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Abstract— The prevalence and impact of balance impair-
ments and falls in older adults have motivated several stud-
ies on the characterization of human balance. This study
aimed to determine the ability of recurrence quantification
analysis (RQA) measures to characterize balance control
during quiet standing in young and older adults and to
discriminate between different fall risk groups. We ana-
lyze center pressure trajectories in the medial-lateral and
anterior-posterior directions from a publicly available static
posturography dataset that contains tests acquired under
four vision-surface testing conditions. Participants were
retrospectively classified as young adults (age<60, n=85),
non-fallers (age≥60, falls=0, n=56), and fallers (age≥60,
falls≥1, n=18). Mixed ANOVA and post hoc analyzes were
performed to test for differences between groups. For CoP
fluctuations in the anterior-posterior direction, all RQA
measures showed significantly higher values for young
than older adults when standing on a compliant sur-
face, indicating less predictable and stable balance control
among seniors under testing conditions where sensory
information is restricted or altered. However, no significant
differences between non-fallers and fallers were observed.
These results support the use of RQA to characterize bal-
ance control in young and old adults, but not to discrimi-
nate between different fall risk groups.

Index Terms— Recurrence quantification analysis, bal-
ance control, fall risk, center of pressure, posturography.
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I. INTRODUCTION

BALANCE control plays a critical role in daily life.
Balance is defined as the dynamics of posture control

that prevents falls in an individual [1]. Several sensory and
motor responses participate in the balance control process
to keep the center of mass of the body within the support
base [2], [3]. The balance control system is made up of the
sensory, central nervous, and motor systems. The sensory sys-
tem receives information about current and anticipated body
status by gathering information from the environment and the
body itself (that is, proprioception). This information enables
closed-loop and anticipatory balance control mechanisms to
generate adequate posture corrections [4], [5], [6]. That is, the
central nervous system receives this information and integrates
it to determine the best responses of the muscular system to
maintain equilibrium. Finally, the information is sent to the
specific muscles so that such changes are executed.

Normal aging and some pathological conditions are asso-
ciated with the deterioration of these systems, which affects
balance control. The result of a compromised balance is a
higher risk of falling, and it is a prevalent problem in the
older adult population. Studies show that about 30% of adults
over 65 years of age experience at least one fall per year,
with the rate increasing each subsequent year [4], [7]. Falls in
older adults can have severe consequences, such as lacerations,
dislocations, fractures, trauma, or death. Furthermore, fall-
related injuries account for 80% of hospital admissions for
the population of this age range [7].

Consequently, several studies have been developed to assess
the risk of falling in older adults by analyzing the control
mechanisms underlying equilibrium.

Several qualitative and quantitative methods have been used
to evaluate balance. One of the most common techniques
used is posturography. This technique helps to assess body
stability in response to different environmental conditions [8].
During static posturography, the participant must stand still
for a fixed period. At this time, the participant is evaluated for
their ability to maintain equilibrium. The performance of the
participant during the test is helpful to assess overall balance
control [9].

Static posturography tests help estimate the center of pres-
sure (CoP) position for its study. The CoP is computed from
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Fig. 1. Center of pressure trajectory for A) a young adult, B) an older adult with no history of falls, and C) an older adult with history of falls. Data
sourced from a public dataset [11].

Fig. 2. Recurrence plot for A) a young adult, B) an older adult with no history of falls, and C) an older adult with history of falls. The shaded area
represents the Theiler window (1 second). Data sourced from a public dataset [11].

the moment of force and the ground reaction forces of the
evaluated participant. Moments and forces are usually acquired
using a force plate. CoP is measured in the medial-lateral (ML)
and anterior-posterior (AP) directions, corresponding to the
right-left and front-back directions, respectively. The plot of
both directions against each other allows us to visualize the
CoP motion in a 2D plane (Figure 1). Optimal test times range
from 60 to 120 seconds [10].

Some studies have proposed the use of non-linear analysis
methods to characterize the complex dynamics of physio-
logical signals in general [12], [13]. In particular, several
non-linear methods have been used to characterize the struc-
ture of CoP trajectories in both the ML and the AP directions.
Some of these methods include approximate and sample
entropy [14], fractal dimension [15], detrended fluctuation
analysis [16], Lyapunov exponents [17], and recurrence quan-
tification analysis (RQA) [18], [19], [20].

