =

γp(f)
γp(1)

.

The rare event probability may then be written as

P (V (Xn) ≥ a) = γn(S
(a)
n ), (5.5)
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where S
(a)
n (yn) = 1(V (xn) ≥ a)

∏n−1
p=1 Gp(yp)

−1. We observe also the equivalent formula

P (V (Xn) ≥ a) = ηn(S
(a)
n )

n−1∏
p=1

ηp(Gp),

(this is one of the basic Feynman-Kac relations given in 3.3.4).

To estimate P (V (Xn) ≥ a), we use a system of N particles Xp = (X1
p , . . . , X

N
p ), for

p = 0, . . . , n. We will abuse notation slightly to write

Xi
p = (Xi

p,0, . . . , X
i
p,p)

where Xi
p,q is the location of ancestor at time q of particle labelled “i” at time p. Then

Xi
p is the history of the i-th particle up to time p. The transitions Xp−1 → Xp consist

of a resampling step from the distribution

X̂i
p−1 ∼

1∑N
i=1Gp−1(Xi

p−1)

N∑
i=1

Gp−1(X
i
p−1)δXi

p−1
(·),

and a mutation step

Xi
p ∼Mp(X̂

i
p−1, ·).

This may also be interpreted as sampling from the composite distribution

P(Xp ∈ d(y1p, . . . , yNp )|Xp−1) =
N∏
i=1

ψp(m(Xp−1))d(y
i
p),

where m(x) = 1
N

∑N
i=1 δxi(·) and

ψp(µ) =
1

µ(Gp−1)

∫
µ(dyp−1)Gp−1(yp−1)Mp(yp−1, ·).

The resampling step here is exactly the multinomial sampling scheme described in

section 3.3; this may be substituted for any of the lower-variance unbiased resampling

schemes as suggested there, without compromising the unbiasedness of the resulting

estimator.

At each time p, we have the empirical distribution associated with the particle system

ηNp (·) = 1

N

N∑
i=1

δXi
p
(·)

and the corresponding unnormalised measures

γNp (·) = ηNp (·)
p−1∏
q=1

ηNq (Gq).
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Our estimator for the rare event is then

p̂n = γNn (S(a)
n ).

Pseudocode for this procedure is given in Algorithm 21. Importantly, the estimate is

unbiased: E[γNn (S
(a)
n )] = γn(S

(a)
n ) = P (Xn ∈ A). This is established in [Del Moral

et al., 2015, Lemma 2.1]. It is also shown to satisfy a central limit theorem.

Algorithm 21 Estimator with single system [Del Moral and Garnier, 2005]

Given initial distribution λ, potential functions G1, . . . , Gn−1 and transition kernels
M1, . . . ,Mn for the historical process:

1. For each i = 1, . . . , N , draw independently Xi
0 ∼ λ, and Xi

1 ∼M1(X
i
0, ·).

2. For p = 2, . . . , n:
(a) For each i, calculate Gi

p−1 = G(Xi
p−1), and

Ḡp−1 =
1

N

N∑
i=1

Gi
p−1.

(b) Resampling : sample X̃i
p, i = 1, . . . , N according to the Boltzmann-Gibbs

measure

1

NḠp−1

N∑
i=1

Gi
p−1δXi

p−1
(·).

(c) Mutation: for each i sample Xi
p ∼Mp(X̃

i
p, ·).

3. Estimate

p̂n =
1

N

N∑
i=1

1(V (Xi
n) ≥ a)

n−1∏
p=1

Gp(X
i
p)

−1

 n−1∏
q=1

Ḡq.

In practice, it is not possible to sample exactly from M . Instead one must make use

of a numerical discretisation scheme, such as the following Euler-Maruyama method

on a discrete grid, which we assume for convenience is the dyadic grid Dℓ = { k
2ℓ
; k =

0, . . . , 2ℓT}: initiate Xℓ
0,0 ∼ λ, and for p = 0, . . . , n and k = 0, . . . ,

(
2ℓT

)
/n define

recursively

Xℓ
p,k+1 = Xℓ

p,k + a(Xℓ
p,k)hℓ + b(Xℓ

p,k)h
1
2
ℓ Wp,k

Xℓ
p+1,0 = Xℓ

p,2ℓ (5.6)

where hℓ = 2−ℓ is the mesh size of Dℓ, and the Wp,k are independent standard normal

random variables. (Note that working on the dyadic grid assumes that 2ℓT/n is an

integer, which can always be guaranteed by a time rescaling of the original diffusion

defined by (5.4), so there is no loss of generality in this assumption.) We identify

Xℓ
p := Xℓ

p,0, and write Kℓ for the transition kernel of the process Xℓ
p. Thus if Qℓ

denotes the transition kernel of a single step of the Euler scheme (5.6), Kℓ is the

2ℓT/n-fold composition of Qℓ with itself.

Analogous to the previous example, we define Y ℓ
p = (Xℓ

1, . . . , X
ℓ
p), with transitions M ℓ

p,
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and

γℓp(f) = E

f(Y ℓ
p )

p−1∏
q=1

Gq(Y
ℓ
q )

 ,
ηℓp(f) =

γℓp(f)

γℓp(1)
.

As above, to estimate P (V (Xn) ≥ a)) we use a system ofN particlesXℓ
p = (Xℓ,1

p , . . . , Xℓ,N
p ).

The transitions Xℓ
p−1 → Xℓ

p use the mutation step

Xℓ,i
p ∼M ℓ(X̂ℓ,i

p−1, ·), (5.7)

and the combined resampling plus mutation distribution is

P(Xℓ
p ∈ d(y1p, . . . , yNp )|Xℓ

p−1) =
N∏
i=1

ψℓ
p(m(Xℓ

p−1))d(y
i
p),

where m(x) = 1
N

∑N
i=1 δxi(·) and

ψℓ
p(µ) =

1

µ(Gp−1)

∫
µ(dyp−1)Gp−1(yp−1)M

ℓ
p(yp−1, ·).

At each time p, we have the empirical distribution associated with the particle system

ηℓ,Np =
1

N

N∑
i=1

δ
Xℓ,i

p
(·)

and the corresponding unnormalised measures

γℓ,Np (·) = ηℓ,Np (·)
p∏

q=1

ηℓ,Nq (Gq).

The our estimator for the rare event is then p̂ℓn = γℓ,Nn (S
(a)
n ).

Since the Euler-Maruyama scheme (or any other discretisation scheme) gives only an

approximation of the target diffusion process (5.4), if one runs Algorithm 21 with the

choice of transition kernels Mp = M ℓ
p, then the resulting estimator p̂ℓn is no longer

unbiased for pn. In fact, the probability that it unbiasedly targets is

pℓn = P (Xℓ
n ∈ A).

In the next section we explain how to alter the algorithm to target pn instead.
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5.4 De-biased algorithm

In the case of a continuous-time solution to an SDE, carrying out Algorithm 21 with

the chain (Xℓ
p) resulting from a numerical discretisation scheme (see section 2.1.4) will

not produce an unbiased estimate of the desired rare event.

We propose a scheme to remove the bias which consists of randomising over the choice

of discretisation level ℓ, and using a coupled pair of particle systems to target pℓn, p
ℓ−1
n

respectively.

First, we observe that the required weak convergence of (γℓ) holds for the function S
(a)
n :

Lemma 13. For all n ∈ Z+, γ
ℓ
n(S

(a)
n )

w→ γn(S
(a)
n ) as ℓ→∞.

Proof. We establish this result assuming the Euler-Maruyama method is used for the

discretisation. We can write

γℓn(S
(a)
n )− γn(S(a)

n ) = P (Xℓ
n ∈ A)− P (Xℓ ∈ A)

= E
[
1A(X

ℓ
n)− 1A(Xn)

]
.

[Giles et al., 2009, Section 3] gives an explicit convergence rate for the mean-squared

error:

E
∣∣∣1A(Xℓ

n)− 1A(Xn)
∣∣∣2 ≤ h1/2−δ

ℓ

for any δ > 0. Hence

E
∣∣∣1A(Xℓ

n)− 1A(Xn)
∣∣∣ ≤ h1/4−δ′

ℓ

for all δ′ > 0 and so (since 1A ≥ 0)

E
[
1A(X

ℓ
n)
]
→ E [1A(Xn)]

(The weak error rate of 1 noted in Section 2.1.4 for the Euler scheme does not apply

here, since it holds only for Lipschitz test functions. Convergence rates for non-Lipschitz

functions of SDEs under the Euler scheme have been studied in other places: for ex-

ample, functions of bounded variation in Avikainen [2007], and bounded measurable

function in Bally and Talay [1994], under considerably stronger assumptions on the

coefficients of the SDE.)

Therefore we can write

γn(S
(a)
n ) = γ0n(S

(a)
n ) +

∞∑
ℓ=1

(
γℓn(S

(a)
n )− γℓ−1

n (S(a)
n )
)
.
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Then following section 5.2, if Ξℓ is such that

E[Ξℓ] = γℓn(S
(a)
n )− γℓ−1

n (S(a)
n ) (5.8)

(here we use the convention that γ−1
n (f) = 0 for any f), and P (·) is a strictly positive

distribution over N∪{0}, then the estimator defined by sampling L ∼ P (·), and taking

p̂ubn =
ΞL

P (L)

is unbiased. Of course it is necessary to require of Ξℓ that it produces an estimator

with finite variance, for example using the condition of Proposition 3.

