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Chemical selection for the calibration of general-

purposed electronic noses based on Silhouette 

coefficients 

 
 

Zhiyuan Wu, Fengchun Tian*, Member, IEEE, James A. Covington*, Member, IEEE, Hantao Li, Siyuan Deng 

Abstract—Sensor drift is often application-dependent and 

results in a reduction in the overall long-term performance of 

electronic noses. Even with drift compensation it is remains 

challenging to transfer these models to other application scenarios. 

In order to remedy this deficiency, different/generic chemicals are 

needed to provide a general-purpose calibration approach that can 

be applied to a wide range of electronic noses. In this paper, we 

investigated a method to identify these chemicals based on four 

criteria (universality, safety, sensibility, and differentiation). This 

concept was tested on an in-house electronic nose comprising of 37 

gas sensors and four environmental sensors combined with an 

automatic gas acquisition system. Fourteen different volatile 

compounds were tested over four months. The Silhouette 

coefficient was used to evaluate the extent of the sensor drift. Six 

different chemicals (acetone, alcohol, ethyl acetate, 

tetrahydrofuran, acetaldehyde, and n-hexane) were finally 

selected as the most appropriate to calibrate our E-nose. We 

believe our research may motivate the design of a reasonable 

chemical selection method for the calibration of general-purpose 

E-noses. 

 
Index Terms—Electronic nose, Calibration chemical selection, 

Volatile organic compounds, Silhouette coefficient. 

I. INTRODUCTION 

LECTRONIC noses (E-noses) are systems that attempt to 

mimic the mammalian olfactory system and are used 

extensively to identify or quantify complex odours. 

Typically, an E-nose consists of three components: a gas sensor 

array, a data pre-processing unit, and a pattern recognition 

module. E-noses have a number of advantages over more 

traditional analytical instruments, including simpler operation 

and providing almost real time results.  For this reason, E-noses 

have been applied to medical applications [1], environmental 

testing [2], food engineering [3]-[4], medicine quality 

evaluation [5] and public security [6]. 

The progressive and unpredictable variation of the sensory 

signal, i.e., the sensor drift [7], has long been recognized as one 
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of the most significant issues facing E-noses. This phenomenon 

degrades the stability of E-nose systems and can make its 

pattern recognition modules outdated [8]. The sensor drift stems 

from a variety of factors including sensor aging [9], 

contamination of the sensitive material [10] and as a result of 

thermal cycling through a variety of normal operations [11]. A 

further issue, beyond the above, is that exposure to different 

chemicals can lead to different sensor drift directions, making 

the calibration of the E-nose particularly challenging [9], [12]. 

This makes it difficult to objectively identify the drift 

mechanism and almost impossible to design appropriate 

strategies for correcting drift from unknown origins. 

Consequently, considering the compensation of drift, some 

researchers have concentrated on physical improvements on the 

gas sensor itself [13], [14], and others on algorithms [15]-[17]. 

Nevertheless, the drift mechanism is complex and inevitable, 

and so sensor drift has been identified as one of the primary 

obstacles to the mass production of E-noses [12]. 

Most existing researches rely on algorithms to compensate 

for sensor drift without systematic considering on the 

calibration or the impact of chemicals on the sensor drift [18]. 

Sensor drift is application-dependent, and experiences in drift 

resistance applied to one scenario are challenging to transfer to 

another.  

In order to try and remedy this deficiency, different types of 

chemicals should be analyzed and screened to select the most 

representative ones for calibration of the majority of E-noses. 

For instance, Vergara et al. [19] collected an extensive dataset 

for six distinct volatile organic compounds (VOCs) over three 

years under strictly controlled operating conditions using an 

array of sixteen metal-oxide gas sensors (MOS) [20]-[22]. 

The majority of datasets used for E-nose calibration are from 

either publicly available datasets or from specific application 

scenarios wherein the selection of calibration chemical varies 

[23]-[26]. For example, Zhang et al. [23] proposed a unified 

framework called ‘domain adaptation extreme learning 
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machine’ (DAELM) for drift compensation [19]. Padilla et al. 

