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1Department of Statistics, University of Warwick, Coventry CV4 7AL, UK, 2Department of Computer Science, University of Warwick,

Coventry CV4 7AL, UK and 3The Alan Turing Institute, British Library, London NW1 2DB, UK

*To whom correspondence should be addressed.

Associate Editor: Russell Schwartz

Received on October 9, 2022; revised on January 6, 2023; editorial decision on January 9, 2023; accepted on January 10, 2023

Abstract

Motivation: The Wright–Fisher diffusion is important in population genetics in modelling the evolution of allele fre-
quencies over time subject to the influence of biological phenomena such as selection, mutation and genetic drift.
Simulating the paths of the process is challenging due to the form of the transition density. We present EWF, a ro-
bust and efficient sampler which returns exact draws for the diffusion and diffusion bridge processes, accounting
for general models of selection including those with frequency dependence.

Results: Given a configuration of selection, mutation and endpoints, EWF returns draws at the requested sampling
times from the law of the corresponding Wright–Fisher process. Output was validated by comparison to approxima-
tions of the transition density via the Kolmogorov–Smirnov test and QQ plots.

Availability and implementation: All softwares are available at https://github.com/JaroSant/EWF.

Contact: jaromir.sant@stats.ox.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The Wright–Fisher diffusion is a central model for the temporal fluc-
tuation of allele frequencies in a large population evolving under
random mating and in the presence of mutation and selection.
Despite its importance, it remains difficult to work with from a com-
putational perspective, both in the absence of selection (where the
transition density admits an infinite series expansion) and the non-
neutral case (where the corresponding infinite series expansion has
intractable terms). Additionally, in a diallelic model, the diffusion
lives on the bounded interval [0, 1], and thus even simple approxi-
mate sampling techniques such as the Euler–Maruyama scheme re-
quire sophisticated modifications to respect its boundary behaviour
(Dangerfield et al., 2012). Existing approaches in the literature have
tackled this by resorting to a combination of discretization and nu-
merical approximation, e.g. solving the Kolmogorov backwards
equation numerically (Bollback et al., 2008; Malaspinas et al.,
2012), approximating through more tractable processes (Mathieson
and McVean, 2013), truncating a spectral expansion of the transi-
tion density (Steinrücken et al., 2016) and using Riemann sum
approximations (Schraiber et al., 2016), all of which induce a bias
which is hard to quantify.

In some cases, exact sampling routines making use of rejection
sampling are available. This class of techniques has been extended
to certain variants of the Wright–Fisher diffusion: Jenkins and
Spanò (2017) showed that neutral Wright–Fisher diffusion paths

and bridges can be simulated exactly via simulation techniques tail-
ored for infinite series, and that neutral paths are the natural pro-
posal mechanism for simulating non-neutral paths by rejection.
Their work assumes that the mutation parameters are strictly posi-
tive and the endpoints for both the diffusion and diffusion bridge lie
in the interior of [0, 1]. The case of diffusion bridges that start and
end at 0 was tackled by Griffiths et al. (2018), but several other
combinations of startpoint, endpoint and parameters remain unad-
dressed. Moreover, no simulation package implementing all of the
cases of interest exists.

We present EWF, a Cþþ package producing exact draws from both
neutral and non-neutral Wright–Fisher diffusions. The method properly
accounts for all types of boundaries (entrance, reflecting and absorbing),
incorporates a wide class of selection models and allows for arbitrary
endpoints, substantially extending previous work by Jenkins and Spanò
(2017) and Griffiths et al. (2018). These new theoretical details can be
found in the accompanying supplement. Additionally, EWF preserves ac-
curacy over long times, in contrast to Euler–Maruyama type schemes
where errors accumulate over the simulated path.