This study focuses on RQA, as it presents an advantage over
some other nonlinear methods, as most of them require long
data series [21]. Furthermore, RQA is robust to transients,
outliers, and noise and does not require data stationarity or
prerequisites for statistical distribution [22].

RQA is a nonlinear method for data analysis that quantifies
the times at which a system returns or recurs to a former
state [23]. This method relies on the analysis of recurrence
plots (RP) [24]. Recurrence plots represent times when a
trajectory revisits the same place in the phase space. The phase
space is a mathematical representation of all possible states
in a dynamical system [23]. To construct a high-dimensional
phase space, Takens introduced the method of time delays in
1981 [25]. This method uses time-delayed copies of the same
signal to create a higher-dimensional system. The dimension
created is defined by the number of copies used and is called
the embedded dimension.

Recurrence plots are a useful tool that allows for the
representation of recurrences found in high-dimensional phase

spaces in two dimensions (Figure 2). Mathematically, RPs can
be defined as follows:

Ri, j (ε) = 2(ε − ||x⃗i − x⃗ j ||), i, j = 1, . . . , N , (1)

where N is the number of measured points, ε is a distance
threshold, || · || is a vector norm and 2 is the Heaviside
function [23]. The result is a two-dimensional logic matrix,
where logic 1 represents the recurrences found in the phase
space. Visually, a recurrence plot shows the locations in the
phase space where a recurrence occurs.

Qualitative information from a system can be obtained by
observing the structures formed by the RPs. However, for
a more precise analysis, some measures were proposed by
Webber and Zbilut [26] and extended by Marwan et al. [23].
These measures are based on the density of recurrence points
and the analysis of the diagonal and vertical structures formed
in the RP. Diagonal structures describe the determinism or
predictability of a system by measuring the periods in which
the system repeats. Vertical structures describe the stability of
a system by measuring periods in which the system remains
unchanged. References [21] and [27]. Analysis of these mea-
sures allows extracting characteristics of the systems studied,
such as determinism, entropy, and laminarity [21].

This study aimed to determine the ability of recurrence
quantification analysis measures to characterize balance in
young and older adults and discriminate between different fall
risk groups. The motivation for the study was the development
of better balance and fall risk assessment tools for the aging
population using a non-linear approach.

II. MATERIALS AND METHODS

A. Dataset Description
An analysis of CoP trajectories was performed using a pub-

lic static posturography data set available on PhysioNet (DOI:
10.13026 / C2WW2W) and Figshare (DOI: 10.6084 / m9.
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figshare.3394432) [11]. The dataset contains posturography
data from 163 participants (116 females and 47 males). The
evaluation consisted of recording the participants standing still
for 60 seconds under four different conditions: on a rigid
surface with eyes open (Open-Rigid), on a rigid surface with
closed eyes (Closed-Rigid), on a foam block with eyes open
(Open-Foam) and on a foam block with closed eyes (Closed-
Foam). Each condition was performed three times, resulting in
12 trials per participant. A total of 1,930 trials were recorded
since 26 trials of 5 participants were missing due to their
inability to complete the test.

Data acquisition was performed using a force platform at
a sampling frequency of 100 Hz. The ground reaction forces
and moments were recorded and used to compute the CoP
position in the AP and ML axes. The x-axis corresponds
to the AP direction, being the x positive anterior and the x
negative posterior. The y-axis corresponds to the ML direction,
where the y-positive direction is on the right and the y-negative
direction is on the left. The authors reported using a 10 Hz
fourth-order zero-lag lowpass Butterworth filter on the signals.
The potential effects of digital filtering of CoP signals on
discrimination between groups have previously been explored.
A couple of relevant references are provided for the reader’s
consideration [28], [29]. Analysis of this data is described in
the following subsection.

The data set also contains sociodemographic, anthropomet-
ric, and clinical information on participants. In particular, these
data include the number of non-intentional falls that partici-
pants have experienced during the last 12 months. A non-
intentional fall is defined as an event that causes a person to
come to rest inadvertently on the ground or any floor or other
lower level [30]. Additionally, several qualitative evaluations
were performed to assess participants’ health status, level of
physical activity, cognitive function, and fear of falling.

