
warwick.ac.uk/lib-publications 

Manuscript version: Author’s Accepted Manuscript 
The version presented in WRAP is the author’s accepted manuscript and may differ from the 
published version or Version of Record. 

Persistent WRAP URL: 
http://wrap.warwick.ac.uk/172636                           

How to cite: 
Please refer to published version for the most recent bibliographic citation information.  
If a published version is known of, the repository item page linked to above, will contain 
details on accessing it. 

Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  

Copyright © and all moral rights to the version of the paper presented here belong to the 
individual author(s) and/or other copyright owners. To the extent reasonable and 
practicable the material made available in WRAP has been checked for eligibility before 
being made available. 

Copies of full items can be used for personal research or study, educational, or not-for-profit 
purposes without prior permission or charge. Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 

Publisher’s statement: 
Please refer to the repository item page, publisher’s statement section, for further 
information. 

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
mailto:wrap@warwick.ac.uk


Proceedings of Machine Learning Research vol TBD:1–33, 2023

Jointly Learning Consistent Causal Abstractions Over Multiple
Interventional Distributions

Fabio Massimo Zennaro FABIO.ZENNARO@WARWICK.AC.UK
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Abstract
An abstraction can be used to relate two structural causal models representing the same system at
different levels of resolution. Learning abstractions which guarantee consistency with respect to
interventional distributions would allow one to jointly reason about evidence across multiple levels
of granularity while respecting the underlying cause-effect relationships. In this paper, we intro-
duce a first framework for causal abstraction learning between SCMs based on the formalization of
abstraction recently proposed by Rischel (2020). Based on that, we propose a differentiable pro-
gramming solution that jointly solves a number of combinatorial sub-problems, and we study its
performance and benefits against independent and sequential approaches on synthetic settings and
on a challenging real-world problem related to electric vehicle battery manufacturing.
Keywords: structural causal models, causal abstraction, causal representation learning

1. Introduction

Causal models are conceptual constructs we use in our everyday understanding of the world and in
scientific modelling. Structural causal models (SCM) provide a mathematical formalism to express
causal assumptions, encode quantities of interest, and reason about relationships of cause and ef-
fect. For instance, a research lab L may investigate lung cancer, and decide to model this scenario
considering causal connections between a set of relevant variables, such as the smoking habits of
patients, the presence of tar deposits in their lungs, and whether they ended up developing lung can-
cer (see Figure 1(left)). Another common feature of reasoning and scientific modelling is reliance
on multiple levels of abstraction, whereby an identical system can be studied at multiple levels of
granularity. For instance, in studying lung cancer, another research lab L′ may decide to record only
two variables, ignoring the contribution of tar deposits (see Figure 1(right)).

While SCMs allow us to deal with causal relationships internal to a given model, an abstraction
focuses on external relations between different models. The idea of abstraction is widespread in ar-
tificial intelligence: it underlies the very notion of intelligence (Mitchell, 2021), it has been invoked
to explain the success of deep learning (LeCun et al., 2015), and it has a central role in causal rep-
resentation learning (Schölkopf et al., 2021). However, rigorous formalisms for abstractions have
only been recently proposed (Rubenstein et al., 2017; Beckers and Halpern, 2019; Rischel, 2020).

Our work starts from the abstraction framework of Rischel (2020), which provides a grounded
way to express an abstraction between two SCMs and to quantitatively assess its consistency. Eval-
uation of consistency requires, beyond the definition of the SCMs, a full specification of an abstrac-
tion, which, in reality, may rarely be available. In this paper, we consider the problem of learning an
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abstraction when only partial information about it is available. This would correspond, for instance,
to the case in which two labs are aware of their own SCMs but do not have an exact mapping be-
tween them. Successfully learning an abstraction would enable them to automatically transfer data
and results across the models; in a low-data regime, where collecting new samples may be costly,
having a proper abstraction would allow them to integrate their evidence and improve inferences.

Our contributions are introducing a new learning problem with specific semantics (abstraction
learning) but a very generic syntax (commutativity learning); proposing a relaxation of the ensuing
combinatorial problem and a solution based on differentiable programming which jointly solves
a number of combinatorial sub-problems at once; analyzing empirically the performance of this
approach on synthetic settings; demonstrating the benefits of our approach on the important problem
of learning coating models for the batteries of electric vehicles (EV) by learning an abstraction
that allows us to relate small-scale datasets collected through expensive real-world experiments
performed in labs across France and the UK. To the best of our knowledge, this work also constitutes
the first real-world application of an abstraction learning framework between SCMs.

The rest of the paper is organized as follows. Section 2 reviews important background defi-
nitions, and Section 3 presents related work. Section 4 discusses the learning problem. Section
5 introduces our proposed methodology, and Section 6 presents our empirical results. Section 7
summarizes our work and offers considerations on our approach and results. Appendix A offers a
summary of the notation used throughout this paper.

S T C S’ C’

Figure 1: Lung cancer SCM designed by lab L (left) and lab L′ (right).

2. Background

In this section we provide definitions for the main concepts related to causality and abstraction.

2.1. Causality

In order to express causal models, we rely on Pearl’s formalism of structural causal models (Pearl,
2009; Peters et al., 2017). See Pearl (2009) for the analogies and differences to the potential out-
comes framework by Rubin (Rubin, 2005).

Definition 1 (Structural Causal Model (SCM) (Pearl, 2009)) A structural causal model M con-
sists of a directed acyclic graph (DAG) GM, and a tuple ⟨U ,X ,F , P (U)⟩, where:

• U is a finite set of exogenous (unobserved or latent) variables;
• X is a finite set of endogenous (observed) variables, each one with a discrete domain M[Xi];
• F = {f1, ..., f|X |} is a set of modular functions (mechanisms) such that xi = fi(pa(Xi)),

where xi is the value of an endogenous variable Xi ∈ X and pa(Xi) ⊆ (U ∪ X ) \Xi.
• P (U) is a joint distribution over the exogenous variables.

Notice that the assumptions of acyclicity and joint distribution over the exogenous variables
imply a semi-Markovian SCM; in this setting, the set pa(Xi) of variables that determines the value
of an endogenous variable Xi can be given the graph-theoretic interpretation of parents of Xi, and
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edges can be interpreted as causal relations. The additional assumption of discrete domains for each
endogenous variable is introduced as a requirement of the abstraction framework of Rischel (2020).
Models presented in Figure 1 can be given a rigorous reading as DAGs GM and GM′ .

A SCM allows us to study a system not only in the observational domain, but also under inter-
ventions. Modularity of the mechanisms allows us to formally define interventions.

Definition 2 (Intervention (Pearl, 2009)) Given a SCM M = ⟨U ,X ,F , P (U)⟩, an intervention
ι := do(Xi = xi) is an operator that generates a new post-interventional SCM Mι = ⟨Uι,Xι,Fι, Pι(Uι)⟩
where Uι = U , Xι = X , Pι(Uι) = P (U), while fιi = xi and fιj = fj for all j ̸= i.

Thus, an intervention ι := do(Xi = xi) creates a new model Mι, identical to the original one
except for the structural function fi which is replaced with the constant xi; the DAG of the post-
interventional model Mι is similarly identical, with the exception of the node associated with Xi

which has all the incoming edges removed. It is immediate to extend the definition of intervention
to multiple endogenous variables: do(X = x), where X = [X1, X2, ..., Xm] is a vector of variables
in X and x = [x1, x2, ..., xm] is a vector of values associated with each variable.

2.2. Abstraction

We introduce a notion of abstraction meant to relate two SCMs representing an identical system.
This definition originates from category theory, and it assumes SCMs with a finite set X of variables,
each one defined on a finite and discrete domain M[Xi] (Rischel, 2020).

Definition 3 (Abstraction (Rischel, 2020)) Given two SCMs M and M′, an abstraction α is a
tuple ⟨R, a, α⟩ where:

• R ⊆ X is a subset of relevant variables in the model M;
• a : R → X ′ is a surjective map between variables, from nodes in M to node in M′;
• α is a collection of surjective maps αX′ : M[a−1(X ′)] → M′[X ′] from outcomes of vari-

ables in M to outcomes of variables in M′.

An abstraction establishes an asymmetric relation from a base or low-level model M to an
abstracted or high-level model M′. This definition encodes a mapping on two layers: on a structural
or graphical level between the nodes of the DAGs via a, and on a distributional level via the maps
αX′ (Zennaro, 2022). Since we are dealing with causal models, we require the SCMs to behave
consistently wrt interventions.

Definition 4 (Consistency wrt an interventional distribution) Let α be an abstraction from M
to M′. Let X′ and Y′ be two disjoint subsets of variables in X ′. The abstraction α is consistent
wrt the interventional distribution P ′(Y′|do(X′)) if the following diagram commutes:

M[a−1(X′)] M[a−1(Y′)]

M′[X′] M′[Y′]

µ

αX′ αY′

ν

that is:
αY′ ◦ µ = ν ◦ αX′ , (1)
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where µ and ν are the interventional distributions P (a−1(Y′)|do(a−1(X′))) and P ′((Y′)|do((X′))).

