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A B S T R A C T   

Mathematical models are increasingly used throughout infectious disease outbreaks to guide control measures. In 
this review article, we focus on the initial stages of an outbreak, when a pathogen has just been observed in a new 
location (e.g., a town, region or country). We provide a beginner’s guide to two methods for estimating the risk 
that introduced cases lead to sustained local transmission (i.e., the probability of a major outbreak), as opposed 
to the outbreak fading out with only a small number of cases. We discuss how these simple methods can be 
extended for epidemiological models with any level of complexity, facilitating their wider use, and describe how 
estimates of the probability of a major outbreak can be used to guide pathogen surveillance and control stra-
tegies. We also give an overview of previous applications of these approaches. This guide is intended to help 
quantitative researchers develop their own epidemiological models and use them to estimate the risks associated 
with pathogens arriving in new host populations. The development of these models is crucial for future outbreak 
preparedness. 

This manuscript was submitted as part of a theme issue on “Modelling COVID-19 and Preparedness for Future 
Pandemics”.   

1. Introduction 

When a pathogen first arrives in a host population, a crucial question 
for policy makers is whether initial cases are likely to be followed by 
sustained transmission or whether the pathogen will instead fade out 
(Glennon et al., 2021; Thompson et al., 2020; Craft et al., 2013). This 
does not only depend on the characteristics of the pathogen, host pop-
ulation and environment, but there is also an element of chance. Due to 
variability in the numbers of contacts between infectious and susceptible 
individuals, and the fact that not all contacts lead to transmission, the 
first infected individuals may not transmit to others. For example, when 
the first human cases of infection by SARS-CoV-2 occurred in China at 
the start of the COVID-19 pandemic in December 2019, most likely due 
to zoonotic spillover (Worobey, 2021; Zhang and Holmes, 2020), it was 
not guaranteed that an epidemic or pandemic in humans would follow. 
In principle, those initial cases could have failed to lead to widespread 
transmission. Similarly, when SARS-CoV-2 was then transported by in-
ternational travellers out of China and into other countries, not every 

case introduced into a new country led to onward transmission. 
Genomic analyses show that the virus was introduced into the UK over 
1,000 times between January and June 2020, with only some of those 
imported cases initiating chains of sustained local transmission (du 
Plessis et al., 2021). 

As well as international or national spread, localised outbreaks have 
occurred during the COVID-19 pandemic, including clusters of cases in 
hospitals and churches in South Korea (Shim et al., 2020) and outbreaks 
in care homes and schools in the UK (Hall et al., 2021; Aiano et al., 
2021). Even at the local scale, the question of whether or not introduced 
cases will lead to onward transmission is critical for optimising public 
health measures. If the risk of sustained transmission is high, then 
intense surveillance is required to detect pathogen introductions, and 
interventions should be deployed quickly to lower the transmission risk 
whenever the pathogen is detected. 

Given the public health implications of substantial transmission, 
there has been interest in estimating the “probability of a major 
outbreak”, not only during the COVID-19 pandemic but also for other 
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diseases. This quantity reflects the risk that cases introduced into a new 
host population will lead to sustained transmission in that population, as 
opposed to only a small number of further cases occurring. For example, 
during the 2014–16 Ebola epidemic in West Africa, Althaus et al. 
(Althaus et al., 2015) considered the likelihood that single undetected 
importations to different African countries would initiate epidemics in 
those countries, based on estimates of the basic reproduction number 
(R0) in those settings, and found a high probability of a major outbreak if 
the virus was introduced to Nigeria. As well as Ebola (Althaus et al., 
2015; Merler et al., 2016; Thompson et al., 2019a), the probability of a 
major outbreak has been considered in the context of COVID-19 (Anzai 
et al., 2020; Thompson, 2020; Lovell-Read et al., 2021; Lovell-Read 
et al., 2022; Thompson et al., 2023) and SARS (Glass and Becker, 
2006), and in a range of theoretical studies (e.g., Anderson and Watson, 
1980; Craft et al., 2013; Thompson et al., 2019b). 

In this review article, we summarise two mathematical methods that 
can be used to infer the probability of a major outbreak. More specif-
ically, these analytic methods are used to derive equations satisfied by 
the probability of a major outbreak (in approximations of stochastic 
compartmental outbreak models), which can then be solved either 
analytically or numerically. Rather than presenting an exhaustive re-
view of the numerous ways that epidemic risks have been quantified in 
different settings, we aim to explain these two quantitative methods, 
which lead to identical results, as simply and clearly as possible. We 
hope that this allows researchers to apply epidemiological modelling 
theory to their own models to estimate the risk that cases introduced to a 
new location will initiate a major outbreak. 

We start by providing important context to these approaches. Spe-
cifically, we introduce compartmental outbreak models and review 
terminology that has been used to describe outbreaks of different sizes. 
We then go on to present the two methods underlying calculations of the 
probability of a major outbreak: i) using probability generating func-
tions; and ii) using a first-step analysis. We explore how these ap-
proaches can be applied to epidemiological models of varying 
complexity, and how the results can inform public health measures at 
the start of an outbreak. In doing this, we summarise some of the ap-
plications of these methods in the wider epidemiological modelling 
literature. 

2. Background 

2.1. Compartmental outbreak models 

This review article is primarily concerned with estimating the 
probability of a major outbreak using approximations of compartmental 
outbreak models, in which individuals are divided according to their 
infection or symptom status. A commonly cited example of a compart-
mental model is the Susceptible-Infectious-Removed (SIR) model, the 
deterministic version of which is given by 

dS(t)
dt

= −
βS(t)I(t)

N
,

dI(t)
dt

=
βS(t)I(t)

N
− γI(t),

dR(t)
dt

= γI(t). (1) 

In system of equations (1), the variables S(t), I(t) and R(t) represent 
the numbers of susceptible, infectious and removed individuals at time t, 
respectively, and N = S(t)+I(t)+R(t) is the total population size. The 
parameters β and γ are the infection and removal rate parameters. More 
complex epidemiology can be included in compartmental models by 
adding more compartments accordingly. For example, different trans-
mission risks between hosts of different ages can be incorporated by 
stratifying the population into age groups and including separate com-
partments (with different infection rates or susceptibilities) for in-
dividuals of different ages (see Prem et al., 2017; Davies et al., 2020 and 
Section 4.2). 

We focus on the SIR model in this subsection, as we use this model in 
Section 3 to introduce the two methods for estimating the probability of 
a major outbreak. Under the differential equation representation of the 

SIR model (system of equations (1)), for fixed parameter values and 
initial conditions, identical dynamics occur each time the system is 
solved numerically. However, this deterministic formulation is inap-
propriate for modelling the start of an outbreak, when randomness in 
contacts between individuals is important for determining whether or 
not a major outbreak occurs. Stochastic models account for this 
randomness and can be simulated using various methods, including 
variants of the Gillespie stochastic simulation algorithm (Gillespie, 
1977). 

