

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/172560

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/172560
mailto:wrap@warwick.ac.uk

Toward Secure VMs Allocation: Analysis of
VMs Allocation Behaviours in the Cloud

Computing Environments

Mansour Aldawood1, Arshad Jhumka1, and Suhaib A. Fahmy2,3

1 Department of Computer Science, University of Warwick, Coventry, UK
{m.aldawood, h.a.jhumka}@warwick.ac.uk

2 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi
Arabia

3 School of Engineering, University of Warwick, Coventry, UK
{suhaib.fahmy}@kaust.edu.sa

Abstract. Side-channel attacks (SCAs) is a potential threat in cloud
computing environments (CCEs) as it allows the malicious VMs to cap-
ture private information from the target VMs when they share the same
PM. This malicious co-residency of VMs is an outcome of the VMs allo-
cation algorithm behaviour, which is responsible for allocating the VMs
to a specific PM based on defined allocation objectives. Earlier stud-
ies tackled the SCAs, through specific solutions, by focusing on either
formulating VMs allocation algorithms or modifying the architecture of
the CCEs to mitigate the threats of SCAs. However, most of them are
oriented to specific situations and assumptions, leading to malicious co-
residency when applied to other scopes or situations. In this paper, we
presented the solution from a different holistic perspective by examining
the allocation behaviours of different algorithms and other properties
that affect and lead to obtaining a secure VMs allocation. The exami-
nations are performed under different scenarios and structures for each
behaviour to understand the possible situations that lead to secure VMs
allocation. In addition, we develop deterministic security-aware VMs al-
location algorithm that aim to allocate the VMs securely to reduce the
potential threats from malicious co-residency in CCEs.

Keywords: Cloud computing · Virtual machines secure allocation ·

Side-channel attacks.

1 Introduction

Cloud computing users can utilise the computing resources or services offered by
the cloud service providers (CSPs) through the network and on-demand basis.
These services include servers, storage, networks, applications and other services.
The virtualisation technique is the core of cloud computing systems, where it
enables the abstraction and sharing of computing resources accessible across a
network by a group of users. Virtualisation enables a group of virtual machines

2 M. Aldawood et al.

(VMs) belonging to different users to share the physical machines (PMs) while
running separately. In the traditional on-premises computing data centre, a PM
will be dedicated to a single-purpose application, while in cloud computing, many
applications belongings to different users can be hosted on a single PM [19].

The virtualisation allows the CSPs to maximise the utilisation of the cloud
resources while minimising the cost of operating the cloud infrastructure. More-
over, it enhances the cloud users utilisation of computing resources based on their
needs to avoid resources wastage; thus, the provisioning of resources is elastic,
based on user requirements. As a consequence, the physical resources are shared
among users, and the security threats for the CCEs have invariably shifted as
the types of threats that arise when a malicious user shares the resources with
a target user [3]. In other words, VMs co-location, though enabling efficient
resource sharing, is creating unwanted side channels, which can be sources of
potential Side-channel attacks (SCAs), such as cache-based SCAs. This attack
will have an impact extending from the application level to the hardware level
and becoming more prevalent due to the range of side channels [7].

Thus, to overcome the problem of SCAs, it is crucial that malicious VMs,
i.e., those wishing to steal information, and target VMs, i.e., those with sensitive
information, are not co-resident on the same PM. Otherwise stated, the VMs
allocation algorithm responsible for allocating the VMs into specific PMs needs
to be security-oriented to defend against the SCAs threats. In general, the VMs
allocation’s objective depends on the desired outcome of the allocation process,
for instance, reducing the power consumption of the PMs. In some cases, the
allocation objective is related to network traffic control, which allocates the
related VMs on the same network subnet [23]. In comparison, this paper focuses
on the VMs allocation algorithms that aim to allocate the VMs securely in CCEs
to defend against SCAs.

The previous researches tackling the SCAs and malicious VMs co-residency in
CCEs focused on either finding a solution logically on the VMs level or physically
on the PMs level. While in this paper we will investigate the behaviour of various
state-of-the-art VMs allocation algorithms and their effect on producing secure
VMs allocations. In our earlier work [2], we proposed the study of secure VMs
allocation behaviours, however, the study was preliminary and did not cover
more situations and properties that effect obtaining secure VMs allocations.

As such, the following points summarise the intended outcomes of this re-
search:

1. Investigate the behaviour of various state-of-the-art VMs allocation algo-
rithms and their effect on producing secure allocations. These are (i) Round
Robin [6], (ii) Random [4] (iii) previously selected servers first (PSSF) [18]
and (iv) Secure Random Stacking (SRS) [2]. Each of these algorithms has
unique allocation behaviours. Hence, we consider three VMs allocation be-
haviours: (i) stacking, (ii) spreading and (iii) Random.

2. Develop and evaluate deterministic secure VMs allocation algorithm called
Secure Stacking (SS) that aim to reduce the chance of malicious co-residency
while using fewer available PMs in the cloud system.

Secure VMs Allocation Behaviours 3

3. Examine the effect of defined properties on producing secure VMs alloca-
tions. These properties are: (i) The impact of VMs arrival based on their
type. For instance, study the impact of the arrival of malicious VMs before
the target VMs. (ii) The impact of the number of VMs based on their classi-
fied type. For example, the arrival of many malicious VMs while the number
of target VMs is small. (iii) The impact of the structure of the available
resources of the PMs or demanded resources of the VMs. (iv) The impact
of the VMs allocation behaviours algorithms on the VMs migration number
and PMs usage. In other words, studying the effect of the number of VMs
migrated and the number of PMs utilised during the allocation will aim to
achieve secure VMs allocation.

Generally, the extensive examination of the allocations behaviours under dif-
ferent properties shows that the stacking-based behaviours algorithms are more
likely to produce secure allocations than those with spreading-based or random-
based allocation behaviours algorithms. As such, our stacking-based algorithm
are significantly better as they produce secure allocations more than the com-
pared algorithms under the same examined situations. Furthermore, our results
show that VMs arrival time has a considerable impact on the secure alloca-
tions, where the arrival of target or malicious VMs earlier than the rest of VMs
often leads to malicious co-residency avoidance. Lastly, our stacking-based algo-
rithm show the lowest PMs usage among the compared algorithms, by signifi-
cant amounts, under most examined situations, leading to utilising fewer PMs
and therefore fewer power consumption of the available resources. Moreover, the
number VMs migration is the lowest among the examined algorithms. Hence,
leading to the high availability of the VMs in cloud systems by avoiding many
interruptions resulting from the VMs migration while enhancing the state of the
secure allocations.