Intuitively, commutativity means that we would obtain equivalent interventional results in two
different ways: (i) by intervening on the base model, obtaining the interventional distribution µ on
the base model and then abstracting via αY′ ; or, (ii) by intervening on the base model, abstracting
via αX′ and then obtaining the interventional distribution ν on the abstracted model. Formally,
commutativity has a category-theoretic meaning in the category of FinStoch where objects are
sets and arrows are stochastic matrices (Fritz, 2020). A rigorous explanation is provided in Rischel
(2020), but here it is worth remarking that, when working with SCMs with finite variables and
finite domains, every discrete variable (e.g.: X ′) is associated with its domain set (e.g.: M′[X ′]),
discrete distributions (e.g.: P ′(Y ′|do(X ′))) can be encoded in stochastic matrices (e.g.: µ), and
deterministic abstractions (e.g.: αX′) can also be represented as binary stochastic matrices. Given
this interpretation, the commutativity equality in Equation 1 boils down to an equality between
matrix products. More details on this algebraic encoding are offered in Appendix B.

As abstractions normally introduce approximations and rarely guarantee perfect commutativity,
it is useful to define an abstraction error wrt to interventions.

Definition 5 (Abstraction error wrt an interventional distribution (Rischel, 2020)) Let α be an
abstraction from SCM M to SCM M′. Let X′ and Y′ be two disjoint subsets of variables in X ′.
The abstraction error Eα(X

′,Y′) wrt the interventional distribution P ′(Y′|do(X′)) is the Jensen-
Shannon distance (JSD) between the upper and the lower path in the diagram in Definition 4:

DJSD(αY′ ◦ µ; ν ◦ αX′). (2)

A definition of JSD is recalled in Appendix C. Intuitively, the abstraction error quantifies the
discrepancy between the upper and lower path in the abstraction diagram: how different are the
results when (i) we first work with the low-level model and then abstract, and (ii) we first abstract
and then work with the high-level model. This measure and the choice of JSD have a category-
theoretic justification in the category FinStoch enriched in the category Met (Rischel, 2020).

From the above definitions, we can derive an overall notion of error.

Definition 6 (Abstraction error) Let α be an abstraction from M to M′. Let J be the set of all
disjoint pair sets (X′,Y′) ∈ P(X ′) × P(X ′),X′ ∩ Y′ = ∅, where P() is the powerset. The
abstraction error is:

e(α) = sup
(X′,Y′)∈J

Eα(X
′,Y′).

Thus, the overall abstraction error is simply the worst-case abstraction error when considering
all possible interventional distributions. While J is formally defined as the set of all disjoint pair
sets, it is possible to reduce J only to those pair sets (X′,Y′) representing meaningful or relevant
interventions P ′(Y′|do(X′)). A consistent abstraction is then simply a zero-error abstraction:

Definition 7 (Consistent abstraction) Let α be an abstraction from M to M′. The abstraction is
consistent if, for all pairs (X′,Y′) in J , the abstraction α is consistent wrt P ′(Y′|do(X′)).
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3. Related Work

Alternative accounts of abstraction have been offered in the literature. A seminal definition proposed
by Rubenstein et al. (2017), and refined by Beckers and Halpern (2019), characterized abstraction
only on a distributional level; measures of abstraction approximation in this context are discussed
in Beckers et al. (2020). More detailed definitions that consider both the structural and the distri-
butional levels, and that are grounded in category theory, have been presented in Rischel (2020);
Rischel and Weichwald (2021); Otsuka and Saigo (2022). A review and a comparison of these
definitions is offered in Zennaro (2022). An attempt at defining a hierarchy of abstraction learning
problems has been put forward in Zennaro et al. (2022).

Causal representation learning (CRL) (Chalupka et al., 2017) shares with this work a similar
objective, but a different setup. Instead of learning a mapping between two SCMs, CRL normally
starts from unstructured data and aims at learning causally-relevant representations. While abstrac-
tion learning as we defined it deals with mappings between SCMs, CRL may be seen as a prelim-
inary or complementary step to abstraction learning, dealing with a mapping from an unstructured
data space onto the space of causal variables potentially belonging to a SCM.

4. Problem Statement

The abstraction framework in Section 2 provides a rigorous way to estimate an abstraction error
once we are given a fully defined abstraction α = ⟨R, a, α⟩ from M to M′. Instead, we consider
the scenario in which two SCMs M and M′ are known, but only a partially defined abstraction in
the form α = ⟨R, a⟩ is available. This represents the common situation where structural knowledge
(R, a) is readily available, but detailed distributional knowledge (α) lacking; in our lab example,
this corresponds to the case where researchers from lab L and L′ can exchange their models, agree
on which variables are relevant, but they have no immediate knowledge on how to relate the results
of their interventional experiments.

Given two SMCs M to M′, and a partial abstraction α = ⟨R, a⟩, abstraction learning is the
problem of learning the values for the maps αX′ that minimize the abstraction error, achieving, if
possible, a consistent abstraction. We can then cast the abstraction learning problem as an optimiza-
tion problem:

min
α∈A

e(α), (3)

where A is the space of all feasible solutions for the collection of surjective maps αX′ . This opti-
mization problem is challenging for three reasons: (i) it implies multiple sub-problems; (ii) these
sub-problems are related; (iii) the solution space is combinatorial.

Multiple sub-problems. Let us consider and unpack the optimization in Equation 3:

minα∈A e(α) = (4)

minα∈A sup
(X′,Y′)∈J

Eα(X
′,Y′) = (5)

minα∈A sup
{
Eα(X

′,Y′), Eα(Y
′,Z′), Eα(X

′,Z′)...
}
= (6)

minα∈A sup
{
DJSD(αY′µ; ναX′), DJSD(αZ′µ′; ν ′αY′), DJSD(αZ′µ′′; ν ′′αX′)...

}
. (7)

The minimization of a supremum implies a minimization over multiple sub-problems. Each sub-
problem is defined by a pair set of endogenous variables (X′,Y′) ∈ J representing the interven-
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tional distribution P ′(Y′|do(X′)). For each interventional distribution we set up a diagram as in
Definition 4, and we solve it in αX′ and αY′ with the objective of minimizing the error Eα(X

′,Y′).
Thus, we have a number of sub-problems equal to the cardinality |J |, each one requiring the min-
imization of a JSD, as shown in Equation 7. Notice the direct correspondence between one sub-
problem, one diagram, and one minimization of a JSD.

Related sub-problems. The sub-problems identified above are not necessarily independent. As
soon as we consider two interventional distributions involving one identical subset of variables, we
will obtain two diagrams sharing an abstraction variable, For instance, if we consider P ′(Y ′|do(X ′))
and P ′(Z ′|do(X ′)), then the induced diagrams will share the abstraction map αX′ ; this implies
that minimizing the abstraction error for Eα(X

′, Y ′) by changing the value of αX′ will affect the
abstraction error of Eα(X

′, Z ′) too.

Combinatorial optimization. The domain of each αX′ , encoded as a binary stochastic matrix
with shape Ni × Mi, is {0, 1}Ni×Mi , together with the constraint of stochasticity and surjectivity.
There exists a finite number of solutions, equal to all possible surjective functions from a discrete
Mi-dimensional space to a discrete Ni-dimensional space, which can be computed as N !

{
M
N

}
,

where
{

M
N

}
= 1

N !

∑N
i=0(−1)N−i

(
N
i

)
iM is the second-kind Stirling number (Graham et al., 1994).

Consequently, since α is a collection of |X ′| surjective functions, the space A of feasible solutions is
the Cartesian product A =

∏|X ′|
i=1{0, 1}Ni×Mi , with the constraint of stochasticity and surjectivity.

The number of solutions, given by all possible combination of αX′ matrices, is:

|A| =
|X ′|∏
i=1

Ni!

{
Mi

Ni

}
, (8)

The finiteness of the space A allows, theoretically, for searching an optimal solution by enumer-
ation. However, this quickly becomes unfeasible as the dimensionality of the input models grows.

5. Methodology

As the enumeration strategy is not generally feasible, some form of heuristic becomes necessary. In
this section we first describe our solution approach to the abstraction learning problem discussing:
(i) a joint approach to solve all the abstraction sub-problems; (ii) a relaxation of the optimization
problem; (iii) a parametrization of the relaxed problem; (iv) the enforcement of stochasticity on the
parameters; (v) the enforcement of surjectivity on the parameters; (vi) solution by gradient descent.
We then present two immediate extensions of the algorithm: (vii) use of weighting on the loss
function; and (viii) ensembling of models to better explore the solution space.

(i) Joint approach. The abstraction learning problem consists of a set of related sub-problems.
Simplistic approaches could ignore the structure connecting these problems. An independent ap-
proach, for instance, would consider each problem separately, solve it, and, at the end, apply some
form of aggregation to decide the value of those matrices appearing in multiple sub-problems. Sim-
ilarly, a sequential approach would establish an order among the sub-problems, and solve them
accordingly, freezing the value of previously learned matrices. However, we aim at devising a
joint approach which, from the beginning, would take into considerations the existing structure and
compute a jointly optimal solution over all the sub-problems at once. We will compare our joint
approach against these simpler approaches and showcase the benefits of our algorithm.
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(ii) Problem relaxation. Traversing the discrete solution space implied by a combinatorial opti-
mization problem is notoriously challenging (Papadimitriou and Steiglitz, 1998) and the subject of
current research (Titsias and Yau, 2017; Jaini et al., 2021). We introduce a relaxation of the original
problem, by redefining the original solution space A as A′ =

∏|X |
i=1[0, 1]

Ni×Mi . Solution matrices
are now allowed to assume continuous values in [0, 1], which can be interpreted as allowing for
stochastic or uncertain mappings.

