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Abstract—We present a study of battery ageing, comparing
pristine, calendar-aged, and cycle-aged lithium-ion cells.
Insight into degradation was obtained via differential voltage
analysis and by estimating and tracking changes in a subset of
electrochemical model parameters of the single particle model
through inverse modelling. We show that both diffusion time
and kinetic overpotential increase in cycle-aged cells, while
calendar-aged cells experienced no diffusion time changes but
some kinetic overpotential increase. The latter is also evident
in 50% higher irreversible heat generation in cycle-aged cells.
This study highlights the importance of updating battery model
parameters during ageing.

Index Terms—battery, degradation, diffusion, heat

I. INTRODUCTION

The accelerating transition towards electric vehicles (EVs)
in the automotive industry motivates further research into
design and optimisation of energy storage solutions, where
an ongoing challenge is understanding and predicting battery
degradation. The current inaccuracies of predictive models and
state observers means that an average Li-ion battery may not
be used at its full capability [1]. Uncertainties increase as a
battery ages, because most predictive models use parameters
obtained from a brand new cell. Additionally, aged cells
may experience increased heat generation leading to safety
concerns and higher cooling system energy consumption.

Electrochemical models offer a good approximation of the
physical processes occurring within a battery, such as electrode
and electrolyte mass- and charge-conservation, energy conser-
vation, and reaction kinetics [2]. Through careful tear-down
procedures (e.g. half cell construction), electrochemical model
parameters may be estimated. However, reparameterisation of
model parameters as a battery ages is almost impossible in
commercial cells, because half cell potentials change with
respect to one another and batteries do not typically contain
reference electrodes.
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This work presents a comparative ageing study of changes
in a subset of parameters of an electrochemical model of
a Samsung 35E nickel-cobalt-aluminium (NCA) 18650 cell
with graphite-silicon (Gr/Si) anode. The goal of the study
is to identify the main degradation modes that occur and
to track transport and kinetics changes throughout lifetime
by adjusting model parameters. To estimate parameters, a
single particle model (SPM) was simulated in COMSOL and
parameters were updated with Matlab LiveLink. We conclude
that the parameters impacted by ageing include diffusion time,
stoichiometry, active material volume fraction and kinetic rate
constant. The impact of this work is two-fold. Firstly, we
highlight how the SPM can be used to accurately simulate both
pristine and aged cell voltage responses if model parameters
are updated accordingly. From a battery management system
perspective, this ensures accurate state of charge, power etc.
estimation throughout life, and maximum use of available
capacity. Secondly, this study provides qualitative insight into
the impact of ageing on model parameters, which may inform
safety issues such as increased heat generation.

II. EXPERIMENTAL

Three batches of Samsung 35E NCA/Gr-Si (90% wt Gr,
10% wt Si) cells with 3.4Ah nominal capacity were subjected
to different degradation scenarios. The first batch, consisting
of three cells, experienced one year of calendar ageing at
75% state of charge (SoC) and 45 °C, which resulted in
7.6% capacity loss. The second batch, also consisting of three
cells, experienced continuous cycling with 2A constant current
charging until 4.2V and 2A constant current discharge until
2.5V at 45 °C [3], and after 720 cycles had lost 21.5% of its
initial capacity.

Before and after ageing, all groups were subjected to
nondestructive characterisation tests to enable model parame-
terisation. A C/20 constant current (CC) discharge was used to
calculate cell capacity. This was followed by a galvanostatic
intermittent titration test (GITT) consisting of 600 s, C/10
current pulses with 2 h rest periods. Upon completion of
the ageing protocol, one cell from each group was chosen
as representative for that group and used for the model



Parameter Description Ψ+ Ψ− Method

Parameters that are assumed constant throughout life

L Coating thickness (µm) 71.5 83.3 Measured (per side)
A Electrode active area (m2) 0.036285 0.036285 Measured
Rp Mean particle radius (µm) 1.2 1 Measured
α Charge transfer coefficient (−) 0.5 0.5 Assumed

cmax Maximum concentration of Li
in solid material (mol/m3) 48000 31398 Theoretical/estimated

Initial values of parameters subsequently tracked with ageing

D Diffusion coefficient (m2/s) 1.9e-16 function Estimated from GITT
x Stoichiometry at 100% SoC (−) 0.26 0.74 Estimated
εs Active material volume fraction (−) 0.8 0.875 Measured
k Kinetic rate constant (m/s) 5.5e-11 5.5e-11 Optimised

TABLE I: Summary of pristine cell parameter estimates; Ψ+ and Ψ− are positive and negative electrode parameters respectively.

parameterisation and heat study. An Artemis motorway drive
cycle scaled for maximum 1C current was used for model
parameter estimation, while 1C and C/3 CC discharge tests
were used for the heat generation study.