Under the Gillespie direct method, each event (for the SIR model, 
infection events and removal events) is simulated. For the SIR model at 
time t, the probability that the next event is an infection event is 
βS(t)I(t)

N /
( βS(t)I(t)

N +γI(t)
)

and the probability that the next event is a removal 
event is γI(t)/

( βS(t)I(t)
N +γI(t)

)
. If a simulation is ongoing at time t, the time 

of the next event is t + τ, where the value of τ is drawn from an expo-
nential distribution with rate parameter βS(t)I(t)

N + γI(t). 
Early in an outbreak, when the pathogen has arrived recently in the 

host population (so that I(t) is small), S(t) ≈ N. Substituting this 
approximation into the expressions above indicates that the stochastic 
dynamics can be approximated by a model in which the probability that 
the next event is an infection event is β/(β+γ) and the probability that 
the next event is a removal event is γ/(β + γ). Equivalently, in the initial 
phase of the outbreak, the probability that an individual infected host 
generates k infections is given by 

P(X = k) =
(

β
β + γ

)k

×
γ

β + γ
,

since generating exactly k infections required that host to first generate k 
infections and then be removed. This can be rewritten as 

P(X = k) =
R0

k

(R0 + 1)k+1,

where the basic reproduction number R0 = β/γ. This probability dis-
tribution (for k = 0, 1, 2,⋯) is known as the offspring distribution, as it 
characterises the number of infections (i.e., offspring) generated by each 
infected host. This is a geometric distribution with “success probability” 

1
R0+1 (where we use the formulation of the geometric distribution rep-
resenting the number of failures prior to the first success). 

To summarise, early outbreak dynamics soon after a pathogen ar-
rives in a host population can be simulated using stochastic compart-
mental models. We have focused on the stochastic SIR model in this 
subsection, although additional epidemiological complexity can be 
considered by adding compartments to this basic model (see Section 4). 
Early outbreak dynamics under the SIR model can be approximated 
using a model in which the number of infections that each infected host 
generates is drawn from a geometric distribution with “success proba-
bility” 1

R0+1. 

2.2. Outbreaks of different sizes 

When using compartmental models to estimate the probability of a 
major outbreak, it is necessary to consider exactly what a “major 
outbreak” is. Different terms are used by epidemiologists to classify 
outbreaks of different sizes. The terms “epidemic” and “pandemic” are 
commonly used, yet they do not have precise definitions (Orbann et al., 
2017; Singer et al., 2021). A pandemic can be defined as “an epidemic 
occurring worldwide, or over a very wide area, crossing international 
boundaries and usually affecting a large number of people” (Kelly, 
2011). However, it is unclear how many international boundaries need 
to be crossed, or people need to be affected, for an outbreak to become a 
pandemic. For example, despite cases arising in multiple countries, the 
2002–2004 SARS outbreak was not declared a pandemic. There was also 
debate surrounding when the spread of SARS-CoV-2 constituted a 
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pandemic, with the WHO declaring a pandemic on 11 March 2020 
(World Health Organization, 2020) despite some scientists calling for a 
pandemic to be declared earlier. 

Despite the lack of precise definitions of epidemiological terms like 
“epidemic” and “pandemic”, and the existence of other terms to describe 
a severe outbreak such as “Public Health Emergency of International 
Concern” (Durrheim et al., 2020), specific criteria have been used in 
some quantitative studies to differentiate between scenarios in which 
pathogen transmission is limited and those in which the pathogen be-
comes widespread. For example, a study by the US Centers for Disease 
Control (Brammer et al., 2000) considered historical influenza surveil-
lance data in the USA and defined the epidemic threshold as the point at 
which the observed proportion of deaths attributed to pneumonia or 
influenza was substantially higher than would be expected in the 
absence of influenza (specifically, 1.645 standard deviations above the 
seasonal baseline). Similarly, a study by Kubiak et al. (Kubiak et al., 
2010) differentiated between outbreaks due to a novel pathogen either 
emerging or going extinct based on whether or not the cumulative 
number of infections reached 100, and similar thresholds have been 
used in other studies (Davis et al., 2021; Craft et al., 2009; Keeling, 
2005). 

When simulations of stochastic compartmental outbreak models are 
run, it is often possible to differentiate between outbreaks that fade out 
with few cases (minor outbreaks) and those in which large numbers of 
cases occur (major outbreaks). For example, when R0 is larger than but 
not close to one, there is typically a clear division between minor and 
major outbreaks (Fig. 1A-C). This division is reflected in real-world data. 
For example, the numbers of infections in historical Ebola outbreaks 
demonstrate the phenomenon that pathogens can either fade out with 
few cases or invade the host population and cause large numbers of cases 
(Fig. 1D-E). 

Throughout this review article, where we refer to the probability of a 
major outbreak (for a particular model), we are referring to the proba-
bility that a small number of introduced cases will initiate an outbreak 
with more infections than observed in the outbreaks that fade out with 
few infections, as illustrated in Fig. 1A-C. One way to calculate the 
probability of a major outbreak is simply to count the proportion of 
model simulations that are major outbreaks. While this approach is 
straightforward, it requires a large number of simulations of the sto-
chastic compartmental model under consideration to be run. For com-
plex models, this may incur a significant computational cost and be 
time-consuming, which may be problematic in the face of an emerging 
outbreak. In this review article, we therefore describe two analytic ap-
proaches for estimating the probability of a major outbreak that can be 
applied to compartmental models of different complexity. 

3. Methods for estimating the probability of a major outbreak 

In this section, we introduce two analytic methods for calculating the 
probability of a major outbreak following the introduction of a pathogen 
into a new host population. 

3.1. Method 1: Using probability generating functions 

As noted in Section 2.1, one way to characterise early outbreak dy-
namics for a directly transmitted pathogen is using the offspring distri-
bution, in which the probability that an infected individual generates k 
new infections is denoted by P(X = k). For any such model, the basic 
reproduction number is simply the mean of the offspring distribution: 
R0 =

∑∞
k=0kP(X = k). 

Under this formulation, the early outbreak can be approximated as a 
branching process: each infected individual generates a number of new 

Fig. 1. When a pathogen first arrives in a host population, it can either invade the population and lead to a large number of cases (a major outbreak) or fade out with 
few cases (a minor outbreak). A-C. The distribution characterising the total number of infections between 100,000 repeated simulations of the stochastic SIR model, 
simulated using the Gillespie direct method (Gillespie, 1977) in a population of N = 1, 000 individuals starting from a single infected individual (with all other 
individuals susceptible initially), for different values of R0 = β/γ (A. R0 = 1.5; B. R0 = 2; C. R0 = 3; the results do not depend on individual values of β and γ). D. The 
total number of infections detected in previous Ebola virus disease outbreaks from 1976 to 2020 (Centers for Disease Control and Prevention, 2021). E. The dis-
tribution characterising the total number of infections in each of the Ebola outbreaks shown in panel D. In panels A-C and E, numbers of infections are grouped into 
1–19, 20–39, 40–59 and so on (so that the first bar represents outbreaks of size 1–19, the second bar represents outbreaks of size 20–39, etc). In panel D, the y-axis is 
cut off at a maximum value of 500, to allow the smaller outbreaks to be seen more easily. The large outbreaks in 2014–16 and 2018–20 are listed according to the 
year in which those outbreaks were first detected (2014 and 2018, respectively). In panel E, the final bar represents outbreaks with more than 160 infections. 
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infections that is drawn from the offspring distribution (ignoring tem-
poral changes in this distribution), and all infected cases are assumed to 
act independently of each other in generating secondary cases (each case 
generates subsequent infections based on independent draws from the 
offspring distribution). Rather than considering the precise times at 
which infections occur, infections can be separated into discrete gen-
erations, so that all infections generated by a specific individual appear 
in the same generation. An example of a transmission tree generated 
under this model, starting from a single infected individual, is shown in 
Fig. 2A, with the analogous transmission tree in which calendar time is 
tracked shown in Fig. 2B. 

