
Journal of Combinatorial Theory, Series B 160 (2023) 163–205
Contents lists available at ScienceDirect

Journal of Combinatorial Theory,
Series B

journal homepage: www.elsevier.com/locate/jctb

On the central levels problem ✩

Petr Gregor a, Ondřej Mička a, Torsten Mütze a,b

a Department of Theoretical Computer Science and Mathematical Logic, Charles
University, Prague, Czech Republic
b Department of Computer Science, University of Warwick, United Kingdom

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 March 2021
Available online xxxx

Keywords:
Gray code
Hamilton cycle
Hypercube
Middle levels
Symmetric chain decomposition

The central levels problem asserts that the subgraph of the
(2m + 1)-dimensional hypercube induced by all bitstrings
with at least m + 1 − � many 1s and at most m + �
many 1s, i.e., the vertices in the middle 2� levels, has a
Hamilton cycle for any m ≥ 1 and 1 ≤ � ≤ m + 1. This
problem was raised independently by Buck and Wiedemann,
Savage, Gregor and Škrekovski, and by Shen and Williams,
and it is a common generalization of the well-known middle
levels problem, namely the case � = 1, and classical binary
Gray codes, namely the case � = m + 1. In this paper we
present a general constructive solution of the central levels
problem. Our results also imply the existence of optimal
cycles through any sequence of � consecutive levels in the
n-dimensional hypercube for any n ≥ 1 and 1 ≤ � ≤
n + 1. Moreover, extending an earlier construction by Streib
and Trotter, we construct a Hamilton cycle through the n-
dimensional hypercube, n ≥ 2, that contains the symmetric
chain decomposition constructed by Greene and Kleitman in

✩ An extended abstract of this paper appeared in the Proceedings of the 47th International Colloquium
on Automata, Languages, and Programming (ICALP 2020) [22]. This work was supported by Czech
Science Foundation grant GA19-08554S. Torsten Mütze is also supported by German Science Foundation
grant 413902284.

E-mail addresses: gregor@ktiml.mff.cuni.cz (P. Gregor), micka@ktiml.mff.cuni.cz (O. Mička),
torsten.mutze@warwick.ac.uk (T. Mütze).
https://doi.org/10.1016/j.jctb.2022.12.008
0095-8956/© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC
BY license (http://creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.jctb.2022.12.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jctb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jctb.2022.12.008&domain=pdf
mailto:gregor@ktiml.mff.cuni.cz
mailto:micka@ktiml.mff.cuni.cz
mailto:torsten.mutze@warwick.ac.uk
https://doi.org/10.1016/j.jctb.2022.12.008
http://creativecommons.org/licenses/by/4.0/

164 P. Gregor et al. / Journal of Combinatorial Theory, Series B 160 (2023) 163–205
the 1970s, and we provide a loopless algorithm for computing
the corresponding Gray code.
© 2023 The Author(s). Published by Elsevier Inc. This is an

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

The n-dimensional hypercube, or n-cube for short, is the graph Qn formed by all {0, 1}-
strings of length n, with an edge between any two bitstrings that differ in exactly one
bit. This family of graphs has numerous applications in computer science and discrete
mathematics, many of which are tied to famous problems and conjectures, such as the
sensitivity conjecture of Nisan and Szegedy [37], recently proved by Huang [27]; Erdős
and Guys’ crossing number problem [11] (see [12]); Füredi’s conjecture [16] on equal-
size chain partitions (see [53]); Shearer and Kleitman’s conjecture [46] on orthogonal
symmetric chain decompositions (see [49]); the Ruskey-Savage problem [40] on matching
extendability (see [14,15]), and the conjectures of Norine, and Feder and Subi on edge-
antipodal colorings [13,38], to name just a few.

The focus of this paper are Hamilton cycles in the n-cube and its subgraphs. A
Hamilton cycle in a graph is a cycle that visits every vertex exactly once, and in the
context of the n-cube, such a cycle is often referred to as a Gray code. Gray codes
have found applications in signal processing, circuit testing, hashing, data compression,
experimental design, binary counters, image processing, and in solving puzzles like the
Towers of Hanoi or the Chinese rings; see Savage’s survey [44]. Gray codes are also
fundamental for efficient algorithms to exhaustively generate combinatorial objects, a
topic that is covered in depth in the most recent volume of Knuth’s seminal series ‘The
Art of Computer Programming’ [32].

To start with, it is an easy exercise to show that the n-cube has a Hamilton cycle for
any n ≥ 2. One such cycle is given by the classical binary reflected Gray code Γn [17],
defined inductively by Γ1 := 0, 1 and Γn+1 := 0Γn, 1ΓR

n , where ΓR denotes the reversal
of the sequence Γ, and 0Γ or 1Γ means prefixing all strings in the sequence Γ by 0
or 1, respectively. For instance, this construction gives Γ2 = 00, 01, 11, 10 and Γ3 =
000, 001, 011, 010, 110, 111, 101, 100. The problem of finding a Hamilton cycle becomes
considerably harder when we restrict our attention to subgraphs of the cube induced
by a sequence of consecutive levels, where the kth level of Qn, 0 ≤ k ≤ n, is the
set of all bitstrings with exactly k many 1s in them. One such instance is the famous
middle levels problem, raised in the 1980s by Havel [26] and independently by Buck and
Wiedemann [4], which asks for a Hamilton cycle in the subgraph of the (2m + 1)-cube
induced by levels m and m + 1. This problem received considerable attention in the
literature, and a construction of such a cycle for all m ≥ 1 was provided only recently by
Mütze [34]. A much simpler construction was described subsequently by Gregor, Mütze,
and Nummenpalo [24].

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

P. Gregor et al. / Journal of Combinatorial Theory, Series B 160 (2023) 163–205 165
There are several intuitive explanations why the middle levels problem is considerably
harder than finding a Hamilton cycle in the entire cube. First of all, the entire (n +1)-cube
has a simple inductive structure: It consists of two copies of Qn plus a perfect matching
connecting the two copies, and hence a Hamilton cycle in Qn+1 can be obtained by
gluing together two cycles in these copies of Qn via two matching edges, which can
yield the cycle Γn+1 from before. The subgraph of the (2m + 1)-cube induced by the
middle two levels, on the other hand, does not allow for such an inductive decomposition.
Note also that as a consequence of the inductive construction of the binary reflected
Gray code Γn, the number of times that each bit is flipped follows a highly skewed
distribution (2, 2, 4, 8, . . . , 2n−1). In stark contrast to this, along any Hamilton cycle in
the middle levels graph, the number of times that each bit is flipped must follow the
uniform distribution (2Cm, 2Cm, . . . , 2Cm) with Cm = 1

2m+1
(2m+1

m

)
= 1

m+1
(2m
m

)
the mth

Catalan number, an observation that makes an easy induction proof unlikely.

1.1. Our results

In this paper we consider the central levels problem, a broad generalization of the
middle levels problem: Does the subgraph of the (2m + 1)-cube induced by the middle
2� levels, i.e., by levels m + 1 − �, . . . , m + �, have a Hamilton cycle for any m ≥ 1 and
1 ≤ � ≤ m + 1? This problem was raised already in Buck and Wiedemann’s paper [4],
and was reiterated independently by Savage [43], Gregor and Škrekovski [25], and by
Shen and Williams [47]. Clearly, the case � = 1 of the central levels problem is the
aforementioned middle levels problem (solved in [34]). Moreover, the case � = 2 was
solved affirmatively in a paper by Gregor, Jäger, Mütze, Sawada, and Wille [19]. Also,
the case � = m +1 is established by the binary reflected Gray code Γ2m+1. Furthermore,
the case � = m was solved by Buck and Wiedemann [4] and independently by El-Hashash
and Hassan [10], and in a more general setting by Locke and Stong [33], and the case
� = m − 1 was settled in [25].

The main contribution of this paper is to solve the central levels problem affirmatively
in full generality; see Fig. 1 (a)–(d).

Theorem 1. For any m ≥ 1 and 1 ≤ � ≤ m +1, the subgraph of the (2m +1)-cube induced
by the middle 2� levels has a Hamilton cycle.

As the case � = 1 of Theorem 1 has been proved before, the proof of Theorem 1
presented in this paper assumes that � ≥ 2. Nevertheless, this proof can be seen as
a generalization of the earlier proofs [24,34] and [19] for the cases � = 1 and � = 2,
respectively; see the remarks in Section 3.1 below.

The most general question in this context is to ask for a Hamilton cycle in Qn that
visits all vertices in any sequence of � consecutive levels, i.e., the levels need not be
symmetric around the middle, and the dimension n needs not be odd. Note however,
that the n-cube is bipartite, and the partition classes are given by all even and odd

166 P. Gregor et al. / Journal of Combinatorial Theory, Series B 160 (2023) 163–205
levels, respectively. Consequently, any subgraph consisting of a sequence of � consecutive
levels is also bipartite, and to circumvent the imbalances that prevent the existence of a
Hamilton cycle for general n and �, we have to slightly generalize the notion of Hamilton
cycles, and there are two reasonable such generalized notions. Firstly, a saturating cycle
in a bipartite graph is a cycle that visits all vertices in the smaller partition class. If
one partition class is empty, then the empty set is considered a saturating cycle, and if
the smaller partition class has size 1, then a single edge is considered a saturating cycle.
Secondly, a tight enumeration in a (bipartite) subgraph of the cube is a cyclic listing of
all its vertices where the total number of bits flipped is exactly the number of vertices
plus the difference in size between the two partition classes. If the graph has only a
single vertex, this vertex is considered a tight enumeration. Clearly, if both partition
classes have the same size, like in the central levels problem, then a saturating cycle and
a tight enumeration are equal to a Hamilton cycle. In fact, all cases of this more general
problem on saturating cycles and tight enumerations, except the cases of the central
levels problem, were solved affirmatively already in [23], some of them conditional on a
‘yes’ answer to the central levels problem. Combining Theorem 1 with these previous
results, we now also obtain an unconditional result for this more general question.

Corollary 2. For any n ≥ 1 and 1 ≤ � ≤ n + 1, the subgraph of the n-cube induced by
any sequence of � consecutive levels has both a saturating cycle and a tight enumeration.

Proof of Corollary 2. If � = 1, then all vertices are in the same partition class, and the
other partition class is empty. It follows that the statement is trivially true for � = 1 and
saturating cycles. To prove it for � = 1 and tight enumerations, first note that level 0 or
level n consist only of a single vertex, which is trivially a tight enumeration. Otherwise
we use a well-known result of Tang and Liu [52], who showed that for any n ≥ 2 and
1 ≤ k ≤ n − 1, there is a cyclic listing of all bitstrings of Qn on level k such that any
two consecutive strings differ in a transposition of 0 and 1. As two bits are flipped in
each step, this is a tight enumeration. We now consider the case � = 2 for saturating
cycles: If one of the two levels is level 0 or level n, which contains only a single vertex,
then a single edge is a trivial saturating cycle. Otherwise the result follows from [36,
Theorem 9].

All remaining cases for saturating cycles and tight enumerations are covered by Theo-
rems 5 and 6 proved in [23], respectively. Specifically, part (iv) in both of these theorems
is conditional on the validity of Theorem 1, which we establish in this paper. �

The central levels problem studied in this paper is also closely related to another
famous problem, which asks about Hamilton cycles in so-called bipartite Kneser graphs.
The bipartite Kneser graph Hn,k, defined for any integers k ≥ 0 and n ≥ 2k + 1, is the
bipartite graph whose vertex partition is given by all vertices on level k and n −k of Qn,
with an edge between any two bitstrings that differ in exactly n − 2k bits. That is, the
edges in Hn,k correspond to a level-monotone path in Qn between a vertex on level k

and a vertex on level n − k. It was shown that Hn,k has a Hamilton cycle for all k ≥ 1
and n ≥ 2k + 1 in [36], completing a long line of previous partial results [5,6,28,48].

An essential tool in our proof of Theorem 1 are symmetric chain decompositions.
This is a well-known concept from the theory of posets, which we now define specifi-
cally for the n-cube using graph-theoretic language. A symmetric chain in Qn is a path
(xk, xk+1, . . . , xn−k) in the n-cube where xi is from level i for all k ≤ i ≤ n − k, and a
symmetric chain decomposition, or SCD for short, is a partition of the vertices of Qn into
symmetric chains. It is well-known that the n-cube has an SCD for all n ≥ 1, and the
simplest explicit construction was given by Greene and Kleitman [18] (see Section 2.2
below). Streib and Trotter [51] first investigated the interplay between SCDs and Hamil-
ton cycles in the n-cube, and they described an SCD in Qn that can be extended to
a Hamilton cycle; see Fig. 1 (e). Streib and Trotter’s SCD, however, is different from
the aforementioned Greene-Kleitman SCD. In this paper, we extend Streib and Trotter’s
result as follows; see Fig. 1 (f).

Theorem 3. For any n ≥ 2, the Greene-Kleitman SCD can be extended to a Hamilton
cycle in Qn.

The Greene-Kleitman SCD has found a large number of applications in the literature,
e.g., to construct rotation-symmetric Venn diagrams [21,41], to solve different variants
of the Littlewood-Offord problem [20,31] (see also [3, Chap. 4]), or to learn monotone
Boolean functions [32, Sec. 7.2.1.6] (see also [1,8,39,46,54]). Knowing that this SCD ex-
tends to a Hamilton cycle and that it is a crucial ingredient for solving the general central
levels problem adds to this list of interesting properties and applications. Observe also
that a Hamilton cycle that extends an SCD has the intriguing property that it minimizes
the number of changes of direction from moving up to moving down, or vice versa, be-
tween consecutive levels in the cube. For comparison, the monotone paths constructed
by Savage and Winkler [45] maximize these changes.

Motivated by these results and by the aforementioned conjecture of Ruskey and Sav-
age [40] that every matching in Qn extends to a Hamilton cycle, we raise the following
brave conjecture.

Conjecture 4. Every SCD can be extended to a Hamilton cycle in Qn.

Although every SCD of Qn is the union of two matchings, there are matchings in Qn

that do not extend to an SCD; take for example the two edges obtained by starting at
the vertices 0n and 1n and flipping the same bit. Consequently, an affirmative answer to
Conjecture 4 would cover only some cases of the Ruskey-Savage conjecture.

1.2. Efficient algorithms

We now discuss the algorithmic problem of efficiently computing the Hamilton cycles
constructed in the proofs of Theorems 1 and 3. The ultimate goal for any Gray code
P. Gregor et al. / Journal of Combinatorial Theory, Series B 160 (2023) 163–205 167

168 P. Gregor et al. / Journal of Combinatorial Theory, Series B 160 (2023) 163–205

Fig. 1. (a)-(d) The Hamilton cycles in Q7,� for � = 1, 2, 3, 4 constructed as in our proof of Theorem 1. (e) The
Hamilton cycle in Q7 containing an SCD obtained from the Streib-Trotter construction, with symmetric
chains highlighted on the side. (f) The Hamilton cycle in Q7 containing the Greene-Kleitman SCD obtained
from our proof of Theorem 3. In this figure, 1-bits are drawn as black squares, 0-bits as white squares.