The following sections of the paper are structured as follows; In section 2, we
will introduce the related works and domains tackling the SCA problem in CCEs.
Subsequently, in section 3, we will develop and examine the considered secure
VMs allocation model in CCEs. Afterwards, in section 4, we will present our
secure VMs allocation algorithm. Then, in section 5, we will present an extensive
evaluation and comparison with other VMs allocation behaviours. Finally, in
section 6, we will conclude our work by summarising the key findings and propose
possible future works direction.

2 Related Work

This section reviews previous researches tackling the SCAs and malicious VMs
co-residency in CCEs. The areas that tackled SCAs focused on either finding
a solution logically on the VMs level or physically on the PMs level. The sec-
tion divides the previous research into six domains aiming to secure the VMs
allocation process in CCEs from different perspectives.

The first domain focuses on grouping the VMs based on defined require-
ments through the VMs allocation. Then, these requirements cluster the VMs

4 M. Aldawood et al.

into groups to achieve secure VMs allocation. In [22], they proposed a group-
based allocation policy to optimise the resources and obtain a secure VMs allo-
cation by establishing group instances for the VMs. These groups have specific
requirements such as group size limit or resource availability which defines the
number of distinct users in each group, not only the number of VMs. This user
size limitation potentially enhances the secure allocation of the VMs. In [17, 21,
30, 9, 29], other grouping approaches focus on isolating the allocated VMs into
groups based on defined requirements such as network dependency or attributes
that define VMs users.

The second domain considers another form of grouping as it depends on
allocating the VMs based on either profiling the VMs or based on security com-
pliance requirements. For example, in [10], a method was proposed to allocate
the VMs by maintaining the same security standard as the co-located VMs,
such as the ISO standard. Similarly, in [5, 1] , their scheme validates the level
of security of each upcoming VMs, which must comply with specific compliance
regulation. In comparison, some works focus on generalising the VMs alloca-
tion based on profiling the users and integrating the outcome with the existing
placement constraints [25].

In the third domain, the solutions focus on allocating the VMs for a defined
time to reduce the amount of sensitive data leakage through the SCAs. The
SCAs happens when malicious VMs co-locate for a certain amount of time with
target VMs, then initiate the attack by capturing related information, through
the leakage channels, about the target VMs activities. Thus, these proposals
focuses on reducing the amount of data leakage due to the SCAs by considering
the time factor for VMs residing on specific PMs [27, 24].

The fourth domain focuses on developing algorithms that manipulate the
cloud system’s scheduling component. For example, in [8], introduce an algorithm
that deliberately delayed the start-up time for VMs to reduce the chance of co-
residency with malicious VMs. While in [32], they focus on migrating the VMs
frequently by using an incentive approach, by providing better PMs with more
free resources to stimulate the users to migrate their VMs. Thus, to move the
VMs periodically to reduce the probability of malicious co-residency. Further, in
[4, 18], their algorithms randomly select and allocate VMs into specific PMs to
reduce the chance of co-residency.

The fifth domain follows an optimisation-based approach to secure VMs allo-
cation while utilising existing solutions related to ideal situations. For instance,
in [11], they proposed a solution that depends on utilising an optimisation-
based problem called Dolphin Partner, prioritising the VMs with the most ef-
ficient energy-aware and memory-aware utilisation. Their work focuses on the
parameters that potentially cause a failure for the VM, for example, the memory
utilisation of the VM. Thus, if the current utilisation of a VM is high, it is more
prone to failure and considered a less secure. Similarly, in [12], they proposed a
solution to enhance the security and performance of the VMs allocation process
using the firefly algorithm to produce an optimal secure allocation. Moreover,
[16] presented a secure VMs allocation algorithm based on multi-objective opti-

Secure VMs Allocation Behaviours 5

misation by extending the First-Fit algorithm, which provides an allocation that
satisfies the resource constraint.

The last domain focuses on the secure VMs allocation on the hardware level
of the cloud system. The mechanism includes partitioning memory caches or
CPU processing threads to defend against the software level of SCAs. It re-
quires a modification in the hardware level, which includes either changing the
mechanism of an existing components or adding new ones [20, 14, 31].

3 Problem Formulation

We will define the model of the secure VMs allocation in CCEs, including the
definition of the model’s objective and its assumed constraints. The model’s
objective is to obtain a secure VMs allocation to defend against SCAs by min-
imising the malicious co-residency. Moreover, it includes defining the objective of
the VMs allocation, which is producing a secure VMs allocation under different
situations while reducing the utilised PMs. In addition, we defined the threats of
malicious users, including the attacker’s behaviour and the impact of the attack
that the SCAs could leave on the compromised system. Furthermore, we will
define cloud users based on their behaviour analysis, thus, classifying them into
specific types.

3.1 Threat Model

In CCEs, resource allocation is flexible and enables multiple users to share a
common computing platform dynamically. When VMs are co-resident or co-
located on the same PM, a malicious VM can analyse characteristics of another
target VM, e.g., analysing the operations timing properties, to infer various
information such as cryptographic keys through SCAs. For instance, the SCA
can occur through a cache-based channel by utilising the sharing capabilities of
the cache levels. In other words, the malicious VMs can analyse the execution
time of the VMs co-locating on the same PM and subsequently conduct the
attack. This analysis starts by capturing the execution data of the target VMs,
then analysing them to formulate an attacks model using a machine learning-
based approach [26].

Achieving Malicious Co-residency From the malicious user perspective, the
first step of conducting SCA is to achieve a co-residency with the target VMs,
leading to a malicious co-residency. Achieving such a goal depends on the VMs
allocation algorithm that the CSP utilises to allocate the VMs. Alternatively
stated, the behaviour of the VMs allocation algorithm contributes significantly
to achieving malicious co-residency by the malicious VM. Therefore, the mali-
cious user needs to understand how the CSPs allocates the VMs to formulate the
attacks based on this knowledge. For instance, in [28], they studied the possibil-
ity of achieving a malicious co-residency based on the allocation algorithms on
different public CCEs, such as Amazon or Google. Their study concluded that

6 M. Aldawood et al.

the malicious user could reach this goal simply and cheaply due to the vulnera-
bilities of the VMs allocation algorithms. Hence, the malicious co-residency can
be achieved due to the limitation of the allocation algorithms not considering
the severity and impact.

Capturing Execution Time Data After the malicious co-residency occurs
between the malicious VMs and the target VMs, the malicious user will initiate
the SCA. In this work, we assumed the cache-based attack as the considered
attack model conducted by the malicious user. It starts by utilising the vulnera-
bilities of the shared cache among VMs allocated on the same PM. The malicious
VMs can perform the attack by measuring the execution time of the load op-
erations of the shared caches on the PM level. If a specific operation utilises
a considerable amount of time to load, compared to the other operations, the
attacker will deduce a current encrypted operation executing on the physical
machine from a co-resided VM [7].