B. Recurrence Quantification Analysis
Recurrence quantification analysis was performed using the

Cross Recurrence Plot Toolbox 5.22 (R32.4) [23]. This toolbox
is designed to facilitate the development of recurrence plots
(RP), cross-recurrence plots (CRP), and joint recurrence plots
(JRP). The toolbox includes several tools and MATLAB rou-
tines that allow performing recurrence quantification analysis
and extracting measures of the system’s recurrences.

The embedded dimension (m) was selected according to
previous studies carried out by Hoorn et al. [18], and
Negahban et al. [22], in which an optimal embed dimension
of 5 was determined using the false nearest neighbor algo-
rithm [31]. Additionally, the time delay was set at 6 based
on a previous study by Ramdani et al. [19] with similar CoP
data. The threshold of recurrence distance (ε) was established
as a fixed percentage of the density of recurrence points in
the recurrence plot, also known as the recurrence rate (RR).
This approach ensures that neither insufficient nor excessive
amounts of recurrences are considered. The advantage of
using a fixed percentage instead of a fixed threshold is that
it preserves the density of the points without the need to
normalize the time series beforehand [23]. In this work, three

different values of RR were used (namely, 2%, 3% and 5%).
However, only the results for an RR of 5% are presented,
as more significant differences between the explored groups
were observed using this parameter.

Some additional parameters were considered to avoid poten-
tial pitfalls in the analysis [32]. A Theiler window of 1 second
was used to exclude temporally close recurrences. In addition,
the minimal length of both diagonal and vertical line features
was established to 100 ms. This is mainly considered to avoid
ceiling effects during analysis [18].

RQA was performed on all available CoP time series, except
those of four participants who were excluded due to physical
disabilities that affected balance. Thirteen RQA measures were
obtained per trial. The average RQA measures were calculated
for each participant and condition. This study focused only on
measures that describe the diagonal and vertical structures of
the recurrence plots (available as supplementary materials).
Thus, four measures were selected: two to describe diago-
nal structures and two to describe vertical structures. The
selection was made based on the analysis carried out by
Hoorn et al. [18]. The measures that describe diagonal lines
are the percentage of determinism (% DET) and the mean
length of diagonal lines (L). Measures describing the vertical
lines are the percentage of laminarity (% LAM) and the
mean length of the vertical line, also known as the trapping
time (TT). Table I summarizes these measures and provides
guidance for interpretation.

C. Statistical Analysis
Participants were classified into three groups according to

their age and history of falls: young, non-fallers, and fallers.
Young adults were defined as participants 59 years or younger.
Non-fallers were defined as participants 60 years or older with-
out a history of falls in the last 12 months. Fallers were defined
as participants aged 60 years or older with one or more falls in
the last 12 months. A total of 159 participants were included in
this analysis, where 85 were classified as young, 56 as non-
fallers, and 18 as fallers. A one-way ANOVA and post hoc
analysis was performed to test for differences between these
groups in age and basic anthropometric variables. In addition,
Fisher’s exact test was performed to test for differences in the
sex distribution between groups.

Summary statistics (that is, mean and standard deviation)
for each RQA measure were calculated for all combinations
of group and testing conditions. In addition, box plots were
produced to visualize the distribution of the data for all combi-
nations. Summary statistics and visualization were performed
using MATLAB R2022a (The Mathworks, Inc., Natick, MA,
USA).

Later, mixed-design ANOVA tests were performed to deter-
mine the main and interaction effects of two factor vari-
ables: group (i.e. Young, Non-Fallers and Fallers) and test-
ing condition (i.e. Open-Rigid, Closed-Rigid, Open-Foam,
and Closed-Foam) on each RQA measure. The group and
test conditions represent the factors between subjects and
within subjects, respectively. The p values were corrected
using the Greenhouse-Geisser procedure whenever the com-
pound symmetry assumption was violated (Mauchly’s test with
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TABLE I
DIAGONAL AND VERTICAL MEASURES SELECTED FROM RECURRENT QUANTIFICATION ANALYSIS AND THEIR MEANING

a p < 0.001). A corrected p-value<0.05 was accepted as
evidence of statistical significance. A significant two-way
interaction between the group and the testing condition for a
given RQA measure indicated significant differences between
at least two combinations of group and condition. Mixed
ANOVA tests were performed in R version 4.2.2 using the
package rstatix version 0.7.1.