(iii) Parametrization of the problem. Having allowed for a continuous solution space, we now
parametrize the problem by defining a set of parameters W containing a weight matrix WX′ ∈
RNi×Mi for each abstraction αX′ . We then redefine our learning problem as:

min
W∈A′′

e(α(W)), (9)

where the abstraction tuple α(W) = ⟨R, a,W⟩ is now parametrized by W, and the solution space
is A′′ =

∏k
i=1RNi×Mi .

(iv) Enforcement of stochasticity. The solution to the parametrized problem in Equation 9 re-
turns a set of weights matrices in RNi×Mi . To force the solution towards a binary form, we apply

a tempering operator column-wise tcol(W ) = e
Wi,j
T∑

i e
Wi,j
T

, where T ∈ R+ is the temperature hyper-

parameter. This operator projects the solution into [0, 1]Ni×Mi , approaching a binary solution in
{0, 1}Ni×Mi as T → 0. The problem can be re-expressed as:

min
W∈A′′

L1(W) = min
W∈A′′

e(α(tcol(W))). (10)

Notice how the relaxation and the parametrization allowed us to move from the solution space A to
A′ to A′′, and how the tempering operator has allowed us to approximately project back to A.

(v) Enforcement of surjectivity. While the tempering operator returns a solution with the desired
binary form, nothing guarantees that the solution matrices tcol(WX′) will encode surjective func-
tions. To enforce this property we introduce a second term in our loss function which penalizes
every row in the learned matrices which do not contain at least a single one:

min
W∈A′′

L2(W) = min
W∈A′′

∑
W∈W

Ni∑
i=1

(
1−max

j
tcol(W )ij

)
. (11)

(vi) Solution by gradient descent. Let our loss function be:

min
W∈A′′

L(W) = min
W∈A′′

λL1(W) + L2(W), (12)

where λ ∈ R+ is a trade-off hyperparameter. L(W) is given by the sum of piecewise continuous
functions: the first term is the supremum of JSDs, while the second term is related to the sum of
maxima in the rows of the parameters. Given a random starting set of candidate solutions W, it
is possible to move in the solution space towards a locally optimal solution via gradient descent
algorithms, iteratively computing W = W − η ∂L(W)

∂W , with η ∈ R+ being a learning rate.
Algorithm 1 in Appendix E.1 summarizes our joint approach. By relying on automatic differ-

entiation we can see the algorithm as a form of neural network encoding the solution in the weights
and having weight sharing defined by J , as shown in Figure 2.
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λ · L1 + L2

ν ′WZ′

ν

WY ′

WX′

µ′

µ

do(Y )

do(X) X Y

X ′ Y ′

L

µ

ν

WX′ WY ′

Figure 2: Neural network structure implied by the joint approach on an abstraction learning problem
with J = {(X ′, Y ′), (X ′, Z ′), (Y ′, Z ′)} (left). Circles represent known interventional distribu-
tions, solid rectangles learnable parameters, and the dashed box the loss function. Colors trace the
diagrams defined by (X ′, Y ′) (red), (X ′, Z ′) (black), and (Y ′, T ′) (blue); following, for instance,
the red lines, it is possible reconstruct the upper and lower path as in the diagram of (X ′, Y ′)
(right). The network structure highlights the possibility of learning at once, via backpropagation, all
the weight matrices shared by multiple diagrams. Contrast with other approaches in Appendix F.

(vii) Weighting by interventional data. The loss term in Equation 10 implicitly weights each
abstraction error Eα(X

′,Y′) uniformly. It may be desirable, however, to scale the error with the
relevance of the different interventional distributions using a vector κ ∈ R|J |

+ :

minW∈A′′ L1(W,κ) = min
W∈A′′

e(α(tcol(W),κ)) = (13)

minW∈A′′ sup
{
κ1DJSD(αY′µ; ναX′), κ2DJSD(αZ′µ′; ν ′αY′)...

}
. (14)

Assuming that more relevant interventions are collected more often, these weights κ may be set
proportionally to the amount of interventions collected. Alternatively, importance schemes re-
weighting samples or interventions (Xu et al., 2021) or affecting the balance between JSD losses
(Vandenhende et al., 2021) may be adopted.

(viii) Ensembling of models. Solving a relaxed combinatorial optimization problem by gradi-
ent descent does guarantee only the achievement of a local optimum (Papadimitriou and Steiglitz,
1998). In particular, gradient descent is sensitive to the morphology of the loss landscape and pa-
rameter initialization. Ensembling has been shown to improve the performance and the uncertainty
estimation of learning (Dietterich, 2000; Lakshminarayanan et al., 2017); we then rely on running
an ensemble of models with different starting parameters W in order to learn better abstractions.

6. Experiments

In this section we report results from running our algorithm both on synthetic and real-world data.
Data and code for all simulations are openly available at https://github.com/mattdravucz/
jointly-learning-causal-abstraction/.

6.1. Synthetic experiments

In our synthetic simulations, we consider four scenarios featuring different aspects of abstraction
and presenting different challenges. Table 1 provides an overview of these scenarios; as evinced

8

https://github.com/mattdravucz/jointly-learning-causal-abstraction/
https://github.com/mattdravucz/jointly-learning-causal-abstraction/


JOINTLY LEARNING CAUSAL ABSTRACTIONS WITH MULTIPLE INTERVENTIONS

Table 1: Summary of the scenarios. Scenario and Type of abstraction describe the scenario; Sub-
pr. refers to the number of sub-problems (and hence the number of diagrams) implied by each
abstraction learning problem; Abstraction Matrices lists the shapes of the abstraction matrices to be
learned; #Sol. evaluates the number of possible solutions according to Equation 8; Optimum reports
the existence of a unique zero-error or non-zero error solution.

Scenario Type of abstraction Sub-pr. Abstraction Matrices #Sol. Optimum
Basic Elimination of low-level var 1 {2× 2, 2× 2} 4 Unique zero-error

Collapsing Merging of low-level vars 3 {2× 4, 2× 2, 2× 2} 56 Unique non-zero-error
Extended Reduction of resolution 3 {3× 4, 2× 3, 2× 2} 432 Unique zero-error

v-Structure Elimination of low-level var
Merging of low-level vars
Reduction of resolution

3 {2× 2, 2× 2, 2× 4} 56 Unique non-zero-error

from it, our scenarios cover different forms of abstractions, while keeping the complexity of the
problems limited for verification via enumeration. Appendix G.1 provides details for all the models,
the abstractions, the set J , and the optimal solutions computed via enumeration.

For each one of these scenarios, we first compute the ground-truth solution via enumeration.
Then we perform the following studies: (a) we run our algorithm, and compare its performance
against an independent and a sequential baseline approach (see Section 5(i)); (b) we analyze how
weighting can affect the quality of the solutions; (c) we perform an ablation study in which we
remove the surjectivity penalty term; (d) we perform a sensitivity analysis in which we vary the
value of the hyperparameters T and λ specified by our approach. Performance is evaluated in
terms of JSD, surjective penalty, ℓ1-distance from the optimal ground-truth solution, and wall-clock
time. Results are averaged over 10 simulations. Algorithms for all the approaches are provided in
Appendix E and details about the experimental settings and metrics in Appendix G.2.

Figure 3 exemplifies the learning process in the extended scenario. The joint approach reliably
learns a solution closer to the ground-truth optimum than the other approaches. As low levels of JSD
and surjective penalty are necessary but not sufficient to reach the optimal ground-truth solution, the
independent and sequential approach achieve a low loss, but their ℓ1-distance is significantly higher
than the joint approach. We hypothesize that the better results of our algorithm are due to the re-
liance on the information shared between sub-problems that is discarded by the other approaches.
Analogous plots for the other scenarios are available in Appendix G.3. Table 2 provides the perfor-
mance of the three approaches aggregated over the four scenarios. Consistently with our hypothesis,
the joint approach performs better or equally to the other algorithms in terms of ℓ1-distance from
the ground truth by exploiting all the shared information; next comes the sequential approach which
uses shared information only partially; last is the independent approach which completely discards
it. For an analogous reason, ordering in terms of time efficiency is reversed: dropping shared in-
formation, the independent approach is fully parallelizable wrt the sub-problems; the sequential
approach may deem some sub-problems redundant and avoid solving them; the joint approach con-
siders all the sub-problems jointly at once. Table 3 shows how the final result of the joint algorithm
may be affected by weighting. In this instance, we considered only the v-structure scenario, and we
assumed that the JSD error related to cancer when intervening on smoking (Eα(S

′, C ′)) would be
more important than the JSD error for fatigue when intervening on cancer (Eα(C

′, F ′)) or when
intervening on smoking (Eα(S

′, F ′)). When placing 80% of the weight on Eα(S
′, C ′), the final
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Figure 3: Performance during training on the extended scenario. While all approaches minimize
their loss, the joint approach achieves a significantly lower (Wilcoxon test, p-value < 0.05) ℓ1-
distance from the ground truth.

Table 2: Performance at the end of training aggregated over the four scenarios. In all instances, the
joint approach competes or overcomes the baseline approaches, although with longer runtime.

L1 Dist JSD Loss Surj Pen Time
Independent 3.25± 2.06 0.50± 0.31 0.40± 0.37 3.74± 0.05

Sequential 1.45± 1.55 0.28± 0.09 0.03± 0.07 7.10± 0.41

Joint 0.85± 0.64 0.24± 0.03 0.08± 0.11 8.12± 0.20

JSD for this interventional diagram decreases, while other JSD do not significantly change and ex-
hibit higher variance. Weighting can then be used to get better approximations on those parts of the
problem the modeller is more concerned with. Table 4 confirms the the critical role of the surjective
penalty L2; in its absence the algorithm can learn a better solution in terms of JSD by ignoring
values in the abstracted model, but it lands on a solution significantly further from the optimal so-
lution. Additional discussion and sample learned matrices are provided in Appendix G.3, together
with results from the sensitivity analysis.