2 Models

Consider the two-allele non-neutral Wright–Fisher diffusion ðXtÞt�0

with mutation parameter h ¼ ðh1; h2Þ, which is given by the solution
to the following stochastic differential equation
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dXt ¼
1

2
rXtð1�XtÞgðXtÞ � h2Xt þ h1ð1�XtÞ½ �dt

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xtð1�XtÞ

p
dWt

(1)

for t � 0 with X0 2 ½0; 1�, and gðxÞ ¼
Pn

i¼0 aix
i for n finite (e.g. for

genic selection gðxÞ ¼ 1 and for diploid selection gðxÞ ¼
hþ xð1� 2hÞ with h the dominance parameter). When the mutation
parameter h has positive entries, the corresponding neutral (i.e.
r ¼ 0) transition density can be decomposed into a mixture
distribution

pðh1 ;h2Þðx; y; tÞ ¼
X1

m¼0

qh
mðtÞ

Xm

l¼0

Binm;xðlÞBetah1þl;h2þm�lðyÞ;

where ðqh
mðtÞÞm2N is a distribution on the integers and h :¼ h1 þ h2.

This allows for exact simulation (Jenkins and Spanò, 2017, Section
2). EWF extends this approach to the h1 ¼ 0 and/or h2 ¼ 0 cases,
when the diffusion is absorbed on hitting 0 and/or 1 in finite time al-
most surely.

It is often of interest to consider the evolution of a de novo muta-
tion which appears at time t0 and is observed in the population at a
sampling time t > t0. If h ¼ 0, one needs to condition the diffusion
on non-absorption to recover a non-degenerate transition density.
The resulting density can be found in Supplementary Information
Section S1 (together with the respective details), as well as the corre-
sponding transition densities for the cases when h ¼ ð0; hÞ or
h ¼ ðh; 0Þ.

The transition density for a diffusion bridge can be similarly
derived (see Supplementary Information Section S2), whilst in the
presence of selection [i.e. r 6¼ 0 in (2)], draws from the correspond-
ing non-neutral process can be returned by simulating neutral paths
as candidates in an appropriate rejection scheme (Jenkins and
Spanò, 2017, Section 5).

3 Methods

The expression for pðh1 ;h2Þðx; y; tÞ tells us that draws from the transi-
tion density can be achieved by the following:

1. Draw M � fqh
mðtÞgm2N

2. Conditional on M ¼ m, draw L � Binðm;xÞ

3. Conditional on M ¼ m;L ¼ l, draw Y � Betaðh1 þ l; h2þ m� lÞ

Steps 2 and 3 are simple. Step 1 is more involved since each
qh

mðtÞ is an infinite series (see Supplementary Information Section S3
where we have extended the procedure to generate samples when
h ¼ 0 or h ¼ ð0; hÞ).

If the time increment t is small, approximations are necessary
due to numerical instabilities in computing qh

mðtÞ. EWF employs a
Gaussian approximation of qh

mðtÞ for small t (Griffiths, 1984,
Theorem 4) (t � 0:08 by default), with similar approximations
used for bridges whenever subsequent time increments fall below
some threshold. For full details see Supplementary Information
Section S5.

The implementation was tested extensively and validated
through a combination of QQ plots and the Kolmogorov–Smirnov
test (see Supplementary Information Section S7). An example is
shown in Figure 1.

4 Discussion

EWF provides a robust, efficient and exact sampling routine to tar-
get a wide family of Wright–Fisher diffusions featuring a broad class
of selective regimes, any mutation parameters and any start/end
points. The implementation can be used as a stand-alone package or
incorporated into simulation-based inference pipelines from time
series allele frequency data. This is particularly useful in view of the
recent increase in availability of such data (Fages et al., 2019;
Wutke et al., 2016).
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Fig. 1. Illustration of 30 candidate trajectories for the horse coat colour data found

in Ludwig et al. (2009) simulated using EWF (note that the observed frequencies

(black crosses) are assumed to be exact observations of the underlying diffusion).

Simulations used the inferred selection coefficient s ¼ 0:0007 with a consensus ef-

fective population size Ne ¼ 10 000 (Ludwig et al., 2009; Malaspinas et al., 2012;

Schraiber et al., 2016), giving r ¼ 2Nes ¼ 14. We used h ¼ 0 and a generation time

of 5 years
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