The problem of constructing such Ξℓ in the context of Sequential Monte Carlo al-

gorithms has been taken up in several places. For example, a de-biased method for

filtering for diffusion processes, targeting ηn(φ) for a bounded Lipschitz test function

φ, was taken up in Jasra et al. [2020]. Analogously to the coupled Euler discretisation

scheme we described for estimating functionals of diffusions, it is possible to use cou-

pled interacting particle systems to construct suitable Ξℓ. Our problem is not a filtering

problem but does fall in the same Sequential Monte Carlo framework, so a similar de-

sign can be applied. Crucially, we exploit the fact that the estimator p̂ℓn = γℓ,Nn (S
(a)
n )

is unbiased for pℓn = γℓn(S
(a)
n ) as described in section 5.3, which allows unbiased Ξℓ to

be constructed fairly directly, without the complications necessitated estimating ηℓn(φ)

for which ηℓ,Nn (φ) is not unbiased.

Note that Algorithm 21, being an instance of a Sequential Monte Carlo algorithm,

consists of alternating between i) propagating a particle according to its transition

kernel (or in practice, a discrete approximation of this kernel), and ii) a resampling

procedure.

Denote by {(Xℓ,i
p,1, X

ℓ,i
p,2) : i = 1, . . . , N, p = 0, . . . , n} the particles in a coupled system

where the particles {Xℓ,i
p,1} marginally obey Algorithm 21 using transitionsM ℓ

1 , . . . ,M
ℓ
n,

and {Xℓ,i
p,2} obey the same algorithm using transitions M ℓ−1

1 , . . . ,M ℓ−1
n . In order to

minimise the variance of Ξℓ then, it must be ensured both that the pair (Xℓ,i
p,1, X

ℓ,i
p,2)

are propagated using highly correlated coupled transition kernels, but also that at each

resampling step the j-th resampled indices Ij1 , I
j
2 are chosen to be equal with high

probability.

Coupling of the transition kernels may be dealt as in the case of plain MLMC for

SDEs as in section 5.2, for example by using the coupled Euler scheme of Algorithm 20

(which we recast slightly to fit the present context in Algorithm 22). We denote by M̄ ℓ
p

the transition kernel associated to any coupled discretisation scheme for the historical

process, of which Algorithm 22 is an example. That is, given the transition kernel

M ℓ
p of a discretisation scheme on a grid of mesh 2−ℓ over unit time intervals, then
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M̄ ℓ
p : Rd×p × Rd×(p+1) → R+ is such that

M̄ ℓ
p

((
y, y′

)
, B × Rd×(p+2)

)
=M ℓ

p(y,B),

M̄ ℓ
p

((
y, y′

)
,Rd×(p+1) ×B

)
=M ℓ−1

p (y′, B).

We write M̄ ℓ
p,1 and M̄ ℓ

p,2 for these two marginals of the coupled kernel, so that M̄ ℓ
p,1 =

M ℓ
p and M̄ ℓ

p,2 =M ℓ−1
p .

As for the coupled resampling scheme, it should ensure a high probability of choosing

identical indices Ij1 , I
j
2 in each system subject to having the correct marginal distri-

butions. The scheme described in Algorithm 23 is the maximal coupling for the two

multinomial distributions in question, due to Jasra et al. [2017]. That is, it maximises

the probability of sampling identical indices subject to preserving the relevant marginal

distributions.

Although this simple scheme maximises the chance of sampling identical indices, it also

enforces independent sampling from the marginal multinomial distributions with some

probability (step 4). This adds substantially to the variance of multilevel schemes for

Sequential Monte Carlo. Referring back to the bias-variance decomposition of Equa-

tion (5.3), the rate of decay O(hβℓ ) for the ℓ-level variance Vℓ for the Euler scheme and

a Lipschitz test function is reduced to β = 1/2, compared to β = 1 for plain MLMC

([Jasra et al., 2017, Section 3.2]).

This simple method is not the only possible choice, and other coupled resampling

schemes have been suggested to improve this rate. A good overview may be found in

[Jacob et al., 2016, Section 2]. An example of an alternative is the optimal Wasserstein

coupling, whose behaviour for the MLPF has been considered in Ballesio et al. [2020].

Pseudocode for the coupled estimation procedure for fixed ℓ, combining Algorithms 21

to 23, is given in Algorithm 24. A single iteration of the de-biased algorithm, including

randomising over ℓ, is given in Algorithm 25. Finally, we note that the unbiasedness of

the estimator allows M independent iterations of Algorithm 24 to be run in parallel,

and their estimates averaged; this is described in Algorithm 26.

5.5 Feynman-Kac formalism

Marginally, the coupled particle systems of Algorithm 25 are particle approximations

to the same Feynman-Kac model described in section 5.3. That is, using the subscript

j = 1, 2 for the finer and coarser particle system respectively, the underlying target

Feynman-Kac models for the marginal distributions are defined by

γℓp,j(φ) =

∫
φ(yp)

p−1∏
q=1

Gq(yq)η0(dy0)

p−1∏
q=1

M ℓ
q,j(yq−1, dyq)
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Algorithm 22 Coupled Euler scheme for M̄ ℓ

To sample from M̄ ℓ((Xℓ
0,1, X

ℓ
0,2), ·), given independent standard normal random vari-

ables Wk:
1. For k = 0, . . . , 2ℓ − 1:

(a) If k even, set

Xℓ
k+1,1 = Xℓ

k,1 + a(Xℓ
k,1)hℓ + b(Xℓ

k,1)
√
hℓWk.

(b) If k odd, set

Xℓ
k+1,1 = Xℓ

k,1 + a(Xℓ
k,1)hℓ + b(Xℓ

k,1)
√
hℓWk,

Xℓ
k+1
2

,2
= Xℓ

k−1
2

,2
+ a

(
Xℓ

k−1
2

,2

)
· (2hℓ) + b

(
Xℓ

k−1
2

,2

)
·
√
hℓ(Wk +Wk−1)

2. Output (Xℓ
2ℓ,1

, Xℓ
2ℓ−1,2

).

Algorithm 23 Coupled resampling (Jasra et al. [2017])

Given G1 = (G1
1, . . . , G

N
1 ), G2 = (G1

2, . . . , G
N
2 ) where Gi

j = G(Xi
j):

1. Set for i = 1, . . . , N

wi
1 =

Gi
1∑N

j=1G
j
1

, wi
2 =

Gi
2∑N

j=1G
j
2

.

2. Letting w̃i = wi
1 ∧ wi

2, calculate

a =
N∑
i=1

w̃i.

3. With probability a, for q = w̃
a sample

I1 ∼ Cat ({1, . . . , N}, q)

and set I2 = I1.
4. Alternatively, with probability (1− a) define for i = 1, . . . , N

qi1 =
wi
1 − w̃i∑N

j=1(w
j
1 − w̃j)

, qi2 =
wi
2 − w̃i∑N

j=1(w
j
2 − w̃j)

and sample independently

I1 ∼ Cat ({1, . . . , N}, q1) , I2 ∼ Cat ({1, . . . , N}, q2) .

5. Return (I1, I2).
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Algorithm 24 Coupled estimator

1. For each i = 1, . . . , N , draw independently Xℓ,i
0,1 ∼ η0, and set Xℓ,i

0,2 = Xℓ,i
0,1.

2. Sample independently (Xℓ,i
1,1, X

ℓ,i
1,2) ∼ M̄ ℓ

1((X
ℓ,i
0,1, X

ℓ,i
0,2), ·) (for example, according

to Algorithm 22).
3. For p = 2, . . . , n:

(a) For each i, j calculate Gi
p−1,j = Gp−1(X

ℓ,i
p−1,j), and

Ḡp−1,j =
1

N

N∑
i=1

Gi
p−1,j .

(b) Resample X̃ℓ,i
p,j for i = 1, . . . , N and j = 1, 2, according to Algorithm 23.

(c) For each i, sample (Xℓ,i
p,1, X

ℓ,i
p,2) ∼ M̄ ℓ

p

(
(X̃ℓ,i

p,1, X̃
ℓ,i
p,2), ·

)
.

4. Estimate

q̂ℓn =
1

N

N∑
i=1

(
1(V (Xℓ,i

n,n,1) ≥ a)
n−1∏
p=1

Ḡp(X
ℓ,i
p,1)

−1

− 1(V (Xℓ,i
n,n,2) ≥ a)

n−1∏
p=1

Ḡp(X
ℓ,i
p,2)

−1
)
.

Algorithm 25 Unbiased estimator

1. Sample L ∼ P (·)
(a) If L = 0, run Algorithm 21 to obtain q̂0n, and estimate

p̂ubn =
q̂0n
P (0)

.

(b) Else, estimate run Algorithm 24 with ℓ = L to obtain q̂Ln , and estimate

p̂ubn =
q̂Ln
P (L)

.

Algorithm 26 Unbiased estimator, multiple samples

1. For i = 1, . . . ,M , sample p̂
ub,(i)
n ∼ Algorithm 25

2. Estimate

p̂ub,Mn =
1

M

M∑
i=1

p̂ub,(i)n .
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and

ηℓp,j(φ) =
γℓp,j(f)

γℓp,j(1)
.

Likewise, write ηℓ,Nn,1 and ηℓ,Nn,2 for the unnormalised empirical measures corresponding

respectively to the finer and coarser marginals of the coupled scheme, and define for

j = 1, 2

γℓ,Np,j (·) = ηℓ,Np,j (·)
p∏

q=1

ηℓ,Nq (Gq).