The experiments were conducted using a Maccor 4200
series battery cycler, with temperature measured on the surface
of each cell with T-type thermocouples (±0.5 °C, RS Pro). The
thermocouples were calibrated against an Omega P-M series
RTD (class A) in a thermal bath (Julabo 900 F). For temper-
ature stability, all cells were placed in a thermal chamber set
for 20 °C. To avoid forced and uneven convection the thermal
chamber fan was switched off throughout duration of all tests
except the GITT. Additionally, battery tear-down and a set of
standardised parameterisation procedures described in [4] were
performed to obtain additional electrochemical parameters
required for the model. All resulting model parameters for
a pristine cell are summarised in Table I.

III. ELECTROCHEMICAL MODEL

The SPM assumes that all particles within each electrode
behave identically and hence they can be modelled by a single
representative spherical particle. Additionally, the reaction
current is assumed to be uniform in the through-plane direc-
tion across the porous electrodes, and the potential gradients
within the electrodes are neglected. The local potential and
concentration gradients within the electrolyte are ignored and
accounted for using a lumped solution resistance term [5]. The
SPM assumes that the electrolyte effects are negligible, which
is correct for relatively low C-rates. More details on the SPM
can be found in the literature [2] [6].

A. Diffusion time

Conventionally, diffusion is characterised by the Fickian
diffusion time scale, which is extracted from GITT, potentio-
static intermittent titration tests or electrochemical impedance
spectroscopy measurements. Alternative approaches involve
Bayesian estimation [7], and direct model fitting to the exper-
imental data [8]. In this work, Sand’s approach [9] was used

Fig. 1: Full cell diffusion time (tD) comparison for pristine,
calendar aged and cycle aged cells.

to extract the diffusion time tD± from GITT data, according
to
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where D± is diffusion coefficient, R± is effective particle ra-
dius, A± is electrode plate area, L± is the electrode thickness,
F is Faraday constant, EOCP± is open circuit potential, c± is
lithium concentration, I is applied current, E± is the measured
voltage and t is time.

The estimated diffusion time as a function of state of charge
for a full cell is plotted in Fig. 1 for pristine, calendar and
cycle aged cells. The calendar-aged diffusion time profile has
very similar magnitude and shape to the pristine cell, but
squeezed in the capacity axis, due to electrode balancing
changes (confirmed with DVA). In contrast, for the cycled
aged group there is both a horizontal compression and a
large increase in magnitude of diffusion time, reflecting longer
relaxation times that could be caused by changes to diffusivity



or effective particle radius or both. This shows that diffusion
time is an important ageing parameter, although it is often
assumed constant in the literature [2] [10] [11]. Additionally,
Fig. 1 reveals a strong dependency of diffusion time on
SoC. Note that the method used for estimating diffusion time
may be affected by large overpotentials that dominate at
the beginning and end of the discharge voltage profile, and
consequently, visible extremes close to 0Ah and 3.4Ah may
not be representative.

An estimate of the effective diffusion coefficient can be
made from the diffusion time by assuming an effective particle
radius, which we took to be the radius of graphite particles
since the composition of the anode is mostly graphite. The
effects of the characteristic volume expansion/contraction of
silicon [12], although not included in the SPM particle defi-
nition (assumed constant), are reflected in the measured OCP
of the anode.

The MATLAB curve fitting toolbox is used to define dif-
fusion time as a function of anode lithiation. The resultant
function is then used as a direct input to the model. Given
the observed increase in diffusion time for cycle-aged cells, an
additional diffusion ageing parameter, λD− , is introduced. The
λD− premultiplies the D− term in the model and effectively,
any change in diffusivity, particle size or both caused by ageing
is expected to manifest in λD− change.

B. Selection of parameters to track during ageing

To choose the most appropriate parameter subset for track-
ing during ageing, an initial quantification of the degradation
modes experienced by each group of cells was conducted using
differential voltage analysis (DVA) [3]. The resulting DVA
ageing markers are shown in Fig. 2. In case of calendar-aged
cells, the capacity fade Qfull seems to be caused mostly by loss
of lithium inventory (LLI) [13], which manifests in electrode
balancing changes QLLI balance that shift the stoichiometry of
the cell x±. Based on Fig. 1, the diffusion time λD has not
significantly changed during calendar ageing. The kinetic rate
is assumed constant with SoC, and equal in both anode and
cathode—it is expected to change with calendar ageing at
elevated temperatures due to SEI side reactions. Therefore,
the tracked ageing parameters for calendar aged cell were
selected to be the stoichiometry at 100 % SoC x+ and x−
and the kinetic reaction rate constant k−.

