
warwick.ac.uk/lib-publications 

Manuscript version: Author’s Accepted Manuscript 
The version presented in WRAP is the author’s accepted manuscript and may differ from the 
published version or Version of Record. 

Persistent WRAP URL: 
http://wrap.warwick.ac.uk/172955 

How to cite: 
Please refer to published version for the most recent bibliographic citation information.  
If a published version is known of, the repository item page linked to above, will contain 
details on accessing it. 

Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  

Copyright © and all moral rights to the version of the paper presented here belong to the 
individual author(s) and/or other copyright owners. To the extent reasonable and 
practicable the material made available in WRAP has been checked for eligibility before 
being made available. 

Copies of full items can be used for personal research or study, educational, or not-for-profit 
purposes without prior permission or charge. Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 

Publisher’s statement: 
Please refer to the repository item page, publisher’s statement section, for further 
information. 

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/172955
mailto:wrap@warwick.ac.uk


Temporal Cascade Model for Analyzing Spread in Evolving Networks

APARAJITA HALDAR, University of Warwick, UK

SHUANG WANG, University of Warwick, UK

GUNDUZ VEHBI DEMIRCI∗, Imagination Technologies, UK

JOE OAKLEY, University of Warwick, UK

HAKAN FERHATOSMANOGLU†, University of Warwick, UK

Current approaches for modeling propagation in networks (e.g., of diseases, computer viruses, rumors) cannot adequately capture

temporal properties such as order/duration of evolving connections or dynamic likelihoods of propagation along connections. Temporal

models on evolving networks are crucial in applications that need to analyze dynamic spread. For example, a disease spreading virus

has varying transmissibility based on interactions between individuals occurring with different frequency, proximity, and venue

population density. Similarly, propagation of information having a limited active period, such as rumors, depends on the temporal

dynamics of social interactions. To capture such behaviors, we first develop the Temporal Independent Cascade (T-IC) model with a

spread function that efficiently utilizes a hypergraph-based sampling strategy and dynamic propagation probabilities. We prove this

function to be submodular, with guarantees of approximation quality. This enables scalable analysis on highly granular temporal

networks where other models struggle, such as when the spread across connections exhibits arbitrary temporally evolving patterns.

We then introduce the notion of ‘reverse spread’ using the proposed T-IC processes, and develop novel solutions to identify both

sentinel/detector nodes and highly susceptible nodes. Extensive analysis on real-world datasets shows that the proposed approach

significantly outperforms the alternatives in modeling both if and how spread occurs, by considering evolving network topology

alongside granular contact/interaction information. Our approach has numerous applications, such as virus/rumor/influence tracking.

Utilizing T-IC, we explore vital challenges of monitoring the impact of various intervention strategies over real spatio-temporal contact

networks where we show our approach to be highly effective.
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eling and simulation;
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2 Haldar et al.

1 INTRODUCTION

Research on modeling cascades in networks has traditionally mostly focused on identifying the influential nodes

in social networks [14]. In this paper, we introduce a Temporal Independent Cascade (T-IC) model that can simulate

spread through evolving networks to identify i) sentinel nodes and ii) susceptible nodes. The proposed setting has many

potential applications, ranging from identifying targets susceptible to rumors or misinformation, to detecting disease

outbreaks and analyzing intervention strategies. Within a single model, we aim to address several challenges, namely:

sentinel/susceptible solution sets, evolving connectivity patterns, dynamic propagation patterns, granular data, and

approximation guarantees. Existing solutions do not handle these problems together effectively.

i) Sentinel/susceptible solution sets - While diffusion models have predominantly been considered for influence

maximization and identifying highly influential nodes, we consider how they can identify nodes that i) detect activation

anywhere in the network (sentinel nodes) or ii) collect activation from anywhere in the network (susceptible nodes). A

set of sentinel (or detector) nodes is one that provides the best coverage over the entire network. That is, spread processes

taking place anywhere in the network are likely to reach (and be detected by) one of these sentinels. Identifying such a

sentinel set involves an optimization objective that is different from that of influence maximization, and requires a

‘reverse spread’ process. Some previous works have explored the identification of sentinel nodes in epidemiological

settings [24, 48]. However, such studies are limited to susceptible-infectious-recovered (SIR) compartmental models

to obtain mathematical results for infectious diseases. A generalized diffusion model is more broadly applicable by

adjusting the model parameters to simulate different real-world settings (e.g., tipping points for social collective behavior,

effects of computer virus replication) [49]. Another objective is the identification of high priority susceptible nodes, i.e.,

those that are independently most likely to collect activation (disregarding the overall network coverage).

ii) Evolving connectivity patterns - The spread model must cater for both the addition/deletion of edges and

varying contact frequencies. For example, connectivity patterns such as the interactions between infected individuals

over time [32], or the usage of removable storage devices in a computer network affected by a computer virus [60],

can govern how the spread takes place. Most cascade models that operate on such evolving connectivity patterns (and

preserve approximation guarantees on the solutions) often use static snapshots at regular intervals to represent the

dynamic nature of the network. Rather than using partially observed connections from an incomplete static snapshot to

produce solutions that are more likely to be sub-optimal [41], there is a need for a solution set that is optimized across

the entire window of time-varying contact events. Furthermore, it is desirable for the spread model to capture temporal

dependencies at every step.

iii)Dynamic propagation patterns - To our knowledge, there is currently no comprehensive solution with provable

quality guarantees to handle dynamic propagation at different rates, where the likelihood of the spread of activation

along connections can exhibit arbitrary temporally evolving patterns. Such a model is important to identify necessary

solution sets of nodes and design appropriate intervention strategies for various real-world settings. For example, the

bounded infectious period of a disease-causing virus [32] can be captured by a dynamic propagation rate that tapers

down to 0 after a defined duration of time. Similarly, the limited period of effectiveness of a rumor [18] can be modeled,

as can the more long-term effects on a machine infected with a computer virus [60].

iv) Granular data - The cascade model should incorporate highly granular data and any available exogenous

features. For example, information about individual contacts (rather than only aggregated mobility data), and about

venue type and popularity are crucial for disease monitoring and the design of intervention strategies. Information

diffusion networks and cascade models are well-suited for such data and applications. While there is growing interest
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in generating contact networks using mobile data, network-based cascade models rarely use such fine-grained spatio-

temporal data. To our knowledge, existing temporal network epidemiology solutions that do model the dynamics of

contagion in time-varying networks [27, 48] are mostly based on SIR compartmental models. More general cascade

models may be designed for varied application domains (e.g., misinformation campaigns in social networks, computer

viruses infecting networked machines, disease epidemics in population contact networks). Similar models have erstwhile

been studied mostly for information diffusion problems without the spatio-temporal element (e.g., viral marketing

campaigns in social networks).

v) Approximation guarantees - Prior IC based models lose the approximation guarantees on their solutions when

modified to support time windows or graph snapshots. To allow for scalable analysis that can efficiently support the

use of fine-grained, temporally evolving graph data, rigorous approximation guarantees must be maintained in the

temporal spread modeling algorithm. Such considerations enable the use of the solution for large-scale networks even

with granular temporal features.

Towards addressing the above challenges, we introduce the Temporal Independent Cascade (T-IC) model for detection

and analysis of spread, e.g., disease outbreaks, misinformation campaigns. The model includes a novel spread function

that utilizes dynamic propagation probabilities for every edge in the network. We prove this to be submodular with

approximation guarantees within 1− 1

𝑒 of optimal, thus preserving solution quality. We introduce two distinct objectives

and associated T-IC based solutions in this context: i) finding sentinel nodes, and ii) finding susceptible nodes. We

illustrate the application of our approach for monitoring spread in evolving networks, to i) detect if there is any spread

by checking a limited number of nodes, and ii) understand how it is likely to spread by identifying the most susceptible

nodes. Our examples of application-driven propagation probability functions are derived from real disease/influence

spread characteristics. We illustrate the approach on real-world location-based networks, pandemic datasets, and social

networks. We further analyze a range of intervention strategies towards containing an outbreak using the T-IC model,

e.g., targeted shutdown of venues (or websites) to slow down the disease spread (or cyber attack).

Our approach involves three stages. We first formalize the evolving network where edge connections may be

added/deleted and the propagation probability between two nodes can vary over time. An example for this is a spatio-

temporal contact network, e.g., meetings events between individuals within a population with a varying likelihood of

transmission that is based on contact duration, proximity, population density, and other customizable factors determined

by domain experts. A similar temporal setting can be considered for other applications, such as the spread of computer

viruses through networked machines, or the spread of online misinformation between social media user accounts.

Second, the Temporal Independent Cascade (T-IC) model is defined over the network, which handles dynamic

propagation rates and allows an active node to repeatedly try to activate its neighbors. That is, while spread may

continue to take place as long as a node is active, the actual likelihood is determined by the propagation rate (e.g.,

it may drop to zero quickly depending on the infectious period of a virus [32], or based on the short-term nature of

rumors [18]). This is an enhancement of the well-known IC model, as it takes the temporal ordering of activations into

account and allows for dynamic changes in both propagation probability and network connectivity patterns.

Third, we define spread functions to address the objectives of finding sentinel nodes and finding susceptible nodes.

We propose an efficient hypergraph-based sampling strategy to capture evolving connections and dynamic propagation

rates in the network. We then use T-IC to generate ‘random reachable sets’ that can reflect the patterns of spread within

this evolving network. These random reachable sets are used to develop two solutions, Reverse Spread Maximization

(RSM) and Expected Spread Maximization (ESM), that we use to identify sentinel and susceptible nodes respectively, with

provable approximation guarantees for the optimality of these solution sets. We employ RSM to find sentinel nodes, i.e.,
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4 Haldar et al.

a set of nodes where at least one is likely to be activated regardless of where the spread begins. RSM is useful to detect

if there is spread within a population. An application is “sentinel surveillance” and the early detection of outbreaks by

using sensors at the set of sentinels [3, 12, 23]. To understand how the spread is likely to take place, we also study ESM

to identify susceptible nodes, i.e., a set of nodes that accumulates the most spread from arbitrary seeds. A susceptible

set represents all individuals most liable to be part of the spread.