[15] presented a dataset containing measurements of three 

analytes (ammonia, propionic acid, and n-butanol) using an 

array of seventeen conductive polymer gas sensors. Liang et al. 

[22] provided a dataset composed of measurements of six 

analytes (ethanol, ethylene, ammonia, acetaldehyde, acetone, 

toluene, n-propanol) using an array of sixteen MOS sensors. 

However, there are currently no unified criteria for the selection 

of calibration chemicals. The closest is where E-nose 

companies have defined test chemicals for system evaluation 

purposes, though this data is not in the public domain. 

In addition to academic research, we can consider German, 

European and American requirements of odour detection 

instruments and the composition of common workplace 

chemicals [27]-[32]. The German standard VDI/VDE 3518 

specifies 57 different chemical alternatives for use with gas 

sensors in various workplaces [27]. Compared with VDI/VDE 

3518, the NIOSH Pocket Guide to Chemical Hazards standard 

does not contain bromine, isobutanol, dibutylamine, methanol, 

triethylamine, vanillin and mixed xylene [30]. Likewise, there 

are no recommended chemicals in these international standards 

for E-nose calibration [27]-[32]. 

Here, we report on the use of a self-developed, general-

purpose E-nose to systematically study the chemical selection 

for calibration and to quantify the drift for different chemicals. 

Our E-nose system has an array of sensors 41 sensors with 37 

gas sensors (electrochemical, MOS, PID, MEMS, etc.) and four 

environmental sensors (temperature & humidity, and 

barometric pressure). The sources and compositions of volatile 

compounds in various environments were investigated, and 14 

classes of chemicals, covering 11 typical volatile compound 

species, were selected for initial calibration. Over four months, 

experimental data were collected under stringent operational 

controls. Finally, Silhouette coefficients were utilized to 

evaluate the difference among the 11 chemical categories. The 

calibration chemicals selection method we proposed is generic 

and has instructive and reference value for the calibration of 

general-purposed E-noses. 

II. CHEMICALS SELECTION CRITERIA FOR CALIBRATION 

Chemical industries, fuel combustion and pharmaceutical 

facilities are primary sources of chemicals. Among them, volatile 

substances are mainly concentrated in halogenated hydrocarbons, 

aldehydes, aromatic compounds, polycyclic aromatic 

hydrocarbons, alcohols, alkanes, ketones, olefins, and ethers [28]. 

However, not all chemicals would be acceptable as calibration 

chemicals. Ideally, we would like our test chemicals to fulfil the 

following criteria:  

A. Universality 

1) Applicable to the widest range of international standards, 

apparatus, and application contexts. 

2) Common, easy to obtain and store. 

3) Economic. 

 

We considered these point from three perspectives: current 

international standards [27]-[32], public datasets [33]-[39], and 

published papers [40]-[46]. Finally, we retained the same selection 

of chemicals in various standards and settings and gathered 57 

acceptable test chemicals to create an initial database [27]. 

B. Safety 

Safety is also a vital factor. The selected chemicals must be non-

toxic or less harmful and cause minimum environmental pollution. 

The 57 chemicals included in the database were further reduced, 

considering safety factor [27]. First, VOCs were divided into ten 

categories based on their functional groups: hydrocarbons, 

ketones, aldehydes, benzenes, amines, alcohols, ethers, hydroxy 

acids, ester, and halogenated hydrocarbons. Inorganic compounds 

were placed together into a single category. 

Consequently, the initial calibration chemical database 

consisting of 57 chemicals were divided into eleven groups 

covering organic and inorganic compounds. The median lethal 

dose (LD50) was then utilized as a safety indicator for chemical 

selection. Compounds with the lowest LD50 values in each 

category, such as carbonyl chloride (highly toxic), acrylonitrile 

(LD50 = 93 mg/kg), diborane (LD50 = 58 mg/kg) and ethylene oxide 

(LD50 = 72 mg/kg), were removed. The least toxic chemical of each 

category was retained (see Table I).  

C. Sensibility 

The selected chemicals must be capable of covering as many 

sensors as possible. Gas sensors have performance factors such as 

sensitivity, selectivity, reaction time, recovery time, and stability. 