Then, post hoc analyzes were performed to test for dif-
ferences between groups for each testing condition. These
pairwise analyzes were performed using the Mann-Whitney
U test (also known as the Wilcoxon rank sum test), a non-
parametric test for unpaired samples. A nonparametric test
was selected given the nonnormal distribution of the data for
some combinations of group and testing conditions (Shapiro-
Wilk test with p < 0.001). The p-values were corrected for
multiple comparisons using the Benjamini-Hochberg method.
A p-value < 0.05 was accepted as evidence of statistical signif-
icance. Moreover, the magnitude of the difference between the
groups was quantified using unbiased Cohen’s d. A commonly
used interpretation is to refer to this effect size as small
(d = 0.2), medium (d = 0.5), and large (d = 0.8) based on
the benchmarks suggested by Cohen [33]. Post hoc analyzes
were performed in Python version 3 using the library pingouin
version 0.5.2.

III. RESULTS

Table II shows the demographic and anthropometric char-
acteristics of the participants by group (i.e., Young, Non-
Fallers and Fallers). Significant differences between young and
old adults are observed for most continuous variables, except
for weight. Interestingly, no significant differences between
non-fallers and fallers were found for any continuous variables,
which suggests homogeneity in participants’ characteristics.
In terms of sex distribution by group, a significant difference
is observed between the Young and Fallers groups.

Furthermore, tables III and IV show summary statistics by
group and condition for the RQA measures in the AP and
ML directions, respectively. Moreover, these tables show the
results of pairwise comparisons (namely, the p-values and
Cohen’s d). The results of mixed-design ANOVA and post hoc
analysis for each RQA variable are presented in the following
subsections.

In addition, figure 3 shows the comparison between groups
of the percentage of determinism (%DET), mean diagonal line
(L), laminarity (%LAM), and mean vertical line length (TT)
by testing conditions. Each sub-figure shows the AP and ML
directions. The box plots show the median, upper quartile, and
lower quartile. The whiskers represent the maximum value
that is not considered an outlier and were calculated using
1.5 times the interquartile range. The circles represent the

outlier values, and the notch is depicted as the shaded area in
the box plot. Notches that do not overlap between box plots
indicate differences between the groups at a 5% significance
level. The mean values for each measure are shown as squares
and connect each group across testing conditions.

A. Diagonal Lines
1) Percentage of Determinism (%DET): In the ML direction,

the mixed ANOVA test with group and testing condition
as factors revealed a significant main effect of the testing
condition (F = 8.705, p < 0.001). This effect means that if
we ignore the group of participants, some testing conditions
lead to significantly different values of determinism. However,
this test did not reveal a significant main effect of the group
or a significant interaction between factors.

In particular, older adults showed slightly higher mean
values of %DET than young adults under the Closed-Foam
testing condition. However, no significant differences were
found between the groups under different testing conditions.

In the AP direction, the mixed ANOVA test revealed sig-
nificant main effects of group (F = 11.469, p < 0.001) and
condition (F = 17.716, p < 0.001). These main effects were
qualified by a significant interaction between the group and
the testing condition (F = 2.776, p = 0.03).

In particular, young adults had the highest mean values of
%DET, followed by non-fallers. A significant difference was
found between young and non-faller adults under all testing
conditions. However, a significant difference was only found
between young adults and fallers when standing on a foam
surface. No significant differences were found between fallers
and non-fallers under any testing condition.

2) Mean Diagonal Line Length (L): In the ML direction, the
mixed ANOVA test with group and testing condition as factors
revealed a significant main effect of the testing condition
(F = 31.938, p < 0.001) and a significant interaction between
factors (F = 5.352, p < 0.001).