Finally, both approaches are applicable to a number of mitigation or intervention strategies. Our RSM and ESM

solutions both rely on measuring the reverse reachability through the network, with each having a different optimization

objective. Sentinels offer the maximum coverage over the network using a set of nodes of minimal size, thereby serving

as detectors that are collectively likely to catch any spread. This could involve selective testing of individuals for a

disease, detecting for malicious data used in attacks on communication networks, signaling wireless network failures,

or similar preemptive actions. Susceptible nodes, on the other hand, are all independently most likely to catch this

spread, making them all at high-risk, but may not cover the network well. This can be useful for contact tracing the

spread of disease, detecting failure points in communication networks, or identifying the most sensitive targets of

misinformation campaigns. It is important to note that merely ranking the nodes by importance or ability to spread

activation (i.e., via influence maximization methods) are insufficient for these two distinct problems.

The main technical contributions of the paper are as follows:

• A temporal independent cascade model (T-IC) for networks with dynamic propagation rates is introduced, along

with a ‘reverse spread’ function which is submodular. These features allow T-IC to provide formal approximation

guarantees on its solutions. While active nodes can still repeatedly spread activation, a dynamic propagation rate

(which can rise, fall, or drop to zero) is what dictates the extent of this spread.

• A sampling strategy based on hypergraph construction is proposed to handle evolving connections in the network,

and dynamic spread patterns are reflected in ‘random reachable sets’ that form hyperedges. This helps to choose the

optimal solution sets regardless of where the spread first begins, while also incorporating temporal dependencies

into the sampling step.

• Two solutions are devised with different objectives: RSM for selecting sentinel nodes (e.g., individuals/computers to

periodically test for disease/virus) to detect if there is any spread, and ESM for identifying susceptible nodes (e.g.,

individuals/computers to treat/fix and whose connections may need to be traced) to capture how the spread occurs.

• Evaluations using granular real-world datasets (location, contact, and social networks) confirm that the proposed

solutions are effective in identifying i) a sentinel set with highest ‘reverse spread’ coverage and success of detecting

spread, and ii) a susceptible set with highest likelihood of activated nodes included based on the ‘expected spread’

pattern. A further case study of possible intervention, mitigation, and categorical analysis strategies is presented for

disease monitoring and social applications. Analogues of these ideas can be applied to other settings discussed in our

examples, such as analysis of the spread of computer viruses or social network misinformation.

2 RELATEDWORK

There is extensivework in the areas of information diffusion and influencemaximization, especially for social networks [9,

10, 14, 20, 35, 53, 56]. Most prior work on evolving networks typically focuses on maximizing influence [16, 21, 41, 52, 59]

as opposed to the objectives that we study. To our knowledge, there is no prior work on capturing sentinel and susceptible

sets in temporal cascade networks as studied in this paper. Under the widely used independent cascade and linear

threshold propagation models, finding a subset of users that maximizes the expected spread is shown to be NP-

Hard [28]. There are studies using time constraints within IC models, which use a constant probability of spread or
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ignore repeated activations from an active node [8, 30, 36]. In contrast, our approach exposes temporal factors in the

continuous activation process and allows customizable formulations of propagation rates. Allowing nodes to remain

active enables us to provide approximation algorithms with quality guarantees. Simultaneously, our temporally-guided

sampling policy and use of dynamic propagation rates along edges ensures that the algorithm realistically models the

spread of activations. The proposed T-IC model can be applied in a variety of settings, including the identification

of misinformation campaigns or rumors propagating in social networks, monitoring of disease outbreaks in contact

networks, and tracing of computer viruses replicating through networked machines.

The selection of sentinel nodes is an important task in many applications (on static networks) where early detection

of activation is beneficial, such as monitoring disease outbreaks [3], signaling wireless sensor network failures [13] and

detecting malicious data transmissions [51]. Identification of a minimal solution set of sentinel nodes is of interest as

resources are often constrained (e.g. medical tests, wireless sensor costs). The dynamics of spread over an evolving

network topology introduce novel challenges in the selection of sentinels.

Susceptible nodes are also studied in the context of static networks. For example, failure points in communication

networks may be triggered by the cascading failure and redistribution of data packets, and have been modeled

stochastically for mitigation purposes [45]. Other studies on fake news detection find that recognizing easily influenced

users is more important to control the spread, rather than the influential “persuaders” [50]. Therefore, our temporal

model can be applied to solve pressing problems across a variety of domains.

Temporal networks have been studied for varied applications. For example, rumor propagation is affected by the

dynamics and durations of contacts [18], while computer viruses stabilize or die out depending on dynamic interactions

with removable devices [60]. All of these are domains where our T-IC model finds potential application, with a

perspective of tracing ‘reverse spread’ to identify sentinel/susceptible nodes. That is, we focus on temporal networks

where there may be an opportunity to prepare intermittent tests on sentinels, or to quickly mitigate the undesirable

effects at susceptible nodes.

Location-based social network datasets that we cover in our evaluations, e.g., Foursquare [58] and SafeGraph [47]

have been widely used in recent data-driven applications such as disease monitoring [5, 7, 55, 57] and urban/traffic

planning [26, 40, 46]. Our approach enables fine-grained analysis on such data in any specific propagation scenario

(e.g., with varying population density or varying proximity between interacting individuals). We illustrate this using

data sources ranging from social networks to statistics collected for analyzing pandemic spread, e.g., the BBC Pandemic

app [32] and Italy mobility studies [42]. We also utilize Foursquare trajectories and generate detailed trajectories from

the SafeGraph data, in lieu of their aggregated versions, as we support a more granular approach to spread modeling.

Among various spread models, there is extensive epidemiological research based on the SIR framework [29] and its

extensions, where differential equations govern the transition rates between Susceptible, Infectious, and Recovered

stages. This framework has led to numerous spread models being designed that handle datasets at a low-granularity

aggregated level (e.g., district-level infection case counts). One such approach deals with greedy immunization strategies

restricted to local behavior such as node degrees [43]. SIR is also used to study the impacts of static and temporal

network structures on outbreak size, sentinel surveillance, and vaccination objectives [23, 24].

The aforementioned equation-based compartmental models in the domain operate on aggregate data and assume

homogeneous mixing within the population without considering temporally ordered meeting events. SIR models are

powerful in the production of analytical and numerical results but do not properly simulate the real-world dynamics of

propagation rates between specific nodes [25]. Instead, our solution aims to offer highly granular and efficient predictive

models, with the goal of identifying critical subsets (i.e. sentinel and susceptible nodes) in the contact network. A
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recent Hawkes-process based variation of SIR has been proposed by performing agent-based infection simulations to

assign COVID-19 risk scores to individuals [44]. Our approach has orthogonal perspectives where we use our assigned

transmission risk scores to determine optimal solution sets that are either sentinels or susceptible individuals.

The SIR framework has also been applied to other domains, such as computer viruses and malware. A numerical

study on the spread of malware through malicious hyperlinks on the web adds a component to address the temporal

nature of such malware [37]. However, such work suffers the same deficiencies of not making full use of the network

topology information. In our work, we evaluate our spread model and solution sets on various temporal networks, as

well as demonstrate different interventions that can help combat harmful or malicious spread. For example, T-IC is able

to utilize individual-level location sequences to trace the disease spread spatially, resulting in support for more use

cases such as “backward contact tracing” (using knowledge of active nodes to trace initial seeds), which has attracted

attention in the context of COVID-19 [15]. The need for dynamic network analysis for forward and backward influence

tracking has been highlighted in the literature [1]. Similarly, identifying susceptible nodes in social networks can help

in combating fake news, because by ensuring that the users who are susceptible to fake news are also exposed to real

news, they are less likely to believe the falsehoods [50].

3 PROBLEM DEFINITION

We now present the Temporal Independent Cascade (T-IC) model, and define our optimization objectives, for tracing

the spread over an evolving network with dynamic propagation probabilities.

3.1 Temporal network

In a standard IC model, information flows/diffuses/propagates through the network via a series of cascades. Nodes may

either be active (already influenced by the information that is propagating through the network) or inactive (either

unaware of the information that is propagating but has not reached it by this point, or not influenced by the propagation

that did reach it). The standard IC model assumes a static probability distribution over a static graph structure. This

IC process is simulated over a graph 𝐺 = (𝑉 , 𝐸, 𝑝) where each edge (𝑢, 𝑣) ∈ 𝐸 is associated with a constant probability

function 𝑝 : 𝐸 ↦→ [0, 1], reflecting the likelihood of activation when nodes 𝑢 ∈𝑉 and 𝑣 ∈𝑉 have a common edge (e.g., a

common meeting point in the location histories of two individuals). Propagation starts from an initial seed set in 𝑉

(the only nodes active at step 0). Propagation takes place in discrete steps with each active node 𝑢 during step 𝑖 being

given a single chance to activate its currently inactive neighbor 𝑣 with some probability 𝑝 (𝑢, 𝑣). That is, at every step

𝑖 ≥ 1, any node made active in step 𝑖−1 has a single chance to activate any one of its inactive neighbors. The process

continues with nodes remaining active once activated, until no further propagation is possible. Therefore, this is a

stochastic process that requires a large number of simulations to accurately determine the spread of information.

Since the standard IC model uses a static probability distribution over a static network, it is insufficient to handle

evolving graphs with changing propagation rates. Both the structure of 𝐺 and the propagation rates can change

dynamically. For example, the spread of rumors depends on the dynamics as well as the duration of contacts between

individuals, and is guided by the specific short-lived nature of gossip or fake news. Similarly, a disease spread model

needs to consider the order and duration of interactions within a population, and the varying infectivity of a virus over

its lifetime. Therefore, we define a new temporal IC model for a temporal network.