Overall, the SCAs collect information from normal operations output, such
as execution time on cache levels. Furthermore, the collected information has no
major impacts when treated separately. However, with sophisticated tools that
can classify and cluster irrelevant data to meaningful information, such as ma-
chine learning tools, this process can lead to major SCAs. Otherwise stated, the
extracted information will help to profile the activities of the VMs co-located on
the same PM and define the vulnerable state of the target VMs. For example,
in [15], they utilise a machine learning-based approach to conduct a cache-based
attack by profiling the activities of cloud users. They captured data features
resulting from cache-based access that represents different types of applications.
Their approach showed that the captured information could be collected regard-
less of synchronising the cache access between the malicious and target VMs.

3.2 Secure VMs Allocation Model

The main objective of the proposed secure VMs allocation model is to obtain
a secure allocation where the target VMs and malicious VMs not sharing the
same PM, thus, defending against SCAs. Moreover, the proposed model aims
to find allocations where the number of used PMs is minimised. Therefore, our
model following a stacking-based VMs allocation behaviour such as Bin-Packing
problem (BPP) [13].

Definition of Variables and Functions The following are the variables and
functions definitions of the model:

1. P = PM1 . . .PMk : Set of physical machines.
2. R(PMj): Available resources of a physical machine (j).
3. V = VM 1 . . .VM n : Set of virtual machines.
4. N (VM i): Required resources of a virtual machine (i).
5. T : Set of virtual machines classified as a Target.

Secure VMs Allocation Behaviours 7

6. M : Set of virtual machines classified as a Malicious.
7. N : Set of virtual machines classified as a Normal.
8. Au : V → P : VM allocation function to a PM.
9. Move(Au ,Au+1): Set of VMs that are migrated during transition

from (Au) to (Au+1).
10. CoRe(Au): Set of PMs at which malicious co-residency occurs.

Objective Function Formulation In summation, we will define the objective
function and its constraints of the proposed model as an approximation of BPP.
Our main objective is to obtain a secure VMs allocation while reducing the
number of used PMs. In other words, the priority is not reducing the utilised
PMs, the priority to obtain a secure VMs allocation; however, it is a constraint to
influence the allocation algorithm if it is only possible while maintaining secure
allocations. Thus, our objective function is described as follow:

The objective is Minimize

n∑
i=1

CoRe(Au) ∗ xij ∀i∈V , j∈P, for(j=1...k) (1)

Subject to:

k∑
j=1

yj ≤ |P | ∀j∈P (2)

n∑
i=1

N (VM i) ∗ xij ≤ R(PMj) ∗ yj ∀i∈V , j∈P, for(j=1...k) (3)

n∑
i=1

xij = 1 ∀i∈V , j∈P, for(j=1...k) (4)

xij ∈ {0, 1}, ∀for(i=1...n), for(j=1...k) (5)

yj ∈ {0, 1}, ∀for(j=1...k) (6)

Starting from Eq. (1), which aims to minimise the malicious co-residency of
a selected possible allocation, i.e., for each possible VMs allocation of requested
VMs and available PMs, the objective is to select a possible allocation that
yields to produce an allocation with minimum malicious co-residency. The first
constraint in Eq.(2) is to make sure that the selected number of PMs is reduced
as much as possible. As we stated earlier, we aim to allocate the VMs into
selected PMs while minimising the used PMs as an objective, but in our model,
we utilised this objective as a constraint. Because our goal is to obtain a secure
VMs allocation while reducing the number of used PMs as much as possible.
The second constraint in Eq.(3) will verify that the requested resources of the
selected VMs are not exceeding the available resources of the available PMs.

8 M. Aldawood et al.

The third one, in Eq.(4), verifies that each VM is allocated once on a single
PM to prevent duplicated allocations. The equations, Eq.(5 to 6) are defining
the decisions variables needed for selecting the best possible allocations, which
are xij and yj . The xij responsible for selecting the best allocation that results
in obtaining a minimum malicious co-residency. The xij is an integer value of
either 0 or 1, where one means the allocation is selected and zero otherwise. The
yj responsible for selecting the allocations with fewer possible numbers of PMs.

VMs Migration In case of a VM migration triggered, we formulate the follow-
ing equation as a constraint of the objective function:

|Move(Au, Au+1)| ≤ β (7)

This equation denotes that the number of VMs in a set of VMs that are
selected for a VM migration, Move(Au, Au+1), is less than or equal to a defined
threshold, β. In other words, for each transition from Au to Au+1, the number
of VMs selected, for migration, should not exceed a certain defined threshold.
Defining the threshold depends on several aspects that determine how many
VMs can be selected, such as an service level agreement (SLA) that forces some
VMs to be allocated on a PM at all times. In this case, these VMs will not be
selected for VMs migration even if they are eligible; therefore, the number of
VMs migrating is reduced.

VMs Learning Model As stated in our earlier work [2], we introduce a learning
module which aims to classify the VMs based on their behaviours. The analysis of
VMs behaviour is crucial for CSPs to identify VMs with suspicious behaviour and
isolate them from other VMs. Briefly, the analysis of the learning model produces
a categorisation of the VMs into three types; these types are target, malicious and
normal VMs. Formally stated, the set V , the set of all VMs available in CCEs,
is partitioned into three sets: (i) set T of target VMs, (ii) set M of malicious
VMs and (iii) set N of normal VMs.

4 Secure VMs Allocation Algorithm

We propose a deterministic security-aware heuristic, a variant of bin-packing,
called Secure Stacking (SS), which is shown in Algorithm 1. Mainly, SS aims to
allocate VMs in a stacking fashion and migrates them from one PM to another
if the possibility of VM migration exists. Like a BPP, the SS algorithm aims to
allocate the VMs into the selected PMs while using a smaller number of available
PMs and to maintain a secure allocation. The motivation behind utilising a
smaller number of PMs is to avoid VMs migration during the allocation, which
leads to unwanted service interruptions of the VMs during the migration process.

Secure VMs Allocation Behaviours 9

4.1 Secure Stacking Algorithm (SS)

The SS algorithm has two main inputs: (i) the unallocated set of VMs, denoted
as V and (ii) the set of the available PMs, denoted as P. The output, denoted
as the A, is the secure allocation produced for the available set of resources.

