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Deep Feature based Cross-slide Registration
*Ruqayya Awan, Shan E Ahmed Raza, Johannes Lotz, Nick Weiss and Nasir Rajpoot

Abstract— Registration of multiple sections in a tissue
block is an important pre-requisite task before any cross-
slide image analysis. Non-rigid registration methods are
capable of finding correspondence by locally transforming
a moving image. These methods often rely on an initial
guess to roughly align an image pair linearly and globally.
This is essential to prevent convergence to a non-optimal
minimum. We explored a deep feature based registration
(DFBR) method which utilises data-driven descriptors to
estimate the global transformation. We adopted a multi-
stage strategy for improving the quality of registration. We
also developed a visualisation tool to view registered pairs
of WSIs at different magnifications. With the help of this
tool, one can apply a transformation on the fly without the
need to generate a transformed moving WSI in a pyramidal
form. We compared the performance on our dataset of
data-driven descriptors with that of hand-crafted descrip-
tors. Our approach can align the images with only small
registration errors. We also evaluated the efficacy of our
proposed method for a subsequent non-rigid registration
step. To this end, we replaced the first two steps of the
ANHIR winner’s framework with DFBR to register image
pairs provided by the challenge. The modified framework
produced comparable results to those of the challenge
winning team.

Index Terms— ANHIR, Deep Learning, Non-rigid Regis-
tration, Rigid Registration, WSI Visualisation Tool

I. INTRODUCTION

REGISTRATION refers to aligning a pair of images where
one of the images is referred to as the reference image

while the other image is referred as the moving image. The
moving image is spatially transformed so that it aligns with
the reference image. Registration often serves as an essential
pre-processing step for many medical image analysis tasks.

Broadly speaking, histology image registration has three
main applications: cross slide image analysis, multi-modal
image fusion and 3D reconstruction from serial sections.
Cross-slide image analysis provides additional information by
analysing the expression of different biomarkers as compared
to a single slide analysis, as in [1] for instance. Slides
stained with different biomarkers are analysed side by side
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which may reveal unknown relationships between the different
biomarkers. For instance, phosphohistone H3 (PHH3) stained
WSIs show nuclear expression for mitotic figures and can be
used to perform nucleus detection and classification [2] on
registered H&E stained WSIs [3]. Multi-modal image fusion
refers to the co-registration and the fusion of images obtained
using different imaging modalities. In [4], fusion of a histol-
ogy image is performed with the magnetic resonance (MR)
image to characterize lung inflammation. 3D reconstruction
from serial sections involves constructing a 3D model of an
organ or any part of the body system. An example is the
reconstruction of microvasculature presented in [5], [6]. In
our work, emphasis has been given to the registration of a
stack of consecutive multi-stain histology images. In another
study [7], these multi-stain registered images are used to study
mismatch repair (MMR) and microsatellite instability (MSI).
In this study, the patch-level ground truth labels are generated
by computing H-score values from the corresponding patches
in MMR stained images.

Cross-slide analysis requires the alignment of WSIs of serial
sections. During slide preparation, tissue sections cut from the
same tissue block will not retain their continuity in the z-axis.
Therefore, registering these images is an important step prior
to any automated cross-slide analysis. Currently, registration
by pathologists is done manually, which is time-consuming
to align with sufficient accuracy at higher magnifications in
addition to the large number of sections taken from a single
tissue block. The introduction of an automated alignment
mechanism can permit high-throughput cross-slide analysis in
both manual and automated frameworks. However, automated
cross-slide registration of histology images is a challenging
task due to: changing structure between the sections, missing
parts, tissue folds and broken tissue. The overall morphology
of the tissue could change due to its fragility. There is a
need for a registration approach that can perform well under
these conditions and is able to align pairs of images in a
reasonable time to facilitate the downstream analytical or
diagnostic pipeline.

There are two main methods for automatic image registra-
tion: intensity-based registration and feature-based registration
[8], [9]. As the name suggests, intensity-based techniques
utilise the pixel intensity information in an image pair and
optimise a similarity metric to find the correspondence. The
correspondence is found by transforming a moving image
such that it maximises the similarity measure between the
reference and transformed moving images. On the other hand,
feature-based methods would first identify the key features
from the images and then a transformation is estimated by a
matching system utilising the matching feature points between
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two images. The choice between the two methods depends on
the nature of the images.

Cross-section slides mostly have non-linear deformations
that cannot be tackled with a global transformation alone.
On the other hand, non-rigid registration methods are capable
of finding correspondence by locally transforming a moving
image. However, registration with Newton-type optimization
relies on an initial guess that is close to the optimum to
avoid convergence to a poor quality local minimum and
also obtains fast convergence. The focus of this study is to
explore the data-driven features for the estimation of the global
transformation and demonstrate its robustness for aligning
multi-stained tissue images. We refer to this approach as
“deep feature based registration” (DFBR). We employed an
existing method for non-rigid registration [10], [11] which has
been successfully applied to multi-stain histology images. We
present a comparative performance analysis of deep features
compared with hand-crafted features. Experimentation was
done on the COMET dataset and an additional multi-IHC
histology dataset [12] which was released by the organisers
of a recent challenge contest on non-linear registration.