Definition 1 (Temporal Network). Given a discrete time domain 𝑇 = {1, 2, ..., 𝑛}, a temporal network is a graph

𝐺 = (𝑉 , 𝐸, 𝑃 (𝑡)) where for each time interval 𝑡 ∈ 𝑇 , edge set 𝐸 is associated with a different propagation probability

distribution 𝑃 (𝑡):𝐸 ↦→ [0, 1]. That is, each edge (𝑢, 𝑣) ∈𝐸 has 𝑛 probabilities 𝑝 (𝑢, 𝑣, 𝑡), one for each 𝑡 ∈𝑇 .
Manuscript submitted to ACM
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Since𝑢 and 𝑣 may be linked multiple times in𝑇 , the corresponding 𝑝 (𝑢, 𝑣, 𝑡) for every interval 𝑡 needs to be separately
maintained. An evolving graph is represented by adding all edges and assigning 𝑝 (𝑢, 𝑣, 𝑡) = 0 when there is no (𝑢, 𝑣)
connection in interval 𝑡 . Moreover, a rigorous formulation for 𝑝 (𝑢, 𝑣, 𝑡) is needed to describe more complicated cases of

spread, which we discuss in Section 5.1.2.

3.2 Temporal Independent Cascade model

To model the spread of activation in the temporal graph 𝐺 , we introduce the Temporal Independent Cascade (T-IC)

model as an enhancement of the popularly used standard IC model for our setting. Given time intervals 𝑖, 𝑗 ∈ 𝑇 such

that 𝑖 < 𝑗 , the T-IC model proceeds from 𝑖 to 𝑗 as follows: Let 𝐴𝑡 denote the set of initially active nodes at the beginning

of time interval 𝑡 . Within each interval 𝑡 ∈ [𝑖, 𝑗], the standard IC model is executed once under probability distribution

𝑃 (𝑡) on edges. That is, the active nodes for that particular interval activate their neighbors based on the propagation

rates associated with the edges for that time interval only. This proceeds until no further spread is possible. Note that

this 𝑝 (𝑢, 𝑣, 𝑡) varies, and can fall to 0 to indicate that spread does not take place at the given 𝑡 . The set of all activated

nodes at the end of interval 𝑡 is 𝐴𝑡+1, which thus also represents the active nodes at the beginning of the next time

interval 𝑡+1 (active nodes remain active in subsequent intervals). This process is executed for each interval 𝑖, 𝑖+1, . . . , 𝑗
and the final set of active nodes 𝐴 𝑗+1 is obtained after interval 𝑗 .

In other words, we do not modify the standard IC process, but instead run it to completion independently within

each discrete time interval 𝑡 ∈ [𝑖, 𝑗] under the corresponding probability distribution defined over edges. For the entire

chosen time window ([𝑖, 𝑗] ∈ 𝑇 ), stacking several of these IC processes, and treating activated nodes as the seeds for

the next run, allows us to mimic the spread over an evolving graph without sacrificing the approximation guarantees.

Furthermore, if a node is activated in a specific time interval, it can continue to activate its neighbors in subsequent

time intervals, but subject to the propagation probability distribution. For example, a person infected with a virus

may continue to spread infection during interactions with people for as long as they are contagious (e.g., around 14

days for COVID-19 [4]). This continuous activation during the T-IC process, along with the propagation probability

formulations, makes it possible to reflect real-world spreading phenomena (e.g., for disease monitoring) with our model.

Figure 1 illustrates the impact of temporal order and dynamic connections in the spread model. Suppose node 𝑐 is

initially active. In the first case (Figure 1(a)), nodes 𝑎 and 𝑏 have higher likelihood of activation than nodes that arrive

later, such as 𝑒 or 𝑓 , or nodes that leave, such as 𝑑 . The greater chance of activation due to the prolonged duration of

contact with the active node 𝑐 , as well as the increased risk of activation due to the high density of nodes, is reflected

in the thicker edge connections to 𝑎 and 𝑏. In the second case (Figure 1(b)), 𝑎 and 𝑏 are again more susceptible due

to their proximity to 𝑐 , because 𝑐 leaves before 𝑑 approaches closer. The risk of activation for 𝑑 then increases as the

node approaches closer to the other nodes that may have been activated by 𝑐 . We develop a propagation probability

assignment that can capture all these factors for different application settings, which we describe in Section 5.1.2.

3.3 Optimization objectives

Our first objective is to identify the sentinel nodes, i.e., the set of nodes that maximizes the probability of detecting any

activations in a network where the set of initially active nodes is not known. A practical application is to detect an

outbreak using minimal resources (e.g., medical tests, computer virus checks, social media reviews). Testing a targeted

set of individuals can be an efficient way to detect the onset of spread within a population before it is widespread, akin

to the concept of “sentinel surveillance” [23]. Therefore, our optimization objectives focus on finding 𝑘-element subsets

of sentinel nodes. The proposed solution can also be run until termination over an indefinite time window, but we note
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8 Haldar et al.

(a) Propagation probability increases with population density and duration

(b) Propagation probability increases with proximity and duration

Fig. 1. Dynamic propagation probabilities in the network reflect temporal characteristics. Edge connection indicates proximity, with
thicker edge for higher probability (based on population density, proximity, and duration of contact) and dotted edge for latent
probability after deletion.

that when there is a temporal constraint within which to detect outbreaks, a truncated solution set (choosing only 𝑘

nodes) can sufficiently cover the entire relevant spread.

The objective is to maximize the probability that at least one node in a 𝑘-element solution set 𝑆 becomes active after

a random T-IC process (i.e., one that starts with randomly selected seeds) within a given time window [𝑖, 𝑗]. We note

that the ‘temporal reverse spread maximization’ objective, as defined below, corresponds to this goal of identifying a

𝑘-element set of sentinel nodes. Optimizing the success rate of detection of spread anywhere in the network by using

sentinels can be achieved by maximizing the expected amount of ‘reverse spread’ 𝜙 (·). Expected reverse spread can be

defined as the expected number of nodes that can spread activation to the nodes in 𝑆 . Therefore the expected reverse

spread of set 𝑆 on 𝐺 within [𝑖, 𝑗], denoted by 𝜙𝑖 𝑗 (𝐺, 𝑆), is the expected number of nodes that can activate at least one

node in set 𝑆 during a random T-IC process in [𝑖, 𝑗]. We discuss how to compute 𝜙 (·) in Section 4. The problem of

maximizing the expected reverse spread 𝜙𝑖 𝑗 (𝐺, 𝑆) can be formally defined as follows:

Definition 2 (Temporal Reverse Spread Maximization). Find the 𝑘-element subset of nodes 𝑆∗ ⊂ 𝑉 such that

𝑆∗ = argmax

𝑆⊂𝑉 , |𝑆 |=𝑘
𝜙𝑖 𝑗 (𝐺, 𝑆) (1)

Definition 2 addresses the problem of detecting if there is any spread. To understand how the spread takes place

within the network, we need to identify high priority nodes that collect activation, i.e., nodes that are the most susceptible
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to activation. For example, in disease, computer virus, or misinformation monitoring applications, the objective is to

identify the subset 𝑆 that are all highly likely to be infected. These offer important candidates to immunize, disconnect,

or re-educate in order to mitigate the spread.

Hence, we next aim to identify the 𝑘-element subset 𝑆 containing the maximum expected number of active nodes

after T-IC process in [𝑖, 𝑗]. Similarly to the temporal reverse spread maximization objective, the ‘temporal expected

spread maximization’ objective defined below corresponds to the goal of identifying a 𝑘-element set of susceptible

nodes. This second problem is formally defined as follows:

Definition 3 (Temporal Expected Spread Maximization). Let 𝐼 (𝑠) be an indicator random variable for node 𝑠 ∈𝑆
such that

𝐼 (𝑠) =

1 if 𝑠 is activated

0 if 𝑠 is not activated
(2)

after executing random T-IC process. Find a 𝑘-element subset of nodes 𝑆∗ ⊂𝑉 that maximizes the expected number of active

nodes in 𝑆∗

𝑆∗ = argmax

𝑆⊂𝑉 , |𝑆 |=𝑘
E

[∑
𝑠∈𝑆

𝐼 (𝑠)
]

(3)

In the next section, we describe our solutions to address the above objectives, namely Reverse Spread Maximization

(RSM) and Expected Spread Maximization (ESM).

4 REACHABLE SET SAMPLING BASED ALGORITHM

We introduce an extension to the well-defined sampling approach for hypergraph construction that allows us to preserve

optimality guarantees in our dynamic setting. We show that the defined reverse spread function 𝜙 (·) is submodular in

Theorem 4.1. It follows that the standard hill-climbing greedy algorithm achieves 1− 1

𝑒 -approximation guarantee, i.e., a

solution that uses this function can be approximated to within 1− 1

𝑒 of optimal [28].

Theorem 4.1. Under the T-IC model, function 𝜙𝑖 𝑗 (·) is submodular.

Proof. Let𝐺 = (𝑉 , 𝐸, 𝑝) be a directed graph where each edge (𝑢, 𝑣) ∈𝐸 is associated with a weight 𝑝 (𝑢, 𝑣) denoting
the probability that spread occurs from 𝑢 to 𝑣 . Kempe et al. [28] showed that the IC model induces a distribution

over graph 𝐺 , such that a directed graph 𝑔 = (𝑉 , 𝐸 ′) can be generated from 𝐺 by independently realizing each edge

(𝑢, 𝑣) ∈𝐸 with probability 𝑝 (𝑢, 𝑣) in 𝐸 ′. In a realized graph 𝑔∼𝐺 , nodes reachable by a directed path from a node 𝑢 are

its reachable set 𝑅(𝑢,𝑔), and correspond to the nodes activated in one instance of the IC process with 𝑢 as the initially

active seed node. They proved that for 𝑆 ⊂ 𝑉 , the spread function 𝜎 (𝑆, 𝑔) = | ∪𝑢∈𝑆 𝑅(𝑢,𝑔) | is submodular.