Algorithm 1: Secure Stacking (SS) VMs Allocation

Input: V: Set of unallocated VMs, P: Set of PMs
Output: A: Secure Allocation

1 sortedPMsList ← ∅
2 COR ← Flase
3 for v in V do
4 sortedPMsList ← getSortedFRPMs(v,P)

// First try to allocate v
5 for p in sortedPMs do
6 COR ← getCORvmCheck(v,p.getVMslist())
7 if COR ̸= True then
8 A ← Assign(v,p)
9 end

10 end
11 if v.getPM() = ∅ // Second try, migrate VMs then retry allocate v
12 then
13 vmMigration(sortedPMsList,P)
14 Repeat steps from 5 - 10

15 end
16 if v.getPM() = ∅ // Third try, allocate v in any available P
17 then
18 for p in P do
19 if p.suitablePM(v) = True then
20 A ← Assign(v,p)
21 end

22 end

23 end

24 end
25 return A

The SS algorithm starts, at line 3, by allocating the VMs, in the set of
unallocated VMs in the set of the available PMs. It goes through three trials of
allocating the VMs, and each trial has its specific functions. From line 5 to line
10, the first try aims to allocate the VMs securely in a stacking fashion without
triggering the VMs migration. Meaning the SS will try to obtain a secure VMs
allocation while meeting the required resources constraints without changing the
structure of the current VMs allocation, i.e., triggering VMs migrations. On the
second try, from line 11 to line 15, the SS will try again to obtain a secure VM
allocation for the same VM; however, this time will trigger the VM migrations,
thus changing the current structure of the allocated VMs. On the third try, from
line 16 to line 23, the SS reach the point to allocate the VM to any available
PM, regardless of the security constraints. Meaning the priority at this point is
to obtain a VM allocation to any suitable PM.

10 M. Aldawood et al.

Fullness Ratio In line 4, the SS will sort the available PMs based on their
fullness ratio (FR) by comparing the require resources of the VM, denoted as v,
with the available PMs resources. In other words, the SS prioritised the PMs for
an allocation based on the fullness of each PM, which means that each PM will
be filled differently after the allocation of the upcoming VM. Thus, triggering
getSortedFRPMs(v,P) that compares each requires resource from the VM (v) to
the available PMs resources. Then, we will sort the PMs based on the FR and
produce a list of the sorted PMs, called sortedPMsList.

The main objective of the FR function, denoted as getSortedFRPMs(v,P),
is to sort the available PMs resources according to their FR compares to the
VM required resources that needs to be allocated. Therefore, the FR function
is comparing the remaining resources of each PM with demanded resources of
the upcoming VM. This comparison results in a sorted PMs list based on how
much the PM will be filled after the allocation if the allocation occurs. Hence
the SS algorithm following a stacking-based behaviour in allocating the VMs.
We consider the RAM size and the CPU cores with their sizes are the essential
resources to be validated during the FR calculation. Thus, we will explain how
the calculation of the FR for the multidimensional resources (MR) is performed
in the FR function

The detailed calculation of MR described as follow:

MR = (VM ram ÷ PM ram) + (VM cpu ÷ PM cpu) (8)

The idea is to compare the VM with the PM, considering the RAM and CPU
specifications. In Eq(8), firstly, the FR function divides the required RAM of the
VM by the available RAM of the PM. If the results of this part are exceeding
one, then it means that the required RAM is more than the available RAM of
PM; thus, this PM is discarded. Then, repeat the same division of the RAM part
with the CPU part. Moreover, finally sum the result of the two parts, the RAM
and CPU calculation. If the result is equal to two, then this PM is a perfect
match for the VM. In other words, this PM will be the first PM selected for
possible allocation. The results represent how much the PM will be utilised for
the unallocated VM; thus, it will be prioritised based on this result.

First Try we will start with the first try and explain its main functions, from
lines 5 to 10. In line 5, the SS will try the first PM, denoted as p, out of the
produced FR PMs to allocate the unallocated VM on it, denoted as v. The p,
at this stage, represent the highest FR of the available PMs. Meaning, this p,
if selected, will yield to be filled more than the other available PMs. Thus, this
step is contributing to the stacking behaviour of the SS allocation algorithm.
Then, in line 6, the SS will check if allocating the VM, v, yields a malicious
co-residency. According to the presented learning model, in [2], each VM in the
CCEs classified into either target, malicious or normal VM. Thus, at this step,
the SS will compare the upcoming VM with the allocated VMs on the selected
PM, if any, for malicious co-residency. If the malicious co-residency will occurs
after allocating the VM, this PM will be discarded from the allocation and moved

Secure VMs Allocation Behaviours 11

on to the following PM. The result of this checking is preserved in a Boolean
variable denoted as COR after triggering the getCORvmCheck(v,p.getVMslist())
function. This function is essential to the SS as it will be the main responsible
for triggering the VMs migration in the second try. The last step of the first try,
in line 8, is to assign the v into the selected p if previous conditions are met.

Second Try In lines 11 to 15, the second try starts if the first try failed to obtain
a secure allocation for the unallocated VM. As indicated in line 11, the second
try is triggered if the v is not allocated to a PM yet. The primary step of this
try, in line 13, is the VM migration function, which is changing the structure of
the current VMs allocation by moving the allocated VMs, if possible, to another
PMs to obtain a secure VM allocation. The VMs migration aims to migrate a few
VMs to obtain a secure allocation for the unallocated VM and enhance, or keep,
the current secure allocation state. In other words, we aim to migrate the VMs
while reducing the number of VMs migrated and maximising, or maintaining,
the current security state of allocated VMs.

The vmMigration(sortedPMsList,P) receives the list PMs to select their VMs
for migration and the available PMs set, to select the destination PM after
migration. The selection step, selecting the PMs list, aims to select the minimum
number of VMs for migration, thus reducing the VM movements. For example,
the SS algorithm utilises the VMs migration function by sending the list of the
sorted PMs, to migrate their VMs. This list of PMs has a low number of VMs
compared to all the available PMs. Thus, the VMs allocated on these VMs will be
minimal; hence the VMs selected for migration will be minimised. We consider
this way of selecting the VMs for migration to allow few effective migrations
that potentially leads to a more secure allocation and fewer VMs interruptions
resulted from the migration. Although the number of VMs selected for migration
will be higher at some point in time, specifically when there is a high number of
PMs available with high (FR%).

Third Try The last step of the SS algorithm is started, in lines 16 to 23, if
the previous two steps failed to obtain a secure VM allocation. At this step, the
SS will allocate v to any available PM regardless of the malicious co-residency
allocation constraints. In other words, as long as the selected PM has enough
available resources, it will be selected to host the unallocated VM. Afterwards,
in line 25, all the assignments will be registered in A and returned as a final
allocation.

5 Evaluation

We will present a detailed evaluation of the proposed algorithms under different
PMs and VMs structures and different allocation scenarios. As such, we study
the effect of VMs allocation behaviour on obtaining a secure allocations. The
behaviours are stacking, spreading and random behaviour. We investigate the

12 M. Aldawood et al.

factors affecting the outcome towards obtaining a secure allocation. These are;
the PMs heterogeneity level, the diversity of available resources, the VMs ar-
rival time for each type of VMs considered in this work and the number of VMs
according to their classified type. Additionally, we study the effect of VMs mi-
gration and the efficient PMs usage for the proposed algorithms on the overall
outcome of a secure allocation.