II. LITERATURE REVIEW

CNN features have been shown to outperform handcrafted
features by a large margin in several different tasks, across
the computer vision and medical imaging domains. Several
studies have attempted to use deep learning models as feature
descriptors in a matching task for medical images. In [13],
[14], the authors proposed an unsupervised approach for
learning discriminating features. These are later integrated
into existing registration tools for the prediction of a dense
deformation field to register MR brain images. In line with the
above two studies, deep features were used for predicting the
rigid transformation for histology images [15]. In that work,
an autoencoder was trained to generate an output similar to
the input to learn a feature representation. Features extracted
from the encoder part of a trained autoencoder were used to
find the best transformation using gradient descent.

There is a significant amount of work done with handcrafted
features for an alignment task — [1], [16]–[22] to list a
few. There have been very few CNN based studies predicting
the transformation parameters for a highly deformed pair of
images. This is because a known correspondence between two
images is needed for training a CNN, and this is seldom
available. Also, the trained CNN may not perform comparably
well on an unseen dataset. These limitations can be addressed
by using an unsupervised approach to some extent and are yet
to achieve a significant improvement in terms of registration
accuracy. In 2015, Jaderberg et al. [23] proposed a learnable
module for applying the spatial transformation to an image,
referred to as the ‘spatial transformer’. Since this module is
differentiable, it can be added to any network for end-to-
end training. This was not primarily designed for registration
purposes; instead, the aim was to enable CNN to learn
features that are invariant to spatial transformations. After the
introduction of the spatial transformer, deep learning gained
momentum in designing neural network architectures suitable

for registration in an unsupervised learning manner. It has
now become a core component of most of deep learning-
based registration methods. Chang et al. [24] proposed a
multi-scale iterative framework for registering microscopic
images of serial sections of a mouse brain. A CNN model
with a spatial transformer as one of the layers was used
to predict the affine transformation. The model was trained
to minimise the mean square error between the reference
and warped moving images. Shengyu et al. [25] proposed a
deep learning architecture for 3D registration of CT images
of the liver and MR images of the brain. The proposed
architecture consisted of two sub-networks: one for predicting
the affine transformation and the other for predicting the non-
linear deformation field. This approach was also applied to
the multi-stain histology dataset provided as a part of the
ANHIR challenge [12] and was observed to be the fastest
performing method. However, it was not close to the best-
performing methods in terms of registration error due to its
limited generalisability. It was ranked 6 out of 10 teams who
submitted the results. In another study [26], the authors trained
a CNN model with good generalisability for predicting the
affine transformation in an unsupervised manner. They com-
pared their results with that of SIFT, SURF and Elastix tool.
Their proposed approach didn’t outperform other methods in
terms of accuracy; however, considering the success rate, the
authors claimed that the reported accuracy had been sufficient
to perform non-linear alignment successfully. Dwarikanath
[27] integrated segmentation maps to aid in performing non-
linear registration using a self-supervised deep learning-based
approach. Segmentation maps were generated by applying k-
means clustering to concatenated multi-scale feature maps,
extracted from a pre-trained segmentation model. The author
employed VoxelMorph architecture [28] for registration. In
[28], manual segmentation maps are used to improve registra-
tion during training while in [27] manual segmentation maps
are replaced with fine-grained feature maps. Similar to other
non-linear registration methods, this method also requires two
images to be linearly aligned before its application.

There has been a significant amount of work on non-linear
registration. However, the focus has been on monomodal and
multi-modal registration of X-ray, CT and MRI images and
very few methods have been proposed for histology images.
Wodzinski and Muller [29] proposed a deep learning based
non-rigid registration method, performing comparably to the
winning team of the ANHIR challenge contest and is sig-
nificantly faster than other iterative methods. Their proposed
approach employs UNET like architecture, trained in a multi-
level unsupervised manner using negative normalised cross-
correlation (NCC) as an objective function. However, data-
driven approaches which learn from the data, most of them
require a large number of training samples to perform highly
accurate registration.

Our proposed approach for registering multi-stain images
comes under the same umbrella of using CNN as a feature
descriptor. Our work is inspired by the work in [30] on
registering multi-temporal remote sensing images using a
CNN, whereby the authors used multi-scale deep features for
the detection of matching feature points between an image
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pair. These matching feature points are then used to solve
thin-plate spline (TPS) interpolation for image alignment. In
our work, we have followed a similar approach for feature
description and the correspondence between the feature points
of two images was found by computing the Euclidean distance
measure. Instead of TPS formulation, we used these matching
feature keypoints for estimating the affine transformation.

III. THE PROPOSED APPROACH

A registration step for any downstream co-localisation anal-
ysis workflow should be able to allow a significant spatial
overlap between the two images such that the location of
corresponding tissue structures can be determined. To this
end, we propose a pipeline comprising three main steps: pre-
processing, and estimation of rigid alignment using the DFBR
method, followed by a non-linear registration. During the pre-
processing step, we generate a tissue mask for an image pair
and modify the input images such that they appear spatially
similar. After an image is registered using our DFBR, we
observe a slight offset in some cases. To fix this offset, we
add a translative transform module which is followed by an
existing non-linear registration method. The overall proposed
pipeline for registration is shown in Figure 1.

