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Abstract
Let 𝐺 be a compact Lie group with maximal torus 𝑇.
If |𝑁𝐺(𝑇)∕𝑇| is invertible in the field 𝗄, then the alge-
bra of cochains 𝐶∗(𝐵𝐺; 𝗄) is formal as an 𝐴∞ algebra, or
equivalently as a differential graded algebra.
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1 INTRODUCTION

It is well known that over a field of characteristic zero, the algebra of cochains on the classifying
space of a connected compact Lie group is formal as an𝐴∞ algebra, or equivalently as a differential
graded (DG) algebra.We prove that this is the case for a compact Lie group𝐺 that is not necessarily
connected, over any field in which the order of𝑁𝐺(𝑇)∕𝑇 is invertible, where 𝑇 is a maximal torus
in 𝐺.
In contrast, even for a finite group with cyclic Sylow subgroups of order 𝑝𝑛 ⩾ 3 in characteristic

𝑝, the algebra of cochains on the classifying space is not formal. The 𝐴∞ structure in this case is
computed in [3].
Our notation is as follows. We write 𝐺 for a compact Lie group, 𝑇 for a maximal torus in 𝑇 and

𝑊 for the finite group𝑁𝐺(𝑇)∕𝑇. This a finite group acting on 𝑇 by conjugation, and the kernel of
the action is 𝐶𝐺(𝑇)∕𝑇. If 𝐺 is connected, then 𝐶𝐺(𝑇) = 𝑇, and𝑊 is the Weyl group of 𝐺. If 𝑝 is a
prime, we write 𝑋∧𝑝 for the Bousfield–Kan 𝑝-completion of a space 𝑋, see [10].
Our strategy is quite different to the usual characteristic zero proof. After reducing to the case

of a normal torus, we make an approximation to 𝐺 at the prime 𝑝 by a locally finite group �̆�
with 𝐵�̆�∧𝑝 homotopy equivalent to 𝐵𝐺

∧

𝑝, and then we put an internal grading on the group algebra
𝔽𝑝�̆�. This gives us a second, internal grading on cochains 𝐶∗(𝐵�̆�; 𝔽𝑝), and the𝐴∞ structure maps
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2 BENSON and GREENLEES

𝑚𝑖 provided by Kadeishvili’s theorem on 𝐻∗(𝐵�̆�; 𝔽𝑝) have to preserve the internal grading. This
then proves that they are all zero apart from the multiplication map𝑚2. Our main theorem is the
following.

Theorem 1.1. If 𝐺 is a compact Lie group with maximal torus 𝑇, and 𝑝 does not divide |𝑁𝐺(𝑇)∕𝑇|,
then 𝐶∗(𝐵𝐺; 𝔽𝑝) is a formal 𝐴∞ algebra.

In Section 2 we recall the proof of the characteristic zero theorem. The proof of Theorem 1.1
occupies Sections 3 and 4. In Section 5 we make some remarks that put our result in context.

2 CHARACTERISTIC ZERO

We include the well-known proof for the connected case in characteristic zero for the sake of con-
venience of comparison. It uses the fact that the algebra of rational cochains on a simply connected
space has a commutative model as a DG algebra.

Theorem 2.1. Let 𝐺 be a connected Lie group (or more generally, any path connected topologi-
cal group with finite-dimensional rational homology) and let 𝗄 be a field containing ℚ, the field of
rational numbers. Then 𝐶∗(𝐵𝐺; 𝗄) is formal.

Proof. In rational homotopy theory, if the Sullivanminimal model of a space has zero differential,
then the rational homotopy type is formal. This is true for simply connected spaces whose rational
cohomology is a polynomial ring on even degree generators tensored with an exterior algebra
on odd degree generators. The reason is that we can choose arbitrary cocycles representing the
generators of cohomology, and there are no relations to satisfy apart from (graded) commutativity,
which is automatic because of the commutativity of theminimalmodel. In the case of a connected
Lie group, the rational cohomology is isomorphic to the invariant ring 𝐻∗(𝐵𝑇;ℚ)𝑊 , where 𝑇 is
a maximal (compact) torus and 𝑊 is the Weyl group. This is a polynomial ring on even degree
generators. So 𝐶∗(𝐵𝐺;ℚ) is formal, and hence so is 𝐶∗(𝐵𝐺; 𝗄) by extension of scalars. For more
details and background on rational homotopy theory, we refer the reader to Proposition 15.5 of
Félix, Halperin and Thomas [13], or Example 2.67 in the book of Félix, Oprea and Tanré [14]. □

Remark 2.2. In the theorem, for 𝐺 connected, Ω𝐵𝐺∧
ℚ
≃ 𝐺

∧

ℚ
has homology an exterior algebra on

odd degree generators, so it is again formal. In fact, the proof shows that 𝐵𝐺∧
ℚ
and 𝐺∧

ℚ
are both

intrinsically formal.