We also selected chemicals considering their coverage on sensors, 

i.e., those chemicals with more robust sensor responses will be 

selected as calibration chemicals. 

D. Differentiation 

We selected chemicals with good distinguishing ability, which 

makes it easier to observe the direction of gas sensor drift and helps 

with compensation of sensor drift. 

III. METHODOLOGY AND EXPERIMENTAL PLATFORM 

The self-developed E-nose collected datasets for 4 months 

(See Fig. 1). In the dataset, eight features were extracted from 

each sensor’s responses, including two steady-state features and 

six exponential moving average features (See Section IV, part 

A for details). The sample matrix is 𝐗 =

[𝐱1, 𝐱2, ⋯ , 𝐱𝑖, ⋯ , 𝐱𝑚]
T, 𝐱𝑖 represents the i-th sample, and 𝑚 =

210 denotes the total number of samples in the dataset. 

A. Signal Processing Method. 

1) Principal Component Analysis [47]: Principal Component 

Analysis (PCA) is a standard method for reducing linear 

dimensions based on statistical analysis. The dimensionality of 

the original high-dimensional data is reduced through linear 

mapping. The objective is to make the distribution of the 

reduced-dimensional data on the axes as dispersed as feasible. 

To achieve this, the variance on the new coordinates must be 

maximized through the following: 

 𝐰∗ = argmax
‖𝐰‖=𝟏

(𝐰T𝐗T𝐗𝐰) (1) 

 

where it is assumed that the matrix 𝐗 is mean-centered (then all 
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linear combinations are also mean-centered). The latter problem is 

a standard problem in linear algebra and the optimal 𝐰  is the 

(standardized) first eigenvector (i.e. the eigenvector with the 

largest value) of the covariance matrix 𝐗T𝐗. 

2) Linear Discriminant Analysis [48]: LDA is a supervised 

learning algorithm. The data is projected in a low dimension 

using the dimensionality reduction technique. The projection 

points of each type of data are expected to be as close as 

possible. We can determine the category based on the position 

of the new sample projection point when classifying a new 

sample. This specific algorithm can be described as follows: 

  The total within-class scatter matrix 𝐒𝜔 is: 

           𝐒𝜔 = ∑ ∑ (𝐱𝑖 − 𝛍𝑗)(𝐱𝑖 − 𝛍𝑗)
T
, 𝑗 = 1,2,⋯𝐾𝐱𝑖∈𝐺𝑗

𝐾
𝑗=1  (2) 

 

where 𝐒𝜔 is the sum of the covariance matrices of samples with 

unified label, the variance of the same sample after projection 

is as small as possible, so as these samples are as close as 

possible. 𝛍𝑗 is the mean feature vector of samples in 𝑗th class. 

The number of known pattern classes is 𝐾, as ( 𝐺1, 𝐺2, ⋯ , 𝐺𝐾). 

Between-class scatter matrix 𝐒𝑏: 

 𝐒𝑏 = ∑ (𝛍𝑗 − 𝛍)(𝛍𝑗 − 𝛍)
T
, 𝑗 = 1,2,⋯𝐾𝐾

𝑗=1  (3) 

 

where 𝐒𝑏 is the covariance matrix of the mean of each class of 

sample, the sample projections between different classes are as 

far apart as possible to facilitate the reduction of data 

dimensionality. 𝛍 is the mean feature vector of total samples. 

The optimal projection direction can be found using the 

Fisher criterion function defined as: 

 𝛚∗ = argmax
𝛚

𝛚T𝐒𝑏𝛚

𝛚T𝐒𝜔𝛚
 (4) 

 

In Eq. (4), the between class and within-class ration can be 

considered a comprehensive measure. It determines the data 

separability after projection. When the full separability measure 

reaches the maximum, the Fisher optimal projection direction 

is determined. 

