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Abstract 28 

 Products of petroleum refining are substances that are both complex and variable. These 29 

substances are produced and distributed in high volumes; therefore, they are heavily scrutinized in 30 

terms of their potential hazards and risks. Because of inherent compositional complexity and 31 

variability, unique challenges exist in terms of their registration and evaluation. Continued 32 

dialogue between the industry and the decision-makers has revolved around the most appropriate 33 

approach to fill data gaps and ensure safe use of these substances. One of the challenging topics 34 

has been the extent of chemical compositional characterization of products of petroleum refining 35 

that may be necessary for substance identification and hazard evaluation. There are several novel 36 

analytical methods that can be used for comprehensive characterization of petroleum substances 37 

and identification of most abundant constituents. However, translation of the advances in 38 

analytical chemistry to regulatory decision-making has not been as evident. Therefore, this 39 

review’s goal is to bridge the divide between the science of chemical characterization of petroleum 40 

and the needs and expectations of the decision-makers. Collectively, mutual appreciation of the 41 

regulatory guidance and the realities of what information these new methods can deliver should 42 

facilitate the path forward in ensuring safety of the products of petroleum refining.  43 
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Introduction 44 

 Crude oils are naturally occurring and highly complex substances which vary considerably 45 

in molecular composition according to their origins; they comprise a myriad of constituents, 46 

primarily hydrocarbons, but also other organic and inorganic molecules (Smith et al., 1959). Close 47 

to one hundred billion barrels of crude oils are annually extracted, distributed, and processed into a 48 

wide variety of refined petroleum products (Kaiser, 2017; Salvito et al., 2020). The chemical 49 

composition of petroleum refining products therefore depends on both the type (i.e., origins) of 50 

crude oil from which it was derived, and the refining process (i.e., fractional distillation and/or 51 

cracking followed by additional processing through solvent extraction, hydro-desulfurization, or 52 

hydrogenation) used to meet performance characteristics of the end-products (McKee et al., 2015). 53 

Products of petroleum refining are high production volume substances and thus are heavily 54 

scrutinized in terms of their potential human and environmental health hazards and risks. Because 55 

of inherent compositional complexity and variability, petroleum substances are prototypical 56 

representatives of a diverse class known as substances of unknown, variable composition, complex 57 

reaction products, or biological materials (UVCBs); these substances present unique challenges to 58 

regulatory agencies, especially in terms of characterization of their chemical composition (Clark et 59 

al., 2013; ECHA, 2017c; Lai et al., 2022). It is worth noting that the different fields within the 60 

academic, industrial, and regulatory science communities can use differing terminology. Analytical 61 

researchers often refer to petroleum refining products as “hydrocarbon mixtures” which are, in turn, 62 

part of the broader “complex mixtures” family of samples. The term “mixture” is avoided by the 63 

industry and decision-makers as they reason that most substances in commerce that are made from 64 

oil are products of refining, rather than mixing, and thus to differentiate from the mixtures found in 65 

the environment, such substances are called petroleum UVCBs. 66 

 Studies of molecular composition of crude oils and petroleum refining products have a long 67 

history spanning over 80 years (Figure 1). The analytical characterization of petroleum substances 68 

historically tracked the physico-chemical properties that pertained to the functionality of the 69 

product, such as flash points and vapor pressure. With the advent of spectroscopy and mass 70 

spectrometry techniques, there came the possibility to gradually gain more detailed understanding 71 

of composition; however, the granularity of information on the constituents in registered petroleum 72 

products is still lacking. Recent improvements have been made in the resolution of mass 73 

spectrometers, ionization methods in order to access a wider range of components, separation 74 
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methods to offer structural insights, and developments in data visualization through standardized 75 

diagrams (Palacio Lozano et al., 2020). As a result of these advances, new opportunities emerged 76 

to provide comprehensive characterization of these complex substances and satisfy regulatory needs 77 

on the composition, quantity of potentially hazardous constituents, and the extent of variability 78 

among manufacturing batches of these products. The range and types of mass spectrometry 79 

techniques that can be used for the analysis of petroleum-related samples is quite extensive; 80 

collectively, the methods for study of petroleum are now being referred to as “petroleomics,” a sub-81 

field of analytical chemistry aiming to identify the totality of constituents of crude oil and petroleum 82 

refining products using high resolution mass spectrometry methods (Hsu et al., 2011; Marshall and 83 

Rodgers, 2004; Palacio Lozano et al., 2020).  84 

 Despite major advances in the ever-improving analytical resolution of individual molecules 85 

and their classes in oils and complex petroleum UVCBs (Wise et al., 2022), there has been relatively 86 

little use of the data from these new methods and instruments in regulatory submissions, with the 87 

exception of GC×GC-FID-derived data (Redman et al., 2014; Ventura et al., 2011), or even their 88 

mention in the reviews or original research publications (Figure 2A). The naming conventions and 89 

approaches to identification of complex petroleum UVCBs remain rather imprecise (Rasmussen et 90 

al., 1999); only general compositional characteristics are used to define broad manufacturing 91 

categories (Salvito et al., 2020). While such information is generally sufficient for naming and 92 

identification of petroleum UVCBs (ECHA, 2017a), it is often not sufficient for evaluation of human 93 

health and environmental hazards, a prerequisite to registration and authorization for their use 94 

(Salvito et al., 2020).  95 

 The regulatory science and analytical chemistry fields run in parallel and both are highly 96 

specialized, requiring significant expertise. Consequently, intricacies of the legislative mandates 97 

governing regulatory decision-making are often unfamiliar to the researchers who develop and 98 

refine advanced methods for petroleomics. Similarly, decision-makers may not be aware of the latest 99 

opportunities that analytical chemistry has to offer. Collectively, there is a considerable gap in the 100 

translation of knowledge from petroleomics-focused analytical laboratories to applied decision-101 

making. This review aims to first summarize the regulatory guidance for characterization of the 102 

chemical composition of petroleum UVCBs and then demonstrate how existing petroleomics 103 

techniques could be applied to address these needs. Recent additions to the European Union (EU) 104 

Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) regulatory guidance 105 
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for demonstrating the composition of complex UVCB (ECHA, 2022), together with recent 106 

advancements in petroleomics applications that are poised to address these needs (Palacio Lozano 107 

et al., 2020), create a unique opportunity to bridge the divide. Here, we highlight the opportunities 108 

that are already within reach for using modern analytical and data analysis/visualization techniques 109 

for impactful decisions on petroleum UVCBs. We reason that it is imperative for decision-makers 110 

to be aware of the possibilities and limitations of current analytical approaches so that regulations 111 

can be sufficiently strict, yet realistic in terms of their attainment using best available science. 112 

 113 

What Information do the Decision-Makers Seek on Petroleum UVCBs? 114 

 Most impactful guidance to the industry on petroleum UVCBs has been produced in the 115 

United States and the European Union. These include the United States Environmental Protection 116 

Agency (US EPA) High Production Volume (HPV) Challenge Program, a voluntary industry-117 

government information sharing effort that was launched in 1998 (Petroleum HPV Testing Group, 118 

2017), and the REACH legislation and associated guidance documents in the European Union 119 

(ECHA, 2017c) which is now being adopted in other countries around the globe. Because REACH 120 

is the most recent and stringent legislative regime, it has become a de facto global driver for the 121 

regulatory scrutiny of both new and existing chemicals, including petroleum UVCBs. Therefore, 122 

most decision-making contexts discussed herein pertain to EU REACH regulation and its 123 

implementation by the European Chemical Agency (ECHA) through guidance documents.  124 

 Simply put, REACH-based guidance for UVCBs states that data provided by the registrants 125 

shall enable (i) identification of the substances that are submitted for registration, and (ii) evaluation 126 

of the potential hazards to human health and the environment (ECHA, 2017c). In both instances, 127 

information on chemical composition of a substance is required; however, in a slightly different 128 

context (Table 1). For the former, data requirements are typically less stringent because complex 129 

substances may be registered based on the manufacturing process, intended use, and/or physical-130 

chemical properties. For the latter, the molecular identification (both elemental composition and 131 

structure) data requirements are far greater because the individual constituents that may be present 132 

in a “representative” sample, their amounts, and presence of known or suspected hazardous 133 

substances must be reasonable ascertained to enable grouping and read-across among petroleum 134 

UVCB substances. Based on these two initial components of REACH, an EU regulation that came 135 

into force in June of 2007 (European Council, 2007), decisions on authorization of use or 136 
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restriction(s) are made. An additional challenge for petroleum-derived and other UVCBs is that their 137 

composition is inherently variable from batch to batch of the nominally the “same” product; this is 138 

also true for product-to-product variability within broader categories (FuelsEurope, 2015). This 139 

variability may be due to the source crude oil used in manufacturing; petroleomics-related research 140 

has revealed significant differences in compositions of petroleum according to its origins, slight 141 

variations in manufacturing processes among refineries, and naturally occurring degradation and 142 

weathering processes. Because safety testing is typically conducted with a “representative” sample 143 

of a UVCB product or category, the confidence with which these data can be extrapolated to other 144 

samples of the same product or to other products that are “similar,” especially when sample 145 

composition data may be commercially sensitive, depends on how much and what type of data is 146 

available to ascertain such similarity. 147 

 For the purpose of substance identification, the regulatory frameworks in the United States 148 

and the European Union have historically (Figure 1) named, grouped and categorized petroleum 149 

UVCBs based on the manufacturing processes used in oil refining, as well as physical-chemical 150 

properties and other broad chemical fingerprinting data (Dimitrov et al., 2015; ECHA, 2008; 151 

