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Abstract This article establishes a universal robust limit theorem under a sublinear
expectation framework. Under moment and consistency conditions, we show that, for
a € (1,2), the i.i.d. sequence

1 & 1 & 1 &
(e

converges in distribution to L;, where L; = (ft,ﬁt, ft), t € [0,1], is a multidimensional

oo

n=1

nonlinear Lévy process with an uncertainty set © as a set of Lévy triplets. This
nonlinear Lévy process is characterized by a fully nonlinear and possibly degenerate
partial integro-differential equation (PIDE)

Owu(t,z,y,2z) —  sup { hu(t,z,y, z)F,(dX)
(Fu,q,Q)€© R4

1
H(Dyult,2,9,2), ) + tr{D2ult, 2,y Q) { =0,
u(07x)y7 Z) = ¢(x’y7 Z)’ v(t7‘r7y’ Z) E [07 1] X IR?)d7
with Oy u(t,z,y,2) = u(t,z,y,z + \) —u(t,z,y,2) — (D,u(t,z,y,2),\). To construct
the limit process (Lt)te[o,u, we develop a novel weak convergence approach based on the
notions of tightness and weak compactness on a sublinear expectation space. We further
prove a new type of Lévy-Khintchine representation formula to characterize (Ly)iefo,1)-

As a byproduct, we also provide a probabilistic approach to prove the existence of the
above fully nonlinear degenerate PIDE.
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2 Mingshang Hu, Lianzi Jiang, Gechun Liang, Shige Peng

1. Introduction

Motivated by measuring risks under model uncertainty, Peng [25-27, 31] introduced the
notion of sublinear expectation space, called G-expectation space. The G-expectation theory has
been widely used to evaluate random outcomes, not using a single probability measure, but
using the supremum over a family of possibly mutually singular probability measures.

One of the fundamental results in the theory is Peng’s robust central limit theorem introduced
in [28, 30, 31]. Let {(X;,¥;)}2, be an ii.d. sequence of random variables on a sublinear
expectation space (,H,E). Under certain moment conditions, Peng proved that there exists a
G-distributed random variable (£,n) such that

i o G5 22 X7 3w ] = Biote

for any test function ¢. The G-distributed random variables (£,n) describes volatility and
mean uncertainty, and can be characterized via a fully nonlinear parabolic PDE, i.e., the
function u(t,z,y) := E[¢(x + VI, y + tn)] solves

Opu(t, z,y) — G(Dyu, D?u) = 0,
{ u( Y) (Dy ) (1.1)

U(O, a:,y) = (b(xvy)a

where the sublinear function

G(p,A):=E& [; (AX1, X))+ (p, Y1) |, (p,A) € RY x S(d).

This limit theorem was established by Peng around 2008 (see [28]) using the regularity theory of
fully nonlinear PDEs from [6, 18, 36]. The corresponding convergence rate was established by
Fang et al [11] and Song [35] using Stein’s method and later by Krylov [19] using stochastic
control method under different model assumptions. More recently, Huang and Liang [16] studied
the convergence rate of a more general central limit theorem via a monotone approximation scheme.

To further describe jump uncertainty, Hu and Peng [14, 15] introduced a class of nonlinear
Lévy processes with finite activity jumps, called G-Lévy processes in the setting of sublinear
expectation, and built a type of Lévy-Khintchine representation for G-Lévy processes by relating
to a class of fully nonlinear partial integro-differential equations (PIDESs). For given characteristics,
more general nonlinear Lévy processes with infinite activity jumps have been studied by Neufeld
and Nutz [24] (see also [8, 20, 23]). An important class of nonlinear Lévy processes is the a-
stable process ((¢)i>0 for a € (1,2), whose characteristic is described by an uncertainty set
©¢ = {(Fr,,0,0) : kx € K1}, where Ky C (A1,A2) for some Aj, Ay >0, (0,0) means that
((t)t>0 is a pure jump Lévy process without diffusion and drift, and Fj, (dz) is the a-stable
Lévy measure

Foo (dz) = L ke
k;t( z) = |Z‘O‘+1 1(700’0) (z)dz + |Z|O‘+1 l(o,w)(z)dz.

The nonlinear oa-stable process ((;);>0 on a sublinear expectation space (Q,H,E) can be
characterized via a fully nonlinear PIDE, i.e., the function u(t,z) := E[¢(z + ;)] solves

du(t,z) — sup { /R 6,\u(t,x)Fki(d)\)} o,

kiteKy

w(0, ) = (),

(1.2)
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where dyu(t,z) ;== u(t,z + \) — u(t,xz) — Dyu(t, ).

The corresponding limit theorem for a-stable processes under sublinear expectation was
established by Bayraktar and Munk [5]. Let {Z;}32; be an i.i.d. sequence of real-valued random
variables on a sublinear expectation space (Q,’H,]]:Z) satisfying certain moment and consistency

conditions, they proved that there exists a nonlinear a-stable process (¢;);>o0 such that
R 1 & -
lim Blo( —=5"2 )| =& ,
Jm Elo( > )] =B

for any test function ¢. Their proof relies on the interior regularity results of fully nonlinear
PIDEs from [6, 21, 22]. More recently, Hu et al [13] established the corresponding convergence
rate via a monotone approximation scheme.

The aim of this article is to study the robust limit theorem for a multidimensional nonlinear
Lévy process under a sublinear expectation framework. To be more specific, let {(X;,Y;, Z;)}2,
be an i.i.d. sequence of R3?-valued random variables on a sublinear expectation space (QH,E)

and a € (1,2). Then, the first question is under what conditions does the following i.i.d. sequence

1 &« 1 & 1 &
(Gt s )}

converge? If so, then the second question is how to characterize the limit? We provide

oo
n=1

affirmative answers for both questions in Theorem 3.4, which is dubbed as a wuniversal robust
limit theorem under sublinear expectation. The result covers all the existing robust limit
theorems in the literature, namely, Peng’s robust central limit theorem for G-distribution (see [28])
and Bayraktar-Munk’s robust limit theorem for a-stable distribution (see [5]). One remarkable
feature of the result is that (Xi,Y7,Z;) may depend on each other, so one cannot simply
combine the robust limit theorems in [5] and [28]. Moreover, the conditions that we propose are
mild. In fact, they are weaker than the characterization condition proposed in linear setting (see
Remark 3.3) and the consistency condition in nonlinear setting (see Remark 3.2).

On the other hand, the existing methods for the robust limit theorems do not work, because [5,
28] reply on the regularity estimates of the fully nonlinear PDE (1.1) and PIDE (1.2). However,
the required regularity for the general equation (3.3) in Theorem 3.4 is unknown to date. Moreover,
it seems that most of the existing methods are analytical and heavily rely on the regularity theory.
It is natural to ask whether one can establish a probabilistic proof as in the classical linear
expectation case. As expected, weak convergence plays a pivotal role. Peng [29] firstly
introduced the notions of tightness and weak compactness on a sublinear expectation space and
provided an alternative proof for his robust central limit theorem. In Theorem 4.1, we further
develop this weak convergence approach to establish a Donsker-type result showing that the
limit indeed exists and is a nonlinear Lévy process L; := (ft,ﬁhft) at t=1 with (517171)
following G-distribution.

A more challenging task is to characterize the third component ¢; and also L; as a whole.
This will in turn link the nonlinear Lévy process (Et)te[o,l] with the fully nonlinear PIDE (3.3).
However, the proofs for the classical linear expectation cases (e.g. CLT and a-stable limit theorem)
are to a considerable extent based on characteristic function techniques, which do not exist in
the sublinear framework. A new type of Lévy-Khintichine formula is therefore needed. Note that
the proof of this representation formula is also an important open question left in the literature
(see Remark 23 in [15] and Page 71 in [24]). We overcome this difficulty by deriving a new
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4 Mingshang Hu, Lianzi Jiang, Gechun Liang, Shige Peng

estimate for the a-stable Lévy measure (see Theorem 4.5), which in turn enables us to prove a
new type of Lévy-Khintichine representation formula for the nonlinear Lévy process (see
Theorem 4.7). Thanks to the connection with the fully nonlinear PIDE (3.3), we also obtain the
existence of its viscosity solution as a byproduct.

The article is organized as follows. In Section 2, we review some necessary results about
sublinear expectation. Section 3 details our main result: the universal robust limit theorem in
Theorem 3.4. The proofs of the main theorem is given in Section 4. Finally, an example
highlighting the applications of our main result is given in Section 5.

2. Preliminaries

This section briefly introduces notions and preliminaries in the sublinear expectation framework.
For more details, we refer the reader to [26, 27, 29, 31] and the references therein.

2.1 Sublinear expectation

Let © be a given set and let H be a linear space of real valued functions defined on € such
that 1 € H and |X| € H if X € H. Then, a sublinear expectation is defined as follows.

Definition 2.1 A functional E: H >R is called a sublinear expectation if, for all X,Y € H,
it satisfies the following properties.

(i) (Monotonicity) E[X] > E[Y], if X >Y;

(ii) (Constant preservation) E[c] = ¢, for ¢ € R;

(iii) (Sub-additivity) E[X + Y] < E[X] + E[Y];

(iv) (Positive homogeneity) E]NX] = AE[X], for X > 0.

The triplet (€,H,E) is called a sublinear expectation space. From the definition of the

sublinear expectation IE, the following results can be easily obtained.

Proposition 2.2 For X, Y € H, we have

(i) if B[X] = —E[-X], then E[X + Y] = E[X] + E[Y];
(ii) |E[X] - E[Y]| <E[|IX = Y], i.e., [E[X] - E[Y]| <E[X — Y] VE[Y — X];
(iii) E[XY) < (B[ X[P])/2(E[Y]9])/9, for 1 <p,q<oo with 1+ =1.