Similarly, the T-IC model induces a distribution over 𝐺 = (𝑉 , 𝐸, 𝑃 (𝑡)), where the IC model is executed independently

in each discrete time interval 𝑡 ∈ [𝑖, 𝑗] under the corresponding probability distribution defined over edges. Additionally,

an activated node remains active in subsequent intervals, getting multiple chances to activate its neighbors. So, directed

graph 𝑔𝑖 𝑗 = (𝑉 , 𝐸 ′) can be generated as follows: For intervals 𝑡 = 𝑖, 𝑖+1, . . . , 𝑗 , each edge (𝑢, 𝑣) ∈ 𝐸 is realized in 𝐸 ′

with probability 𝑝 (𝑢, 𝑣, 𝑡), only if node 𝑢 is active at the beginning of interval 𝑡 . Hence, the reachable set 𝑅(𝑠, 𝑔𝑖 𝑗 )
corresponding to a node 𝑠 on the generated graph 𝑔𝑖 𝑗 consists of all the nodes that are reachable and activated by time

interval 𝑗 by the seed 𝑠 that was initially active in time interval 𝑖 .

Let 𝑔𝑇
𝑖 𝑗
denote the transpose of 𝑔𝑖 𝑗 , obtained by reversing all its directed edges. Reachable set 𝑅(𝑟, 𝑔𝑇

𝑖 𝑗
) corresponds to

all seed nodes that, if active in interval 𝑖 , would have the ability to activate the receiving node 𝑟 by time interval 𝑗 . Given
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a set of nodes 𝑆 , let the reverse spread 𝜙 (𝑆, 𝑔𝑖 𝑗 ) denote the number of nodes that can reach some node in 𝑆 . That is,

𝜙 (𝑆, 𝑔𝑖 𝑗 ) = |⋃𝑢∈𝑆 𝑅(𝑢,𝑔𝑇𝑖 𝑗 ) |. Since 𝜙 (𝑆, 𝑔𝑖 𝑗 )=𝜎 (𝑆, 𝑔𝑇𝑖 𝑗 ), the submodularity of 𝜙 (𝑆, 𝑔𝑖 𝑗 ) follows. Therefore, the expected
reverse spread 𝜙𝑖 𝑗 (𝐺, 𝑆) = 𝐸 (𝜙 (𝑆, 𝑔𝑖 𝑗 )) is submodular, being a linear combination of submodular functions. □

Borgs et al. [6] employ a sampling strategy to build a hypergraph representation and estimate the spread of activation.

We enhance this technique to handle dynamic propagation rates and identify solution sets for both our defined tasks

(i.e., identifying sentinel nodes and susceptible nodes). Our algorithm and sampling strategy use a novel process of

generating the hypergraph to encode the reverse spread of any given subset of nodes via its nets. A hypergraph is

a generalization of a graph in which two/more nodes (pins) may be connected by a hyperedge (net). The two-step

sampling strategy is as follows: i) we execute random T-IC processes (that start with random active seeds) on the

temporal network, and ii) for each execution of a T-IC process, we construct a net whose pins are the nodes that are

activated during the process.

As shown in Theorem 4.1, 𝑔𝑖 𝑗 can be drawn from the distribution induced by a T-IC model on𝐺 . The edges in the

graph 𝑔𝑖 𝑗 are tried to be realized by traversing only live edges (i.e., edges where the starting node is already active).

Due to this constraint of only considering live edges, this enforces a dynamic nature to the spread as it takes place by

respecting the temporal ordering of connections. If a node 𝑣 is reachable from many different nodes in 𝑔𝑖 𝑗 , then it is

more likely that this node will be activated by time interval 𝑗 . Since any random seed in time interval 𝑖 is equally likely

to start the spread, the existence of more paths that lead to the node 𝑣 results in a higher likelihood of its activation.

This means that the reachable set of nodes 𝑅(𝑢,𝑔) (i.e., all the nodes from the realized graph 𝑔𝑖 𝑗 that are reachable by a

directed path of edges from the node 𝑢), which depends on the random seed node 𝑢, is one among many possible sets of

activated nodes at the end of a random T-IC process on the randomly sampled 𝑔𝑖 𝑗 . Note that since traversal over live

edges helps to capture temporal dependencies in the spread model, the identification of sentinel/susceptible nodes is a

non-trivial and orthogonal problem that cannot be achieved through traditional influence maximization.

Overall, the solution depends on two levels of randomness that are encountered during the hypergraph construction:

i) the sampling strategy for 𝑔𝑖 𝑗 ∼𝐺 , and ii) the computation of 𝑅(𝑢,𝑔𝑖 𝑗 ) given a random seed 𝑢. The former depends on

the probability distribution induced by the T-IC model over 𝐺 , while the latter depends on the seed node 𝑢. We refer to

such a reachable set that is generated by two levels of randomness as a ‘random reachable set’ 𝑅𝑅(𝑢,𝑔𝑖 𝑗 ). Outbreaks are
typically thought to start from a single source [22, 31]. Therefore, we consider one random seed node in our simulations

on all datasets.

The main sampling step is repeatedly performed to build a hypergraph 𝐻 = (𝑉 , 𝑁 ) where each net 𝑛𝑢 ∈ 𝑁 is

independently generated by executing a random T-IC process from seed 𝑢. The hypergraph corresponds to a random

reachable set 𝑅𝑅(𝑢,𝑔𝑖 𝑗 ), i.e., pins(𝑛𝑢 ) = 𝑅𝑅(𝑢,𝑔𝑖 𝑗 ). The solution quality and concentration bounds thus depend on the

number of nets generated to build the hypergraph [6].

Note that 𝐻 and 𝐺 are composed of the same set of nodes 𝑉 . For a solution set 𝑆 , the number of nodes sharing a

net with at least one node in set 𝑆 (which we refer to as deg(𝑆) henceforth) corresponds to the number of times a

node in 𝑆 gets activated during the random T-IC processes executed to compute the random reachable sets. To select

𝑆 as a collection of sentinel nodes, higher deg(𝑆) will be more likely to detect spread in the network, which can be

understood as follows: The degree of a node in the hypergraph is the sum of |𝑁 | Bernoulli random variables [6]. This is

because the inclusion of a node 𝑣 in a random reachable set 𝑅𝑅(𝑢,𝑔𝑖 𝑗 ) and in pins(𝑛𝑢 ) can be considered as a Bernoulli

trial with success probability 𝑝𝑣 , where 𝑝𝑣 denotes the probability that 𝑣 gets activated in a random T-IC process.

That is, the hypergraph node degrees are binomially distributed with an expected value of 𝑝𝑣×|𝑁 |. This implies that
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𝑝𝑣 =E[𝑑𝑒𝑔(𝑣)/|𝑁 |]. Therefore, this node degree corresponds to the estimation of reverse spread of node 𝑣 , since the

reverse spread can be written as 𝜙𝑖 𝑗 (𝑣) = |𝑉 |×𝑝𝑣 . Similar to the node degrees in hypergraph 𝐻 , the expected value

E[𝑑𝑒𝑔(𝑆)/|𝑁 |] corresponds to the probability that at least one node in 𝑆 gets activated during a random T-IC process.

Therefore, the degree of a set 𝑆 of nodes in hypergraph𝐻 , corresponds to the reverse spread 𝜙𝑖 𝑗 (𝑆)= |𝑉 |×E[𝑑𝑒𝑔(𝑆)/|𝑁 |],
which can be estimated well if a sufficient number of nets are built.

We next describe two algorithms, RSM and ESM, to efficiently compute solution sets for the two tasks corresponding

to Definitions 2 and 3 respectively.

4.1 Reverse Spread Maximization solution

In the hypergraph𝐻 = (𝑉 , 𝑁 ), if a node connects many nets (i.e., its degree is high), then that node has a high probability

of being activated during a random T-IC process. Similarly, if a set 𝑆 of nodes covers many of the nets (random reachable

sets), then its expected reverse spread 𝜙𝑖 𝑗 (𝐺, 𝑆) is likely to be higher. In other words, there is a larger set of nodes that

all have a chance to activate at least one node of 𝑆 within the time window [𝑖, 𝑗].
As in the maximum coverage problem, we want to cover the maximum number of nets (elements) in the hypergraph𝐻

by choosing a solution set 𝑆 of 𝑘 nodes (subsets). This step is therefore equivalent to the well-known NP-Hard maximum

coverage problem [54]. Borgs et al. [6] show that the maximum set cover computed by the greedy algorithm on the

hypergraph yields (1− 1

𝑒 −𝜖)-approximation guarantee for the influence maximization problem. Here, the parameter 𝜖

relates the approximation guarantee to the running time of the algorithm, and the solution quality improves with the

increasing number of nets in the hypergraph.

Algorithm 1: RSM solution

input :𝐺 = (𝑉 , 𝐸, 𝑃 (𝑡)), 𝑖 , 𝑗 , 𝐾 , |𝑁 |
1 𝐻 = (𝑉 , 𝑁 = ∅); 𝑆 = ∅
2 for 𝑛 = 1 to |𝑁 | do
3 Select source node 𝑠 ∈ 𝑉 uniformly at random; 𝐴 = {𝑠}
4 for 𝑡 = 𝑖 to 𝑗 do
5 𝐵𝐹𝑆_𝑄 = 𝐴

6 while 𝐵𝐹𝑆_𝑄 ≠ ∅ do
7 𝑢 = dequeue(𝐵𝐹𝑆_𝑄)
8 foreach (𝑢, 𝑣) ∈ 𝐸 do
9 Draw 𝑝 ∈ [0, 1] uniformly at random

10 if 𝑝 ≤ 𝑝 (𝑢, 𝑣, 𝑡) and 𝑣 ∉ 𝐴 then
11 𝐴 = 𝐴 ∪ {𝑣}; enqueue(𝐵𝐹𝑆_𝑄, 𝑣)
12 𝑁 = 𝑁 ∪ {𝐴}
13 for 𝑘 = 1 to 𝐾 do
14 𝑣𝑘 = argmax𝑣 deg𝐻 (𝑣); 𝑆 = 𝑆 ∪ {𝑣𝑘 }
15 Remove 𝑣𝑘 and all of its incident nets from 𝐻

16 return S

Algorithm 1 displays the overall execution of the proposed solution. It generates a number of random reachable sets

by first drawing a graph 𝑔𝑖 𝑗 from the distribution induced by T-IC model on the input graph 𝐺 and then performing

a breadth-first search (BFS) starting from a randomly selected node 𝑢. This randomized BFS through time intervals

proceeds such that the set of source nodes at each interval are the activated nodes in the preceding interval (lines
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4–11). Thus each edge (𝑢, 𝑣) ∈𝐸 is searched with probability 𝑝 (𝑢, 𝑣, 𝑡) in time interval 𝑡 . All nodes activated during a

random BFS form a random reachable set and are connected by a net in hypergraph 𝐻 (line 12). After generating the

hypergraph 𝐻 with |𝑁 | nets, the algorithm repeatedly chooses the highest degree node at each iteration, adds it to the

solution set, and subtracts this node together with all incident nets from the hypergraph. This is done repeatedly until a

𝑘-element subset of nodes, which is the resulting solution set 𝑆 , is computed (lines 13–15). This algorithm generates a

solution of sentinel nodes for Definition 2.