We also define a Feynman-Kac model for the coupled scheme. In particular, we define

η̄ℓ0 = ηℓ0, and η̄
ℓ
p = Φ̄ℓ

p(η̄
ℓ
p−1) where Φ̄ℓ

p corresponds to the combined coupled mutation

plus coupled sampling step, for example an iteration of Algorithm 22 followed by an

iteration of Algorithm 23:

Φ̄ℓ
p(µ)(dv) = µ(Ḡp−1,µ)

µ(Ḡp−1,µK
ℓ(·, dv))

µ(Ḡp−1,µ)

− (1− µ(Ḡp−1,µ)) (µ⊗ µ)
(
[Hp−1,1,µ ⊗Hp−1,2,µ] K̄

ℓ
p(·, dv)

)
,

where

Ḡp,µ(u) =
Gp(u)

µ1(Gp)
∧ Gp(u)

µ2(Gp)
, Hp,j,µ =

Gp(u)
µ1(Gp)

− Ḡp,µ(u)

µ
(

Gp(u)
µ1(Gp)

− Ḡp,µ(u)
)

for j = 1, 2.

It may easily be verified then that η̄ℓp,j = ηℓp,j ie. the marginal of the joint distribution

is correct (see [Jasra et al., 2017, Proposition A.1]).

We now turn to the analysis of the estimator defined in this chapter.
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Chapter 6

Variance and numerical

experiments

6.1 Introduction

We now turn our attention to the mathematical properties of the estimator described

in Algorithm 25, assuming the use of the coupled Euler method (Algorithm 22) and

the maximal coupled resampling scheme (Algorithm 23).

6.1.1 Assumptions

We begin by listing in one place all of the notable assumptions we place on the stochastic

differential equation and the Feynman-Kac measures.

Assumptions on diffusion

1. b(x)b(x)T is positive definite.

2. a, b Lipschitz continuous.

3. E|X0|p <∞ for every p ≥ 1.

Assumptions on G

1. There is a c > 0 such that c−1 < Gp(yp) < c.

2. Gp : Rd×p → R is Lipschitz continuous: there is a C > 0 such that

∣∣Gp(yp)−Gp(y
′
p)
∣∣ ≤ C||yp − y′p||.
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6.1.2 Useful results

Here we sketch some results from Jasra et al. [2017], Jasra et al. [2018] which we will

make use of analysing the variance of our procedure. These results are established

for the chain (Xp) rather than the historical process (Yp), but continue to hold in our

setting with near-identical proofs. We give one example proof (of Proposition 4) to

illustrate the validity in the historical process setting.

Lemma 14. Cm-inequality: let a1, . . . , ak ≥ 0. Then there is a constant C(k) such

that (
k∑

i=1

ai

)m

≤ C(k)
∑

ami .

Lemma 15. Marcinkiewicz-Zygmund inequality: let X1, . . . , XN be centred independent

RVs with finite m-th moments for all m ≥ 1. Then for a constant C(m) independent

of n and of the distribution of the Xi, it holds that

E

∣∣∣∣∣
N∑
i=1

Xi

∣∣∣∣∣
m

≤ C(m)E

( N∑
i=1

|Xi|2
)m/2


Lemma 16. Grönwall inequality (integral form): let u, β : [0, T ] → R be continuous,

α : [0, T ]→ R non-decreasing, and suppose that for all t ∈ [0, T ], we have

u(t) ≤ α(t) +
∫ t

0
β(s)u(s)ds.

Then for all t ∈ [0, T ],

u(t) ≤ α(t) exp
∫ t

0
β(s)u(s)ds.

We use the following notation: for a bounded function φ : Rd×n → R, define ||φ|| :=
supx∈Rd×n ||φ(x)||.

Proposition 4. Jasra et al. [2017], Proposition C.6: Under the listed assumptions, for

every m ≥ 1 and for j = 1, 2, there is a constant C(n,m) independent of ℓ, such that

for all bounded φ (
E|ηℓ,Nn,j (φ)− ηℓn,j(φ)|m

) 1
m ≤ C(n,m)||φ||√

N

We include the (short) proof of this result here to demonstrate clearly that the constant

C is independent of ℓ, and that it is sufficient to take φ bounded (it need not be Lipschitz

continuous, as is assumed in the original):
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Proof. Induction on n. Case n = 0, by the Marcinkiewicz-Zygmund inequality we have

E|ηℓ,N0,j (φ)− ηℓ0,j(φ)|m = E| 1
N

N∑
i=1

(
φ(Y ℓ,i

0,j )− ηℓ0,j(φ)
)
|m

≤ C(m)

Nm
E

( N∑
i=1

|φ(Y ℓ,i
0,j )− ηℓ0,j(φ)|2

)m
2


≤ C(m)

Nm

(
N ||φ||2

)m
2

=

(
C(m)√
N
||φ||

)m

For the induction step, by the triangle inequality (Minkowski)

(
E|ηℓ,Nn,j (φ)− ηℓn,j(φ)|m

) 1
m ≤

(
E
∣∣∣ηℓ,Nn,j (φ)− [Φ̄ℓ

n(η̄
ℓ,N
n−1)]j(φ)

∣∣∣m) 1
m

+
(
E
∣∣∣[Φ̄ℓ

n(η̄
ℓ,N
n−1)]j(φ)− ηℓn,j(φ)

∣∣∣m) 1
m
.

Define FN
n−1 to be the sigma algebra generated by the particle system up to time

n− 1. Then for the first term above, noting that for any test function φ it holds that

E[ηℓ,Nn,j (φ)|FN
n−1] = [Φ̄ℓ

n(η̄
ℓ,N
n−1)]j(φ), by the tower law and the Marcinkiewicz-Zygmund

inequality it follows that

E
∣∣∣ηℓ,Nn,j (φ)− [Φ̄ℓ

n(η̄
ℓ,N
n−1)]j(φ)

∣∣∣m = E
[
E
[ ∣∣∣ηℓ,Nn,j (φ)− [Φ̄ℓ

n(η̄
ℓ,N
n−1)]j(φ)

∣∣∣m | FN
n−1

]]
= E

[
E

[ ∣∣∣∣∣ 1N
N∑
i=1

(
φ(Y ℓ,i

n,j)− [Φ̄ℓ
n(η̄

ℓ,N
n−1)]j(φ)

)∣∣∣∣∣
m

| FN
n−1

]]

≤
(
C(m)√
N
||φ||

)m

as for n = 0. For the second term, we have

Φ̄ℓ
n(η̄

ℓ,N
n−1)− ηℓn,j(φ) =

ηℓ,Nn−1,j(Gn−1M
ℓ
n,j(φ))

ηℓ,Nn−1,j(Gn−1)
−
ηℓn−1,j(Gn−1M

ℓ
n,j(φ))

ηℓ,Nn−1,j(Gn−1)

+
ηℓn−1,j(Gn−1M

ℓ
n,j(φ))

ηℓ,Nn−1,j(Gn−1)
−
ηℓn−1,j(Gn−1M

ℓ
n,j(φ))

ηℓn−1,j(Gn−1)

=
1

ηℓ,Nn−1,j(Gn−1)

[
ηℓ,Nn−1,j(Gn−1M

ℓ
n,j(φ))− ηℓn−1,j(Gn−1M

ℓ
n,j(φ))

]
+

ηℓn−1,j(Gn−1M
ℓ
n,j(φ))

ηℓ,Nn−1,j(Gn−1)ηℓn−1,j(Gn−1)

[
ηℓn−1,j(Gn−1)− ηℓ,Nn−1,j(Gn−1)

]
.
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Then by the triangle inequality

(
E|Φ̄ℓ

n(η̄
ℓ,N
n−1)− ηℓn,j(φ)|m

) 1
m

≤
(
E

∣∣∣∣∣ 1

ηℓ,Nn−1,j(Gn−1)

[
ηℓ,Nn−1,j(Gn−1M

ℓ
n,j(φ))− ηℓn−1,j(Gn−1M

ℓ
n,j(φ))

]∣∣∣∣∣
m) 1

m

+
ηℓn−1,j(Gn−1M

ℓ
n,j(φ))

ηℓn−1,j(Gn−1)

(
E

∣∣∣∣∣ 1

ηℓ,Nn−1,j(Gn−1)

[
ηℓn−1,j(Gn−1)− ηℓ,Nn−1,j(Gn−1)

]∣∣∣∣∣
m) 1

m

≤ 1

inf |Gn−1|

[(
E
∣∣∣ηℓ,Nn−1,j(Gn−1M

ℓ
n,j(φ))− ηℓn−1,j(Gn−1M

ℓ
n,j(φ))

∣∣∣m) 1
m

+
ηℓn−1,j(Gn−1M

ℓ
n,j(φ))

ηℓn−1,j(Gn−1)

(
E
∣∣∣ηℓn−1,j(Gn−1)− ηℓ,Nn−1,j(Gn−1)

∣∣∣m) 1
m

]

Since by assumption Gn−1, Gn−1M
ℓ
n,j(φ) are bounded, the result then follows from the

induction hypothesis. (Notice the constant C depends now on n.)

Proposition 5. [Jasra et al., 2018, Proposition 5.3]: under assumptions 6.1.1, there

is a constant C(n) independent of ℓ such that for j = 1, 2,

E[
(
γℓ,Nn,j (1)− γℓn,j(1)

)2
] ≤ C(n)

N
.

To state the next results, we need some more notation. For two probability measures

µ, ν defined on the measurable space (X ,F), the total variation distance between µ, ν

is

||µ− ν||TV = sup
E∈F
|µ(E)− ν(E)| .