Rasmussen et al., 1999). Manufacturing process-centric naming conventions for these complex 152 

substances were originally developed by the American Petroleum Institute (API) and the US EPA 153 

for the purpose of creating an inventory of petroleum products under the Toxic Substances Control 154 

Act inventory (API, 1983; EPA, 1995; U.S. EPA, 1978). Both Chemical Abstract Service (CAS) 155 

and European Inventory of Existing Commercial Chemical Substances (EINECS) identifications 156 

have been assigned to a large number of petroleum UVCBs, even though the descriptions of each 157 

of these substances under either one of these “unique identifiers” are rather imprecise and far from 158 

being unique (Rasmussen et al., 1999). The broad substance categories were somewhat refined 159 

under the US EPA’s HPV Challenge Program through addition of more detailed information on 160 

physical-chemical properties, as well as some human and environmental hazards data (Petroleum 161 

HPV Testing Group, 2017).  162 

 Far greater information requirements, with respect to both chemical composition and 163 

potential hazards, were imposed by REACH (European Council, 2007). Petroleum UVCBs are high 164 

production volume substances that were subject to the earliest deadline for registration and the most 165 

stringent requirements for hazard evaluation. From 2007 to 2010, about 8,000 registrations were 166 

submitted in the EU for petroleum substances that were produced or imported at >100 tons/year 167 



7 
 

(CONCAWE, 2022). Subsequently, the number of registrations of petroleum products was reduced 168 

to 191 substances through consolidation of redundant submissions and further grouping of 169 

substances deemed to be “similar” based on a variety of considerations. To put the scale of the 170 

challenge in context, tens of thousands or even hundreds of thousands of unique molecular formulae 171 

can be observed in a single fraction of a petroleum sample using ultrahigh resolution mass 172 

spectrometry, indicating that potentially millions of different structures are present in individual 173 

crude oils when allowing for isomers (Palacio Lozano et al., 2019b; Palacio Lozano et al., 2020). 174 

While the registration submissions for petroleum UVCBs were completed more than 10 years ago 175 

and are regularly updated (CONCAWE, 2021), discussions between trade associations and 176 

regulatory agencies are ongoing to determine the most sensible ways to improve the dossier quality 177 

and ensure the information is compliant with the REACH regulation, primarily by generating more 178 

testing information and reinforcing read-across and category approaches. Still, industry’s attempts 179 

to waive animal testing requirements through read-across have been rejected by ECHA because of 180 

considerable data gaps in hazard assessment and compositional characterization (ECHA, 2020a; 181 

ECHA, 2020b; ECHA, 2021).  182 

 For registration under REACH (Annex VI, Section 2), the data should be sufficient to enable 183 

substance identification (Table 1). For petroleum substances, ECHA guidance is that the following 184 

data should be provided: (1) accepted nomenclature; (2) appropriate identifiers such as 185 

source/feedstock, refining history, boiling and carbon number ranges, physio-chemical 186 

characteristics, chromatographic or spectral information, flash point, and viscosity; and (3) 187 

compositional information including identification and concentration of the individual constituents 188 

present at >10% and that are known to be hazardous, persistent and/or bioaccumulative, 189 

identification of any additives, and generic description of unknown constituents (CONCAWE, 190 

2012; ECHA, 2017a). Additionally, Articles 7(2) and 33 of REACH have defined a concentration 191 

threshold of 0.1% w/w for constituents classified as “substance of very high concern” (ECHA, 192 

2017b). Based on these guidance documents, the registrants (companies or trade associations) have 193 

traditionally relied on a wide range of analytical techniques (Figure 2A) to furnish the information 194 

on petroleum substance identification (Clark et al., 2013; CONCAWE, 2012; CONCAWE, 2014; 195 

CONCAWE, 2020).  196 

 For the evaluation step, REACH specifies (Annex XI, Section 1.5) that substances may be 197 

grouped based on “structural similarity between substances which results in a likelihood that the 198 
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substances have similar physicochemical, toxicological and ecotoxicological properties so that the 199 

substances may be considered as a group or category.” Next, prediction of possible hazards of data-200 

poor substances are made through the application of “read-across” from an analogous substance that 201 

has been tested in a requisite assay and is deemed “similar.”  For this step, REACH regulation states 202 

that “it is required that the relevant properties of a substance within the group may be predicted 203 

from data for reference substance(s) within the group (read-across approach).” The registrant shall 204 

establish a read-across hypothesis which explains what structural similarities or differences exist 205 

between the source and target substance(s) to which read-across is applied and why a prediction for 206 

a toxicological or ecotoxicological property can be made with confidence.  207 

 Recently, REACH regulation (Annex XI, Section 1.5) has been amended to state that for the 208 

application in grouping, “structural similarity for UVCB substances shall be established on the basis 209 

of similarities in the structures of the constituents, together with the concentration of these 210 

constituents and variability in the concentration of these constituents” (European Commission, 211 

2021). Once such information becomes available, and in cases where structural differences are 212 

present between the source and target substances, the read-across hypothesis should explain why 213 

the differences in the chemical structures within a group will not influence the toxicological or 214 

ecotoxicological properties or may do so in a regular pattern.  215 

 Even though the regulatory language above may seem rather straightforward, in practice the 216 

bar on establishing “structural similarity” is very elusive in the case of petroleum UVCBs. It is 217 

widely acknowledged that the chemical complexity of petroleum substances far exceeds the 218 

capabilities of any one method, even the highest resolution mass spectrometers; therefore, a 219 

combination of techniques and approaches is often employed. However, despite the considerable 220 

scientific advances achieved in the past decade (Figure 1) in both molecular separation 221 

(encompassing chromatography, spectrometry and ionization) and detection (various modalities of 222 

mass spectrometry, flame ionization detection, and spectroscopy), many challenges with precision 223 

and confidence in comprehensive molecular characterization of petroleum samples persist.  224 

 For example, a recent study using Fourier transform ion cyclotron resonance mass 225 

spectrometry (FT-ICR MS) revealed nearly a quarter of a million molecular formulae in a fraction 226 

from one petroleum sample (Palacio Lozano et al., 2019b).  This study is an example of the reality 227 

that millions of structures (as opposed to formulae, as structure also determines toxicity) are present 228 

in petroleum UVCBs, an intractable challenge both for the chemical analysts to resolve and identify, 229 
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as well as for the decision-makers to evaluate. Indeed, even the REACH regulation itself (Annex 230 

XI, Section 1.5) acknowledges that “if it can be demonstrated that the identification of all individual 231 

constituents is not technically possible or impractical, the structural similarity may be demonstrated 232 

by other means, to enable a quantitative and qualitative comparison of the actual composition 233 

between substances” (European Commission, 2021). Clarification regarding the definition of “other 234 

means” was recently released May 2022 (ECHA, 2022), where specific justification for lack of 235 

knowledge about constituents, lack of published methods to identify constituents, and explanation 236 

about technical hindrance to resolution and identification of constituents comprising >20% of the 237 

substance is necessary to apply such means for characterization. Where “other” means are justified, 238 

quantitative comparison of constituents in common between source and target substances should be 239 

included, as well as a qualitative comparison of structures that vary between the substances. 240 

Fingerprinting, for example, can be used if the following are addressed: information on >95% of all 241 

constituents, information on the constituents of high concern, and high analytical resolution to 242 

enable accurate alignment, quantitation, variability, and structural data (beyond molecular formulas) 243 

of constituents between substances (ECHA, 2022). Therefore, the subsequent sections of this review 244 

are framed around three overarching critical needs/questions that REACH regulation challenges the 245 

registrants of petroleum UVCBs to address to gain regulatory acceptance of the grouping and read-246 

across hypotheses that are addressable by means of standardized analytical chemistry methods: 247 

• Critical Need 1: Providing detailed information on the structure of the constituents; 248 

• Critical Need 2: Providing information on the concentration of the individual constituents; and 249 

• Critical Need 3: Demonstrating compositional similarity of complex petroleum UVCBs through 250 

other means when the identification of all individual constituents is not technically possible or 251 

impractical. 252 

 253 

Conventional Methods for Characterization of Petroleum Substance Identity and 254 

Composition 255 

 There are many methods for characterization of physical-chemical properties and chemical 256 

composition of oil, that have also been applied to petroleum UVCBs (Figure 2A). Multiple 257 

techniques are used due to the broad range of substances with widely different composition, 258 

volatility, and polarity (CONCAWE, 2014; Stout and Wang, 2007; Wang et al., 2011). Most 259 

publications concerning characterization of petroleum UVCBs have explored approaches to define 260 
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elemental composition, physical properties, and gross structural information using nuclear magnetic 261 

resonance (NMR) or infrared spectra of these substances. The elemental analyses for 262 

characterization of petroleum UVCBs evaluate the concentrations of major elements ranging from 263 

carbon and heteroatoms to metals (CONCAWE, 2019). There are specific methods for assessing 264 

physical properties, which typically relate to the quality of the product and are thus more regularly 265 

measured during manufacturing and more available. For example, measurements of specific gravity 266 

using American Society for Testing and Methods (ASTM) methods such as ASTM D287 Standard 267 

Method for API Gravity of Crude Petroleum and Petroleum Products are in wide use (Giles, 2016). 268 

Other physical-chemical information, such as boiling and carbon number ranges, is typically 269 

deduced through physical (e.g., ASTM methods D86, D1160 and D2892), or simulated 270 

(CONCAWE, 2019; CONCAWE, 2020) distillation methods.  271 

 Spectroscopic techniques have been widely employed to obtain broad compositional 272 

information for regulatory characterization and identification of UVCB substances but their utility 273 

for the analysis of petroleum UVCBs has been questioned (CONCAWE, 2020). NMR methods 274 