4.2 Expected Spread Maximization solution

In order to maximize the expected number of active nodes in 𝑆 , all the nodes having the highest probability of being

activated should be included in the solution set, since the expected number can be given as E [∑𝑠∈𝑆 𝐼 (𝑠)] = ∑
𝑠∈𝑆 𝑝𝑠 .

Hence, the problem in Definition 3 can be solved by Algorithm 2. The final step (line 13) now selects the solution set as

the 𝑘-element subset of nodes having the most incident nets (i.e. largest degrees in 𝐻 ).

Algorithm 2: ESM solution

input :𝐺 = (𝑉 , 𝐸, 𝑃 (𝑡)), 𝑖 , 𝑗 , 𝐾 , |𝑁 |
1 𝐻 = (𝑉 , 𝑁 = ∅); 𝑆 = ∅
2 for 𝑛 = 1 to |𝑁 | do
3 Select source node 𝑠 ∈ 𝑉 uniformly at random; 𝐴 = {𝑠}
4 for 𝑡 = 𝑖 to 𝑗 do
5 𝐵𝐹𝑆_𝑄 = 𝐴

6 while 𝐵𝐹𝑆_𝑄 ≠ ∅ do
7 𝑢 = dequeue(𝐵𝐹𝑆_𝑄)
8 foreach (𝑢, 𝑣) ∈ 𝐸 do
9 Draw 𝑝 ∈ [0, 1] uniformly at random

10 if 𝑝 ≤ 𝑝 (𝑢, 𝑣, 𝑡) and 𝑣 ∉ 𝐴 then
11 𝐴 = 𝐴 ∪ {𝑣}; enqueue(𝐵𝐹𝑆_𝑄, 𝑣)
12 𝑁 = 𝑁 ∪ {𝐴}
13 𝑆 = argmax

𝑉 ′⊂𝑉 , |𝑉 ′ |=𝑘

∑
𝑣∈𝑉 ′

𝑑𝑒𝑔𝐻 (𝑣)

14 return S

As illustrated in Figure 3, we apply our sampling strategy on 𝑔𝑖 𝑗 , allowing solutions for our novel objectives of

finding sentinel/susceptible nodes. Clearly, the sampling step is dependent on temporal dynamics which change upon

transposing 𝑔𝑖 𝑗 , therefore solutions for our novel objectives are distinct from influence maximization approaches

in literature. Specifically, the RSM approach can detect any outbreak efficiently, e.g., sentinel nodes 𝑏 and 𝑒 (or 𝑓 )

collectively correspond to greater coverage of the network than that offered by the ESM solution (nodes 𝑏 and 𝑎). The

ESM solution appears in RR-sets more frequently, and are nodes that are all highly likely to be activated. Such sentinel

nodes are relevant in settings such as disease monitoring (for contact tracing efforts), or computer virus tracking (to

identify and restore infected machines quickly). Identifying susceptible nodes in a social network also has interesting

use cases such as combating rumor spread and misinformation campaigns more effectively.

5 PERFORMANCE EVALUATION

For each real dataset, we build a temporal network on which we execute the T-IC process, and evaluate the solutions in

terms of identifying sentinel nodes and susceptible nodes as defined in Section 3. The algorithms are executed on an
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Fig. 2. RSM vs ESM on 𝑔𝑇
𝑖 𝑗
.

Fig. 3. RSM vs ESM on 𝑔𝑖 𝑗 .

Ubuntu 20.04 machine with 16 Intel 3.90 GHz CPUs and 503 GB RAM. The code and data used are publicly available at:

https://github.com/publiccoderepo/T-IC-model

5.1 Setup

5.1.1 Datasets:

We used eight real datasets to build temporal networks. Our T-IC model can be used to analyze a variety of application

settings, such as monitoring disease or malware spread, countering misinformation campaigns, and tracking social
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influence. For an example use case of disease monitoring, we use six location-based networks. The first two are spatio-

temporal network datasets that we construct using the locations (check-ins) of Foursquare users, in line with other

research studies on disease monitoring applications [5, 57]. We refer to them as NYC and Tokyo datasets. The NYC and

Tokyo datasets [58] record check-in times, (anonymized) user IDs, venue IDs, venue locations, and venue categories.

The temporal and spatial information from these are used to build edge connections in the network of users, selecting

25 consecutive days’ data. To alleviate sparsity, the nodes for all users visiting the same venue in the same day are

connected bidirectionally. Similarly, the third dataset SP-office [17] taken from SocioPatterns
1
contains a temporal

network of contacts between individuals in an office building, where active contacts are recorded at 20-second intervals.

We consider a small interval of 6 hours to determine whether interactions take place between individuals, based on

whether their active locations are the same. Since all the location data is collected from 12 departments within the same

workplace, using a larger interval would result in a fully connected contact network. Information about departments

is provided which is similar to venue categories in our first two datasets. We consider the first 8 consecutive days to

construct the temporal network.

Our fourth location dataset is based on SafeGraph [47], which has been used to analyze mobility patterns for

COVID-19 mitigation [7]. SafeGraph contains POIs, category information, opening times, as well as aggregate mobility

patterns such as the number of visits by day/hour and duration of visits. Using these mobility patterns, we generate

synthetic trajectories for 2𝐾 individuals visiting 100 unique POIs in the NYC area over 25 days. To build an individual’s

trajectory, for each day of the week for three consecutive weeks, we select and assign sequential visit locations to

appropriate timestamps (based on travel time and visit duration) as follows: i) each individual receives a random start

timestamp for travel, a random start POI location, and a random trajectory length that determines the number of POIs to

visit, ii) SafeGraph dwell time estimates and a random distance-based travel time are used to determine the timestamp

for reaching the next location, iii) depending on this timestamp, POIs are filtered out from the candidate list (based

on opening time, category information, and distance from current location) to ensure that the trajectory sequences

generated are feasible and realistic, and iv) the next location POI is selected from among the remaining candidates,

and the process (steps ii–iv) is repeated until the full length trajectory is complete (where no candidates exist, the

trajectory is truncated). We then construct the corresponding contact network by connecting (bidirectionally) nodes

that appear in the same location at the same time, considering 5 minute intervals to determine this overlap. We call this

semi-synthetic network SafeGraph-traj.

Analysis of spread on such location-based networks has been widely studied and allows us to compare relevant

baselines on popular available datasets. Nonetheless, adjustment of the propagation parameters and model activation

state types can reflect other use-cases for appropriate datasets that provide granular temporal information.

We also conduct studies on two social network datasets: wiki-Vote [33] and cit-HepPh [34]. wiki-Vote consists

of user discussions on Wikipedia, with edges between users representing votes. cit-HepPh encodes citation connec-

tions between research papers. These datasets reflect the typical network structure for problems such as influence

maximization, and we assign propagation probabilities from related literature as described later.

Finally, for examining intervention strategies in more detail, we use the above two social networks as well as two

location datasets developed for studying pandemics: Haslemere and Italy. The first records meetings between users

of the BBC Pandemic Haslemere app over time, including pairwise distances with 5 minute intervals [32]. The second

reports temporal aggregated mobility metrics for each day’s movement of population between Italian provinces based

1
http://www.sociopatterns.org
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on smartphone user locations before and during the COVID-19 outbreak over 90 days [42]. The Italy dataset also

provides transition probabilities between provinces, which we directly use as the propagation probabilities for our T-IC

process.

The statistics of the constructed networks are in Table 1. Here, we report the total number of temporal edges

constructed, and the maximum degree across the entire time domain of the temporal edges.

Table 1. Dataset properties

Dataset #Nodes #Edges Max degree

NYC 876 18270 147

Tokyo 765 102018 311

SP-office 232 78249 131

SafeGraph-traj 2000 57530 56

Haslemere 469 205662 1506

Italy 111 235190 6808

wiki-Vote 8297 103689 1167

cit-HepPh 34546 841798 846

5.1.2 Propagation probability setting:

Each directed edge (𝑢, 𝑣) is assigned a corresponding probability 𝑝 (𝑢, 𝑣, 𝑡) of propagation from node 𝑢 to node 𝑣 at time

𝑡 , defined based on the needs of the specific application dataset. For example, tracking disease spread may require this

propagation to be based on contact duration and physical proximity, which are not relevant to malware in cyberspace.

Factors like the period of transmissibility for diseases versus rumors/misinformation have different thresholds that are

determined by experts. T-IC supports a variety of settings simply by adjusting the propagation rate formulation as

needed. We present a few of these possibilities below:

• Sampled from a distribution: For social network datasets, the propagation probability is assigned following the common

practice in influence modeling studies [11] of using a uniform distribution. We randomly assign the edges of the network

to a discrete time interval in [0,𝑇 ], and sample 𝑝 (𝑢, 𝑣, 𝑡) ∈ [0, 0.3] for each edge (𝑢, 𝑣).
• Provided by the data: The Italy dataset directly uses the provided transmission probability between connected nodes.