6.2. Real-world experiment

We learn an abstraction between the implicit causal models for lithium-ion battery manufacturing
developed by two research groups: the Laboratoire de Réactivité et Chimie des Solides (LRCS)
group, and the Warwick Manufacturing Group (WMG). Battery electrode manufacturing is a com-

Table 3: JSD on the v-structure scenario. Weighting
causes a marginal redistribution of errors.

Eα(S
′, C ′) Eα(C

′, F ′) Eα(S
′, F ′)

Unweighted 0.28± 0.07 0.28± 0.01 0.15± 0.03

Weighted 0.25± 0.05 0.27± 0.06 0.15± 0.04

Table 4: Performance on the v-structure
scenario. Surjectivity penalty is critical to
achieve significantly better (Wilcoxon test,
p-value < 0.05) results.

L1 Dist JSD Loss
Joint 3.00± 1.34 0.72± 0.08

Ablated joint 5.00± 2.41 0.68± 0.15
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plex process involving several key stages (e.g. material selection, mixing and coating.To develop
high-performing batteries, it is necessary to understand how each of the manufacturing parameters
influence the subsequent product. The current approach relies heavily on experienced lab personnel
with extensive knowledge in order to adjust the manufacturing parameters and achieve a desired bat-
tery performance. Considerable research effort is directed to develop models of the manufacturing
stages (Román-Ramı́rez et al., 2022; Niri et al., 2022) and optimised feedback control mechanisms
to reduce the reliance on human expertise.

In this work we focus on the dry mass loading (ML) variable from the coating stage (Cunha
et al., 2020; Liu et al., 2022), which directly determines the energy density of the final battery.
The dry ML is in part controlled by the comma-bar gap (CG) variable, which is set manually and
guides the mass loading of the active material in its wet form; the wet coating subsequently passes
through a drying stage resulting in the dry coating. Public datasets on this process are scarce and
of limited dimensions, due to the cost and complexity of the measurements; however, the ability to
predict the dry ML based on the upstream CG variable is vital in order to achieve a target battery
energy density and increase manufacturing efficiency. To obviate this problem, we aim at learning
an abstraction that may relate the models assumed by the two research groups and then integrate
their data to significantly improve downstream inferences.

We use a dataset for battery coating from the LRCS group (Cunha et al., 2020), and recordings
performed by the WMG group. We perform pre-processing in order to select the relevant variables.
As in many real-world scenarios, fully-specified SCMs are not available, so we define elementary
SCMs MWMG and MLRCS with minimal assumptions (Figure 10 and 11). We then elect the
WMG model as the base model since it has a higher resolution in terms of number and domain of
observed variables. Appendix H.1 provides details about the data, pre-processing, the SCMs and
the abstraction. We learn the abstraction α from MWMG to MLRCS using our joint approach,
similarly to what we have done with the synthetic experiments. We evaluate results in two ways.
Qualitatively, we assess the shape of the learned matrices, to confirm they are binary and surjective,
and to check whether identical values in the domain of the base and abstracted variables are mapped
to each other. Quantitatively, we set three downstream regression problems, see Table 5, to assess
whether transporting data via abstraction could help improve prediction. Task (a) represents a chal-
lenging scenario in which we use limited and expensive experimental data to perform predictions.
Task (b) represents a scenario in which data transported via abstraction provides support for our
predictions, while task (c) the case in which transported data augments the training set but does not
provide support on the test set. See Appendix H.2 for details on experimental settings and metrics.

Figure 4 shows the learned matrix WCG corresponding to the abstraction map αCG relating the
CG variables in the two models. The matrix approximates a binary matrix encoding a surjective
function. A red border is used to denote identical value of the CG matrix in the base and abstracted
model; these values are successfully mapped to each other, while intermediate values align along
the main diagonal. Notice, however, that alternative patterns could also be learned, as discussed in
Appendix H.3, together with shape of the learned matrix WML.

Table 5 shows the mean-square error when learning only on the small LRCS dataset (task a) and
when using data transported via abstraction from the WMG dataset; performance improves both
when WMG data provides the missing support for prediction (task b) or when it just augments the
dataset (task c).; when not providing the required missing support, we observe an improvement
on selected cases; this is likely due to having learned a non-perfect abstraction and to the noise
introduced during the transport of the data.
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Figure 4: Learned WCG. The
matrix is close to binary, surjec-
tive, and diagonal as expected.

Table 5: Regression problems setup and MSE. Transporting
data via abstraction reduces the error.

Training set Test Set MSE
(a) LRCS[CG ̸= k] LRCS[CG = k] 1.86± 1.75

(b) LRCS[CG ̸= k] LRCS[CG = k] 0.22± 0.26
+ WMG

(c) LRCS[CG ̸= k] LRCS[CG = k] 1.22± 0.95
+ WMG[CG ̸= k] + WMG[CG = k]

7. Discussion and Conclusion

In this paper we have built an abstraction learning framework starting from the formalization of
an abstraction between SCMs proposed in (Rischel, 2020). We have examined how we could use
this definition to express the learning problem as an abstraction error minimization problem, and
proposed an algorithm to solve it. Our approach has been based on relaxing the initial problem,
parametrizing it and solving it via gradient descent. Results on synthetic datasets show that our
algorithm perform better than other simpler approaches, and it reaches a solution closer to the
optimum. Furthermore, application to EV manufacturing data provided a proof of concept of the
usefulness of learning abstraction to relate models and transport data in low-data regimes.

The abstraction learning problem we have tackled is a particular instance of the very generic
problem of learning a mapping not just between isolated sets or objects, but between sets and objects
sharing a structure expressed by transformations or morphisms. This problem has been given the
form of a notoriously challenging discrete combinatorial optimization problem, for which other
common heuristics exist in the optimization literature. Application of our approach to the real-
world data of a lithium-ion battery manufacturing stage provided a proof of concept of the potential
of learning abstraction between models devised by different groups, although more research would
be needed to make the proposed algorithm widely usable in real-world applications. The joint
approach is sensitive to initialization, and using abstraction to transfer data may introduce noise;
increasing robustness and extending it to the continuous domain are directions for future work.

As a first instance of an abstraction learning problem, our setup assumes perfect knowledge
of the models. Dropping this requirement leads to problems in which we could learn both ab-
straction and distributions from data (incidentally, in our real-world scenario, we trivially learned
mechanisms from data at setup time, but the learning of mechanisms and abstraction could happen
jointly). Similarly, we may further limit knowledge about the abstraction, dropping, for instance, the
requirement of knowing a or R (Zennaro et al., 2022). Alternatively, it may also be possible to con-
sider using domain knowledge on how specific variables and outputs are related to guide learning;
the space of surjective function grows very rapidly, and restricting it by using available priors would
simplify the learning problem. Other relevant directions of work include theoretical evaluation of
our relaxation or the definition of the set J (as discussed in Appendix D, J may contain irrelevant
or redundant interventional distributions, and an algorithm that selects relevant interventions may
take advantage of ideas such as minimal intervention sets (Lee and Bareinboim, 2018)).
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Appendix A. Notation

M,M′ SCMs
X ,X ′ Set of endogenous variables (for M and M′)
U ,U ′ Set of exogenous variables (for M and M′)
F ,F ′ Set of structural functions (for M and M′)

P (U),P ′(U ′) Joint distributions for exogenous variables (in M and M′)
X,Y, Z,Xi, ..., X

′, Y ′, Z ′, X ′
i, ... Endogenous variables (in M and M′)

X,Y...X′,Y′... Sets of endogenous variables (in M and M′)
M[X],M′[X ′] Domain of endogenous variable (in M and M′)

f1, f2, ..., f
′
1, f

′
2, ... Structural functions (in M and M′)

GM DAG underlying the SCM M
pa(X) Parents of node X

ι := do(Xi = xi) Intervention
Mι,M′

ι′ Post-interventional SCMs
α Abstraction tuple
R Set of relevant nodes
a Structural-level surjective map
α Collection of distributional-level surjective maps

αX′ , αY ′ , ... Distributional-level surjective maps encoded as binary stochastic matrices
µ, ν, µ′, ν ′... Interventional distributions encoded as stochastic matrices

J Set of pair sets of endogenous variables or set of interventional distributions
Eα(X

′,Y′) Abstraction error wrt pair set (X′,Y′) or wrt interventional P ′(Y′|do(X′))
e(α) Overall abstraction error for α

Appendix B. Algebraic encoding of a SCM

We illustrate here how a SCM M defined on a finite set of variables with finite domains may be
expressed as a collection of sets and stochastic matrices. A more formal treatment is given by
Rischel (2020).

Let M = ⟨X ,U ,F , P (U)⟩ be a SCM with underlying DAG GM.
Each endogenous variable Xi ∈ X can be immediately associated with its domain, that is, the

discrete set:
M[Xi] = {0, 1, ...,M}.

When considering a subset of variables X = {X1, X2, ..., Xk} ⊆ X , the associated set is the
Cartesian product of the domain of each variable, that is, M[X] = M[X1]×M[X2]× ...×M[Xk].