P. Gregor et al. / Journal of Combinatorial Theory, Series B 160 (2023) 163–205 169
problem is a loopless algorithm, a notion that was introduced by Ehrlich [9]. The running
time of such an algorithm is O(1) per generated vertex, and the initialization time is
‘reasonable’, linear in n, say. Furthermore, the overall memory requirement should also
be polynomial in n, ideally linear, and this excludes the space for storing the Hamilton
cycle (cf. Ruskey’s [42] ‘Don’t count the output principle’), which may not be needed for
some applications.

For the Hamilton cycle in Theorem 3, we present such a loopless algorithm. Specifi-
cally, the algorithm uses O(1) time in every iteration to compute the next bitstring along
the Hamilton cycle, its initialization time is O(n), and its space requirement is O(n). In
this paper, we provide a pseudocode description of this algorithm, and we implemented
it in C++, available for download and for demonstration on the Combinatorial Object
Server [7].

On the other hand, for the Hamilton cycles constructed in the proof of Theorem 1,
we have no efficient generation algorithm, and it remains a challenging open problem to
find one. While our proof of Theorem 1 is constructive and translates straightforwardly
into an algorithm that computes the desired Hamilton cycle in time and space that are
polynomial in the size of the graph (the middle 2� levels of Qn, n := 2m + 1), these
quantities are clearly exponential in n. There are fundamental obstacles that prevent
us from obtaining algorithms with polynomial bounds from our general proof of the
central levels problem, as explained below (at the end of Section 7). The only two special
cases of the central levels problem for which loopless algorithms are known, which were
found prior to our work, are the binary reflected Gray code Γn [2] and the middle levels
problem [35], i.e., the extreme cases � = m + 1 and � = 1, respectively.

1.3. Proof ideas

We first describe the ideas for proving Theorem 1. For any m ≥ 1 we define n := 2m +1,
and for 1 ≤ � ≤ m + 1 we let Qn,� denote the subgraph of Qn induced by the middle
2� levels. To prove that Qn,� has a Hamilton cycle for general m and �, we combine
and generalize the tools and techniques developed for the cases � = 1 and � = 2 in [24]
and [19], respectively. Our proof proceeds in two steps: In a first step, we construct a
cycle factor in Qn,�, i.e., a collection of disjoint cycles which together visit all vertices
of Qn,�. In a second step, we use local modifications to join the cycles in the factor to
a single Hamilton cycle. Essentially, this technique reduces the Hamiltonicity problem
in Qn,� to proving that a suitably defined auxiliary graph is connected, which is much
easier.

In fact, the predecessor paper [19] already proved the existence of a cycle factor in Qn,�,
but this construction does not seem to yield a factor that would be amenable to analysis.
In this paper, we therefore construct another cycle factor in Qn,�, based on modifying
the aforementioned Greene-Kleitman SCD of Qn by the lexical matchings introduced by
Kierstead and Trotter [29]. The resulting cycle factor in Qn,� has a rich structure, in
particular the number of cycles and their lengths can be described combinatorially.

170 P. Gregor et al. / Journal of Combinatorial Theory, Series B 160 (2023) 163–205
The simplest way to join two cycles C and C ′ from this factor to a single cycle is
to consider a 4-cycle F that shares exactly one edge with each of the cycles C and C ′

(the other two edges of F must then go between C and C ′), and to take the symmetric
difference of the edge sets of C ∪ C ′ and of F , yielding a single cycle (C ∪ C ′) � F on
the same vertex set as C ∪ C ′. We refer to such a cycle F as a flipping 4-cycle. For
example, if we interpret the binary reflected Gray code Γn as a cycle in Qn, we see
that Γn+1 = (0Γn ∪ 1ΓR

n) � F where F is the 4-cycle F = 0n+1, 010n−1, 110n−1, 10n. In
addition to flipping 4-cycles, we also use flipping 6-cycles, which intersect with the two
cycles to be joined in a slightly more complicated way, albeit with the same effect of
joining them to a single cycle. The most technical aspect of this part of the proof is to
ensure that all flipping cycles used are edge-disjoint, so that the joining operations do
not interfere with each other.

To prove Theorem 3, we proceed by induction from dimension n to n + 2, treating
the cases of even and odd n separately. We first specify a particular ordering of all
chains of the Greene-Kleitman SCD, and then show that this ordering admits a matching
that alternatingly joins the bottom or top vertices of any two consecutive chains in our
ordering. In fact, there is a close relation between our proofs of Theorem 1 and 3: The
aforementioned construction of a cycle factor in Qn,� is particularly nice for � = m + 1,
i.e., for the case where we consider the entire cube. Specifically, in this case our cycle
factor contains all chains from the Greene-Kleitman SCD. These cycles can be joined to
a single Hamilton cycle in such a way, so as to give exactly the aforementioned Hamilton
cycle constructed for proving Theorem 3.

1.4. Outline of this paper

In Section 2 we build up the necessary preliminaries. Specifically, we introduce vari-
ous Catalan bijections, the Greene-Kleitman SCD, and lexical matchings. In Section 3
we describe our construction of a cycle factor in Qn,�, and we analyze its structure in
Section 4, identifying two types of cycles, called short and long cycles. In Section 5 we
describe the flipping 4-cycles that we use for attaching the short cycles to the long cy-
cles. In Section 6 we describe the flipping 6-cycles that we use for joining the long cycles
to a Hamilton cycle in Qn,�. In Section 7 we put together all ingredients for proving
Theorem 1, reducing the Hamiltonicity problem to a connectivity problem in a suitably
defined auxiliary graph. In Section 8 we present our proof of Theorem 3 and the corre-
sponding loopless algorithm. This part can be read independently of the previous parts,
though it is closely related.

2. Preliminaries

We begin by introducing some terminology that is used throughout the following
sections.

P. Gregor et al. / Journal of Combinatorial Theory, Series B 160 (2023) 163–205 171
Fig. 2. The correspondence between bitstrings (left), lattice paths (middle) and rooted trees (right).

Fig. 3. Definition of tree rotation.

2.1. Bitstrings, lattice paths, and rooted trees

For any string x and any integer k ≥ 0, we let xk denote the concatenation of k

copies of x. We often interpret a bitstring x as a path in the integer lattice Z2 starting
at the origin (0, 0), where every 0-bit is interpreted as a �-step that changes the current
coordinate by (+1, −1) and every 1-bit is interpreted as an �-step that changes the
current coordinate by (+1, +1); see Fig. 2.

Let D2k denote the set of bitstrings with exactly k many 1s and k many 0s, such
that in every prefix, the number of 0s is at least as large as the number of 1s. We also
define D :=

⋃
k≥0 D2k. Note that D0 = {ε}, where ε denotes the empty bitstring. In

terms of lattice paths, D corresponds to so-called Dyck paths that never move above the
line y = 0 and end on this line. If a lattice path x contains a substring u ∈ D, then we
refer to this substring u as a valley in x. Any nonempty bitstring x ∈ D can be written
uniquely as x = 0 u 1 v and as x = u′ 0 v′ 1 with u, v, u′, v′ ∈ D. We refer to this as the
left and right factorization of x, respectively. The set D′

2k is defined similarly as D2k,
but we require that in exactly one prefix, the number of 0s is strictly smaller than the
number of 1s. That is, the lattice paths corresponding to the bitstrings in D′

2k move
above the line y = 0 exactly once.

An (ordered) rooted tree is a tree with a distinguished root vertex, and the children
of each vertex have a specified left-to-right ordering. We think of a rooted tree as a
tree embedded in the plane with the root on top, with downward edges leading from any
vertex to its children, and the children appear in the specified left-to-right ordering. Using
a standard Catalan bijection (see [50]), every Dyck path x ∈ D2k can be interpreted as
a rooted tree with k edges; see Fig. 2. Given a rooted tree x ∈ D, we may rotate the
tree to the right, yielding the tree −→x ; see Fig. 3. More precisely, −→x is obtained from x

by taking the leftmost child of the root of x as the new root. In terms of bitstrings, if x
has the left factorization x = 0 u 1 v with u, v ∈ D, then −→x has the right factorization
−→x = u 0 v 1. Note that we have

−→
D = D.

172 P. Gregor et al. / Journal of Combinatorial Theory, Series B 160 (2023) 163–205
Fig. 4. Construction of the Greene-Kleitman SCD containing a bitstring x via parenthesis matching. The
highlighted bits are the leftmost unmatched 0 and the rightmost unmatched 1 in each bitstring.

2.2. The Greene-Kleitman SCD

We now describe Greene and Kleitman’s [18] construction of an SCD in the n-cube;
see Fig. 4. For any vertex x of the n-cube, we interpret the 0s in x as opening brackets and
the 1s as closing brackets. By matching closest pairs of opening and closing brackets in
the natural way, the chain containing x is obtained by flipping the leftmost unmatched 0
to ascend the chain, or the rightmost unmatched 1 to descend the chain, until no more
unmatched bits can be flipped. It is easy to see that this indeed yields an SCD of the
n-cube for any n ≥ 1. In the rest of the paper, we always work with this SCD due to
Greene and Kleitman, and whenever referring to a chain, we mean a chain from this
decomposition.

Each chain C of length h in Qn can be encoded compactly as a string of length n over
the alphabet {0, 1, ∗} in the form

C = u0 ∗ u1 ∗ · · · ∗ uh−1 ∗ uh, (1)

where u0, . . . , uh ∈ D. The symbols ∗ represent unmatched positions, and the ver-
tices along the chain are obtained by replacing the ∗s by 1s followed by 0s in all
h + 1 possible ways; see (2) below. For example, the chain shown in Fig. 4 is C =
∗∗∗∗∗01∗01∗010011∗∗∗01, so we have u0 = u1 = u2 = u3 = u4 = u8 = u9 = ε,
u5 = u6 = u10 = 01, and u7 = 010011.

We distinguish four types of chains depending on whether u0 and uh, i.e., the first
and last valleys in (1), are empty or not. These chain types are denoted by [−−], [+−],
[++], and [−+], where the first symbol is − if u0 = ε and + otherwise, and the second
symbol is − if uh = ε and + otherwise. For example, the chain in Fig. 4 is a [−+]-chain.
We also use the symbol ? in these type specifications if we do not know whether a valley
is empty or not. Note that there is no [−−]-chain in Qn of length h = 1 unless n = 1.

Given a chain C of length h as in (1), the ith vertex of C from the bottom is

x = u0 1 · · ·ui−1 1ui 0ui+1 · · · 0uh (2)

where i = 0, . . . , h, and this vertex belongs to level k = n−h
2 + i. Note that every

vertex x of Qn can be written uniquely in the form (2), and we refer to this as the

P. Gregor et al. / Journal of Combinatorial Theory, Series B 160 (2023) 163–205 173
Fig. 5. Definition of p-lexical matchings between levels 9 and 10 of Q22, where steps flipped along the p-lexical
edge are marked with p. Between those two levels, the vertex x is incident with p-lexical edges for each
p ∈ {0, 1, . . . , 12}, and the vertex y is incident with p-lexical edges for each p ∈ {0, 1, . . . , 12} \ {4, 6, 9}.

chain factorization of x. For the following arguments, it will be crucial to consider the
lattice path representation of x, with the valleys u0, . . . , uh that are separated by i many
�-steps, followed by h − i many �-steps, i.e., the valley ui is the highest one on the
lattice path.

We use Ch,i, 0 ≤ i ≤ h, to denote the set of the ith vertices in all chains of length h.
Moreover, we partition Ch,i into two sets C−

h,i and C+
h,i, depending on whether the

valley ui in (2) is empty or nonempty, respectively. Clearly, C+
h,h are exactly the top

vertices of [?+]-chains of length h and C+
h,0 are exactly the bottom vertices of [+?]-

chains of length h, and similarly with − instead of +. Note that the sets Ch,i are empty
if n is odd and h is even, or vice versa.

2.3. Lexical matchings

Lexical matchings in Qn were introduced by Kierstead and Trotter [29], and they
are parametrized by some integer p ∈ {0, 1, . . . , n − 1}. These matchings are defined as
follows; see Fig. 5. We interpret a bitstring x as a lattice path, and we let x� denote the
lattice path that is obtained by appending �-steps to x until the resulting path ends at
height −1. If x ends at a height less than −1, then x� := x. Similarly, we let x� denote
the lattice path obtained by appending �-steps to x until the resulting path ends at
height +1. If x ends at a height more than +1, then x� := x. We let Ln,k denote the
set of all vertices on level k of Qn, and we define a matching by two partial mappings
Mp,↑

n,k : Ln,k → Ln,k+1 and Mp,↓
n,k : Ln,k+1 → Ln,k defined as follows: For any x ∈ Ln,k we

consider the lattice path x� and scan it row-wise from top to bottom, and from right
to left in each row. The partial mapping Mp,↑

n,k(x) is obtained by flipping the pth �-step
encountered in this fashion, where counting starts with 0, 1, . . ., if this �-step is part of
the subpath x of x�; otherwise x is left unmatched. Similarly, for any x ∈ Ln,k+1 we
consider the lattice path x� and scan it row-wise from top to bottom, and from left to

174 P. Gregor et al. / Journal of Combinatorial Theory, Series B 160 (2023) 163–205
Fig. 6. Perfect matchings described by Lemma 5. The {0, 1, 2}-lexical edges are drawn solid, dashed, and
dotted, respectively.

right in each row. The partial mapping Mp,↓
n,k(x) is obtained by flipping the pth �-step

encountered in this fashion if this �-step is part of the subpath x of x�; otherwise x is
left unmatched. It is straightforward to verify that these two partial mappings are inverse
to each other, so they indeed define a matching between levels k and k + 1 of Qn, called
the p-lexical matching, which we denote by Mp

n,k. We also define Mp
n :=

⋃
0≤k<n Mp

n,k,
where we omit the index n whenever it is clear from the context. In the following, we
will only ever use p-lexical edges for p = 0, 1, 2. For instance, it is well-known that taking
the union of all 0-lexical edges, i.e., the set M0, yields exactly the Greene-Kleitman
SCD [29]. This property is captured by the following lemma, together with several other
explicit perfect matchings, consisting of {0, 1, 2}-lexical edges between certain sets of
vertices from our SCD; see Fig. 6.

To state the lemma, for a set M of edges of Qn and disjoint sets A, B of ver-
tices, we let M [A, B] denote the set of all edges of M between A and B. Moreover,
for any vertex x ∈ C−

h,i, 1 < i < h ≤ n, we consider the chain factorization
x = u0 1 · · ·ui−2 1 ui−1 1 0 ui+1 · · · 0 uh with u0, . . . , uh ∈ D, and we define a neigh-
bor z(x) on the level below by

z(x) :=
{
u0 1 · · ·ui−2 1 0 0ui+1 · · · 0uh if ui−1 = ε,

u0 1 · · ·ui−2 1 0 v 0w 1 0ui+1 · · · 0uh if ui−1 = 0 v 1w with v, w ∈ D.

Note that in the first case, (x, z(x)) is a 0-lexical edge, and in the second case, (x, z(x))
is a 2-lexical edge. The result of this operation can be written more compactly as

z(x) = u0 1 · · ·ui−2 1 0−−→ui−1 0ui+1 · · · 0uh. (3)

Lemma 5. For every n ≥ 3, the following sets of edges M [A, B] are perfect matchings
in Qn between the vertex sets A and B.