In particular, the three groups showed a decrease in mean
values of L as the testing condition became more challenging
(i.e., more sensory information was altered or restricted). The
highest values were observed in the Open-Rigid condition, fol-
lowed by Closed-Rigid, Open-Foam, and lastly by the Closed-
Foam condition. Furthermore, non-fallers showed the lowest
mean values among the three groups. However, no significant
differences were found between the groups.

In the AP direction, the mixed ANOVA test revealed sig-
nificant main effects of group (F = 19.381, p < 0.001) and
condition (F = 67.168, p < 0.001). These main effects were
qualified by a significant interaction between the group and
the testing condition (F = 3.091, p = 0.013).
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TABLE II
PARTICIPANT CHARACTERISTICS BY GROUP

In particular, young adults had the highest mean L values.
On the Open-Rigid condition, a significant difference was
found only between young adults and non-fallers, while in
the rest of the conditions (Closed-Rigid, Open-Firm, Closed-
Foam), significant differences were observed between young
and both groups of older adults. No significant differences
were found between fallers and non-fallers under any testing
condition.

B. Vertical Lines
1) Percentage of Laminarity (%LAM): In the ML direction,

the mixed ANOVA test with group and testing condition
as factors revealed a significant main effect of the testing
condition (F = 3.979, p = 0.021) and a significant interaction
between factors (F = 3.99, p = 0.004).

In particular, fallers showed slightly higher mean values of
%LAM than the rest of the groups under three testing condi-
tions. Slightly lower values were observed under closed-eye
testing conditions. However, no significant differences were
found between the groups under any condition.

In the AP direction, the mixed ANOVA test revealed sig-
nificant main effects of group (F = 17.087, p < 0.001) and
condition (F = 35.665, p < 0.001). These main effects were
qualified by a significant interaction between the group and
the testing condition (F = 2.582, p = 0.036).

In particular, young adults had the highest mean values
of %LAM, followed by non-fallers. The results also showed
that the highest values were observed in the Open-Rigid
condition, followed by the Closed-Rigid, Open-Foam, and
Closed-Foam, with the latter producing the lowest values.
Under the Open-Rigid condition, a significant difference was
found between young and non-faller adults only, while in
the rest of the conditions (Closed-Rigid, Open-Foam, Closed-
Foam), a significant difference was found between young and
both groups of older adults. No significant differences were
found between faller and non-faller adults under any testing
condition.

2) Trapping Time (TT): In the ML direction, the mixed
ANOVA test with group and testing condition as factors
revealed a significant main effect of the testing condition
(F = 27.996, p < 0.001) and a significant interaction between
factors (F = 8.838, p < 0.001).

In particular, results from tests when standing on a rigid
surface were the only that showed significant differences
between young adults and non-fallers. Under these conditions,
young adults showed the highest mean TT values followed
by non-fallers. In contrast, under foam surface conditions,
the fallers showed the highest values and the young adults
the lowest. However, no significant differences were found
between the groups. In general, the results between the con-
ditions showed that the highest values were observed in the
Open-Rigid condition, followed by Closed-Rigid, Open-Foam,
and Closed-Foam with the lowest values.

In the AP direction, the mixed ANOVA test revealed sig-
nificant main effects of group (F = 25.38, p < 0.001) and
condition (F = 40.695, p < 0.001). These main effects were
qualified by a significant interaction between the group and
the testing condition (F = 2.787, p = 0.021).

In particular, young adults had higher mean TT values than
older adults. Significant differences were observed between
young and older adults under all testing conditions, but no
significant differences were observed between fallers and non-
fallers. The results also showed that the highest values were
observed in the Open-Rigid condition, followed by Closed-
Rigid, Open-Foam, and Closed-Foam with the lowest values.

In particular, the Open-Foam condition in the AP direc-
tion showed the most consistent results for the four mea-
sures. Young adults showed the highest values, followed by
non-fallers and fallers. Furthermore, significant differences
(p < 0.001) were observed between young and older adults
for the four measures.