The obstruction to extending the proof to other characteristics is that the algebra of mod 𝑝
cochains on a space usually does not have a commutative DG algebra model. However, we can
give amodified version of this theoremusing themethod of internal gradings.We do this in several
steps, in the rest of this paper.

3 FINITE APPROXIMATIONS

In this section, we show how to approximate compact Lie groups by finite groups. This is closely
related to the work of Dwyer andWilkerson [12], but better suited to the internal grading method.
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FORMALITY OF COCHAINS ON 𝐵𝐺 3

Webeginwith case of a circle group𝑇 = 𝑆1.We have𝐻∗(𝐵𝑇; 𝔽𝑝) = 𝔽𝑝[𝑥]with |𝑥| = −2. Let𝜇𝑚
be the finite subgroup of 𝑇 consisting of elements whose𝑚th power is the identity. Then assum-
ing that 𝑝𝑛 ⩾ 3, we have 𝐻∗(𝐵𝜇𝑝𝑛 ; 𝔽𝑝) = 𝔽𝑝[𝑥𝑛] ⊗ Λ(𝑡𝑛), with |𝑥𝑛| = −2 and |𝑡| = −1, and 𝑥𝑛 is
the restriction of 𝑥. The restriction map from 𝐻∗(𝐵𝜇𝑝𝑛+1 ; 𝔽𝑝) to 𝐻∗(𝐵𝜇𝑝𝑛 ; 𝔽𝑝) sends the element
𝑥𝑛+1 to 𝑥𝑛 and 𝑡𝑛+1 to zero. Let 𝜇𝑝∞ be the union of the chain of subgroups 𝜇𝑝 ⊆ 𝜇𝑝2 ⊆ ⋯ of 𝑇,
whichwe regard as a discrete group isomorphic toℤ∕𝑝∞. Then the restrictionmap𝐻∗(𝐵𝑇; 𝔽𝑝) →
𝐻∗(𝐵𝜇𝑝∞; 𝔽𝑝) is an isomorphism.
For a torus 𝑇 = (𝑆1)𝑟 of rank 𝑟 it works similarly. The inclusion of 𝜇𝑟

𝑝∞
in 𝑇 induces an

isomorphism

𝐻∗(𝐵𝑇; 𝔽𝑝) → 𝐻
∗(𝐵𝜇𝑟𝑝∞; 𝔽𝑝).

Lemma 3.1. Let 𝑇 be a torus of rank 𝑟 acted on by a finite group𝑊, let 𝛼 ∈ 𝐻2(𝑊, 𝑇) be an element
of order𝑚 ⩾ 1 and let 𝜇𝑟𝑚 be the finite subgroup of 𝑇 consisting of elements whose𝑚th power is the
identity. Then 𝛼 is in the image of𝐻2(𝑊, 𝜇𝑟𝑚) → 𝐻

2(𝑊, 𝑇).

Proof. We have a short exact sequence

1 → 𝜇𝑟𝑚 → 𝑇
𝑚
--→ 𝑇 → 1,

which gives an exact sequence

⋯→ 𝐻1(𝑊, 𝑇) → 𝐻2(𝑊, 𝜇𝑟𝑚) → 𝐻
2(𝑊, 𝑇)

𝑚
--→ 𝐻2(𝑊, 𝑇) → ⋯

If 𝛼 ∈ 𝐻2(𝑊, 𝑇) has order 𝑚, then it is in the kernel of multiplication by 𝑚 on 𝐻2(𝑊, 𝑇), and
hence, it is in the image of of𝐻2(𝑊, 𝜇𝑟𝑚). □

Theorem 3.2. Let 𝐺 be a compact Lie group with normal maximal torus 𝑇 of rank 𝑟 and let𝑊 =
𝐺∕𝑇. Then the Bousfield–Kan𝑝-completion𝐵𝐺∧𝑝 is homotopy equivalent to𝐵�̆�

∧

𝑝, where �̆� is a locally
finite group sitting in a short exact sequence

1 → �̆� → �̆� → 𝑊 → 1

with �̆� isomorphic to 𝜇𝑟
𝑝∞
. If |𝑊| is coprime to 𝑝, then this sequence splits.