B. Quantification of sample variation by Silhouette coefficient 

[49] 

To quantify the separability of samples, the Silhouette 

coefficient was used. The formula for calculating the Silhouette 

coefficient is as follows: 

 𝑠(𝑖) =
𝑏(𝑖)−𝑎(𝑖)

𝑚𝑎𝑥{𝑎(𝑖),𝑏(𝑖)}
 (5) 

 

 𝑎(𝑖) =
1

|𝐶𝐼|−1
∑ 𝑑(𝑖, 𝑗)𝑗∈𝐶𝐼,𝑖≠𝑗  (6) 

 

where 𝑎(𝑖) represents the cohesiveness of the sample points 

and denotes the average distance among 𝑖 and other points in 

the same cluster. Let |𝐶𝐼| be the number of points belonging to 

cluster 𝐼, and 𝑑(𝑖, 𝑗) denotes the distance among points 𝑖 and 

𝑗 𝑖𝑛 𝐶𝐼. 
The calculation of 𝑏(𝑖)  is similar to that of 𝑎(𝑖)  and 

represents the average distance from point 𝑖  to all points in 

another most adjacent cluster. 

 𝑏(𝑖) = 𝑚𝑖𝑛
𝐽≠𝐼

1

|𝐶𝐽|
∑ 𝑑(𝑖, 𝑗)𝑗∈𝐶𝐽

 (7) 

 

In summary, 𝑠(𝑖) is calculated as follows. 

 𝑠(𝑖) =

{
 
 

 
 1 −

𝑎(𝑖)

𝑏(𝑖)
,        𝑎(𝑖) < 𝑏(𝑖)        

0,         𝑎(𝑖) = 𝑏(𝑖)
𝑏(𝑖)

𝑎(𝑖)
− 1,     𝑎(𝑖) > 𝑏(𝑖) 

 (8) 

 

From equation (8) it can be seen that: 

when 𝑎(𝑖) < 𝑏(𝑖), the distance within a cluster is smaller than 

the distance between the two clusters, and the clustering result 

is more compact. The more the value of 𝑠(𝑖) approaches 1 the 

better the clustering effect. 

Conversely, when 𝑎(𝑖) > 𝑏(𝑖), the distance within a cluster 

is greater than the distance between clusters. The more the value 

of 𝑠(𝑖) approaches -1, the worse the clustering effect is. 

C. Observation of sensor drift 

The sensor response is defined as follows [50]: 

 𝑆 =
𝑅𝑔−𝑅𝑎

𝑅𝑎
 (9) 

where 𝑅𝑎 is the resistance of the sensor in pure air and 𝑅𝑔 is 

its resistance in the appearance of chemical to be tested. 

D. Experimental E-nose system 

The self-developed E-nose contained the sensor array listed 

in Table II. To reduce the impact of temperature, all metal oxide 

sensors (MOS) were placed in a thermostatically heated gas 

chamber. 

The remaining sensors were put in a second gas chamber at 

ambient temperature. The above gas chambers were coupled to 

a self-developed automatic sampling module [51] and the test 

chemicals were provided through collection bags. The system 

is automatically controlled by a computer built into the E-nose 

to switch among multiple inlet gas pathways [52]. Fig. 1 shows 

the schematic of the E-nose system (Here, the Tablet PC, I/O 

control module, and Power supply module are all built into the 

E-nose except the Solenoid valves T1 and T2). 

We defined a protocol for these experiments that allowed for 

the testing of multiple chemicals at different concentrations. In 

all these experiments, zero air was used as the carrier gas  [52]. 

The sensors were exposed to the 14 chemicals in a random 

order, with this order being randomized with each set of 

experiments. Each sample collection process consists of four 

distinct phases. 

1) Cleaning phase (P1): Zero air is flowed through the 

system to clean the unit before use. 

2) Baseline phase (P2): Flow rate changed to match 

measurement phase, and the baseline steady-state sensor 

responses were collected. 

3) Injection phase (P3): The test chemical was injected into 

the gas chamber through an automatic sample injection 

module. 

4) Purging phase (P4): The E-nose is purged with zero air. 

 

The total acquisition time of the experiment is 24 minutes, 

including 2 minutes for P1, 1 minute for P2, 6 minutes for P3, 
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and 15 minutes for P4, with the sampling rate being 1 Hz. 