In contrast, for the cycled group of cells in Fig. 2 we observe
a substantial decrease in anode capacity QLAM,NE, resulting
from loss of the active material (LAM) [14] which decreases
the accessible area on the electrode. Since A− and εs,− are
linked geometrically (for a constant effective particle radius),
according to

A± =
3εs,±
R±

, (2)

we therefore assume that only εs,− changes.
The reason for loss of active material is not identified, but

one explanation involves changes in the particle size [15].
Interestingly, Fig. 1 shows a substantial magnitude change in

Fig. 2: Ageing markers extracted from DVA of charge data
for pristine cells at beginning of life, plus calendar- and
cycle-aged cells at end of life. The evolution of these ageing
markers across all reference performance tests is available in
our previous work [3].

the diffusion time for the cycle-aged cells—this could be in-
fluenced by particle morphology changes. The specific reason
cannot be unequivocally identified, but λD− is expected to
change. Additionally, an electrode balancing shift QLLI balance
is observed, therefore changes in x+ and x− are expected for
the cycle-aged cells. Fig. 2 also shows a decrease in cathode
capacity QLAM,PE, however both electrode parameters cannot
be simultaneously fitted uniquely, and therefore henceforth we
assume that only the anode parameters are changing, and we
hold the cathode parameters constant. In summary, the tracked
ageing parameters for the cycle-aged cells are the diffusion
correction factor λD, stoichiometries at 100% SoC x+ and x−,
kinetic reaction rate constant k−, and active material volume
fraction ϵs,-.

C. Parameter estimation

To track the subset of ageing parameters discussed in the
previous section, we minimised the cost function given by
(3)—this is a standard least-squares minimisation problem
solved with MATLAB lsqnonlin, aiming to identify the
parameters that give the optimal fit between model simulated
and experimentally measured battery voltage. The optimisation
problem can be written as

min
θ

N∑
i=1

(
Esim

i − Eexp
i

)2
,

θ = {θ1, θ2, . . . θn},
θlk ⩽ θk ⩽ θuk ,

(3)

where the superscripts sim and exp represent simulation and
experimental measurements. The index i corresponds to the
entries in time t of the experimental and simulated voltages,
and N is the number of measurement points i for each
experiment. Parameters were constrained between upper and



lower bounds. For each group of cells, the optimised parameter
sets are

θpristine = {x+, x−, k−, λD−}, (4a)
θcalendar = {x+, x−, k−}, (4b)

θcycle = {x+, x−, k−, εs−, λD−}. (4c)

The remaining parameters for the calendar-aged and cycled
cell models were assumed constant, and set to the optimised
values found for a pristine cell.

D. Sensitivity analysis

Sensitivity analysis was used to explore the local identifia-
bility of parameters. Each parameter was subjected to a small
magnitude change, ∆θ, and the associated output change Si

was recorded (in this case Si is a row vector of voltages versus
time, reflecting the impact of the parameter change on the
measured output throughout the drive cycle). The ∆θ used
here was 1e-8 ∗ θi, where θi corresponds to a nominal value
of the parameter vector

θi = [x+, x−, k−, εs−, λD− ]
T . (5)

Each parameter θi was perturbed one-at-a-time and the
corresponding Si vectors calculated, then stacked, creating
matrix S = [S1, S2, S3, S4, S5] [16]. Then a pairwise linear
correlation coefficient was calculated between each pair of
rows in the matrix S [16]. By the Cauchy-Schwarz inequality

−1 ≤ ⟨Si, Sj⟩
∥ Si ∥ ∥ Sj ∥

≤ 1. (6)

The closer the correlation coefficient to zero, the more orthog-
onal the parameters and hence the more uniquely identifiable
they are [16].

Given that the non-constant current profile improves identi-
fiability, pristine cell was simulated over an Artemis motorway
drive cycle and the correlations calculated. The resultant
correlation matrix C is

C =


1 . . . .

0.46 1 . . .
0.34 0.41 1 . .
0.40 0.45 0.31 1 .
0.34 0.46 0.57 0.35 1

 . (7)

The sensitivity values oscillate around 0.31-0.57, which
means that for all parameters a unique optimal value can be
found and model can be successfully simulated.

E. Heat-balance

To understand the implications of the ageing results for
battery thermal management, a reversible heat Qrev and ir-
reversible heat Qirr (9) are simulated using the data from each
group of cells.