For directly transmitted pathogens, the probability of a major 
outbreak can then be calculated using probability generating functions 
(PGFs). For any discrete random variable, X, the PGF is defined as: 
GX(z) = E

[
zX] =

∑∞
k=0zkP(X = k). If X is a random variable repre-

senting the number of offspring generated by an infected host, then 
R0 = E[X] = GX

′(1), where the notation ′ represents differentiation with 
respect to the variable z. 

Rather than calculating the probability of a major outbreak directly, 
it is more straightforward to calculate the probability that a major 
outbreak does not occur (i.e., the probability that the pathogen fades out 
before causing a major outbreak). The probability of a major outbreak 
can then be calculated by subtracting the probability that a major 
outbreak does not occur from one. 

To do this, we denote the probability that a major outbreak does not 
occur, starting from a single infected individual, by q. Then, we consider 
the number of infections caused by that first infected individual. For a 
major outbreak to fail to develop, we either need the first infected in-
dividual to infect no-one else, or we need all of the individuals infected 
by the first infected individual to fail to initiate infection lineages that 
constitute a major outbreak. In other words, applying the law of total 
probability, 

ℙ(no major outbreak)

= ℙ(first infected individual infects 0 others)

+
∑∞

k=1
(ℙ(first infected individual infects k others) ×

ℙ(all k infectees do not initiate a major outbreak) ),

or equivalently, 

q =
∑∞

k=0
qkℙ(X = k) = GX(q),

where P(X = k) represents the probability that an infected individual 
generates k offspring. Hence, the probability that a major outbreak does 
not occur (q) is a fixed point of the PGF of the offspring distribution, 
GX(q) = q. Specifically, the probability that a major outbreak does not 
occur is the smallest non-negative solution of this equation (Norris, 
1997). In simple cases, this equation can be solved analytically, and in 
more complex cases this equation can be solved numerically. For the 
derivation of q for the SIR model, see Section 3.1.1. 

Once the probability that no major outbreak occurs (q) has been 
calculated, the probability that a major outbreak does occur starting 
from a single infected individual is given by p = 1 − q. To generalise this 
idea to multiple initially infected individuals (m infected individuals, 
say), then it is sufficient to note that a major outbreak failing to occur 
simply requires all m infected individuals to fail to start infection line-
ages that lead to a major outbreak. In other words, the probability of a 
major outbreak when there are m infected individuals initially is pm =

1 − qm. This expression is useful when considering the probability of a 
major outbreak arising from multiple imported cases, and we note that 
this generalisation holds even in scenarios in which the m infected in-
dividuals arrive in the population at different times (so long as the values 
of the parameters characterising transmission remain fixed). By calcu-
lating the probability of a major outbreak in this way, common pitfalls 
associated with using summary statistics to assess the risk posed by an 

Fig. 2. An example of a transmission tree generated using a 
branching process model. Grey circles represent infected in-
dividuals. A. In this panel, the times at which new infections 
occur are not tracked. Each infected individual generates a 
number of new infections that is drawn from the offspring 
distribution, and infectees are placed in the generation 
immediately following the infector. B. The analogous trans-
mission tree to panel A, but with the exact times of trans-
mission tracked. When exact infection times are tracked, 
infection generations may overlap.   
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invading pathogen are avoided (Juul et al., 2021). 
For additional information about the use of PGFs in infectious dis-

ease modelling, see the review by Miller (Miller, 2018). 

3.1.1. Application to the SIR model 
To apply Method 1 to the SIR model, we note that, as derived in 

Section 2.1, the offspring distribution is a geometric distribution with 
“success probability” 1

R0+1. The PGF of a geometric distribution is 
GX(z) = s

1− (1− s)z, where s is the success probability. The fixed-point 
equation GX(q) = q therefore gives 

1
R0 + 1 − R0q

= q,

which can be rearranged to obtain 

R0q2 − (R0 + 1)q+ 1 = 0.

This quadratic equation has solutions q = 1/R0 and q = 1. Taking 
the smaller solution (for a justification, see Miller (Miller, 2018)), the 
probability of a major outbreak starting from one infectious host is p =

1 − q = 1 − 1
R0

, whenever R0 > 1 (if instead R0 < 1, then a major 
outbreak will definitely not occur). The probability of a major outbreak 

starting from m infectious hosts is pm = 1 −
(

1
R0

)m
. 

3.2. Method 2: Using a first-step analysis 

An alternative method for calculating the probability of a major 
outbreak involves conditioning on the first event after a single infectious 
individual is introduced into the host population, rather than condi-
tioning on the number of offspring that they generate. This is called a 
first-step analysis. 

We consider the application of this method to the SIR model here. 
However, as we go on to show in Section 4, this approach can be 
generalised easily for more complex compartmental models. To make 
this generalisation more straightforward, we now denote the probability 
that a major outbreak fails to develop starting from i infectious in-
dividuals by qi (the variable q from Method 1 is therefore now denoted 
by q1, so that q = q1). If infections are modelled as a branching process, 
then a major outbreak failing to develop starting from m infectious in-
dividuals again requires all of these m individuals to fail to start infection 
lineages that lead to a major outbreak, so that qm = q1

m. 
Starting from a single infectious individual, we consider the possible 

outcomes of the first event and apply the law of total probability: 

P(no major outbreak)
=P(no major outbreak | first event is an infection)×
P(first event is aninfection)
+P(no major outbreak | first event is a removal)×
P(first event is a removal).

If the first event is an infection event, there are then two infected 
individuals in the population, and if the first event is a removal event, 
there are then no infected individuals in the population. Noting again 
that the probability that the first event is an infection event is 
(approximately) β/(β+ γ), and the probability that the first event is a 
removal event is γ/(β+ γ), gives 

q1 =
β

β + γ
q2 +

γ
β + γ

q0.

Applying the branching process assumption that qm = q1
m (i.e., in-

dividuals are assumed to act independently in generating new in-
fections), and noting that q0 = 1, leads to 

q1 =
β

β + γ
q1

2 +
γ

β + γ
.