(IP392, ASTM D5292) measure the percent of carbon or hydrogen atoms in an aromatic ring 275 

(CONCAWE, 2020).  Infra-red spectroscopy measures the presence of functional groups to define 276 

the degree of saturation in the constituents (CONCAWE, 2012). Ultra-violet spectroscopic analysis 277 

quantifies compounds by detecting unsaturated bonds such as those in olefins and aromatics, as well 278 

as ketonic and heteroatom groups, but is limited in resolution for other constituents.  279 

 More detailed compositional information, which gives greater insight into the chemical 280 

classes and carbon ranges of the substance, is obtained using chromatographic techniques that 281 

enable separation of constituent groups in complex petroleum UVCBs, these include gas- and liquid-282 

based approaches. Gas chromatography (GC)-based analyses predominate; gas-based analysis of 283 

hydrocarbons were first published in the 1960s leading to the development of a standardized method 284 

(ASTM 2887-84) for determination of Boiling Range Distribution of Petroleum Fractions by Gas 285 

Chromatography (Giles, 2016). GC is a powerful tool used for the separation and semi-quantitative 286 

assessment of non-polar constituents such as hydrocarbons and polycyclic aromatic hydrocarbons 287 

(PAH) (CONCAWE, 2012). It offers better separation than liquid chromatography (LC) but is 288 

limited by the boiling point of compounds (affecting the accessible mass range), which is a greater 289 

hindrance for the characterization of the heavy petroleum that is increasingly relied upon, and 290 

sometimes compounds must be derivatized to ensure GC compatibility. LC is dependent on the 291 
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polarities of the constituents present, predominantly used to characterize less volatile polar 292 

compounds. High-performance liquid chromatography (HPLC; e.g., ASTMD6379 and IP391 293 

methods) is used to quantify mono-, di- and tri-aromatic hydrocarbons (CONCAWE, 2012; 294 

CONCAWE, 2019). Meanwhile, thin layer or liquid column chromatography (ASTM D2007) 295 

separation generates information on basic chemical properties (CONCAWE, 2012; CONCAWE, 296 

2019). Gas chromatography coupled to mass spectrometry detection (GC-MS) is widely used in 297 

forensic fingerprinting (US EPA 8270 and 8051B) and to characterize the composition of petroleum 298 

UVCBs (US EPA, 1996; US EPA, 2014). Flame ionization detection (FID) has been coupled with 299 

both LC and GC for the detection and quantification of hydrocarbons (CONCAWE, 2012).  300 

 However, conventional standardized methods detailed above are insufficient to establish 301 

truly comprehensive compositional characterization of UVCBs as needed by REACH to accept 302 

grouping and read-across hypotheses from registrants. Recent decisions by ECHA on testing 303 

proposals provided several reasons as to why that is the case (ECHA, 2020a; ECHA, 2020b; ECHA, 304 

2021). In these decisions, ECHA noted that (i) physical-chemical characterization of whole complex 305 

substances does not demonstrate similarity of chemical constituents of these substances; (ii) 306 

elemental and other traditional analysis methods do not provide information on the identity and 307 

concentration of individual chemical constituents, but rather provide physical-chemical 308 

characterization of the substance as a whole; and (iii) standard methods used in the submissions 309 

provided insufficient information to estimate the variability of constituents both within and among 310 

substances and groups. ECHA deems these criteria necessary to establish the applicability domain 311 

of a given category to confirm membership of the source substance(s) and enable subsequent read-312 

across to the target substance(s) (ECHA, 2020a; ECHA, 2020b; ECHA, 2021).  313 

 Collectively, despite the use of a battery of analytical assays, expending large sample 314 

quantities on some of these analyses, using specialized sample preparation techniques, and incurring 315 

considerable costs to acquire these data, the registrants did not establish substance characterization 316 

that would be acceptable by ECHA. Indeed, the industry itself acknowledges that spectroscopic 317 

techniques are limited to bulk characterization and “most substances [i.e., petroleum UVCBs] 318 

cannot be effectively differentiated from each other by UV, IR, 1H-NMR or 13C-NMR 319 

spectroscopies” (CONCAWE, 2020). Further, even though chromatography-based methods provide 320 

considerable amount of information for characterization of nonpolar and relatively volatile 321 

compounds (e.g., ASTM D2134, D6729, D6730, among others (CONCAWE, 2012), as well as 322 
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aliphatic and aromatic fractions (Reddy and Quinn, 1999; Wang and Fingas, 2003), their limited 323 

resolution leaves much of the complex substance uncharacterized (Wang et al., 2011; Weng et al., 324 

2015). When assessing the needs for analysis of complex substances, it is important to consider that 325 

different analytical approaches are complementary and bring their own advantages and 326 

disadvantages. With the limitations of many of the more routine methods, there has been increasing 327 

use of ultrahigh resolution mass spectrometry and other advanced methods. 328 

 More recently, two-dimensional GC (GC×GC) technique has been applied to petroleum 329 

substances because it allows for an even greater separation of the multitude of constituents. 330 

Specifically, the coupling of GC×GC with FID allows qualitative constituent information at the 331 

level of carbon number and chemical class (ASTM International, 2011); this has been useful for 332 

simplifying the composition of petroleum substances by binning molecules by “hydrocarbon block” 333 

(Redman et al., 2012). Coupling GC×GC with mass spectrometry provides more structural 334 

information on the specific constituents (Jennerwein et al., 2014; Mao et al., 2009). 335 

 336 

High and Ultrahigh Resolution Mass Spectrometry Techniques 337 

 Advancements in mass spectrometry over the past 80 years (Figure 1) have spawned the 338 

application of high-resolution approaches for the study of petroleum substances at a molecular level 339 

(Palacio Lozano et al., 2019a; Wise et al., 2022). Resolving power is one of the key performance 340 

metrics of any mass spectrometry and is typically defined as 
𝑚

∆𝑚
, where m is the m/z of the ion of 341 

interest and ∆m is the width of the peak at half its height, using the full width at half maximum 342 

(FWHM) definition. In essence, the higher the resolving power, the more peaks can be observed for 343 

complex samples, as this reduces overlap of peaks (Phillips et al., 2022).  “High resolution” has 344 

typically been accepted to mean a resolving power of >10,000 (Xian et al., 2012), but it has become 345 

well-established over the past two decades that “ultrahigh resolution,” which often refers to a 346 

resolving power of >100,000, is essential for characterization of the most complex samples such as 347 

petroleum.  348 

 The second performance metric that should always be considered is that of mass accuracy. 349 

An instrument that offers high mass accuracy indicates that it typically provides data with low mass 350 

errors. When an elemental composition (molecular formula) has been assigned to an observed peak, 351 

the observed m/z and the theoretical m/z for the assignment can be used to calculate the mass error, 352 

measured in parts per million (ppm), using the following equation: 353 
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𝑚𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 −𝑚𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙

𝑚𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙
× 1,000,000 354 

Note that a negative mass error indicates the peak appears at a lower m/z than the theoretical value 355 

and a positive mass error indicates the peak appears at a higher m/z than the theoretical value; for 356 

each peak, the closer the mass error is to zero, the greater the confidence in the given assignment of 357 

the molecular formula.  It is also important to note that, while researchers desire resolving power to 358 

be as high as possible, they strive to keep mass errors as low as possible.  Thus, the highest resolving 359 

powers afford researchers the ability to observe more components within complex samples, while 360 

the highest mass accuracies (lowest mass errors) afford greater confidence in the assignments of 361 

elemental composition and structures, together establishing detailed compositional “profiles,” 362 

“fingerprints,” or “signatures” for complex samples.  Within the field, there has been discussion 363 

about the most appropriate terminology to use, drawing parallels with how fingerprints do not 364 

normally change but that signatures do, and how this understanding may be related to compositions 365 

of complex substances changing when subject to anthropogenic or environmental processes. 366 

 The comprehensive characterization of molecular composition of petroleum through high 367 

resolution mass spectrometry is an active area of investigation and includes several approaches to 368 

precise detection, naming, and structural characterization of the individual constituents (Hsu et al., 369 

2011; Marshall and Rodgers, 2004; Niyonsaba et al., 2019; Palacio Lozano et al., 2019a; Palacio 370 

Lozano et al., 2019b; Palacio Lozano et al., 2020; Roman-Hubers et al., 2022; Xian et al., 2012). 371 

Modern time-of-flight (TOF) mass spectrometers, which are widespread and considered high 372 

resolution, offer resolving powers typically in the range of 10,000-60,000. By contrast, FT-ICR MS 373 

is the highest performance variety of mass spectrometer and is considered to offer researchers 374 

ultrahigh resolution, at one or two orders of magnitude higher performance.  FT-ICR MS is based 375 

upon ions orbiting inside a cell, which is in turn housed within the bore of a superconducting magnet, 376 

and the technique offers ultrahigh resolving power (~106 FWHM) and mass accuracy (sub-ppm). 377 

Orbitrap mass spectrometers are a newer variety of mass spectrometer based upon a Kingdon trap 378 

design, rather than using magnetic fields; these instruments typically offer a resolving power of ~105 379 

FWHM. FT-ICR MS and Orbitrap MS offer differing degrees of ultrahigh resolution, with FT-ICR 380 

MS offering the highest performance; however, the advantage of TOF MS is in rapid acquisition 381 

time which allows for coupling with additional separation techniques such as two-dimensional gas 382 

chromatography and ion mobility spectrometry (Palacio Lozano et al., 2019a). These three 383 

analytical techniques (Figure 2B) are actively used in petroleomics analyses because they offer 384 
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somewhat different approaches to determining molecular formulae present in complex substances 385 