(i) M0[Ch,i, Ch,i+1] for every 0 ≤ i < h ≤ n;
(ii) M1[C−

1,0, C
−
1,1], M1[C+

h,i, C
−
h+2,i+2], and M1[C+

h,i, C
−
h+2,i] for every 0 ≤ i ≤ h ≤

n − 2;
(iii) Z02[C−

h,i−1, C
−
h,i] for every 1 < i < h ≤ n, where Z02 := {(x, z(x)) | x ∈ C−

h,i}.

Proof. To prove (i), let x ∈ Ch,i and consider the chain factorization (2) of x. By
the definition of lexical matchings, the neighbor y of x on the level above reached via

P. Gregor et al. / Journal of Combinatorial Theory, Series B 160 (2023) 163–205 175
the 0-lexical edge is obtained by flipping the 0-bit after the valley ui in x, so y =
u0 1 · · ·ui 1 ui+1 0 ui+2 · · · 0 uh. From this and (2) we conclude that y ∈ Ch,i+1 and that
these edges reach all vertices in Ch,i+1.

To prove (ii), first consider the subcase x ∈ C−
1,0 and the chain factorization x = 0 u1

with u1 ∈ D. Moreover, as n ≥ 3, we have u1 	= ε, so we may consider the right
factorization u1 = v 0 w 1 with v, w ∈ D. By the definition of lexical matchings, the
neighbor y of x = 0 u1 = 0 v 0 w 1 on the level above reached via the 1-lexical edge is
obtained by flipping the 0-bit after the valley v in x, so y = 0 v 1 w 1 = u0 1 with u0 ∈ D

defined by −→u0 = u1. From this and (2) we conclude that y ∈ C−
1,1 and that these edges

reach all vertices in C−
1,1.

We now consider the subcase x ∈ C+
h,i and the chain factorization (2) of x. We know

that ui 	= ε, so ui has the right factorization ui = v 0 w 1 with v, w ∈ D. The neighbor y

of x on the level above reached via the 1-lexical edge is obtained by flipping the 0-bit
after the valley v in x, so y = u0 1 · · ·ui−1 1 v 1 w 1 0 ui+1 · · · 0 uh. From this and (2)
we conclude that y ∈ C−

h+2,i+2 and that these edges reach all vertices in C−
h+2,i+2.

For the same x, let us now compute the neighbor y′ of x on the level below reached
via the 1-lexical edge. For this we consider the left factorization ui = 0 v′ 1 w′ with
v′, w′ ∈ D. The vertex y′ is reached by flipping the 1-bit after the valley v′ in x, so
y′ = u0 1 · · ·ui−1 1 0 v′ 0 w′ 0 ui+1 · · · 0 uh. Similarly to before, we obtain that y′ ∈ C−

h+2,i
and that these edges reach all vertices in C−

h+2,i, so the proof of part (ii) is complete.
To prove part (iii), note that (2) and (3) imply that z(x) ∈ C−

h,i−1 and that C−
h,i−1 is

precisely the image of C−
h,i under the mapping z. �

3. Cycle factor construction

We now construct a cycle factor Cn,� in the graph Qn,�, n = 2m +1, i.e., in the subgraph
of the n-cube induced by the middle 2� levels. Throughout this and the following sections
we consider fixed m ≥ 1 and 2 ≤ � ≤ m +1. We construct the cycle factor incrementally,
starting with chains from the Greene-Kleitman SCD and adding {0, 1, 2}-lexical edges
between certain sets of vertices, see Fig. 7. In the following, when referring to a subgraph
given by a set of edges, we mean the subgraph of Qn,� induced by those edges. Moreover,
we say that a chain is short if its length is at most 2� − 3, i.e., if it does not span all
levels of Qn,�.

Our construction starts by taking all those short chains, formally

X0 :=
⋃

0≤i<h≤2�−3

M0[Ch,i, Ch,i+1]; (4a)

recall Lemma 5 (i). From Lemma 5 (ii) we know that 1-lexical edges perfectly match all
bottom vertices of [−+]-chains of length 1 with all top vertices of [+−]-chains of length 1
along the edges

X1
m := M1[C−

1,0, C
−
1,1]. (4b)

176 P. Gregor et al. / Journal of Combinatorial Theory, Series B 160 (2023) 163–205
Furthermore, for 1 ≤ h ≤ 2� − 5, 1-lexical edges perfectly match all top vertices of [?+]-
chains of length h with all top vertices of [?−]-chains of length h + 2, and all bottom
vertices of [+?]-chains of length h with all bottom vertices of [−?]-chains of length h + 2
along the edges

X1
t :=

⋃
1≤h≤2�−5

M1[C+
h,h, C

−
h+2,h+2], X1

b :=
⋃

1≤h≤2�−5

M1[C+
h,0, C

−
h+2,0], (4c)

respectively. Note that the only vertices of short chains that have degree 1 in the set

X := X0 ∪X1
m ∪X1

t ∪X1
b (4d)

are exactly the vertices of C+
2�−3,2�−3 and C+

2�−3,0; that is, the top vertices of [?+]-chains
of length 2� − 3 and the bottom vertices of [+?]-chains of length 2� − 3.

Next, between every pair of consecutive levels of Qn,� we take all 0-lexical and 1-lexical
edges that are not incident to a degree-2 vertex in X. Specifically, between these pairs
of levels we take all 0-lexical edges from chains that are not short and all 1-lexical edges
between chains that are not short. In addition, between the top two levels we take all
1-lexical edges between top vertices of [?+]-chains of length 2� − 3 and top vertices of
[?−]-chains of length 2� − 1, and symmetrically, between the bottom two levels we take
all 1-lexical edges between bottom vertices of [+?]-chains of length 2� − 3 and bottom
vertices of [−?]-chains of length 2� − 1. Formally, these sets of edges are

Y1 := Y ′
1 ∪M1[C+

2�−3,0, C
−
2�−1,0], Y� := Y ′

� ∪M1[C+
2�−3,2�−3, C

−
2�−1,2�−1], Yk := Y ′

k

(5a)
for 1 < k < � where

Y ′
k :=

⋃
h≥2�−1

i:=(h−(2�−1))/2+2(k−1)

M0[Ch,i, Ch,i+1]∪M1[C+
h,i, C

−
h+2,i+2]∪M1[C+

h,i+1, C
−
h+2,i+1]

(5b)
for 1 ≤ k ≤ �. Note that Y1 and Y� contain all {0, 1}-lexical edges between the bottom
two levels or the top two levels of Qn,�, respectively. We also define

Y :=
⋃

1≤k≤�

Yk. (5c)

As a consequence of these definitions and Lemma 5 (i) and (ii), the only vertices of Qn,�

that have degree 1 in the set X ∪Y are exactly the vertices of C−
2�−1,i for 1 ≤ i ≤ 2� − 2.

We thus add the edges

Z :=
⋃

i=1,3,5,...,2�−3

Z02[C−
2�−1,i, C

−
2�−1,i+1] (6)

defined in part (iii) of Lemma 5, which makes

P. Gregor et al. / Journal of Combinatorial Theory, Series B 160 (2023) 163–205 177
Fig. 7. Illustration of the cycle factor Cn,� for � = 2, 3, 4. Each bullet represents an entire set of vertices,
as specified in the figure, lines between them specify perfect matchings between these sets. The {0, 1, 2}-
lexical edges are drawn with solid, dashed, and dotted lines, respectively. In the bottom part, various sets
of matching edges are highlighted.

Cn,� := X ∪ Y ∪ Z (7)

a cycle factor in the graph Qn,�.
Note that if � = 2, then the sets X1

t and X1
b are empty and X0 contains only chains of

length 1; see the top left part of Fig. 7. In the other extreme case � = m +1, the set Y ∪Z

contains only a single path of length n +2, namely the unique chain of length 2� − 1 = n

with an additional 1-lexical edge from Y1 and Y� attached on each side.

3.1. Comparison with previous constructions

Our cycle factor construction generalizes the construction for � = 1 presented in
[24,34], which simply consisted in taking the union of all 0-lexical and 1-lexical edges
between the middle two levels. It also generalizes the construction for � = 2 presented
in [19], which also only used {0, 1, 2}-lexical matchings. In fact, all these earlier papers
actually used {m, m − 1, m − 2}-lexical matching edges, but these are isomorphic to
{0, 1, 2}-lexical edges by reversing bitstrings. The earlier construction for � = 2 seemed
rather arbitrary at the time, but now nicely fits into the general picture shown in Fig. 71.

1 As the picture of this construction resembles a rocket, with the tip on the left and the boosters on the
right, one might be tempted to consider this rocket science.

178 P. Gregor et al. / Journal of Combinatorial Theory, Series B 160 (2023) 163–205
4. Structure of cycles

In this section, we describe the structure of cycles in the factor Cn,� defined in (7)
(where n = 2m + 1, m ≥ 1, 2 ≤ � ≤ m + 1). In particular, we give a combinatorial
interpretation for certain vertices encountered along each cycle, allowing us to compute
the number and lengths of some of the cycles. In the following, we call a cycle that
contains a short [−−]-chain from the Greene-Kleitman SCD a short cycle, and any other
cycle is called long. The key properties about short and long cycles are captured in
Lemmas 6 and 11 below, respectively.

4.1. Short cycles

The next lemma completely describes the structure of short cycles; see Fig. 8. Note
that for � = 2 there are no short [−−]-chains and hence no short cycles.

Lemma 6. The short cycles in the factor Cn,� defined in (7) satisfy the following proper-
ties:

(i) For every [−−]-chain C = ∗u1 ∗u2 ∗ of length h = 3 ≤ 2� − 3, the short cycle
containing C also contains the [+−]-chain a ∗ of length 1 and the [−+]-chain ∗−→a
of length 1, where a := 0 u1 1 u2 ∈ D, plus three additional edges connecting these
chains.

(ii) For every [−−]-chain C = ∗ u1 ∗ · · ·uh−1 ∗ of length 5 ≤ h ≤ 2� − 3, the short cycle
containing C also contains the [+−]-chain a ∗ u3 ∗ · · ·uh−1 ∗ of length h − 2, the
[−+]-chain ∗u1 ∗ · · ·uh−3 ∗ b of length h −2, and the [++]-chain a ∗u3 ∗ · · ·uh−3 ∗ b
of length h − 4, where a := 0 u1 1 u2 ∈ D and b := uh−2 0 uh−1 1 ∈ D, plus four
additional edges connecting these chains.

In particular, all short cycles lie entirely within the edge set X defined in (4), and the
only edges in X not contained in a short cycle are [++]-chains of length 2� − 5 if � ≥ 3
and [+−]-, [−+]-, and [++]-chains of length 2� − 3.

Proof. To prove parts (i) and (ii) of the lemma consider Fig. 8, and observe that edges
of X1

m ∪X1
t ∪X1

b connect end vertices of [−−]-chains as in parts (i) or (ii) of the lemma
into cycles of the claimed form. For this recall the definition (4) and use the definition
of 1-lexical matchings. The last part of the lemma follows by observing that short cycles
as described in part (i) and (ii) pick up all short chains except the ones mentioned in
the lemma. �

Note that by Lemma 6, the short cycle containing a [−−]-chain of length h has total
length 4h − 4.

P. Gregor et al. / Journal of Combinatorial Theory, Series B 160 (2023) 163–205 179
Fig. 8. Structure of short cycles as described by Lemma 6, for case (i) on the left and for case (ii) on the
right. Valleys ui are labeled by i in the lattice paths for better readability.

We say that a cycle in Cn,� has range 2r if it is contained in the middle 2r levels
but not in the middle 2r − 2 levels. Clearly, the short cycle containing a [−−]-chain of
length h has range 2r = h + 1 ≥ 4, and it visits vertices in all 2r middle levels. We will
see later that long cycles have range 2�, and that each long cycle visits vertices in all 2�
levels. The next corollary is an immediate consequence of Lemma 6.

Corollary 7. For fixed n, any short cycle of range 2r appears in each of the cycle factors
Cn,� for � > r.

For any n = 2m + 1, m ≥ 1, we can compute the number of [−−]-chains of length h

(by counting lattice paths using a reflection trick), and we thus obtain the number of
short cycles of range 2r as(

2m− 1
m− r + 1

)
−

(
2m− 1
m− r

)
= r − 1

m

(
2m

m− r + 1

)
,

see Table 1. As we shall see, the structure of long cycles is more complicated in general,
and we are not able to count them explicitly, with few exceptions: For � = 1 the number
of all cycles of the factor is given by the number of plane trees with m edges (see [24,
Proposition 2]). For � = 2 the number of all (long) cycles is given by the number of plane
trivalent trees with m internal vertices (see [19, Proposition 12]). For � = m + 1 there is
exactly one long cycle, and so the total number of cycles in the factor is

(2m−1
m−1

)
.

4.2. Long cycles

We now describe long cycles. First we show that each of the sets Yk defined in (5)
contains only paths, but no cycles, which will allow us to show that every long cycle has
range 2� and visits vertices from all 2� levels. To describe the end vertices of the paths
formed by the edge set Yk, we use the following result shown in [24, Proposition 2].

180
P
.
G

regor
et

al.
/

Journal
of

C
om

binatorial
T
heory,

Series
B

160
(2023)

163–205

ets counts short cycles of range 2� − 2, the second
n be recovered by considering all other table entries
002, 1638, 910, 350, 90, 14, 1] from 1430 short cycles
cle of range 18 (through all levels).

7 8 9

462 [10,1]
1704 [65,1] 1716 [12,1]

] 6337 [350,7] 6421 [90,1] 6435 [14,1]
Table 1
Number of cycles in the factor Cn,�, n = 2m + 1, for small values of m and �. The first number in brack
number counts long cycles (of range 2�). For fixed m and �, the full distribution of cycles across ranges ca
on the same row. For instance, the full distribution of cycles of all ranges for m = 8 and � = 9 is [1430, 2
of range 4 (through the middle 4 levels of the 17-cube), to 14 short cycles of range 16, to a single long cy
m � = 1 2 3 4 5 6
1 1 1 [0,1]
2 1 1 [0,1] 3 [2,1]
3 2 1 [0,1] 6 [5,1] 10 [4,1]
4 3 4 [0,4] 17 [14,3] 29 [14,1] 35 [6,1]
5 6 6 [0,6] 46 [42,4] 93 [48,3] 118 [27,1] 126 [8,1]
6 14 19 [0,19] 142 [132,10] 307 [165,10] 412 [110,5] 452 [44,1]
7 34 49 [0,49] 446 [429,17] 1010 [572,9] 1438 [429,8] 1643 [208,5]
8 95 150 [0,150] 1475 [1430,45] 3474 [2002,42] 5113 [1638,43] 6002 [910,22

P. Gregor et al. / Journal of Combinatorial Theory, Series B 160 (2023) 163–205 181
Lemma 8. For any d ≥ 1, the union of the 0- and 1-lexical matchings between levels d

and d +1 of Q2d contains no cycles, but only paths, and the sets of first and last vertices
of these paths are D2d and D′

2d, respectively. Furthermore, for any path with first vertex
x ∈ D2d and last vertex y ∈ D′

2d, if x = u 0 v 1, with u, v ∈ D, is the right factorization
of x, then y = u 1 0 v.