Thanks to the measurability of the structural functions in F , the probability distribution P (U)
over the exogenous variables can be pushforwarded over the endogenous variables; this allows us
to define a joint distribution P (X ) over the endogenous variables (Peters et al., 2017). The joint
distribution can then be factored according to the structure of the DAG, allowing us to compute
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distributions P (Xi) on root nodes and conditional distributions P (Yi|pa(Yi)) on non-root nodes.
A distribution P (Xi) on a M -dimensional set M[Xi] = {0, 1, ...,M} can be represented as a
stochastic M × 1 matrix: 

p1
p2
...
pM

 ,

with the constraint that
∑M

j=1 pj = 1. A distribution P (Yi|pa(Yi)), where the set associated with
pa(Yi) is M -dimensional set and the set associate with Yi is N -dimensional, can be represented as
a stochastic N ×M matrix: 

p1,1 p1,2 ... p1,M
p2,1 p2,2 ... p2,M
... ... ... ...
pN,1 pN,2 ... pN,M

 ,

with the constraint that, for each 0 ≤ k ≤ M ,
∑N

j=1 pj,k = 1. This matrix can be seen as encoding
in each column k a single conditional distribution P (Yi|pa(Xi)) for each of the M values that
the conditioning variable pa(Xi) can assume. Notice that, from the joint distribution, we can also
derive in the same way a matrix for any other marginal or conditional distribution not necessarily
associated with the factorization defined by the DAG.

It is worth noting that this reduction of a SCM to a collection of sets and stochastic matrices does
not violate Pearl’s hierarchy (Bareinboim et al., 2022) as it does not claim an equivalence between
a SCM and its algebraic reduction; indeed, after algebraic reduction, computing interventions and
counterfactuals is not possible anymore.

Finally, an abstraction map αX′ is a surjective function from a (set of) low-level variable(s) with
cardinality M to a high-level variable with cardinality N . Notice that, for surjectivity to be possible,
it must hold M ≥ N . This matrix can again be represented as a stochastic matrix:

α1,1 α1,2 ... α1,M

α2,1 α2,2 ... α2,M

... ... ... ...
αN,1 αN,2 ... αN,M

 ,

with two constraints: (i) functionality: every column k contains a single one and N − 1 zeros, thus
encoding a degenerate deterministic distribution; (ii) surjectivity: every row j contains at least a
one.

Through this encoding, all the quantities in the diagram in Definition 4 can be expressed alge-
braically.

Appendix C. Definition of Jensen-Shannon distance

We recall here the definition of the discrete Kullback–Leibler divergence the discrete Jensen-Shannon
distance (Cover, 1999).
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Definition 8 (Kullback–Leibler (KL) divergence) Let p and q be two probability mass functions
on the same domain X , with q(x) > 0 ∀x ∈ X . The KL divergence from p to q is defined as:

DKL(p; q) = −
∑
x∈X

p(x) log
p(x)

q(x)
. (15)

Definition 9 (Jensen-Shannon (JSD) distance) Let p and q be two probability mass functions on
the same domain X , with p(x) > 0 and q(x) > 0 ∀x ∈ X . The JS distance between p and q is
defined as:

DJSD(p; q) =

√
1

2
DKL(p;m) +

1

2
DKL(q;m), (16)

where m = 1
2p+

1
2q.

Appendix D. Choice of J

The set J provides the list of interventional distributions (i.e., diagrams or sub-problems) to be
considered in the abstraction learning problem.

According to Definition 6, J contains all disjoint pair sets (X′,Y′) ∈ P(X ′)×P(X ′); such a
set J may be computed by taking the Cartesian product P(X ′)×P(X ′) of the power sets and by
selecting only those elements such that X′∩Y′ = ∅. However, this set J , beyond being very large,
might contain many pairs corresponding to irrelevant or redundant interventional distributions.

Irrelevant interventional distributions correspond, for instance, to anti-causal interventions; given
a DAG where we have X ′ → Y ′, the set J will contain the set (X ′, Y ′) corresponding to the
meaningful interventional distribution P ′(Y ′|do(X ′)), but also the set (Y ′, X ′) corresponding to
the anti-causal interventional distribution P ′(X ′|do(Y ′))). Redundant interventional distributions
correspond to interventions on independent variables; for instance, given a DAG where we have
X ′ → Y ′ → Z ′, the set J will contain the set (Y ′, Z ′) corresponding to the minimal interven-
tional distribution P ′(Z ′|do(Y ′)), but also the set ((X ′, Y ′), Z ′) corresponding to the redundant
interventional distribution P ′(Z ′|do(X ′, Y ′))), where Z ′ is independent from X ′ once we intervene
on Y ′.

Devising a proper algorithm that select a minimal set J of relevant interventional distributions
is left to future work, and discussed in Section 7. In our simulations, we manually select meaningful
interventional distributions wrt to the application at hand.

Appendix E. Details about the solution approaches

We provide the pseudocode for our joint approach and for the approaches discussed in Section 5(i)
and used in Section 6.

E.1. Joint approach

Algorithm 1 presents the pseudocode of our joint learning approach.
The choice of the set J at step 4 is discussed in Appendix D. Also, notice that setting up the

first term of the loss in the loop at step 5 is the core of the algorithm, where knowledge about the
models and the abstraction is exploited.
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Algorithm 1 Joint Learning Algorithm

Require: base model M, abstracted model M′, set of relevant variables R, mapping a, temperature
T , trade-off λ, learning rate η, ne number of learning epochs

Ensure: locally optimal collection α of abstraction maps αX′

1: Instantiate the parameter set W = {} ▷ Setup the params
2: for X ′ ∈ X ′ do

Instantiate a matrix WX′ with dimension |M′[X ′]| × |M[a−1(X ′)]|
Add matrix WX′ to W
end

3: Instantiate the loss L1 = sup{} ▷ Setup the first term in the loss
4: Retrieve the set J
5: for j = (X ′, Y ′) ∈ J do

Add the term DJSD(tcol(WX′)µ; νtcol(WY ′)) to L1

end
6: Instantiate the loss L2 =

∑
{} ▷ Setup the second term in the loss

7: for W ∈ W do
Add

∑
i (1−maxj tcol(W )ij) to L2

end
8: Assemble the loss L = λL1 + L2 ▷ Setup the loss
9: for ne do

Optimize by gradient descent W = W − η ∂L(W)
∂W ▷ Learn

end

E.2. Independent approach

Algorithm 2 presents the pseudocode of the independent learning approach.
The independent learning approach follows an algorithm similar to the joint learning algorithm;

however, it solves an optimization problem for each sub-problem in J . Notice that the majority
voting algorithm in step 4 may be substituted by any other aggregation algorithm.

E.3. Sequential approach

Algorithm 3 presents the pseudocode of the sequential learning approach.
The sequential learning approach follows a similar paradigm as the independent learning ap-

proach, but instead of learning a same matrix WX′ multiple times, it uses the first learned value;
thus, no aggregation is required at the end of learning.

Appendix F. Neural network structures

Here we offer a representation of the joint approach and the other approaches as neural networks.
Since all the algorithms rely on gradient descent to solve optimization problems connected to the
collection of sub-problems specified by J , we can visualize them as neural networks.

In all our depictions, we will depict neural networks for solving an abstraction learning problem
with the illustrative set J = {(X ′, Y ′), (X ′, Z ′), (Y ′, Z ′)}. We will use the following notation:
circles represent known interventional distributions encoded in the form of stochastic matrices;
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Algorithm 2 Independent Learning Algorithm

Require: base model M, abstracted model M′, set of relevant variables R, mapping a, temperature
T , trade-off λ, learning rate η, ne number of learning epochs

Ensure: locally optimal collection α of abstraction maps αX′

1: Instantiate the parameter set W = {}
2: Retrieve the set J
3: for j = (X ′, Y ′) ∈ J do

Setup W̃ = {} ▷ Setup the params
Instantiate matrices WX′ and WY ′ and add them to W̃
Instantiate L1 = DJSD(tcol(WX′)µ; νtcol(WY ′)) ▷ Setup the first term in the loss
Instantiate L2 =

∑
i (1−maxj tcol(WX′)ij) +

∑
i (1−maxj tcol(WY ′)ij) ▷ Setup the

second term in the loss
Assemble the loss L = λL1 + L2 ▷ Setup the loss
for ne do

Optimize by gradient descent W̃ = W̃ − η ∂L(W̃)

∂(W̃)
▷ Learn

end
Add solution W̃ to W
end

4: for repeated WX′ ∈ W do
Aggregate by majority voting ▷ Aggregation
end

solid rectangles represent neural network layers in which we instantiate the learnable parameters
W and we process inputs multiplying them by tcol(W ); finally, the dashed box contains the loss
function which produces the learning signal for gradient descent. We use color to highlight the
paths belonging to each individual diagram: diagram of (X ′, Y ′) in red, diagram of (X ′, Z ′) in
black, and diagram of (Y ′, T ′) in blue.

F.1. Independent approach

Figure 5 shows the structure defined by the independent approach. This approach solves the sub-
problems defined by J independently; therefore, this may be seen as instantiating an independent
neural network for each diagram.

F.2. Sequential approach

Figure 6 shows the structure defined by the sequential approach. This approach solves the sub-
problems defined by J independently, but it avoids re-learning weight matrices; this may be seen as
instantiating the minimal number of independent neural network to learn all the abstraction maps.