For two transition kernels M1,M2, let A = {φ : ||φ|| ≤ 1 and φ Lipschitz}, and define

|||M1 −M2||| = sup
φ∈A

sup
x
|M1(φ)(x)−M2(φ)(x)|

We now define Bℓ(n) as

Bℓ(n) =

 n∑
p=0

E
[
(||Y ℓ,1

p,1 − Y ℓ,1
p,2 || ∧ 1)2

] 1
2
+

n∑
p=0

||ηℓp,1 − ηℓp,2||TV +

n∑
p=1

|||M ℓ
p,1 −M ℓ

p,2|||

2

Proposition 6. [Jasra et al., 2018, Proposition 5.2]: under assumptions 6.1.1, for all

n ≥ 0 have

E
[(

[γℓ,Nn,1 (1)− γℓ,Nn,2 (1)]− [γℓn,1(1)− γℓn,2(1)]
)2]
≤ B̄ℓ(n)

N

where B̄ℓ(n) is given explicitly by defining recursively B̄ℓ(0) = CBℓ(0) for some constant
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C independent of ℓ, and

B̄ℓ(n) = C(n)
(
Bℓ(n− 1) + B̄ℓ(n− 1) + ||ηℓn−1,1 − ηℓn−1,2||2TV + (γℓn−1,1(1)− γℓn−1,2(1))

2
)
,

We also make use of the following useful table of rates for the Euler scheme and coupled

resampling scheme employed here:

Expression Bound Source

E[(||Xℓ,1
n,1 −Xℓ,1

n,2|| ∧ 1)m] O(h1/2ℓ ) [Jasra et al., 2017, Theorem D.5]

||ηℓn,1 − ηℓn,2||TV O(hℓ) [Jasra et al., 2017, Appendix D]

|||M ℓ
n,1 −M ℓ

n,2||| O(hℓ) [Jasra et al., 2017, Appendix D]

|γℓn,1(1)− γℓn,2(1)|2 O(h2ℓ ) [Jasra et al., 2018, Proposition 5.4]

Bℓ(n) O(h1/2ℓ ) [Jasra et al., 2017, Corollary D.6]

B̄ℓ(n) O(h1/2ℓ ) [Jasra et al., 2018, Remark 5.1]

Table 6.1: Decay rates for various quantities for the coupled particle filter, assuming
the use of the coupled Euler scheme, and the coupled resampling scheme given in
Algorithm 23.

6.2 Variance

In Section 5.4, we defined an estimator for the rare event probability in our present

setting: for L ∼ P (L),

p̂ubn =
1

P (L)

(
γN,L
n,1 (S(a)

n )− γN,L
n,2 (S(a)

n )
)
.

In practice, one would run M independent copies of the particle system and use the

averaged estimate p̂ub,Mn = 1
M

∑M
j=1 p̂

ub,(j)
n (see Algorithm 26). This of course has a

reduced variance compared to the single estimator, provided the variance of the single

estimator is finite.

Here we examine the variance of the single estimator.

Theorem 17. Suppose that a, b in the SDE equation (5.1) are bounded as well as

Lipschitz continuous. Then there is a constant C = C
(
n, ||S(a)

n ||
)

independent of ℓ

such that

E
[(

(γℓ,Nn,1 (S
(a)
n )− γℓ,Nn,2 (S

(a)
n )− (γℓn,1(S

(a)
n )− γℓn,2(S(a)

n ))
)2]
≤ C

N
h
1/4
ℓ .

This is based on the following heuristic: Proposition 6 due to Jasra et al. [2018],

combined with the corresponding rateO(h1/2ℓ ) for B̄ℓ(n) given in Table 6.1, establishes a

bound proportional to h
1/2
ℓ /N for the mean-squared error of the fixed-level normalising

constant estimator (γℓ,Nn,1 (1)− γℓ,Nn,2 (1)).

Likewise, [Jasra et al., 2017, Theorem C.4] gives the same h
1/2
ℓ /N mean-squared error

bound for the fixed-level filtering estimator (ηℓ,Nn,1 (φ)− ηℓ,Nn,2 (φ)), where φ is a Lipschitz
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test function.

The exponent 1/2 in h
1/2
ℓ appears as half the strong error rate for MLMC using the

Euler scheme, known to be β = 1 for Lipschitz test functions as discussed in section 5.2.

It is noted in [Jasra et al., 2017, p. 3075] that the reason for this halving of the strong

error rate is the coupled resampling scheme employed in the multilevel particle filter;

this conclusion is quantified in [Jasra et al., 2017, Theorem D.5].

In section 5.2, we also noted that MLMC estimation of a test function φ with a point

of discontinuity reduces this error rate for the Euler scheme by a factor of 1/2 as well.

Therefore, it seems reasonable to aim for at worst a rate of h
1/4
ℓ for using a coupled

SMC algorithm to estimate a Lipschitz function multiplied by an indicator function, as

in the definition of S
(a)
n :

S(a)
n (yn) = 1(V (xn) ≥ a)

n−1∏
p=1

Gp(yp)
−1.

The assumption of boundedness on a, b is not made in Jasra et al. [2017, 2018], and is

used here to extend an argument to the present setting. It is not clear that it is strictly

necessary, and our numerical experiment in Section 6.4 for which this assumption does

not hold does not seem to perform worse than the theorem would suggest.

Throughout the following, C denotes a general constant which may change value from

line to line, but which is always independent of ℓ.

For n ≥ 1, noting that

γℓ,Nn,j (S
(a)
n ) = ηℓ,Nn,j (S

(a)
n )γℓ,Nn,j (1),

(see section 3.3.4), and using the elementary equality

(aNAN − bNBN )− (aA− bB) =AN ((aN − bN )− (a− b))
+ bN ((AN −BN )− (A−B))

+ (AN −A)(a− b) + (bN − b)(A−B)

with

aN = ηℓ,Nn,1 (S
(a)
n ), AN = γℓ,Nn,1 (1),

bN = ηℓ,Nn,2 (S
(a)
n ), BN = γℓ,Nn,2 (1),

a = ηℓn,1(S
(a)
n ), A = γℓn,1(1),

b = ηℓn,2(S
(a)
n ) , B = γℓn,2(1),
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the C2-inequality implies that for a constant C > 0 which is independent of ℓ,

E[((aNAN − bNBN )− (aA− bB))2] ≤C
(
E[A2

N ((aN − bN )− (a− b))2] (6.1)

+ E[b2N ((AN −BN )− (A−B))2] (6.2)

+ E[(AN −A)2(a− b)2] (6.3)

+ E[(bN − b)2(A−B)2]

)
. (6.4)

We deal with these terms separately. For (6.2), since Gp is bounded below for p =

1, . . . , n− 1 (Assumption (1) of 6.1.1),

bN = ηℓ,Nn,2 (S
(a)
n ) =

1

N

N∑
i=1

1(V (Xℓ,i
n,1) ≥ a)

n−1∏
p=1

Gp(Y
ℓ,i
p,1)

−1 ≤ C.

Hence applying Proposition 6 and consulting Table 6.1 gives the following bound:

E[b2N ((AN −BN )− (A−B))2] ≤ C B̄ℓ(n)

N
≤ C

N
h
1/2
ℓ . (6.5)

Now (a − b)2, (A − B)2 are independent of N , so the corresponding terms (6.3), (6.4)

may be bounded as follows:

E[(bN − b)2(A−B)2] = (A−B)2E[(bN − b)2]

≤ (A−B)2
C(n)||S(a)

n ||2
N

=
C
(
n, ||S(a)

n ||
)

N
|γℓn,1(1)− γℓn,2(1)|2 (6.6)

≤ C

N
h2ℓ (6.7)

(from Proposition 4 and Table 6.1), and

E[(AN −A)2(a− b)2] = (a− b)2E[(AN −A)2]

≤ (a− b)2C(n)
N

≤ C(n)

N
||ηℓn,1 − ηℓn,2||2TV (6.8)

≤ C

N
h2ℓ (6.9)

(from Proposition 5 and Table 6.1).

It finally remains to consider ((aN − bN ) − (a − b))2. We follow the method of [Jasra

et al., 2017, Theorem C.4], making departures where necessary to account for the fact
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that S
(a)
n is not Lipschitz. We have:

E
[
((aN − bN )− (a− b))2

]
≤ 2E

[(
(aN − bN )− ([Φ̄ℓ

n(η̄
ℓ,N
n−1)]1(S

(a)
n )− [Φ̄ℓ

n(η̄
ℓ,N
n−1)]2(S

(a)
n ))

)2]
(6.10)

+ 2E
[(

([Φ̄ℓ
n(η̄

ℓ,N
n−1)]1(S

(a)
n )− [Φ̄ℓ

n(η̄
ℓ,N
n−1)]2(S

(a)
n ))− (a− b)

)2]
.