(Palacio Lozano et al., 2019b; Rodgers and McKenna, 2011), but have not yet been used for detailed 386 

petroleum substance characterization for registration or evaluation purposes. 387 

 388 

Ultrahigh Resolution MS Data Processing and Visualizations 389 

 Petroleum substances contain highly homologous series of hydrocarbon molecules; thus, 390 

complex substance analysis can be facilitated by exploiting the patterns of various chemical groups. 391 

The method of Kendrick mass defect (KMD) analysis facilitates sorting molecules into homologous 392 

series (Kendrick, 1963). The composition of complex petroleum substances can be visualized using 393 

the KMD approach because most molecules belong to homologous series comprised of (CH2) alkyl 394 

groups and other functional groups (Figure 3A), this method has been widely used in petroleomics 395 

(Hughey et al., 2001; Marshall and Rodgers, 2004; Marshall and Rodgers, 2008; Palacio Lozano et 396 

al., 2020). Due to the high resolution and mass accuracy, the molecular composition assigned to the 397 

ions that fall in or out of the homologous series can be used to predict their elemental content (HC#, 398 

O#, N#, O#, S#), carbon number, and double bond equivalents (DBE = C# - H#/2 + N#/2 + 1). A 399 

number of other visualizations have been proposed to express the molecular composition of various 400 

substances based on the rings and double bonds in the carbon framework (i.e., DBE) of the 401 

constituents that can be plotted against their carbon number (Figure 3B). Van Krevelen diagrams 402 

(Figure 3C) are used to display the degree of aromaticity and oxidation of constituents by plotting 403 

the H/C versus O/C ratio of the organic compounds in the complex substance (Kim et al., 2003; Van 404 

Krevelen, 1950; Van Krevelen, 1984). Relative abundance of various classes of compounds in the 405 

samples is typically plotted as a chemical class bar chart (Figure 3D), or as two-dimensional 406 

“hydrocarbon blocks” (Figure 3E).  407 

 Molecular-level analyses using ultrahigh resolution MS typically generate voluminous 408 

datasets even after processing by the software provided by instrument manufacturers. A number of 409 

third-party software packages have been developed recently to facilitate data analysis and 410 

visualizations. Peak-by-Peak fee-based software (Spectroswiss, 2019) is tailored for processing FT-411 

MS raw data on transients and mass spectra and generates output files for follow-up statistical 412 

analyses. PetroOrg (Riches et al., 2015) and Composer (Sierra Analytics, 2022), launched in 2014 413 

and 2008, respectively, are two stand-alone fee-based packages that allow processing and 414 

visualization of the molecular composition of petroleum substances data acquired through high 415 
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resolution MS. UltraMassExplorer is an open source web-based package that uses R Studio 416 

(Leefmann et al., 2019). It applies static formula libraries for molecular formula assignment of the 417 

molecular formulas based on neutral masses coupled to PubChem searches for putative structural 418 

assignment. Data visualization is enabled by van Krevelen, KMD and DBE plots. DropMS is 419 

another web-based tool that facilitates high resolution MS data processing and molecular 420 

assignments with its corresponding DBE, error, signal intensity, as well as a number of 421 

visualizations (Rosa et al., 2020). KairosMS utilizes an R Shiny interface to process complex data 422 

sets produced through hyphenated MS experiments that, when combined with software for formula 423 

assignments, can be used for visualization, comparison, and statistical analyses for both direct 424 

infusion and hyphenated data set, using a wide variety of approaches (Gavard et al., 2020). 425 

Interactive van Krevelen (Kew et al., 2017) and Open van Krevelen (Brockman et al., 2018) are 426 

two packages that offer interactive diagrams for molecular-level exploration of the data from high 427 

resolution MS. 428 

 429 

The Regulatory Needs for Characterizing Chemical Composition of Petroleum UVCBs 430 

 General considerations and examples of the application of high resolution MS for the 431 

analysis of petroleum substances have been reviewed elsewhere (Hsu and Shi, 2013; Niyonsaba et 432 

al., 2019; Palacio Lozano et al., 2019a; Palacio Lozano et al., 2019b; Palacio Lozano et al., 2020; 433 

Rodgers and McKenna, 2011; Xian et al., 2012). However, these previous reviews did not 434 

specifically place the application of these techniques in the context of the regulatory needs for 435 

registration and evaluation of petroleum UVCBs. Comprehensive characterization, or at least more 436 

detailed information on some specific types of constituents, of complex substances based on high 437 

resolving power and mass accuracy of FT-ICR MS, Orbitrap MS and TOF MS affords the 438 

opportunity to attain valuable information on both molecular composition and relative abundance 439 

of the constituents. Such data can also be used to quantitatively evaluate both variability within a 440 

substance or group of substances, and similarity between substances. Then, it should be possible to 441 

conduct read-across and complete hazard characterization. To provide specific examples of how 442 

each technique can be used to address specific regulatory needs, we performed a systematic 443 

literature search (with end date of December 2021) focused on the application of each technique to 444 

petroleum substances (Figure 4). We found that even though there are many dozens to hundreds of 445 

publications on each technique in general, and on their use to analyze petroleum samples in 446 
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particular, few studies presented data or drew conclusions in a manner relevant to address each 447 

regulatory need. The Web of Science search terms and results of the literature search are included 448 

in Supplemental Table 1.  449 

 450 

Critical Need 1: Providing detailed information on the structure of the constituents. 451 

 High mass measurement accuracy and resolving power of modern mass spectrometry 452 

analyzers are key steps to address this regulatory need for petroleum UVCBs. Regulatory agencies 453 

have repeatedly stressed that “broad” compositional information is insufficient to justify groupings 454 

and support read-across hypotheses (ECHA, 2014; ECHA, 2020a). While many publications tout 455 

ever increasing resolution as an advance in the science of analytical chemistry, we highlight recent 456 

examples of studies that focused on comprehensive structural information of the individual 457 

constituents in petroleum samples. 458 

 With the advances in the performance of mass spectrometers and development of new 459 

methodologies, significant strides have been made with respect to characterization of mixtures and 460 

petroleum samples. For the analysis of whole crude oils and refined products, FT-ICR MS could 461 

resolve hundreds of molecular formulae in the late 1990s (Rodgers et al., 1998) and several thousand 462 

in the early 2000s (Hughey et al., 2002; Qian et al., 2001). By 2019, newer FT-ICR MS 463 

instrumentation and experiment design led to the identification of ~245,000 molecular formulae in 464 

a non-distillable fraction of the maltenes from a heavy petroleum sample, using a resolving power 465 

of more than 3,000,000 across the entire m/z range (Palacio Lozano et al., 2019b). Thus, in less than 466 

two decades, there was a 60-fold increase in resolving power and 80-fold increase in the number of 467 

molecular formulae being assigned within a single sample.  468 

 While ultrahigh resolution mass spectrometry has offered unprecedented levels of insight 469 

into highly complex samples, such instrumentation typically affords molecular formulae but does 470 

not lead to definitive identification of structures. Experimental parameters, such as polarity and 471 

ionization behavior, can yield information about probable functionalities of the components, but 472 

true structural identification would require additional data. This could be obtained by fragmentation 473 

patterns associated with individual peaks (and hence molecular formulae), acquired during “tandem 474 

mass spectrometry” (also known as “MS/MS”) experiments. As complex samples may comprise 475 

tens of thousands or even hundreds of thousands of molecular formulae, performing hundreds of 476 
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thousands of tandem mass spectrometry experiments to target all of the peaks is not viable, due to 477 

the time required and workload due to data analysis.  478 

 Combination with an orthogonal separation method, such as a form of chromatography or 479 

ion mobility, is an alternative approach for accessing information about functional groups and 480 

isomeric contributions. Optimization of these experiments (such as choice of columns, temperature 481 

program, etc.) is similarly non-trivial, however, and resolution of components in complex 482 

substances can be challenging; the concept of “unresolved complex mixtures”, also referred to as an 483 

“UCM hump” on the chromatograms, is well-known (Gough and Rowland, 1990). Furthermore, 484 

while chromatography is a well-known method for distinguishing isomers, this is typically 485 

combined with a need for authentic standards (e.g., to determine expected retention times on the 486 

chromatography column) and databases, although certainly not all available compounds are found 487 

within databases. Where there may be dozens of isomers per molecular formula, this would in 488 

practice mean a requirement for millions of authentic standards to be run in order to address the 489 

most complex petroleum samples that have been characterized by ultrahigh mass spectrometry. This 490 

is, again, impractical due to the amount of time required. It is also worth drawing attention to a 491 

subtle distinction between molecular formulae (e.g., C18H36O2) and the concept of “peaks;” a peak 492 

may represent a single molecular formula in a direct infusion experiment by mass spectrometry (and 493 

data is represented by m/z and intensity only), but in combination with mass spectrometry with 494 

chromatography, there will be an additional dimension to the data (m/z and intensity, but now also 495 

time) and multiple peaks per molecular formula may occur due to the presence of isomers. 496 