IV. DISCUSSION

A. Main Findings
Young adults showed generally higher values in all RQA

measures than older adults when considering only statistically
significant differences, indicating more predictable and sta-
ble CoP fluctuations. More specifically, young adults exhib-
ited statistically significant higher values than non-fallers for
all measures in the AP direction. However, the differences
between young adults and fallers were statistically significant
mainly for L, % LAM, and TT. In contrast, in the ML
direction, only TT under the Open-Firm and Closed-Firm
testing conditions showed statistically significant differences
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Fig. 3. Measures by group and testing condition. The box plots show the median, upper quartile, and lower quartile. Whiskers show 1.5 times the
interquartile range from the upper and lower quartiles and the circles depict the outlier values. Mean values (depicted as squares) were plotted to
facilitate the comparison between groups across testing conditions.
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TABLE III
SUMMARY STATISTICS BY GROUP AND CONDITION AND PAIRWISE COMPARISONS BETWEEN GROUPS

FOR RQA MEASURES IN THE AP DIRECTION

TABLE IV
SUMMARY STATISTICS BY GROUP AND CONDITION AND PAIRWISE COMPARISONS BETWEEN

GROUPS FOR RQA MEASURES IN THE ML DIRECTION

between young adults and non-fallers. This suggests that quan-
tifying recurrences in CoP fluctuations in the ML direction is
not particularly discriminative between these groups. Further
analyzes are suggested to determine whether these results
show underlying differences or were found by chance (that
is, type I error). Therefore, results in the ML direction will
not be discussed further in this paper.

This difference between the AP and ML directions could
be explained by the strategies used for balance control during
standing described by Winter [1]. During quiet standing and
small perturbations, the ankle strategy, which relies on the

ankle’s plantar flexor / dorsiflexor muscles alone, is suf-
ficient to control balance. This strategy is responsible for
the fluctuations in AP CoP. In more perturbed situations or
when the ankle muscles cannot act (e.g., ankle motion is
restricted), a hip strategy would respond to flex or extend
the hip to move the body’s center of mass posteriorly or
anteriorly, respectively. This strategy is responsible for ML
CoP fluctuations. The above results suggest that standing on
firm and flexible surfaces (e.g., foam) activates these two
strategies differently. Generally speaking, a decreasing trend
in mean values for all RQA measures in the AP direction
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can be observed across testing conditions, from Open-Rigid
to Closed-Rigid to Open-Foam to Closed-Foam. In other
words, the more challenging the testing condition, the less
deterministic and stable the CoP motion is in the AP direction.
In contrast, the CoP motion becomes less deterministic in
the ML direction when participants are deprived of visual
information but increases again when their plantar sensation is
altered. This change in determinism is reflected as a decreasing
line from Open-Rigid to Closed-Rigid and an increasing line
from Closed-Rigid to Open-Foam (i.e. when changing the
standing surface).

The diagonal line measures characterize the determinism of
the system by quantifying the number of intervals where the
trajectory repeats [percentage of determinism (%DET)] and
their duration [mean diagonal length (L)]. A higher determin-
ism (that is, a higher %DET) indicates a more predictable and
less random CoP trajectory. Furthermore, longer recurrences
(i.e. higher L values) indicate more similar temporal dynamic
CoP patterns. In other words, higher values of % DET and L
result from CoP fluctuations whose trajectory tends to repeat
over time. Therefore, higher values of % DET and L during
quiet standing are more likely to reflect appropriate balance
control in the presence of perturbations (e.g., standing on a
compliant surface). On the contrary, lower values % DET
and L arise from CoP trajectories that change direction over
time due to perturbations, showing a less optimal balance
control [18]. This interpretation is consistent with our results,
as young adults, expected to have a better balance control,
showed the highest values for %DET and L than the other
two groups.

The vertical line measures indicate the stability of the
trajectory by quantifying the time that the CoP remained in
nearly the same position. The mean vertical line length (TT) is
related to long periods of stability in the CoP trajectory. Higher
TT values indicate longer periods of minimal postural sway.
This might reflect a balance between the torques produced
by gravity and postural muscles, resulting in a more accurate
balance control. Hence, younger adults are more likely to
be better able to control muscle torque and match it to the
required torque due to gravity. This interpretation is consistent
with our results, as young adults had the highest TT val-
ues. Furthermore, the overall stability of the CoP trajectories
appeared to be strongly affected, as TT showed a significant
difference with the lowest p-values between young and older
adults in all testing conditions (p-value ≤ 0.01). This can be
interpreted as an increase in postural sway in older adults
compared to young adults regardless of the condition, relating
to a decrease in balance control [3].