5.1 Allocation Behaviours Comparison

In this part, we will introduce the VMs allocation behaviours algorithms to
compare our SS algorithm with them, and each of them has a unique allocation
behaviour. The first one is spreading behaviour, which means that the alloca-
tion algorithm will allocate VMs to the whole span of PMs. An example of the
spreading behaviour is the round-robin algorithm, denoted as RR, described in
[6]. The second one is random behaviour (Random), which aims to allocate the
VMs randomly as long as the candidate PM is suitable. In [4], they presented a
random-based algorithm aiming to allocate the VMs randomly. The third con-
sidered allocation behaviour, called the PSSF, is a combination of spreading
and random behaviour. This behaviour algorithm, described in [18], depends on
spreading the VMs of the same user if they exceeded three VMs on the same PM
and, eligible PMs are selected randomly if they have less than three VMs of the
same user. Moreover, we include our previous algorithm, SRS, in the comparison
of this work [2].

Furthermore, we modify the three algorithms, RR, Random and PSSF, by
making them aware of the learning model outcome. Otherwise stated, we have
added the co-residency detection function while keeping their allocation be-
haviour the same. These algorithms will allocate the VMs as they have been
doing unless there is a malicious co-residency in the allocation.

5.2 Experimental Setup

We will explain the simulation environment utilised in this work, the structure of
the PMs resources considered during the allocation process, the VMs structure
including the VMs arrival times and the structure of VMs type.

Simulation Environment Similar to our earlier work [2], we utilise CloudSim,
a cloud computing simulation environment, to examine the proposed VMs allo-
cation algorithms and compare them.

VMs and PMs Number The VMs range from 20-120, increasing by 20 VMs
in each experiment. The number of PMs is 24 in each experiment, where the
sum of available resources of the PMs can accommodate up to 120 VMs. Thus,
the experiments will start by allocating the VMs with vast available resources;
then, the resources get limited until it reaches 120 VMs. The resource require-
ments of the VMs are similar with 1 GB vRAM (Virtual RAM), 1 vCPU and

Secure VMs Allocation Behaviours 13

500 MB vStorage. On the other hand, the resources available for each PM are
heterogeneous. There are four types of PMs used for this setup: (i) 2 GB RAM
and 2 CPU, (ii) 4 GB RAM and 4 CPU, (iii) 6 GB RAM and 6 CPU, and (iv)
8 GB RAM and 8 CPU.

VMs Arrival Time We consider three arrival times (launch times), to show
the effect of VMs arrival time, based on its type, on the malicious co-residency.
The three arrival times are M(t), T(t) and N(t). The M(t) is the time that the
malicious VM is arrived. The same definition applies to T(t) and N(t) for target
VM and normal VM, respectively.

Table 1: VMs Arrival Time Types
Tries No. VMs Order Description
1 GNMT G(N), G(M), G(T)
2 SNMT S(N), S(M), S(T)
3 Mixed

NMT
S(NMT), G(N), S(NMT), G(M), S(NMT),
G(T), S(NMT)

As shown in Table 1, we study some of the possibilities of VMs arrival time
based on each type of VMs. For instance, in try 1, we study when a group of
normal VMs arrives, then a group of malicious VMs arrives, then a group of
target VMs arrives last, denoted as GNMT. Furthermore, in try 2, the VMs will
arrive a single instead of a group, meaning one normal VM arrives, followed by
malicious, followed by target, denoted as SNMT. Lastly, in the try 3, we study
the arrival time as a mixed of single and group arrivals. The size of each group,
the seven groups of the mixed order type, divided equally to each group. The
motivation behind designing the arrival times in this sequence is to mimic the
real-world scenario of VMs arrival as much as possible.

VMs Type Structure Table 2 considers seven possible situations where each
VMs type number might reach for each experiment. Moreover, each VMs type
number, tries 1 for instance, will be examined for its secure VMs allocation level
and how it performs under this defined configuration. To explain, if we consider
20 VMs, then this VMs type number will be structured 7 times, as described
in Table 2, and examined for each situation. The seven tries are because we
have three VMs types considered, and 23 = 8 possible situations. However, we
discarded the one where the VMs type number are zeros from these eight possible
situations.

PMs Heterogeneity levels We consider three types of PMs structure, or level
of PMs heterogeneity, High, Medium and Low heterogeneous PMs. Meaning the

14 M. Aldawood et al.

Table 2: VMs Type structure
Tries No. % Malicious VMs %Normal VMs %Target VMs

1 25 25 50
2 25 50 25
3 26 37 37
4 50 25 25
5 37 26 37
6 37 37 26
7 33 34 33

resources of the PMs are structured based on the classification of PMs hetero-
geneity, as explained in [2].

5.3 Results of Malicious Co-residency Respect to VMs Type and
under Limited Resources Availability

Continue to our work in [2], we will have a closer look at theMpms concerning the
VMs type number, the VMs arrival and PMs heterogeneity. Here, we only will
show the results when the resources are limited, which means when the number
of VMs equal 120 VMs. The Mpms is the percentage of PMs with malicious
co-residency, calculated as follow:

Mpms =
Ipms

Upms
(9)

Where the (Ipms) specify the infected used PMs, and the (Upms) specify the total
used PMs for an allocation. We only will show the results when the resources
are limited, which means when the number of VMs equal 120 VMs.

Malicious Co-residency for Group VMs Arrival under Limited Re-
sources In Figure 1, this case considers the most challenging case for any allo-
cation algorithm, as the target and malicious VMs arrives at the end when most
of the resources are already utilised.

From VMs type number perspective, the PSSF algorithm often suffers from
high Mpms when the number of malicious VMs or targets VMs higher than
the other types. In some cases, the higher number of malicious and target VMs
leads to a highMpms. This outcome is because this case considers the group VMs
arrivals, meaning a group of VMs, possibly belonging to the same user, will be
allocated simultaneously. Since the PSSF spreads the VMs of the same user, and
if the user is a malicious one, then the chance of malicious co-residency occurring
is very high for such allocation behaviour. The same applies when many VMs
belong to a target user or arrive simultaneously with a considerably high number
of VMs. For RR, spreading the VMs is negatively impacting the Mpms as it is

Secure VMs Allocation Behaviours 15

(#) of VMs for each group = 120
0

10

20

30

40

50

60
(#

) o
f V

M
s

Malicious CoResidency for VMs Arrival Time [N(t) < M(t) < T(t)],
Respect to VMs Type Quantity With VM Migration Enabled

#TargetVMs #AttackerVMs #NormalVMs

0

20

40

60

80

100

 P
M
s w

ith
 M
al
ici
ou

s C
oR

es
id
en

cy
 (%

)

High Hetero PMs Medium Hetero PMs Low Hetero PMs

SS SRS PSSF Random RoundRobin

Fig. 1: Malicious Co-residency under GNMT Arrival Time, When Available Re-
sources Limited.

considered among the worst of compared algorithms. The reason for the high
Mpms is the same as we described in the PSSF algorithm, as they share the
spreading behaviour of allocating the VMs. Overall, the SS, SRS, and Random
algorithms are best when the VMs arrive in groups. The stacking of the VMs
reduces the number of used PMs during the allocation and creates a perfect
match between the required resources and the available recourse, which is what
SS and SRS perform. Thus, avoiding the chance of producing allocations with
high Mpms.