In this dataset, it reflects the meta-population migration patterns between different regions (nodes). Note that this

network is of a lower granularity than our individual-level trajectories in the location-based datasets.

• Obtained from domain experts: For location-based contact networks and Haslemere, we utilize a domain-informed

probability assignment. Recent epidemiological studies quantify how transmission rates are related with the distance

between the individuals as well as the overall population density at the location [2, 19, 32, 38]. Based on these, we

calculate the propagation probability 𝑝 of a connection from node 𝑢 to node 𝑣 at time interval 𝑡 using Equation 4, to

incorporate knowledge of virus spreading characteristics:

𝑝 (𝑢, 𝑣, 𝑡) = 1 − 𝑒𝑥𝑝 (−
∑
𝑡 ′
_(𝑢, 𝑣, 𝑡 ′)) (4)

where _(𝑢, 𝑣, 𝑡) denotes the “force of infection” (the larger the value of _(𝑢, 𝑣, 𝑡), the greater is the transmission probability

between 𝑢 and 𝑣 at time 𝑡 ) [32], and 𝑡 ′ ∈ (𝑡 − 𝑡0, 𝑡] indicates the relevant duration of time up to the current time interval

𝑡 . The latter is governed by 𝑡0, the duration for which historic infection force is considered, since the transmission
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(a) Distance-based _𝑢,𝑣 (𝑡 ) (b) Distance at different 𝑡

(c) Accumulated infection force with 𝑡 (d) Propagation probability with 𝑡

Fig. 4. Propagation probability example for Haslemere

probability is decided by the accumulated infection force over 𝑡 ′. Note that 𝑝 (𝑢, 𝑣, 𝑡) can drop to zero to denote no

spread, such as once the individual is no longer infectious.

Therefore, a minimal expression for _(𝑢, 𝑣, 𝑡) must consider the distance from 𝑢 to 𝑣 and the population density at

the venue to determine risk, and is formulated based on the literature as:

_(𝑢, 𝑣, 𝑡) = 𝑎𝑒−𝑑𝑢,𝑣,𝑡 𝜌1 + 𝑏𝑒−𝑚
−1𝜌2

(5)

where 𝑑𝑢,𝑣,𝑡 is the distance between 𝑢 and 𝑣 at time interval 𝑡 (based on their location data),𝑚 is the number of people

located at the same venue, and 𝑎, 𝑏, 𝜌1 and 𝜌2 are hyper-parameters. In line with [32], to realistically simulate spread, we

use default values of 𝜌1 = 𝜌2 = 0.1, 𝑎 = 0.05, and choose 𝑏 = 0.05 (for NYC, SafeGraph-traj, and SP-office datasets)

or 𝑏 = 0.01 (for Tokyo dataset due to its dense connectivity). When 𝑑𝑖, 𝑗 > 𝑙 (distance threshold) or when the dataset has

no such proximity information, the contribution to infection force is assumed to be zero (i.e., 𝑎 = 0).

Figure 4 shows an example of our dynamic probability assignment for the Haslemere network, demonstrating the

accumulation of infection force and the changing propagation probability as distances vary with time during the

interactions between three node-pairs (i.e., (𝑢1, 𝑣1), (𝑢2, 𝑣2), and (𝑢3, 𝑣3) in Figures 4b–4d). Here, we choose a distance

threshold of 𝑙 = 5 meters as shown in Figure 4a, so there is no infection force once the distance between a node-pair is

greater than 5 meters. Figure 4b shows the varying distance between contact node-pairs every 5 minutes over three

days. The Haslemere data covers 16 hours of each day, and for simplicity of illustration we ignore the remaining hours

of each day on the x-axis of Figures 4b–4d. We select 𝑡0 = 1 day, i.e., the transmission probability at time 𝑡 is decided by

the past 1 day’s interactions. Figure 4c is the corresponding accumulated infection force of Figure 4b, which is computed

as

∑
𝑡 ′ _(𝑢, 𝑣, 𝑡 ′) using Equation 5 to calculate _. The trend of the propagation probability in Figure 4d is the same as in
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Figure 4c because the propagation probability is proportional to the accumulated infection force, as shown in Equation 4.

A more detailed exploration of the influence of the various hyper-parameter settings for Equation 5 can be found in

Section 5.2.3. While we experiment with various hyper-parameter settings for disease modeling applications, these may

be customized to incorporate the domain findings on transmission risks, e.g., [4, 39] (based on contact duration, venue

size and occupancy rates, activity type, ventilation, and other factors) as an orthogonal scope of work.

5.1.3 Baselines:

To our knowledge, there is no work examining sentinel and susceptible nodes on temporal networks. We thus look for

comparable alternatives to our RSM and ESM solution sets. We select baselines in three groupings. The first consists of

IC model-based methods (Greedy-IM [28], DIA [41]), to compare the performance of T-IC for analyzing spread on

evolving networks. The second is a virus propagation method for finding the critical 𝑘 nodes to immunize to prevent an

epidemic (T-Immu [43]). The final grouping covers simple heuristic-based methods (Max-Deg, Random).

Greedy-IM obtains the top-𝑘 influential nodes using a greedy hill-climbing algorithm over |𝑇 | time windows. Since it

is infeasible for larger datasets, we run it only on the smallest Haslemere and Italy datasets, and apply Greedy-IM for

each time window separately to calculate the corresponding spread over 𝑇 and average the results to select the best

node. DIA (Dynamic Influence Analysis) designs a dynamic index data structure to perform influence analysis over

evolving networks. The updating index structure only shows the graph connection at the latest timestamp. We select

top-𝑘 influential nodes at each time window using DIA, and report average results over the |𝑇 | time windows. T-Immu

formulates a non-linear dynamic system to remove a small set of nodes to prevent an epidemic. An epidemic threshold

is also derived for evolving graphs. Both DIA and T-Immu handle temporal and topological information in contact

networks, therefore we run DIA and T-Immu on the location datasets that include such information. The Max-Deg

algorithm selects the top-𝑘 nodes in decreasing degree order. The Random algorithm selects 𝑘 nodes uniformly at

random in a given graph, with average results presented after 20 simulations.

We compare our solution sets with the influential sets from the alternatives with respect to the following performance

measures: (i) Reverse spread from the solution set (ii) Average number of activated nodes (expected spread) in the

solution set (iii) Binary success rate of detecting spread. The reverse spread 𝜙 (·) is computed as defined in Section 4. The

binary success rate is the average number of times that there is at least one active node in the solution set during random

T-IC processes. Reverse spread is expected to be correlated with binary success, as both relate to the effectiveness of the

solution set (sentinel nodes) in covering/detecting spread in the network. The expected spread, computed as the average

number of activated nodes in the solution set, represents its susceptibility. Specifically, we simulate 1000 random T-IC

processes to activate nodes in the network within time window 𝑇 .

5.2 Evaluation of results

5.2.1 Performance with different solution set sizes 𝑘 :

Tables 2 and 3 summarize the comparative results on the large-scale location datasets and social datasets. We consider

solution sets (𝑆) of sizes 𝑘 =10, 20, . . . , 50 with a time window of length |𝑇 |=25 days. All results are normalized for ease

of comparison, i.e., the range of values between the minimum and maximum is mapped to [0, 10] to produce normalized

value 𝑥𝑛 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
, where 𝑥 is the original value, and 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 are the minimum and maximum values across

all the methods on the same measure. For example, consider the normalized reverse spread on the NYC dataset shown in

Table 2 . The value 0 for DIA in this section at 𝑘 = 10 means that the reverse spread of DIA with 𝑘 = 10 is minimum
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Table 2. Normalized performance (reverse spread and binary success rate) at |𝑇 |=25 with different sizes of solution set |𝑆 |=𝑘

Dataset Method Reverse Spread Binary Success Rate

k 10 20 30 40 50 10 20 30 40 50

NYC

RSM 7.9 8.5 9.0 9.5 10 8.6 7.6 9.1 8.4 10
T-Immu 5.0 8.2 8.3 8.7 9.2 7.4 7.1 7.5 6.9 8.6

DIA 0.0 1.0 2.4 3.2 4.1 0.0 1.1 3.1 4.2 4.8

Max-Deg 7.5 8.0 8.4 8.8 9.2 7.5 6.7 7.4 6.8 8.3

Random 4.0 6.3 7.9 8.7 9.2 2.1 6.0 6.6 5.7 6.6

Tokyo

RSM 8.4 8.9 9.3 9.7 10 8.4 9.1 9.0 9.2 10
T-Immu 8.3 8.8 9.1 9.3 9.7 7.9 8.4 8.2 8.5 8.9

DIA 0.0 0.9 2.0 3.0 4.0 0.0 0.7 1.4 2.7 4.0

Max-Deg 7.9 8.5 9.0 9.3 9.7 7.6 8.1 7.8 8.4 9.0

Random 6.6 8.1 8.7 9.3 9.7 5.5 6.9 6.5 7.3 7.8

SafeGraph-traj

RSM 3.1 5.4 7.3 8.6 10 3.1 5.3 7.0 8.2 10
T-Immu 1.7 3.2 4.8 6.3 7.3 1.7 2.7 3.8 4.0 5.6

DIA 0.0 0.1 0.1 0.2 0.2 0.1 0.1 0.2 0.2 0.2

Max-Deg 2.0 3.3 5.1 6.3 7.5 2.1 2.6 4.2 4.2 6.6

Random 1.7 3.4 4.9 6.5 7.8 0.0 0.1 0.6 0.7 1.4

wiki-Vote
RSM 6.4 7.9 8.8 9.5 10 6.6 8.5 8.6 8.8 10
Max-Deg 0.0 0.8 1.9 2.9 4.4 0.6 1.8 2.8 3.4 4.1

Random 0.1 1.1 1.8 2.5 3.0 0.0 0.6 1.3 1.7 1.9

cit-HepPh
RSM 3.5 5.7 7.5 8.8 10 3.9 4.7 7.0 8.0 10
Max-Deg 0.1 0.2 0.3 0.6 0.9 0.0 0.2 0.4 0.6 1.0

Random 0.0 0.0 0.0 0.4 0.5 0.0 0.0 0.0 0.0 0.0

among all methods from 𝑘 =10 to 𝑘 =50, while the value of 10 for RSM at 𝑘 =50 denotes that its reverse spread in this

configuration is maximum across among all methods and solution set sizes.