Definition 2.3 We say X1 on a sublinear expectation space (Ql,'Hl,El) and X5 on another
sublinear expectation space (QQ,HQ,]EQ) identically distributed, if Ik, [p(X1)] = I, [p(X2)], for all
¢ € Cp,1ip(R™), the space of bounded Lipschitz continuous functions on R™.

The concept of independence plays a pivotal role in sublinear expectation. Notably, Y is
independent from X does not necessarily imply that X is independent from Y.

Definition 2.4 Let (Q,H,I@) be a sublinear expectation space. An n-dimensional random
variable Y is said to be independent from another m-dimensional random variable X under K[,
denoted by Y LL X, if for every test function ¢ € Cp 1ip(R™ x R™) we have

Blp(X, )] = [Blo(z,Y)],x] -
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X is said to be an independent copy of X if X 2 X and X 1L X.

The independence assumption implies the additivity of E as shown in the following proposition.

Proposition 2.5 For XY € H,if Y 1L X, then

E[X +Y] = E[X] + E[Y].

2.2 Tightness, weak compactness, and convergence in distribution

Weak convergence plays an important role in establishing the universal robust limit theorem.
The following definitions of tightness and weak compactness are adapted from Peng [29,
Definitions 7 and 8§].

Definition 2.6 A sublinear expectation E on (R",Cy 1ip(R™)) is said to be tight if for each
e >0, there exist an N >0 and ¢ € Cy 1ip(R™) with Iy, >ny < ¢ such that E[gp] <e.

Definition 2.7 A family of sublinear expectations {Eo}aca on (R™, Cy rip(R™)) is said to be
tight if there exists a tight sublinear expectation & on (R™, Cy rip(R™)) such that

Eq [¢] — Eq [¢'] < ]E[W —¢'l,  foreach ¢,¢" € Cp Lip(R").

Definition 2.8 Let {E,}5%, be a sequence of sublinear expectations defined on (R™,Cly iy
(R™)). They are said to be weakly convergent if, for each ¢ € Cyrip(R™), {En[p]}22, is a
Cauchy sequence. A family of sublinear expectations {]Ea}aeA defined on (R™,Cy rip(R™)) is

said to be weakly compact if for each sequence {Eq, }22, there exists a weakly convergent subsequence.

The following result is a generalization of the celebrated Prokhorov’s theorem to the sublinear
expectation case, first proved in Peng [29, Theorem 9]. For the reader’s convenience, we give the
proof of Theorem 2.9 in Appendix under the tightness condition introduced in Definition 2.6.

Theorem 2.9 ([29]) Let {Eo}aca be a family of tight sublinear expectations on (R™,
Cy.1ip(R™)). Then {Eo}aca is weakly compact, namely, for each sequence {E, }2,, there
exists a subsequence {an}f; such that, for each ¢ € Cp 1ip(R™), {IAEQZ [©]}52, is a Cauchy

Sequence.

Given the weak convergence of sublinear expectations, the convergence of random variables
can be defined accordingly as follows.

Definition 2.10 A sequence of n-dimensional random variables {X;}52, defined on a sublinear
expectation space (Q,’H,E) is said to converge in distribution (or converge in law) under E if
for each @ € Cy 1ip(R™), the sequence {E[p(X;)]}52, converges. For each random variable X;,
the mapping Fx,[] : Cp.rip(R™) = R defined by

Fx.[¢] = E[p(X0)], for ¢ € Cyrip(R")
is a sublinear expectation defined on (R™, Ch rip(R™)).
An immediate corollary of Theorem 2.9 and Definition 2.10 is the following result.

Corollary 2.11 Let {X;}°, be a sequence of n-dimensional random variables defined on a
sublinear expectation space (Q,?—[,I@). If {Fx, }2, is tight, then there exists a subsequence
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6 Mingshang Hu, Lianzi Jiang, Gechun Liang, Shige Peng

{Xi, 521 C{Xi}72, which converges in distribution.

One can then easily obtain the following result concerning the convergence in distribution of

random variables.

Proposition 2.12 Let {X;}32, be a sequence of n-dimensional random variables defined on
sublinear expectation spaces (Q,?—[,fE) and X; be an independent copy of X; for i € N. If
{X:}2, converges in law to X in (Q,H,E), i.e

lim E[p(X;)] = E[p(X)], for ¢ € Cy,rip(R™),

i—00
which we denote by X; B X. Then
X: B X and Xi+X: 3 X+ X,
where X is an independent copy of X.
Remark 2.13 The above results can be generalized to multiple summations. For each ¢ and

meN, let {XP}", be an independent copy sequence of X; in the sense that X} iXZ-,
XL xn gnd XU UL (XE,X2,.0,X0) for n=1,...,m—1, and let {X"}™

n=1

independent copy sequence of X in the sense that X! iX, X+ L xn gnd XL
(XL, X2, X") forn=1,...,m—1.If X; 3 X, then

Zm: xr B i X",
n=1 n=1

be an

2.3 The robust central limit theorem for G-distribution

One of the most important class of distributions in the sublinear expectation framework is

G-distribution, which characterizes volatility and mean uncertainty via (£,7) below.

Definition 2.14 The pair of d-dimensional random variables (£,m) on a sublinear expectation
space (Q,H,fE) is called G-distributed if for each a,b >0 we have

(ag + bE, a®n + b7) < (mg 2 1 p?) ) (2.1)
where (£,7) is an independent copy of (£,7), and G : R% x S(d) — R denotes the binary function
G )= B[ 1A69) + ] () € RO x5(0) (2:2)
where S(d) denotes the collection of all R4 symmetric matrices.
Remark 2.15 In fact, if the pair (£,m) satisfies (2.1), then
aé + bE = \/mf, a77+b77i (a+b)n, fora,b>D0.
This implies that & is G-normally distributed and 7 is mazimally distributed (cf. Peng [31]).

Remark 2.16 For the latter use, we recall from Proposition 4.1 in Peng [28] that there exists a
bounded and closed subset T C R? x S, (d) such that for (p, A) € R? x S(d),
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Probability, Uncertainty and Quantitative Risk 7

G(p,A) = sup [(p,q> + ;W[AQ]} ,
(¢,Q)€er
where Sy (d) denotes the collection of nonnegative definite elements in S(d).

The robust central limit theorem for G-distribution was established by Peng around 2008
using the regularity theory of fully nonlinear PDEs in [28]. A probabilistic proof using the weak
convergence argument was subsequently established in [29]. We recall this major theorem in its
general form as in [31, Theorem 2.4.7] (see also [7, 12, 37] for more related research).

Theorem 2.17 ([31]) Let {(X;,Y:)}2; be a sequence of R*!-valued random variables on a
sublinear expectation space (Q,H,E), We assume that (X;y1,Yiy1) 4 (X:,Y:) and (Xit1,Yis1)
is independent from {(X1,Y1),...,(X;,Y;)} for each i=1,2,.... We further assume that

E[X;] =E[-X;] =0 and
lim E[(|X1)2—y)t]=0, lim E[(|Vi] —~)T]=0.

y—+o0 Y400

Then for each function p € C(R??) satisfying linear growth condition, we have
. "X, Y .
lim E == 2 =E
lim [@(E \/ﬁ; n)} (€ m)],
where the pair (€,m) is G-distributed and the corresponding sublinear function G : RY x S(d) —
R is defined by

G p. ) 1= B |3 (AX0,X0) + (1)) . (9. 4) € RY x 5(0)

2.4 The o-stable limit theorem for «-stable distribution

Let us first recall the classical a-stable limit theorem in the linear case. let {Z;}3°, be a

sequence of i.i.d. random variables on a classical probability space. While the central limit
n

theorem states that the distribution of n~1/2 Z Z; will converge to a normal distribution when
i=1 n
Z1 has finite variance, the a-stable limit theorem states that the distribution of n1/e ZZi

i=1
with will converge to a classical a-stable distribution for « € (0,2) when Z; has power-law
tails decreasing as |z|=*71 (see (2.3)).

Definition 2.18 The common distribution Fz of an i.i.d. sequence {Z;}32, is said in the
domain of normal attraction of an 1a—stable distribution F  with « € (0,2), if there exist

nonnegative constants a, and b, =bna for n=1,2,..., such that the distribution of

H(5w)
"N =1

weakly converges to F' as n — oo.

The following theorem characterizes the domain of normal attraction of an «-stable
distribution via a characterization condition (see (2.3) below). It can be found in Ibragimov and
Linnik [17, Theorem 2.6.7].

Theorem 2.19 ([17]) The distribution Fz belongs to the domain of normal attraction of an «-
stable distribution F for « € (0,2) if and only if
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8 Mingshang Hu, Lianzi Jiang, Gechun Liang, Shige Peng

1
[Clba + Bl(Z)]w, z < O,

Fz(z) = 1 (2.3)
1 — [e2b +52(Z)}Zj: z >0,

where c¢1 and co are constants with ci1,co >0, ¢1 + co > 0 related to the «a-stable distribution,
and some functions B1 and (o satisfying

lim fi(z) = lim f2(z) =

Z——00

In the following, we will present the nonlinear version of the asstable limit theorem. Let us
start by recalling the definition of a-stable distribution under sublinear expectations.

Definition 2.20 Let « € (1,2). A random variable ¢ on a sublinear expectation space (2, H,E)
is said to be (strictly) a-stable if for all a,b >0,

a¢ + b £ (a® 457/,
where ¢ is an independent copy of (.