(6.11)

For the first term (6.10), we condition on FN
n−1, and noting that for any test function

φ it holds that E[ηℓ,Nn,j (φ)|FN
n−1] = [Φ̄ℓ

n(η̄
ℓ,N
n−1)]j(φ), we can apply the Marcinkiewicz-

Zygmund inequality to obtain

E
[(

[ηℓ,Nn,1 (S
(a)
n )− ηℓ,Nn,2 (S

(a)
n )]−

[
[Φ̄ℓ

n(η̄
ℓ,N
n−1)]1(S

(a)
n )− [Φ̄ℓ

n(η̄
ℓ,N
n−1)]2(S

(a)
n )
])2]

= E

E( 1

N

N∑
i=1

(
S(a)
n (Y ℓ,i

n,1)− S(a)
n (Y ℓ,i

n,2)
)
−
[
[Φ̄ℓ

n(η̄
ℓ,N
n−1)]1(S

(a)
n )− [Φ̄ℓ

n(η̄
ℓ,N
n−1)]2(S

(a)
n )
])2

|FN
n−1


≤ C

N

(
E
∣∣∣S(a)

n (Y ℓ,1
n,1)− S(a)

n (Y ℓ,1
n,2)
∣∣∣2 + E

∣∣∣[Φ̄ℓ
n(η̄

ℓ,N
n−1)]1(S

(a)
n )− [Φ̄ℓ

n(η̄
ℓ,N
n−1)]2(S

(a)
n )
∣∣∣2)

(6.12)

For the first term of (6.12) above, the fact that S
(a)
n is not Lipschitz is crucial. It

is, however, simply an indicator function multiplied by a Lipschitz function (by our

Lipschitz assumption on the Gp, Assumption (2) of section 6.1.1). Therefore we use

the following technique: let δℓ be a small increment to be chosen later. Then we have

the decomposition

E

[(
S(a)
n (Y ℓ,1

n,1)− S(a)
n (Y ℓ,1

n,2)

)2
]

=

8∑
i=1

E
[
1

(
(V (Xℓ,1

n,1), V (Xℓ,1
n,2)) ∈ Bi

)(
S(a)
n (Y ℓ,1

n,1)− S(a)
n (Y ℓ,1

n,2)
)2]

where the sets Bi are as laid out in Table 6.2. (See also the accompanying Figure 6.1):

These regions are specified for V (X), the projection ofX under the reaction co-ordinate.

The cases B2, B3, B4, B5 are all similar in specifying events in which the image of the

coarse and fine discretisations under V fall on either side of the rare event boundary a,

and are at least δℓ apart. Since we make us of these facts only, it is therefore sufficient

to analyse these cases together.

Similarly B6, B7 specify events in which the image of the coarse and fine discretisations

under V fall on either side of the rare event boundary a, and are at most 2δℓ apart.

Again, we analyse these cases together. Thus there are just four cases to consider.
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Set Case of corresponding term in sum

B1 = (−∞, a)2 Neither of V (X1), V (X2) reaches a
B2 = (−∞, a− δℓ)× (a,∞) V (X2) reaches a, V (X1) fails to reach by at least δℓ
B3 = (a,∞)× (−∞, a− δℓ) V (X1) reaches a, V (X2) fails to reach by at least δℓ
B4 = (a+ δℓ,∞)× (a− δℓ, a) V (X1) clears a by at least δℓ, V (X2) fails by at most δℓ
B5 = (a− δℓ, a)× (a+ δℓ,∞) V (X1) fails by at most δℓ, V (X2) clears by at least δℓ
B6 = (a− δℓ, a)× (a, a+ δℓ) V (X1) fails by at most δℓ, V (X2) clears by at most δℓ
B7 = (a, a+ δℓ)× (a− δℓ, a) V (X1) clears by at most δℓ, V (X2) fails by at most δℓ

B8 = (a,∞)2 Both V (X1), V (X2) reach a

Table 6.2: Eight sets corresponding to different relative positions for the fine and coarse
marginals Xℓ

1, X
ℓ
2

Figure 6.1: Schematic illustration of possible coupled path terminations under the
image of the reaction co-ordinate for the sets Bj , j = 1, 2, 6, 8. Paths on the left of each
pair correspond to the fine discretisation, those on the right to the coarse. Black dots
mark the termination points. Two examples are given for j = 1, 2, 8 to show different
possibilities.
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1. j = 1:

E
[
1Bj

(
S(a)
n (Y ℓ,1

n,1)− S(a)
n (Y ℓ,1

n,2)
)2]

= 0.

2. For j = 2, 3, 4, 5, one of the two terms in the difference is identically 0, so:

E
[
1Bj

(
S(a)
n (Y ℓ,1

n,1)− S(a)
n (Y ℓ,1

n,2)
)2]
≤

n−1∏
p=1

sup
yn
|Gp(yp)|2P(Bj)

≤ CP(|V (Xℓ,1
n,1)− V (Xℓ,1

n,2)| ≥ 2δℓ)

≤ C
E
∣∣∣V (Xℓ,1

n,1)− V (Xℓ,1
n,2)
∣∣∣

δℓ

≤ C
E
[
(|Xℓ,1

n,1 −Xℓ,1
n,2| ∧ 1)

]
δℓ

(6.13)

where in the third line we have used the Markov inequality, and where the fourth

line follows since V is bounded and Lipschitz (recall that we made this assumption

in section 5.3).

3. j = 6, 7:

E
[
1Bj

(
S(a)
n (Y ℓ,1

n,1)− S(a)
n (Y ℓ,1

n,2)
)2]
≤ 4

n−1∏
p=1

sup
yn
|Gp(yp)|2P(Bj)

≤ C P(V (Xℓ,1
n,1) ∈ (a− δℓ, a))

≤ C sup |qn(·)|δℓ (6.14)

provided V (Xℓ,1
n,1) has a bounded density qn.

4. For j = 8, S
(a)
n is Lipschitz on (a,∞), and also bounded, so we may immediately

write

E
[
1Bj

(
S(a)
n (Y ℓ,1

n,1)− S(a)
n (Y ℓ,1

n,2)
)2]
≤ E

[
(|Xℓ,1

n,1 −Xℓ,1
n,2| ∧ 1)2

]
(6.15)

Putting these cases together, for the first term (∗) of 6.12 we have the bound

(∗) ≤ C

N

(
δℓ +

1

δℓ
E
[
(|Xℓ,1

n,1 −Xℓ,1
n,2| ∧ 1)

]
+ E

[
(|Xℓ,1

n,1 −Xℓ,1
n,2| ∧ 1)2

])
. (6.16)

Moreover, from Table 6.1 we have that E
[
(|Xℓ,1

n,1 −Xℓ,1
n,2| ∧ 1)m

]
= O(h1/2ℓ ), so the

optimal choice δℓ = h
1/4
ℓ gives

(∗) ≤ C

N
(O(h1/4ℓ ) +O(h1/4ℓ ) +O(h1/2ℓ )) = O(h1/4ℓ ).
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For the second term of (6.12), we make use of the decomposition

Φ̄(η̄ℓ,Nn−1)1(S
(a)
n )− Φ̄(η̄ℓ,Nn−1)2(S

(a)
n )

=

(
1

ηℓ,Nn−1,1(Gn−1)

(
ηℓ,Nn−1,1(Gn−1M

ℓ
n,1(S

(a)
n ))− ηℓ,Nn−1,1(Gn−1M

ℓ
n,2(S

(a)
n ))

)
(6.17)

+
1

ηℓ,Nn−1,1(Gn−1)

(
ηℓ,Nn−1,1(Gn−1M

ℓ
n,2(S

(a)
n ))− ηℓ,Nn−1,2(Gn−1M

ℓ
n,2(S

(a)
n ))

)
(6.18)

+
ηℓ,Nn−1,2(Gn−1M

ℓ
n,2(S

(a)
n ))

ηℓ,Nn−1,1(Gn−1)η
ℓ,N
n−1,2(Gn−1)

(
ηℓ,Nn−1,2(Gn−1)− ηℓ,Nn−1,1(Gn−1)

))
(6.19)

The final term (6.19) may be bounded similarly to the calculation in the appendix, see

[Jasra et al., 2017, Eqn (29)]: since Gn−1 is bounded above and below, S
(a)
n is bounded

above, and Gn−1 is Lipschitz continuous, for a constant C independent of ℓ

ηℓ,Nn−1,2(Gn−1M
ℓ
n,2(S

(a)
n ))

ηℓ,Nn−1,1(Gn−1)η
ℓ,N
n−1,2(Gn−1)

∣∣∣ηℓ,Nn−1,2(Gn−1)− ηℓ,Nn−1,1(Gn−1)
∣∣∣

≤ C

N

N∑
i=1

∣∣∣Gn−1(Y
ℓ,i
n−1,1)−Gn−1(Y

ℓ,i
n−1,1)

∣∣∣
≤ C

N

N∑
i=1

(
||Y ℓ,i

n−1,1 − Y ℓ,i
n−1,2|| ∧ 1

)
. (6.20)

The bounded path discrepancy E
[(
||Y ℓ,i

n−1,1 − Y ℓ,i
n−1,2|| ∧ 1

)]
= O(h1/2ℓ ) since

E
[(
||Y ℓ,i

n−1,1 − Y ℓ,i
n−1,2|| ∧ 1

)]
≤ E

n−1∑
p=0

||Xℓ,i
p,1 −Xℓ,i

p,2|| ∧ 1


≤ CE

n−1∑
p=0

(
||Xℓ,i

p,1 −Xℓ,i
p,2|| ∧ 1

)
= C

n−1∑
p=0

E
[(
||Xℓ,i

p,1 −Xℓ,i
p,2|| ∧ 1

)]
= O(h1/2ℓ ),

by Table 6.1, so the term (6.20) can be controlled.
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For (6.17), since Gn−1 is bounded above and below we have

1

ηℓ,Nn−1,1(Gn−1)

∣∣∣ηℓ,Nn−1,1(Gn−1M
ℓ
n,1(S

(a)
n ))− ηℓ,Nn−1,1(Gn−1M

ℓ
n,2(S

(a)
n ))

∣∣∣
≤C
N

N∑
i=1

Gn−1(Y
ℓ,i
n−1,1)

∣∣∣M ℓ
n,1(S

(a)
n )(Y ℓ,i

n−1,1)−M ℓ
n,2(S

(a)
n )(Y ℓ,i

n−1,1)
∣∣∣

≤C
N

N∑
i=1

∣∣∣M ℓ
n,1(S

(a)
n )(Y ℓ,i

n−1,1)−M ℓ
n,2(S

(a)
n )(Y ℓ,i

n−1,1)
∣∣∣ . (6.21)

We deal with this term using a similar eight-fold decomposition to that described

previously. In particular, writing Bj for the pre-image of Bj under the Cartesian

product function (V −1 × V −1):

M ℓ
n,1(S

(a)
n )(Y ℓ,i

n−1,1)−M ℓ
n,2(S

(a)
n )(Y ℓ,i

n−1,1)

=

∫
Sa
n(y1)M

ℓ
n,1(Y

ℓ,i
n−1,1, dy1)−

∫
Sa
n(y2)M

ℓ
n,2(Y

ℓ,i
n−1,1, dy2)

=

∫
(Sa

n(y1)− Sa
n(y2)) M̄

ℓ
n((Y

ℓ,i
n−1,1, Y

ℓ,i
n−1,1), d(y1, y2))

=

8∑
j=1

∫
Bj

(Sa
n(y1)− Sa

n(y2)) M̄
ℓ
n((Y

ℓ,i
n−1,1, Y

ℓ,i
n−1,1), d(y1, y2)).