Lemma 9. For every 1 ≤ k ≤ �, the edge set Yk defined in (5) contains only paths, but
no cycles. Furthermore, any path formed by the edges of Yk has its first and last vertex
in the following sets, and if its first vertex x has the form specified below, then its last
vertex y has the form specified below:

(i) If k = �, then we have x ∈ C+
2�−3,2�−3 and y ∈ C−

2�−1,2�−2, and if

x = u0 1 · · ·u2�−4 1 v 0w 1︸ ︷︷ ︸
u2�−3

∈ C+
2�−3,2�−3, then

y = u0 1 · · ·u2�−4 1 v 1 0w ∈ C−
2�−1,2�−2.

(ii) If k = 1, then we have x ∈ C+
2�−3,0 and y ∈ C−

2�−1,1, and if

x = 0 v 1w︸ ︷︷ ︸
u0

0u1 · · · 0u2�−3 ∈ C+
2�−3,0, then

y = v 1 0w 0u1 · · · 0u2�−3 ∈ C−
2�−1,1.

(iii) If 1 < k < �, then we have x ∈ C−
2�−1,2k−1 and y ∈ C−

2�−1,2k−2, and if

x = u0 1 · · ·u2k−3 1u2k−2 1 0u2k · · · 0u2�−1 ∈ C−
2�−1,2k−1, then

y = u0 1 · · ·u2k−3 1 0u2k−2 0u2k · · · 0u2�−1 ∈ C−
2�−1,2k−2.

Proof. For any bitstring x = x1 · · ·xn and any integers α ≥ 0 and 0 ≤ β ≤ n we define
the mapping �α,β(x) := �α,β(x1 · · ·xn) := 0αx1 · · ·xn−β , i.e., this mapping prepends x

with α many 0s, and removes the last β bits.
To prove (i), we define α := 2� − 3 and we consider the edge set �α,0(Y�) between

levels d and d + 1 of Q2d, where 2d = n + α. From the definition of lexical matchings
and (5), we see that �α,0(Y�) is a set of 0- and 1-lexical matching edges in Q2d. Moreover,
as �α,0(C+

2�−3,2�−3) ⊆ D2d and �α,0(C−
2�−1,2�−2) ⊆ D′

2d, applying Lemma 8 in Q2d shows
that the edge set Y� contains no cycles and any path formed by those edges has its first
and last vertex in the sets C+

2�−3,2�−3 and C−
2�−1,2�−2. Moreover, for a first vertex x′ :=

0α x ∈ D2d with x as in the lemma we have the right factorization x′ = 0α x = a 0 w 1
with a := 0α u0 1 · · ·u2�−4 1 v ∈ D, so Lemma 8 shows that the last vertex of this path
is indeed y′ = a 1 0 w = 0α y with y as above.

To prove (ii), consider the automorphism ϕ of Qn that reverses and complements all
bits. One can check that ϕ maps 0- and 1-lexical matchings between levels i and i + 1

182 P. Gregor et al. / Journal of Combinatorial Theory, Series B 160 (2023) 163–205
to 0- and 1-lexical matchings between levels n − i and n − i − 1 for all 0 ≤ i < n.
Consequently, using (5) we obtain that Y1 = ϕ(Y�). As moreover C+

2�−3,0 = ϕ(C+
2�−3,2�−3)

and C−
2�−1,1 = ϕ(C−

2�−1,2�−2) the claim follows from part (i).
To prove (iii), let x ∈ C−

2�−1,2k−1 be as in the lemma. Moreover, let b :=
0 u2k · · · 0 u2�−1 be the suffix of x, let β be the length of b, and let α := 2k− 3. Consider
the vertex z := u0 1 · · ·u2k−3 0 u2k−2 1 b, which is joined to x via a 1-lexical edge. This
edge, however, is not in Yk, as we have z ∈ C+

2�−3,2k−3 from (2). Adding all those edges
to Yk yields a larger set of edges Y ′ := Yk∪M1[C+

2�−3,2k−3, C
−
2�−1,2k−1]. We now consider

the edge set �α,β(Y ′) between levels d and d +1 of Q2d, where 2d = n +α−β. Similarly
to before, �α,β(Y ′) is a set of 0-lexical and 1-lexical matching edges in Q2d. Moreover, as
�α,β(C+

2�−3,2k−3) ⊆ D2d and �α,β(C−
2�−1,2k−2) ⊆ D′

2d, applying Lemma 8 in Q2d shows
that the edge set Y ′, and hence Yk, contains no cycles and any path formed by the edges
of Y ′ has its first and last vertex in the sets C+

2�−3,2k−3 and C−
2�−1,2k−2. Moreover, for

the first vertex z′ := �α,β(z) ∈ D2d with z from before we have the right factorization
z′ = a 0 u2k−2 1 with a := 0α u0 1 · · ·u2k−3 ∈ D, so Lemma 8 shows that the last vertex
of this path is y′ := a 1 0 u2k−2, and as y′ = �α,β(y) with y as in the lemma, the claim is
proved. �

The next lemma describes the effect of walking along a path in the set Y ∪Z from its
first to its last vertex.

Lemma 10. The union of edges Y ∪Z with Y and Z as defined in (5) and (6) contains only
paths, but no cycles, and the sets of first and last vertices of these paths are C+

2�−3,2�−3
and C+

2�−3,0, respectively. Furthermore, for any path with first vertex

x = u0 1u1 · · · 1 v 0w 1︸ ︷︷ ︸
u2�−3

∈ C+
2�−3,2�−3,

the corresponding last vertex is

y = 0u0 1−→u1 0u2 0−→u3 0u4 0 · · · −−−→u2�−5 0u2�−4 0−→v 0w ∈ C+
2�−3,0.

Proof. As the edges in Z perfectly match the last vertices of paths formed by Yk with
the first vertices of paths formed by Yk−1 for all 2 < k ≤ �, and the last vertices of
paths formed by Y2 with the last vertices of paths formed by Y1, this follows by iterating
Lemma 9 and by using (3), where the Z-edges cause the rotation of every second valley
u1, u3, . . . , u2�−5, v in x. �

The next lemma describes how the paths formed by the edges Y ∪ Z interact with
the short chains in X that are not contained in a short cycle (recall the last part of
Lemma 6) to form long cycles. We describe this interaction locally, in terms of how
consecutive vertices from the set C+

2�−3,2�−3 on a long cycle look like, which is enough
for our purposes.

P. Gregor et al. / Journal of Combinatorial Theory, Series B 160 (2023) 163–205 183
Fig. 9. Structure of long cycles as described by Lemma 11, for case (i) (w �= ε) on the left and for case (ii)
(w = ε) on the right.

Lemma 11. Each long cycle in the factor Cn,� defined in (7) has range 2� and visits
vertices from all 2� levels. Moreover, let x = u0 1 u1 · · · 1 u2�−4 1 v 0w 1︸ ︷︷ ︸

u2�−3

∈ C+
2�−3,2�−3 be

a vertex from the cycle and let y be the next vertex from C+
2�−3,2�−3 on the cycle after x.

(i) If w 	= ε, then we have y = a 1 u2 1 −→u3 1 u4 1 · · · −−−→u2�−5 1 u2�−4 1 −→v 1 w, where a :=
0 u0 1 −→u1, and between x and y the cycle traverses the [++]-chain a ∗u2 ∗−→u3 ∗u4 ∗ · · ·
−−−→u2�−5 ∗u2�−4 ∗−→v ∗w of length 2� − 3.

(ii) If w = ε, then we have y = 1 u0 1 −→u1 1 u2 1 −→u3 1 · · · −−−→u2�−5 1 b, where b := u2�−4 0 −→v 1,
and between x and y the cycle traverses the [+−]-chain a ∗u2 ∗−→u3 ∗ · · · −−−→u2�−5 ∗
u2�−4 ∗−→v ∗ of length 2� −3, the [++]-chain a ∗u2 ∗−→u3 ∗ · · · −−−→u2�−5 ∗ b of length 2� −5,
and the [−+]-chain ∗u0 ∗−→u1 ∗u2 ∗ · · · −−−→u2�−5 ∗ b of length 2� −3, where a := 0 u0 1 −→u1,
plus two additional edges connecting these chains.

Proof. The first part of the lemma follows immediately from the last part of Lemma 6
and the first part of Lemma 10. To prove parts (i) and (ii) consider Fig. 9, and observe
that a path in Y ∪ Z starting from x as in the lemma has last vertex as specified by
Lemma 10, and then the cycle continues with a path in X on short chains as claimed until
it arrives at the claimed vertex y (use (4) and the definition of 1-lexical matchings). �

It is illuminating to interpret the transformations captured by parts (i) and (ii) of
Lemma 11 in terms of rooted trees; see Fig. 10. If we prepend 02�−3 to the vertices x

and y as in the lemma, then the resulting bitstrings 02�−3C+
2�−3,2�−3 =: Tn,� can be

interpreted as rooted trees on m + � − 1 edges with a root of degree at least 2 and

184 P. Gregor et al. / Journal of Combinatorial Theory, Series B 160 (2023) 163–205
Fig. 10. Interpretation of the transformations stated in parts (i) and (ii) of Lemma 11 in terms of rooted
trees, called heavy and light rotations, shown on the left and right hand side, respectively. The spine edges
are drawn bold.

the leftmost leaf in depth at least 2� − 3. We refer to the operations 02�−3x �→ 02�−3y

with x and y as in parts (i) or (ii) of Lemma 11 as a heavy rotation, or a light rotation,
respectively. Moreover, we refer to the subtree 02�−3 12�−3 0 1 of any tree from Tn,� as its
spine. Combinatorially, a heavy rotation is an inverse rotation at the root, plus a rotation
of every second subtree attached to the spine. A light rotation moves all subtrees attached
to the spine one spine vertex to the right, and it also applies a rotation to every second
such subtree. These operations define an equivalence relation on Tn,� whose equivalence
classes correspond to long cycles. Unfortunately, in general there seems to be no ‘nice’
combinatorial interpretation of these equivalence classes, unless in some special cases like
� ∈ {1, 2, m + 1}; recall the remarks from the end of Section 4.1. The number of long
cycles determined experimentally for small values of m and � can be found in Table 1.

5. Flipping 4-cycles

In this section we describe how to modify the cycle factor Cn,� (where n = 2m + 1,
m ≥ 1, 2 ≤ � ≤ m + 1), so that every short cycle is joined to some long cycle. The
remaining task, solved in the next sections, will then be to join the long cycles to a
single Hamilton cycle. The modifications via 4-cycles exploit relations between pairs
of short chains of the Greene-Kleitmann SCD that were first used by Griggs, Killian,
and Savage [21], and by Killian, Ruskey, Savage, and Weston [30] with the purpose of
constructing symmetric Venn diagrams.

A flipping 4-cycle between two vertex-disjoint paths P, P ′ is a 4-cycle F that shares
exactly one edge with each of the two paths. Note that the symmetric difference of the
edge sets (P ∪P ′) �F gives path Q, Q′ on the same vertex set with flipped end vertices:
Specifically, if P, P ′ are xy, x′y′-paths, then Q, Q′ are xy′, x′y-paths. Thus, if P, P ′ are
subpaths of two cycles C, C ′, then (C ∪ C ′) � F is a single cycle.

P. Gregor et al. / Journal of Combinatorial Theory, Series B 160 (2023) 163–205 185
Fig. 11. Flipping 4-cycles between a chain C and one of its children C′. The labels a and b along edges
denote positions of flipped bits.

Given a chain C of length h, we say that a chain C ′ of length h − 2 is a child of C, if
C ′ is obtained from C by replacing two consecutive *s in C by 0 and 1, respectively; see
Fig. 11. We refer to this as matching two *s in C. We also call C a parent of C ′. Note
that C has exactly h − 1 many children, obtained by matching any two consecutive of
the h many *s in total. Moreover, the number of parents of C ′ is given by the number of
outermost matched 01-pairs in C ′, which can be up to (n − (h −2))/2. A straightforward
verification (see Fig. 11 for an example) yields the following lemma.

Lemma 12. For every chain C of length h and its child C ′ obtained by matching two *s
at positions a, b, there are exactly h − 2 many flipping 4-cycles between C and C ′, each
using a distinct edge of C and C ′, except the two consecutive edges of C that flip the
coordinates a and b.

The preceding lemma provides us enough options for selecting multiple edge-disjoint
flipping 4-cycles as follows.

Lemma 13. For every chain C of length h ≥ 5 and any edge f of C, there are h − 1
edge-disjoint flipping 4-cycles between C and each of its h − 1 children that all avoid the
edge f .

We can think of f as a forbidden edge that will be used to connect C further to one
of its parent chains.

Proof. We may assume w.l.o.g. that C = ∗h, as any other chain of length h is obtained
from this chain by inserting valleys between and around the *s; recall (1). We label the
edges on C by 1, . . . , h from bottom to top, and we let p ∈ {1, . . . , h} be the index of the
edge f to be avoided. We label all h − 1 children of C from 1 to h − 1, such that the ith
child is obtained by matching the ith and (i +1)st ∗ in C. To the ith child, 1 ≤ i ≤ h −1,
we assign the edge

e(i) :=
{
μ(i + 2, h) if μ(i + 2, h) < p,

μ(i + 3, h) otherwise,

186 P. Gregor et al. / Journal of Combinatorial Theory, Series B 160 (2023) 163–205
on C, where μ(x, h) is the representative of the residue class of x modulo h from the set
{1, . . . , h}. Since e(i) /∈ {i, i + 1} by the definition of e(i) and the assumption h ≥ 5, by
Lemma 12 there is a flipping 4-cycle between C and its ith child that uses the edge e(i)
on C. Moreover, as the mapping e : {1, . . . , h − 1} → {1, . . . , p − 1, p + 1, . . . , h} is a
bijection, these flipping 4-cycles for all 1 ≤ i ≤ h − 1 are edge-disjoint, and they all
avoid f . �

Recall that by Lemma 6, short cycles correspond to [−−]-chains of length 3 ≤ h ≤
2� − 3. For each short cycle represented by such a chain C of length h, we now specify
a chain g(C) on the same cycle, called a gluing chain, and we also specify a parent
chain p(g(C)) of g(C) that belongs to a cycle of a bigger range; that is, a short cycle
with a [−−]-chain of length h + 2 or a long cycle. These definitions are illustrated in
Fig. 12. Specifically, for a short cycle represented by a [−−]-chain C = ∗u1 ∗ · · ·uh−1 ∗
of length 3 ≤ h ≤ 2� − 3 we define

g(C) :=

⎧⎪⎪⎨
⎪⎪⎩

C if h < 2�− 3,
a ∗u3 ∗ · · ·uh−1 ∗ if h = 2�− 3 and u1 = ε,

∗u1 ∗ · · ·uh−3 ∗ b if h = 2�− 3 and u1 	= ε,

(8)

where a := 0 u1 1 u2 ∈ D and b := uh−2 0 uh−1 1 ∈ D. Note that in the second case,
g(C) is a [+−]-chain of length h − 2, and in the third case, g(C) is a [−+]-chain of
length h − 2. By Lemma 6, in each case the chain g(C) belongs to the same short cycle
as C. To define p(g(C)), let 0 < i < h be the smallest index such that ui 	= ε. We let
p(g(C)) be the parent of g(C) obtained by replacing the leftmost matched 01-pair in ui

by two *s. That is, given the left factorization ui = 0 v 1 w with v, w ∈ D, then p(g(C))
is obtained from g(C) by replacing ui with ∗ v ∗w. Observe that in all three cases of (8),
the chain p(g(C)) has the same type as g(C) ([−−], [+−], or [−+], respectively). As a
consequence of Lemmas 6 and 11, the chain p(g(C)) therefore belongs to a short cycle
of bigger range if h < 2� − 3 and to a long cycle if h = 2� − 3.