By analogy with the classical case, a nonlinear «-stable random variable ¢ can be
characterized by a set of Lévy triplets (see, for example, Neufeld and Nutz [24]). For «a € (1,2),
we consider ¢ on the sublinear expectation space (Q,’H,H:Z) whose characteristics are described
by a set of Lévy triplets ©g = {(F%,,0,0) : kx € K1}, where Ky C (A1, A2) for some A, Ag >0

and Fy (dz) is the a-stable Lévy measure
k_ k4
Fki(dz) | I(,+1 1( OOO)( )dZ+ | |a+1 1(0 OO)( )d

The corresponding nonlinear a-stable limit theorem was first established by Bayraktar and
Munk [5,Theorem 3.1]. Since cumulative distribution functions do not exist in the sublinear
framework, they further replace the characterization condition (2.3) by a consistency condition
(see (ii) below).

Theorem 2.21 ([5]) Let {Z;}5°, be an i.i.d. sequence of real-valued random variables on a
sublinear expectation space (Q,H,E) in the sense that Z;11 4 Z; and Zipy U (Z1,Z,...,7Z;)
for each i € N, and b, = bné, for some b > 0. Suppose that

(i) E[Z)] =E[-Z1] =0 and E[|Z]] < oo

(ii) for any 0 <h <1 and ¢ € Cy rip(R),

. 1
n]E[(Sb#Zlv(t,x)} — — sup {/@v(t,x)Fki(dz)H =0, n— oo,

n kieKy

uniformly on [0,1] x R, where v is the unique viscosity solution of

Ov(t,z) + sup {/ d.v(t, x)Fr, (dz)} =0, (—h,1+h)xR,
kireKy R

v(1+h,z) =p(x), z€eR,

(2.4)

with d,v(t,x) :=v(t,x+ 2) —v(t,z) — Dyv(t, x)z.
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Probability, Uncertainty and Quantitative Risk 9

Then

1 n
EZZZ-gC, as n — oo.
i=1

Remark 2.22 When the above sublinear framework is constrained to the classical linear case,
by means of the solution regularity of PIDE (2.4), it can be verified that condition (ii) holds as
long as B;, 1 =1,2, in (2.3) are continuously differentiable on their respective closed half-lines,
see [5] or Remark 3.3.

3. Main results

We first recall the definition of nonlinear Lévy process under sublinear expectations as
introduced in [15] and [24].

Definition 3.1 A d-dimensional cadlag process (Xi)i>o defined on a sublinear expectation
space (0, H, IEI) is called a nonlinear Lévy process if the following properties hold.

(i) Xo=0;

(ii) (Xi)e>o0 has stationary increments, that is, Xy — Xs and X;_s are identically distributed
forall 0 < s <t

(ii) (X¢)i>o0 has independent increments, that is, Xy — X, is independent from (X ,...,X¢,)
foreach neN and 0<t; <...<t, <s<t.

A nonlinear Lévy process is characterized via a set of Lévy triplets (F),,q,Q), where the first
component F), is a Lévy measure describing the jump uncertainty, and the second and third
components (g,Q) € R? x S, (d) describe the mean and volatility uncertainty. We call such a
set an uncertainty set throughout the paper. Hu and Peng [14, 15] first proved that a nonlinear
Lévy process (with finite activity jumps) must admit an uncertainty set in the spirit of Lévy-
Khintchine representation. However, a Lévy-Khintchine representation formula for a nonlinear
Lévy process (with infinite activity jumps) is still lacking as commented on Remark 23 in [15]
and Page 71 in [24]. It turns out such a representation is crucial for the universal robust limit theorem.

We now introduce the universal robust limit theorem for a nonlinear Lévy process. Let

€ (1,2), (A,A) for some A,A>0,and F, be the a-stable Lévy measure on (R, B(R?)),

o0
d
F.(B) = / ,u(dz)/ 15(rz) =, for B e B(RY), (3.1)
s 0 r
where p is a finite measure on the unit sphere S = {z € R?: |z| = 1}. Set

Lo = {F, measure on R%:pu(S)ec (A, A)}, (3.2)

and £ C Ly as a nonempty compact convex set. Let {(X;,Y;, Z;)}2; be an i.i.d. sequence of
R3?-valued random variables on a sublinear expectation space (Q,’H,E) in the sense that
(Xit1,Yi41, Zig1) 4 (X:,Y:,Z;) and (Xi41,Yi41,Ziy1) is independent from (Xi,Y1,7241),...,
(X;,Y;, Z;) for each i € N. Set

Sl.= zn:X 52 .= iy S3 .= f:z
=1 =1 =1
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10 Mingshang Hu, Lianzi Jiang, Gechun Liang, Shige Peng

We impose the following assumptions throughout the paper. The first two are moment
conditions on (X1,Y1,Z1) and the last one is a consistency condition on Z;.

(A1) B[X)] = B[-X1] =0, lim E[(|X1[* =4)*] =0, and lim E[(vi] —9)*] =0.
~ ~ ~ 1
(A2) E[Z1] =E[-Z1] =0 and M, :=supE[n~" «|S3|] < .

(A3) For each ¢ € C3(R?), the space of functions on R? with uniformly bounded derivatives

up to the order 3, satisfies

% E[ap(z + séZﬂ - o(2)] - SFS‘uepL y (5)\90(Z)Fﬂ(d)\)’ <lI(s)—0

uniformly on 2z € R? as s—0, where [ is a function on [0,1] and dyp(2) = ¢(z + A)—
p(2) = (Dp(2), A)-

Remark 3.2 The assumption (A3) is essentially a consistency condition for the distribution of
the multidimensional Z, which has been exploited successfully in the numerical analysis
literature on the monotone approximation schemes for nonlinear PDEs [1-]]. In the one-
dimensional case, the assumption (A3) is closely related to the consistency condition proposed in
Bayraktar and Munk [5] (see (ii) in Theorem 2.21). However, they require that the solution
v(t,z) of PIDE (2.4) in prior satisfies the consistency condition, whereas we only require the

consistency condition (A8) holds without involving the solution v(t,x).

Remark 3.3 Although the assumption (A3) looks obscure, let us show that when our attention
18 confined to the classical case, it turns out to be mild and is more general than the
characterization condition (2.3). We consider the two-dimensional case in the following. The one-
dimensional case can be found in [5].

Let ¢ =(¢Y,¢%) be a classical a-stable random wvariable with ¢ 11 ¢? and Lévy triplet
(F,.,0,0). From Samorodnitsky and Taqqu [32, Example 2.3.5], the finite measure p in F, is
discrete and concentrated on the points (1,0),(—1,0),(0,1), and (0,—1). Denote

k% = /"((_la O))? k‘é = U((LO))7 k% = M((Oa _1))’ kg = U((Ov 1))

For i >1, let Z; = (Z},Z?) be a zero mean classical random variable with Z} 11 Z2. Theorem
2.19 indicates that the i.i.d. sequence {Z;}5°, is in the domain of normal attraction of an o-
stable distribution ¢ if and only if for m = 1,2, Fzm has the cumulative distribution function

[ /o + BT (2)] z <0,

R

1— [k /o + By (2)] prd z >0,

where B : (—00,0] — R and BT : [0,00) = R are functions satisfying

ZLHEIOO Ari(z) = Zlg{)lo By'(z) = 0.

We further assume that BT and B5*, m = 1,2, are continuously differentiable functions defined
on (—00,0] and [0,00), respectively. It can be verified that E[|Z{"|] < oo, m =1,2. Moreover,
for ¢ € C3(R?), we note that
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Probability, Uncertainty and Quantitative Risk 11
Elp(z + séZl) —o(2)] = E[p(z1 + SéZ%,ZQ + sile) — (21,22 + siZf)]
1
+ E[(p(zl, 29 + sEZf) — (21, 2’2)]

= E[5i1/a211§0(217 Z9 + séZf)] + E[dgl/azfsa(zla 22)]’

and
SPAEN = [ 3 e, ) FR@0) + [ B plen s P,
R2 R R
where
8l p(x1,x2) = @(x1 + 7, 02) — (1, 22) — D1gp(x1, 32)7,
82p(x1,x2) = @(x1, 2 + ) — (1, 72) — Dagp(z1, 72)7,
and
m kT 2 _

Then, it follows that

1 1
5 E[(p(z +s5271) — w(z)} — s . 5,\<p(z)Fu(d)\)‘
1 1
< 5 E[(S;l/azllnp(zl,@ + 53Z12)] — s/ 6/1\130(21,,22)F;(d/\1)
R

1
+ S‘E[(Sfl/azfgp(zl,zg)] — s/ 5§2w(zl,zz)Fi(d)\2)
R
=1+11I.

In view of Lemma 4.4, we get

1
I= 8‘E[<E[521/azi¢(21,zz + z2)] — s/ 8y, (21, 22 +$2)Fﬁ(d)\1)
i

+ S/ (83, ¢(21, 22 + @2) — 83, (21, 22)) F;}(dkl))
R

;cz=sl/0‘Zf:|

1 1
< Cs= E[|Z7[] + SEHE[‘S;UGZINP(ZM@ + x2)] — 5/ 03, 0(21, 22 + x2) Fy (dAr)
R

wz—sl/“ZIZ:|

Following along similar arguments as in (3.4)-(3.8) in [5], we obtain that
1
S‘E[é‘;l/azicp(zl,zz + $2)] — S/ 6}\1@(21, 29 + ’I‘Q)Fﬁ(d)\l) —0
R

uniformly on (z1, 2o + 22) € R? as s — 0, and similarly, the part II converges to 0 uniformly in
(21,22) € R? as s — 0. Thus, the assumption (A3) holds.

We are ready to state our main result of this paper, which is dubbed as a universal robust
limit theorem under sublinear expectation. It covers all the existing robust limit theorems in the
literature, namely, Peng’s robust central limit theorem for G-distribution (Theorem 2.17) and
Bayraktar-Munk’s robust limit theorem for and Bayraktar-Munk’s robust limit theorem for -
stable distribution (see [5]).
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12 Mingshang Hu, Lianzi Jiang, Gechun Liang, Shige Peng

Theorem 3.4 Suppose that assumptions (A1)-(A3) hold. Then, there exists a nonlinear Lévy
process Ly = (5}, Tt é), t € [0,1], associated with an uncertainty set © C L x R% x S, (d) satisfying

swp L[ EIARRE) +lal + 101 < .