From VMs arrival time perspective, the constraint of the PSSF algorithm
that keeps only three users on the same PM leads to spread target and malicious
VMs, which results in higher Mpms. Thus, if the malicious user launched many
VMs, it will be easier to obtain a malicious co-residency with the target user.
Also, because the normal VMs, for each experiment, arrives first and spread
their VMs on the available PMs. Hence, fewer available PMs when the malicious
and target VMs arrives, which is also applies to RR algorithm.

From PMs heterogeneity perspective, when comparing the effect of PMs het-
erogeneity level, the low heterogeneous PMs structure often leads to a better
result of Mpms than the other PMs structure for PSSF and RR.

Malicious Co-residency for Single VMs Arrival under Limited Re-
sources In Figure 2, the single VMs arrivals lead to better results comparing
to the group or mixed VMs arrivals.

16 M. Aldawood et al.

(#) of VMs for each group = 120
0

10

20

30

40

50

60
(#

) o
f V

M
s

Malicious CoResidency for VMs Arrival Time [Single N(t) < Single M(t)
< Single T(t)], Respect to VMs Type Quantity With VM Migration Enabled

#TargetVMs #AttackerVMs #NormalVMs

0

20

40

60

80

100

 P
M
s w

ith
 M
al
ici
ou

s C
oR

es
id
en

cy
 (%

)

High Hetero PMs Medium Hetero PMs Low Hetero PMs

SS SRS PSSF Random RoundRobin

Fig. 2: Malicious Co-residency under SNMT Arrival Time, When Available Re-
sources Limited.

The effect of the VMs number, according to their type, is similar to the group
arrivals, for all the algorithms. Briefly, the higher number of either malicious or
target VMs, and in some cases when both are high, leads to a higher chance of
malicious co-residency occurrence.

Moreover, when the VMs arrived separately, the Mpms decreases significantly
for the compared algorithms even when the available recourse is limited. This
outcome happens because it is easier for the allocator to obtain a secure alloca-
tion for a single VM, according to its type. However, when a group of VMs of
the same type arrives, it is not easy to produce a secure allocation. For example,
when a group of target VMs arrives and the malicious VMs already allocated to
most of the available PMs, it will be challenging for the algorithms to obtain a
secure allocation, especially if the algorithm follows a spreading behaviour. On
the other hand, a single target VM arriving makes it easier to obtain the secure
allocation because the available PMs options that lead to secure allocation is
potentially higher, even for the spreading based algorithms.

The high heterogeneous PMs structure often leads to a better result of Mpms

than the other PMs structure for all algorithms due to the high diversity of the
structure of the resources. Ultimately, the impact of VMs number continues to
be the same on the single VMs arrival.

Malicious Co-residency for Mixed VMs Arrival under Limited Re-
sources In Figure 3, the outcomes of the Mpms is better than the group VMs
arrival as this type mixed the group with the single VMs arrivals. Thus the single

Secure VMs Allocation Behaviours 17

(#) of VMs for each group = 120
0

10

20

30

40

50

60
(#

) o
f V

M
s

Malicious CoResidency for VMs Arrival (Mixed Time) [N(t) < M(t) <
T(t)], Respect to VMs Type Quantity With VM Migration Enabled

#TargetVMs #AttackerVMs #NormalVMs

0

20

40

60

80

100

 P
M
s w

ith
 M
al
ici
ou

s C
oR

es
id
en

cy
 (%

)

High Hetero PMs Medium Hetero PMs Low Hetero PMs

SS SRS PSSF Random RoundRobin

Fig. 3: Malicious Co-residency under Mixed NMT Arrival Time, When Available
Resources Limited.

VMs arrival influences the positive impact of obtaining more secure allocations
for all the algorithms.

From VMs type number perspective, the PSSF and Random algorithms are
showing a clear relationship between the spike number of either target or ma-
licious VMs with the high Mpms. Even in the cases where they both have a
relatively high number at the same time compared to the total number of VMs,
of the experiment. Also, the high number of normal VMs positively leads to low,
sometimes none, malicious co-residency. However, this effect disappears when
the number of either target or malicious VMs rises. Similarly, the RR algorithm
was impacted by the rising number of target and malicious VMs. The SS and
SRS continue to produce the best outcome of the compared algorithms over the
examined situations.

From VMs arrival perspective, the normal VMs will arrive first, then any
VM from the other two types can be allocated with them. Thus, leaving more
options and more available PMs for the upcoming VMs when it arrives to obtain
secure allocations. However, the single VMs arrival between the groups causing
the spike of Mpms the same way happened in the previous arrivals.

Furthermore, PMs heterogeneous structure’s effect did not seem to have that
great difference between the three types in the matter of the number of spikes;
however, the high heterogeneous is slightly better in most cases in the matter of
producing low Mpms.

18 M. Aldawood et al.

5.4 Results of VMs Migrations

This section will compare the result of VMs migration for all the compared
algorithms under different arrival times. The percentage of VMs migrations,
denoted as (Migvms), is defined as follow:

Migvms =
Svms

Tvms
(10)

Where the (Svms) specify the VMs selected and migrated from one PM to an-
other, and the (Tvms) specify the total VMs for an allocation.

20 40 60 80 100 120
(#) of VMs

0

20

40

60

80

100

 V
M
s M

ig
ra
tio

n
(%

)

Percentage of VMs Migration for VMs Arrival Time [N(t) < M(t) < T(t)]

HighHetPMs MedHetPMs LowHetPMs
SS SRS PSSF Random RoundRobin

Fig. 4: VMs Migrations under Single VMs arrival, GNMT Arrival Time.

VMs Migrations for Group VMs Arrival In general, as shown in Figure 4,
the spreading allocation behaviours algorithms, RR and PSSF, are the worst in
Migvms , especially when the resources are limited. While the random algorithm,
have a moderated percentage of VMs migration considering benefits produced by
these migrations, which is a lower chance of malicious co-residency. The stacking-
based algorithms, SS and SRS, show the lowest percentage of VMs migration
among the other algorithms under all the group VMs arrival. However, the SRS
algorithm shows high Migvms compared to the SS algorithm in a few cases when
the resources are limited and the malicious and target VMs arrive at last. The
SS algorithm is considered to have the best outcome of Migvms under all the

Secure VMs Allocation Behaviours 19

examined situations. On the other hand, the reason that influences the Migvms

to be low in some cases is the limited options of the available PMs and the limited
number of selected VMs for migration. As a consequence of this behaviour, the
Mpms will produce a higher percentage than other cases of the same algorithm
under different arrival times.