F.3. Joint approach

Figure 2 shows the structure defined by the joint approach. Notice how the individual neural net-
works defined by the independent or sequential approach get merged into a single neural network
with its internal connections and backpropagation defined by J .
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Algorithm 3 Sequential Learning Algorithm

Require: base model M, abstracted model M′, set of relevant variables R, mapping a, temperature
T , trade-off λ, learning rate η, ne number of learning epochs

Ensure: locally optimal collection α of abstraction maps αX′

1: Instantiate the parameter set W = {}
2: Retrieve the set J
3: for j = (X ′, Y ′) ∈ J do

Setup W̃ = {} ▷ Setup the params
if WX′ /∈ W then

Instantiate matrix WX′ and add it to W̃
else

Retrieve WX′ from W
end

end
if WY ′ /∈ W then

Instantiate matrix WY ′ and add it to W̃
else

Retrieve WY ′ from W
end

end
Instantiate L1 = DJSD(tcol(WX′)µ; νtcol(WY ′)) ▷ Setup the first term in the loss
Instantiate L2 =

∑
i (1−maxj tcol(WX′)ij) +

∑
i (1−maxj tcol(WY ′)ij) ▷ Setup the

second term in the loss
Assemble the loss L = λL1 + L2 ▷ Setup the loss
for ne do

Optimize by gradient descent W̃ = W̃ − η ∂L(W̃)

∂W̃
▷ Learn

end
Add solution W̃ to W
end

λL1 + L2

ν WY ′

µWX′

do(X)

λL1 + L2

ν ′ WZ′

µ′WY ′

do(Y )

λL1 + L2

ν ′ ◦ ν WZ′

µ′ ◦ µWX′

do(X)

Figure 5: Neural network structure implied by the independent approach. Three separated and
independent neural networks are instantiated, each one learning its own parameters. At the end two
copies of WX′ ,WY ′ ,WZ′ will be learned.
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λL1 + L2

ν WY ′

µWX′

do(X)

λL1 + L2

ν ′ WZ′

µ′WY ′

do(Y )

Figure 6: Neural network structure implied by the sequential approach. Only two neural networks
are instantiated in order to learn WX′ ,WY ′ ,WZ′ . Notice how, in the second network, the value WY ′

is not a learnable parameter anymore (square box) but a fixed matrix (circle).

Appendix G. Details about the synthetic-data simulations

G.1. Synthetic models

Here we provide details about our synthetic models. For each abstraction learning scenario, we de-
fine the two SCMs M,M′ by listing the set of nodes and their domains; we define the abstraction
by listing the set R of relevant nodes and the structural-level map a. We illustrate mechanisms and
abstractions in a figure, where we follow the convention of representing the base model on top, and
the abstracted model on the bottom. We express mechanisms and abstractions as matrices in the
figure. A matrix over a solid edge with no source and target X represents distribution P (X). A
matrix next to one or more solid edges with sources X1, X2, ..., Xm and target Y represents condi-
tional distribution P (Y |X1, X2, ..., Xm). A matrix along a dashed edge with target X ′ represents
abstraction αX′ .

G.1.1. BASIC LUNG CANCER SCENARIO

This example is taken from Rischel (2020), and represent a toy lung cancer scenario defined over
the variables smoking (S, S′), tar deposits in the lungs (T ), and lung cancer (C,C ′). The base and
the abstracted models are defined on the following nodes:

X = {S, T, C} X ′ = {S′, C ′}
M[S] = M[T ] = M[C] = {0, 1} M′[S′] = M′[C ′] = {0, 1}

Abstraction is (partially) specified as:

R = {S,C}
a(S) = S′, a(C) = C ′

The following figure reports mechanisms and optimal abstractions:
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S T C

S’ C’

[
.8
.2

] [
1 .2
0 .8

] [
.9 .6
.1 .4

]

[
.8
.2

] [
.9 .66
.1 .34

]

[
1 0
0 1

] [
1 0
0 1

]

We consider as relevant interventional distributions:

P ′(C ′|do(S′)),

and, therefore, J = {(S′, C ′)}.
With respect to this J , the abstraction has an optimal zero-error e(α) = 0 computed by enu-

meration. Enumeration is feasible since, according to Equation 8, the number of solutions to be
evaluated are:

|A| = 2!

{
2
2

}
· 2!

{
2
2

}
= 4. (17)

G.1.2. COLLAPSING LUNG CANCER SCENARIO

This scenario enriches the base model with a new variable accounting for environmental factors
(E), and considers an abstraction in which this variable is marginalized away. The base and the
abstracted models are defined on the following nodes:

X = {E,S, T, C} X ′ = {S′, T ′, C ′}
M[E] = M[S] = M[T ] = M[C] = {0, 1} M′[S′] = M′[T ′] = M′[C ′] = {0, 1}

Abstraction is (partially) specified as:

R = {E,S, T, C}
a(E) = S′, a(S) = S′, a(T ) = T ′, a(C) = C ′

The following figure reports mechanisms and optimal abstractions:

E S T C

S’ T’ C’

[
.45
.55

] [
.9 .7
.1 .3

] [
.95 .2
.05 .8

] [
.9 .6
.1 .4

]

[
.8
.2

] [
1 .2
0 .8

] [
.9 .6
.1 .4

]

[
1 0 1 0
0 1 0 1

] [
1 0
0 1

] [
1 0
0 1

]

We consider as relevant interventional distributions:
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P ′(C ′|do(S′)),
P ′(C ′|do(T ′)),
P ′(T ′|do(S′)),

and, therefore, J = {(S′, C ′), (T ′, C ′), (S′, T ′)}.
With respect to this J , the abstraction has an optimal non-zero-error e(α) ≈ 0.13 computed by

enumeration. Enumeration is feasible since, according to Equation 8, the number of solutions to be
evaluated are:

|A| = 2!

{
4
2

}
· 2!

{
2
2

}
· 2!

{
2
2

}
= 56. (18)

G.1.3. EXTENDED LUNG CANCER SCENARIO

This example constructs a scenario where variables have different cardinalities, and abstraction is
focused on reducing the resolution of the experiments. The base and the abstracted models are
defined on the following nodes:

X = {S, T, C} X ′ = {S′, T ′, C ′}
M[S] = {0, 1, 2, 3} M′[S′] = {0, 1, 2}
M[T ] = {0, 1, 2} M′[T ′] = {0, 1}
M[C] = {0, 1} M′[C ′] = {0, 1}

Abstraction is (partially) specified as:

R = {S, T, C}
a(S) = S′, a(T ) = T ′, a(C) = C ′

The following figure reports mechanisms and optimal abstractions:

S T C

S’ T’ C’


.25
.25
.25
.25

  .6 .55 .1 .1
.3 .25 .4 .4
.1 .2 .5 .5

 [
.7 .7 .4
.3 .3 .6

]

 .25
.5
.25

 [
.9 .8 .5
.1 .2 .5

] [
.7 .4
.3 .6

]

 1 0 0 0
0 1 0 0
0 0 1 1

 [
1 1 0
0 0 1

] [
1 0
0 1

]

We consider as relevant interventional distributions:
P ′(C ′|do(S′)),
P ′(C ′|do(T ′)),
P ′(T ′|do(S′)),

and, therefore, J = {(S′, C ′), (T ′, C ′), (S′, T ′)}.
With respect to this J , the abstraction has an optimal zero-error e(α) = 0 computed by enu-

meration. Enumeration is feasible since, according to Equation 8, the number of solutions to be
evaluated are:

|A| = 3!

{
4
3

}
· 2!

{
3
2

}
· 2!

{
2
2

}
= 432. (19)
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G.1.4. V-STRUCTURE LUNG CANCER SCENARIO

This scenario introduces more complex v-structures, and is partly inspired by the LUCAS toydaset1.
Beyond the previous variables, new observables are introduced, such as genetic factors (G), cough-
ing (H), and fatigue (F ). The base and the abstracted models are defined on the following nodes:

X = {S,G,C,H, F} X ′ = {S′, C ′, F ′}
M[S] = M[G] = M[C] = M[J ] = M[F ] = {0, 1} M′[S′] = M′[C ′] = M′[F ′] = {0, 1}

Abstraction is (partially) specified as:

R = {S,C,H, F}
a(S) = S′, a(C) = C ′, a(H) = F ′, a(F ) = F ′

The following figure reports mechanisms and optimal abstractions:

S

G

C

H

F

S’ C’ F’

[
.8
.2

]

[
.7
.3

] [
.15 .85 .65 .75
.85 .15 .35 .25

] [
1 .2
0 .8

]
[

.42 .75 .65 .33

.58 .25 .35 .67

]

[
.8
.2

] [
.9 .66
.1 .34

] [
.8 .5
.2 .5

]

[
0 1
1 0

] [
1 0
0 1

] [
0 1 0 1
1 0 1 0

]

We consider as relevant interventional distributions:

P ′(C ′|do(S′)),
P ′(F ′|do(C ′)),
P ′(F ′|do(S′)),

and, therefore, J = {(S′, C ′), (C ′, F ′), (S′, F ′)}.
With respect to this J , the abstraction has an optimal non-zero-error e(α) ≈ 0.21 computed by

enumeration. Enumeration is feasible since, according to Equation 8, the number of solutions to be
evaluated are:

|A| = 2!

{
2
2

}
· 2!

{
2
2

}
· 2!

{
4
2

}
= 56. (20)

G.2. Experimental settings

Here we provide details about the experimental settings for all the simulations on synthetic data.