(Fu,q,Q)€0
such that for any ¢ € Cp 1ip(R3?),

) 1 g2 g3
lim E Sn Sn S

3 P (W e ﬁﬂ = E[p(&1,7m, ()] = u®(1,0,0,0),

where u® is the unique viscosity solution of the following fully nonlinear PIDE

Owu(t,,y,z) —  sup { u(t,z,y, z)F,(dN)
(Fuq.Q)ee LJrd

+ (Dyu(t,z,y,2),q) + %tr[Dgu(t, x, Y, z)Q]} =0,
w(0,z,9,2) = ¢(z,y,2), V(t,z,y,2) € [0,1] x R3
with dyu(t,x,y,z) = u(t,z,y,z + \) —u(t,z,y,2) — (Du(t, z,y, 2), \).
Proof We outline the main steps below, with the detailed proof provided in Section 4.

(i) By using the notions of tightness and weak compactness, we first construct a nonlinear
Lévy process Ly := (g},ﬁt,@), t €[0,1], on some sublinear expectation space (€, Lip(Q),E) in
Section 4.1, which is generated by the weak convergence limit of the sequences {((t/n)'/2S},
(t/n)S2, (t/n)/>S3)} > for t € [0,1].

(ii) To link the nonlinear Lévy process (L;)icjo,1) with the fully nonlinear PIDE (3.3), a key

step is to give the characterization of

tim Elp(G5) + {p.is) + 3 (A&, E))0~"

for ¢ € C3(R?) with »(0) =0 and (p,A4) € R? x S(d). It follows from a new estimate for the o
stable Lévy measure and a new Lévy-Khintchine representation formula for the nonlinear Lévy
process in Sections 4.2 and 4.3, respectively.

(iii) Once the representation of the nonlinear Lévy process is established, with the help of
nonlinear stochastic analysis techniques and viscosity solution methods, Theorem 3.4 is a
consequence of the dynamic programming principle in Section 4.4 by defining (¢, x,y,z) =
Elp(z + &,y + e, 2 + G)), for (t,2,y,2) € [0,1] x R, O

The following corollary can be readily obtained from Theorem 3.4.

Corollary 3.5 Suppose that assumptions in Theorem 8.4 hold. Then, for any ¢ € beLip(Rd),

. sl 52 g3
nhm E [qﬁ <\/ﬁ + - + %>} u®(1,0),

where u® is the unique viscosity solution of the following fully nonlinear PIDE
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Probability, Uncertainty and Quantitative Risk 13

Owu(t,x) —  sup { Ou(t, z)F,(dN) + (Dyu(t, x), q) + ltr[Diu(t,x)Q]} =0,
(Fua.Q)ce LR 2

u(0,2) = ¢(z), V(t,z) €[0,1] x R,
where du(t,x) =u(t,z + N) —u(t,z) — (Dyu(t,x),\) and the uncertainty set © defined in
Theorem 3.4.

Proof Forany ¢ € Cj 1ip(R?), define ¢(z,y,2) == ¢(x +y + 2) € Cp 1ip(R3), for (z,y, 2) € R
From Theorem 3.4 we know that v(t,z,y,z) := E[(z + &,y + 7, 2 + )] is the unique viscosity
solution of the PIDE (3.3). Set wu(t,z) := E[p(z + & + 7 + ()], for (¢, ) € [0,1] x R% Noting
that w(t,z +y+2) =v(t,z,y,2), Ou= 0w, Dyu= Dyv = D,v, and D2u = D2?v, we conclude
the result. O

The following corollary extends the a-stable limit theorem for a-stable distribution under
sublinear expectation in Bayraktar and Munk [5, Theorem 3.1] from one-dimensional to
multidimensional case under a weaker consistency condition.

Corollary 3.6 Suppose that assumptions (A2)-(A8) hold. Then, there exists a nonlinear Lévy
process (@)te[o,l] associated with an uncertainty set © = {(F),,0,0) : F, € L}, such that for any

¢ € Cp,Lip(RY),

8o (S4)] = Bie) - w0,

where u® is the unique viscosity solution of the following fully nonlinear PIDE

Owu(t, ) — sup { 5>\u(t,x)FlL(d)\)} =0,
Rd

F.eL
u(0,7) = ¢(z), V(t,x) €[0,1] x RY,

(3.4)

where Syu(t,z) = u(t,z + \) — u(t,x) — (Dyu(t,z),\). In fact, ¢ is a nonlinear o-stable process
satisfying a scaling property, that is, égt and ﬁl/”‘é are identically distributed, for any
0<pB<1land 0<t<I1.

Proof In light of Theorem 3.4, it remains to show that 5 satisfies the scaling property. For
any given ¢ € Cj, 1;p(R?), Theorem 4.9 implies that wu(j3t,0) = IE[QZ)((NM)}, where u is the unique
viscosity solution of the PIDE (3.4) with initial condition ¢. Note that for every >0,

F.(B) = BE,(8Y*B), for B < B(R?).
For any given 0 < 8 <1 and 0 <t < 1, define v(t,z) := u(ft, 5/ “x). It follows from

B[ oxu(Bt, B x)F,(dN) = | Sxv(t,x)F,(d))
R4 Rd

that v is the unique viscosity solution of the PIDE (3.4) with initial condition ¢(z) := (5 *x).
From Theorem 4.9, we derive that v(t,0) = E[$(;)]. Therefore,

E[¢(Cae)] = u(Bt, 0) = v(t,0) = E[¢(C,)] = E[6(8"*¢)),

and the proof is complete. O
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4. Proof of Theorem 3.4
4.1 The construction of nonlinear Lévy process

Let Q = C¢[0,1] x CZ[0,1] x DZ[0,1] be the space of all R? x R? x R%-valued paths (We)eefo,
with wy = 0, equipped with the Skorohod topology, where CE[0,1] is the space of R?-valued
continuous paths and DE[0,1] is the space of R¢-valued cadlag paths. Consider the canonical
process (&, 7, ) (w) = (wh,w?,wd), t € [0,1], for w= (w',w? w?) € Q. Set L; := (&, 7, ;) and

Lip(§) = {@(itl, oLy, Ly ) iVO<t <ty<..<t,<lpc Cb,Lip(R”X“)}.

Theorem 4.1 Assume that (A1)-(A2) hold. Then, there exists a sublinear expectation B on
(Q, Lip(Q)) such that the sequence {(n='/2S}: n=182 n=1*83)}2 | converges in distribution to
Ly, where (Et)te[o,l] 18 a nonlinear Lévy process on (Q,Lip(ﬁ),]]:l).

Remark 4.2 Theorem 4.1 can be regarded as a Donsker theorem for the nonlinear Lévy

process (Et)te[o,l]'

The proof of the above theorem depends on the following lemma.

Lemma 4.3 Assume that (A1)-(A2) hold. For ¢ € Cy, 1ip(R3%), let

menals (55 5)]

Then, the sublinear expectation F on (R3¢, Cy 1:,(R3)) is tight.

Proof It is clear that T is a sublinear expectation on (R3%, Cy 1;,(R3?)). Now we show that
[ is tight. For any N > 0, we define

1, |z| > N,
on(x) = 2| = N+1, N-1<]|z|<N,
0, lz] < N —1.

One can easily check that ¢n € Cp 1ip(R) and g, sny < on(2) < Nz s n—13. Denote @n(xz,y)
= pn(x) + ¢~ (y). Under the assumption (A1), from Theorem 2.17, we get

S Sl s2 S e
nlgfgoE [SON (\/%7 ;)} =Ei[en(&,m)],

where (&,m1) is G-distributed under another sublinear expectation E; (possibly different from
E). Noting that ¢y |0 as N — oo, by Lemma 1.3.4 in Peng [31], we obtain that
E, [@N(fl,m)] $0 as N — oo. So for each ¢ >0, there exists large Ny, such that E, [(,ENO
(51,771)] <¢&/4. Then, we find some large mno>1 such that for n > ny, E[@No(n_l/QS}”
n~152)] <e/2. Since 0< @y <@y, for any N > Ny, it follows that E[¢N(n71/2571”
n~1S%)] <e/2, for any N > Ny and n > no. In addition, note that ¢n(z,y) < w4 (|z] + |yl),
which yields that for n < ng,

B [ow (52.5)] < 0 4 ,),

where M, = IAE[|X1H and M, = ]I:][|Y1|] Thus, by choosing
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N > max { Ny, 2y/noe ' (M, + M,) + 1},

we have fF[@N] < /2. On the other hand, under the assumption (A2), for N > 2e71M, + 1, it
follows that

Flpn(2)] = supE {w ( f/;)] < ﬁMZ <e/2.