Combining mass spectrometry with chromatography can yield more peaks by counting of isomers, 497 

but not necessarily more molecular formulae. 498 

 The isobaric information afforded by ultrahigh resolution direct injection FT-ICR MS has 499 

played a significant role in comprehensive understanding of petroleum substance composition; 500 

however, the presence of a large number of isomeric hydrocarbons in petroleum substances 501 

challenges the utility of ultrahigh resolution methods that do not provide other means for separation 502 

of isomeric species. Some studies addressed a growing need to define the isomeric composition of 503 

petroleum substances by coupling FT-ICR MS with separation techniques. Gas chromatography 504 

prior to FT-ICR MS was used for separation of isomers in petroleum by resolving individual 505 

constituents (Barrow et al., 2014; Palacio Lozano et al., 2022). Information of the structural 506 

composition and the isomeric diversity can be also attained by coupling with trapped wave ion 507 
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mobility spectrometry (TWIMS), a variety of ion mobility spectrometry, to FT-ICR MS (Maillard 508 

et al., 2021). Multidimensional separation with ultrahigh resolution allows for characterization of 509 

individual constituents with accurate mass measurements and structural features. Additionally, high 510 

mass accuracy and ultrahigh resolution measurements have elucidated structural information of the 511 

individual constituents through post-instrumental data analysis (Cho et al., 2011; Hu et al., 2018). 512 

 A number of studies have coupled chromatography to Orbitrap MS for analysis of complex 513 

environmental samples (MacLennan et al., 2018; Pereira et al., 2013; Sorensen et al., 2019; Yang et 514 

al., 2019). Some studies applied this technique for the analysis of oils or fractions thereof. A 515 

combination of GC separation with different ionization methods for Orbitrap MS was used to study 516 

volatile components of a petroleum refining product, gas condensate. The authors showed that 517 

separation of different isomeric compounds could be achieved using this hyphenated method thus 518 

aiding in deeper characterization of a complex substance (Kondyli and Schrader, 2019). More 519 

recently, a reverse-phase liquid chromatography method was applied to the analysis of petroleum 520 

refining-derived UVCBs and compared to direct injection Orbitrap and FT-ICR MS (Xia et al., 521 

2021). The authors showed that not only could they obtain elemental formulas for a large number 522 

of hydrocarbon and heteroatom species, but chromatography-informed retention patterns could also 523 

be used to distinguish among isomeric species, hence increasing confidence in structural 524 

identification of the individual constituents in petroleum substances. 525 

 TOF MS detection, despite its lower mass resolution as compared to FT-ICR and Orbitrap 526 

MS, affords an advantage of rapid data acquisition; this technique has been explored extensively by 527 

coupling with chromatography or ion mobility spectrometry separations (Palacio Lozano et al., 528 

2019a). The most common type of front-end chromatography in petroleum substance analysis is 529 

GC×GC. The additional separation afforded by this technique offers substantial improvement for 530 

resolving isomeric constituents and compounds that would otherwise coelute (Ball and Aluwihare, 531 

2014; Luna et al., 2014a; Ngo et al., 2012; Rowland et al., 2011). For example, this technique was 532 

used to identify a large number of isomeric molecules, both aliphatic and aromatic, that could not 533 

be resolved by a typical GC-MS technique in a complex milieu of hydrocarbons containing a wide 534 

(C12-C36) range of carbon numbers (Alam et al., 2016). Similarly, the ability GC×GC-TOF MS to 535 

resolve isomers of classical and sulfur-containing naphthenic acids in oil-contaminated 536 

environmental samples enabled contamination-source fingerprinting (Bowman et al., 2019) and 537 

identification of potentially hazardous substances (Bowman et al., 2020). TOF MS has also been 538 
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coupled with ultrahigh pressure liquid chromatography to isolate isomeric species in petroleum 539 

derivatives (Lv et al., 2013; Mahmoud and Dabek-Zlotorzynska, 2018). 540 

The compositional characterization of petroleum samples has typically relied upon either the 541 

use of chromatography or, more recently, the use of ultrahigh resolution mass spectrometry.  The 542 

separation on the basis of retention time using gas chromatography can be sufficient for monitoring 543 

targeted components (e.g., steranes for differentiation of sample origins) and revealing the most 544 

significant contributions. As samples become more complex, however, particularly with the 545 

increasing use of heavy petroleum sources, there is the increasing probability of coeluting 546 

components, as mentioned above, where compounds have the same retention time and therefore 547 

cannot be distinguished by one-dimensional chromatography alone.  The use of a second column of 548 

a different type to result in a two-dimensional approach, GC×GC, can significantly improve the 549 

separation and therefore the number of compounds observed.   550 

Due to the temperature ranges of the ovens, gas chromatography-based methods have limited 551 

retention times that are accessible, as these are, in turn, linked to the boiling points of the individual 552 

compounds. Direct infusion methods coupled with ultrahigh resolution mass spectrometry (i.e., 553 

where samples are injected directly into an ion source, with no preceding chromatography) do not 554 

have the limitations associated with boiling point, and ultrahigh resolution approaches with direct 555 

injection delivery have become increasingly significant, especially for heavy petroleum samples.   556 

There has also been limited coupling of chromatography with ultrahigh resolution mass 557 

spectrometry, which affords researchers the ability to separate compounds on the basis of two 558 

different dimensions: retention time and m/z.  In this way, co-eluting compounds (i.e., the same 559 

retention time associated with the GC column) can be separated due to the additional use of the m/z 560 

dimension (Barrow et al., 2014).  The data sets acquired can be large (e.g., ~25-50 GB) and therefore 561 

present data processing and data analysis challenges.  The combination of orthogonal approaches, 562 

yielding so-called “hyphenated” techniques, represents means by which to access the advantages of 563 

the individual methods.  Ultrahigh resolution mass spectrometry affords the ability to resolve a 564 

greater number of peaks and assign many thousands of unique molecular formulae with confidence, 565 

while chromatography or ion mobility affords the ability to separate isomers (same molecular 566 

formulae and therefore same m/z, but differing structures due to different arrangements of the 567 

atoms). While GC and low resolution GC-MS methods have seen widespread usage for many years, 568 



20 
 

it can be expected that multidimensional GC and the coupling of orthogonal methods with ultrahigh 569 

resolution mass spectrometry will both become increasingly used. 570 

 Obtaining structural isomeric information is also possible using ion mobility mass 571 

spectrometry (IMMS), a post-ionization separation technique, often coupled to TOF MS and used 572 

for the analysis of petroleum samples (Santos et al., 2015).  IMMS provides structural information 573 

that is complementary to the observed m/z of a compound by characterizing the spatial conformation 574 

of individual constituents via their drift time through an inert gas and the subsequent derivation of 575 

collision cross section (CCS) values (Dodds and Baker, 2019). CCS values can also be compared 576 

with those determined through computational means to determine structures for observed 577 

compounds. Currently, this is laborious for complex samples and so not viable for samples with, for 578 

example, tens of thousands of molecular formulae and their associated isomers. The combination of 579 

ion mobility, mass spectrometry, and computational chemistry does, however, hold potential for 580 

providing greater structural insights during characterization of samples. IMMS allows for separation 581 

of isomeric compounds by their structural composition (Hoskins et al., 2011; Lalli et al., 2015; Lalli 582 

et al., 2017; Mahmoud and Dabek-Zlotorzynska, 2018). The high mass accuracy and resolution of 583 

TOF MS, coupled with structural characterization using ion mobility, has allowed comprehensive 584 

elucidation of the composition of complex petroleum substances and byproducts (Lalli et al., 2015; 585 

Lalli et al., 2017). Confident molecular formula assignment to the IMMS-derived features in a 586 

gasoline standard and a crude oil sample was demonstrated through the use of KMD analyses based 587 

on CH2 and H functional units (Roman-Hubers et al., 2021). 588 

 While instrumentation has increased in performance, the data analysis methods have often 589 

struggled to keep pace. It is evident that highly complex samples are being characterized better than 590 

ever before. The field is acutely aware that handling the increasingly complex data is already 591 

challenging, but that also there is a need to obtain greater structural insights, going beyond molecular 592 

formulae alone and/or ensuring all of the many thousands of peaks are associated with a definitive 593 

structure, not only those that are mostly easily targeted. While the progress with complex substance 594 

analysis has been remarkable in recent years, there remain mountains to climb. 595 

 596 

Critical Need 2: Providing information on the concentration of the individual constituents. 597 

 Quantification of individual constituents in complex and multi-constituent substances is a 598 

required step for hazard evaluation to ensure no underestimation of the potential human health and 599 
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environmental hazards (CONCAWE, 2012; ECHA, 2017a). Thus, the ability of high resolution 600 

mass spectrometers to determine the thousands of individual constituents is not sufficient without 601 

determination of their abundance. Traditional quantitative approaches relying on mass spectrometry 602 

detection require the use of various extraction and detection standards, preferably isotopically-603 

labelled ones (Urban, 2016). However, because of the complexity of petroleum substances, the use 604 

of standards for absolute quantitation of numerous, rather than a small number of targeted 605 

constituents, would potentially mean the need for millions of authentic standards, which is both 606 

impractical and impossible. Instead of quantifying absolute concentrations of multiple individual 607 

constituents, traditional analysis techniques such as GC-MS and GC×GC-FID derive relative (e.g., 608 

fraction of total) amounts for groups of compounds based on a limited number of standards for key 609 

classes of constituents. For example, quantitation of individual n-alkanes, selected isoprenoids, 610 

polycyclic aromatic and alkyl polycyclic aromatic hydrocarbons, and biomarker compounds is 611 

possible by GC-MS (Wang et al., 1994); however, the “UCM hump” of high molecular weight 612 

hydrocarbons limits the utility of this technique for hazard evaluation. GC×GC-FID technique is 613 

also commonly used for petroleum analyses to derive “hydrocarbon blocks” (ASTM International, 614 