As before, we can divide into four cases:

1. j = 1: ∫
Bj

(Sa
n(y1)− Sa

n(y2)) M̄
ℓ
n((Y

ℓ,i
n−1,1, Y

ℓ,i
n−1,1), d(y1, y2)) = 0.

2. j = 2, 3, 4, 5:∫
Bj

(Sa
n(y1)− Sa

n(y2)) M̄
ℓ((Y ℓ,i

n−1,1, Y
ℓ,i
n−1,1), d(y1, y2)) ≤ CM̄ ℓ

n((Y
ℓ,i
n−1,1, Y

ℓ,i
n−1,1),Bj)

≤ CP(|V (Xℓ
1,1)− V (Xℓ

1,2)| > 2δℓ)

≤ C
E
[
(|Xℓ

1,1 −Xℓ
1,2| ∧ 1)

]
δℓ

(6.22)

3. j = 6, 7:∫
Bj

(Sa
n(y1)− Sa

n(y2)) M̄
ℓ
n((Y

ℓ,i
n−1,1, Y

ℓ,i
n−1,1), d(y1, y2)) ≤ CM̄ ℓ

n((Y
ℓ,i
n−1,1, Y

ℓ,i
n−1,1),Bj)

≤ CP(V (Xℓ,i
n,1) ∈ (a− δℓ, a))

≤ C sup |qn(·)|δℓ (6.23)
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4. j = 8:∫
Bj

(Sa
n(y1)− Sa

n(y2)) M̄
ℓ
n((Y

ℓ,i
n−1,1, Y

ℓ,i
n−1,1), d(y1, y2)) ≤ C|||M ℓ

n,1 −M ℓ
n,2|||,

(6.24)

since S
(a)
n is Lipschitz continuous over this region.

As before, putting these together we obtain

|(6.17)| ≤ C
(
δℓ +

1

δℓ

1

N

N∑
i=1

E
[
(|Xℓ,i

1,1 −Xℓ,i
1,2| ∧ 1)

]
+ |||M ℓ

n,1 −M ℓ
n,2|||

)
(6.25)

so choosing δℓ = h
1/4
ℓ as before we get (6.17) = O(h1/4ℓ ) (this is inside an expression to

be squared, so will eventually contribute O(h1/2ℓ )).

For (6.18), we have

1

ηℓ,Nn−1,1(Gn−1)

∣∣∣ηℓ,Nn−1,1(Gn−1M
ℓ
n,2(S

(a)
n ))− ηℓ,Nn−1,2(Gn−1M

ℓ
n,2(S

(a)
n ))

∣∣∣
≤C 1

N

N∑
i=1

∣∣∣Gn−1(Y
ℓ,i
n−1,1)M

ℓ
n,2(S

(a)
n )(Y ℓ,i

n−1,1)−Gn−1(Y
ℓ,i
n−1,2)M

ℓ
n,2(S

(a)
n )(Y ℓ,i

n−1,2)
∣∣∣

=C

(
1

N

N∑
i=1

|
[
Gn−1(Y

ℓ,i
n−1,1)−Gn−1(Y

ℓ,i
n−1,2)

]
M ℓ

n,2(S
(a)
n )(Y ℓ,i

n−1,1)

+
1

N

N∑
i=1

Gn−1(Y
ℓ,i
n−1,2)

[
M ℓ

n,2(S
(a)
n )(Y ℓ,i

n−1,1)−M ℓ
n,2(S

(a)
n )(Y ℓ,i

n−1,2)
]
|
)

≤C
(

1

N

N∑
i=1

(
||Y ℓ,i

n−1,1 − Y ℓ,i
n−1,2|| ∧ 1

)
+

1

N

N∑
i=1

∣∣∣M ℓ
n,2(S

(a)
n )(Y ℓ,i

n−1,1)−M ℓ
n,2(S

(a)
n )(Y ℓ,i

n−1,2)
∣∣∣) (6.26)

To bound the term (6.26), we again make use of the eight-fold decomposition. Let

M̃ ℓ
n be any coupled transition kernel with left and right marginals both equal to M ℓ

n,2.

Then:

M ℓ
n,2(S

(a)
n )(Y ℓ,i

n−1,1)−M ℓ
n,2(S

(a)
n )(Y ℓ,i

n−1,2)

=

∫
Sa
n(y1)M

ℓ
n,2(Y

ℓ,i
n−1,1, dy1)−

∫
Sa
n(y2)M

ℓ
n,2(Y

ℓ,i
n−1,2, dy2)

=

∫
(Sa

n(y1)− Sa
n(y2)) M̃

ℓ
n((Y

ℓ,i
n−1,1, Y

ℓ,i
n−1,2), d(y1, y2))

=

8∑
j=1

∫
Bj

(Sa
n(y1)− Sa

n(y2)) M̃
ℓ
n((Y

ℓ,i
n−1,1, Y

ℓ,i
n−1,2), d(y1, y2)). (6.27)
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We obtain the desired bound by a suitable choice of coupling M̃ ℓ
n. Consider the choice

of coupling for which the marginal Euler schemes are defined using common normal

random variables, as described in Algorithm 27 below:

Algorithm 27 Coupled Euler scheme for M̃ ℓ
n

To sample from M̃ ℓ
n((Y

ℓ
n−1,1, Y

ℓ
n−1,2), ·), given independent standard normal random

variables Wk:
1. Set Z0,1 = Xℓ

n−1,1 and Z0,2 = Xℓ
n−1,2

2. For k = 0, . . . , 2ℓ−1 − 1, set:

Zk+1,1 = Zk,1 + a(Zk,1)hℓ + b(Zk,1)
√
hℓWk,

Zk+1,2 = Zk,2 + a(Zk,2)hℓ + b(Zk,2)
√
hℓWk

3. Output (
Xℓ

n,1, X
ℓ
n,2

)
:=
(
Z2ℓ−1,1, Z2ℓ−1,2

)
.

Now for t ∈ [0, 1] and j = 1, 2, let Z̃j(t) be the continuous time process defined by

Z̃j(k/2
ℓ−1) := Zk,j

for k = 0, . . . , 2ℓ−1, where the Zk,j are as in Algorithm 27, and Z̃j(t) given by linear

interpolation between these values for all other times t. Then [Rogers and Williams,

2000, Corollary V.11.7] guarantees that there is a constant C independent of ℓ such

that

E

[
sup
t∈[0,1]

|Z̃1(t)− Z̃2(t)|
]
≤ C

(
E|Z̃1(0)− Z̃2(0)|+ E

[∫ t

0
sup
s∈[0,t]

|Z̃1(s)− Z̃2(s)|
])

.

As noted in [Jasra et al., 2017, Proposition D.1], combining this result with the Grönwall

inequality (Lemma 16) with u(t) = E
[
supt∈[0,1] |Z̃1(t)− Z̃2(t)|

]
, α(t) = CE|Z̃1(0) −

Z̃2(0)| and β(t) = C, yields that

E

[
sup
t∈[0,1]

|Z̃1(t)− Z̃2(t)|
]
≤ CE|Z̃1(0)− Z̃2(0)| exp (Ct)

= CE|Z̃1(0)− Z̃2(0)|. (6.28)

In particular, taking t = 1 provides a useful bound on the distance between the outputs

of Algorithm 27 in terms of its inputs; or equivalently, a bound on the distance between

samples from M̃ ℓ
n((Y

ℓ
n−1,1, Y

ℓ
n−1,2), ·) in terms of ||Xℓ

n−1,1 −Xℓ
n−1,2||.

We need, however, a bound in terms of ||(Xℓ
n−1,1 −Xℓ

n−1,2|| ∧ 1), for which Table 6.1

provides a convergence rate. In order to obtain this, we slightly modify [Rogers and

Williams, 2000, Corollary V.11.7]. In particular, under the assumptions of that Corol-
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lary, and using its notation, we see that

X̃t − Ỹt = ξ − η +
∫ t

0
(b(s,X)− b(s, Y ))ds+

∫ t

0
(σ(s,X)− σ(s, Y ))dBs.

