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1 | INTRODUCTION

It is well known that over a field of characteristic zero, the algebra of cochains on the classifying
space of a connected compact Lie group is formal asan A  algebra, or equivalently as a differential
graded (DG) algebra. We prove that this is the case for a compact Lie group G that is not necessarily
connected, over any field in which the order of N5(T)/T is invertible, where T is a maximal torus
inG.

In contrast, even for a finite group with cyclic Sylow subgroups of order p" > 3 in characteristic
D, the algebra of cochains on the classifying space is not formal. The A, structure in this case is
computed in [3].

Our notation is as follows. We write G for a compact Lie group, T for a maximal torus in T and
W for the finite group N;(T)/T. This a finite group acting on T by conjugation, and the kernel of
the action is C;(T)/T. If G is connected, then C;(T) = T, and W is the Weyl group of G. If pisa
prime, we write X ; for the Bousfield-Kan p-completion of a space X, see [10].

Our strategy is quite different to the usual characteristic zero proof. After reducing to the case
of a normal torus, we make an approximation to G at the prime p by a locally finite group G
with BG; homotopy equivalent to BG;, and then we put an internal grading on the group algebra

F pé. This gives us a second, internal grading on cochains C*(BG; F ), and the A, structure maps
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2 | BENSON AND GREENLEES

m; provided by Kadeishvili’s theorem on H*(BG; F,) have to preserve the internal grading. This
then proves that they are all zero apart from the multiplication map m,. Our main theorem is the
following.

Theorem 1.1. If G is a compact Lie group with maximal torus T, and p does not divide |[N5(T)/T|,
then C*(BG; F ) is a formal A, algebra.

In Section 2 we recall the proof of the characteristic zero theorem. The proof of Theorem 1.1
occupies Sections 3 and 4. In Section 5 we make some remarks that put our result in context.

2 | CHARACTERISTIC ZERO

We include the well-known proof for the connected case in characteristic zero for the sake of con-
venience of comparison. It uses the fact that the algebra of rational cochains on a simply connected
space has a commutative model as a DG algebra.

Theorem 2.1. Let G be a connected Lie group (or more generally, any path connected topologi-
cal group with finite-dimensional rational homology) and let k be a field containing Q, the field of
rational numbers. Then C*(BG;k) is formal.

Proof. In rational homotopy theory, if the Sullivan minimal model of a space has zero differential,
then the rational homotopy type is formal. This is true for simply connected spaces whose rational
cohomology is a polynomial ring on even degree generators tensored with an exterior algebra
on odd degree generators. The reason is that we can choose arbitrary cocycles representing the
generators of cohomology, and there are no relations to satisfy apart from (graded) commutativity,
which is automatic because of the commutativity of the minimal model. In the case of a connected
Lie group, the rational cohomology is isomorphic to the invariant ring H*(BT; @)%, where T is
a maximal (compact) torus and W is the Weyl group. This is a polynomial ring on even degree
generators. So C*(BG; Q) is formal, and hence so is C*(BG; k) by extension of scalars. For more
details and background on rational homotopy theory, we refer the reader to Proposition 15.5 of
Félix, Halperin and Thomas [13], or Example 2.67 in the book of Félix, Oprea and Tanré [14]. []

Remark 2.2. In the theorem, for G connected, QBG& ~ Ga has homology an exterior algebra on

odd degree generators, so it is again formal. In fact, the proof shows that BG& and Ga are both
intrinsically formal.

The obstruction to extending the proof to other characteristics is that the algebra of mod p
cochains on a space usually does not have a commutative DG algebra model. However, we can
give a modified version of this theorem using the method of internal gradings. We do this in several
steps, in the rest of this paper.

3 | FINITE APPROXIMATIONS

In this section, we show how to approximate compact Lie groups by finite groups. This is closely
related to the work of Dwyer and Wilkerson [12], but better suited to the internal grading method.
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FORMALITY OF COCHAINS ON BG | 3

We begin with case of a circle group T = S'. We have H*(BT; F,) = Fplx]with |x| = —2. Let w,,,
be the finite subgroup of T consisting of elements whose mth power is the identity. Then assum-
ing that p" > 3, we have H*(Bu,n; Fp) = Fp[x,] ® A(t,), with |x,| = —2 and [¢| = —1, and x,, is
the restriction of x. The restriction map from H*(Bupn+1;Fp) to H*(Bupn; F ) sends the element
X,41 to X, and £, to zero. Let i, be the union of the chain of subgroups u, C 2 C -+ of T,
which we regard as a discrete group isomorphic to Z/p*. Then the restriction map H*(BT; F ) —
H*(Bppe; Fpp) is an isomorphism.