The gas flow rate was set to 40 mL/min for P2 and P3, 500 

mL/min for P1 and P4. The sensors were preheated for seven 

days before the start of the first experiment, and all sensors 

were operated in line with manufacturers specifications. 

According to our previous study [35], the gas flow rates of 

our E-nose were optimized by air chamber airflow 

simulation and experiments. The optimized airflow rate can 

sufficiently make the sensor array of the E-nose react with 

chemicals in the air chamber. 

Power supply module

I/O control

T1

  

 

  

 
T2

Gas 1 Gas 2 Gas 3

E-nose

USB

Tablet PC

Carrier air inlet

Sample air inlet

Gas sensor array details

Automatic sampling module

MOS gas sensor 

in thermostat chamber

Other gas sensors in room 

temperature chamber

 
(a) 

 

 
(c) 

Fig. 1. Our E-nose system (a) Structural diagram (b) Photo 

of its interior (c) Photo of the whole system 

 

E. Target chemicals 

These chemicals should guarantee the reproducibility of 

the protocol in different laboratories and with different 

instruments. Table I provides information on the 14 

chemicals. It is worth noting that the 14 chemicals included 

in Table I cover ten major categories of common volatile and 

inorganic compounds. The detailed selection procedure for 

chemicals is described in Section II. In addition, the CAS 

number of each chemical is given in column 3 of Table I. 

Column 5 of Table I give the LD50 for each chemical. 

 

 (b) 
 

TABLE I 

DETAILS ABOUT TARGET CHEMICALS 

No. Analytes CAS [27] Category LD50 [29] Concentration (ppm) 

1 N-hexane 110-54-3 Hydrocarbons 25000 30, 50, 100 

2 Acetone 67-64-1 Ketones 5800 30, 50, 100 

3 Acetaldehyde 75-07-0 Aldehydes 1930 30, 50, 100 
4 Formaldehyde 50-00-0 Aldehydes 800 30, 50, 100 

5 Toluene 108-88-3 Benzene 5000 30, 50, 100 

6 Benzene 71-43-2 Benzene 3306 30, 50, 100 
7 N-butylamine 109-73-9 Amines 366 30, 50, 100 

8 Ethanol 64-17-5 Alcohols 7060 30, 50, 100 

9 Isopropanol 67-63-0 Alcohols 5840 30, 50, 100 
10 Tetrahydrofuran 109-99-9 Ether 1650 30, 50, 100 

11 Acetic acid 64-19-7 Hydroxy acids 3300 30, 50, 100 

12 Ethyl acetate 141-78-6 Lipids 5620 30, 50, 100 
13 Tetrachloroethene 127-18-4 Halocarbons 3005 30, 50, 100 

14 Ammonia 7664-41-7 Inorganic compounds 350 30, 50, 100 

Note: the LD50 is an indicator describing the toxicity of a toxic substance or radiation; it indicates the minimum number of bacteria or amount of toxin required to 

kill half an animal of certain body weight or age via a specified route of infection in a specific time [29]. Higher LD50 means lower toxicity for the corresponding 
chemical. 
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TABLE II 

INFORMATION OF THE GAS SENSORS 

 

No. Sensor Type 
Manufacturer 

(Country) 
No. Sensor Type 

Manufacturer 

(Country) 

1 TGS813 MOS Figaro (Japan) 22 ME4-H2S Electrochemical Winsen (China) 

2 TGS2610D MOS Figaro (Japan) 23 NH3-3E100SE Electrochemical City (UK) 
3 MS1100 MOS Ogam (Korea) 24 4-CH3SH-10 Electrochemical Solidsense (GER) 

4 TGS826 MOS Figaro (Japan) 25 SMD1013 MEMS Huimin Tech. (China) 

5 TGS2602 MOS Figaro (Japan) 26 SMD1001 MEMS Huimin Tech. (China) 
6 TGS822 MOS Figaro (Japan) 27 MQ135 MOS Winsen (China) 

7 MG812 Solid electrolytes Winsen (China) 28 MP503 MOS Winsen (China) 

8 4S Electrochemistry City (UK) 29 MQ3B MOS Winsen (China) 
9 4HS+ Electrochemical City (UK) 30 MQ137 MOS Winsen (China) 