Therefore

(sup
s
||X̃s− Ỹs||∧1) ≤ (||ξ−η||∧1)+

∫ t

0
(|b(X̃s)−b(Ỹs)|ds+sup

s
|
∫ s

0
σ(X̃u)−σ(Ỹu)dBu|

and following the same calculations as [Rogers and Williams, 2000, Lemma V.11.5], we

obtain.

E sup
s
(||X̃s−Ỹs||p∧1) ≤ C{E(||ξ−η||p∧1)+E

∫ t

0
(|b(X̃s)−b(Ỹs)|p+|σ(X̃s)−σ(Ỹs)|pds}.

Finally, assuming that b, σ are bounded and Lipschitz it follows that

E sup
s
(||X̃s − Ỹs||p ∧ 1) ≤ C{E(||ξ − η||p ∧ 1) +

∫ t

0
(||X̃s − Ỹs||p ∧ 1)ds+

∫ t

0
(||X̃s − Ỹs||p ∧ 1)ds}

and so as for (6.28), the Grönwall inequality implies that

E sup
s
(||X̃s − Ỹs||p ∧ 1) ≤ C{E(||ξ − η||p ∧ 1) (6.29)

Returning to the expression (6.27), we again divide into four cases:

1. j = 1: ∫
Bj

(Sa
n(y1)− Sa

n(y2)) M̃
ℓ
n((Y

ℓ,i
n−1,1, Y

ℓ,i
n−1,2), d(y1, y2)) = 0.

2. j = 2, 3, 4, 5:∫
Bj

(Sa
n(y1)− Sa

n(y2))M̃
ℓ((Y ℓ,i

n−1,1, Y
ℓ,i
n−1,2), d(y1, y2)) ≤ CM̄ ℓ

n((Y
ℓ,i
n−1,1, Y

ℓ,i
n−1,2),Bj)

≤ CP(|V (Xℓ
n,1)− V (Xℓ

n,2)| > 2δℓ|Xℓ,i
n−1,1, X

ℓ,i
n−1,2)

≤ C
E
[
(||Xℓ,i

n,1 −Xℓ,i
n,2|| ∧ 1)|Xℓ,i

n−1,1, X
ℓ,i
n−1,2

]
δℓ

≤ C
E
[
(||Xℓ,i

n−1,1 −Xℓ,i
n−1,2|| ∧ 1)

]
δℓ

(6.30)

3. j = 6, 7:∫
Bj

(Sa
n(y1)− Sa

n(y2)) M̃
ℓ
n((Y

ℓ,i
n−1,1, Y

ℓ,i
n−1,2), d(y1, y2)) ≤ CM̃ ℓ

n((Y
ℓ,i
n−1,1, Y

ℓ,i
n−1,1),Bj)

≤ CP(V (Xℓ,i
n−1,1) ∈ (a− δℓ, a))

≤ C sup |qn(·)|δℓ (6.31)
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4. j = 8:∫
Bj

(Sa
n(y1)− Sa

n(y2)) M̃
ℓ
n((Y

ℓ,i
n−1,1, Y

ℓ,i
n−1,2), d(y1, y2)) ≤ ||(Xℓ,i

n−1,1 −Xℓ,i
n−1,2) ∧ 1||,

(6.32)

by [Jasra et al., 2017, Assumption 4.1], since S
(a)
n is Lipschitz continuous over this

region.

Taking again the optimal rate δℓ = h
1/4
ℓ , putting all this together gives

E|(6.18)|2 = O(h1/4ℓ ).

Now combining the three bounds for (6.17), (6.18) and (6.19) gives

E|Φ̄(η̄ℓ,Nn−1)1(S
(a)
n )− Φ̄(η̄ℓ,Nn−1)2(S

(a)
n )|2 = O(h1/4ℓ )

and hence we have that (6.10) = O(h1/4ℓ ).

It remains to deal with (6.11). Again following [Jasra et al., 2017, Appendix C], this

may be broken up into six terms. The analysis of five of these terms (those labelled

terms 2, 3, 4, 5, 6) is identical to that in the appendix, and the bounds given there in

terms of ||ηℓn,1−ηℓn,2||TV, |||M ℓ
n,1−M ℓ

n,2||| and Bℓ(n) are sufficient for the present result.

It remains only to deal with term 1. Following the expansion in the appendix, we have

that

CE[(ηℓ,Nn−1,1(Gn−1M
ℓ
n,1(S

(a)
n )−Gn−1M

ℓ
n,2(S

(a)
n ))

− ηℓn−1,1(Gn−1M
ℓ
n,1(S

(a)
n )−Gn−1M

ℓ
n,2(S

(a)
n ))2]

≤ C

N
sup ||Gn−1M

ℓ
n,1(S

(a)
n )−Gn−1M

ℓ
n,2(S

(a)
n )||2

≤ C

N
sup ||M ℓ

n,1(S
(a)
n )−M ℓ

n,2(S
(a)
n )||2

which may be bounded exactly as in the analysis for 6.17. (In the above the second

line follows from Proposition 4, and the third line since Gn−1 is bounded). The other

part of the expansion of Term 1, namely

E
[(

[η̄ℓ,Nn−1 − η̄ℓn−1]([Gn−1M
ℓ
n,2(S

(a)
n )]1 − [Gn−1M

ℓ
n,2(S

(a)
n )]2)

)]
,

is controlled by the inductive argument of [Jasra et al., 2017, Theorem C.4] since

Gn−1M
ℓ
n,2(S

(a)
n ) is Lipschitz-continuous.
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6.3 Computational cost

We note that with the rate given in Theorem 17, ensuring Algorithm 25 has finite

variance forces it to require an infinite expected computing cost, and vice-versa. The

cost of one sample from the coupled Euler scheme of Algorithm 22 at discretisation

level hℓ = 2−ℓ is 2ℓ. Therefore, having chosen the distribution P in Algorithm 25, the

expected cost of the algorithm is

E[Cost] =
∞∑
l=0

2ℓP (ℓ).

On the other hand, the variance of the estimator is given by

Var[p̂ub] ≤ C
∞∑
ℓ=0

1

P (ℓ)
hβℓ <∞,

and it is clearly not possible to ensure these are simultaneously finite when β ≤ 1.

This may seem discouraging, but several possibilities remain open. One is to use vari-

ous methods to try to increase the fixed-level variance rate, as we discuss in section 6.6.

A second idea due to Jasra et al. [2020], where the de-biased algorithm similarly cannot

achieve finite variance and cost simultaneously, is a truncation technique in which one

specifies a maximum acceptable level Lmax, and samples L from some alternative dis-

tribution P trunc over (0, 1, . . . , L). Although this introduces bias into the algorithm, it

retains certain attractive features: in particular, one can in principle achieve a superior

mean-squared error to the corresponding multilevel SMC algorithm for a given cost

using parallel computation (see the discussion in [Jasra et al., 2020, Section 4]).

6.4 Numerical study: the Ornstein-Uhlenbeck process

The Ornstein-Uhlenbeck process (OU process) with mean 0 is described by the following

SDE with mean-reverting drift:

dX(t) = −θX(t)dt+ σdB(t). (6.33)

It has stationary distribution N (0, σ
2

θ ); moreover, given X0 one has the explicit formula

(see [Protter, 2004, Theorem 42])

X(t) = X(0)e−θt + σe−θtW

√
1

2θ
(e2θt − 1)

where W ∼ N (0, 1). Therefore, if we set X0 = 0, it follows that

Xt ∼ N
(
0,
σ2

2θ
(1− e−2θt)

)
. (6.34)
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Figure 6.2: Plot of ℓ against the log of the empirical variance of Ξℓ.

Choosing parameters θ = 1, µ = 0, σ = 3, we consider the problem of estimating the

event Xt > a for suitable a. For this model example, we consider a modest rare event

regime by taking t = 10 and a = 9. The choice t = 10 makes the exact distribution

(6.34) to all purposes indistinguishable from the stationary distribution. Either way, it

can be checked that P (X10 > 9) ≈ 1.105× 10−5.

First, we are interested in numerically verifying Theorem 17. We produce 100 samples

of the fixed level estimator Ξℓ, each with N = 5000000, 10000000, 20000000 particles,

for levels l = 2, . . . , 11. In Figure 6.2, we plot log2 of the empirical variance of Ξℓ =

(γℓ,N10,1 − γℓ,N10,2)(S
(9)
10 ) over the 1000 samples against ℓ. The gradient ought to give us an

estimate of β, supposing that V [Ξℓ] = O(hβℓ ) as Theorem 17 suggests. In fact, although

there are a number of outlying points, the gradients look rather optimistic compared

to the bound of the theorem.

We also try the truncation method mentioned in section 6.3, and comparing it against

an implementation as a multilevel SMC algorithm, following Jasra et al. [2017]. For the

multilevel algorithm at level L, we sample independently for each level ℓ = 1, . . . , L the

estimator ΞNℓ
ℓ ∼Algorithm.24, and ΞN0

0 ∼Algorithm.21, using Nℓ particles. We choose

the Nℓ following the guidance in [Jasra et al., 2017, Section 5]. In particular, we set

N0,L = 100 × L22L, and then Nℓ = N0,L(h
ℓ)−3/4 for ℓ = 0, . . . , L. We then have the

ML-SMC estimator

p̂ML-SMC
L =

L∑
l=0

ΞNℓ
ℓ

Trying 100 samples of p̂ML-SMC
L with successive values of L in turn, we achieve an MSE

of 4.17 × 10−11 at L = 6. This MSE is minimal to be sufficient for a rare event of

magnitude 10−5, since one wants the root mean-square error small compared to the

target probability. The squared bias at this level was found to be 2.63× 10−12 (so the

MSE is somewhat dominated by the variance term and hence not optimally tuned).
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The cost to achieve this MSE was then

6∑
ℓ=0

Nℓ∑
i=1

2ℓ = 100× 6× 22×6
6∑

ℓ=0

2ℓ/4 ≈ 6.14× 107.