Observe that for any N > 0,
Yi@ya2ny < Yoo nyvay + Yyisnyvay T Lz ver < Onpva(@:9:2),

where  ¢n(z,y,2) = on(z) + N (y) + on(2). Therefore, for each e >0, we choose N’ >
V3max {No, 2y/nge '(My+ M,)+1, 2e7'M,+1} and Oni 3y, 2) € Cyrip(R??)  with
12y, 2) >Ny < ¢N,/\/§(x, y,z) such that IF‘[QSN,/\/E] < ¢. This proves the desired result. O

Proof of Theorem 4.1 We denote S,, = (n~'/2S} n=152 n~=1/2G3). Seeing that F is tight and

E[¢(S,)] — E[¢'(S,)] < Flp — ¢/], for ¢,¢' € Ch rip(R??),

by Corollary 2.11, there exists a subsequence {S,,}32; C {S,}2%; which converges in law to
some (&1,m1,¢1) in (Q,H, El). By Theorem 2.17, we further know that the marginal distribution
(€1,m1) is G-distributed. For the above convergent subsequence {S,,}5°,, it is clear that for an
arbitrarily increasing integers of {7;}52, such that |f; —n;| <1, both {S,,}22; and {Si,}$2;
converges in law to the same limit. Thus, without loss of generality, we assume that n;,
i =1,2,..., are all even numbers and decompose into two parts:

_ 1 1 1 1
5, = ( /28, o, 500/2) 782, s 00/ S/)

1 1 2 1 1 g3 3
+< /2748, = 4 a), 300/ S, = 2, o)y (/2 m—smm)

al/2 o al/2
= n{/? (S"L - Sn{/Q)’

where S! = ((t/n)/2SL, (t/n)S2, (t/n)Y/*S3) for te€[0,1). For the first part, applying the
same argument again, we prove that there exists a subsequence {S {32}1 1 € {S:L/ ?2}21 such

that {5162}. converging in law to (51/2,771/2,{1/2). Also, from Theorem 2.17, we have

({1/2,771/2 (v/1/2&1,(1/2)m). Since Sni_giﬁQ is an independent copy of 51{32, by
Proposition 2.12, we know that

Sn} - 57111{32 = (&1/2,M1/2,C1/2) and Sng = (&2 +&iy2:my2 + M2, Cye + Ciy2),

where (&1/2,71/2,C1/2) is an independent copy of (&1/2,71/2,C1/2)- In addition, Sng B (&1,m1,C1)-
Thus

d — _ —_
(§1,m1,€1) = (1y2 + €12, M2 + M1y25 Ciyz + Ciy2)-

Repeating the previous procedure for Sy A /2, we can define random variable L4 := (&1/4,M1/4,

C1/4). Proceeding in this way, one can obtain Lyijom = (61/2m,7]1/2m,<1/2m) in (Q,’H,El),

m € N, such that for each L;/om there exists a convergent sequence {S ™ /2,”}2’21 converging in
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law to it. Finally, using the random variables L;/9m(m € N), we may construct a sublinear
expectation E on (€, Lip(Q)) such that the canonical process (-Z/t)te[o,l] is a nonlinear Lévy
process (see Appendix for details), and (&, ;) 4 (Vté1,t) is a generalized G-Brownian
motion (see Peng [31, Chapter 3]).

In the following Theorem 4.9, we will prove that the distribution of L; is uniquely
determined by u(1,0,0,0), where w is the unique viscosity solution of the fully nonlinear PIDE
(4.13). Thus we can infer that for any ¢ € Oy £ip(R3?), E[¢(S,)] — u(1,0,0,0), as n — co. The
proof is completed. O

4.2 Estimate for a-stable Lévy measure

Recall that F), is the a-stable Lévy measure given in (3.1), Ly is the set of a-stable Lévy
measure on R? satisfying (3.2), and £ C Ly is a nonempty compact convex set. It can be
verified by the Sato-type result (see [33, Remark 14.4]) that

K := sup / 2| A |2|°F,(d2) < oo, (4.1)
F.eL Jrd
and
lim K, =0 for K. := sup / 2|2 F,.(dz). (4.2)
=0 F,el J)z|<e

Lemma 4.4 For each p € C3(R?), we have for z,2' € RY,

sup / 10x0(2") — xp ()| Fu(dN) < CJ2" — 2],
F,eL Jrd

where C is a constant depending on the bounds of D%p, D3, and K.

Proof Note that for z € R?,

1 1 1
Sap (2) = / (Dp(z + 0)) — Dip(2), \)d = / / (D?p(z + TON) A, \)Odrdo.
0 0 0
Then, it follows that

/ Bxp() — 8xp ()] Fu(dN)
BES!

/Algl

< D%lo / APELAN)] — 2,
[A[<1

/1 /1<(D2<p(z' + 7)) — D%p(z + TON)) A, )\>9de9’ F.(dN)
0 0

and

/| 1630(=') — Ba (2)] Fo(dN)

/|>\>1

<2|D%|, N Fu(dN)]2" = 2],
[A|>1

/1<Dg0(z’ +0)) — Dp(z+60X),\)do — /1<D<p(zl) — Dy(z), \)df| F,(dX)
0 0

[ o

o

10
11
12
13
14

16
17
18
19
20
21
22
23
24

26
27
28
29
30
31
32
33
34

36
37
38
39
40
41
42
43
44



Nl e IR TR = TG, N N

B R R R s W W W W W W W W W w NN NN NN NN e e e e e
= W N = O O 00 0Ot Wy O 0Ot WY RO Y0NS Ot e W= O

Probability, Uncertainty and Quantitative Risk 17
for z,2" € R where |D%¢|o := sup,cga |D?*p(2)| and |D3¢|o := sup,cga |D3¢(2)|. Consequently,

sup / 18xp(2') — 63 (2)] Fu(dX) < Cxcl2’ — 21,
F,eL Jrd

with Cy x = (D3¢l + 2 |D2<p}O)IC. The proof is completed. O
The following estimate is crucial to our main result.

Theorem 4.5 Assume that (A2)-(A3) hold. Then, for ¢ € C3(RY) and s € [0,1],

i[5 (2 (s/m)52) = ()] =5 500 o a2 0)| = o)

n—oo

uniformly on z € RY, where o(s)/s — 0 as s — 0.

Proof Because Z,, is independent from Zi,...,Z,_1, we have
Bl (=4 (s/m¥52) | - (o) - se)
=K [ E[cp (z + (s/n)® (wn_1 + Zn)) } ' s ] — se(z) — p(2),

Zn—1=Zn-1

where
Wp 1= Z z and €(z) := sup oxp(2)Fu(dA).
— F.eL Jra

Thanks to the assumptions (A2)-(A3) and Lemma 4.4, we deduce that

B [gp (2 + (s/m)% (@1 + Z0)) }

= I@[gp (z + (s/n)%(wn_l + Zn)) — (z + (s/n)éwn_l)

~ 5 up /R pY (z—|— (s/n)éwn_l) FM(dA)}

n F.ec

+2 sup /Rd orp (Z + (S/N)éwn—l) Fu(dA)

N F.ec
S 1 S

— — sup e (2) Fu(dX) + ¢ (z + (s/n)awn,l) + —e(2)
N F,eL Jrd n

1

s S, (S s\ s
< <p<z+(s/n)iwn_1) + —e(z) + =1 <7) +C’(7> lwn—1],
n n \n n
which implies the following one-step estimate

) [cp (z + (s/n)iSfL)}

7 N
S
S|
—_
SN—
Q=

<E {‘P (z+ (s/n)isg_l)} + %G(Z) + 5 (%) CCM.sME
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18 Mingshang Hu, Lianzi Jiang, Gechun Liang, Shige Peng

Repeating the above process recursively, we obtain that

1) [gp (z + (s/n)iSf;)} < (2)+ se(z) + sl ( ) +CM,s'ts

S
n

S|
e 3
Il |
= =
7 N
3|
N~

Q=

Analogously, we have

E [gp (z + (s/n)iSf;)} > p(z) + se(z) — sl (%) — CM,s'ta

S|
e 3
Il |
= =
7 N
3|
N~

Q=

Thus,

Jlim B [ (=4 (s/m)52)] = o(2) - sel(2)| < CM.s™+5 2

where we have used the fact that

This implies the desired result. O

4.3 Lévy-Khintchine representation of nonlinear Lévy process

In this section, we shall present the characterization of ;ii% Elp(Cs) + (p,7ls) + %(A&;,g}ﬂé—l
for ¢ € C3(R?) with ¢(0) =0 and (p, A) € R? x S(d), which can be regarded as a new type of
Lévy-Khintchine representation for the nonlinear Lévy process (Zt)te[ovl]. It will play an
important role in establishing the related PIDE in Section 4.4 (see (4.17)).

For each N >0 and s € [0,1], under the assumptions (A1l)-(A2), Theorem 4.1 shows that
there exists a sequence {s;}72; C Dsl0,1] satisfying si s as k— oo and a convergent
sequence {(sk/n’{)%Sg: }zl for each s, such that

B A N] = lim

im & H(sk/n;k)%Sf’l
o0 1—> 00 K

AN] < s@ SupIAE“n_éSi\].
Define

E[C[] ;== lim E[|C,| A N] < s M,. (4.3)
N—oc0
Also, for any ¢ € C3(R?) and (s, 2) € [0,1] x R, we have

Elp(z+ ()] = lim lim E[p(z + (si/n])= 3 )].

k—00 i—00

Furthermore, under the assumption (A3), it follows from Theorem 4.5 that

Ble(e+ Ll = ot2) s sup [ o))

< lim

T k—oo

lim B[ip(z + (si./n}) ¥ 53.)] = 0(2) — sy sup / d w(z)Fu(dA)\ —o(s),  (44)

i—00 K F,eL

uniformly on z € R
Consider

3o ={p € CZ(R?) : ¢(0) = 0}
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Probability, Uncertainty and Quantitative Risk 19

and
F={(pp,A):peFo and (p,A) €R? xS(d)}.

Obviously, § and § are both linear spaces.

Lemma 4.6 Assume that (A1)-(A8) hold. Then, for each (p,p, A) € §, gir%fE[go(@;) + (p, M)+
- - —
(A&, &) 07 emists.