2011). This technique is more amenable for hazard evaluation as it can separate polycyclic 615 

compounds with known or suspected hazardous properties (Bierkens and Geerts, 2014); however, 616 

this technique is not considered sufficiently informative by some decision-makers, especially for 617 

the substances that contain C30 or greater hydrocarbons (ECHA, 2020a). Therefore, there is a great 618 

need to determine the ability of high resolution MS techniques to provide quantitation of the 619 

individual constituents in petroleum substances. 620 

 There are significant challenges with respect to quantifying the abundance of constituents in 621 

petroleum UVCBs.  The signal observed for a given compound will be influenced by a number of 622 

experimental parameters.  One of these is, of course, concentration. Other factors include solubility 623 

in the chosen solvents, pH of the sample solution, the suitability of ionization method chosen, the 624 

polarity of the ion source (e.g., when using electrospray ionization, acidic species will be observed 625 

in negative-ion mode while basic species will be observed in positive-ion mode), and instrument 626 

tuning, amongst other variables. As one example, alkanes can represent as much as half or more of 627 

the composition of some petroleum samples and yet if performing analysis using electrospray 628 

ionization, a widespread ionization method which is suitable for observation of polar and ionic 629 

species, then the alkanes would essentially go unobserved. 630 
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 The matter of quantification is also closely linked to structure, as previously discussed. 631 

Different isomers of a molecular formula may have differing functional groups which, in turn, may 632 

influence the ionization response of the compounds. For instance, an organic molecule containing 633 

two oxygen atoms may incorporate two hydroxyl groups or a carboxylic acid, where the carboxylic 634 

acid would ionize much more readily than the former, and therefore give a much stronger signal. 635 

For this reason, quantification typically involves the coupling of chromatography to mass 636 

spectrometry, in order that isomers are separated the signals associated with each isomer can be 637 

measured and considered separately. Such experiments are labor intensive, however. Authentic 638 

standards must be used for each isomer of each molecular formula, as mentioned previously, but the 639 

standards must also be prepared as a series of sample solutions spanning a range of concentrations 640 

to measure the signal intensity as a function of concentration, leading to calibration curves. The 641 

needs for authentic standards and for calculation of the calibration curves leads to increases in 642 

researcher workload akin to orders of magnitude. “Untargeted” analyses could necessitate the need 643 

for potentially millions of experiments for quantification purposes, depending on the objectives. It 644 

is much more common that “targeted” analyses are instead used, where a short list of compounds of 645 

concern are searched for, such as benzene, toluene, ethylbenzene, and xylene compounds. Many 646 

advanced mass spectrometry approaches which are commonly used are accepted to be semi-647 

quantitative, balancing sample complexity, experimental design, data processing, and time.  648 

 Most studies that use FT-ICR MS for the analysis of petroleum samples report tens to 649 

hundreds of thousands of detectable constituents; however, this technique is semi-quantitative where 650 

abundance of each molecule would depend on multiple factors (e.g., solubility, concentration, 651 

ionization response, tuning, etc.). FT-ICR MS studies typically report relative abundances of various 652 

hydrocarbon or heteroatom classes rather than that of individual constituents (Bae et al., 2010; Chen 653 

et al., 2012; Jennerwein et al., 2014; Kim et al., 2015; Oldenburg et al., 2014; Walters et al., 2015). 654 

Some publications focused on detection and quantitation of specific constituents, such as organic 655 

sulfur compounds (Lu et al., 2013), or metalloporphyrin complexes (Cho et al., 2014); however, 656 

these constituents have uncertain relevance for the purpose of hazard evaluation. The ultrahigh 657 

resolution Orbitrap MS technique has not been used for the characterization of the individual 658 

constituents; instead, the abundances of the detected ions with inferred elemental composition are 659 

used for semi-quantitative evaluation of various fractions and broad chemical classes (Castiblanco 660 

et al., 2020; Liu et al., 2020; Rodrigues Covas et al., 2020; Vanini et al., 2020).  661 
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 Similarly, quantification of the individual constituents using TOF MS is challenging and 662 

most studies focused on quantifying abundances of broad classes of compounds (Scarlett et al., 663 

2008). A combination of GC×GC-TOF MS and GC×GC-FID was used to conduct qualitative and 664 

quantitative analysis of polycyclic aromatic hydrocarbons for several petroleum UVCBs; however, 665 

quantitation was performed only for the constituents for which chemical standards were used (Ristic 666 

et al., 2018). Even though absolute quantitation of the individual constituents in complex petroleum 667 

samples may be unattainable, the combination of confident molecular formula assignments aided 668 

by structural information provided by IMMS and data on relative abundance does enable 669 

quantitative evaluation of the most abundant constituents (Roman-Hubers et al., 2021). For example, 670 

a study of variability in chemical composition of petroleum UVCBs used the average relative 671 

abundance of each constituent in a product across production cycles to determine what molecules 672 

may be present at relatively high (e.g., REACH threshold of concern at 0.1% (ECHA, 2017b)) 673 

amounts and whether those molecules vary significantly between production cycles (Roman-Hubers 674 

et al., 2022). This study is an example of how high resolution MS can be used to not only 675 

characterize individual constituents, but also to determine their abundance for consideration as 676 

potential substances of concern in hazard evaluation. Indeed, the ability to quantify, even in relative 677 

terms, the abundance of the identifiable constituents that comprise most of the petroleum sample is 678 

of utmost interest under the REACH framework (Table 1). The most recent advice from ECHA 679 

states that “all constituents present in a concentration at or above 1% must be identified” when 680 

grouping or read-across is proposed (ECHA, 2022). The bar is even greater for specific constituents 681 

that may possess hazardous properties, i.e., “0.1% for constituents that are classified as 682 

carcinogenic or mutagenic and 0.3% for substances that are toxic to reproduction or development.” 683 

Collectively, “identified constituents above the thresholds given above must account for a minimum 684 

of 80% of the mass of a UVCB substance” (ECHA, 2022). 685 

  686 

Critical Need 3: Demonstrating compositional similarity of complex petroleum UVCBs through 687 

other means when the identification of all individual constituents is not technically possible or 688 

impractical. 689 

 Even though challenges remain in the confident identification of structures for individual 690 

constituents in complex substances, the multi-dimensional data from high resolution MS analyses 691 

(FT-ICR, Orbitrap and TOF MS) is highly valuable for evaluating broad similarities among complex 692 



24 
 

petroleum UVCB substances and for identifying the degree of variability within a class of 693 

substances or between production batches of the same substance (Figure 4). Indeed, a number of 694 

studies have used these data to perform statistical analyses and visualize the relationships between 695 

samples in large datasets to demonstrate that even broad molecular compositional data can be 696 

effective as a means for screening, evaluating similarity and determining what constituents may be 697 

variable to prioritize selected samples and constituents that may warrant further targeted quantitative 698 

analyses.   699 

 The variation in composition of hydrocarbons and heteroatoms resolved using FT-ICR MS 700 

has been explored for the analysis of crude oils (Hosseini et al., 2021; Rocha et al., 2018; Silva et 701 

al., 2020) and refining products (Benassi et al., 2013; Mennito and Qian, 2013; Oldenburg et al., 702 

2014; Oldenburg et al., 2017; Orrego- Ruíz, 2018; Silva et al., 2020; Walters et al., 2015; Wang et 703 

al., 2020), including studies that used such data for categorization of new products (Abib et al., 704 

2020; Hourani et al., 2013; Liu et al., 2014). Through detailed chemical profiles, compositional 705 

characterization of different environmental samples allowed detection of the asphaltenes (Neumann 706 

et al., 2021; Ruger et al., 2015), fulvic acids (Stenson et al., 2003), oil sands process-affected water 707 

(Barrow et al., 2016), bitumen (Lacroix-Andrivet et al., 2021), biochar-derived organic matter (Li 708 

et al., 2022a), as well as soil and sedimentary organic matter (Zhong et al., 2011). Studies of oil 709 

weathering (Wozniak et al., 2019) and transformation in the environment (Jaggi et al., 2019; Li et 710 

al., 2022b; Wozniak et al., 2019) enabled to not only determine the trends in compositional changes, 711 

but also to group samples, allow for forensic identification of the related samples, predict the 712 

potential environmental impact of oil spills, and designing mitigation strategies. 713 

 While there will be limitations to the lowest m/z that can be detected by FT-ICR MS, based 714 

upon the magnetic field strength and highest frequency that can be detected (e.g., ~m/z 37 for a 715 

modern 12 T instrument), with appropriate instrument tuning, both Orbitrap and FT-ICR mass 716 

spectrometers can offer comprehensive insights into the lower molecular weight compounds of the 717 

chemical profile of complex substances, not afforded by other high resolution MS instruments (Chen 718 

et al., 2018; Cheng and Hous, 2021; Cho et al., 2017; Headley et al., 2011).  Through the application 719 

of Orbitrap MS the variations of the mass spectrum profiles can be traced at a molecular level with 720 

low mass error to determine the overall chemical composition (Castiblanco et al., 2020; Dong et al., 721 

2019; Porto et al., 2019; Silva et al., 2019; Vanini et al., 2020). Liquid chromatography separation 722 

techniques coupled to Orbitrap MS have provided qualitative and quantitative monitoring of the 723 



25 
 

organic species through the chemical profile complex substances. (Folkerts et al., 2019; Miles et al., 724 