1. http://www.causality.inf.ethz.ch/data/LUCAS.html
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G.2.1. COMPARISON WITH BASELINES

In simulation (a) we learn an abstraction on each one of the four synthetic scenarios (basic, collaps-
ing, extended, v-structure) using three approaches:

• Independent approach: we use the algorithm presented in Appendix E.2. As an aggregation
technique (line 4 in Algorithm 2) we use the following algorithm: given multiple solutions
W ′

X′ ,W ′′
X′ ,W ′′′

X′ , ...,Wm
X′ for WX′ , for each column i in WX′ , we select the index with the

highest value among all the candidates, that is, j∗ = argmaxj

{
W ′

X′ji,W
′′
X′ji,W

′′′
X′ji...,W

m
X′ji

}
;

we then generate a new aggregated solution W̄X′ where column i has a one in position j∗,
while all the other values in the column are zero.

• Sequential approach: we use the algorithm presented in Appendix E.3; we adopt a random
ordering of the diagrams in J .

• Joint approach: we use the algorithm presented in Appendix E.1.

All algorithms are run with the same settings: temperature T = 0.1, trade-off λ = 10, learning
rate η = 0.01, number of epochs ne = 500. We optimize by gradient descent using the Adam
algorithm (Kingma and Ba, 2014). For each approach, we run an ensemble of 10 models, and we
select the best wrt the JSD loss term L1. We repeat experiments 10 times in order to collect reliable
statistics.

We measure the performance of the three approaches using different metrics. First of all, we
define a set of normalized metrics used to monitor learning at runtime:

• Normalized JSD loss: 1
|Jtrain|

∑
(X′,Y′)∈Jtrain

DJSD(αY′µ; ναX′); this corresponds to the
sum of JSDs on each diagram considered during training, divided by the number of such
diagrams. Normalization is required because, during training, the independent and joint ap-
proach consider all the diagrams Jtrain = J , but the sequential approach may consider a
smaller number of diagrams Jtrain ⊆ J (i.e.: the sequential approach may ignore a diagram
defined over variables αX′ already computed in other diagrams).

• Normalized surjective penalty: 1
|Wtrain|

∑
W∈Wtrain

∑Mi
i=1 (1−maxj tcol(W )ij); this cor-

responds to the sum of surjective penalties on each weight matrix instantiated during train-
ing, divided by the number of such matrices. Normalization is required because, during
training, the surjective and joint approach instantiate a number of weight matrices equal to
|Wtrain| = |X ′|, but the independent approach may instantiate the same weight matrix mul-
tiple times |Wtrain| ≥ |X ′| (i.e.: the independent approach may solve different diagrams in
the same αX′ independently at the same time).

• Normalized L1 distance: 1
|Wtrain|

∑
W∈Wtrain

ℓ1(W −W ∗), where ℓ1(W ) =
∑

i,j |Wij | is
the ℓ1-norm, and W ∗ is the ground-truth optimal solution computed via enumeration; this
corresponds to the sum of the ℓ1 distances from the optimal solution of the current weight
matrices, divided by the number of such matrices. As in the case of surjective penalty, nor-
malization is required because, during training, a different number of weight matrices may be
instantiated by each approach.

At the end of the training, all the approaches return the collection of learned maps W. We
discretize the solutions in {0, 1} by rounding, and we evaluate the quality of the computed solution
using the following metrics:
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• JSD loss:
∑

(X′,Y′)∈J DJSD(αY′µ; ναX′); this corresponds to the sum of JSDs on all the
diagrams in |J |.

• Surjective penalty:
∑

W∈W
∑Mi

i=1 (1−maxj tcol(W )ij); this corresponds to the sum of sur-
jective penalties on all weight matrices in W.

• L1 distance:
∑

W∈W ℓ1(W −W ∗); this corresponds to the sum of the ℓ1 distances from the
optimal solution of all the weight matrices W.

• Wallclock time: we provide an estimate of the running time of each approach. Since our
implementation is not parallel, we divide the runtime of the independent approach by the
number of diagrams, to simulate the possibility of running each sub-problem in parallel.

G.2.2. EVALUATION OF WEIGHTING

In simulation (b) we learn an abstraction in the v-structure scenario. In this scenario, we have
defined the set of relevant interventional distribution as J = {(S′, C ′), (C ′, F ′), (S′, F ′)}. We
now assume that one intervention (how intervening on smoking affects cancer) is more important
than the others (how intervening on smoking affects fatigue, or how intervening on cancer affects
fatigue); we also assume that, for the same reason, we have collected a larger number of samples
for P ′(C ′|do(S′)). We then impose a weighting schema κ = [2.4, 0.3, 0.3] that scales the loss wrt
intervention P ′(C ′|do(S′)) more heavily than wrt the other interventions. Notice that the weighting
values are chosen to sum up to the same value that the standard uniform weighting [1, 1, 1] would
have; keeping the same magnitude is important not to change the ratio between the JSD loss and the
surjective penalty.

We run only our algorithm (joint approach), with the same setting as in simulation (a).
We measure the quality of the result at the end of training by focusing on JSD loss, and com-

paring the solution to the result obtained without weighting.

G.2.3. ABLATION STUDY

In simulation (c) we learn an abstraction in the v-structure scenario without using the surjectivity
penalty term L2 in the loss function.

We run only our algorithm (joint approach), with the same setting as in simulation (a).
We measure the quality of the result at the end of training by focusing on JSD loss and L1

distance, and comparing the solution to the result obtained with the penalty term.

G.2.4. SENSITIVITY ANALYSIS

In simulation (d) we analyze how abstraction learning changes as a function of the hyperparameters
T and λ specific to our algorithm.

We run only our algorithm (joint approach), with the same setting as in simulation (a), except
for the hyperparameter T which is chosen in the set {0.01, 0.05, 0.1, 0.5, 1} and the parameter λ
which is chosen in the set {1, 5, 10, 20, 50}.

We measure the quality of the result at runtime by considering L1 distance at the end of training.

G.3. Additional results

Figure 7 provides results of simulation (a) on all the remaining scenarios. In terms of ℓ1-distance
from the ground truth, the joint approach achieves performances in line or better than the other
approaches.
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Figure 7: Performance during training on the basic, collapsing, and v-structure scenarios.

Figure 8 shows sample matrices WS′ learned with and without surjective penalty. Without
surjectivity penalty, WS′ simply ignore the value S′ = 0 in M′ since no value from the base model
would be mapped onto it. This could allow the algorithm to achieve a better JSD by reducing the
support on which the error is computed. In the limit case, the algorithm may map all the values
in the base model onto a single value in M′ in order to reduce JSD. Such a solution would be
meaningless, and a surjective penalty prevent this form of collapse.

Figure 9 shows the result of our sensitivity study. In general, the joint algorithm seems to
produce reliable results for different combinations of the temperature parameter T and the trade-off
parameter λ. We notice, however, that learning is hindered for values of T ≤ 0.05; this is likely
due to an excessively low temperature that prevents a continuous relaxation of the solution space
sufficiently smooth to be explored by gradient descent. Low value of trade-off may also have a
negative impact on learning; this should likely be ascribed by the surjectivity penalty becoming the
leading factor in learning, overshadowing the contribution of JSD.
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Figure 8: Learned matrix WS′ with surjective penalty (left) and
without (right).

Figure 9: Performance as ℓ1-
distance when using different
configuration of T and λ.

Appendix H. Details about the real-world-data simulations

H.1. Data and models

Here we provide details about the real-world data we used, and the models we devised. We use the
same graphical conventions used in the Appendix G.1.

H.1.1. LRCS DATASET

The LRCS dataset records the results of a set of experiments investigating the relationship be-
tween lithium-ion battery manufacturing parameters for slurry and coating, and target parameters
(Cunha et al., 2020). This dataset is publicly available at https://chemistry-europe.
onlinelibrary.wiley.com/doi/full/10.1002/batt.201900135.

Each sample in the LRCS dataset represents the result of an experiment, and it is defined by
four features:

• AM Composition: composition of the slurry as a percentage of active material. This parameter
assumes values in {92.7, 94, 95, 96};

• S-to-L ratio: solid-to-liquid ratio of the slurry as a percentage. This parameter assumes con-
tinuous values in (54, 75);

• Comma gap: gap in the coating process, measured in [µm]. This parameter assumes discrete
values in {50, 75, 100, 200, 300, 400};

• Viscosity: viscosity of the slurry, measured in [Pa · s]. This parameter assumes continuous
values in (1, 14).

Moreover, for each experiment, two target variables are collected:

• Mass loading: mass loading of the coating, measured in
[ mg
cm2

]
. This variable assumes con-

tinuous values in (4, 54);
• Porosity: porosity of the coating as a percentage. This parameter assumes continuous values

in (41, 61).

The dataset contains 656 datapoints, that is, 8 datapoints for each one of 82 configurations of
control parameters considered.
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H.1.2. WMG DATASET

The WMG group has collected a set of recordings from an experiment aimed at measuring the
relationship between coating parameters and mass loading. This dataset is available at https:
//github.com/mattdravucz/jointly-learning-causal-abstraction/.

Each recording contains a large set of parameters defining the state of a coater machine. These
parameters are sampled every second in the course of an experiment lasting about three hours. Three
values are relevant to us:

• Comma Bar Operator Position Actual: basic gap in the coating process, measured in [mm].
This parameter, converted to [µm], assumes discrete values in [0, 130];

• Coating Roll Gear Ratio Setpoint: gap multiplier in the coating process, measured as a per-
centage. This parameter assumes discrete values in [100, 150];

• AM Composition: composition of the slurry as a percentage of active material. This parameter
is fixed at 96.