Proof. The group 𝐺 sits in a short exact sequence

1 → 𝑇 → 𝐺 → 𝑊 → 1.

This extension defines an element 𝛼 of 𝐻2(𝑊, 𝑇). Since |𝑊| annihilates 𝐻2(𝑊, 𝑇), the order 𝑚
of 𝛼 is a divisor of |𝑊|. So by the lemma, 𝛼 is in the image of 𝐻2(𝑊, 𝜇𝑟𝑚) → 𝐻2(𝑊, 𝑇). It follows
that if we quotient out by 𝜇𝑟𝑚, we have a split short exact sequence

1 → 𝑇∕𝜇𝑟𝑚 → 𝐺∕𝜇
𝑟
𝑚 → 𝑊 → 1.
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4 BENSON and GREENLEES

Choosing a splitting and taking the inverse image in 𝐺, we obtain a subgroup �̃� of 𝐺 that sits in
a diagram

Let �̃� be the subgroup of 𝐺 generated by �̃� and 𝜇𝑟
𝑝∞
, regarded as a discrete locally finite group,

and let �̃� be the discrete locally finite subgroup of �̃� generated by 𝜇𝑟𝑚 and 𝜇𝑟
𝑝∞
. Then we have a

diagram

The comparison map of spectral sequences

is an isomorphism on the 𝐸2 page, and hence, the map �̃� → 𝐺 induces an isomor-
phism 𝐻∗(𝐵𝐺; 𝔽𝑝) → 𝐻∗(𝐵�̃�; 𝔽𝑝). It therefore induces a homology equivalence 𝐻∗(𝐵�̃�; 𝔽𝑝) →
𝐻∗(𝐵𝐺; 𝔽𝑝) and a homotopy equivalence of Bousfield–Kan completions 𝐵�̃�

∧

𝑝 → 𝐵𝐺
∧

𝑝.
Now the 𝑝′ elements of �̃� are the 𝑝′ elements of 𝜇𝑟𝑚, and they form a characteristic finite sub-

group 𝑂𝑝′𝜇𝑟𝑚 of �̃�, and hence also of �̃�. Set �̆� = �̃�∕𝑂𝑝′𝜇𝑟𝑚 and �̆� = �̃�∕𝑂𝑝′𝜇𝑟𝑚 ≅ 𝜇
𝑟
𝑝∞
. Then the

quotient map �̃� → �̆� is mod 𝑝 cohomology isomorphism, and �̆� sits in a short exact sequence

1 → �̆� → �̆� → 𝑊 → 1.

The space 𝐵�̆�∧𝑝 is homotopy equivalent to 𝐵𝐺
∧

𝑝.
For the final statement about splitting, the group𝐻2(𝑊, 𝜇𝑟

𝑝𝑛
) is annihilated by |𝑊| and by 𝑝𝑛,

and is hence zero. So𝐻2(𝑊, �̆�) ≅ 𝐻2(𝑊, 𝜇𝑟
𝑝∞
) ≅ lim

⟶
𝑛

𝐻2(𝑊, 𝜇𝑟
𝑝𝑛
) = 0. □

We shall make use of the theorem by means of the following proposition.

Proposition 3.3. Let 𝐺 be a compact Lie group with maximal torus 𝑇, and let𝑊 = 𝑁𝐺(𝑇)∕𝑇. If
𝑝 = 0 or (𝑝, |𝑊|) = 1, then the inclusion 𝑁𝐺(𝑇) → 𝐺 induces a homotopy equivalence of 𝑝-
completions 𝐵𝐺∧𝑝 ≃ 𝐵𝑁𝐺(𝑇)

∧

𝑝 .