Tissue 
Transform

Block-wise
Transform

Pre-processing
- Tissue Segmentation
- Image Normalisation

Reference Image

Moving Image

Translative 
Transform

Non-rigid 
Alignment

Deep Feature
based Registration

Alignment

Pre-alignment               Rigid Alignment Non-rigid 
Alignment

Pre-alignment

Fig. 1. Overall pipeline for cross-slide image registration. The pipeline
comprises the deep feature based registration (DFBR) method, followed
by an existing non-rigid registration method.

A. Pre-processing

1) Tissue Segmentation: We perform tissue segmentation
to exclude features from the non-tissue regions. To this end,
we generate tissue segmentation (TS) masks, considering all
tissue and non-tissue regions as foreground and background
respectively. In Figure 2, a downsampled version of WSI is
shown along with its tissue masks. Note, in our experiments,
fatty tissue is considered as a background since it does not
contain adequate texture and it is very likely to generate
poorly discriminatory features. Therefore, we exclude fatty
tissue from the tissue mask to avoid getting incorrect matching
points and refer to this mask as TSEF. The details of the tissue
segmentation pipeline are given in Supplementary Figure 1.
We train a CNN to generate these masks so that registration
could be carried out using matching points from the active
or discriminatory tissue area only (while excluding the ones

heavily surrounded by the fatty tissue). Similarly to [19],
control tissue is excluded while estimating the transformation
parameters.

H stain TS TSEF

Fig. 2. An example image with the two types of tissue masks. In TS,
all the tissue including the fatty region is included whereas, in TSEF,
the fatty region is excluded due to its negative impact on our DFBR
registration method. TSEF is used in our DFBR registration method.

2) Image Normalisation: The images are converted to
greyscale, with histogram matching performed as a normalisa-
tion step to unify the appearance of an image pair. In histogram
matching, the histogram of an image is modified to be similar
to that of another image. Similarly to [19], the image with
higher entropy is taken to be the reference image and the
histogram of an image with lower entropy is matched to the
reference image. Since most pre-trained CNN models accept
input images with 3 channels, greyscale images were stacked
as the colour channel.

B. Alignment

Broadly speaking, the tissue alignment is performed in
three main steps: pre-alignment, rigid alignment and non-rigid
alignment. The output registered image generated in each step
is given as input to the next step along with the reference
image. All these steps are discussed in detail in the following
sections.

1) Pre-alignment: In this step, rough estimates of transla-
tional and angular offsets are computed. Since CNN features
are not rotation invariant, this step is key to performing
deep feature matching successfully. First, we estimate the
translation offset by finding a centre of mass (COM) for an
image pair. The COM is a vector of x and y coordinates and is
computed from the inverted greyscale intensity values of the
tissue region only. The difference between the COM values
of a pair of images is used to obtain a translation matrix.
This matrix transforms the moving image such that its COM
is at the same position in the coordinate system as that of
a reference image. Next, we compute a rotation matrix with
different angles ranging between 1 and 360 with a step of
10. We then select a rotation matrix resulting in a maximum
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DICE overlap between the tissue masks of an image pair. Once
a moving image is roughly aligned with a reference image, we
crop the tissue regions from an image pair using their tissue
masks. We determine a bounding box that includes the tissue
region of both images. In the following steps, we only use
tissue regions instead of the whole image for registration.

2) Deep Feature based Registration: The objective of our
feature based alignment step is to refine the alignment between
reference and pre-registered moving images by registering
their feature points. We present data-driven features extracted
using a pre-trained VGG-16 model [31]. The partial architec-
ture of VGG-16 that we use for feature extraction is shown in
Figure 3. Features are extracted from three different layers of
VGG-16 for an image pair and are referred to as multi-scale
features in this paper. The features are then processed to find
matching pairs by considering the feature points at a small
feature distance.
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Fig. 3. Partial architecture of the VGG16 model used for the DFBR
module. Layers highlighted with dashed blue borders are used for
feature extraction in DFBR.

A. Feature Descriptors: Feature descriptors describe the
properties of regions centred at the distinctive feature points
and are used to find correspondence between two images in
a feature matching step. In a classical feature based method
for registration, the first step is to detect the feature points,
followed by a feature extraction step which involves the
computation of descriptors. Whereas, in our feature based
method for alignment, the feature detection step doesn’t exist.
Instead, an image is divided into a grid and a feature descriptor
is computed for every grid cell in a sliding window fashion.
Similar to [30], our feature descriptor is formed by deep
features extracted from three different layers of a VGG-
16 model, pre-trained for ImageNet classification. Since the
bottom fully connected layers are removed, the partial model
can take input images of any size (spatial dimensions multiples
of 32), with larger images increasing the computation time.
Our experiments are conducted with an input size of 224×224
pixels. Features extracted from the bottom three pooling layers
(pool3, pool4 and pool5) are used to build descriptors. Each
of these layers corresponds to receptive fields [32] of different
sizes as shown in Figure 4. The pool4 and pool5 feature
descriptors are mapped to those of pool3 such that they have
the same spatial dimensions. Following are some annotations
that we use in this section: F j

i refers to the feature descriptor
of an image j extracted from a pooling layer i. For example,
pool3 feature descriptor of a reference image R is denoted by

FR
3 .