Overall, from the algorithm perspective, the benefits for VMs migration are
high for the random, SRS and SS algorithms, but for PSSF and RR, the benefits
are not significant. For instance, the high Migvms for the SRS algorithm leads to
obtaining secure allocations for all the cases examined. Also, the random algo-
rithms benefit greatly from the VMs migration as it produces many allocations
without high Mpms. On the other hand, for RR and PSSF, their benefits are not
as much as the other algorithms due to their spreading behaviour that limits
VMs migration options.

VMs Migrations for Single VMs Arrival In Figure 5, the RR case shows
high Migvms compared to the other algorithms, even when the resources are not
limiting. The reason for this behaviour back to two main points; the configu-
rations of VMs arrivals and the behaviour of the algorithm. The VMs arrival
structure, in this case, depends on separating the VMs as single based on their
type classification. Thus, it is easier for the malicious VMs, or target VMs, to
spread access to the entire available PMs at early stages. This spreading brings
us to the second reason, which is the behaviour of the algorithm, which depends
on spreading the VMs upon their arrivals. Hence, making the Migvms much
higher compare to the other algorithms.

VMs Migrations for Mixed VMs Arrival In Figure 6, the similarity of
outcome for VMs migration continues for this type of VMs arrival, where the
RR algorithm performs the worse among the compared algorithms due to its
spreading behaviour. Similarly, the PSSF shows a high Migvms only when the
resources start limiting, which indicates that obtaining secure allocation at this
stage is challenging. Moreover, the Rand algorithm low Migvms compare to the
spreading behaviour algorithms, RR and PSSF. The stacking-based algorithms,
SS and SRS, are the best in this time arrivals are they yielding to the lowest
Migvms for all the cases.

5.5 Results of PMs Usage

This section aims to examine the PMs utilisation, (Usagepms), during the VMs
allocations for all the compared algorithms. The PMs utilisation is also con-
sidered an indication of the power consumption for the compared algorithms.
We calculate the percentage of used PMs compared to the total available PMs,
denoted as (Usagepms), as follow:

Usagepms =
Upms

Tpms
(11)

20 M. Aldawood et al.

20 40 60 80 100 120
(#) of VMs

0

20

40

60

80

100
 V
M
s M

ig
ra
tio

n
(%

)
Percentage of VMs Migration for VMs Arrival Time [Single N(t) < Single

M(t) < Single T(t)]

HighHetPMs MedHetPMs LowHetPMs
SS SRS PSSF Random RoundRobin

Fig. 5: VMs Migrations under Single VMs arrival, SNMT Arrival Time.

20 40 60 80 100 120
(#) of VMs

0

20

40

60

80

100

 V
M
s M

ig
ra
tio

n
(%

)

Percentage of VMs Migration for VMs Arrival (Mixed Time) [N(t) < M(t)
< T(t)]

HighHetPMs MedHetPMs LowHetPMs
SS SRS PSSF Random RoundRobin

Fig. 6: VMs Migrations under Single VMs arrival, Mixed NMT Arrival Time.

Secure VMs Allocation Behaviours 21

Where the (Upms) specify the used PMs for completing an allocation, and the
(Tpms) specify the total available PMs.

20 40 60 80 100 120
(#) of VMs

0

20

40

60

80

100

 P
M
s U

se
d
(%

)

Percentage of PMs used for VMs Arrival Time [N(t) < M(t) < T(t)], With
VM Migration Enabled

HighHetPMs MedHetPMs LowHetPMs
SS SRS PSSF Random RoundRobin

Fig. 7: PMs Usage under GNMT Arrival Time.

VMs Arrival (GNMT) To avoid duplication of similar results, we will only
show the case of group VMs arrival, as shown in Figure 7.

Overall, in Figure 7, there is an indication of the resource usage, efficiency
towards obtaining a secure allocation. In other words, in our proposed SS algo-
rithm, the Usagepms are the best among the compared algorithms under most
cases, even when the resources start limiting. On the other hand, the RR al-
gorithm is generally worse due to its spreading behaviour, while Random and
PSSF are only better when the available resources are not limited.

In a notable case, the Usagepms is slightly higher for SS and SRS in high
heterogeneous PMs than other PMs structures for the same VMs number. For
instance, when the VMs number equal 20, the PMs usage is considered higher
than the other types despite the fact that the PMs number is the same for all the
structures, but with different available resources. The possible reason is that the
high heterogeneous PMs filled early than the other two types due to the design
of this PM structure, which leads to utilising more PMs, during the allocation,
than medium and low heterogeneous structures.

22 M. Aldawood et al.

6 Conclusion

This paper focuses on evaluating the behaviour of the secure VMs allocation al-
gorithms that leads to produce secure allocations in CCEs. Moreover it focuses
on obtaining a secure VMs allocation in CCEs to defend against SCAs. As such,
we propose a solution to defend against this attack by developing SS algorithm
and examining it under different situations with other algorithms. Our results
show that VM arrival times have a significant impact on obtaining a secure allo-
cation. Also, the algorithms that follow a stacking behaviour in VM allocations
are more likely to return secure allocations than spreading or random-based al-
gorithms. We show that SS outperform other schemes in obtaining a secure VM
allocation. In future work, we will be extending the proposed model to include
tasks allocation on the hardware level in addition to the VMs level. In other
words, it depends on controlling the allocation of tasks on CPUs and caches to
allocate them securely and reduce data leakage through the side channels. It
includes classifying the tasks according to the user behaviour and allocate their
tasks accordingly.