Similarly, the percentage of laminarity (%LAM) relates to
the proportion of time the trajectory remained stable through-
out the test. The highest values for laminarity were found in
the young group, followed by the non-fallers and fallers with
the lowest values. The %LAM is directly related to the amount
of time a CoP trajectory remained stable. These results show
that fallers tend to have more movement in their CoP over
time than the two other groups showing an overall less stable
CoP trajectory.

The interpretation of the RQA measures described above
considers that a more deterministic structure of CoP fluctu-
ations speaks of a more regular and stable balance control.
This interpretation is shared by other authors, whose results are
consistent with those of the present study [18], [34], [35], [36],
[37]. This interpretation is further supported by the results of a
previous study using approximate entropy and sample entropy
to quantify the regularity of CoP fluctuations [14]. In this
study, young adults exhibited significantly higher regularity
(i.e. lower entropy values) than older adults, which is related
to determinism. Moreover, non-fallers showed slightly higher
regularity than fallers, which is in line with the results from
the present study.

An alternative interpretation considers that more determin-
istic CoP fluctuations reflect less complexity, and thus less
behavioral flexibility. This interpretation was proposed based
on studies on multiple sclerosis, a history of falls, and knee
osteoarthritis patients [19], [20], [22]. However, it must be
noted that random noise exhibits low determinism yet does not
have a complex structure. Thus, complexity cannot be directly
deduced from low determinism. Furthermore, their divergent
results could derive from balance control mechanisms spe-
cific to some problems (e.g., multiple sclerosis and knee
osteoarthritis). This difference might also arise from different
RQA settings. For example, Ramdani et al. did not report
the use of a Theiler window [19], which strongly influences
the results, thus overestimating diagonal line measures by
including temporally close recurrences [32].

Balance control is also affected when the sources of sen-
sory information required to maintain balance are altered or
restricted. In general, the central nervous system integrates
information from visual, vestibular, cutaneous, and proprio-
ceptive stimuli during balance control [3], [38]. Depriving an
individual of these information sources allows to assess its
contribution to balance control. Young adults did not show
noticeable changes in balance control when skin sensation or
visual information was restricted during the tests. Only a slight
balance decrease was observed when both conditions were
restrained simultaneously, as the studied measures indicated
a more random and less stable CoP movement under this
condition. This may be because vestibular and proprioceptive
information alone was not sufficient to maintain the same accu-
racy in balance control. However, the changes were minimal
and the overall balance control was not significantly affected.

In contrast, older adults showed the worst balance control
when sensory information is altered or restricted due to
impaired balance control due to aging [39]. The foam surface
showed a more significant impact on balance control than
vision. This may be partially explained, as the characteristics
of the foam surface can affect movement by cushioning ankle
movement in addition to removing skin information [40].
However, the results showed that the foam surface barely
affected the balance in young adults, affecting the balance
of falling adults. This indicates that as sensory mechanisms
decline, the faller population relies more on information
gathered from skin receptors to maintain balance during quiet
standing.
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Therefore, the best condition to study the differences
between the groups was that the eyes were open with a foam
surface, which is consistent with the results presented as this
was the only condition that showed significant differences
(p < 0.001) between young and both groups of older adults
for all measures studied. As stated previously, it was observed
that the deprivation of this condition was insufficient to affect
balance in young adults while significantly affecting older
adults.

In summary, for all AP measures, young adults showed
significantly higher values than older adults. Standing with
eyes open on a foam surface seems to be the best testing con-
dition to assess balance control when looking for differences
between groups, as significant differences were observed for
all measures between young and older adults and the effect
size of those differences was large (0.998-1.28).

B. Limitations and Future Work
The main limitation of this study was the use of a data set

with a relatively small number of participants in the fallers
group (n = 18), which hinders statistical power. A larger
dataset would increase statistical power, which would allow
slight differences to be detected as significant differences.