0 8 16 24                32

224x224x3

3
2

2
4

1
6

8
   

   
   

   
   

 0

+

+

𝟐 x pool3
4x4x256

pool4
2x2x512

pool5
1x1x512

Input Image

Sub-image

Feature Descriptor

Feature 
Summation

Fig. 4. Demonstration of feature summation procedure. Feature de-
scriptors are shown for a sub-image of size 32 × 32 pixels. For pool3,
each feature descriptor corresponds to an 8 × 8 image region, with the
centre of that region considered as a feature point. For pool4 and pool5,
each feature descriptor corresponds to a 16 × 16 and 32 × 32 image
region, respectively. pool4 and pool5 descriptors are mapped to that of
pool3 by duplicating them for the feature points they are sharing. For
instance, the pool5 descriptor is shared by 16 feature points from pool3,
hence is duplicated 16 times.

• pool3 outputs feature descriptor F3 of dimension 28 ×
28 × 256. Each descriptor has a receptive field of size
8× 8, dividing the input image into a 28× 28 grid. The
center of each grid cell is considered a feature point for
the respective descriptor.

• pool4 outputs feature descriptor F4 of dimension 14 ×
14 × 512. Each descriptor has a receptive field of size
16× 16 and therefore it is shared by four feature points
from pool3.

• pool5 outputs feature descriptor F5 of dimension 7×7×
512, each descriptor has a receptive field of size 32× 32
and therefore it is shared by 16 feature points from pool3.

Each of these descriptors is normalised to unit variance.
B. Feature Matching: Once feature descriptors are formed

for an image pair, the Euclidean distance is computed between
all possible pairs of feature points. The distance metric for
feature descriptor of layer i is computed as

Di(p
R, pM ) = distanceeuc(F

R
i , FM

i )

where i ∈ [3, 4, 5]. FR and FM refer to feature descriptors
computed for reference and moving images, respectively. Each
value in a feature distance matrix for pool3 relates to an
individual feature point, which is not the case with distance
matrices for pool4 and pool5 feature descriptors. Each distance
value in D4 and D5 corresponds to 4 and 16 feature points,
respectively. Therefore, we replicate each distance value in D4

4 times. Similarly each distance value in D5 is replicated 16
times. D3 has a smaller number of distance values and this
is because pool3 outputs 256 feature channels whereas pool4
and pool5 output 512 feature channels. To compensate this
difference, weight is given to D3, followed by summation of
D3, D4 and D5. Feature distance between two feature points
is computed as
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Fig. 5. A toy example of a distance matrix to demonstrate how the
quality of matched feature points is determined. Feature points with
the smallest distance min1 are considered matched feature points.
min2 is the second smallest distance after min1. The quality of
matched feature points is determined by the difference between min1

and min2.

D(pR, pM ) =
√
2D3(p

R, pM )+replicate(D4(p
R, pM ), 4)+

replicate(D5(p
R, pM ), 16)

pR and pM refer to feature points of reference and moving
images, respectively. The best candidate match for a feature
point pRi is found by locating a feature point in pM with the
smallest Euclidean distance. However, this will generate in-
correct matched pairs as well and would need discarding pairs
that do not have any good match. For this purpose, we utilise
Lowe’s ratio test [33] and determine the matching quality of
a matched pair of feature points by the Euclidean distance
difference between the best candidate and the second best
candidate. For a correct match, the distance of the best match
should be significantly smaller than the second best match.
While, for a false match, the distance of the best and second
best match would be similar. Let’s say that pR1 is matching
to pM8 with the smallest distance between their descriptors
while another pair of feature points with the second smallest
distance for pR1 is pM5 , the quality is computed by taking
D(pR1 , p

M
5 )/D(pR1 , p

M
8 ). Hence, the greater the difference, the

better the quality. An example illustration for this is shown in
Figure 5.
There are two conditions for matching point pR to point pM

1) D(pR, pM ) < D(:, pM ); which means there shouldn’t
be any other feature distance smaller than D(pR, pM ).

2) The quality of matched feature points should be greater
than a threshold value which is computed automatically
for each image pair. A threshold value is set such that
U pairs of matching points are selected.

Using the above steps, we find matched feature points for
any two images. Similarly to [30], we select U = 128 pairs of
matched points. We then use matched feature points as control
points for estimating the transformation parameters. We use a
least-squared approach to find a rigid transformation that best
aligns these matched points. To use this method for histology
image registration, we apply this step twice. First, we apply
it to the whole tissue region to find the best matched points
globally. The resulting transformation is referred to as the
‘tissue transform’. Secondly, we divide the tissue regions into

four parts and apply the feature matching method to each part
individually. This is referred to as the ‘block-wise transform’.
This procedure results in a larger number of matching
feature points and is likely to further improve the alignment.
The block-wise feature matching step can be applied in a
parallel fashion to speed up the process. Both tissue and
block-wise transforms are applied to the moving image only
if they tend to improve the DICE overlap. The proposed
DFBR approach is integrated into an existing Computational
Pathology Toolbox named TIAtoolbox [34]. An example
of registering a pair of images is shown at https:
//tia-toolbox.readthedocs.io/en/latest/
_notebooks/jnb/10-wsi-registration.html.