Proof. In Theorem 20.3 of Borel [8], it is proved that for 𝐺 connected,𝐻∗(𝐵𝐺;ℚ) → 𝐻∗(𝐵𝑇;ℚ)𝑊
is an isomorphism. Theorem I.5 of Feshbach [15] improves this to the statement that whether or
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FORMALITY OF COCHAINS ON 𝐵𝐺 5

not 𝐺 is connected, the inclusion 𝑇 → 𝐺 induces an isomorphism

𝐻∗(𝐵𝐺;ℤ) ⊗ ℤ[1∕|𝑊|] → 𝐻∗(𝐵𝑇, ℤ)𝑊 ⊗ ℤ[1∕|𝑊|].

Feshbach attributes this theorem to Borel without reference, but the argument is simple. The
restriction followed by the Becker–Gottlieb transfer is equal to multiplication by the Euler char-
acteristic 𝜒(𝐺∕𝑇), which is equal to |𝑊|, and transfer followed by restriction is the sum of the
conjugates under 𝑁𝐺(𝑇), by the double coset formula.
If (𝑝, |𝑊|) = 1, then it follows using the five lemma on the long exact sequence in cohomology

associated to the short exact sequence of coefficients

0 → ℤ[1∕|𝑊|] 𝑝-→ ℤ[1∕|𝑊|] → 𝔽𝑝 → 0

that 𝐻∗(𝐵𝐺; 𝔽𝑝) → 𝐻∗(𝐵𝑇; 𝔽𝑝)𝑊 is an isomorphism. This applies just as well to 𝑁𝐺(𝑇), and so
𝐻∗(𝐵𝐺; 𝔽𝑝) → 𝐻

∗(𝐵𝑁𝐺(𝑇); 𝔽𝑝) is an isomorphism. Now complete at 𝑝. □

4 FORMALITY

Let 𝐺 be a compact Lie group with maximal torus 𝑇 of rank 𝑟, and let𝑊 = 𝑁𝐺(𝑇)∕𝑇. According
to Theorem 3.2 and Proposition 3.3, there is a locally finite discrete group �̆� sitting in a short exact
sequence

1 → �̆� → �̆� → 𝑊 → 1

with �̆� ≅ 𝜇𝑟
𝑝∞
, and a homotopy equivalence 𝐵�̆�∧𝑝 ≃ 𝐵𝐺

∧

𝑝.
For the proof of formality, we shall need to make use of Kőnig’s lemma from graph theory, so

we begin by stating this.

Lemma 4.1. Let Γ be a locally finite, connected infinite graph. Then Γ contains a ray, namely an
infinite sequence of vertices without repetitions 𝑣0, 𝑣1, 𝑣2, … such that there is an edge from each 𝑣𝑖 to
𝑣𝑖+1.

Proof. This is proved in Kőnig [17]. For a modern reference in English, see, for example, Diestel
[11, Lemma 8.1.2]. An equivalent and possibly more familiar formulation is that an inverse limit
of a sequence of non-empty finite sets is non-empty (see, for example, Bourbaki [9, III.7.4]). □

Theorem 4.2. If (𝑝, |𝑊|) = 1, then the 𝐴∞ algebra 𝐶∗(𝐵�̆�; 𝔽𝑝) is formal.

Proof. We firstly examine the case �̆� = �̆� = 𝜇𝑝∞ . Regarding 𝑆1 as the unit circle in ℂ, let
g𝑛 = 𝑒2𝜋𝗂∕𝑝

𝑛 be a generator for 𝜇𝑝𝑛 as a subgroup of 𝑆1, so that g𝑝𝑛 = g𝑛−1. So 𝜇𝑝∞ is the union
of these subgroups, regarded as an infinite discrete group.
Set 𝑋𝑛 = g𝑛 − 1, a generator for the radical 𝐽(𝔽𝑝𝜇𝑝𝑛). Then 𝔽𝑝𝜇𝑝𝑛 = 𝔽𝑝[𝑋𝑛]∕(𝑋

𝑝𝑛

𝑛 ). We put
an internal ℤ[ 1

𝑝
]-grading on the group algebra 𝗄𝜇𝑝𝑛 by setting |𝑋𝑛| = 1∕𝑝𝑛. Then the fact that

𝑋
𝑝
𝑛 = 𝑋𝑛−1 implies that the inclusion 𝔽𝑝𝜇𝑝𝑛 ↪ 𝔽𝑝𝜇𝑝𝑛+1 preserves the internal grading. Thus the

union 𝔽𝑝𝜇𝑝∞ is ℤ[ 1
𝑝
]-graded, with all degrees lying in the interval [0,1).
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6 BENSON and GREENLEES