Furthermore, a different approach to classifying study
groups could result in a better study of balance control
dynamics by group. For example, some evidence considers
that fallers who have suffered a fall are more closely related
to non-fallers than to fallers [41]. This results from the
supposition that the cause of one-in-a-lifetime falls does not
necessarily indicate impaired balance control. Some evidence
supporting this statement shows that older adults with one fall
only showed postural dynamics and muscle strength similar
to those of non-fallers [4]. Therefore, further studies may
classify older adults as multi-fallers and nonmultiple-fallers.
The first group would include older adults with one or fewer
falls and the latter older adults with two or more falls. Another
method of reclassification proposes the inclusion of age in
the category of old adults (60 in this study). Although in the
present study, this was not considered a determining factor.
As the sociodemographic analysis showed in table II, both
fallers and non-fallers showed a mean age of 71 with no
significant differences between them. However, consideration
of this parameter could be evaluated differently depending on
the data studied.

Another limitation is the retrospective approach to the study
of falls used to determine the risk of falls. This approach is
not optimal to identify a decline in balance control mecha-
nisms, as impaired balance may be present when old adults
have not yet suffered from falls. Better approaches include
prospective studies, in which participants are monitored after
the posturography test. This analysis would allow for a more
accurate selection of adults at risk of falls. The results of this
type of study recorded a higher incidence of falls in the adults
studied [4]. However, prospective analysis is more difficult to
achieve as it would involve follow-up studies to classify the
groups. In this case, the limitation was subject to the publicly
available dataset.

RQA must be performed with some additional consider-
ations. The most crucial factor to consider is selecting the
input parameters that significantly affect the analysis results.
In this study, different distance thresholds were considered
to optimize system recurrences, as lower threshold values
reduce the number of recurrences found in the system. Further
studies explore adjusting other parameters to determine their
optimal values. Although this would be an interesting topic,
the determination of optimal parameters is beyond the scope of
this study. However, the reader is referred to another study on
the effect of recurrence rate on RQA measures reliability [42].

Furthermore, considering additional RQA measures in addi-
tion to those described in this study could provide a more
complete description of CoP and therefore better insight into
postural control mechanisms. This can also complement other
types of CoP analysis, as some of the measures relate to
other nonlinear methods (e.g., Shannon entropy and Lyapunov
exponents).

Finally, other approaches include considering other postural
evaluations, as they may provide better solutions for preventing
falls in older adults. Some of these approaches explore other
causes for falling in addition to balance control decline. These
include qualitative evaluations related to psychological factors
and fear of falling [43].

V. CONCLUSION

This study explored recurrence quantification analysis as a
tool to characterize the nonlinear dynamics of balance control
during quiet standing in young and older adults and its ability
to discriminate between fall risk groups. The results suggest
that the anterior-posterior CoP fluctuations are more helpful
in identifying differences between groups than the medial-
lateral fluctuations, as the latter produced only a couple of
significant differences in the RQA measures. Furthermore,
CoP trajectories in young adults were more recurrent than in
older adults. Fallers presented the lowest stability values in
their trajectories.

The measures studied were also affected by altered sensory
information under each condition. Young adults showed low
variability in their CoP movement under normal conditions and
when a source of sensory information is altered or restricted
(closed eyes or foam surface). However, a more random
and less stable movement was observed when both sensory
information sources were altered or restricted. A similar trend
was identified in the faller adults standing on a foam surface,
showing a more considerable decline in balance control than
in the other groups. This suggests that information received
from cutaneous receptors is more relevant for maintaining
balance control in the faller population due to the decline of
other sources of balance information. Moreover, TT seemed
to be the most sensitive measure for assessing differences
in balance control mechanisms between groups, although
no significant differences were found between fallers and
non-fallers. This is mainly attributed to the low sample of
faller participants, which reduced the power of the statistical
analyses.

In general, a trend for more deterministic and stable bal-
ance control was found in young adults than in older adults
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according to recurrence analysis. Testing conditions seemed
to be a determinant in the assessment of the balance. The
foam surface with eyes open appeared to be the most sensitive
measure to assess balance control differences between groups.
However, more studies are required to produce additional
supporting evidence.
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