We now show that flipping 4-cycles between all gluing chains and their selected parents
can be chosen to be pairwise edge-disjoint.

Lemma 14. There is a set Fn,� of pairwise edge-disjoint flipping 4-cycles, each be-
tween g(C) and p(g(C)) for all short cycles C of the cycle factor Cn,� defined in (7).

In this lemma we identify a short cycle C with its corresponding [−−]-chain of length
3 ≤ h ≤ 2� − 3.

Proof. We consider the directed graph on all short chains as nodes and arcs from g(C)
to p(g(C)) for all short cycles C, and in this graph we consider all nontrivial components;
see Fig. 12. As the chain p(g(C)) is longer than g(C), these components are trees that
are oriented towards a set of roots, and by the definition of the mappings g and p, these

P. Gregor et al. / Journal of Combinatorial Theory, Series B 160 (2023) 163–205 187
Fig. 12. For n = 2m + 1 = 7 and � = 4 we have 9 short cycles represented by the [−−]-chains C1, . . . , C9 of
length 3 or 5 = 2� − 3. The dotted boxes indicate chains Ci with Ci �= g(Ci), but with Ci and g(Ci) on the
same short cycle. Arrows connect g(Ci) with p(g(Ci)). The top two chains are contained in a long cycle (in
this case, in the same cycle). The roots of the trees mentioned in the proof of Lemma 14 are highlighted in
gray.

roots are [−−]-, [+−]- and [−+]-chains of length 2� − 3. We select one flipping 4-cycle
into Fn,� for every arc in each of these trees, and the selection is done by processing
each tree independently, starting at the root and descending towards its leaves, along
parent-child pairs of chains. We show that this can be done so that all selected 4-cycles
are pairwise edge-disjoint. Clearly, these 4-cycles can only share an edge on a chain g(C)
or p(g(C)) for some short cycle C.

First, observe that g(C) has length 1 only if � = 3 and C has length h = 3 = 2� − 3.
In this case the arc from g(C) to p(g(C)) is an entire tree, so we can take the single
flipping 4-cycle between g(C) and p(g(C)), which exists by Lemma 12, into Fn,�.

For the rest of the proof we assume that � ≥ 4, so the nodes of all trees are chains of
length at least 3, and all interior nodes are chains of length at least 5. Let C denote the
current chain, which is the root of some currently unprocessed subtree, and let h ≥ 5
be its length. By Lemma 13, we may select edge-disjoint flipping 4-cycles to all children
of C in the tree, one for each incoming arc to C, all avoiding the edge f of C that was
previously chosen for a flipping 4-cycle between C and p(C). We add to the set Fn,� all
those 4-cycles, and we proceed recursively in each subtree below C. �
6. Flipping 6-cycles

In this section we define certain 6-cycles between the top two levels in Qn,� (where
n = 2m + 1, m ≥ 1, 2 ≤ � ≤ m + 1); that is, between levels m + � − 1 and m + �

in Qn, that can be used to join pairs of long cycles from the cycle factor Cn,� defined
in (7). Recall that by Lemma 9, in the top two levels the cycle factor Cn,� consists of
paths formed by the edges in Y�, and these paths can be identified by their first vertices
C+

2�−3,2�−3. In the following, whenever referring to paths in Y� we mean maximal paths,
i.e., the components formed by the edges in Y� (and not proper subpaths of these).

Recall that a flipping 4-cycle for a pair of paths has one edge in common with each
of these paths, and taking the symmetric difference of the edge sets of the paths and

188 P. Gregor et al. / Journal of Combinatorial Theory, Series B 160 (2023) 163–205
Fig. 13. Two long cycles L, L′ from the cycle factor Cn,� joined by taking the symmetric difference with a
flipping 6-cycle. The paths P (x) and P (y) from the set Y� (solid black) lying on the two long cycles traverse
the 6-cycle C6(x, y) (solid gray) as shown. The symmetric difference yields paths P ′(x) and P ′(y) that have
flipped end vertices.

Fig. 14. The pull operation on rooted trees.

the 4-cycle yields two paths on the same vertex set with flipped end vertices. A flipping
6-cycle works very similarly, albeit its intersection pattern with the two paths is more
complicated; see Fig. 13. Specifically, such a flipping 6-cycle shares two non-incident
edges with one of the paths, and one edge with the other path. The precise conditions
are stated in Lemma 15 below. Let us emphasize that the flipping 6-cycles we use are
by definition edge-disjoint with all flipping 4-cycles considered in the previous section,
as the 4-cycles are all between levels m − � + 2 and m + � − 1 of Qn, so none of them
uses any edges from the top two levels.

We say that two vertices x, y ∈ C+
2�−3,2�−3 form a flippable pair (x, y), if 02�−3x

and 02�−3y have the form

02�−3x = u′
0 0u1 · · · 0ud 0ud+1 0 1 1 vd 1 · · · v2 1 v1 1,

02�−3y = u′
0 0u1 · · · 0ud 0ud+1 1 0 1 vd 1 · · · v2 1 v1 1

(9)

with d ≥ 0 and u′
0, u1, . . . , ud+1, v1, . . . , vd ∈ D.

Recall from Section 4 that 02�−3x and 02�−3y can be viewed as rooted trees from Tn,�,
where all but one spine edge is contained in the subtree u′

0. If (x, y) is a flippable pair,
then the tree 02�−3y is obtained from the tree 02�−3x by moving a pending edge from a
vertex in the rightmost subtree to its predecessor. Specifically, the pending edge (q, r)
must form the rightmost subtree of a vertex q in the rightmost subtree of 02�−3x, and

P. Gregor et al. / Journal of Combinatorial Theory, Series B 160 (2023) 163–205 189
this edge is removed from q and reattached to the predecessor p of q to become the
subtree directly right of the edge (p, q). We refer to this as a pull operation; see Fig. 14.

Any 6-cycle between the top two levels of Qn,� can be uniquely encoded as a string
of length n over {0, 1, ∗} with m + � − 2 many 1s, m − � many 0s and three ∗s. The
6-cycle corresponding to this string is obtained by substituting the three ∗s by all six
combinations of at least two different symbols from {0, 1}. For any flippable pair (x, y)
as in (9), let u0 be such that u′

0 = 02�−3u0, and define the flipping 6-cycle

C6(x, y) := u0 1u1 · · · 1ud ∗ud+1 ∗ ∗ 1 0 vd 0 · · · v2 0 v1. (10)

Moreover, we let Sn,� denote the set of all those 6-cycles, obtained as the union of C6(x, y)
over all flippable pairs (x, y).

The following result was proved in [24, Proposition 3]. For any x ∈ C+
2�−3,2�−3, we

write P (x) for the path from Y� that starts at the vertex x.

Lemma 15. The 6-cycles C6(x, y) ∈ Sn,� defined in (10) have the following properties:

(i) Let (x, y) be a flippable pair. The 6-cycle C6(x, y) intersects P (x) in two non-
incident edges and it intersects P (y) in a single edge. Moreover, the symmetric
difference of the edge sets of the two paths P (x) and P (y) with the 6-cycle C6(x, y)
gives two paths P ′(x) and P ′(y) on the same set of vertices as P (x) and P (y),
connecting x with the last vertex of P (y), and y with the last vertex of P (x), re-
spectively.

(ii) For any flippable pairs (x, y) and (x′, y′), the 6-cycles C6(x, y) and C6(x′, y′) are
edge-disjoint.

(iii) For any flippable pairs (x, y) and (x, y′), the two pairs of edges that the two
6-cycles C6(x, y) and C6(x, y′) have in common with the path P (x) are not in-
terleaved, but one pair appears before the other pair along the path.

7. Proof of Theorem 1

With Lemmas 11, 14 and 15 in hand, we are now ready to prove Theorem 1. Recall
that Tn,� = 02�−3C+

2�−3,2�−3 is the set of rooted trees on m + � − 1 edges with a root of
degree at least 2 and the leftmost leaf in depth at least 2� − 3. Each x ∈ Tn,� has the
form x = 02�−3u0 1 · · ·u2�−4 1 u2�−3 with u0, . . . , u2�−3 ∈ D, u2�−3 	= ε. Considering the
right factorization u2�−3 = v 0 w 1 with v, w ∈ D, we say that x is right-empty if w = ε,
and we say that x is right-full if u0 = · · · = u2�−4 = v = ε (and hence w 	= ε). In terms
of trees, w is the subtree rooted at the rightmost child of the root of x.

Proof of Theorem 1. The case � = 1 of the theorem was proved in [34], so we now assume
that � ≥ 2. Let m ≥ 1, n := 2m + 1, 2 ≤ � ≤ m + 1, and consider the subgraph Qn,� of
the n-cube induced by the middle 2� levels.

190 P. Gregor et al. / Journal of Combinatorial Theory, Series B 160 (2023) 163–205

(

(

Let Cn,� be the cycle factor in the graph Qn,� defined in (7), let Fn,� be the set of
flipping 4-cycles from Lemma 14, and let Sn,� be the set of flipping 6-cycles defined
in (10). By the choice of Fn,� in Lemma 14, the symmetric difference Cn,� �Fn,� of the
edge sets of Cn,� and Fn,� is a cycle factor with the property that every cycle traverses
a path from the set Y� of edges between the top two levels of Qn,� (levels m + � − 1 and
m +� in Qn), so to complete the proof it is enough to show that long cycles can be joined
to a single cycle via flipping 6-cycles from Sn,�.

Consider two long cycles L, L′ containing paths P (x), P (y) ∈ Y� with first vertices
x, y ∈ C+

2�−3,2�−3, respectively, such that (x, y) is a flippable pair. By Lemma 15 (i),
(L ∪L′) �C6(x, y) forms a single cycle on the same vertex set as L ∪L′, i.e., this joining
operation reduces the number of long cycles in the factor by one; see Fig. 13. Recall that
in terms of rooted trees, 02�−3y ∈ Tn,� is obtained from 02�−3x ∈ Tn,� by a pull operation;
see Fig. 14. We repeat this joining operation until all long cycles in Cn,� are joined to
a single cycle. For this purpose we define an auxiliary graph Hn,� whose nodes are the
equivalence classes of trees from Tn,� under heavy and light rotations; see Fig. 10. By
Lemma 11, the nodes of this graph correspond to maximal sets of paths from Y� that lie
on the same long cycle. Moreover, for the edge set of Hn,� we take all pairs of sets that
contain the two trees that form a flippable pair (differing by a pull operation).

To complete the proof of Theorem 1, it therefore suffices to prove that the auxiliary
graph Hn,� is connected. Indeed, if Hn,� is connected, then we can pick a spanning
tree in Hn,� corresponding to a collection of flipping 6-cycles S ′

n,� ⊆ Sn,�, such that
the symmetric difference Cn,� � (Fn,� ∪ S ′

n,�) forms a Hamilton cycle in Qn,�. Of crucial
importance here are properties (ii) and (iii) in Lemma 15, which ensure that whatever
subset of flipping 6-cycles we use in this joining process, they will not interfere with each
other, guaranteeing that each flipping 6-cycle indeed reduces the number of long cycles
by one, as desired. Recall also that flipping 4-cycles and flipping 6-cycles are edge-disjoint
by definition, so they do not interfere with each other either.

At this point we reduced the problem of proving that Qn,� has a Hamilton cycle to
showing that the auxiliary graph Hn,� is connected, which is much easier. Indeed, all
we need to show is that any rooted tree from Tn,� can be transformed into any other
tree from Tn,� by a sequence of heavy rotations, light rotations, pulls and their inverse
operations (actually, we shall only use light rotations and pulls in our proof). Recall
that heavy and light rotations correspond to following the same long cycle, and a pull
corresponds to a joining operation. For this we show that any rooted tree x ∈ Tn,� can
be transformed into the special tree s := 02�−3 12�−3 0 0 1 · · · 0 1 0 ∈ Tn,�, i.e., a right-full
tree with a star rooted at the center as the rightmost child of the root. To achieve this,
we distinguish three cases; see Fig. 15.

a) x is right-full. We pull edges within the subtree rooted at the rightmost child of the
root until this subtree is a star rooted at the center, which produces the desired tree s.

b) x is neither right-full nor right-empty. Let q be the distance between the left end
vertex of the spine and the closest nonempty subtree attached to the spine. That

P. Gregor et al. / Journal of Combinatorial Theory, Series B 160 (2023) 163–205 191

(

Fig. 15. Transformation of trees from Tn,� into the tree s in the proof of Theorem 1. Gray subtrees are
nonempty, white subtrees are possibly empty. Spine edges are drawn bold.

is, q is the smallest index i such that ui 	= ε if such ui exists, and q = 2� − 3 if
u0 = · · · = u2�−4 = ε (as x is not right-full, v 	= ε in this case). First, we repeatedly
pull the single edge from the rightmost leaf of x all the way towards the root, arriving
at a right-empty tree. After a single light rotation we obtain a tree that is not right-
empty and that is either right-full (if q = 2� −3), and then we conclude the argument
as in case (a), or in which the distance q′ between the left end vertex of the spine
and the closest nonempty subtree has increased by 1 (if q < 2� − 3), i.e., we have
q′ = q + 1. Repeating the argument from case (b) hence terminates after at most
2� − 2 repetitions.

c) x is right-empty. Let p be the distance between the root and the closest nonempty
subtree attached to the spine. After exactly p + 1 light rotations, we are in case (a)
or (b).

This shows that Hn,� is connected, and thus completes the proof. �
In our construction of the Hamilton cycle Cn,��(Fn,�∪S ′

n,�) described in the previous
proof, the choice of the set of flipping 6-cycles S ′

n,� depends on the global structure of
long cycles. As explained in Section 4.2, our Lemma 11 does not provide any information
about the global structure of these cycles, which is the main obstacle that prevents us
from translating our construction to a polynomial-time algorithm for computing the next
vertex on the Hamilton cycle, i.e., to an algorithm that only has local information about
the current vertex in deciding which bit to flip next. Without explicitly constructing all
long cycles, which may take time and space that are exponential in n, we do not even
know how many 6-cycles should be selected into the set S ′

n,�.

192 P. Gregor et al. / Journal of Combinatorial Theory, Series B 160 (2023) 163–205
8. Proof of Theorem 3

For any chain C, we let |C| denotes its length, i.e., the number of *s in C. For any
chain C with |C| ≥ 2, we let f(C) and �(C), respectively, denote the chains obtained
by replacing the first two *s or the last two *s in C by 0 and 1. Note that if |C| ≥ 2,
then we have f(�(∗C∗)) = �(f(∗C∗)). For any chain C, we denote its bottom end vertex
by b(C) and its top end vertex by t(C). Recall that b(C) and t(C) are obtained from C

by replacing all *s by 0s or 1s, respectively.
Our goal is to order the chains of the Greene-Kleitman SCD in Qn, n ≥ 2, so that

any consecutive pair of chains can be joined, alternatingly at their top ends or bottom
ends, to a Hamilton cycle. Formally, given an SCD in Qn, a cycle ordering is a sequence
C1, . . . , Ck of the chains of this SCD for which there exists a set of edges E of Qn such
that C1 ∪ C2 ∪ · · · ∪ Ck ∪ E is a Hamilton cycle that traverses the chains in this order,
either from bottom to top or vice versa, and moreover if |Ci| = 0 for some i ∈ {1, . . . , k}
then the two edges from E incident with this one-vertex chain must have their other
end vertices in distinct levels. The following simple but powerful lemma shows that
the direction in which each chain is traversed along the Hamilton cycle (upwards or
downwards) is determined only by the chain length.