The set returned by RSM collectively achieves the highest reverse spread coverage in all cases, which increases

with increasing 𝑘 (solution set size). Without prior information about the initial seeds from where activation begins to

spread, distributing limited resources (e.g., scarce/expensive wireless sensors or medical tests) to these sentinel nodes

(i.e., the nodes selected in 𝑆) increases the probability of detecting the spread at an early stage.

By contrast, ESM selects all nodes having the highest probabilities of being activated during a random T-IC process,

and thus best captures the largest expected spread out of all methods. ESM outperforms Max-Deg, which is often

enforced in reality, by up to 82% on NYC. ESM is thus an effective targeted strategy for identifying the most susceptible

nodes (e.g., for contact tracing or treatment).

The binary success rate using RSM is the best for all datasets and 𝑘 . Comparisons with T-Immu and DIA show that

considering temporal properties while also preserving the overall graph structure is vital to select the ideal solution sets.

RSM consistently outperforms T-Immu (nearly 2x better on SafeGraph-traj) despite having related objectives, since

T-Immu cannot capture time-varying transmission probabilities. RSM also drastically outperforms DIA, which is worse

than Random, because DIA selects nodes of the evolving network based on an updating index which only remembers

the latest probability assignment and fails to capture the globally optimal solution set over 𝑇 . The improvements (at

least 10% higher success rates in the worst case) over Max-Deg confirm that the dynamic topology of the network

(captured by the RSM and ESM solutions with T-IC process) plays a much more significant role compared to the local

connectivity (node degrees) when modeling the spread.
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Table 3. Normalized performance (expected spread) at |𝑇 |=25 with different sizes of solution set |𝑆 |=𝑘

Dataset Method Expected Spread

k 10 20 30 40 50

NYC

ESM 2.3 3.8 6.1 7.1 10
T-Immu 0.4 0.7 1.7 2.0 2.3

DIA 0.0 0.0 0.1 0.2 0.3

Max-Deg 0.4 0.5 0.9 1.1 1.8

Random 0.1 0.4 0.7 0.9 1.2

Tokyo

ESM 2.2 4.5 5.9 7.8 10
T-Immu 1.1 2.0 3.5 5.0 6.8

DIA 0.0 0.0 0.1 0.2 0.3

Max-Deg 0.9 1.7 1.9 2.9 3.6

Random 0.3 0.9 1.2 1.7 2.3

SafeGraph-traj

ESM 2.1 3.9 5.9 6.9 10
T-Immu 0.9 1.4 2.2 2.3 3.4

DIA 0.0 0.1 0.1 0.1 0.1

Max-Deg 1.0 1.3 2.3 2.5 3.8

Random 0.0 0.0 0.3 0.4 0.7

wiki-Vote
ESM 2.8 6.7 8.4 9.6 10
Max-Deg 0.1 0.3 0.5 0.8 1.4

Random 0.0 0.1 0.2 0.3 0.3

cit-HepPh
ESM 3.5 5.1 6.7 8.4 10
Max-Deg 0.0 0.2 0.3 0.5 0.7

Random 0.0 0.0 0.0 0.0 0.0

5.2.2 Performance with different time window lengths |𝑇 |:
We evaluate the effect of varying the time window 𝑇 while keeping a constant solution set size 𝑘 =50 on NYC, Tokyo,

and SafeGraph-traj over one-day intervals up to |𝑇 | = 25. All three datasets provide spatio-temporal trajectories

where the evolution of spread over time is relevant. We also plot the results for SP-office, Haslemere, and Italy.

The time window used is different to accommodate these latter datasets. The propagation probability for Italy is the

real transmission probability of people moving between any two provinces over |𝑇 | = 90 days, while for Haslemere it

captures infections over |𝑇 | = 3 days. For SP-office, we consider |𝑇 | = 8 days, and set 𝑘 =10 nodes. Due to the small

and densely connected nature of SP-office, the baseline algorithms can identify only up to a small number of sentinel

nodes. Additional nodes quickly become redundant after already covering the entire contact network. Figures 5 and 6

show that reverse spread, expected spread, and binary success all increase with |𝑇 |, as it allows more activations to take

place. As expected, RSM has the best performance with respect to reverse spread and binary success rate in Figure 5,

and ESM outperforms other methods in terms of having the best expected spread in Figure 6. Only considering the

node degrees is ineffective, particularly as propagation becomes more complex, e.g., on a large network and elongated

time windows. DIA is jeopardized especially with smaller time windows as the overall optimality of the solution set is

not guaranteed by the most recent snapshot of the graph. Specifically, DIA selects the nodes heavily depending on the

topology connections. Hence, when the connections are dense across a smaller number of venues (departments), even

selecting very few nodes (2 nodes in SP-office case) immediately terminates the algorithm. In comparison, this issue

can be mitigated in RSM because the propagation process is formulated with a finer granular level. Haslemere and
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□ RSM, T-Immu ⊕ DIA ★ Greedy-IM Max-Deg Random
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Fig. 5. Normalized performance (reverse spread, binary success rate) with different lengths of time window |𝑇 |
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△ ESM T-Immu ⊕ DIA ★ Greedy-IM Max-Deg Random
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Fig. 7. Number of active nodes with different lengths of time window |𝑇 |

Italy datasets in Figures 5–6 also highlight how Greedy-IM cannot effectively capture the optimal global solution over

multiple time windows.

We also measure the size of the active set of nodes as |𝑇 | increases, for the NYC and Tokyo datasets. Despite there

being only 𝑇 = 25 days of contact information for these datasets, we plot results for 𝑇 = 50 days as shown in Figure 7.

This is because we set 𝑡0 = 14 days as the duration of infectious force (considering a disease setting), meaning that a

node once activated remains infectious for 14 days before the propagation rate drops to 0. Therefore, activations may

continue to spread in the network beyond the 25th day. The total number of activated nodes is simulated by sampling

10k hypergraphs. As shown in Figures 7 (a) and (c), when |𝑇 | > 25 the increase in the number of activations gets slower.

The active set gradually becomes stable as there are no new contacts between nodes. Since the propagation rates also
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Table 4. The default values of hyper-parameters for different datasets

Dataset Hyper-parameters 𝑝

NYC, SafeGraph-traj 𝑎=0, 𝑏=0.05, 𝜌2=0.1 Using Equation 4

Tokyo 𝑎=0, 𝑏=0.01 , 𝜌2=0.1 Using Equation 4

SP-office 𝑎=0, 𝑏=0.01, 𝜌1=0.1 Using Equation 4

Haslemere 𝑎=0.05, 𝑏=0, 𝜌1=0.1, 𝑙=5 Using Equation 4

Italy × Using provided 𝑝 values from data

wiki-Vote, cit-HepPh × Using uniform distribution

taper down for nodes that have been previously activated, there is no further significant increase in overall spread.

However, this does not accurately depict how many nodes are currently activated at any time. To measure this, we

introduce a new “recovery” state by reverting active nodes to inactive state after the 𝑡0 period. In Figure (b) and Figure

(d), this simulation is found to closely match the behavior of SIR framework models (e.g., the SEIR model used by Wang

et al. [55]). Once an active node “recovers” after 𝑡0 = 14 days, we observe that the increase in the number of active

nodes is slower. The active set eventually reduces in size with |𝑇 | as more nodes recover.

5.2.3 Performance with different hyper-parameters:

The propagation probability in Equation 4 is proportional to hyper-parameters 𝑎, 𝑏, and 𝑙 , while it is inversely

proportional to 𝜌1 and 𝜌2. Furthermore, the propagation rates are sensitive to small changes in 𝜌1 and 𝜌2 since they

directly influence the threshold of importance of proximity and population density respectively. The default values of

hyper-parameters for all datasets are summarized in Table 4. We evaluate different hyper-parameter settings on NYC,

Tokyo, SP-office, SafeGraph-traj, and Haslemere datasets. These hyper-parameters are not necessary for Italy

and the social network datasets (wiki-Vote and cit-HepPh), since the computation of 𝑝 does not involve them.

We experiment with 𝜌1, 𝜌2 ∈ [0.1, 0.5], 𝑎, 𝑏 ∈ [0.01, 0.1], and 𝑙 ∈ [5, 20]. We fix one of the parameters as the

default value, then experiment with different values of the others, e.g., setting 𝑏 = 0.05 for SafeGraph-traj, and

changing 𝜌2 from 0.1 to 0.5. Specifically, we modify 𝑏 and 𝜌2 for NYC, Tokyo, SP-office, and SafeGraph-traj, where

the population density at POIs is a relevant factor for the risk of propagation of disease. Meanwhile 𝑎, 𝜌1, and 𝑙 are

relevant for determining propagation risk in Haslemere, and we modify them for this dataset in order to reflect different

distance thresholds between infected and potential susceptible individuals.

Figure 8 shows the spread resulting from RSM and ESM with different 𝑏 and 𝜌2 on the contact-based datasets NYC,

Tokyo, SP-office, and SafeGraph-traj. The performance fluctuates with the increase of 𝜌2, while the performance

gets large strictly with the increase of 𝑏. As shown in Equation 5, 𝜌2 is the factor that dictates the importance of the

number of people𝑚 in determining transmission risk. Hence, in the real-life application, it is important to select an

appropriate value of 𝜌2 to reflect how the density of population at a POI contributes to the spread. It is important to

note that we do not select our hyper-parameter values in a way that maximizes the spread and provides any undue

advantage for our method. Rather, we choose values that are reasonable reflections of real-world scenarios.

We present the spread resulting from RSM and ESM solutions with different 𝑎, 𝜌1, and 𝑙 on Haslemere in Figure 9.