This quadratic equation can be solved to find that q1 = γ
β =

1
R0 

or q1 =

1. The theory of Markov chains dictates that hitting probabilities (in this 
case, the extinction probability without a major outbreak) obtained 
using first-step analyses are given by the minimal non-negative solution 
of the resulting equations (Norris, 1997). In other words, 

q1 =
1
R0
,

whenever R0 > 1 (if R0 < 1, then q1 = 1 and a major outbreak will 
certainly not occur), and the probability of a major outbreak starting 
from m infectious individuals is 

pm = 1 −
(

1
R0

)m

.

As expected, since both methods are based on the same underlying 
assumptions, the first-step analysis approach, therefore, gives the same 
result as the PGF approach (Section 3.1.1). 

4. More complex epidemiological models 

In Section 3, we considered estimating the probability of a major 
outbreak by applying a branching process approximation to the SIR 
model. The same estimate holds for some other epidemiological models 
too, including the SIS model and the SEIR model; in those models, the 
first event starting from a single infectious individual is again either 
infection of a susceptible individual or removal of the infectious indi-
vidual, with identical offspring distributions (per infection) for each of 
the SIR, SIS and SEIR models. 

However, many compartmental outbreak models include additional 
epidemiological complexity. In this section, we therefore demonstrate 
how the two methods described above for calculating the probability of 
a major outbreak can be applied to more complex models. Specifically, 
we present two case studies in detail, involving models with a gamma 
distributed infectious period (Case study 1) and different host types 
(Case study 2). 

4.1. Case study 1: Gamma distributed infectious period 

An important challenge when modelling infectious disease outbreak 
dynamics is to determine the infectious period distribution. Some pre-
vious analyses have made the simplest possible assumption of a constant 
duration infectious period. The basic SIR model involves an assumption 
that the infectious period of infectious hosts is exponentially distributed. 
However, gamma distributions have been found to characterise epide-
miological periods more accurately than exponential distributions 
(Lloyd, 2001). Here, we consider how gamma distributed infectious 
periods can be accounted for in the methods described in Section 3. 

4.1.1. Method 1: Using probability generating functions 
To extend the PGF method to a scenario in which infectious periods 

are drawn from a gamma distribution, we follow the method of 
Anderson and Watson (Anderson and Watson, 1980). First, we note that 
a gamma distribution with an integer shape parameter n and rate 
parameter λ (also known as an Erlang distribution) can be thought of as 
the sum of n exponential distributions each with rate parameter λ. 
Hence, to extend the basic SIR model (system of equations (1)) to 
include a gamma distributed infectious period, we split the I compart-
ment into n subcompartments, giving 

dS(t)
dt

= −
βS(t)

∑n

i=1
Ii(t)

N
,

dI1(t)
dt

=
βS(t)

∑n

i=1
Ii(t)

N
− nγI1(t),

dIj(t)
dt

= nγIj− 1(t) − nγIj(t),
dR(t)

dt
= nγIn(t),

(2)  

for j = 2,3,⋯,n. This approach is sometimes referred to as the method of 
stages (Lloyd, 2001) or the linear chain trick (MacDonald, 1978), and 
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system of equations (2) is called the SInR model (a schematic is shown in 
Fig. 3A). 

In the analogous stochastic model, infected individuals spend an 
exponentially distributed waiting time in each of the n infectious com-
partments, which corresponds to a gamma distributed infectious period 
in total. Early in an outbreak, in each one of the infectious compart-
ments, following from our results for the SIR model (Section 3.1.1), the 
infectious host generates a number of offspring that is drawn from a 
geometric distribution, each with success probability 1

(R0/n)+1, where the 
n in this expression follows from the fact that the infectious host is ex-
pected to spend a fraction 1/n of their infectious period in each of the 
infectious compartments. 

The total number of offspring generated by any infectious host is 
therefore the sum of n independent geometric distributions. Noting that 
the PGF of a sum of independent random variables is equal to the 
product of the individual PGFs, the PGF of the offspring distribution is 
given by 

GX(q) =
(

1
(R0/n) + 1 − (R0/n)q

)n

.

This corresponds to a negative binomial offspring distribution with 
mean R0 and dispersion parameter n. The fixed-point equation GX(q) = q 
is then 
(

1
(R0/n) + 1 − (R0/n)q

)n

= q. (3) 

The probability of a major outbreak starting from m infectious hosts 
who are each at the beginning of their infectious period is then pm =

1 − qm, where q is the smallest non-negative solution of equation (3). 
The value of p1 is shown for a range of values of n in Fig. 3B (blue line) in 
a scenario in which R0 = 2. 

4.1.2. Method 2: Using a first-step analysis 
The first-step analysis approach is straightforward to apply to 

approximate the probability of a major outbreak for complex stochastic 
compartmental epidemiological models. To apply this method to the 
stochastic SInR model, we denote the probability that no major outbreak 
occurs starting from i1 individuals in the first infectious compartment 
(I1), i2 individuals in the second infectious compartment (I2), and so on, 
by qi1 i2⋯in . 

Then, considering starting from a single individual in the first in-
fectious compartment (with all other individuals susceptible), the first 
event is either the infectious individual infecting another host (with 
probability β/(β+ nγ) = R0/(R0 + n), in which we again assume that 
S(t) ≈ N during the early outbreak) or the infectious individual pro-
gressing from state I1 to state I2 (with probability nγ/(β+ nγ) = n/(R0 +

n)). Hence, 

P(no major outbreak)
= P(no major outbreak | first event is an infection)P(first event is an infection)
+P(no major outbreak | first event is I1→I2)P(first event is I1→I2),

so that 

q100⋯0 =
R0

R0 + n
q200⋯0 +

n
R0 + n

q010⋯0.

We again make the branching process assumption that infected in-
dividuals act independently in generating new infections, so that 
q200⋯0 = q100⋯0

2, giving 

q100⋯0 =
R0

R0 + n
q100⋯0

2 +
n

R0 + n
q010⋯0.

Repeating this calculation, but instead starting from a single indi-
vidual in each of the other infectious compartments, leads to the system 
of equations 

q100⋯0 =
R0

R0 + n
q100⋯0

2 +
n

R0 + n
q010⋯0,

q010⋯0 =
R0

R0 + n
q100⋯0q010⋯0 +

n
R0 + n

q001⋯0,

⋮  

q000⋯1 =
R0

R0 + n
q100⋯0q000⋯1 +

n
R0 + n

, (4)  

in which the second equation corresponds to the probability that a major 
outbreak does not occur starting from a single individual in the I2 
compartment, the third equation corresponds to the probability that a 
major outbreak does not occur starting from a single individual in the I3 
compartment, and so on. In the final equation, we use the fact that 
q000⋯0 = 1, as a major outbreak certainly will not follow if there are no 
infected individuals. 