Lemma 16. Let Λn be a cycle ordering of chains of an SCD in Qn, n ≥ 2. Then in the
corresponding Hamilton cycle, any two chains C and C ′ with |C| ≡ |C ′| (mod 4) are
traversed in the same direction.

This lemma holds for arbitrary SCDs, in particular for the SCD arising from the
Greene-Kleitman construction.

Proof. This is a consequence of the following observations: After traversing a chain C

with |C| ≥ 2, the next chain in the cycle ordering has either length |C| − 2 or |C| + 2,
and is traversed in the opposite direction in both cases. Similarly, if |C| = 1, the next
chain in the cycle ordering has either length |C| = 1 or |C| + 2 = 3, and is traversed
in the same direction or the opposite direction, respectively. Moreover, if |C| = 0, then
the previous and next chain have length |C| + 2 = 2, and by the condition that the two
edges of the cycle incident with this one-vertex chain must have their other end vertices
in distinct levels, both chains of length 2 are traversed in the same direction. �

We now define a cycle ordering Λn, n ≥ 2, for the Greene-Kleitman SCD; see Fig. 16
for illustration. The corresponding Hamilton cycle is oriented so that it traverses the
longest chain ∗n, which will be the first in the ordering Λn, from bottom to top. Our
construction works inductively, and the induction step goes from n to n +2, with separate
rules for even and odd n. The base cases are n = 0 and n = 1, for which the entire cube
consists only of a single vertex and a single edge, respectively, so for these cases the
notion of a cycle ordering is not defined.

For even n, we define Λ0 := ε, and for n ≥ 0 and given Λn =: C1, . . . , CN we define
Λn+2 := ρ(Λn) = ρ(C1), . . . , ρ(CN) with

ρ(C) :=
{
λ(C) if |C| ≡ n (mod 4),
λ(C)R if |C| 	≡ n (mod 4),

(11a)

and

λ(C) :=
{
∗C∗, f(∗C∗), f(�(∗C∗)), �(∗C∗) if |C| ≥ 2,
∗C∗, 0C1 if |C| = 0.

(11b)

We call the chains of λ(C) arising from C the descendants of C. Essentially this rule
replaces each chain C in Λn by its descendants λ(C), where the order of descendants can
be reversed, indicated by the superscript R, depending on the length of C modulo 4.

For odd n, we define Λ1 := ∗, and for n ≥ 1 and given Λn we define Λn+2 := ρ(Λn),
where ρ is as before and

λ(C) :=
{
∗C∗, �(∗C∗), �(f(∗C∗)), f(∗C∗) if |C| ≥ 3,
∗C∗, �(∗C∗), f(∗C∗) if |C| = 1.

(11c)

Lemma 17. Λn contains every chain of the Greene-Kleitman SCD exactly once.

Proof. Observe that for even n, if |C| ≥ 2 in (11b), then ∗C∗ is a [−−]-chain of length
|C| + 2, f(∗C∗) is a [+−]-chain of length |C|, �(∗C∗) is a [−+]-chain of length |C|,
and f(�(∗C∗)) is a [++]-chain of length |C| − 2, and if |C| = 2, then the lattice path
f(�(∗C∗)) ∈ D touches the line y = 0 at least three times. If |C| = 0, on the other hand,
then ∗C∗ is a [−−]-chain of length 2, 0C1 is a [++]-chain of length 1, and the lattice
path 0C1 ∈ D touches the line y = 0 exactly twice. Overall, the inductive rule (11b)
produces only distinct chains, and every chain of the Greene-Kleitman SCD in Qn+2 is
produced. A similar argument works for odd n, showing that Λn indeed contains every
chain of the Greene-Kleitman SCD exactly once. �

To complete the proof of Theorem 3, it remains to show that any two consecutive
chains in Λn can be joined by an edge between their top ends or bottom ends alter-
natingly. For this we need the following simple lemmas that guarantee these connecting
edges.

Lemma 18. For any n ≥ 2 and any chain C with |C| ≥ 2, the chains C and f(C), and
the chains C and �(C) are connected both at their top and bottom ends in Qn.

All the connecting edges between top and bottom ends among the descendants of a
chain guaranteed by Lemma 18 are shown in Fig. 17.
P. Gregor et al. / Journal of Combinatorial Theory, Series B 160 (2023) 163–205 193

194 P. Gregor et al. / Journal of Combinatorial Theory, Series B 160 (2023) 163–205

Fig. 16. The cycle orderings Λn of Greene-Kleitman chains for n = 1, . . . , 9. In this figure, 1-bits are drawn
as black squares, 0-bits as white squares, and *s as hatched squares. Fig. 1 (f) is obtained by traversing the
chains of Λ7 up and down alternatingly.

P. Gregor et al. / Journal of Combinatorial Theory, Series B 160 (2023) 163–205 195
Fig. 17. Connections between top and bottom ends of the descendants λ(C) of a chain C, as guaranteed by
Lemmas 18 and 22. Bold gray edges are the connections used along the Hamilton cycle. Dotted edges are
present but not used.

Proof. By symmetry, it suffices to prove the lemma for the chains C and f(C). As
|C| ≥ 2, we may consider the first two *s in C and write C = u ∗ v ∗C ′ with u, v ∈
D, which yields f(C) = u 0 v 1 C ′. From this we obtain that b(C) = u 0 v 0 b(C ′) and
b(f(C)) = u 0 v 1 b(C ′), so b(C) and b(f(C)) differ exactly in the bit after the valley v.
Similarly, we have t(C) = u 1 v 1 t(C ′) and t(f(C)) = u 0 v 1 t(C ′), so t(C) and t(f(C))
differ exactly in the bit after the valley u. �

The next two lemmas are illustrated in the top part of Fig. 18.

Lemma 19. For any n ≥ 2 and any two chains C, C ′ connected at their bottom ends
in Qn, we have that ∗C∗ and ∗C ′∗ are connected at their bottom ends in Qn+2.

Proof. Note that b(∗C∗) = 0 b(C) 0 and b(∗C ′∗) = 0 b(C ′) 0. Consequently, as C and C ′

are connected at their bottom ends, b(C) and b(C ′) differ in exactly one bit, implying
that b(∗C∗) and b(∗C ′∗) also differ in exactly one bit. �
Lemma 20. For any n ≥ 2 and any chain C with |C| ≥ 2 in Qn, we have that �(∗C∗)
and �(∗f(C)∗) are connected at their bottom ends in Qn+2. Specifically, if |C| = 2 and
C = u ∗ v ∗w with u, v, w ∈ D, then we have

�(∗C∗) = ∗u ∗ v 0w 1,

�(∗f(C)∗) = 0u 0 v 1w 1.
(12a)

If |C| ≥ 3 and C = C ′ ∗u with u ∈ D and |C ′| ≥ 2, then we have

�(∗C∗) = ∗ C ′ 0u 1,

�(∗f(C)∗) = ∗f(C ′) 0u 1.
(12b)

196 P. Gregor et al. / Journal of Combinatorial Theory, Series B 160 (2023) 163–205
Consequently, in the first case, the chains �(∗C∗) and �(∗f(C)∗) differ in exactly three
positions, and in the second case, they differ in exactly two positions.

Proof. First of all, the relations (12a) and (12b) can be verified directly using the
definition of f and �. From (12a) we obtain that b(�(∗C∗)) and b(�(∗f(C)∗)) differ
exactly in the bit after v. From (12b) we obtain that b(�(∗C∗)) = 0 b(C ′) 0 u 1 and
b(�(∗f(C)∗)) = 0 b(f(C ′)) 0 u 1, and as the substrings b(C ′) and b(f(C ′)) differ in ex-
actly one bit by Lemma 18, this also holds for the entire strings. �

Note that if |C| ≥ 3 (not if |C| = 2), then by (12b) the two chains mentioned in
Lemma 20 are also connected at their top ends, but this connection is irrelevant for us.

Proof of Theorem 3 (even n). We show that Λn, n ≥ 2 even, defined in (11b) is a cycle
ordering of the Greene-Kleitman chains, by proving that any consecutive pair of chains
is connected at their top or bottom ends alternatingly, starting with the first chain ∗n
of length n that is traversed from bottom to top. We will also establish the following
additional property P: For any two consecutive chains C and C ′ connected at their top

Fig. 18. Joining of the descendants of two consecutive chains from Λn in the induction step n → n +2, via the
thick edges guaranteed by Lemmas 19–22. The dashed edges are connections to preceding and subsequent
chains on the Hamilton cycle.

P. Gregor et al. / Journal of Combinatorial Theory, Series B 160 (2023) 163–205 197
ends, we either have C = f(C ′) or f(C) = C ′. These invariants can easily be checked
for the induction base case n = 2, which is given by Λ2 = ∗∗, 01.

For the induction step consider n ≥ 2 to be even, and assume that Λn is a cycle
ordering satisfying property P. By Lemma 18, the descendants λ(C) for any chain C

from Λn can be joined as shown on the left hand side of Fig. 17, so we only need to
check the connections between the first and last chains among consecutive groups of
descendants. Indeed, if C and C ′ are consecutive in Λn and joined at their bottom ends,
then C is traversed from top to bottom and C ′ from bottom to top in the Hamilton
cycle; see the top left part of Fig. 18. Consequently, by Lemma 16, we have |C| 	≡ |∗n| =
n (mod 4) and |C ′| ≡ n (mod 4), i.e., by (11a) the sequence Λn+2 contains λ(C)R
and λ(C ′), and indeed, the bottom vertex of the last chain of λ(C)R, namely ∗C∗, is
connected to the bottom vertex of the first chain of λ(C ′), namely ∗C ′∗, by Lemma 19.

Similarly, if C and C ′ are consecutive in Λn and joined at their top ends, then C is
traversed from bottom to top and C ′ from top to bottom in the Hamilton cycle; see
the top right part of Fig. 18. Consequently, by Lemma 16, we have |C| ≡ n (mod 4)
and |C ′| 	≡ n (mod 4), i.e., by (11a) the sequence Λn+2 contains λ(C) and λ(C ′)R, and
indeed, the bottom vertex of the last chain of λ(C), namely �(∗C∗), is connected to the
bottom vertex of the first chain of λ(C ′)R, namely �(∗C ′∗), using that by property P we
have either C = f(C ′) or f(C) = C ′, so we can invoke Lemma 20. Moreover, property P
still holds for Λn+2 by the definition (11b) (note that if |C| = 0, then we have 0C1 =
f(∗C∗)). �

To prove Theorem 3 for odd n, we need two additional lemmas, illustrated at the
bottom part of Fig. 18. Lemma 21 is the ‘dual’ version of Lemma 20, with f replaced
by � and vice versa, which we need as the definitions (11b) and (11c) in the first case
differ in the ordering of descendants. Lemma 22 deals with the special case of consecutive
chains of length 1, a situation that never occurs for even n.

Lemma 21. For any n ≥ 3 and any chain C with |C| ≥ 3 in Qn, we have that f(∗C∗)
and f(∗�(C)∗) are connected at their bottom ends in Qn+2. Specifically, if C = u ∗C ′

with u ∈ D and |C ′| ≥ 2, then we have

f(∗C∗) = 0u 1 C ′ ∗,
f(∗�(C)∗) = 0u 1 �(C ′) ∗,

(13)

i.e., the chains f(∗C∗) and f(∗�(C)∗) differ in exactly two positions.

Proof. The relation (13) can be verified directly using the definition of f and �. From
(13) we obtain that b(f(∗C∗)) = 0 u 1 b(C ′) 0 and b(f(∗�(C)∗)) = 0 u 1 b(�(C ′)) 0, and as
the substrings b(C ′) and b(�(C ′)) differ in exactly one bit by Lemma 18, this also holds
for the entire strings. �

198 P. Gregor et al. / Journal of Combinatorial Theory, Series B 160 (2023) 163–205
By (13), the two chains mentioned in Lemma 21 are also connected at their top ends,
but this connection is irrelevant for us.

Lemma 22. For any odd n ≥ 3 and any chain C with |C| = 1 in Qn−2, we have that the
bottom end of L := �(∗C∗) is joined to the top end of F := f(∗C∗) in Qn, and moreover
∗L∗ and f(∗F∗) are connected at their bottom ends in Qn+2. Specifically, if C = u ∗ v
with u, v ∈ D, then we have

L = ∗u 0 v 1, ∗L∗ = ∗ ∗u 0 v 1 ∗,
F = 0u 1 v ∗, f(∗F∗) = 0 0u 1 v 1 ∗,

(14)

i.e., both L and F , as well as ∗L∗ and f(∗F∗) differ in exactly three positions.

Proof. The relation (14) can be verified directly using the definition of f and �. From (14)
we obtain that b(L) = 0 u 0 v 1 and t(F) = 0 u 1 v 1, so these two strings differ exactly
in the bit after u. Similarly, we obtain that b(∗L∗) = 0 0 u 0 v 1 0 and b(f(∗F∗)) =
0 0 u 1 v 1 0, so these two strings also differ exactly in the bit after u. �
Proof of Theorem 3 (odd n). We show that Λn, n ≥ 3 odd, defined in (11c) is a cycle
ordering of the Greene-Kleitman chains, by proving that any consecutive pair of chains
is connected at their top or bottom ends alternatingly, starting with the first chain ∗n
of length n that is traversed from bottom to top. We will also establish the following
additional properties P’ and Q: Property P’ asserts that for any two consecutive chains C
and C ′ connected at their top ends, we either have C = �(C ′) or �(C) = C ′. Property Q
asserts that for any two consecutive chains B and B′ of length 1 in Λn, there is a chain C

of length 1 in Λn−2 such that {B, B′} = {�(∗C∗), f(∗C∗)}, i.e., both B and B′ are
descendants of C (recall the second case of (11c)). Property Q implies in particular that
no more than two chains of length 1 appear consecutively in Λn. These invariants can
easily be checked for the induction base case n = 3, which is given by Λ3 = ∗∗∗, ∗01, 01∗.

For the induction step consider n ≥ 3 to be odd, and assume that Λn is a cycle
ordering satisfying properties P’ and Q. By Lemmas 18 and 22, the descendants λ(C)
for any chain C from Λn can be joined as shown on the right hand side of Fig. 17, so we
only need to check the connections between the first and last chains among consecutive
groups of descendants. Indeed, if C and C ′ are consecutive in Λn and joined at their
bottom ends, then C is traversed from top to bottom and C ′ from bottom to top in
the Hamilton cycle; see the top left part of Fig. 18. Consequently, by Lemma 16, we
have |C| 	≡ |∗n| = n (mod 4) and |C ′| ≡ n (mod 4), i.e., by (11a) the sequence Λn+2
contains λ(C)R and λ(C ′), and indeed, the bottom vertex of the last chain of λ(C)R,
namely ∗C∗, is connected to the bottom vertex of the first chain of λ(C ′), namely ∗C ′∗,
by Lemma 19.