Proof For given (p,p, A) € F, define
F(s) = Blo(@) + (b ) + 5 (4G, )], s €[0,1]

Clearly, f(0) =0. We first claim that f is a Lipschitz function. In fact, for each s,d € [0, 1], it
follows from Proposition 2.2 that

f(s+6) — f(s)| <E[R] v E[-R],
where
.. - - 1 - . -
R:=¢(Cs + Cors — Cs) — 0(Cs) + §<A(£s+5 — &), &srs — &s)
+ <A§~s7£s+6 - gs> + <Pa ﬁ8+5 - 77/s>
By using the independent stationary increments property of (it)te[o,l] and ]E[ét] = fE[—ét] =0,
we obtain
o - ~ 1 - -
In view of the estimate (4.4) and Lemma 4.4, we derive

N N ~ 1 . - - -
E[R] < E[|(p,7ls) + 5{A&, &)I] + 51E[P§up£ | 3@ (CIFu(aN)] +0(8) < 3,
wEL JR
where C' > 0 is a constant. Similarly, we have E[—R] < C4. Hence, f(-) is differentiable almost
everywhere on [0,1]. We assume that for each fixed to € [0,1], f'(to) exists. Using the
independent stationary increments property again, by Proposition 2.5, we derive

f(0)  f(to+6)— f(to)

' 5 ~
where
Asg =051 (f(to +0) = E[0(Crors — Cto) + 0(Cto) + (P, Titg+5)
+ %<A(£to+5 — &1y)s Etors — Eto) + %(Aéto,gtoﬂ)
Note that
%<A£~to+67 Etors) = %<A(£f/o+5 — &), Erots — &) + %(Agtoa €io) + (Alyy, Ero4s — &to)-

Similar to the above procedure, we deduce that
|As] < (E[U]VE[-U]s,
where U := ©(Cyy + Crots — Cto) — 2(Crots — Cro) — ©(Cyy )- For each fixed zp € R?, denote
(2 20) := oz + 20) — @(2) — @(20), for z € R
It is easy to check that @(0;29) =0, 0xP(2;20) = (2 + 20) — da@(z). Then
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20 Mingshang Hu, Lianzi Jiang, Gechun Liang, Shige Peng

BIU] = E[B[$(Goss — Guoi20)]|

] —B[ElpGs0ll,, ]

20=Ct

and

BT < 65 sup [ 150G (AN +0(6) < COB[G |+ 0(6) < C6 ¥ + of0),

where we have used the estimates (4.3)-(4.4) and Lemma 4.4. Similarly, E[-U] < C§ ¢/To + o(9).
In turn, lims_,o|As| < C /%y, where C > 0 is a constant independent of ty. Therefore,

|limsupf(6)6 " — liminff(5)d 1| < 20 /to.
540 340

By letting ty — 0, the desired result follows. O

Thanks to Lemma 4.6, we can define a functional F: F— R by
.= s . 1, - -
It is easy to verify that F is a sublinear functional, monotone in (p, A) € Fo x S(d) in the
following sense: for ¢, ¢’ € Fo, p,p’ € RY, and A, A’ € S(d),
Flle+¢',p+p, A+ A)] <Fl(p,p, A + Fl(¢, 0/, A)],
F[A(e,p, A)] = AF[(p,p, A)], VA =0,
Fl(o,p, A)] <F[(¢",p, A)], if ¢o<¢'and A<A.
The following can be regarded as a Lévy-Khintchine representation for the nonlinear Lévy

process (ﬂt)te[()ﬂ.

Theorem 4.7 Assume that (A1)-(A3) hold. Then, for each (p,p,A) €F, there exists an
uncertainty set © C L x R% x S, (d) satisfying

sup {/ 2| A 2|2 Fu(dz) + |g| + Q|} < 0o
(Fu,q,Q)€®© (JR4

such that

1
e = s [ (6~ (Do) 9) Rl + 0+ porlacl]

Proof From the representation theorem of sublinear functional (see, for instance [31, Theorem
1.2.1]), there exists a family of linear functionals Fjy : §— R indexed by 6 € O, such that

Fl(p,p, A)] = sup Fol(e,p, A)]- (4.5)

Since Fy is a linear functional, then Fp[(¢,p, A)] = Fp[(¢,0,0)] + Fy[(0,p, A)]. It is easily seen
that for any (p, A) € R% x S(d), there exists a (q,Q) belonging to a bounded and closed subset
[ C RY x S, (d) such that

Fy[(0,p, A)] = (p,q) + %tr[AQ]- (4.6)

See, for example, Remark 2.16. On the other hand, define
FG[(P] = Fa[(% 070)]a for any ® € So-
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From the monotone property of F, one can check that Fpisa positive linear functional. Moreover,
it follows from (4.4) that

Fl(4,0,0)] = lim H:Z[cp(&;)] — 0 sup Irp(0)F,(dX) 51+ sup Irp(0)F,(dX)
6—0 F,eL Jrd F,eLl JRd

= sup [ 6xp(0)F,(dN),
F.eL Jra

which yields that

Fyle] <Fl(,0,0)] = sup [ dxp(0)F,(dN), for ¢ € Fo. (4.7)
F.eL Jrd

In the following, we shall give the representation of Fy[p] for any ¢ € . The proof is divided

into the following three steps.

Step 1 We introduce a linear space
R={p € CLipR?) :3C > 0,|p(2)] < C(Iz[ A |2[*)} -
It is clear that R is a vector lattice, that is, if ¢ € R then |p| € R and ¢ Al € R. Define a
sublinear functional K[-] on # by

K[p] = sup / o(2)F,(dz), for ¢ e R.
Foel Jrd

We claim that the functional K[-] is regular, that is, if for each {¢,}>2; in R such that
©n 10 as n — oo, then K[p,] ] 0 as n — co. Indeed, for each fixed 0 <y <1 <73 < 00, we
have for z € R?,

on(2) < 01(2)Ugz1<q1y + On (D) Uy <<y + 21(2) D 212003

then

A
Klpn] < C sup / |z\2Fﬂ(dz) + sup / on(2)F,(dz) +C——7;7°,
Fu€l J{|z]<m} Fuel J {y<|s|<m} a—1

where we have used the fact that (cf. [33, Remark 14.4])
* dr A
su z|F, dz:su/ d / Lg5may 78] — < ——75
Fuépﬁ/{z>72}| Fld?) F;LEpL s'u( 2 0 rpiza) |7”a+1 a—1"

Since ¢, |0 as n — oo, from Dini’s theorem we know  sup ¢,(x) ] 0, as n — oo, which

<|z|<
implies that M <|2|<v2

sup/ on(2)Fu(dz) < sup  @n(x) sup/ 1y, <|21<q2) Fu(dz)
FLeL J {7 <|2|<72} yi<lel < F.ec JRra

<—(M*=7%) sup  pp(z) =0, as n — oo.

<2<y

Q=

Therefore, we have

A
lim K[p,] < C sup / 2|2 F,(d2) + C———75 7.
{lz1<m} a—1

n—oo FMEZ:

In view of (4.2), the claim follows by letting 73 — 0 and 73 — occ.
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Step 2 Set
F1={p €Fo: Dp(0) = 0}.
Note that, §1 C §o and §1 C R. Figure 1 illustrates the three sets ,3§o and F.

Figure 1  The three sets R, o and §1.

For any ¢ € §1, using (4.7) and d,(0) = ¢(A), we have
Fg[g@] <Kl[g], for € F;.
By Hahn-Banach theorem, we extend the linear functional Fy:5 =R to Fp: R — R such
that Fy [¢] < K[p] for ¢ € R. Here we still use Fy for notation simplicity. Since K[] is regular,
it follows that Fjy is a positive linear functional satisfying Ey [on] 4 0 for each ¢, € R such that

¢n 4 0. In turn, Daniell-Stone theorem implies that there exists a unique measure v on
(RN\{0}, B(R\{0})) such that

Fg[g@} :/ o(z)v(dz), for ¢ e R.
R4\ {0}
We claim that there exists some F), € £ such that
Fylp] = /d p(2)F,(dz), for peR. (4.8)
R L

Suppose not. For any F), € £, there exists some ¢ € #¢ such that

o, F) 1= Pl = [ anl2)Fulde) 20
Without loss of generality we may assume h(po, F),) > 0. Since kgg € R for k>0, we show
that for any F, € £, h(kgo, F,) = 00 as k — oo. Note that £ is a compact convex set, it
follows immediately from minimax theorem (cf. [10, 34]) that

sup mf h,F,) = mf sup h(p, F},) = oo.
peRr Fue Lper

However, seeing that, Fylp] — K[¢] <0 for any ¢ € R, then we have

sup 1nf hip, F,) <0,
peR Fue

which induces a contradiction.
Step3 Foreach k >1and i =1,...,d, Wedefine fi(z) = (z; Ak)V (—k) for 2 = (21,...,2q) €
Re. Let fy°(2):=pe* fi(z), i=1,...,d, be the smooth function with the mollifier p. (see

Appendix C.5 in [9]) and ff :=( 15,..., ,‘:’E). Clearly, ,i’s € Jo, Df,i’g(O) = ¢;, where ¢; is
the unit vector with the ith component 1, and
|fi(2) = 2| < C|z|1f)z>p) with some C > 0. (4.9)
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Note that, for each ¢ € Fo,
Fylp] = Folp — (D(0), f)] + Fol[(De(0), 7). (4.10)
Since ¢ — (Dg(0), fi) € F1, from (4.8), we know that there exists some F), € £ such that
Fylo — (Dp(0), fi)] = /Rd(@(»?) — (Dp(0), f5(2))) Fu(d2).
Besides, using (4.7) and (4.9), we derive that

Fl(Dp(0). 5] < sup [ (Dp(0). fi() = DB, < C swp [ s () 0
Fuec Jra Fuel J{|z1>k}

as k — oo, and similarly, Fp[(Dp(0), —ff)] — 0 as k — oo. This implies that, |Fp[(Dp(0), f5)]]
— 0 as k—oo. In addition, [p.(D¢(0),z — fi)Fu(dz) =0 as k — oo. Therefore, by letting
k — oo in (4.10), we obtain that

Bolel = | (0= (Dp(0). ) Fuldo). for o € o (a1)
Together with (4.5)-(4.6), the conclusion follows. O

4.4 Connection to PIDE

In this section, we relate the nonlinear Lévy process (it)te[m] to the fully nonlinear PIDE
(3.3). Let C°([0,1] x R3) denote the set of functions on [0,1] x R3¢ having bounded
continuous partial derivatives up to the second order in ¢ and third order in x,y, z, respectively.
Now we give the definition of viscosity solution for PIDE (3.3).