System of equations (4) involves n equations and n unknowns. 
Similarly to the SIR model, the probability of a major outbreak starting 
from m infectious individuals who are at the start of their infectious 
periods is given by 

pm = 1 − q100⋯0
m,

where q100⋯0 is obtained by finding the minimal non-negative solution 
of system of equations (4). If (q100⋯0

(1), q010⋯0
(1),⋯, q000⋯1

(1)) is the 
minimal non-negative solution of system of equations (4), and (q100⋯0

(2),

Fig. 3. The probability of a major outbreak for a pathogen for which the in-
fectious period follows a gamma distribution. A. Schematic indicating how the 
basic SIR model can be extended to account for a gamma distributed infectious 
period (the SInR model). B. The probability of a major outbreak starting from a 
single infected individual at the start of their infectious period (in the I1 

compartment), obtained using Method 1 (blue line; p = 1 − q, where q is the 
smallest non-negative solution of equation (3)) and Method 2 (green circles; 
p = 1 − q100⋯0, where q100⋯0 comes from the minimal non-negative solution of 
system of equations (4)). In panel B, results are shown for a range of values of n 
with a fixed value of R0 = 2, and the solutions for q and q100⋯0 are found 
numerically in Matlab using the fsolve function. The derivations presented in 
the text are valid for integer values of n, but we show the solution of equation 
(3) for all values of n (blue line in panel B) to facilitate straightforward com-
parison between methods 1 and 2. The value of n corresponds to the shape 
parameter of the gamma distributed infectious period distribution. 
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q010⋯0
(2),⋯, q000⋯1

(2)) is another non-negative solution, then 
q100⋯0

(1) ≤ q100⋯0
(2), q010⋯0

(1) ≤ q010⋯0
(2), and so on (Norris, 1997). The 

solution obtained in this way matches the results obtained from Method 
1 (Fig. 3B, green circles). 

In general, the approach described above can be used for compart-
mental models in which there are different types of infected individual 
(in this example, the different types of infected individual correspond to 
hosts who are at different stages of their infectious period). When this 
method is applied, the number of equations that must be solved simul-
taneously in the resulting system of equations is equal to the number of 
types of infected individual. 

4.2. Case study 2: Different host types 

We now consider applying the two methods for calculating the 
probability of a major outbreak using a compartmental model in which 
heterogeneity in the risk of onward transmission between infected hosts 
is accounted for. To ground this in a concrete example, we consider an 
age-structured model in which the population is split into children and 
adults, with the transmission risk being determined by the numbers of 
contacts that individuals have both within and between these age 
groups. 

4.2.1. Method 1: Using probability generating functions 
When the host population is split into children and adults, the SIR 

model becomes 

dSc(t)
dt

= −
βccSc(t)Ic(t)

Nc
−

βacSc(t)Ia(t)
Nc

,

dIc(t)
dt

=
βccSc(t)Ic(t)

Nc
+

βacSc(t)Ia(t)
Nc

− γIc(t),

dRc(t)
dt

= γIc(t),

dSa(t)
dt

= −
βcaSa(t)Ic(t)

Na
−

βaaSa(t)Ia(t)
Na

,

dIa(t)
dt

=
βcaSa(t)Ic(t)

Na
+

βaaSa(t)Ia(t)
Na

− γIa(t),

dRa(t)
dt

= γIa(t),

(5)  

in which the subscripts are used to denote children (c) or adults (a) and, 
for example, βac sets the rate at which infectious adults infect susceptible 
children. In this formulation, we assume that children and adults recover 
at the same rate. The basic reproduction number, R0, is the dominant 

eigenvalue of the next generation matrix, K =

(
Rcc Rca
Rac Raa

)

, in which 

Rcc =
βcc
γ , Rca =

βca
γ , Rac =

βac
γ and Raa =

βaa
γ . 

To estimate the probability of a major outbreak using PGFs, we 
follow the approach outlined by Nishiura et al. (Nishiura et al., 2011), 
which is also described elsewhere (Griffiths, 1973; Ball, 1983). We 
denote the probability of a major outbreak not occurring starting from a 
single infected child (with the remainder of the population susceptible) 
by qc, and consider the offspring cases generated by that first infected 
child. This gives 

P(no major outbreak starting from an infected child)

=
∑∞

k1 = 0

∑∞

k2 = 0
(P(no major outbreak|infect k1 children and k2 adults) ×

P(infect k1 children and k2 adults)),

so that 

qc = Fc(qc, qa),

where 

Fc(qc, qa) =
∑∞

k1=0

∑∞

k2=0
ℙ(infect k1 children and k2 adults)qc

k1 qa
k2 ,

is a bivariate PGF in which qa is the probability of no major outbreak 
arising from a single infected adult. This can be written as 

qc =
∑∞

k1=0

∑∞

k2=0

(k1 + k2)!

k1!k2!

(
βcc

βcc +βca + γ

)k1( βca

βcc +βca + γ

)k2 γ
βcc +βca + γ

qc
k1 qa

k2 ,

where the combinatorial term accounts for the fact that the children and 
adults can be infected in any order. This can then be rewritten as 

qc =
∑∞

k1=0

∑∞

k2=0

(k1 + k2)!

k1!k2!

(
βccqc

βcc + βca + γ

)k1
(

βcaqa

βcc + βca + γ

)k2 γ
βcc + βca + γ

,

which is a sum of multinomial expansions that can be written as a single 
sum over each value of k1 + k2 = s, 

qc =
∑∞

s=0

(
βccqc + βcaqa

βcc + βca + γ

)s γ
βcc + βca + γ

.

Summing this geometric series gives 

qc =

γ
βcc+βca+γ

1 −
βccqc+βcaqa
βcc+βca+γ

=
γ

γ + βcc(1 − qc) + βca(1 − qa)
,

in other words 

qc =
1

1 + Rcc(1 − qc) + Rca(1 − qa)
.

An identical calculation starting from a single infected adult initially 
then leads to the system of equations 

qc =
1

1 + Rcc(1 − qc) + Rca(1 − qa)
,

qa =
1

1 + Rac(1 − qc) + Raa(1 − qa)
. (6) 

The probability of a major outbreak starting from a single infectious 
child is then pc = 1 − qc, and the probability of a major outbreak starting 
from a single infectious adult is pa = 1 − qa, where (qc, qa) is the minimal 
non-negative solution of system of equations (6). 

4.2.2. Method 2: Using a first-step analysis 
To instead use a first-step analysis to estimate the probability of a 

major outbreak for the model with two host types (the stochastic 
analogue of system of equations (5)), we first consider the probability 
that a major outbreak does not occur starting with a single infected child 
(with all other children and all adults assumed to be susceptible). 
Similarly to before, it is assumed that Sc ≈ Nc and Sa ≈ Na throughout 
the early outbreak. Denoting the probability that a major outbreak does 
not occur starting from i infected children and j infected adults by qij, 
and considering the possible events starting from a single infected child, 
gives 

P(no major outbreak starting from an infected child)
= P(no major outbreak | first event is infection of a child)×
P(first event is infection of a child)
+P(no major outbreak | first event is infection of an adult)×
P(first event is infection of an adult)
+P(no major outbreak | first event is a removal)×
P(first event is a removal),

so that 

q10 =
βcc

βcc + βca + γ
q20 +

βca

βcc + βca + γ
q11 +

γ
βcc + βca + γ

q00.
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We make the branching process assumption that infected individuals 
act independently in generating new infections, so that q20 = q10

2 and 
q11 = q10q01, and we note that a major outbreak will not occur if there 
are no infected individuals (q00 = 1), giving 

q10 =
βcc

βcc + βca + γ
q10

2 +
βca

βcc + βca + γ
q10q01 +

γ
βcc + βca + γ

,

or equivalently 

q10 =
Rcc

Rcc + Rca + 1
q10

2 +
Rca

Rcc + Rca + 1
q10q01 +

1
Rcc + Rca + 1

.