The reverse spread and expected spread increase overall with increase in 𝑎 and 𝑙 while decrease with increase in 𝜌1.

This is intuitive, since the likelihood of propagation increases with larger values of 𝑎, and the longer distance threshold

𝑙 implies a high probability that the infection will successfully spread when individuals are in proximity to each other

even though they are separated by some distance. Meanwhile, a large choice of 𝜌1 will decrease the factor of the

infection force that is brought about by the proximate contact.
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□ RSM, △ ESM
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Fig. 9. Spread resulting from different values of 𝑎, 𝜌1, 𝑙 (|T|=3,k=50)

5.2.4 Running time efficiency:

While the solution quality improves with higher number of hypergraph nets generated (up to a certain point), there is

an efficiency trade-off. We measure the running time of generating hypergraph nets by varying the desired number

of nets |𝑁 | and the number of time windows |𝑇 | under consideration, as shown in Table 5 and Table 6, respectively.

Specifically, with |𝑁 | increasing from 20𝐾 to 100𝐾 (for a fixed |𝑇 |=5) in Table 5, there is a slight increase in running

time (from 0.43 to 2.18 seconds for Tokyo) demonstrating the efficient and scalable nature of our reachable set sampling

based algorithm. The hypergraph construction time also increases with |𝑇 | (for a fixed |𝑁 |=20𝐾) in Table 6 due to a

prolonged propagation process, which is especially evident in dense networks (e.g., Tokyo). Despite the increase in

computation time and memory requirements when increasing |𝑁 |, we find that stable solution sets of sufficiently high

quality are produced without the need for more than 20𝐾 hypergraphs.
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Table 5. Running time (in seconds) with different number of nets |𝑁 | ( |𝑇 | = 5)

Dataset

|N|

20000 40000 60000 80000 100000

NYC 0.99 1.95 2.96 4.00 4.99

Tokyo 0.43 0.86 1.31 1.75 2.18

SP-office 0.83 1.71 2.62 3.51 4.43

SafeGraph-traj 0.04 0.07 0.11 0.15 0.19

wiki-Vote 53.40 108.76 158.52 216.58 271.99

cit-HepPh 1.27 2.69 3.98 5.35 6.45

Table 6. Running time (in seconds) with different number of time windows |𝑇 | ( |𝑁 | = 20𝐾 )

Dataset

|T|

5 10 15 20 25

NYC 0.98 1.80 3.34 5.51 11.32

Tokyo 0.42 5.40 22.65 55.94 106.0

SP-office 0.83 2.64 6.04 12.21 18.35

SafeGraph-traj 0.04 0.06 0.10 0.12 0.16

wiki-Vote 53.40 149.49 320.87 549.95 917.51

cit-HepPh 1.27 7.46 25.68 63.73 130.65

Table 7. Running time (in seconds) with different sizes of solution set |S|=k on Haslemere

Method

k

10 20 30 40 50

RSM 19.15 19.16 19.20 19.23 19.26

ESM 18.34 18.34 18.35 18.35 18.36

Greedy-IM 878.98 2647.99 6729.71 11780.86 18948.14

T-IC can model large-scale individual-level contacts efficiently, whereas other solutions [23, 41, 43] are only feasible

on small graphs. For example, T-Immu repeats computations of the eigenvalue of the dynamic contact network structure

which makes it not feasible for large-scale datasets (e.g., cit-HepPh), and DIA can only consider the latest snapshot but

not the global structure efficiently.

We compare RSM with the commonly used IC model based method, Greedy-IM, in terms of the running time for

selecting different size of solution set 𝑆 from 𝑘 =10 to 𝑘 =50 in Table 7. The running time of Greedy-IM grows quickly

and gets infeasible with large dataset and long time windows, whereas our RSM and ESM running times grow much

more slowly. Hence, for running time comparisons, we only evaluate on the small dataset Haslemere. We observe

the running time of Greedy-IM increases sharply from 879s to 18948s with increase in 𝑘 at 𝑇 =3, which makes it not

applicable for large evolving networks.

5.3 Intervention Strategies

We now analyze the effect of several intervention strategies for reducing spread in temporal networks. Several of

these techniques have applicability to the disease monitoring context. There are analogues to reduce spread in other

settings such as with misinformation/rumors propagating in social networks. We study targeted connection shutdown,

backward contact tracing, and node-level categorical analysis.
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5.3.1 Targeted Connection Shutdown:

We first consider the reduction of edge connections in our network construction and analyze how the spread changes

as a result of these dropped edges. For the a disease spread setting, this simulates (partial) lockdown strategies.

We randomly select a seed set of 10 nodes from which to simulate the T-IC process. We use two intervention strategies

to select the edge connections to drop (we drop 30% of the total edges). The first is to randomly drop edges. The second

is based on the priority of the nodes, i.e., delete connections for the node categories visited by more people. That is, the

number of edges dropped is proportional to the number of connections to the nodes. We perform 20 simulations to

get the average decrease in spread resulting from each of the two strategies. For NYC, random deletion reduces 78%

spread while node category prioritization (on the top-50 busiest venues) achieves 83% spread reduction. Similarly, for

SafeGraph-traj, random deletion reduces 26% spread while an additional 4% spread reduction is achieved by venue

prioritizing the top-50 busiest venues. For the less granular Italy dataset, which does not have venue information, we

prioritize the deletion of the top-50 densely connected provinces. Spread reduction is 49% when using prioritization,

while random deletion reduces 38% spread. For SP-office dataset, random deletion can only reduce 5% spread while

22.8% spread is reduced by prioritizing the top-5 most visited categories (departments). Therefore, a targeted approach

to connection shutdown at specific nodes shows superior performance over random occupancy/usage restrictions

across all nodes.

The same holds true for social datasets where the propagation rates were sampled from a uniform distribution. For

social datasets, there is no venue information provided therefore all nodes are of the same type, so we prioritize the

most connected nodes from which we drop a number of edge connections. Random deletion of 5% edge connections on

wiki-Vote can reduce 26.75% spread while there is a 54.78% spread reduction when prioritizing the 100most connected

nodes. For cit-HepPh, 22.45% spread is reduced when dropping 30% connections on the 1000 most connected nodes,

while the random deletion can only reduce 6.78% spread.

5.3.2 Backward Contact Tracing:

We next calculate the contribution of backward traced nodes to the activations in the selected ESM solution set,

in Table 8. Backward contact tracing has gained popularity in the epidemiological domain. A similar idea could be

applied in a social network setting to track content back from the followers of users sharing misinformation. First, we

select different sizes of solution set 𝑆 from 𝑘 =10 to 𝑘 =50. Considering the reverse reachable set of nodes from a given

solution set for backward tracing, we identify the top spread contributors as the nodes that participate most frequently

in activations. We find that this backward traced set of superspreader nodes account for 67.9% to 95.0% of the activations

in 𝑆 on the Haslemere dataset. For Tokyo, they contribute 77.8% to 96.1%. The solution set of SP-office can contribute

39.2% to 70.7%. Similar patterns can also be observed on the two social networks. This skewed over-dispersion further

points to the importance of backward contact tracing and need for suppressing superspreader events to tackle unwanted

spread in different settings.

5.3.3 Node-Level Categorical Analysis:

The Tokyo and NYC datasets also include node-level categories (venue) which provide further insights for designing

effective intervention strategies. For |𝑇 |=25, we observe that only 26 to 83 venues in NYC are visited by persons in

solution sets selected by RSM when increasing 𝑘 from 10 to 50, while ESM, Max-Deg, and Random cover up to 3x as

many venues. For Tokyo and NYC, an analysis of the categories of venues visited reveals transportation hubs (including
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Table 8. Contribution (% activations among nodes of 𝑆) of backward traced superspreaders with different sizes of solution set |𝑆 |=𝑘

Dataset

k

10 20 30 40 50

NYC 39.9 53.6 63.3 71.1 77.3

Tokyo 77.8 91.0 94.3 95.5 96.1

SafeGraph-traj 32.0 37.2 41.5 45.3 48.9

SP-office 39.2 50.9 59.1 65.4 70.7

Haslemere 67.9 79.1 86.0 91.1 95.0

Italy 16.7 31.4 44.5 56.1 66.6

wiki-Vote 8.90 15.7 21.5 26.6 31.4

cit-HepPh 18.6 28.6 36.2 42.4 47.3

airport, subway, and train station), restaurants, bars, and coffee shops as superspreaders in the solutions sets, with

transportation hubs in particular having an out-sized impact when increasing the set size 𝑘 of infected individuals.

6 CONCLUSION

In this work, we introduce the Temporal Independent Cascade (T-IC) model for the tasks of Reverse Spread Maximization

(RSM) and Expected Spread Maximization (ESM), and illustrate its application in various settings. We show that reverse

spread under the T-IC model is submodular, and propose efficient algorithms to produce solution sets for RSM and

ESM. These algorithms are able to maintain the approximation guarantees of IC models in temporal networks, enabling

them to handle large-scale and highly granular data. Our objectives are to identify i) a minimal set of sentinel nodes

(i.e., nodes which minimally cover the network, for the purpose of spread detection), and ii) a set of highly susceptible

nodes (e.g., for prioritizing tracing, intervention, and treatment measures across various use cases). Through extensive

quantitative analysis performed on eight real-world datasets across multiple settings, we show that RSM significantly

outperforms alternative methods for the former task, while the ESM solution sets capture significantly more susceptible

individuals for the latter. We observe that the dynamic topology captured by our model plays a more significant role

than local connectivity, which is evident in the sentinel nodes identified by RSM having significantly higher success

rates of detecting spread compared to T-Immu and DIA. We also find that temporal characteristics alongside the global

graph structure are needed for optimal solutions, which can be seen as ESM significantly outperforms Max-Deg as a

superior targeted strategy for identifying susceptible nodes. Finally, we consider several targeted intervention strategies

(targeted connection shutdown, backward contact tracing, and node-level categorical analysis), and show that the T-IC

model can be effectively leveraged for these purposes in a variety of application settings.
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