References

1. Ahamed, F., Shahrestani, S., Javadi, B.: Security aware and energy-efficient vir-
tual machine consolidation in cloud computing systems. In: 2016 IEEE Trust-
com/BigDataSE/ISPA. pp. 1516–1523. IEEE (2016)

2. Aldawood, M., Jhumka, A., Fahmy, S.A.: Sit here: Placing virtual machines se-
curely in cloud environments. In: CLOSER. pp. 248–259 (2021)

3. Almorsy, M., Grundy, J., Müller, I.: An analysis of the cloud computing security
problem. arXiv preprint arXiv:1609.01107 (2016)

4. Azar, Y., Kamara, S., Menache, I., Raykova, M., Shepard, B.: Co-location-resistant
clouds. In: Proceedings of the 6th Edition of the ACM Workshop on Cloud Com-
puting Security. pp. 9–20 (2014)

5. Bahrami, M., Malvankar, A., Budhraja, K.K., Kundu, C., Singhal, M., Kundu, A.:
Compliance-aware provisioning of containers on cloud. In: 2017 IEEE 10th Inter-
national Conference on Cloud Computing (CLOUD). pp. 696–700. IEEE (2017)

6. Balharith, T., Alhaidari, F.: Round robin scheduling algorithm in cpu and cloud
computing: a review. In: 2019 2nd International Conference on Computer Appli-
cations & Information Security (ICCAIS). pp. 1–7. IEEE (2019)

7. Bazm, M.M., Lacoste, M., Südholt, M., Menaud, J.M.: Side channels in the cloud:
Isolation challenges, attacks, and countermeasures (2017)

8. Berrima, M., Nasr, A.K., Ben Rajeb, N.: Co-location resistant strategy with full
resources optimization. In: Proceedings of the 2016 ACM on Cloud Computing
Security Workshop. pp. 3–10 (2016)

9. Bijon, K., Krishnan, R., Sandhu, R.: Mitigating multi-tenancy risks in iaas cloud
through constraints-driven virtual resource scheduling. In: Proceedings of the 20th
ACM Symposium on Access Control Models and Technologies. pp. 63–74 (2015)

10. Caron, E., Le, A.D., Lefray, A., Toinard, C.: Definition of security metrics for
the cloud computing and security-aware virtual machine placement algorithms.
In: 2013 International Conference on Cyber-Enabled Distributed Computing and
Knowledge Discovery. pp. 125–131. IEEE (2013)

Secure VMs Allocation Behaviours 23

11. Dhanya, D., Arivudainambi, D.: Dolphin partner optimization based secure and
qualified virtual machine for resource allocation with streamline security analysis.
Peer-to-Peer Networking and Applications 12(5), 1194–1213 (2019)

12. Ding, W., Gu, C., Luo, F., Chang, Y., Rugwiro, U., Li, X., Wen, G.: Dfa-vmp: An
efficient and secure virtual machine placement strategy under cloud environment.
Peer-to-Peer Networking and Applications 11(2), 318–333 (2018)

13. Garey, M.R., Johnson, D.S.: Computers and intractability, vol. 174. freeman San
Francisco (1979)

14. Genssler, P.R., Knodel, O., Spallek, R.G.: Securing virtualized fpgas for an un-
trusted cloud. In: Proceedings of the International Conference on Embedded Sys-
tems, Cyber-physical Systems, and Applications (ESCS). pp. 3–9. The Steering
Committee of The World Congress in Computer Science, Computer . . . (2018)

15. Gulmezoglu, B., Eisenbarth, T., Sunar, B.: Cache-based application detection in
the cloud using machine learning. In: Proceedings of the 2017 ACM on Asia Con-
ference on Computer and Communications Security. pp. 288–300 (2017)

16. Han, J., Zang, W., Liu, L., Chen, S., Yu, M.: Risk-aware multi-objective optimized
virtual machine placement in the cloud. Journal of Computer Security 26(5), 707–
730 (2018)

17. Han, J., Zang, W., Chen, S., Yu, M.: Reducing security risks of clouds through
virtual machine placement. In: IFIP Annual Conference on Data and Applications
Security and Privacy. pp. 275–292. Springer (2017)

18. Han, Y., Chan, J., Alpcan, T., Leckie, C.: Using virtual machine allocation policies
to defend against co-resident attacks in cloud computing. IEEE Transactions on
Dependable and Secure Computing 14(1), 95–108 (2015)

19. Hu, Y., Wong, J., Iszlai, G., Litoiu, M.: Resource provisioning for cloud computing.
In: Proceedings of the 2009 Conference of the Center for Advanced Studies on
Collaborative Research. pp. 101–111 (2009)

20. Kiriansky, V., Lebedev, I., Amarasinghe, S., Devadas, S., Emer, J.: Dawg: A defense
against cache timing attacks in speculative execution processors. In: 2018 51st
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). pp.
974–987. IEEE (2018)

21. Liang, X., Gui, X., Jian, A., Ren, D.: Mitigating cloud co-resident attacks via
grouping-based virtual machine placement strategy. In: 2017 IEEE 36th Interna-
tional Performance Computing and Communications Conference (IPCCC). pp. 1–
8. IEEE (2017)

22. Long, V.D., Duong, T.N.B.: Group instance: Flexible co-location resistant virtual
machine placement in iaas clouds. In: 2020 IEEE 29th International Conference on
Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE).
pp. 64–69. IEEE (2020)

23. Lopez-Pires, F., Baran, B.: Virtual machine placement literature review. arXiv
preprint arXiv:1506.01509 (2015)

24. Moon, S.J., Sekar, V., Reiter, M.K.: Nomad: Mitigating arbitrary cloud side chan-
nels via provider-assisted migration. In: Proceedings of the 22nd acm sigsac con-
ference on computer and communications security. pp. 1595–1606 (2015)

25. Natu, V., Duong, T.N.B.: Secure virtual machine placement in infrastructure cloud
services. In: 2017 IEEE 10th Conference on Service-Oriented Computing and Ap-
plications (SOCA). pp. 26–33. IEEE (2017)

26. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:
exploring information leakage in third-party compute clouds. In: Proceedings of
the 16th ACM conference on Computer and communications security. pp. 199–212
(2009)

24 M. Aldawood et al.

27. Sun, Q., Shen, Q., Li, C., Wu, Z.: Selance: Secure load balancing of virtual machines
in cloud. In: 2016 IEEE Trustcom/BigDataSE/ISPA. pp. 662–669. IEEE (2016)

28. Varadarajan, V., Zhang, Y., Ristenpart, T., Swift, M.: A placement vulnerabil-
ity study in multi-tenant public clouds. In: 24th {USENIX} Security Symposium
({USENIX} Security 15). pp. 913–928 (2015)

29. Yu, S., Gui, X., Tian, F., Yang, P., Zhao, J.: A security-awareness virtual machine
placement scheme in the cloud. In: 2013 IEEE 10th International Conference on
High Performance Computing and Communications & 2013 IEEE International
Conference on Embedded and Ubiquitous Computing. pp. 1078–1083. IEEE (2013)

30. Yuchi, X., Shetty, S.: Enabling security-aware virtual machine placement in iaas
clouds. In: MILCOM 2015-2015 IEEE Military Communications Conference. pp.
1554–1559. IEEE (2015)

31. Zhang, T., Zhang, Y., Lee, R.B.: Cloudradar: A real-time side-channel attack de-
tection system in clouds. In: International Symposium on Research in Attacks,
Intrusions, and Defenses. pp. 118–140. Springer (2016)

32. Zhang, Y., Li, M., Bai, K., Yu, M., Zang, W.: Incentive compatible moving target
defense against vm-colocation attacks in clouds. In: IFIP international information
security conference. pp. 388–399. Springer (2012)