An analogous calculation, starting instead from a single infected 
adult, leads to the system of equations 

q10 =
Rcc

Rcc + Rca + 1
q10

2 +
Rca

Rcc + Rca + 1
q10q01 +

1
Rcc + Rca + 1

,

q01 =
Rac

Rac + Raa + 1
q10q01 +

Raa

Rac + Raa + 1
q01

2 +
1

Rac + Raa + 1
. (7) 

Similarly to the SIR model, the probability of a major outbreak 
starting from m1 infected children and m2 infected adults is given by 

pm1m2 = 1 − q10
m1 q01

m2 ,

where q10 and q01 are the smallest non-negative solutions obtained from 

system of equations (7). 
Results from this approach, alongside the analogous results using 

Method 1, are shown in Fig. 4B. In the example shown there, children 
are assumed to have more contacts with other children than adults do 
with other adults (Rcc = 1.5 and Raa = 0.8). We also assume that there 
are more within-group contacts than between-group contacts (Rca =

Rac = 0.35, which is smaller than both Rcc and Raa). 

5. Using the probability of a major outbreak to guide 
interventions 

The two methods outlined in Section 3, and their extensions (Section 
4), provide robust approaches for estimating the probability that cases 
introduced to a new location will lead to sustained local transmission. A 
key question for policy advisors is then how the probability of a major 
outbreak can be reduced. In this section, we review the use of branching 
process models to compute the probability of a major outbreak, and 
consider the impacts of factors affecting pathogen transmission on dis-
ease control. For ease of reference, many of the studies that we cite are 
listed in Table 1, which demonstrates that both the PGF method and 
first-step analysis method have been used in a range of studies ac-
counting for different features relevant to pathogen transmission and 
control. 

5.1. Different transmission routes 

So far in this article, we have focused on directly transmitted path-
ogens in human populations. However, many pathogens are not directly 
transmitted, and are instead spread by vectors. The probability of a 
major outbreak has been considered in the context of vector-borne dis-
eases of humans (e.g. Bartlett, 1964; Lloyd et al., 2007; Nipa et al., 2021; 
Guzzetta et al., 2016a; Guzzetta et al., 2016b), and has also been applied 
for pathogens of animals. Mugabi et al. (Mugabi et al., 2021) estimated 
the probability of a major outbreak of bluetongue disease (a pathogen of 
livestock that is transmitted by midges), and highlighted the importance 
of the midge lifespan and the biting rate in determining the probability 
of a major outbreak. They found that the probability of a major outbreak 
is higher if the pathogen is introduced into the population by infected 
cattle rather than infected midges. They concluded that interventions 
preventing introductions in cattle are most likely to reduce the risk of 
major outbreaks. A study by Wang et al. (Wang et al., 2020) of bovine 
babesiosis (a pathogen of livestock that is transmitted by ticks) consid-
ered the probability of a major outbreak in a model that differentiates 
between juvenile and adult cattle. They also found that the probability 
of a major outbreak depends on the host type that brings the pathogen 
into the local population, although in this case the probability of a major 
outbreak was determined to be highest if the pathogen is introduced into 
the population by the vector. This again has implications for optimal 
control strategies. 

Another transmission route that is common to a range of pathogens is 
transmission via the local environment. For example, the pathogen may 
be shed by infectious hosts, multiply in the environment, and then infect 
other hosts. Lahodny Jr. et al. (Lahodny Jr. et al., 2015) examined case 
studies of salmonellosis in cattle and cholera in humans, and extended 
calculations of the probability of a major outbreak to account for envi-
ronmental transmission. Their results indicate that screening cattle for 
infection is the optimal strategy to prevent local salmonellosis out-
breaks, and support control efforts targeting cholera by the World 
Health Organisation. 

Pathogen transmission typically varies in different settings. The 
Ebola virus, for example, can be transmitted in the community, in 
healthcare settings, or at funerals after the host has died (Drake et al., 
2015). Calculations of the probability of a major outbreak could be 
adapted to account for these different transmission routes. One way to 
do this would be to develop a compartmental model in which separate 
compartments represent infectious hosts in different settings; the first- 

Fig. 4. The probability of a major outbreak obtained using a model in which 
the population is divided between children and adults. A. Schematic showing a 
version of the SIR model that has been adapted to account for different trans-
mission risks between individuals in different groups. Dotted lines denote the 
fact that infected individuals can generate new infections in either group. B. 
The probability of a major outbreak starting from a single infected individual. 
Results are shown based on whether the initial infected individual is a child or 
adult. Results are shown for Method 1 (pc = 1 − qc and pa = 1 − qa, where qc 

and qa are obtained by solving system of equations (6) numerically; blue bars) 
and Method 2 (p10 = 1 − q10 and p01 = 1 − q01, where q10 and q01 are obtained 
by solving system of equations (7) numerically; red circles). In panel B, 
parameter values used were Rcc =

βcc
γ = 1.5, Rca =

βca
γ = 0.35, Rac =

βac
γ = 0.35 

and Raa =
βaa
γ = 0.8. Solutions were found numerically in Matlab using the 

fsolve function. 
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step analysis approach could then be used to calculate the probability of 
a major outbreak in a similar fashion to the method described in Section 
4.2.2, with qi1 i2⋯ik representing the probability that a major outbreak 
does not occur starting from i1 infectious individuals in setting 1, i2 in-
fectious individuals in setting 2, and so on. Interventions affecting spe-
cific transmission routes, such as the adoption of safe burial practices to 
reduce funeral transmission, could then be tested. This would involve 
adjusting the relevant transmission rates in the model and examining the 
effect on the probability of a major outbreak. 

5.2. Host heterogeneity 

In addition to different transmission routes contributing to the risk of 
outbreaks, heterogeneity between hosts also affects the probability of a 
major outbreak. In Section 4.2, we presented an example of an age- 
structured model with two age classes, as considered by Nishiura et al. 
(Nishiura et al., 2011). Those authors demonstrated that the age of the 
initially infected host affects the probability of a major outbreak, with 
initial infections in children most likely to lead to major outbreaks. This 
is because children tend to have large numbers of contacts with others. 
This echoes a similar result for spatial epidemic models, for which the 
location of the initial infected host is crucial for determining the prob-
ability of a major outbreak (Lahodny Jr. and Allen, 2013). 