Similarly, if C and C ′ are consecutive in Λn and joined at their top ends, then C is
traversed from bottom to top and C ′ from top to bottom in the Hamilton cycle; see the

P. Gregor et al. / Journal of Combinatorial Theory, Series B 160 (2023) 163–205 199
bottom right part of Fig. 18. Consequently, by Lemma 16, we have |C| ≡ n (mod 4)
and |C ′| 	≡ n (mod 4), i.e., by (11a) the sequence Λn+2 contains λ(C) and λ(C ′)R, and
indeed, the bottom vertex of the last chain of λ(C), namely f(∗C∗), is connected to the
bottom vertex of the first chain of λ(C ′)R, namely f(∗C ′∗), using that by property P’
we have either C = �(C ′) or �(C) = C ′, so we can invoke Lemma 21.

The last case to consider are two consecutive chains B and B′ of length 1 in Λn, where
the bottom end of B is joined to the top end of B′ if n ≡ 3 (mod 4) or the other way
round if n ≡ 1 (mod 4) (recall Lemma 16); see the bottom left part of Fig. 18. We only
consider the case n ≡ 3 (mod 4), as the other case is symmetric. By property Q, we know
that B = �(∗C∗) =: L and B′ = f(∗C∗) =: F for some chain C of length 1 in Λn−2.
By (11a), the sequence Λn+2 contains λ(B)R and λ(B′)R, and indeed, the bottom vertex
of the last chain of λ(B)R = λ(L)R, namely ∗L∗, is connected to the bottom vertex of the
first chain of λ(B′)R = λ(F)R, namely f(∗F∗), by Lemma 22. Moreover, properties P’
and Q still hold for Λn+2 by the definition (11c). �
8.1. Loopless algorithm

The following is an immediate consequence of the lemmas we established.

Theorem 23. For any n ≥ 1, the ordering of chains Λn defined in (11) is a 3-Gray code,
i.e., any two consecutive chains, viewed as strings over the alphabet {0, 1, ∗}, differ in at
most three positions.

Proof. Note that by the definitions (11b) and (11c), any two consecutive chains in λ(C)
differ in exactly two positions. From this the theorem follows by induction on n, using
Lemmas 19–22. �

We now describe an algorithm which for a given dimension n computes the sequence
of chains in the cycle ordering Λn defined in (11). Each chain is represented as a string
of length n over the alphabet {0, 1, ∗} (recall Fig. 16), and whenever the next chain has
been produced by the algorithm, it is visited in the [Visit] step. By Theorem 23, at most
three entries of this string change between two visits. One can easily turn this algorithm
into a loopless algorithm for computing the entire Hamilton cycle, flipping a single bit
in each step, by replacing the [Visit] step by a loop that moves up and down the vertices
on the current chain alternatingly.

For even n, a loopless implementation of this Gray code is given as Algorithm C, i.e.,
the algorithm requires only O(1) time between any two consecutive [Visit] steps. The
corresponding variant of the algorithm for odd n is very similar and can be found in the
Appendix. An implementation of both the even and odd case in C++ is available for
download and for demonstration on the Combinatorial Object Server [7]. The initializa-
tion required by this algorithm is O(n), and the used space is O(n). Table 2 shows the
execution of this algorithm for the case n = 6.

200 P. Gregor et al. / Journal of Combinatorial Theory, Series B 160 (2023) 163–205
Algorithm C (Loopless Gray code for Greene-Kleitman chains in Qn for even n = 2m,
m ≥ 1). The input of the algorithm is an integer m ≥ 1, and the produced chains in
the cycle ordering Λ2m are visited in step C2, where the current chain is stored in the
array C = c1 . . . cn with ci ∈ {0, 1, ∗}. For maintaining the chain efficiently, the algorithm
uses auxiliary arrays p1 . . . pn, s0 . . . sn, and t1 . . . tn+1, where if ci ∈ {0, 1}, then pi gives
the position of the 0 or 1 matched to ci, and if ci = ∗, then si is the position of the
closest ∗ to the right of ci and ti is the position of the closest ∗ to the left of ci. The
algorithm also maintains several additional arrays to track the recursive structure of Λn.
Specifically, the chain constructed in dimension 2i, i = 1, . . . , m, consists of the middle
2i entries of C. The array d0 . . . dm is used to determine the dimension 2dm in which
the next construction step is performed. This array simulates a stack that generates
the transition sequence of the Gray code, with dm being the value on the top of the
stack, an idea first used by Bitner, Ehrlich, and Reingold [2]. In addition, the algorithm
maintains arrays l1 . . . lm, b1 . . . bm, o1 . . . om, q1 . . . qm, where li is the length of the chain
in dimension 2i, bi ∈ {+, −} indicates whether we are currently in the first case of (11b)
(+) or the second case (−), oi ∈ {+, −} indicates whether we are in the first case of (11a)
(+) or the second case (−), and qi ∈ {f, �, f−1, �−1} specifies the next operation on the
chain in dimension 2i.

C1. [Initialize] Set ci ← ∗ for 1 ≤ i ≤ n, si ← i + 1 for 0 ≤ i ≤ n, and ti ← i − 1 for
1 ≤ i ≤ n + 1. Also set li ← 2i for 1 ≤ i ≤ m, b1 ← − and bi ← + for 2 ≤ i ≤ m,
oi ← + and qi ← f for 1 ≤ i ≤ m, di ← i for 0 ≤ i ≤ m.

C2. [Visit] Visit the chain c1 . . . cn.
C3. [Select dimension] Set i ← dm. Terminate if i = 0.
C4. [Perform operation] Depending on the value of qi, branch to one of the following

four cases.
C41. [Apply �] If qi = �, call last(i).
C42. [Apply �−1] If qi = �−1, call last−1(i).
C43. [Apply f] If qi = f , then if sm−i+1 ≤ m + i, call first(i), otherwise call
last−1(i + 1), first(i), and last(i + 1).
C44. [Apply f−1] If qi = f−1, then if i = m or cm−i = ∗, call first−1(i), otherwise
call last−1(i + 1), first−1(i), and last(i + 1).

C5. [Select next step] If qi ∈ {f, �}, set li ← li − 2, otherwise set li ← li + 2. Also set
dm ← m.
If bi = −, then go to C6, else if qi 	= f−1, then go to C7, otherwise go to C8.

C6. [Reached last descendant in case |C| = 0] Set di ← di−1 and di−1 ← i −1. If oi = +,
then set li ← 2, otherwise set li ← 4. Also set bi ← +, oi ← −oi, and qi ← f , and
go back to C2.

C7. [Descendants in case |C| ≥ 2 remaining] If qi ∈ {�, �−1} set qi ← f−1, otherwise set
qi ← � if oi = + and qi ← �−1 if oi = −. Go back to C2.

C8. [Reached last descendant in case |C| ≥ 2] Set di ← di−1, di−1 ← i − 1, and j ← di.
If j > 0 and qj ∈ {f, �}, set li ← li − 2, otherwise set li ← li + 2. If li = 0, set

P. Gregor et al. / Journal of Combinatorial Theory, Series B 160 (2023) 163–205 201
Fig. 19. Illustration of the four auxiliary functions used in Algorithm C.

bi ← − and qi ← f−1, else if li = 2 and oi = −, set bi ← − and qi ← f , otherwise
set qi ← f . Also set oi ← −oi, and go back to C2.

The algorithm uses the following four auxiliary functions, which implement the func-
tions f, f−1, �, �−1 on the chain C; see Fig. 19. The parameter i ∈ {1, . . . , m} determines
the middle 2i entries of C, namely cm−i+1, . . . , cm+i, that the function works on.

• first(i): Set α ← m − i +1, β ← sα, and γ ← sβ . Then set cα ← 0, cβ ← 1, pα ← β,
pβ ← α, sα−1 ← γ, and tγ ← α− 1.

• first−1(i): Set α ← m − i + 1, β ← pα, and γ ← sα−1. Then set cα ← ∗, cβ ← ∗,
sα−1 ← α, sα ← β, sβ ← γ, tγ ← β, tβ ← α, and tα ← α− 1.

• last(i): Set α ← m + i, β ← tα, and γ ← tβ . Then set cβ ← 0, cα ← 1, pβ ← α,
pα ← β, sγ ← α + 1, and tα+1 ← γ.

• last−1(i): Set α ← m + i, β ← pα, and γ ← tα+1. Then set cβ ← ∗, cα ← ∗, sγ ← β,
sβ ← α, sα ← α + 1, tα+1 ← α, tα ← β, and tβ ← γ.

Note that the two subcases in steps C43 and C44 are captured by the relations (12b)
and (12a) in Lemma 20, respectively.

Acknowledgments

We thank Jiří Fink for several valuable discussions about symmetric chain decompo-
sitions, and for feedback on an earlier draft of this paper. We also thank the anonymous
reviewers whose suggestions helped improving the presentation.

Appendix A. Loopless algorithm for odd n

Algorithm C’ (Loopless Gray code for Greene-Kleitman chains in Qn for odd n = 2m + 1,
m ≥ 0). The input of the algorithm is an integer m ≥ 0, and the produced chains in
the cycle ordering Λ2m+1 are visited in step C’2. The algorithm uses the same data
structures and auxiliary functions as Algorithm C before. The entries bi ∈ {+, −} now
indicate whether we are in the first case of (11c) (+) or the second case (−). Moreover, the

202
P
.
G

regor
et

al.
/

Journal
of

C
om

binatorial
T
heory,

Series
B

160
(2023)

163–205

 iteration/row. Struck through values have changed

b o q d

−+ + + + + f f f 0 1 2 3
�

f−1

− f 2
� 3

�−1

f−1

− + f 2
f−1 3

+ − 2
− − 1 3

�−1

f−1

− + f 2 1
+ − 0 3

+ − 2
+ + f 1 0 3

�−1

f−1

+ f 2 0
Table 2
Protocol of Algorithm C for n = 2m = 6. Empty entries have unchanged values compared to the previous
twice in some iteration of the algorithm.

C p s t l

1 ∗ ∗ ∗ ∗ ∗ ∗ 1 2 3 4 5 6 7 0 1 2 3 4 5 6 2 4 6
2 0 1 2 1 3 0 4
3 0 1 6 5 7 4 2
4 ∗ ∗ 1 2 �425 0 1 3 2 4 1 2
6 0 1 4 1 7 0 0
7 ∗ ∗ 5 0 6 2
8 ∗ ∗ 1 5 4 �429 0 1 5 4 6 1 0
10 0 1 6 1 7 0 �0211 ∗ ∗ 0 6 3 1 2 7 2 �2012 0 1 2 1 7 0 0
13 ∗ ∗ 3 6 0 3 6 2
14 ∗ ∗ 1 3 2 �4215 0 0 1 5 4 3 2 6 1 �0216 0 1 6 1 7 0 �0217 ∗ ∗ 0 6 5 1 2 7 2 �2418 0 1 2 1 7 0 0
19 ∗ ∗ 5 0 5 6 2
20 ∗ ∗ 1 5 2 �46

P. Gregor et al. / Journal of Combinatorial Theory, Series B 160 (2023) 163–205 203
entries of the array q may now also attain two other values in addition to {f, f−1, �, �−1},
namely g := �−1 ◦ f and g−1 := f−1 ◦ �, to account for the transitions between the last
two chains in the second case of (11c).

C’1. [Initialize] Set ci ← ∗ for 1 ≤ i ≤ n, si ← i + 1 for 0 ≤ i ≤ n, and ti ← i − 1 for
1 ≤ i ≤ n + 1. Also set li ← 2i + 1 for 1 ≤ i ≤ m, bi ← + for 1 ≤ i ≤ m, oi ← +
and qi ← � for 1 ≤ i ≤ m, di ← i for 0 ≤ i ≤ m.

C’2. [Visit] Visit the chain c1 . . . cn.
C’3. [Select dimension] Set i ← dm. Terminate if i = 0.
C’4. [Perform operation] Depending on the value of qi, branch to one of the following

six cases.
C’41. [Apply �] If qi = �, call last(i).
C’42. [Apply �−1] If qi = �−1, call last−1(i).
C’43. [Apply f] If qi = f , call first(i).
C’44. [Apply f−1] If qi = f−1, call first−1(i).
C’45. [Apply �−1, then f] If qi = g = �−1 ◦ f , then if i = m call last−1(i) and
first(i), otherwise call last−1(i), first(i), and first(i + 1).
C’46. [Apply f−1, then �] If qi = g−1 = f−1 ◦ �, then if i = m call first−1(i) and
last(i), otherwise call first−1(i + 1), first−1(i), and last(i).

C’5. [Select next step] If qi ∈ {f, �}, set li ← li−2, else if qi ∈ {f−1, �−1}, set li ← li +2.
Also set dm ← m. If bi = − and qi ∈ {�, g−1}, then go to C6, else if bi = − and
qi ∈ {g, �−1}, then go to C7, else if qi 	= �−1, then go to C8, otherwise go to C9.

C’6. [Descendants in case |C| = 1 remaining] If qi = � set qi ← g, otherwise set qi ← �−1.
Go back to C2.

C’7. [Reached last descendant in case |C| = 1] Set di ← di−1, di−1 ← i − 1, and j ← di.
If j > 0 and qj ∈ {f, �, g}, set li ← li − 2, otherwise set li ← li + 2. If li = 1, set
qi ← g−1, else if li = 3 and qi−1 = �−1, set bi ← +, oi ← − and qi ← �, else if
li = 3 and qi−1 	= �−1, set qi ← �, otherwise set bi ← +, qi ← � and oi ← −oi. Go
back to C2.

C’8. [Descendants in case |C| ≥ 3 remaining] If qi ∈ {f, f−1} set qi ← �−1, otherwise
set qi ← f if oi = + and qi ← f−1 if oi = −. Go back to C2.

C’9. [Reached last descendant in case |C| ≥ 3] Set di ← di−1, di−1 ← i − 1, and j ← di.
If j > 0 and qj ∈ {f, �, g}, set li ← li − 2, otherwise set li ← li + 2. If li = 1, set
bi ← − and qi ← g−1, else if li = 3 and oi = −, set bi ← − and qi ← �, otherwise
set qi ← �. Also set oi ← −oi, and go back to C2.

Note that the two subcases in steps C’45 and C’46 are captured by the left two
equations and the right two equations in (14) in Lemma 22, respectively.

References

[1] M. Aigner, Lexicographic matching in Boolean algebras, J. Comb. Theory, Ser. B 14 (1973) 187–194.

http://refhub.elsevier.com/S0095-8956(23)00001-1/bib5C26F2E8E956F507A274D5E4AF178B7Cs1

204 P. Gregor et al. / Journal of Combinatorial Theory, Series B 160 (2023) 163–205
[2] J. Bitner, G. Ehrlich, E. Reingold, Efficient generation of the binary reflected Gray code and its
applications, Commun. ACM 19 (9) (1976) 517–521.

[3] B. Bollobás, Combinatorics: Set Systems, Hypergraphs, Families of Vectors and Combinatorial
Probability, Cambridge University Press, Cambridge, 1986.

[4] M. Buck, D. Wiedemann, Gray codes with restricted density, Discrete Math. 48 (2–3) (1984)
163–171.