3) Translative Transform: On visualising a registered image
alongside its corresponding reference image at both low and
high resolution, we observe global and local translation offsets,
respectively. The global offset can reasonably be estimated
from the offset of patches. On viewing an image pair at a
higher resolution with a minor global offset, a local translation
offset between reference and registered images can be ob-
served. This is likely to persist due to non-linear deformations
in some parts of the images. Supplementary Figure 2 shows
an image overlay of reference and registered moving tissue
sections along with their corresponding landmark points. This
figure shows local offsets between the two images. To fix
a global offset, we employ a phase correlation method after
applying DFBR to determine a shift between two images at a
magnification of 0.3125×. This method can be applied to the
greyscale or H stain images or a tissue mask as in [1]. We
apply it to tissue masks highlighting glandular structures and
found that it performed better, perhaps because glands are the
prevalent histological structures. We also integrate this method
in our visualisation tool (section IV) to fix the local shift.
During visualisation, the user can fix the offset by clicking on
the ‘Fix Offset’ button. An example of an image pair before
and after local refinement is shown in Figure 6.

4) Non-Rigid Alignment: Once an image pair is registered
using rigid transformation, it is often the case that some of the
tissue areas are not accurately aligned to that of a reference
image. This is due to the fact that the tissue slices are so
thin and fragile that the slide preparation step is likely to
introduce non-linear deformations and artefacts such as tissue
folds, tissue stretching and compression and even torn/missing
tissue parts [35]. The presence of non-linear deformations
makes the registration process more challenging. Since these
artefacts change the morphology of the tissue, none of the rigid
registration methods can tackle such deformities. Therefore, a
non-rigid registration approach is applicable in such scenarios.

There are many existing non-rigid registration methods
in the literature that have been used for histology image
alignment. In the ANHIR challenge, several non-rigid methods
were evaluated using a benchmark dataset. We apply a non-
rigid algorithm [10] proposed by the winner of the ANHIR
challenge (MEVIS group) on top of our DFBR method to fur-
ther improve the registration accuracy. Their proposed method
as used in the challenge comprises three steps: pre-alignment,
parametric registration and non-parametric registration. The
efficacy of non-parametric registration is highly dependent on

https://github.com/TissueImageAnalytics/tiatoolbox
https://tia-toolbox.readthedocs.io/en/latest/_notebooks/jnb/10-wsi-registration.html
https://tia-toolbox.readthedocs.io/en/latest/_notebooks/jnb/10-wsi-registration.html
https://tia-toolbox.readthedocs.io/en/latest/_notebooks/jnb/10-wsi-registration.html
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a) Reference Image    b)

c) Registered Image d)
before refinement

e) Registered Image f)
after refinement

g) Image Overlay

Fig. 6. Example images of the local phase-based refinement method
integrated into our visualisation tool (see section IV) to fix translation
offset. In bottom row g) we show overlaid false colour images before
(left) and after refinement (right). Reference and registered moving
images are shown in green and purple colours, respectively.

the accuracy of the initialiser transform. We experimented
with their method after replacing their first two steps with
our DFBR method. NGF distance measure [36] is used as a
similarity metric in their framework whereas we used DICE
overlap of tissue mask. Their pre-alignment step is similar
to our pre-alignment step except that they do not perform
tissue segmentation and exclusion of control tissue. While
in the parametric step, the affine transformation is estimated
based on the greyscale intensity values using a Gauss-Newton
optimization, for which we employ the feature matching
method. Both intensity and feature matching methods have
their own limitations, however feature-based methods are
often considered better in terms of robustness for handling
transformations [37], [38].

IV. VISUALISATION TOOL

To visualise registered images while being able to zoom in
and out and pan across a WSI, we develop a web-based tool
with a split screen, the left panel for displaying the reference
image and the right panel for the registered moving image.
On each split screen, a dot pointer with a different colour is

shown. This changes its position with the mouse movement.
The regions indicated by these points on the two screens are
extremely helpful in visually estimating the performance of the
registration method. A screenshot of the interface is shown in
Supplementary Figure 3 while a short video of the interface
is also provided in the Supplementary Materials.

This interface is developed to display the results of our
deep feature based method. The input to this tool comprises
three directory paths: to reference and moving images and the
pre-computed affine transformation parameters. Registration is
applied to the tiles on the fly as they are viewed. Therefore,
there is no need to generate a transformed WSI in a pyramidal
format. Since registration is performed at the lowest resolution,
we observe a translation offset between image pairs which
may also be due to a non-linear transformation. In this case,
a part of the tissue has been distorted so that no global
rigid transformation can fix the whole tissue. We deal with
such misalignment by using the phase correlation method.
We add a button to the interface for the user to fix the
offset. Once the offset is computed, it is applied to every
FOV as the user zooms or pans through the slide. The code
for this tool is available online: https://github.com/
ruqayya/reg_visualization_tool. The implemen-
tation is carried out in Python and JavaScript. We used
OpenSeadragon, an open-source viewer for this tool.

V. DATASETS & PERFORMANCE MEASURES

We evaluate the performance of the DFBR method using
two multi-stain datasets: the COMET and ANHIR datasets. A
detailed description of the datasets and evaluation metrics is
presented in the following subsections.