Lovell-Read et al. (Lovell-Read et al., 2022) studied a more complex 
age-structured model than the one analysed by Nishiura et al. (Nishiura 
et al., 2011). In the article by Lovell-Read et al. (Lovell-Read et al., 
2022), the population is split into 16 age groups, and the authors used 
the model to explore the effects of non-pharmaceutical interventions on 
the probability of a major outbreak for SARS-CoV-2. They investigated 
the effects of interventions targeting individuals of different ages (e.g. 
school and workplace closures), and showed that large reductions in 
contacts are needed (compared to normal behaviour) to eliminate the 
probability of a major outbreak completely. However, the level of in-
terventions required to eliminate the probability of a major outbreak is 
reduced if effective infection surveillance is in place. 

In a similar fashion to considering hosts of different ages, trans-
mission from symptomatic and asymptomatic infectious individuals can 
also be modelled. These hosts often have different transmission char-
acteristics, although the relationship between symptoms and infec-
tiousness is not always clear. For example, asymptomatic hosts may 

have lower viral loads than symptomatic hosts, and therefore be less 
infectious, yet asymptomatic hosts may also have more contacts if they 
are unaware that they are infected. In the context of Ebola virus disease, 
Thompson et al. (Thompson et al., 2016) showed that the probability of a 
major outbreak cannot be estimated precisely early in an outbreak 
without data describing the true infection statuses of hosts who are not 
displaying symptoms. In other words, deployment of diagnostic tests 
that can differentiate between asymptomatic individuals who are 
infected and those who are healthy are important for improving the 
accuracy of Ebola outbreak forecasts. Lovell-Read et al. (Lovell-Read 
et al., 2021) explored the impacts of presymptomatic and asymptomatic 
transmission on the probability of a major outbreak, using SARS-CoV-2 
as a case study. They investigated the effects of different infection sur-
veillance strategies on the probability of a major outbreak, showing how 
calculations of that probability can be used to determine how to deploy 
limited surveillance resources to reduce the risk of major outbreaks. 

An important source of heterogeneity that affects the risk of major 
outbreaks is super-spreading. While quantities such as R0 represent 
average values across the entire population of infected individuals, a 
rule of thumb for many pathogens of humans and animals is that around 
20% of infected hosts generate approximately 80% of transmissions 
(Woolhouse et al., 1997; Woolhouse et al., 2005). Super-spreading is 
often captured in epidemiological models by assuming that the number 
of offspring generated by each infected host is drawn from a negative 
binomial distribution. The seminal paper by Lloyd-Smith et al. (Lloyd- 
Smith et al., 2005) demonstrated that, for a fixed value of R0, the 
probability of a major outbreak is reduced by super-spreading. 
Furthermore, those authors found that targeted individual-specific 
control measures outperform population-wide controls. Other authors 
have also investigated the impact of super-spreading on the probability 
of a major outbreak (Oz et al., 2021), including settings in which 
infected individuals are split into two groups: those who report disease 
(and are isolated) quickly, and those who report disease slowly 
(Thompson, 2020). Again, for a fixed value of R0, considering fast and 
slow reporters separately was found to reduce the probability of a major 
outbreak compared to a scenario in which all individuals are assumed to 
report disease at the same average rate. 

In reviewing the literature, we note that not all studies predict that 
the probability of a major outbreak is affected substantially by hetero-
geneity between hosts. An article by Yates et al. (Yates et al., 2006), for 

Table 1 
Examples from the literature of the use of the two analytic methods described in Section 3 to calculate the probability of a major outbreak. This list is not meant to be 
exhaustive, but rather demonstrates that both methods have been used in a range of studies. In this literature, the two methods have been applied to models that 
incorporate a wide variety of different features relevant to pathogen transmission and control.  

Reference Method used Features of model 

Lloyd et al. (Lloyd et al., 2007) Probability generating function Host-vector transmission 
Wang et al. (Wang et al., 2020) Probability generating function Host-vector transmission, Age-structure 
Mugabi et al. (Mugabi et al., 2021) Probability generating function Host-vector transmission, Multiple pathogen strains, Multiple spatial locations 
Nishiura et al. (Nishiura et al., 2011) Probability generating function Age-structure 
Yates et al. (Yates et al., 2006) Probability generating function Multiple pathogen strains, Heterogeneity between hosts (in susceptibility, infectivity and 

mixing) 
Antia et al. (Antia et al., 2003) Probability generating function Multiple pathogen strains 
Meehan et al. (Meehan et al., 2020) Probability generating function Multiple pathogen strains, Control interventions 
Lahodny Jr. and Allen (Lahodny Jr. and Allen, 

2013) 
Probability generating function Spatial structure 

Leventhal et al. (Leventhal et al., 2015) Probability generating function Spatial structure 
Anderson and Watson (Anderson and Watson, 

1980) 
Probability generating function Gamma distributed infectious period 

Lloyd-Smith et al. (Lloyd-Smith et al., 2005) Probability generating function Heterogeneity in offspring distribution (superspreading) 
Lahodny Jr. et al. (Lahodny Jr. et al., 2015) Probability generating function Environmental transmission 
Thompson et al. (Thompson et al., 2020) First-step analysis Host-vector transmission 
Lovell-Read et al. (Lovell-Read et al., 2021) First-step analysis Asymptomatic transmission 
Lovell-Read et al. (Lovell-Read et al., 2022) First-step analysis Age-structure, Asymptomatic transmission 
Thompson (Thompson, 2020) First-step analysis Heterogeneity in reporting rates 
Kaye et al. (Kaye et al., 2022) First-step analysis Host-vector transmission, Seasonality in transmission 
Hartfield and Alizon (Hartfield and Alizon, 2014) First-step analysis Changing population susceptibility, Multiple pathogen strains 
Sachak-Patwa et al. (Sachak-Patwa et al., 2021) First-step analysis Changing population susceptibility  

E. Southall et al.                                                                                                                                                                                                                                



Journal of Theoretical Biology 562 (2023) 111417

10

example, explored the impact of host heterogeneity in a setting in which 
pathogen adaptation is required for widespread transmission in the host 
population to occur. In that study, the effect of host heterogeneity on the 
probability of a major outbreak was found to be limited. 

5.3. Intervention timing 

A final use of methods for estimating the probability of a major 
outbreak in the context of disease control is to optimise the timings of 
public health measures. During the COVID-19 pandemic, the fast 
introduction of measures such as stay-at-home orders has been found to 
be crucial for outbreak containment (Binny et al., 2021). 

Branching process models can be used for a range of diseases to 
explore how infectious disease outbreak risks vary during the year. For 
vector-borne diseases, the probability of a major outbreak is likely to be 
highest in seasons in which environmental conditions are optimal for 
transmission. For example, Guzzetta et al. (Guzzetta et al., 2016a) 
considered the risk of outbreaks of chikungunya or dengue in northern 
Italy, and found that the probability of a major outbreak is highest if 
cases are introduced from early summer to mid-November for chi-
kungunya, and mid-July to mid-September for dengue. Studies that 
explore when the probability of a major outbreak is high are helpful for 
guiding when heightened surveillance activities are necessary. 