10 ME4-C6H6 Electrochemical Winsen (China) 31 4ETO-10 Electrochemical Honeywell (USA) 

11 SMD1007 MEMS Huimin Tech. (China)    32 4OXV Electrochemical City (UK) 
12 WSP2110 MOS Winsen (China) 33 MQ138 MOS Winsen (China) 

13 MP4 MOS Winsen (China) 34 MP901 MOS Winsen (China) 

14 MP135A MOS Winsen (China) 35 ME3-C2H6S Electrochemical Winsen (China) 

15 TGS2620 MOS Figaro (Japan) 36 ME3-CH2O Electrochemical Winsen (China) 

16 TGS2611E MOS Figaro (Japan) 37 PID-AH Photo-ionization  Alphasense (UK) 

17 AQ201 MOS FIS (Japan) 38 DHT95 Temperature & humidity Senrisirion (CH) 
18 TGS8669 MOS Figaro (Japan) 39 DHT95 Temperature & humidity Senrisirion (CH) 

19 2M012 Semi-conductors 
Guotai Hengan 

(China) 
40 GY63 Air pressure MEAS (USA) 

20 TGS2600 MOS Figaro (Japan) 41 GY63 Air pressure MEAS (USA) 

21 MR516 Hot line Winsen (China) / / / / 

 

IV. RESULTS AND DISCUSSION 

The entire calibration chemical screening process is 

summarized in Fig. 2. 

 
Fig. 2. E-nose calibration chemical selection flow chart. 

A. Dataset description 

The dataset was created from using 14 chemicals at 3 

concentrations. For each response curve, eight features were 

extracted, including two steady-state features and six 

exponential moving average features. The two steady-state 

features used were the difference of the maximal resistance 

change and the baseline, and its normalized version expressed 

by the ratio of the maximal resistance and the baseline values. 

For the sensor dynamics, the increasing/decaying transient 

portion of the sensor response (P3) was used. Further 

information on feature extraction can be found in [19]. 

Therefore, a dimensional feature vector for each observation 

was created. This process was repeated twice at different time 

intervals. Therefore, the dataset consisted of 14 chemicals, three 

concentrations for each chemical, and five repeated 

experiments (a total of 210 samples × 2 batches). This study did 

not consider complex mixtures, and the test conditions were 

strictly maintained during this period. 

B. Sensitivity analysis of sensor arrays 

Responses of the sensors to the 14 different chemicals are 

shown in Table III. Experiments for each chemical were 

performed on the same day to eliminate sensor drift caused by 

temporal variations. A higher response value means the sensor 

responded more “strongly” to that chemical. Here the 

“Response” column in Table III denotes the average of 

responses to a chemical for all sensors of the sensor array. 

TABLE III 

RESPONSES OF THE SENSOR ARRAY 

 

Rank Chemicals Response Sensor coverage (%) 

1 Ethyl acetate 6.77 83% 

2 Acetone 6.69 78% 

3 Ethanol 6.63 83% 

4 Tetrahydrofuran 6.00 83% 

5 Acetaldehyde 5.93 83% 

6 Isopropanol 4.72 85% 

7 Toluene 3.88 76% 

8 Benzene 3.44 83% 

9 N-hexane 2.93 76% 

10 Ammonia 2.25 63% 

11 Acetic acid 2.22 63% 

12 Formaldehyde 1.57 66% 

13 Tetrachloroethene 1.28 41% 

14 N-butylamine 1.11 44% 

 

We can use this metric to determine which chemicals cover 

a more comprehensive range of sensors and rank them from the 
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highest to lowest sensor response value. According to the data 

in the “Sensor coverage” column in Table III, ethyl acetate, 

acetone, and ethanol are the three chemicals to which the sensor 

array responds most strongly. In contrast, the sensor array 

responds the least to tetrachloroethylene and n-butylamine, 

which also have the lowest sensor coverage. The two evaluation 

indicators, sensor response value and coverage, make it easy to 

select calibration chemicals. It is worth noting that the central 

point is to select compounds for E-nose calibration from a wide 

range of chemicals rather than considering the cross-sensitivity 

of the E-nose system. From the calibration perspective, sensor 

specificity increases the difficulty of calibration. Therefore, 

selecting chemicals with higher sensitivity and broader sensor 

coverage facilitates drift observation and calibration. 