A. Datasets
The COMET dataset is obtained from the University Hos-

pitals Coventry and Warwickshire (UHCW) NHS Trust in
Coventry, UK. This dataset comprises WSIs of 86 cases,
taken from different patients. There are 16 slides per case,
each scanned using the Omnyx VL120 scanner at 0.275
microns/pixel. These slides are stained with different stains.
The exact sequence of staining is CK8/18, Ki67, p53, Vi-
mentin, CK8/18, MLH1, MSH2, MSH6 and PMS2, CK8/18,
Ecadherin, EpCAM, PTEN, CK8/18, Negative control and
H&E. We select a set of 7 cases and present the quantitative
evaluation of registration methods using them. We consider
six slides per case, involving MMR prediction from H&E and
CK8/18 images for the end purpose of MSI prediction. There-
fore, we perform registration of MMR slides with CK8/18 and
H&E slides. The alignment of H&E wrt CK8/18 is challenging
as there are 10 sections in between them, including the MMR
markers’ sections. CK8/18 and MMR biomarker slides are
consecutive sections sliced in the given order: CK8/18, MLH1,
MSH2, MSH6 and PMS2. These IHC stained slides tend to
be highly correlated in terms of tissue structures. This is not
the case with H&E slides which are around 50µm away from
the neatest IHC slides. Therefore, substantial variability in the
tissue structures exists among the H&E and IHC stained slides,
as shown in Figure 7. For evaluation, we consider 15 pairs

https://github.com/ruqayya/reg_visualization_tool
https://github.com/ruqayya/reg_visualization_tool
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of sections per case for registration: aligning MMR markers
w.r.t CK8/18 (4 pairs), aligning all IHC slides w.r.t H&E
(5 pairs) and all possible combinations of MMR biomarker
slides (6 pairs). This results in 105 pairs in total against 7
cases. To evaluate the performance of registration methods,
we manually defined landmarks on all the images selected for
evaluating registration performance. The ImageJ tool is used
for annotating significant tissue structures with landmarks.

a b c

Fig. 7. Similarities and dissimilarities in the tissue architecture among
spatially corresponding visual fields extracted from a) CK8/18, b) MLH1
and c) H&E stained images of the COMET dataset. a and b are taken
from consecutive slides (5µm apart), and hence have more similarities
compared to a and c or b and c (more than 50µm apart).

The ANHIR dataset is a public dataset, made available by
organisers of the ANHIR challenge. It comprises 8 different
tissue types stained with 18 different stains, hence making it
a challenging dataset. There are 230 training and 251 testing
pairs for registration. For more details on this dataset, readers
are referred to the challenge paper [12]. Landmarks are pro-
vided for the training set while landmarks of reference images
in the test image pairs are kept private by the organisers.
The evaluation of a registration method can be performed by
uploading the results on the challenge portal.

B. Performance Measures
To evaluate the performance of registration methods, we

compute the target registration error (TRE) for image pairs in
the test set T . This registration metric was used by the ANHIR
challenge organisers for evaluating the submissions [12]. For
an image pair j, we compute the distance-based error measure
using the following formula

TRE(Rj ,M
′

j) = ||Rlandj
,M

′

landj
||2

where R and M
′

belong to an image pair j and represent refer-
ence and transformed moving images, respectively. Rland and
M

′

land denote landmarks of reference and transformed moving
images, respectively. The registration error is normalised by
the length of the reference image diagonal.

rTRE(Rj ,M
′

j) = TRE(Rj ,M
′

j)/hypot(Rj)

where hypot(Rj) =
√
w2 + h2 and w and h denote the width

and height of the reference image, respectively. The above
equation for computing rTRE generates a list of values for an
image pair j which we aggregated by taking their average.
The aggregation results using the median are presented in the
Supplementary material document. Overall registration error

for T is computed by either taking average or median of
the aggregated rTRE, namely as the average of average rTRE
(AArTRE) and the median of average rTRE (MArTRE). We
also report the average of the maximum rTRE (AMaxrTRE).

We also test the robustness of registration results by com-
paring the transformed landmarks with the initial landmarks
before any alignment. We compute the robustness in a similar
way defined by the ANHIR challenge organisers which is the
relative number of successfully transformed landmarks. Any
given landmark pair Rlandi and M

′

landi is considered to have
been registered successfully only if the distance between them
is smaller than the difference between Rlandi and landmark
of moving image before registration Mlandi . Robustness for
an image is computed by counting the number of successfully
registered landmarks divided by the total number of landmarks
for that image. Robustness over the whole dataset is computed
by taking the mean over all the image pairs’ robustness.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

We consider different scales of information in our registra-
tion pipeline. For the COMET dataset, downsampled WSIs
at magnification 0.15625×, 0.3125× and 0.625× are used
for pre-alignment, DFBR including translative transform and
non-rigid alignment, respectively. For the ANHIR dataset,
downsampled WSIs are provided rather than WSIs with vary-
ing downsampling rates for different datasets. We rescale the
images to 5% and perform our DFBR registration, followed
by a non-rigid registration. For the non-rigid registration,
we use the same parametric values as the challenge winner.
The readers are referred to [12] for the non-rigid registration
parameters.

B. Result Summary

1) COMET: Our DFBR method performs better when the
transformation matrix is estimated using matching points from
the discriminatory tissue area. This is accomplished using a
TSEF mask as discussed in section III-A.1. The quantitative
and qualitative comparison of DFBR using TS and TSEF
masks are shown in Table I and Figure 8. Table II shows results
obtained with different versions of input images: original
RGB images, greyscale images and H stain images. As our
initial experiments show greyscale images to perform better,
greyscale images are used in all our experiments.