2020; Sorensen et al., 2019; Xia et al., 2021)  725 

 When designing future strategies for screening petroleum-related compounds, it is important 726 

to consider what is being measured by different approaches. For example, with electrospray 727 

ionization, acidic species would typically deprotonate and be observed using negative-ion mode, 728 

while basic species would protonate and be observed using positive-ion mode; acidic and basic 729 

species would not be observed in the same experiment, therefore.  While this might initially be 730 

considered a disadvantage because of the need for two experiments instead of one, on the other hand 731 

this can be used to the researcher’s advantage when needing to differentiate by functionality. An 732 

organic molecule with a heteroatom content of only one nitrogen atom (e.g., CcHhN1) could be 733 

pyrrolic (weakly acidic) if observed in negative-ion mode, but would more likely be pyridinic (basic) 734 

if observed in positive-ion mode. Where electrospray ionization is suitable for polar and ionic 735 

compounds, it does not readily ionize non-polar species and so, for these, an alternative ionization 736 

method, such as atmospheric pressure photoionization, would be used. To cover acidic, basic, and 737 

non-polar species in an untargeted manner, three experiments may be used, but the number of 738 

methods employed could be reduced if instead adopting a targeted approach. Through an awareness 739 

of the advantages and disadvantages of the different ionization methods, combined with clear 740 

objectives of the screening process (which could become of a targeted nature), it is possible to tailor 741 

a system which balances required information and workload. 742 

Multidimensional GC separation coupled with high resolution detection in TOF MS has been 743 

widely employed to map out the composition of complex substances. The high-throughput 744 

acquisition has been readily employed to screen for saturate and aromatic hydrocarbons to 745 

characterize the broad compositional profile (Haitao et al., 2013; Hao et al., 2017; Kulkarni and 746 

Thies, 2012; Luo et al., 2016; Qian et al., 2004; Rui et al., 2012). Nevertheless, to achieve a better 747 

compositional information and distribution patterns of complex volatile constituents, TOF MS has 748 

been coupled with gas chromatography for qualitative and quantitative assessment (Haitao et al., 749 

2013; Hao et al., 2017). When coupled with an HPLC, non-volatile components can be readily 750 

separated based on isomeric and isobaric information for comprehensive high resolution 751 

characterization (Cao et al., 2020). The drawbacks observed from the above addressed separation 752 

techniques prompted the coupling of capillary electrophoresis with TOF MS for qualitative 753 

assessment of high molecular weight constituents in a heavy gas oil (Nolte et al., 2013). Compared 754 
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to other TOF MS hyphenations, GC×GC offers multidimensional high resolution characterization 755 

to map out the composition of complex substances (Alam et al., 2018; Frenzel et al., 2010; Gabetti 756 

et al., 2021; Luna et al., 2014b; Muller et al., 2020; O'Reilly et al., 2019; Qian and Wang, 2019; 757 

Ristic et al., 2018; Zhu et al., 2020). The plots generated from GC×GC-TOF MS analysis plotting 758 

constituents in a two-dimensional space (1st retention time versus 2nd retention time) help elucidate 759 

the composition of complex substances and facilitates the molecular classification of compounds 760 

(Damasceno et al., 2014). Notably, physical characteristics (i.e., density) can be directly correlated 761 

based on the detailed chemical composition defined through GC×GC-TOF MS (Vozka et al., 2019). 762 

 763 

Petroleum UVCB composition: A regulatory challenge, but what are the solutions? 764 

 As summarized above, novel high resolution mass spectrometers offer comprehensive 765 

characterization of petroleum substances to qualitatively assess and measure the broad chemical 766 

composition of a substance and its individual constituents. The information available through high 767 

resolution characterization of the chemical composition of UVCBs can address the shortcomings 768 

with regards to the prediction of toxicological properties when practicing read-across assessment. 769 

Comprehensive characterization can provide sufficient information on the molecular composition 770 

and their relative abundance within a substance to define the commonality between substances and 771 

their similarity at a molecular level. With this information, it is then possible to determine 772 

constituents which may be used to infer human health hazard properties of the whole substance. 773 

 Still, complex UVCBs, especially those produced by refining of oil, remain to be an evolving 774 

competency in regulatory science. In the recent past, both decision-makers and industry relied on 775 

rather imprecise substance categorization and read-across hypotheses to predict toxicological 776 

properties (Clark et al., 2013; McKee et al., 2015; Salvito et al., 2020). Recognizing the lack of 777 

clarity in the original regulations and guidelines (ECHA, 2017c), and persistent issues identified in 778 

regulatory submissions of petroleum UVCBs (ECHA, 2020a; ECHA, 2020b; ECHA, 2021), 779 

additional advice was recently provided with respect to the information on chemical composition 780 

for UVCB substances (ECHA, 2022). Indeed, there appears to be a major gap in what information 781 

is perceived as sufficient in terms of chemical characterization of petroleum UVCBs by either 782 

decision-makers or industry. At the same time, the science of analytical chemistry delivered a 783 

number of major advances in terms of novel techniques and visualizations to aid in deep 784 

characterization of complex petroleum UVCBs. Scores of research studies have been published, 785 
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reviews written, and lectures delivered.  A “meeting in the middle” is required between those 786 

working in regulatory and analytical disciplines, so that the translation of petroleomics science into 787 

the practice of decision making on petroleum UVCBs can begin to be realized. 788 

 One barrier to such a translation could be the difference of opinions on what “science” is 789 

“evidence” and whether the scientific data are “sufficient” to satisfy the regulatory requirements for 790 

making decisions (National Research Council, 2009). What is sufficient for a peer-reviewed 791 

scholarly publication in a specialized scientific journal may not be sufficient for a regulatory 792 

decision. For example, in the EU, it is generally noted that “available scientific and technical data” 793 

shall be taken into account “in preparing its policy on the environment” (Allio et al., 2006). It was 794 

noted that this legislative mandate does not call for the available data to be of “best available” 795 

quality, even though some of the agencies are required to “provide the EU institutions and the 796 

Member States with the best possible scientific opinions” (Allio et al., 2006). In the US, the concept 797 

of “best available science” has been more defined as a statutory requirement for risk evaluation of 798 

chemical substances (US EPA, 2017). Specifically, the statute defines best available science as 799 

“science that is reliable and unbiased. Use of best available science involves the use of supporting 800 

studies conducted in accordance with sound and objective science practices, including, when 801 

available, peer reviewed science and supporting studies and data collected by accepted methods or 802 

best available methods (if the reliability of the method and the nature of the decision justifies use of 803 

the data). Additionally, EPA will consider as applicable: (1) The extent to which the scientific 804 

information, technical procedures, measures, methods, protocols, methodologies, or models 805 

employed to generate the information are reasonable for and consistent with the intended use of the 806 

information; (2) The extent to which the information is relevant for the Administrator's use in 807 

making a decision about a chemical substance or mixture; (3) The degree of clarity and 808 

completeness with which the data, assumptions, methods, quality assurance, and analyses employed 809 

to generate the information are documented; (4) The extent to which the variability and uncertainty 810 

in the information, or in the procedures, measures, methods, protocols, methodologies, or models, 811 

are evaluated and characterized; and (5) The extent of independent verification or peer review of 812 

the information or of the procedures, measures, methods, protocols, methodologies or models.” In 813 

principle, all of these can apply to characterization of the chemical composition of petroleum 814 

UVCBs when data are submitted to the authorities for a decision.  815 
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 Related to the concept of best available science is the concept of “reasonably available 816 

information” which means information that the agency “possesses or can reasonably generate, 817 

obtain, and synthesize for use in risk evaluations, considering the deadlines […] for completing 818 

such evaluation” (US EPA, 2017). To relate the latter concept to the data on chemical composition 819 

of petroleum UVCBs, one may argue that a range of technically valid analytical methods applicable 820 

to the challenge of characterizing their composition and variability are already available and the data 821 

could be generated in a reasonable period of time. There is a balance between cost, availability, 822 

time, and the level of information required; the most advanced techniques which ultimately yield 823 

the fullest possible understanding may not be suitable for routine screening, whilst more common 824 

techniques may afford incomplete information or increased risk of misinterpretation. In this regard, 825 

novel analytical advances, such as those described herein, have greatly increased our ability to 826 

access valuable information on the composition of UVCBs at a molecular level. At the same time, 827 

the advances have revealed in much greater detail the compositional complexity of petroleum and 828 

areas where development is still required in order to fully access the range of components and, most 829 

significantly, establish structures. Still, strong arguments have been made about the impractical and 830 

potentially unnecessary regulatory requirements to deconvolute every possible constituent in a 831 

UVCB, even if at some arbitrary abundance cut-off level(s) (Table 1), and that hazard assessment 832 

may be sufficiently informed by using bulk compositional data and hydrocarbon blocks (Redman et 833 

al., 2012; Salvito et al., 2020). Clearly, the fields of analytical chemistry and regulatory science have 834 

not always worked in tandem. 835 

 To bridge this chasm, all sides will need to meet in the middle to establish baseline 836 

requirements with an understanding of what is analytically possible (Figure 4), including 837 

considerations of instrumentation availability, cost and time required for the analysis and data 838 

processing. It has been well-documented that different analytical methods, when applied to 839 

petroleum substances, have different windows of applicability with respect to the types of molecules 840 

they may ionize and/or detect, and may suffer from being semi-quantitative (Aeppli, 2022; 841 

Fernandez-Lima et al., 2009; McKenna et al., 2013; Prince and Walters, 2022; Rodgers and 842 

McKenna, 2011).  Indeed, Figure 4 illustrates the point that novel high resolution analytical 843 

methods (FT-ICR, Orbitrap-MS and TOF-MS) have been already applied by a number of authors 844 

to the research questions that are directly relevant to the specific regulatory needs in petroleum 845 