Definition 4.8 A bounded upper semicontinuous (resp. lower semicontinuous) function u on
[0,1] x R3*®  is called a wviscosity subsolution (resp. wviscosity supersolution) of (3.3) if
’U,(O,-,-,-) < (b(?v) (Tesp' > ¢(77)) G/I’LdfOT' each (ta%,’%z) € (07 1] XR?)d;

1
otz s { [ 0wt N D, 2.0+ DR 090 |
(Fu,q,Q)€0 LJR?

<0 (resp. >0)

whenever ¢ € CE’S((O, 1] x R3%) is such that ¥ > u (resp. ¥ < wu ) and ¥(t,z,y,2) = u(t,z,y, z). A
bounded continuous function u is a viscosity solution of (3.3) if it is both a viscosity subsolution
and supersolution.

For each ¢ € Cb7L¢p(R3d), define
u(t,x,y,z) :E[¢(x+gt7y+ﬁt7z+€t)]7 (t7x7yﬂz) € [07 1] X Rgd' (412)

Theorem 4.9 Suppose that assumptions (A1)-(A3) hold. Then, the value function w of (4.12)
is the unique viscosity solution of the fully nonlinear PIDE (3.3), i.e.,

Owu(t,z,y,z) —  sup { oault,z,y, z)F,(dX)
(Fu,q,Q)€© R4

1
+<Dyu(ta z,Y, Z)7 CI> + §tT[DgU(t, x,Y, Z)Q}} =0,

U(O’ x’:y? Z) = QS(‘T’y? Z)? v(t7 x? y’ Z) E [07 ]‘} X RBd’

(4.13)
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where Syu(t,z,y,z) =u(t,z,y,z + A) —u(t,z,y, z) — (Dyu(t, z,y, 2), A).

Proof We first show that u is continuous. It is clear that wu(t,-,-,-) is uniformly Lipschitz
continuous with the same Lipschitz constant as for ¢. For each t,s € [0,1] such that ¢+ s <1,
we obtain

u(t+s,2,9,2) = Elu(t, o + &,y + s, 2 + )], (2,y,2) € R, (4.14)
which implies the continuity of u(-,x,y, 2):

Jut + 5,2,y 2) —ult,z,y,2)] < CE[&| + || +|Cl] < C (Vs + s+ M. /5) .

Next, we will prove that w is the unique viscosity solution of (4.13). The uniqueness of
viscosity solution can be found in Corollary 55 in [15]. It suffices to prove that w is a viscosity
subsolution, and the other case can be proved in a similar way. Assume that 1 is a smooth test
function on (0,1] x R3 satisfying ¢ >wu and (£, 7,9,2) = u(f,Z,7,Z) for some point
(t,z,7, %) € (0,1] x R*?, For each s € (0,%), the dynamic programming principle (4.14) shows that

0=Elu(f -5, +&,7+ 172+ () —ul, 7,7, 7)]

We claim that

= — Ow(t,7,9,2)s + E(t, 2,9, 2 + ) — (L, 2,7, 2)

Dy (2,7, 2), ) + 5 (D2(E, 7,7, )€, €] + ols), (4.15)

+(Dy¥(t, 7,9, 2),71s) + 5 (D (E, 7, 9, 2)Es, €))L (4.16)

In turn, Theorem 4.7 yields that there exists an uncertainty set © C £ x R% x S, (d) satisfying

sup ([ EIARE@) +lal + 101} <00

(Fu,q,Q)€O
such that
N - - 1 N
;%E[w(t,x,war s)—w(t,x,y,Z)Jr(Dyw(t,%y,z)mJ+§<Diw(t,x,y&)§s,€s>]s !
_ _ 1 _
= sup / 5)&/1(757573% Z)F,u(dA) + <Dyw(ta‘ia gv 2); Q> + EtT[Dazc (tvjaga E)Q]} . (417)
(FuquQ)e@ R4

Combining (4.16) with (4.17), it follows that

3#/)({75”7@; 2) - sup { 5>\¢({7j7g1 Z)FM(dA)<Dyw(Evi.vgv 2)7Q>
(Fu,q,Q)€0©
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which is the desired result.
We conclude the proof by showing (4.15). Note that

Taylor’s expansion yields that
1/1({* Saj + ésag + ﬁsa zZ+ CNS) - 1/)(7556 + gsag + ﬁsa zZ+ s) = *@UJ({@,@’ 2)5 + €1, (419)
where
1 — ~ ~ —
€1 = 3/ [ - atlb(t - 053"2 + gsvg + 77572 + Cs) + 3t¢(t@737, 2)]d9
0
Since 1 is the smooth function and (£, 7;) 4 (\/s&1, s71), we obtain that
Ellea]) < Cy(s” + € + s l}s + E[|Gs[)s) < Cs2.
On the other hand, using Taylor’s expansion, we derive that
w(ﬂf + gs,y + ﬁsa zZ+ Es) - w(ﬂi’vga 2)
=0t 2,9,2+C) — ¢t 7,7, 2) + (Dot (£, 7,7, 2), &)
+(Dyv(1, 7,7, 2),71s) + 5 (D20 (E, 7,7, 2)s, &) + €2, (4.20)

where €2 1= €21 —+ €22,

1
+/ (Dy(E, &+ 080, 5+ 07fu. 2+ Co) — Dyip(F, 7+ 00,5 + 0ila, 2), 71 )0
0

1 o 5 B 1 o _
:=/0 <6xw(cs;t,5c+9£S,§+9ﬁs),§s>d9+/0 (0,9(Csi 8, T + 05,5 + 0715, 71 )d,

and

1 1
= / ((D24(t, & + 70,5 + 1075, 2) — D2(E, 2,7, 2))Es, & )0dOdT
0 0
1,1 B B
4 / (D2G(E,2 + 7080, 5 + 70010, )i, 7, )6d0dT
0 0

1 1
w2 /0 (D2 (E, 7 + 70, § + 05, 2)Tis, £ )0dOdT.
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2 2
Noting that D1 is bounded and choosing p = 3 ta and q = %, it follows that
— @

1

Bllean]] < (B[ [P])’ ( [/ wcs,mw@,ywns)wde})

-

=

L (B[l 7)) ( [/ 16,3( cé,ta:+9§§,y+9m)|qde]>q

E[|€s|7] ‘1°< [/ 16,9 (Cs3 1, x+9£s,y+9ns)|d9]>q

-

1 o -
E[|7s]7] < UO |6y¢(<s;t,f+9és,z7+9ﬁ3>ld9]>

| @ =

S0
Qe

<c [(Enésw])% + (Bll7I7)) ofs).

Likewise, we have
Ellez2|] < CE[IE® + [7s1€ 1 + 17751 + 21| [€]] = o(s).
Consequently, together with (4.18)-(4.20) and E[¢,] = E[—£,] = 0, we prove (4.15). The proof is

completed. O

5. An example

Example 5.1 This example illustrates the rationality of the conditions (A2)-(A3). For simplicity,
we consider the case d =2. Given A,A > 0. Let F,, be the Lévy measure given in Remark 5.3
with p concentrated on the points Sy = {(1,0), (-1,0),(0,1),(0,—1)},

Lo = {Fu measure on R?: u(B) € (A, A), for B € SO},
and L C Ly be a nonempty compact convex set. Denote K = (A, A)*

For each (ki ki k3 k3) e K, let Wy, i =1,2, be two classical random variables such that for
1=1,2,

(i) Wy has mean zero;
(il) Wi has a cumulative distribution function

ki

_{ [ki/a+Bi(@)] g 2 <0,
1— [ky/a+ Bi(2)] 25, x>0,

with some continuously differentiable functions Bi : (—00,0] — R and 8% :[0,00) — R satisfying

[ o

o
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lim Bi(z)= lim Bi(z)=0.

r—r—00 Tr—r00

(iii) There exists a mon-negative function f on N tending to 0 as n — oo, such that the

following quantities are less than f(n) for all n:

-1 pi o 0 |32 o
|5i(*n1/a)|7 / |ﬁ1(n1/ w)|dx, / |Bl(n1/ m)‘dfﬂ,

o 2l I
) 0 Q% (1] 1 3i(,1/c
ey, [T, B,
1 e 0 T

Denote Q =R?, # = Cpi,(R?). For each x = @(x1,22) € H, define the sublinear expectation

Bipd=  sup /so(xl,m)dem<x1>dFWk2<x2>.
(ki,k‘;,k%,k%)EK R2

We consider an R%-valued random variable

Z(@0)=(Z4ZH (@) =0, @ = (z1,22) € Q.
Clearly, B,[Z] = By [-Z"] = 0 and ]| Z"]] < o0, for i = 1,2. Construct a product space (cf. [31])
(Q,H,B) = (OF, 7 B

and introduce Z;(w):= Z(&;), for w= (01,02 ---)€Q, i=1,2,---. Then {Z;}2; be a
sequence of i.i.d. R2-valued random variables on (Q,'H,]E) in the sense that Z;iq 4 Z;, and
Zi+1 A (Zl,ZQ, .. 7Zz) fO’I” each i € N.