We can compare this against the result of truncating the de-biased algorithm (Algo-

rithm 25), which we term the truncated-debiased estimator. We choose the maximum

level L to be Lmax = 7, and following Jasra et al. [2017] take P (ℓ) ∝ 2−3ℓ/2 for

ℓ = 0, . . . , 7, and P (ℓ) = 0 otherwise. We then generated 75000 samples ΞLi with

Li ∼ P using 20000 particles each (following the steps of Algorithm 25), and grouped

these 75000 samples into subgroups of size M for increasingly large M until the esti-

mators

p̂T-DB =
1

M

M∑
i=1

ΞLi

P (Li)

achieved a variance of size comparable to the variance of the ML-SMC algorithm. In

this case, the choice M = 2500 achieved the MSE of approximately 5.85× 10−11. The

squared bias turned out to again be ≈ 5.43×10−12, again an order of magnitude smaller

than the variance. The cost in the case can be calculated to be

2500× 20000×
7∑

ℓ=0

2ℓ2−3ℓ/2 ≈ 1.60× 108.

This gives a cost ratio of approximately 2.6 between the two algorithms, which compares

favourably to the cost ratios of the Multilevel Particle Filter to the truncated-debiased

algorithm given in [Jasra et al., 2020, Section 4.3], which range from 2-7.

We summarise all this information in Table 6.3 below.

Algorithm MSE Bias2 Cost

ML-SMC 4.17× 10−11 2.63× 10−12 6.14× 107

Truncated-debiased 5.85× 10−11 5.43× 10−12 1.60× 108

Table 6.3: Summary of results for estimating the rare event p ≈ 10−5 with the
multilevel-SMC algorithm and the truncated-debiased algorithm.

6.5 De-biasing for Multilevel Splitting

We first considered the de-biasing approach as an alternative to ε-strong simulation for

Multilevel Splitting. The numerical results were poor, which we conjecture was due to

the sequence of 0− 1 potentials, together with the random trajectory lengths between

barrier crossing times.

Moreover, guiding the numerical simulations using an analysis of the type carried out

in section 6.2 seemed more difficult in the splitting setting, introducing more violations

of the standard Lipschitz assumptions, and also of the boundedness of the potentials

away from 0.
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However, we record the implementation here in the sequence of Algorithms 28, 29, 30

and 31, as future work may lead to better results in this direction.

Algorithm 28 Discretised MLS

Given λ together with Gi, M
∆
i for i = 1, . . . ,m and a step-size ∆, and a fixed number

of particles N
1. For each j = 1, . . . , N , draw independently Xj

0 ∼ λ(·) and

U j
1 ∼M∆

1

((
0, Xj

0

)
, ·
)
.

2. Record N1 =
∑N

j=1G1(U
j
1 ).

3. For i = 2, . . . ,m:
(a) If Ni−1 = 0, return p̂ = 0.
(b) For j = 1, . . . , N sample independently U j

i ∼
1
N

∑N
k=1Gi−1(U

k
i−1)M

∆
i (Uk

i−1, ·).
(c) Record Ni =

∑N
j=1Gi(U

j
i ).

4. Return

p̂ =
m∏
i=1

(
Ni

N

)
.

6.6 Discussion

We have described an algorithm for the unbiased estimation of rare event probabilities

for continuous time processes, using an MLMC-inspired debiasing technique, and have

described and illustrated a conservative bound for its fixed-level estimators.

We have also discussed the computational difficulties of implementing this and similar

de-biased algorithms directly, and explored an alternative implementation idea follow-

ing Jasra et al. [2020], to which we produced comparable results in a simple setting.

It is possible that improvements can be made to our algorithm by using more so-

phisticated coupling schemes for discretisation of SDEs such as the Milstein method

or another scheme with superior convergence rates to the Euler-Maruyama scheme.

More promising is the option of looking at alternative resampling schemes such as the

transport-based methods discussed in Jacob et al. [2016]; Ballesio et al. [2020], since

we have considered only a fairly simple example of such.
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Algorithm 29 Coupled Level Crossing

Given X1, X2,∆, zA, zB, ξ, and a sequence of independent N (0, 1) random variables
(Z1, Z2, . . .):

1. Initialise n← 0, t1 ← 0. While zA ≤ ξ(X1) ≤ zB:
(a) n← n+ 1, t1 ← t1 +∆ and update

X1 ← X1 + a(X1)∆ + b(X1)
√
∆Zn.

(b) If n even, update

X2 ← X2 + a(X2) (2∆) + b(X2)
√
∆(Zn−1 + Zn).

2. Set g1 = 1ξ(X1)>zB . Initialise t2 ← t1.
3. If zA ≤ ξ(X2) ≤ zB and n odd, update t2 ← t2 +∆ and

X2 ← X2 + a(X2) (2∆) + b(X2)
√
∆(Zn + Zn+1).

4. Initialise n′ ← n+ 1. While zA ≤ ξ(X2) ≤ zB:
(a) n′ ← n′ + 1, t2 ← t2 + 2∆, and update

X2 ← X2 + a(X2)(2∆) + b(X2)
√
2∆Zn.

5. Set g2 = 1ξ(X2)>zB , and return (t1, t2, X1, X2, g1, g2).
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Algorithm 30 Coupled Multilevel Splitting

Given a fixed number of particles N , ξ, initial distribution λ, level markers
zA, z1, . . . , zm, L ∈ N, discretisation level ∆L and distribution P (·):

1. For each j = 1, . . . , N , draw independently X
(1,j)
0 , X

(2,j)
0 ∼ λ(·) and

(t
(1,j)
1 , t

(2,j)
1 , X

(1,j)
1 , X

(2,j)
1 , g

(1,j)
1 , g

(2,j)
1 ) ∼ Algorithm.29(X

(1,j)
0 , X

(2,j)
0 ,∆, zA, z1, ξ).

2. Record N1
1 =

∑N
j=1 g

(1,j)
1 , N2

1 =
∑N

j=1 g
(2,j)
1 . Let

g11 = (g
(1,1)
1 , . . . , g

(1,N)
1 ), g21 = (g

(2,1)
1 , . . . , g

(2,N)
1 ),

3. For i = 2, . . . ,m:
(a) If N1

i−1 = 0 or N2
i−1 = 0, return p̂ = 0.

(b) Else, for j = 1, . . . , N :
i. Sample coupled indices (Ij1 , I

j
2) ∼ Algorithm.23(g1i−1, g

2
i−1), and set

X̃
(1,j)
i−1 = X

(1,Ij1)
i−1 , X̃

(2,j)
i−1 = X

(2,Ij2)
i−1

ii. Sample

(t
(1,j)
i , t

(2,j)
i , X

(1,j)
i , X

(2,j)
i , g

(1,j)
i , g

(2,j)
i ) ∼ Algorithm.29(X̃

(1,j)
i−1 , X̃

(2,j)
i−1 ,∆, zA, zi, ξ)

(c) Record N1
i =

∑N
j=1 g

(1,j)
i , N2

1 =
∑N

j=1 g
(2,j)
i . Let

g1i = (g
(1,1)
i , . . . , g

(1,N)
i ), g2i = (g

(2,1)
i , . . . , g

(2,N)
i ),

4. Return

p̂ =
1

P (L)

(
m∏
i=1

(
N1

i

N

)
−

m∏
i=1

(
N2

i

N

))
.

Algorithm 31 Unbiased multilevel splitting

Given P (·) supported on N:

1. Draw L ∼ P (·), and set ∆ = 2−L.
(a) If L = 0, return

p̂ ∼ Algorithm.28(. . .)

(b) Else if L > 0, return
p̂ ∼ Algorithm.30(. . .)
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Chapter 7

Conclusion

In this thesis, we have examined some possibilities for combining algorithms for efficient

rare event estimation in continuous time with exact and unbiased simulation techniques.

In Chapter 4, we identified and demonstrated new and practical algorithms for exact

splitting in one dimension and multiple dimensions, suitable for events of genuinely

small magnitude. We showed that these modifications to traditional methods remain

unbiased, while being fully implementable without the use of numerical discretisation.

We noted that these algorithms are quite flexible in implementation, for example in the

time intervals over which one carries out the ε-strong sampling, in the prioritising of

ε-balls for refinement, and in the choice of splitting location. We feel there is real scope

for further work in this direction. For example, it may be possible to systematically

exploit the geometry of certain reaction co-ordinates and level sets, and likewise of

alternative ε-strong methods which continue to be the object of active research. The

tricky problem of guaranteeing (expected) finite running-times for these algorithms

might also be an interesting question to explore.

In chapters 5 and 6, we specified a new de-biased algorithm in a large-deviations in-

spired rare events setting, and made preliminary investigations of its properties. Al-

though the the prospects for finite cost unbiased algorithms of this particular type do

not seem good, there are many interesting prospects in the general direction of this re-

search. Seeking different settings where finite cost and finite variance of the de-biased

algorithms might genuinely be achieved is one possibility. More broadly, improving

multilevel Sequential Monte Carlo algorithms by investigating alternative coupled dis-

cretisation schemes and coupled resampling schemes to obtain better strong rates of

decay for the variance, leading to better MSE/cost trade-offs, may be a promising idea

for the future.
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