C. Qualitative result of chemicals differentiation 

Principal component analysis (PCA) was applied to the 

dataset to observe the collected feature of dataset distribution 

changes with time. Fig. 3 shows the PCA result for the 14 

chemicals. In Fig. 3, different colored dots represent different 

kinds of chemical samples. 

Maintaining a minimum intra-class distance among samples 

and a maximum inter-class distance constitutes our screening 

criteria for chemical differentiation. As shown in the red boxes 

in Fig. 3, n-butylamine, acetic acid, formaldehyde, n-hexane, 

and benzene are mixed. Each chemical has three 

concentrations, which is one of the reasons why some 

chemicals cannot be separated. Furthermore, the large number 

of sensors and sample features lead to the low contribution of 

the first two dimensions of the PCA, as shown in Fig. 3. 

 
Fig. 3. PCA plot for data from the 14 chemicals (before drift, 

batch 1). 

 

To observe the differences in the distributions of samples, a 

linear discriminant analysis (LDA) algorithm was applied to the 

dataset, as shown in the red box in Fig. 4. Almost all chemicals 

are differentiable except n-butylamine and formaldehyde. 

 
Fig. 4. LDA result of data collected from 14 chemicals (before 

drift, batch 1). 

 

We then used the Silhouette coefficient to give a score to the 

E-nose’s ability to differentiate the test chemicals. Generally, 

Silhouette coefficients are applied to clustering methods and 

mostly to unsupervised approaches. However, calculating the 

Silhouette coefficient after the clustering, such as K-means, can 

result in misclassification and give an incorrect overall score. 

Fig. 5 shows the Silhouette coefficients of each category after 

the data are clustered by K-means (k=14). 

Due to the misclassification of K-means clustering, the 

number of samples in each category is unequal, and the overall 

Silhouette coefficient reaches 0.117, shown as a dotted line in 

Fig. 5. The Silhouette coefficient reaches 0.165 with k=8 being 

the optimal number of clusters determined by the K-means 

clustering algorithm. 

To solve the problem, it is necessary to introduce accurate 

sample labels to ensure the accuracy of the 

clustering/classification. With two minor modifications, we can 

still use the Silhouette coefficient method. 

1) Since we know the exact class and number of chemicals, 

we no longer use K-means to find the optimal K-values; 

instead, we fix k (which is equal to the exact number of 

chemicals we tested) and calculate their Silhouette 

coefficients. 

2) Use the original data or the data resulting from the LDA. 

 

 
Fig. 5. Silhouette values calculated after K-means (k=14) 

(before drift, batch 1). 

 

First, the data were analyzed using LDA or original, 

explicitly given the labels of all points. The algorithm will 
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classify the points according to their true labels. Then, 

Silhouette coefficients are introduced to measure the clarity of 

the contours of each category. The distinctions of the 14 

chemicals initially selected in Table I are quantified, and the 

results are shown in Fig. 6.  

The right side of Fig. 6(a) shows the original data 2-D 

visualization of all the samples in Table I, the left side shows 

the Silhouette coefficients of samples, and the dashed lines 

represent the average Silhouette coefficients for all samples. It 

can be seen from Fig. 6(a) that the uneven distribution of 

samples caused by the misjudgment of the clustering method 

can be improved by introducing the true labels. Fig. 6(b) shows 

the LDA result of all the samples in Table I. The Silhouette 

coefficient is raised to 0.94 (dotted line in Fig. 6(b)). Since all 

samples are given label information, the number of all sample 

categories in the figure is equal. After adjustment, we describe 

the variability among chemical substances with a single 

parameter, with the Silhouette coefficients being an efficient 

means to achieve this. 

 

 
(a) 

 
(b) 

Fig. 6. Silhouette values and the visualization of data (no 

clustering method used, before drift, batch 1). (a) original data. 

(b) after LDA. 