UVCB space. However, the number of such publications remains very small as compared to studies 846 
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of the traditional analytical approaches (Figure 2), and seldom do the authors acknowledge the 847 

potential for their work to be applied in the regulatory context(s).  It is clear that the analytical 848 

chemists could better appreciate the regulatory issues and strive to provide solutions that not only 849 

advance the science but also address specific challenges. For example, the focus on the critical needs 850 

identified herein will serve well both the researchers and the ultimate end-users if targeted 851 

collaborations and regulatory-informed case studies to build confidence in their performance and 852 

utility. In addition, cross-validation collaborative trials are needed to achieve standardization of the 853 

new techniques and analysis methods to build confidence among stakeholders, a relevant example 854 

comes from the evolution of the analytical methods used for oil spill response (Faksness et al., 2002).  855 

Concomitantly, the government bodies tasked with enforcing REACH and other relevant 856 

regulations, while providing additional useful guidance about the details of chemical 857 

characterization of petroleum UVCBs (ECHA, 2022), should have realistic expectations as to what 858 

is achievable using even the most advanced analytical methods. The most comprehensive analytical 859 

information may or may not be actionable in terms of hazard evaluation in absence of anchoring to 860 

the toxicological data. In this regard, existing data on a handful of known hazardous components in 861 

petroleum UVCBs, be it “priority PAHs” (ATSDR, 2005) or other constituents with existing human 862 

hazard evaluations, are widely regarded as insufficient for assessment of the whole substance(s). 863 

Thus, additional data from in vitro and other “bioactivity” data streams may be needed to determine 864 

the toxicologically relevant compositional features and variability within and among substances and 865 

categories (Grimm et al., 2016; House et al., 2022; House et al., 2021).  866 

Concomitantly, the size and complexity of data sets pertaining to sample composition, which 867 

are increasingly accompanied with orthogonal high-dimensional information such as 868 

(eco)toxicological data, present challenges with respect to data handling and subsequent 869 

interpretation. These comprehensive high-/multi-dimensional datasets will typically be subject to 870 

dimensionality reduction and used to support grouping and/or classification of the individual 871 

petroleum UVCBs. A recent study demonstrated that the choices of the data analysis and 872 

visualization methods can not only potentially aid in the communication of “sufficient similarity” 873 

among complex substances, but also yield different outcomes in terms of grouping and classification 874 

(Onel et al., 2019). The proverbial “black box” of data processing and analysis may create “a variety 875 

of methodological and scientific concerns which mean that it is impossible to independently assess 876 

the methods and results” (ECHA, 2020a) in terms of reliably predicting the properties of the 877 
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substances that are being evaluated. Hence, it is important to involve not only the analytical chemists 878 

when examining the data, but those in other scientific disciplines, such as statistics, mathematics, 879 

and computer science, and ensure that the data processing and analysis methods are transparent, and 880 

that the decision-makers are sufficiently familiar with the bioinformatics aspects of the information 881 

presented to them. Such involvement can expedite assessments of which components are 882 

particularly relevant for regulatory needs and may warrant greater focus and analytical precision.  883 

 Overall, while statutory and advisory language in the government agencies-produced 884 

documents may seem clear, the analytical science may not be available to fully identify and quantify 885 

all, or even most, components within complex petroleum UVCBs. It is being acknowledged that “it 886 

is not required to provide detailed structural information on all constituents of a UVCB substance, 887 

but there must be sufficient characterization of constituents so as to demonstrate structural 888 

similarity, and consecutively provide a basis for predicting the properties of the substance in read-889 

across” (ECHA, 2020a). Even though additional clarifications have been recently made with respect 890 

to what “sufficient” may mean in the context of petroleum UVCBs (ECHA, 2022), ultimately, the 891 

flexibility is needed to consider new science and determine if it is “best available” and also fit for a 892 

specific decision-context purpose so that the statutes and regulations are ultimately enforceable. 893 

While adherence to the most common and established methods is understandable, the industry needs 894 

to be more open to the application of the modern analytical chemistry methods to the analysis of the 895 

samples and inclusion of such data into regulatory submissions. The traditional approaches that are 896 

used for broad characterization of petroleum UVCBs still have an important role to play with respect 897 

to substance identification, greater consideration of nontargeted approaches (and how these may 898 

also shed new light on emerging hazards), followed by targeted approaches in some cases, is needed. 899 

It is also important, however, to recognize that the measurement of the composition of a complex 900 

substance is very much influenced by the methods and techniques used; comparisons of data from 901 

different laboratories must demonstrate appreciation of such factors if the comparisons are to be 902 

meaningful. Therefore, detailed characterization of the technical performance of novel analytical 903 

methods is required, in addition to the generation of data for a wide range of samples and 904 

applications.  905 

 906 

 907 

 908 
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Table 1. Summary of the chemical characterization needs for UVCB that are registered and 918 

evaluated under REACH in the European Union. 919 

Infor-

mation 

Needed 

Substance 

Identification for 

Registration 

(REACH Annex 

VI, Section 2) 

Hazard Characterization for Evaluation (REACH Annex XI, Section 1.5) 

Read-Across Assessment Framework: 

Considerations on multi-constituent 

substances and UVCBs (ECHA, 2017c) 

Advice on Using  

Read-Across for  

UVCB substances 

(ECHA, 2022) 
Category Approach Analogue Approach 

O
v

er
al

l 
S

u
b

st
an

ce
 I

d
en

ti
fi

ca
ti

o
n

 • Substance name 

[from a trade 

association and/or 

nomenclature 

system] 

• Substance 

identifiers [source, 

manufacturing 

process, carbon 

and boiling range, 

phys-chem 

properties, etc.] 

• Substance(s) to be 

grouped in a 

category 

• Compositions to be 

included 

• Manufacturing 

process description 

• Source substance(s) 

and target 

substance  

• Compositions to be 

included  

• Manufacturing 

process description 

• Similarity may be established 

based on: (i) presence of identical 

constituents OR (ii) variation in 

concentration and variability in 

constituents 

• Constituents present at >1% must 

be identified; lower thresholds if 

constituents of concern are 

present (>0.1% for 

carcinogenic/mutagenic, >0.3% 

for repro/developmental) 

• >80% of constituents in the 

substance must be identified 

C
o

m
p

o
si

ti
o

n
 

C
h

ar
ac

te
ri

za
ti

o
n

 • Constituents 

present >10% 

• Constituents 

<10% that may be 

impacting hazard 

classification 

Category “domain” 

needs to be defined  

(constituent-

specific 

concentration 

determination not 

specified) 

• Source 

substance(s) 

• Target substance 

  (constituent-

specific 

concentration 

determination not 

specified) 

• Must be characterized up to 

100%  

• When full characterization is 

impractical/impossible need to 

provide (i) justification AND (ii) 

demonstration of similarity “by 

other means” 

V
ar

ia
b

il
it

y
 

Not Required 

• Structural 

similarity for 

category based on 

worst-case 

scenario 

• Determine if 

quantitative 

differences or 

patterns in 

predicted 

properties may be 

reflected in 

structural 

similarity 

• Structural 

Similarity between 

source & target 

based on worst-

case scenario 

• Determine if 

quantitative 

differences or 

patterns in 

predicted properties 

may be reflected in 

structural similarity 

• Structural similarity explained 

based on quantitative and 

qualitative comparison of 

composition 

• When full characterization is 

impractical/impossible need to 

provide (i) comparison of 

constituents AND (ii) 

demonstration of similarity “by 

other means” (e.g. analytical 

information for >95% 

constituents, constituents of high 

concern, high resolution for 

confidence fingerprinting) 

• Analysis of at least 5 

independent (i.e., production 

batches) samples analyzed from 

ALL registrants of a substance 

 920 

921 
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Figure 1. A timeline of major developments in the fields of analytical chemistry and data analysis 1374 

of petroleum UVCB, and the concomitant evolution of the regulatory frameworks for registration 1375 
and hazard classification of these substances See abbreviations in the text. 1376 
 1377 
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Figure 2. Literature review of the major analytical methods and their application for the analysis of 1381 

petroleum substances. (A) A dendrogram of the major searches. The numbers indicate the quantity 1382 
of publications for each search. See Supplemental Table 1 for information on the exact search terms 1383 
and hyperlinks to the publications. (B) Cumulative histograms indicating the number of publications 1384 

across time through December 2021. Colors correspond to the methods indicated in the inset. 1385 
 1386 
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Figure 3. Example visualizations commonly used to represent hydrocarbon composition of 1389 

petroleum substances analyzed using high resolution MS techniques. (A) A Kendrick mass defect 1390 
(KMD) plot demonstrating repetitive patterns of CH2-containing molecules in a petroleum sample. 1391 
(B) A DBE vs carbon number plot indicating the relative proportions of molecules varying by their 1392 

degree of aromaticity and carbon number in a sample. (C) van Krevelen plot display the degree of 1393 
oxidation by plotting the H/C versus O/C ratio in a sample. (D) A stacked bar plot showing relative 1394 
proportions of constituents from various chemical groups. (E) A plot of relative amounts of various 1395 
hydrocarbon blocks in a sample. 1396 
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Figure 4. The use of various novel MS methods to address specific regulatory needs identified in 1398 

this review. (A) Scholarly publications that were identified as relevant to each regulatory 1399 
need/question (identified by colors). A total number of publications identified by a literature search 1400 
is listed in the first circle (see Supplemental Table 2 for details). Upon examination of each study’s 1401 

content, a number of publications were deemed not relevant (red circles); the remaining studies are 1402 
shown in green circles. (B) The number of relevant publications as a function of the high-/ultra-high 1403 
MS technique. Top left, a stacked bar graph indicating the number of publications as they pertain to 1404 
each regulatory need/question in (A). Remaining stacked bar plots show the number of studies that 1405 
used various separation (HPLC, GC, GC×GC or IMMS) or direct injection with each MS technique. 1406 
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 1408 