TABLE I
COMPARATIVE RESULTS OF THE DFBR METHOD USING AVERAGE

AGGREGATION FOR TWO DIFFERENT TISSUE SEGMENTATION MASKS.
THE EXCLUSION OF FATTY AREAS SIGNIFICANTLY DECREASED THE

REGISTRATION ERROR. THESE RESULTS ARE GENERATED USING THE

COMET DATASET. RESULTS USING MEDIAN AGGREGATION ARE

PRESENTED IN SUPPLEMENTARY TABLE 1.

AArTRE MArTRE AMaxrTRE
TS 0.0090 0.0044 0.0209

TSEF 0.0073 0.0042 0.0177
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a b c d

e f g h

i j

Reference 
Image

Moving 
Image

Transformed Moving Images 
Using TS Using TSEF

Fig. 8. A qualitative comparison of the registration accuracy of
transformations estimated using segmentation TS and TSEF. a) and
e) reference images, b) and f) moving images, c) and g) transformed
moving images using TS while d) and h) transformed moving images
using TFSER. i) shows the overlay of e) and g) and j) shows the overlay
of e) and h). Landmarks are overlaid for the purpose of visualising the
offset between the two images.

Each step in our pipeline is adopted to improve the align-
ment. The quantitative results in Table III demonstrate that
our first three steps result in the improvement of the rigid
alignment between the two images while the last step has been
able to tackle the non-linear deformation. Box plots shown in
Figure 9 demonstrate the reduction of average rTRE after each
step in our pipeline. The pre-alignment step has significantly
improved the average rTRE. Figure 10 shows overlay false
colour images of reference and registered moving images
along with the zoomed-in visual fields. In overlay images, the
extent of the green colour indicates the extent of misalignment.
It can be seen that the misalignment is improved after each
step.

We conducted experiments with the MEVIS original frame-
work on the COMET dataset and did not find reasonable re-
sults. This is due to the fact that this framework performs reg-

TABLE II
DEMONSTRATION OF THE EFFICACY OF OUR DFBR APPROACH USING

AVERAGE AGGREGATION FOR DIFFERENT VERSIONS OF INPUT IMAGE

PAIRS. GREYSCALE IMAGES ARE SHOWN TO OUTPERFORM OTHER

PRE-PROCESSED INPUT IMAGES. THESE RESULTS ARE GENERATED

USING THE COMET DATASET. RESULTS USING MEDIAN AGGREGATION

ARE PRESENTED IN SUPPLEMENTARY TABLE 2.

AArTRE MArTRE AMaxrTRE
Blue Ratio 0.0147 0.0061 0.0288

RGB 0.0088 0.0047 0.0192

H stain 0.0079 0.0044 0.0187

Greyscale 0.0073 0.0042 0.0177

istration using overall image content. While, for the COMET
dataset, tissue segmentation is a mandatory step to exclude
tissue artefacts and most importantly the control tissue. Since
the MEVIS framework does not take into account the presence
of control tissue, it is likely to find a transformation that best
aligns both control and main tissue, hence not resulting in
an optimal alignment of the main tissue which we are only
interested in. The output of the MEVIS framework on an
example image pair from the COMET dataset is shown in
Supplementary Figure 4.

TABLE III
QUANTITATIVE RESULTS GENERATED USING AVERAGE AGGREGATION

ON THE COMET DATASET. THESE RESULTS DEMONSTRATE THAT THE

AVERAGE ERROR IS REDUCED WITH EACH ALIGNMENT STEP IN OUR

PIPELINE. RESULTS USING MEDIAN AGGREGATION ARE PRESENTED IN

SUPPLEMENTARY TABLE 3.

AArTRE MArTRE AMaxrTRE
Initial 0.1800 0.1045 0.2334

Pre-alignment 0.0117 0.0088 0.0220

Tissue Transform 0.0083 0.0051 0.0187

Block-wise Transform 0.0073 0.0042 0.0177

Non-rigid Transform 0.0050 0.0031 0.0188

COMET

Fig. 9. Demonstration of the average rTRE before and after applying
each registration module using a box plot. The average rTRE is com-
puted for the COMET dataset. The box plots for the median rTRE are
shown in Supplementary Figure 5.

2) ANHIR: Similar to the COMET dataset, we evaluate each
step of our registration pipeline on the ANHIR dataset. As
the organisers made landmarks of the training set publicly
available, we first evaluate our pipeline on the training set only.
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Fig. 10. Demonstration of the efficacy of our proposed rigid registration
in a step-wise manner using the overlay of reference and registered
moving images. The top row shows reference and pre-aligned moving
images. The middle row shows the overlay of corresponding cropped
tissue regions. The left overlay image shows the output of the pre-
alignment step, the middle overlay image shows the output of the tissue
based alignment step and the right overlay image shows the output of
the block-wise alignment. The bottom row shows the zoomed-in overlay
patches. Reference and registered moving images are shown in green
and purple colours, respectively.

The improvement in average rTRE (training set only) after
each step of our method is shown in Figure 11. In Table IV,
we show values of different metrics computed for the MEVIS
and our proposed methods. Our results compare favourably in
terms of aggregation average rTRE, median rTRE, maximum
rTRE and robustness for the training set. We compare our
results to those of the MEVIS team to show the effectiveness
of the proposed method.