Moreover a target variables is sampled from 800 spatial locations, every eight seconds in the
course of the three hours of the experiment:

• Mass loading: mass loading of the coating, measured in
[ g
m2

]
. This variable assumes contin-

uous values in [0, 275);

From these recording, we build a dataset performing the following steps:

1. First of all, we convert the recordings (Comma Bar Operator Position Actual, Mass Loading)
to the same unit of measure used in the LRCS dataset.

2. We compute a unique Comma Gap measure as a product of Comma Bar Operator Position
Actual and Coating Roll Gear Ratio Setpoint. This transformation is based on specific knowl-
edge about the meaning of the parameters for the WMG coater machine.

3. We subselect the recordings in time; within the three hours of the experiment only short
spans of time have a Comma Gap actually set to an experimental value; most of the time the
Comma Gap variable is simply left to zero; we drop all the recordings when the comma gap
is zero or when it is just transitioning to an experimental value. At the end, we retain those
timesteps when the Comma Gap variable is set to an experimental value, together with the
corresponding values of Mass Loading.

4. We subselect the recordings in space; although mass loading is measured from 800 locations,
this information is redundant; instead we consider the 100 central locations (which provide
the most reliable measurements) and we average them into nloc = 2 spatial measurements.

H.1.3. ALIGNMENT OF LRCS AND WMG DATASET

The two datasets have a clear overlap and strong commonalities in their underlying models. In
particular, they share a focus on modelling the casual relation between typical control parameters in
the coating process and the resulting mass loading.

We then aim at setting up an abstraction between the underlying models. In order to do this,
we will consider the WMG data and its associated model as the low-level model; this is justified by
higher spatial resolution of the data (mass loading is measured at multiple locations) and the higher
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variable resolution for comma gap. Consequently, we will consider the LRCS data and its associate
model as the high-level model.

However, before being able to define SCMs and setup a proper abstraction, we still need to
perform further pre-processing to properly align the two datasets. We perform the following opera-
tions:

1. From the WMG dataset we drop the control variable AM Composition. Since it takes only a
single value, it does not bring any information.

2. From the LRCS dataset we drop the control variables S-to-L ratio and Viscosity which are
related to the slurry preparation and not to the coating process.

3. From the LRCS dataset we subselect for AM Composition= 96 in order to be consistent with
the setting of the WMG dataset.

4. We restrict Comma Gap values in the LRCS dataset to {75, 100, 200}, excluding the values
{50, 300, 400} which are far out of the range considered in the WMG dataset.

5. We extrapolate new values for Comma Gap at 75 and 200 in the WMG dataset using a Gaus-
sian process with a linear kernel trained on all the available WMG data. We then define the
set of Comma Gap values as {75, 110, 150, 170, 180, 200}

6. For both datasets we discretize the values of Mass loading using nbins = 5 uniform bins.

At the end of this process, the LRCS dataset contains 64 samples, while the WMG dataset is
constituted of 239 samples.

H.1.4. LRCS SCM

The model underlying the LRCS dataset will constitute our abstracted model. We define this SCM
making minimal assumptions. The set of endogenous variables in MLRCS and their associated sets
are defined as follows:

XLRCS = {CG,ML}
MLRCS [CG] = {75, 100, 200}
MLRCS [ML] = {0, 1, ..., nbins}

The DAG underlying the model MLRCS is defined as in Figure 10

CG ML

Figure 10: DAG of model MLRCS

Notice that the edge simply expresses the physical causal dependence of Mass Loading on the
Comma Gap. It is also worth noting that this SCM immediately represents the interventional setting
in which the control parameter is regulated by an external experimenter.

Critically, as in most real-world scenario, we have no explicit knowledge of the mechanism
that determines the variable ML as a function of CG. This mechanism corresponds to a nbins × 3
matrix. We compute this matrix from observed frequencies: for each one of the three possible values
of CG we evaluate the empirical distribution of ML into nbins; at the end, we assemble these four
empirical distributions into the mechanism matrix.
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H.1.5. WMG SCM

The model underlying the WMG dataset will constitute our base model. We follow the same ap-
proach used above to define a SCM with minimal assumptions. The set of endogenous variables in
MWMG and their associated sets are defined as follows:

XWMG = {CG,ML1, ...,MLnloc
}

MWMG[CG] = {75, 110, 150, 170, 180, 200}
MWMG[MLi] = {0, 1, ..., nbins}

The DAG underlying the model MWMG is defined as in Figure 11.

CG

ML1

...

MLi

Figure 11: DAG of model MWMG

Again, the edges simply express the physical causal dependence of Mass Loading at different
locations i on Comma Gap.

This SCM implies nloc mechanisms, each one encoded into a nbins × 6 matrix. We apply the
same approach used before to compute these matrix from the observed frequencies.

H.1.6. ABSTRACTION FROM THE WMG MODEL TO THE LRCS MODEL

Given the two SCMs above, we define a (partial) abstraction α from MWMG to MLRCS as follows:

R = {CG,MLi} ,∀1 ≤ i ≤ nloc

a(CG) = CG
a(MLi) = ML,∀1 ≤ i ≤ nloc

This correspond to the following abstraction:

CG ML

CG

ML1

...

MLi
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In the abstraction learning problem, we want to learn two weight matrices: the first one corre-
sponds to αCG, and has shape 3 × 6; the second one corresponds to αML and has shape nbins ×
(nbins)

nloc , in our case 5 × 25. Notice that, despite the limited number of averaging locations
(nloc = 2) and discretizing bins (nbin = 5), the number of surjective functions to be evaluated in an
enumeration algorithm is already unfeasible; indeed, using Equation 8, this value amounts to:

|A| = 4!

{
6
4

}
· 5!

{
25
5

}
≈ 1.6 · 1020. (21)

H.2. Experimental settings

We learn an abstraction between MWMG and MLRCS using our joint approach algorithm (see
pseudocode in Appendix E.1).

We run our algorithm considering all the possible combinations of hyperparameters in the
following sets: temperature T = {0.1, 0.2}, trade-off λ = {5.0, 10.0}, and learning rate η =
{0.001, 0.002, 0.005}. These values are chosen based on the previous experience on the synthetic
simulations. For each setting we run an ensemble of 50 models. Each model is trained for a number
of epochs ne = 104 and optimized by gradient descent using the Adam algorithm Kingma and Ba
(2014). At the end, we select the abstraction achieving the best JSD loss L1.

We evaluate the quality of the result in two ways. First, we discuss qualitatively the solution;
although we do not have a ground truth, we can still comment on the pattern of the learned matrix
comparing our expectations with the results of learning. Second, we assess quantitatively whether
transporting WMG data to the LRCS format, and integrating them with the existing LRCS data,
may improve predictions. To do this, we set a three regression tasks with three different setups:

1. (a) LRCS only: we consider only the LRCS data. For each value cg of the CG variable, we
train a regression model on all the LRCS samples for which CG ̸= cg. We then test the
model on the LRCS samples for which CG = cg.

2. (b) LRCS plus WMG providing support: we consider the LRCS and the transported α(WMG)
data. For each value cg of the CG variable, we train a regression model on all the LRCS
samples for which CG ̸= cg together with all the samples from α(WMG). We then test the
model on the LRCS samples for which CG = cg.

3. (c) LRCS plus WMG not providing support: we consider the LRCS and the transported
α(WMG) data. For each value cg of the CG variable, we train a regression model on all
the LRCS and α(WMG) samples for which CG ̸= cg. We then test the model on the LRCS
and α(WMG) samples for which CG = cg.

Task represents a realistic scenario in which a limited amount of data is used to infer a model
that allows us to perform interpolation and extrapolation. Task (b) corresponds to a favorable case in
which using abstracted data from another research group provides samples of control variables over
which we are interpolating or extrapolating. Task (c) represents instead a harder scenario in which
the abstracted data provides more information about the domain of interest, but has no samples for
the specific values of the control variable for which we want to perform inference.

Notice that although our target variable is ordinal, we avoid using standard ordinal regression
models as they can rarely deal with one value of the target variable being absent from the training
data. Instead, since our target variable has been generated through uniform binning, we simply rely
on a simple linear regression model with lasso penalty.
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Figure 12: Learned WCG Figure 13: Learned WML

H.3. Additional results

Figure 12 shows the matrix WCG learned by the joint algorithm. The pattern of this matrix has
been described in the main text. It is worth to point out that, formally, other binary matrices could
be learned by our algorithm. A permutation of the values in the matrix WCG, accompanied by
another permutation in WML, could still achieve a very low loss value. Our expectation is mainly
led by the semantics of the values to be mapped from the base model to the abstracted model:
we expect identical values to be mapped to each other. Although this solution may indeed be the
global optimum, the algorithm may stop in a local optimum with a vary low abstraction error which
counter-intuitively maps values from the base model onto values in the abstracted model.

Figure 13 shows the matrix WML learned by the joint algorithm. The pattern of this matrix
is more difficult to interpret. This follows from a couple of considerations. First, while CG is
the variable we intervene upon, ML is the variable we observe conditioned on the intervention.
The mapping WML has then to account for the mechanisms in MWMG and MLRCS , making an
intuitive mapping (highlighted again by the red border) less likely. In other words, the matrix WML

is first of all the matrix that minimizes the JSD and makes the abstraction diagram as commutative
as possible; as soon as some noise is introduced in the mechanisms (as it is in our approximate case),
the matrix WML is affected. Second, many values in the domain given by the Cartesian product of
measurement at the two spatial locations in the base model are never realized (e.g.: a measurement
corresponding to (0,4)); such values end up being unconstrained and they can assume any value as
they do not affect the JSD loss of the learning algorithm.
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