Assuming that 𝑝𝑛 ⩾ 3, we have 𝐻∗(𝐵𝜇𝑝𝑛 ; 𝔽𝑝) = 𝔽𝑝[𝑥𝑛] ⊗ Λ(𝑡𝑛). This ring inherits an internal
grading from the group algebra, and we have |𝑥𝑛| = (−2,−1) and |𝑡𝑛| = (−1,− 1

𝑝𝑛
). The restric-

tion map from 𝐻∗(𝐵𝜇𝑝𝑛+1 ; 𝔽𝑝) to 𝐻∗(𝐵𝜇𝑝𝑛 ; 𝔽𝑝) sends 𝑥𝑛+1 to 𝑥𝑛 and 𝑡𝑛+1 to zero. Therefore
𝐻∗(𝐵𝜇𝑝∞; 𝔽𝑝) = 𝗄[𝑥] with |𝑥| = (−2,−1).
Now the 𝐴∞ structure maps𝑚𝑖 ∶ 𝐻∗(𝐵𝜇𝑝∞; 𝔽𝑝)⊗𝑖 → 𝐻∗(𝐵𝜇𝑝∞; 𝔽𝑝) given by Kadeishvili’s the-

orem [16] preserve the internal grading, and increase the homological grading by 𝑖 − 2. To prove
that 𝐶∗(𝐵𝜇𝑝∞; 𝔽𝑝) is formal, we must show that we may take𝑚𝑖 to be zero for 𝑖 ≠ 2. But for every
non-zero element of 𝐻∗(𝐵𝜇𝑝∞; 𝔽𝑝), the homological grading is twice the internal grading. So for
𝑚𝑖 to be non-zero, we must have 𝑖 = 2. Thus 𝐶∗(𝐵𝜇𝑝∞; 𝔽𝑝) is a formal 𝐴∞ algebra.
Similarly, for a larger rank torus, �̆� ≅ 𝜇𝑟

𝑝∞
, we put an internalℤ[ 1

𝑝
]-grading on 𝔽𝑝𝜇𝑟𝑝∞ by adding

the internal gradings on the factors 𝜇𝑝∞ , so that all degrees lie in the interval [0, 𝑟). This puts an
internal grading on𝐻∗(𝐵𝜇𝑟

𝑝∞
; 𝔽𝑝), so that it is a polynomial ring on 𝑟 indeterminates, all in degree

(−2, −1). The same argument as in the case of 𝜇𝑝∞ now implies that 𝐶∗(𝐵�̆�; 𝔽𝑝) is formal.
Next, we come to the case where �̆� ≅ 𝜇𝑟

𝑝∞
is normal in �̆� and𝑊 = �̆�∕�̆� is a finite 𝑝′-group. In

this case, the extension

1 → �̆� → �̆� → 𝑊 → 1

splits by Theorem 3.2.
In this case, we need to be more careful about the invariance under 𝑊 of the grading. The

group𝑊 acts on the subgroup 𝜇𝑟𝑝 of elements of 𝑇 of order 𝑝, and this defines an 𝔽𝑝𝑊-module
𝑀 of dimension 𝑟. The action of𝑊 on 𝐽(𝔽𝑝𝜇𝑟𝑝𝑛 )∕𝐽

2(𝔽𝑝𝜇
𝑟
𝑝𝑛
) makes it a 𝔽𝑝𝑊-module canonically

isomorphic to𝑀. Since 𝔽𝑝𝑊 is semisimple, the short exact sequence of 𝔽𝑝𝑊-modules

0 → 𝐽2(𝔽𝑝𝜇
𝑟
𝑝𝑛 ) → 𝐽(𝔽𝑝𝜇

𝑟
𝑝𝑛 ) → 𝐽(𝔽𝑝𝜇

𝑟
𝑝𝑛 )∕𝐽

2(𝔽𝑝𝜇
𝑟
𝑝𝑛 ) → 0

splits. Such a splitting gives us a𝑊-invariant grading on 𝔽𝑝𝜇𝑟𝑝𝑛 , by lifting a basis. The problem is
that it is not unique, so we need to worry about compatibility.
Now the diagram

commutes, because over 𝔽𝑝, we have (
∑
𝑖 𝑎𝑖𝑥𝑖)