C. Comparative Results
In Table V, we compare our DFBR method with case-wide

registration, proposed in [19]. Trahearn et al [19] proposed a
novel approach based on MSER features for the alignment of
multi-IHC CRC sections. This approach extracts features for
each MSER detected from the preprocessed H stain channel.
These features are utilised for finding the best pair of MSERs
and are used as corresponding control points for estimating
rigid transformation. The authors employed this approach for
finding the optimal order of the sections for estimating the

ANHIR

Fig. 11. Demonstration of the average rTRE before and after each
registration module using box plots. The average rTRE is computed for
the ANHIR training set only. The box plots for the median rTRE are
shown in Supplementary Figure 6.

TABLE IV
QUANTITATIVE RESULTS OF THE MEVIS GROUP AND OUR PIPELINE ON

THE ANHIR DATASET. THE FIRST ROW IN THE HEADER REPRESENTS

THE AGGREGATION METHOD FOR AN IMAGE PAIR AND THE SECOND

ROW REPRESENTS THE AGGREGATION METHOD FOR ALL PAIRS IN A

SET.

Method Average rTRE Median rTRE Max rTRE Average
Average Median Average Median Average Median Robustness

MEVIS Train 0.0061 0.0030 0.0049 0.0019 0.0271 0.0183 0.9806
Ours Train 0.0065 0.0030 0.0049 0.0019 0.0300 0.0207 0.9688

MEVIS Eval 0.0044 0.0027 0.0029 0.0018 0.0251 0.0188 0.9880
Ours Eval 0.0046 0.0028 0.0031 0.0017 0.0252 0.0197 0.9842

MEVIS All 0.0052 0.0029 0.0039 0.0018 0.0261 0.0186 0.9845
Ours All 0.0055 0.0029 0.0040 0.0018 0.0275 0.0203 0.9768

transformation of the whole stack. We present comparative
results for three different settings: 1) IHC vs IHC, 2) H&E
vs IHC and 3) the combination of the first two. Typically,
tissue sections of around 3-5 microns in thickness are sliced
from the tissue block. The exact thickness of the tissue section
could not be retrieved for the COMET sections. However,
if we consider it to be 5 microns then the spatial distance
between the H&E and IHC slides would range between 30-50
microns whereas for IHC images it would be 5 to 15 microns,
making the registration of the H&E and IHC slides challenging
not just because of staining differences but also due to the
morphological differences between them. Our DFBR approach
outperforms the case-wide approach [19] in both settings.
Most importantly, the results demonstrate that our DFBR
approach can align images even when the tissue structures
vary significantly between two images.

In terms of processing time, the DFBR approach is compa-
rable to the MSER feature based approach on registering pair
of images rather than the whole stack. For any image pair, the
DFBR approach takes a consistent amount of time with a mean
processing time of 14 seconds within 1 standard deviation
across 105 pairs of images. The consistency is because there
are a fixed number of feature points against which feature
matching is performed. Whereas, the processing time for the
pairwise MSER approach is dependent on the number of
MSERs detected. In our experiments with 105 pairs of images,
it took 17±13 seconds. Similarly, processing time varies for
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case-wide registration; on average it takes around 5 minutes
for transforming the whole stack of images [19].

TABLE V
COMPARATIVE RESULTS OF REGISTRATION USING AVERAGE

AGGREGATION FOR CASE-WIDE [19] AND DFBR APPROACHES. THIS

COMPARATIVE ANALYSIS IS PRESENTED FOR TWO DIFFERENT SETS:
IHC VS IHC AND H&E VS IHC. RESULTS USING MEDIAN

AGGREGATION ARE PRESENTED IN SUPPLEMENTARY TABLE 4.

Average(rTRE) Max(rTRE) Robustness
Average Median Average

IHC vs IHC
Case-wide 0.0057 0.0036 0.0114 0.9801
DFBR 0.0041 0.0031 0.0092 0.9947

H&E vs IHC
Case-wide 0.0152 0.0115 0.0381 0.9529
DFBR 0.0138 0.0132 0.0353 1

All
Case-wide 0.0087 0.0054 0.0200 0.9715
DFBR 0.0073 0.0042 0.0177 0.9965

VII. CONCLUSION

In this paper, we presented a deep feature matching ap-
proach which is shown to outperform the hand-crafted feature
based approach. In the DFBR framework, we introduced a
pre-alignment step which produces a roughly aligned image
pair. Tissue segmentation is an essential pre-processing step
to exclude feature points from the texture sparse region. Our
experiments with deep features showed that a good alignment
is difficult to obtain in situations when the slide has more fatty
tissue. Therefore, a good tissue segmentation which considers
the fatty region as a background is required.

In a digital stack of tissue sections, it is likely that we will
observe differences in the tissue structures across the whole
stack. This is due to the thickness of each section in relation
to the size of the tissue structures. Smaller structures like cells
are unlikely to be seen between the consecutive sections and
as the distance between the two sections increases, even some
bigger tissue structures (such as glands) will not persist. A
registration method should be able to perform alignment in the
presence of architectural differences between the two sections.
Our deep feature method has been shown to outperform
an existing MSER based case-wide method [19] when the
distance between image pairs is around 50 microns.
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