 

Furthermore, Fig. 6 demonstrates that the Silhouette 

coefficients of n-butylamine, formaldehyde, and acetic acid are 

less than the average Silhouette coefficients of 0.94, which 

means that three samples are mixed. This calculated result is 

similar to what is observed in Fig. 4, indicating that the 

discrimination performance of n-butylamine, formaldehyde, 

and acetic acid is worse than that of other chemicals. Therefore 

n-butylamine, formaldehyde, and acetic acid can be excluded in 

priority from the consideration of the differentiation criterion. 

D. Drift resistance of chemicals 

To reduce the scale variants among dimensions, the 

whitening processing (centralization) was conducted on the 

data. To visually observe the drift of the heterogeneous E-nose 

data, we have plotted the LDA scatter points in Fig. 7, in which 

Fig. 7(a) is calculated on the raw data of batch 1 (before drift), 

and Fig. 7(b) is calculated on the raw data of batch 2 (after 

drift). From Fig. 7, it is clear that the low-dimensional subspace 

between batch 1 and batch 2 is significantly biased 

(inconsistent) due to drift over time.  

We applied an LDA to analyze the drift of data samples, 

using red boxes to highlight the parts of the samples that 

overlap. Comparing the sample distribution before and after the 

drift, the drift resulting from the chemicals can be observed. 

Ideally, we are after chemicals that result in large drifts over 

time as these are more useful for E-nose calibration. As shown 

in Fig. 7(b), formaldehyde and n-butylamine still overlap after 

drift. However, this drift does not affect their relative positions. 

The “Response” column in Table III indicates that the 

response for formaldehyde and n-butylamine are low, with 

values of 1.57 and 1.11 respectively. This ranks then at the 

bottom. In addition, their sensor coverage is also low. 

Therefore, stable and non-time-varying chemicals are not 

effective in observing changes in the sensor response, which is 

detrimental to E-nose calibration. Fig. 7 showed that acetic 

acid, ethanol, and tetrahydrofuran met the requirements and 

could be used as calibration chemicals. 

In summary, the least toxic chemicals in each category were 

first selected from the calibration database (see Table I). Then, 

the chemicals in Table III that were ranked low in both response 

and sensor coverage, such as formaldehyde, tetrachloroethene, 

and n-butylamine, were removed. Next, Fig. 6 shows that the 

Silhouette coefficients of n-butylamine, formaldehyde, and 

acetic acid were less than the average Silhouette coefficients of 

0.94, indicating the identification performance of n-butylamine, 

formaldehyde, and acetic acid was worse than other chemicals. 

Therefore n-butylamine, formaldehyde, and acetic acid were 

excluded. Since both formaldehyde and acetaldehyde are all 

aldehydes, while the later has superior sensibility and 

differentiation, we only kept acetaldehyde. Figure 7 shows that 

acetic acid, ethanol, and tetrahydrofuran meet the requirements 

and could be used as calibration chemicals. Finally, we selected 

acetone, ethanol, ethyl acetate, tetrahydrofuran, acetaldehyde, 

and n-hexane as the top six calibration chemicals. 
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(a) 

 
(b) 

Fig. 7. Distribution of 14 chemical samples. (a) batch 1 (before 

drift). (b) batch 2 (after drift). 

V. CONCLUSION 

In this paper, we proposed a method of chemical selection 

based on a number of selection criteria. To find the most 

representative chemicals for calibration of a general-purposed 

E-nose, we investigated the sources and compositions of 

volatile compounds in various environments/documents, and 

identified six chemicals: acetone (ketone), ethanol (alcohol), 

ethyl acetate (ester), tetrahydrofuran (ether), acetaldehyde 

(aldehyde), and n-hexane (alkane) based on the four criteria 

(universality, safety, sensibility and differentiation) combined 

with the Silhouette coefficients from laboratory experiments.  

The method of selecting calibration chemical proposed here 

is generic and will have use for general-purpose E-noses. In the 

future, we will do experiments over longer periods of time to 

further investigate the lifetime and drift of E-noses. However, 

beyond considering the safety factor, our method has not been 

verified in detecting higher toxic / harmful chemicals, so further 

studies on these chemicals will also be needed. 
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