𝑝 =
∑
𝑖 𝑎𝑖𝑥

𝑝

𝑖
. So a splitting for 𝑛 + 1 gives a splitting

for 𝑛 by taking 𝑝th powers. Since there are only finitely many splittings at each stage, it follows
using Kőnig’s lemma that we may choose consistent splittings for all 𝑛 > 0. The graph to which
the lemma is applied has as vertices the pairs consisting of a value of 𝑛 and a splitting for the above
sequence. The edges go from the pairs with 𝑛 + 1 to the pairs with 𝑛, by taking 𝑝th powers. A ray
in this graph consists of a consistent set of splittings for all 𝑛 > 0.
Let 𝑋𝑛,1, … , 𝑋𝑛,𝑟 be bases for such a consistent set of splittings, so that 𝑋

𝑝

𝑛+1,𝑖
= 𝑋𝑛,𝑖 . We may

now put a grading on 𝔽𝑝𝜇𝑟𝑝∞ in such a way that the degree of 𝑋𝑛,𝑖 ∈ 𝔽𝑝𝜇𝑟𝑝𝑛 is equal to 1∕𝑝
𝑛, and

𝑊 preserves the grading.
Now we can put a grading on 𝔽𝑝�̆� by choosing a copy of 𝑊 in �̆� complementary to �̆�, and

putting it in degree zero. Then

𝐻∗(𝐵�̆�; 𝔽𝑝) ≅ 𝐻
∗(𝐵�̆�; 𝔽𝑝)

𝑊
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FORMALITY OF COCHAINS ON 𝐵𝐺 7

inherits an internal grading, and the homological grading of all elements is again twice the inter-
nal grading. So as before, all𝑚𝑖 with 𝑖 ≠ 2 in the𝐴∞ structure on𝐻∗(𝐵�̆�; 𝔽𝑝) are forced to be zero.
It follows that 𝐶∗(𝐵�̆�; 𝔽𝑝) is a formal 𝐴∞ algebra. □

Proof of Theorem 1.1. By Theorem 3.2, the 𝐴∞ algebra 𝐶∗(𝐵𝐺; 𝔽𝑝) is quasi-isomorphic to
𝐶∗(𝐵�̆�; 𝔽𝑝), which by Theorem 4.2 is formal. □

5 FINAL REMARKS

It follows from Stasheff and Halperin [19, Theorem 9] that if 𝑋 is a space and 𝑅 is a commutative
ring of coefficients such that𝐻∗(𝑋; 𝑅) is a polynomial algebra, then 𝐶∗(𝑋; 𝑅) is formal. For exam-
ple,𝐻∗(𝐵𝑆𝑈(𝑛); ℤ) and𝐻∗(𝐵𝑈(𝑛); ℤ) are polynomial rings on Chern classes, and𝐻∗(𝐵𝑆𝑝(𝑛); ℤ)
is a polynomial ring on Pontryagin classes, so the algebras of cochains are formal for all commuta-
tive coefficients in these cases. Similarly,𝐻∗(𝐵𝑂(𝑛); 𝔽2) and𝐻∗(𝐵𝑆𝑂(𝑛); 𝔽2) are polynomial rings
on Stiefel–Whitney classes, so the algebras of cochains are formal over any commutative ring in
which 2 = 0.
In the case of a connected, simply connected compact Lie groups 𝐺, Borel [4–8] and Stein-

berg [20] have investigated torsion in 𝐻∗(𝐵𝐺;ℤ). Borel comments at the end of Volume II of his
Œuvres that the upshot of these papers is that the following are equivalent.

(1) 𝐻∗(𝐺; ℤ) has no 𝑝-torsion.
(2) 𝐻∗(𝐺; 𝔽𝑝) is an exterior algebra on odd degree classes.
(3) 𝐻∗(𝐵𝐺; 𝔽𝑝) is a polynomial algebra on even classes.
(4) 𝐻∗(𝐵𝐺;ℤ) has no 𝑝-torsion.
(5) 𝐻∗(𝐺∕𝑇; 𝔽𝑝) is generated by elements of degree two, where 𝑇 is a maximal torus.
(6) Every elementary abelian 𝑝-subgroup is contained in a torus.
(7) Every elementary abelian 𝑝-subgroup of rank at most three is contained in a torus.
(8) The multiplicity of some fundamental root in the dominant coroot is divisible by 𝑝.