Next, we shall adapt the method developed in [13] to prove M, < co. For given n, define an

approzimation scheme u, : [0,1] x R? — R recursively by
un(t,z) = 2|, if t€0,1/n),

Un(t,2) = Blun(t — 1/n,z +n"22Zy)], ifte[l/n,1].
Then, uy,(1,0) = n~=R&[|S3|]. By means of Theorem 4.1 in [13], we get
Un(1,0) = up(1,0) — u,(0,0) < C(1++/f(n))

approaches C < oo as n — oo, which implies (A2) holds.
To verify (A3), we further impose the condition

(iv) There exists a constant M >0 such that for any (ki , ki, k%,k3) € K, the following

quantities are less than M :
oo i
1 Te

Following along similar arguments as in Remark 5.3, we derive that for ¢ € C3(R?)

dx

b

’ D)

—o [

[ N

© o >



Nl e IR TR = TG, N N

B R R R s W W W W W W W W W w NN NN NN NN e e e e e
= W N = O O 00 0Ot Wy O 0Ot WY RO Y0NS Ot e W= O

28 Mingshang Hu, Lianzi Jiang, Gechun Liang, Shige Peng

1/~ 1
\E[go(zmzl) ()] — s sup w<z>FN<dA>\
s F.ec Jr2

1.10]x
< -E HIE[(S;UQZl(p(zl, zp+32)] — s sup / cﬁlgo(zl, 29 + .Z‘Q)Fﬁ(d)q)
S 1 F,eLJR

wg—sl/“Zf:|

1A 1]~
+ CsaR[|ZF]] + s’E[éil/azfgo(zl,zQ)] — s sup / 5/2\290(z1,Z2)F3(d/\2) =0
R

F.eL

uniformly on z € R? as s — 0.

6. Appendix

6.1 Proof of Theorem 2.9

Since sublinear expectations {Eq}aca are tight on (R",Cjy 1, (R™)), then there exists a tight
sublinear expectation B on (R",Cy 14, (R™)) such that

Eolp] — Eole'] <Elp — ], for each ¢, ¢ € Cy rip(R™).
Let {N;}32, be a sequence of strictly increasing positive integers satisfying for each i € N there
exists a ¢; € Cb,Lip(]Rn) with ]1{\91|ZN1} < ¢; such that IAE[(%] < l/Z Denote K; := {|$| < Nz}
for i€ N. Let {p;}32; constitute a linear subspace of Cj ;(R™) such that for each Kj,
{cpj(a:)};?‘;1|$61<i is dense in Ch, i (K;).

We first claim that there exists a subsequence {IAE%i};’il such that, for each j €N,
{IAEQW [p]}52, is a Cauchy sequence. Indeed, note that {IAE% [p1]}5, is a bounded sequence,
then there exists a subsequence {Eanl(i)}g‘gl C{]]:Zan S, such that {H::anl(i) [p1]}2, is a
Cauchy sequence. Similar procedure applies to {Ea, . [p2]}i2;, we find a subsequence
{IAEanzm};?il C {Eanl(i)}gﬁl such that {IAEOCW(Z') [p2]}52, is a Cauchy sequence. Repeating this process,
we find that, for each j €N, a subsequence {E%j(i) 12, C {Eanj_1<i> +2, such that
{E
JjeN, {IAE%W.) [p;]}52, is a Cauchy sequence. Thus, the claim follows by letting n; = n; (7).

e [p;]}52, is a Cauchy sequence. Taking the diagonal sequence {IAE%i (i 121, then for each
It remains prove that for each ¢ € Cp 1ip(R™), {EQT [©]}52, is also a Cauchy sequence.

Denote M :=sup,cpn |¢(z)|. For each €>0, we choose some m >16M /e such that

1zi>n,.y < ém and El¢m] < o Let {g;}i2, be a subsequence of {p;}32, such that

sup sup |g;,(z)| < M and

leN zeRn

lim sup |g; (z) —¢(z)| =0.

=00 zeK,,

Thus there exists some large integer lop such that sup |p;, (z) — ¢(z)| < e/8, which implies
€K
that for z € R" ‘

05, (2) = 0 (@) 1k, () + @35, () — (@) [Txc, (x)

Sup 05, (V) — W)k, (¥) + 2M 1> N,
Y m

<e/8+2M ¢ (x).

e, (2) — ()]

IN

Then one easily gets IAEH(ple — cp|] < e/4. For this ly, we know that there exist a large integer 1o,
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such that |]Eani [©ji,] — Ean]. [goleH < ¢/2 for any 4,7 > ip. Then, it follows that

Ea,,, [¢] — B, [¢]] < 2E[l¢ — @, 1] + |Ba,., [0, ]

J

_ Eanj [SDjz,oH <e.
Therefore, we conclude that {]EQTle [¢]}52, is a Cauchy sequence. This completes the Proof.

6.2 The construction of nonlinear Lévy process (it)te[g,l]

In the following, we will construct a sublinear expectation E: Lip(Q) — R such that the
canonical process (flt)te[o,l] is a nonlinear Lévy process. We divide it into the following three steps.

Step 1 For each m >0, let 7,, =27,
H" = {‘p(irmafj%'m - [N/‘rma RS EQanL - I~/(2m71)‘rm) : V‘P € C(b,Lip (R2m><3d) }7 for m > 17
HO = {$(L1) : Vo € Cp 15 (R?) }.

Let {L" 1°°, be a sequence of i.i.d. R3?-valued random variables defined on (Q, 7, ;) in the
sense that Ll L Lyl 2 L7 and L2 1 1 (L} L2 ,...,L! ) for each n e N. For

Tm’

given m > 1, ¢(Lnr,, — Lin_1yr,) With 1 <n < 2™ and ¢ € Cp,1;p(R??), define
E™[¢(Lur,, — Lin-1)r)] = Ba[0(L7,)].
For ¢(L.,,,...,Lomy, — Ligm_1ys,,) € H™, for some ¢ € Cy rip (R?"*3), define
E™[o(Lr,,s- s Lamr,, = Lgm _1yr,,)] = 0,
where g is defined iteratively through
pam 1 (@1, T2, Tam 1) = B [0(1, 32, .., wam 1, Lamr,, — Lgm_1)r,)]

_mm 7 T
QDQm,Q(QCl,.’EQ, - ,:L'Qm,Q) =E [@mel((tl,xg, ey Togm_9, L(2m—1)'rm — L(2’"—2)7‘m)]

For ¢ € C’byLip(RM), we also define
B[ ()] = B [o(L0).

From the above definition we know that (€, H”,E™) is a sublinear expectation space under
which Ly — Ly 4 L,y and L,—L, 1 (itl, .. .,f/ti) for each t;,s,t € Dy[0,1] :=
{127™:0<1<2™m ] € N} with t; < s <t. Also, it can be checked that I~EmH is consistent, i.e.,
for each m >0, E™*1[] = E™[] on H™.

Step 2 Note that H™ C H™*!, for each m > 0. Denote

He = Hm

m>0
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Obviously, H* C Lip(Q) such that if xi1,...,x; € H*, then ©(x1,...,xi) € H™® for ¢ €
Ch,Lip(RY). For any y € H, there exists an mo € N such that x € H™°, define

E[] := E™[y].

Since ]Em[] is consistent, E : H* — R is a well-defined sublinear expectation.

Step 3 We extend the sublinear expectation E:H>® >R to E: Lip(Q) — R and still use E
for simplicity. Denote D0, 1] := Up>0Dp[0,1]. For each Lp(f/tl,...,f,t" — it" ) E Lip(fl)
with ¢ € Cp, 1ip(R™*3%), for each t;, € [0,1], 1 < k < n, we choose a sequence {ti}2, € Du[0,1]
such that i < ¢i k1 and ti |ty as i — oo. Define

Blo(Lor. Lo~ B )] = im Blo(Byy. By — L))
It can be verified that the limit does not depend on the choice of {ti . Indeed, for two

descending sequences {t:}%°, and {t}3°, with the same limit ¢; as i,7’ — oo, we assume
that t}C - t}c ‘=T, for some my € N and 1<, <2™* From the construction of L. and

Remark 2.13, there exists a convergent sequence {S, 7™ }52, such that for ¢ € Cy i (R™*3)
J

)|

)] - E[Sp(f’tg”"-’z’t;’ = Ly

n—1 n—1

[E[e(Less . Ly — Ly

< LLPE[(Z |[~/t;'€ - L 1 Lt};’ +l~;tf€/71|) A 2N<P]

<2L,) E[L, ]
k=1
=2L, kaEl (L7, +---+ L% |A2N,]
1

n . L
— 2L, Zjli)rgo B[S " | A2N,]

< 2@2)520 E[|(t], — )2 (len})~
k=1

o]

o)

+2L,y ) lim B[|(f, - £ (Len)~
k=1

o)

+2L, Zjlggowtz — )M Wens)”
<2L¢ZE1 tiY2]61]) A 2N,

n
+ 2L, ZEl [((th = ti)Imal) A2Ny] + 2L, > (t, — 4 )/ M.
k=1 po
—0, asi,i — oo,
where L, > 0 is the Lipschitz constant of ¢, K, := lolo and N, = % Also, E: Lip(fl) SR

is a well-defined sublinear expectation, that is, if w(itl, R i’tnfl) = ¢/ (Ly, - [N,t"_
Ly, ) with ¢, ¢’ € Cp 1;»(R™39), then
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E[@(itm ceey z’tn - z’tn71)] = E[‘ao/(f’tw crty ‘Z’tn - ‘Etnfl)] :
Moreover, for each t;,s,t € [0,1]with t; < s <t, L — L, 2 Li_y and L, — L, 1L (itl,---,in)
under E. Thus, (Q, Lip(Q),E) is a sublinear expectation space on which the canonical process
(Et)te[o,l] is a nonlinear Lévy process.
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