[5] Y. Chen, Kneser graphs are Hamiltonian for n ≥ 3k, J. Comb. Theory, Ser. B 80 (1) (2000) 69–79.
[6] Y. Chen, Triangle-free Hamiltonian Kneser graphs, J. Comb. Theory, Ser. B 89 (1) (2003) 1–16.
[7] The Combinatorial Object Server: http://www .combos .org /chains.
[8] N. de Bruijn, C. van Ebbenhorst Tengbergen, D. Kruyswijk, On the set of divisors of a number,

Nieuw Arch. Wiskd. 2 (23) (1951) 191–193.
[9] G. Ehrlich, Loopless algorithms for generating permutations, combinations, and other combinatorial

configurations, J. Assoc. Comput. Mach. 20 (1973) 500–513.
[10] M. El-Hashash, A. Hassan, On the Hamiltonicity of two subgraphs of the hypercube, in: Proceedings

of the Thirty-Second Southeastern International Conference on Combinatorics, Graph Theory and
Computing, Baton Rouge, LA, 2001, vol. 148, 2001, pp. 7–32.

[11] P. Erdős, R.K. Guy, Crossing number problems, Am. Math. Mon. 80 (1973) 52–58.
[12] L. Faria, C.M.H. de Figueiredo, O. Sýkora, I. Vrt‘o, An improved upper bound on the crossing

number of the hypercube, J. Graph Theory 59 (2) (2008) 145–161.
[13] T. Feder, C. Subi, On hypercube labellings and antipodal monochromatic paths, Discrete Appl.

Math. 161 (10–11) (2013) 1421–1426.
[14] J. Fink, Perfect matchings extend to Hamilton cycles in hypercubes, J. Comb. Theory, Ser. B 97 (6)

(2007) 1074–1076.
[15] J. Fink, Matchings extend into 2-factors in hypercubes, Combinatorica 39 (1) (2019) 77–84.
[16] Z. Füredi, Problem session, in: Kombinatorik Geordneter Mengen, Oberwolfach, BRD, 1985.
[17] F. Gray, Pulse Code Communication, 1953. March 17, 1953 (filed Nov. 1947). U.S. Patent 2,632,058.
[18] C. Greene, D.J. Kleitman, Strong versions of Sperner’s theorem, J. Comb. Theory, Ser. A 20 (1)

(1976) 80–88.
[19] P. Gregor, S. Jäger, T. Mütze, J. Sawada, K. Wille, Gray codes and symmetric chains, J. Combin.

Theory Ser. B. 153 (2022) 31–60.
[20] J.R. Griggs, On the distribution of sums of residues, Bull. Am. Math. Soc. (N.S.) 28 (2) (1993)

329–333.
[21] J. Griggs, C.E. Killian, C.D. Savage, Venn diagrams and symmetric chain decompositions in the

Boolean lattice, Electron. J. Comb. 11 (1) (2004) 2.
[22] P. Gregor, O. Mička, T. Mütze, On the central levels problem, in: 47th International Colloquium on

Automata, Languages, and Programming, in: LIPIcs. Leibniz Int. Proc. Inform., vol. 168, Schloss
Dagstuhl. Leibniz-Zent. Inform., Wadern, 2020, 60.

[23] P. Gregor, T. Mütze, Trimming and gluing Gray codes, Theor. Comput. Sci. 714 (2018) 74–95.
[24] P. Gregor, T. Mütze, J. Nummenpalo, A short proof of the middle levels theorem, Discrete Anal.

(2018) 8.
[25] P. Gregor, R. Škrekovski, On generalized middle-level problem, Inf. Sci. 180 (12) (2010) 2448–2457.
[26] I. Havel, Semipaths in directed cubes, in: Graphs and Other Combinatorial Topics, Prague, 1982,

in: Teubner-Texte Math., vol. 59, Teubner, Leipzig, 1983, pp. 101–108.
[27] H. Huang, Induced subgraphs of hypercubes and a proof of the sensitivity conjecture, Ann. Math.

(2) 190 (3) (2019) 949–955.
[28] G. Hurlbert, The antipodal layers problem, Discrete Math. 128 (1–3) (1994) 237–245.
[29] H.A. Kierstead, W.T. Trotter, Explicit matchings in the middle levels of the Boolean lattice, Order

5 (2) (1988) 163–171.
[30] C.E. Killian, F. Ruskey, C.D. Savage, M. Weston, Half-simple symmetric Venn diagrams, Electron.

J. Combin. 11 (1) (2004) 86.
[31] D.J. Kleitman, On a lemma of Littlewood and Offord on the distribution of certain sums, Math. Z.

90 (1965) 251–259.
[32] D.E. Knuth, The Art of Computer Programming. Vol. 4A. Combinatorial Algorithms. Part 1,

Addison-Wesley, Upper Saddle River, NJ, 2011.
[33] S. Locke, R. Stong, Problem 10892: spanning cycles in hypercubes, Am. Math. Mon. 110 (2003)

440–441.
[34] T. Mütze, Proof of the middle levels conjecture, Proc. Lond. Math. Soc. 112 (4) (2016) 677–713.
[35] T. Mütze, J. Nummenpalo, A constant-time algorithm for middle levels Gray codes, in: Proceedings

of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia,
PA, 2017, pp. 2238–2253.

http://refhub.elsevier.com/S0095-8956(23)00001-1/bibD7B4348BB4EFA3E27F3266F3FB5F32E3s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bibD7B4348BB4EFA3E27F3266F3FB5F32E3s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bibCEA0BDEC54FC32FD0CD9D6F7C03C6CDCs1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bibCEA0BDEC54FC32FD0CD9D6F7C03C6CDCs1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib6551343B758EBD104D1192BE5F6611FFs1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib6551343B758EBD104D1192BE5F6611FFs1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib4A0718B30088527F68AB38E44F52D13As1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bibF5BC6D65651AFED2F8DA7ABD27F3F409s1
http://www.combos.org/chains
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib3388B74B9E184093B20BA96C4A74E607s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib3388B74B9E184093B20BA96C4A74E607s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bibFDEB3BBD86259FC6C614CE48D3E282ECs1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bibFDEB3BBD86259FC6C614CE48D3E282ECs1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bibDCF230F6A88E104CDFFE42EA4CCF433Fs1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bibDCF230F6A88E104CDFFE42EA4CCF433Fs1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bibDCF230F6A88E104CDFFE42EA4CCF433Fs1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib1E1C83B2DF23F3B5C6FD1DBAA962AA8Fs1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib2FD0B5DB5B5C727745F30F343F61AF7Fs1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib2FD0B5DB5B5C727745F30F343F61AF7Fs1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib1E427C4E6C7E40251F1F5250A104DD30s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib1E427C4E6C7E40251F1F5250A104DD30s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bibB6069B7AC2984C42BFF6899595E6E2CEs1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bibB6069B7AC2984C42BFF6899595E6E2CEs1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib4BEED03D2A3BB6ADE516E99024E36BFEs1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib54CFF422327C6A31AC2159D875D3283Es1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bibFAFC06EDF609797448D14CE117AB6329s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib9E89A0E8D44210A74DCD9B6FBAF64899s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib9E89A0E8D44210A74DCD9B6FBAF64899s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib91224A4FDE25BE0998FD03150CF9E442s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib91224A4FDE25BE0998FD03150CF9E442s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bibEB25F491A96675C73C69E86F43908D3Es1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bibEB25F491A96675C73C69E86F43908D3Es1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib6F74CFB48DBCA5FB7E7ED9EBB6DED9D0s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib6F74CFB48DBCA5FB7E7ED9EBB6DED9D0s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bibE04E3B9A560E3181732B63B0BF5F36C4s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bibE04E3B9A560E3181732B63B0BF5F36C4s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bibE04E3B9A560E3181732B63B0BF5F36C4s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib1EECA009001833FDEB233CFBDDE08502s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib7C7A4479A044E3B64E5E94864D455E97s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib7C7A4479A044E3B64E5E94864D455E97s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib5279118319069A1666B04E451ED3A507s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib8B941C4F107A049DFF383DBB51CF6941s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib8B941C4F107A049DFF383DBB51CF6941s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib8840ACF4A557D28F25224E73710F2FC3s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib8840ACF4A557D28F25224E73710F2FC3s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bibDDDDF8E630100A7B5CFF365D0F882CB7s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib34FA5BB9F48CD3410437CD02CB24D266s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib34FA5BB9F48CD3410437CD02CB24D266s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib0D19199A6BB5B70576FAC4B13B727973s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib0D19199A6BB5B70576FAC4B13B727973s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib58E4831E880201625AB3071D652059A2s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib58E4831E880201625AB3071D652059A2s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bibF6C43E22D77291FA30F782E0AA24BCE5s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bibF6C43E22D77291FA30F782E0AA24BCE5s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib81E5D5014DF72B3A6BE5E0F1C2F47BC7s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib81E5D5014DF72B3A6BE5E0F1C2F47BC7s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib53E4DDB74205CC621A68B9E37627AB51s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bibF91A595CB7CB15D8A1CE1BF8F4654042s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bibF91A595CB7CB15D8A1CE1BF8F4654042s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bibF91A595CB7CB15D8A1CE1BF8F4654042s1

P. Gregor et al. / Journal of Combinatorial Theory, Series B 160 (2023) 163–205 205
[36] T. Mütze, P. Su, Bipartite Kneser graphs are Hamiltonian, Combinatorica 37 (6) (2017) 1207–1219.
[37] N. Nisan, M. Szegedy, On the degree of Boolean functions as real polynomials, Comput. Complex.

4 (4) (1994) 301–313, Special issue on circuit complexity (Barbados, 1992).
[38] S. Norine, Edge-antipodal colorings of cubes. The open problem garden, Available at http://www .

openproblemgarden .org /op /edge _antipodal _colorings _of _cubes, 2008.
[39] O. Pikhurko, On edge decompositions of posets, Order 16 (3) (1999) 231–244.
[40] F. Ruskey, C.D. Savage, Hamilton cycles that extend transposition matchings in Cayley graphs of

Sn, SIAM J. Discrete Math. 6 (1) (1993) 152–166.
[41] F. Ruskey, C.D. Savage, S. Wagon, The search for simple symmetric Venn diagrams, Not. Am.

Math. Soc. 53 (11) (2006) 1304–1312.
[42] F. Ruskey, Combinatorial generation, Book draft, 2003.
[43] C.D. Savage, Long cycles in the middle two levels of the Boolean lattice, Ars Comb. 35 (A) (1993)

97–108.
[44] C.D. Savage, A survey of combinatorial Gray codes, SIAM Rev. 39 (4) (1997) 605–629.
[45] C.D. Savage, P. Winkler, Monotone Gray codes and the middle levels problem, J. Comb. Theory,

Ser. A 70 (2) (1995) 230–248.
[46] J. Shearer, D.J. Kleitman, Probabilities of independent choices being ordered, Stud. Appl. Math.

60 (3) (1979) 271–276.
[47] X.S. Shen, A. Williams, A middle levels conjecture for multiset permutations with uniform-

frequency, Williams College Technical Report CSTR-201901. Available at http://tmuetze .de /
papers /sw1 .pdf, 2019.

[48] J. Simpson, Hamiltonian bipartite graphs, in: Proceedings of the Twenty-Second Southeastern Con-
ference on Combinatorics, Graph Theory, and Computing, Baton Rouge, LA, 1991, vol. 85, 1991,
pp. 97–110.

[49] H. Spink, Orthogonal symmetric chain decompositions of hypercubes, SIAM J. Discrete Math. 33 (2)
(2019) 910–932.

[50] R.P. Stanley, Catalan Numbers, Cambridge University Press, New York, 2015.
[51] N. Streib, W.T. Trotter, Hamiltonian cycles and symmetric chains in Boolean lattices, Graphs

Comb. 30 (6) (2014) 1565–1586.
[52] D. Tang, C. Liu, Distance-2 cyclic chaining of constant-weight codes, IEEE Trans. Comput. C-22

(1973) 176–180.
[53] I. Tomon, On a conjecture of Füredi, Eur. J. Comb. 49 (2015) 1–12.
[54] D.E. White, S.G. Williamson, Recursive matching algorithms and linear orders on the subset lattice,

J. Comb. Theory, Ser. A 23 (2) (1977) 117–127.

http://refhub.elsevier.com/S0095-8956(23)00001-1/bibA2FC76D4F6924E05789EF90A27D53225s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bibC7159DBA4E998D0F54048179631DB9CDs1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bibC7159DBA4E998D0F54048179631DB9CDs1
http://www.openproblemgarden.org/op/edge_antipodal_colorings_of_cubes
http://www.openproblemgarden.org/op/edge_antipodal_colorings_of_cubes
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib7E48DC7F7A604AC871BF4FCE46B9ABE0s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bibB533783D3CF4F0566D7E0F8035884387s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bibB533783D3CF4F0566D7E0F8035884387s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bibB91CD84A1D88CFDD766F386CF8F05710s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bibB91CD84A1D88CFDD766F386CF8F05710s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bibA9CB461CF67593A46CB978EA329FCD83s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib718992DBB6A3CCB3BC4866F52C41AA9Es1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib718992DBB6A3CCB3BC4866F52C41AA9Es1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib0C3199A00D9965C3AF5DBB4AB0FC5198s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib2F491B6872C067729B15166529165856s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib2F491B6872C067729B15166529165856s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib74A9DE751059147264083C176825384As1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib74A9DE751059147264083C176825384As1
http://tmuetze.de/papers/sw1.pdf
http://tmuetze.de/papers/sw1.pdf
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib5E50EBA6D420321753B01C2AD11665EAs1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib5E50EBA6D420321753B01C2AD11665EAs1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib5E50EBA6D420321753B01C2AD11665EAs1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib0531B6CF02507ED0885078A88FB6162As1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib0531B6CF02507ED0885078A88FB6162As1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bibEB082984B849A094491A515D0C506C0Bs1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib3B40FCAF5D49F7721ACCA3097AE24802s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib3B40FCAF5D49F7721ACCA3097AE24802s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib0FA77BBB55652385ED696D6376C6B878s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib0FA77BBB55652385ED696D6376C6B878s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bib2F06600A6A4D77BDE2A6572893497D15s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bibBB83FE48AE082A330058BC2C27EC5767s1
http://refhub.elsevier.com/S0095-8956(23)00001-1/bibBB83FE48AE082A330058BC2C27EC5767s1

	On the central levels problem
	1 Introduction
	1.1 Our results
	1.2 Efficient algorithms
	1.3 Proof ideas
	1.4 Outline of this paper

	2 Preliminaries
	2.1 Bitstrings, lattice paths, and rooted trees
	2.2 The Greene-Kleitman SCD
	2.3 Lexical matchings

	3 Cycle factor construction
	3.1 Comparison with previous constructions

	4 Structure of cycles
	4.1 Short cycles
	4.2 Long cycles

	5 Flipping 4-cycles
	6 Flipping 6-cycles
	7 Proof of Theorem 1
	8 Proof of Theorem 3
	8.1 Loopless algorithm

	Acknowledgments
	Appendix A Loopless algorithm for odd n
	References