The reversible heat (8), related to the entropy change, is
defined by partial change in the open circuit potential EOCP
with respect to temperature T at constant pressure p and state
of charge x. This is taken from our previous work [3].

Fig. 3: Artemis motorway drive cycle voltage simulation
results for pristine, calendar-aged and cycled-aged cells.

Qrev = IT

(
∂EOCP(x, T )

∂T

)
p,x

(8)

The irreversible heat source term is the difference between
the EOCP and an output voltage E multiplied by applied
current I .

Qirr = I (E − EOCP(x, T )) (9)

IV. DISCUSSION OF RESULTS

The set of tracked ageing parameters was estimated for
each cell and the results are summarised in Table II. Simulated
voltages are matched well with measured voltages, with low
root mean squared errors (RMSE), see Fig. 3. In case of
the calendar aged cell, which experienced LLI, as expected,
the stoichiometric limit on the anode decreased. Also, the
kinetic rate constant decreased, suggesting an increase in
resistance, most likely caused by SEI growth. The cycle aged
cell experienced a decrease in active material volume fraction,
corresponding to a loss of active material in the anode and a
stoichiometric shift due to LLI. Diffusion time and kinetic
overpotential both increased with cyclic ageing. The voltage
prediction accuracy decreased in the cycle aged cell possibly
due to cathode degradation which is not accounted for in the
model. Nonetheless, model accuracy remained at an acceptable
level. To highlight the importance of changing parameters
during ageing, a model response using pristine reference
parameters was simulated and compared to the cycled cell,
and the RMSE increased to 178mV.

The results of the heat balance simulations at 1C and C/3
using CC discharge for pristine and aged cells are shown
in Fig. 4. Here reversible and irreversible heat contributions
are compared. The calendar-aged group performance is nearly
the same as the pristine group, even though the parameter
optimisation revealed a decrease in k−. The kinetic rate



Optimisation
parameter Pristine Calendar aged Cycle aged

x− 0.74 0.7 0.7
x+ 0.26 0.27 0.35
εs,− 0.875 - 0.7
k− 5.8e-11 4e-11 2.8e-11
λD− 1 - 0.7

TABLE II: Optimisation parameters results for groups pris-
tine, calendar aged and cycle aged cells. The [-] denotes an
unchanged value (reference value).

Fig. 4: Comparison of reversible and irreversible heat contri-
butions during 1C and C/3 CC discharge from 100 % to 6 %
SoC for pristine, calendar aged and cycle aged cells.

constant is directly linked to the irreversible heat generation,
which is the main contributor of the total heat generation
in discussed cells. The reversible heat in contrast contributes
only 18% of total heat generation at C/3. The proportion of
reversible heating decreases with C-rate increase.

Cycle-aged cells experienced ≈50% rise in irreversible heat
generation during 1C discharge, demonstrating the significant
impact of ageing on battery thermal performance. Changes
in irreversible heating with cycle age are discussed in [3],
and although (for discharge) the absolute value of the entropic
heat increases with cyclic ageing, the irreversible heat rise is
significantly higher, making the entropic contribution relatively
smaller than in a pristine cell. The rise in irreversible heating
is attributed to the significant decrease in k−.

V. CONCLUSIONS

This work has presented a comparative study of the evo-
lution of a subset of electrochemical parameters during age-
ing, comparing pristine, calendar-aged and cycled-aged Li-
ion batteries. The goal was to investigate kinetic, transport
and thermodynamic changes over battery lifetime via sin-
gle particle model simulation and parameter optimisation.
To avoid identifiability problems, only a specific subset of
parameters was estimated in each case. The tracked parameters
affected by ageing included the diffusion time, stoichiometry,
active material volume fraction and kinetic rate constant. The

main degradation mode revealed for the calendar-aged group
was LLI, which resulted in a stoichiometric shift. This was
accompanied by a decrease in kinetic rate, most likely caused
by anode SEI growth. No significant changes in diffusion time
for this group were noticed. There was a negligible change in
the heat generation between pristine and calendar aged cell. On
the other hand, the cycle-aged group experienced a decrease in
the active material volume fraction, corresponding to LAM in
the anode, and a stoichiometric shift due to LLI. Both diffusion
time and kinetic overpotential increased with cyclic ageing.
This was accompanied by ≈50% rise in irreversible heating.

In conclusion, the SPM voltage prediction accuracy can
be maintained throughout battery lifetime within good limits
(15−32mV RMSE) if certain model parameters are updated
during ageing. However, this requires initial assumptions on
what degradation modes/mechanisms are important, and in
real applications they are often coupled. Although degradation
on the anode was found to be prevalent for the data studied
here, cathodic changes also happen which further complicates
parameter identifiability.
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