It should be noted that calculation of the probability of a major 
outbreak when transmission varies, for example due to environmental 
changes, requires the methods described in Section 3 to be extended 
significantly. This is because the probability of a major outbreak on any 
date does not just depend on the environmental conditions on that date; 
it also depends on future changes in environmental conditions that affect 
whether a pathogen introduced now will go on to spread widely in 
future. For further details about methods for calculating the probability 
of a major outbreak in that scenario, see work by Carmona and Gandon 
(Carmona and Gandon, 2020); Bacaër et al. (Bacaër, 2020; Bacaër et al., 
2020) and Kaye et al. (Kaye et al., 2022). A similar situation in which the 
probability of a major outbreak varies through time was explored by 
Sachak-Patwa et al. (Sachak-Patwa et al., 2021), who investigated how 
the probability of a major outbreak varies during a vaccination 
campaign. 

6. Discussion 

In this review article, we have presented two methods that underlie 
calculations of the probability that cases introduced into a new host 
population will initiate a major outbreak as opposed to early cases 
fading out without causing a major outbreak (Section 3). The first 
method involves consideration of the offspring distribution and uses 
PGFs, and the second method involves conducting a first-step analysis. 
While we concentrated on directly transmitted pathogens of humans 
initially, as characterised by an SIR compartmental model, both methods 
can be extended to include additional epidemiological details affecting 
transmission (Sections 4-5). We then described how calculations of the 
probability of a major outbreak can be useful to guide outbreak control 
measures (Section 5). 

The choice of whether to use the PGF approach or the first-step 
analysis approach is a matter of preference, as both methods give rise 
to the same estimate for the probability of a major outbreak. The PGF 
method is particularly well-suited to scenarios in which the offspring 
distribution (the probability distribution describing the number of sec-
ondary infections generated by each infected individual) is known or 
can be estimated. PGFs can also be used to estimate other quantities that 
are relevant in emerging outbreaks, such as the final size distribution of 
outbreaks that do not become major outbreaks and the initial growth 
rate of outbreaks that do not go extinct (Miller, 2018). In contrast, we 
contend that the first-step analysis approach is more intuitive to apply in 
the context of compartmental epidemiological models, for which the 
offspring distribution may be challenging to derive, and this approach 

can be extended easily for compartmental models with substantial 
epidemiological complexity (see e.g. Lovell-Read et al., 2021; Lovell- 
Read et al., 2022). 

Of course, as with any epidemiological modelling framework, 
various simplifying assumptions underlie calculations of the probability 
of a major outbreak. Approximating early outbreak dynamics using 
branching processes involves an assumption that all infected cases act 
independently of each other in generating secondary cases. In practice, 
this may not be true, particularly as infections may cluster within a 
population. For example, cases may cluster within households or spe-
cific social groups, although we note that estimates of the probability of 
a major outbreak have been derived that account for network structure 
(Keeling, 2005). Similarly, infectors who mix widely may be most likely 
to infect others who mix widely (Britton et al., 2020), with implications 
for the probability of a major outbreak (for a similar result in ecological 
models of population extinctions, where there is often a phenotypic 
correlation between parents and their offspring, see Fox, 2005). This 
effect can also be included in compartmental models of the type we 
considered here, and hence in estimates of the probability of a major 
outbreak. 

The approaches described here involve an assumption that the total 
number of susceptible individuals remains constant over the initial 
phase of the outbreak (S(t) ≈ N). Overestimation of the number of sus-
ceptible hosts available for infection in this way leads to overestimation 
of the probability of a major outbreak; however, the effect is unlikely to 
be significant unless the size of the population under consideration is 
very small (as demonstrated in Fig. 1A-C, in which the probability of a 
major outbreak derived analytically matches the analogous quantity 
obtained using model simulations). In some scenarios, the entire host 
population may not be susceptible, for example in the presence of 
background immunity from a previous outbreak or due to vaccination. 
These effects can be included in calculations of the probability of a major 
outbreak by relaxing the assumption that S(t) ≈ N (Sachak-Patwa et al., 
2021; Thompson et al., 2019b, 2023). 

A further area of research, which could be a topic for a review article 
in its own right, is the study of multi-strain epidemic models. As noted in 
Section 5.2, the probability of a major outbreak can be calculated in the 
context of pathogens for which adaptation is required for widespread 
local transmission (Yates et al., 2006; Antia et al., 2003; Arinaminpathy 
and McLean, 2009), and similar calculations can be used to consider the 
risk that a newly emerged strain invades a host population (Thompson 
et al., 2023; Meehan et al., 2020; Hartfield and Alizon, 2014; Leventhal 
et al., 2015). 

We assumed here that the model governing pathogen transmission 
has already been parameterised using outbreak data. While this is un-
likely to be the case for entirely novel pathogens, for existing pathogens 
such data are typically available from previous outbreaks or from 
outside the local population. For example, characteristics of trans-
mission inferred from data early in the COVID-19 pandemic were used to 
estimate the probability of a major outbreak in locations in which cases 
had not yet occurred (Anzai et al., 2020; Thompson, 2020). Parameter 
inference is often undertaken using a range of Bayesian inference tech-
niques, in which case it is possible to estimate the probability of a major 
outbreak by integrating over the joint posterior estimates of model 
parameters. 

The methods described in this manuscript can be used to estimate the 
probability that a major outbreak occurs conditional on the pathogen 
arriving in the host population. However, for a major outbreak to occur, 
it is necessary for the pathogen to arrive in the host population in the 
first place (Glennon et al., 2021). An important target for additional 
research is therefore to combine models of importations and approaches 
for estimating the risk of major outbreaks (Daon et al., 2020; Hurford 
et al., 2022). 

Another topic that has been of interest during the COVID-19 
pandemic has been the risk of outbreaks occurring at specific events 
(Tupper et al., 2020; Champredon et al., 2021). This is a related but 
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different question to the one addressed in this review manuscript, since 
at an event typically only a single generation of transmission will be 
possible (unless the event is of long duration; for example, travel on a 
cruise ship (Expert Taskforce for the COVID-19 Cruise Ship Outbreak, 
2020)). Quantifying the risk of a major outbreak at a specific event 
would likely require careful consideration of precisely what constitutes a 
major outbreak in that setting; for example, a major outbreak could be 
said to occur if a threshold number of transmissions at the event is 
exceeded. In principle, the risk of transmission at an event leading on to 
sustained community transmission could then be calculated using 
branching process approaches of the type described here. 

In summary, we have presented two methods for estimating the 
probability of a major outbreak, and reviewed the literature on appli-
cations of those approaches. We hope that this provides a useful resource 
for researchers wishing to use epidemiological models to estimate 
outbreak risks for a range of different pathogens. 
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Pugliese, A., Rosà, R., Poletti, P., Merler, S., Scarpino, S.V., 2016a. Potential risk of 
dengue and Chikungunya outbreaks in Northern Italy based on a population model 
of Aedes albopictus (Diptera: Culicidae). PLoS Negl Trop Dis. 10, e0004762. 

Guzzetta, G., Poletti, P., Montarsi, F., Baldacchino, F., Capelli, G., Rizzoli, A., Rosà, R., 
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