The primes 𝑝 for which this occurs are called the torsion primes for 𝐺. They are a subset of the
bad primes, which are those for which the multiplicity of some fundamental root in the dominant
root is divisible by 𝑝. But these are not the same set. For example, if 𝐺 = 𝑆𝑝(𝑛), then there are no
torsion primes, but 2 is a bad prime. If𝐺 = 𝐺2, then the only torsion prime is 2 but the bad primes
are 2 and 3.
Putting these together, if 𝐺 is a connected, simply connected compact Lie group, 𝗄 is a field of

characteristic 𝑝 and 𝑝 is not a torsion prime, then𝐻∗(𝐵𝐺; 𝗄) is a polynomial ring on even classes,
and 𝐶∗(𝐵𝐺; 𝗄) is formal.
Here is a table of the torsion primes and bad primes.

type bad torsion type bad torsion
𝐴𝑛 ∅ ∅ 𝐸6 {2, 3} {2, 3}

𝐵𝑛 {2} {2} 𝐸7 {2, 3} {2, 3}

𝐶𝑛 {2} ∅ 𝐸8 {2, 3, 5} {2, 3, 5}

𝐷𝑛 {2} {2} 𝐹4 {2, 3} {2, 3}

𝐺2 {2, 3} {2}
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8 BENSON and GREENLEES

If 𝐺 is a compact Lie group which is connected but not simply connected, then there exists a
torus 𝑇𝑛 and a simply connected group𝐻, such that if 𝜋 is the torsion subgroup of 𝜋1(𝐺), then 𝐺
sits in a short exact sequence

1 → 𝜋 → 𝑇𝑛 × 𝐻 → 𝐺 → 1.

So 𝐻∗(𝐵𝐺;ℤ) has 𝑝-torsion if and only if 𝐻∗(𝐺; ℤ) has 𝑝-torsion, which happens if and only if
either 𝑝 divides |𝜋| or 𝑝 is a torsion prime for 𝐻. Otherwise, 𝐻∗(𝐵𝐺; 𝔽𝑝) is a polynomial ring
in even degree generators, and 𝐶∗(𝐵𝐺; 𝔽𝑝) is formal. The case where 𝑝 divides |𝜋| is studied in
Borel [5], Mimura and Toda [18].
For non-connected compact Lie groups, the situation is quite different. For example, let 𝐺 be a

semidirect product 𝑇2 ⋊ ℤ∕2, where ℤ∕2 acts on the 2-torus 𝑇2 by inverting every element. Then
𝐻∗(𝐵𝐺; 𝔽3) is isomorphic to 𝐻∗(𝐵𝑇2; 𝔽3)ℤ∕2. We have 𝐻∗(𝐵𝑇2; 𝔽3) = 𝔽3[𝑥, 𝑦] with |𝑥| = |𝑦| = 2,
and 𝐻∗(𝐵𝐺; 𝔽3) is the subring generated by 𝑥2, 𝑥𝑦, 𝑦2, which is not a polynomial ring. On the
other hand, 3 is not a torsion prime for 𝐻∗(𝐵𝐺;ℤ), and 𝐶∗(𝐵𝐺; 𝔽3) is formal by Theorem 1.1.
For a finite group 𝐺 and a prime 𝑝 dividing |𝐺|, it follows from Benson and Carlson [2]

that 𝐻∗(𝐵𝐺; 𝔽𝑝) is a polynomial ring if and only if 𝑝 = 2, 𝐺∕𝑂(𝐺) is an elementary abelian 2-
group and the polynomial generators are in degree one; 𝐶∗(𝐵𝐺; 𝔽2) is formal in this case. More
generally, if 𝑝 = 2 and 𝐺 has elementary abelian Sylow 2-subgroups, then 𝐶∗(𝐵𝐺; 𝔽2) is for-
mal, even though the cohomology ring does not have to be polynomial. There are also other
formal examples. For example, it is shown in Benson [1] that 𝐶∗(𝐵𝑀11; 𝔽2) is formal, whereas
𝐻∗(𝐵𝑀11; 𝔽2) ≅ 𝔽2[𝑥, 𝑦, 𝑧]∕(𝑥

2𝑦 + 𝑧2) with |𝑥| = 3, |𝑦| = 4, |𝑧| = 5 is not a polynomial ring. It
would be interesting to know whether there are any formal examples in odd characteristic.
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