For a torus T = (S')" of rank r it works similarly. The inclusion of ,u; » in T induces an
isomorphism

H*(BT;F,) — H*(B/x;w; Fp)-
Lemma 3.1. Let T be a torus of rank r acted on by a finite group W, let « € H*(W, T) be an element
of order m > 1 and let u be the finite subgroup of T consisting of elements whose mth power is the
identity. Then a is in the image of HX(W, ! ) — H*(W,T).
Proof. We have a short exact sequence
. m
1w -T—T-1,
which gives an exact sequence
o = H\(W,T) - HXW, i) — HXW,T) — HXW,T) — --

If « € H*(W,T) has order m, then it is in the kernel of multiplication by m on H?(W,T), and
hence, it is in the image of of H2(W, M,)- O

Theorem 3.2. Let G be a compact Lie group with normal maximal torus T of rank r and let W =
G/T. Then the Bousfield—Kan p-completion BG; is homotopy equivalent to BG;, where G is a locally
finite group sitting in a short exact sequence

1-T->G-W-=1
with T isomorphic to ,u;oo. If|W| is coprime to p, then this sequence splits.
Proof. The group G sits in a short exact sequence

1-T->G->W-=>1.
This extension defines an element a of H2(W, T). Since |W| annihilates H>(W,T), the order m
of a is a divisor of |W|. So by the lemma, « is in the image of H*(W, u” ) - H*(W, T). It follows

that if we quotient out by u; , we have a split short exact sequence

1->T/uw, = G/u, > W — 1.
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4 | BENSON AND GREENLEES

Choosing a splitting and taking the inverse image in G, we obtain a subgroup W of G that sits in
a diagram

w 1

w 1.

Q%gx

M
T

Let G be the subgroup of G generated by W and ,u;m, regarded as a discrete locally finite group,
and let T be the discrete locally finite subgroup of G generated by uy, and ,u:)w. Then we have a
diagram

w 1

w 1.

e R
Q—— ™

The comparison map of spectral sequences

H*(BW; H*(BT; F,)) == H*(BG; F,)

| |

H*(BW;H*(BT;F,)) —= H*(BG;F,)

is an isomorphism on the E, page, and hence, the map G — G induces an isomor-
phism H*(BG; [Fp) — H*(BG; [Fp). It therefore induces a homology equivalence H,(BG; [Fp) -
H,(BG;F,) and a homotopy equivalence of Bousfield-Kan completions BG; - BG;.

Now the p’ elements of T are the p’ elements of x! , and they form a characteristic finite sub-
group O, !, of T, and hence also of G. Set G = G/O, i, and T = T /0, u!,, = M- Then the
quotient map G — G is mod p cohomology isomorphism, and G sits in a short exact sequence

1-T>G->W 1.

The space BG; is homotopy equivalent to BG;.
For the final statement about splitting, the group H*(W, ,u;,,) is annihilated by |W| and by p",
and is hence zero. So H2(W,T) = HZ(W,,u;w) =~ 1i_n)1H2(W, /x;)n) =0. O

n

We shall make use of the theorem by means of the following proposition.

Proposition 3.3. Let G be a compact Lie group with maximal torus T, and let W = Ng(T)/T. If
p =0 or (p,|W|)=1, then the inclusion N;(T) — G induces a homotopy equivalence of p-
completions BG; ~ BNG(T);.

Proof. In Theorem 20.3 of Borel [8], it is proved that for G connected, H*(BG; Q) — H*(BT; Q)W
is an isomorphism. Theorem 1.5 of Feshbach [15] improves this to the statement that whether or
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not G is connected, the inclusion T — G induces an isomorphism
H*(BG;Z) ® Z[1/|W|] - H*(BT, 2)" @ z[1/|W|].

Feshbach attributes this theorem to Borel without reference, but the argument is simple. The
restriction followed by the Becker-Gottlieb transfer is equal to multiplication by the Euler char-
acteristic y(G/T), which is equal to |W|, and transfer followed by restriction is the sum of the
conjugates under N (T), by the double coset formula.

If (p, |[W]) = 1, then it follows using the five lemma on the long exact sequence in cohomology
associated to the short exact sequence of coefficients

0 - Z[1/IW[1 2 Z[1/IW|] - F, - 0

that H*(BG;F,) - H *(BT; [Fp)W is an isomorphism. This applies just as well to N;(T), and so
H*(BG; [Fp) — H*(BN;(T); [Fp) is an isomorphism. Now complete at p. O

4 | FORMALITY

Let G be a compact Lie group with maximal torus T of rank r, and let W = N5(T)/T. According
to Theorem 3.2 and Proposition 3.3, there is a locally finite discrete group G sitting in a short exact
sequence

1-T>6G-W-1

with T = M, and a homotopy equivalence BG; ~ BG;.
For the proof of formality, we shall need to make use of K6nig’s lemma from graph theory, so
we begin by stating this.

Lemma 4.1. Let I be a locally finite, connected infinite graph. Then T’ contains a ray, namely an
infinite sequence of vertices without repetitions vy, Uy, U, ... such that there is an edge from each v; to

Vit1:

Proof. This is proved in K6nig [17]. For a modern reference in English, see, for example, Diestel
[11, Lemma 8.1.2]. An equivalent and possibly more familiar formulation is that an inverse limit
of a sequence of non-empty finite sets is non-empty (see, for example, Bourbaki [9, I11.7.4]). [

Theorem 4.2. If (p, |W|) = 1, then the A, algebra C*(BG; F,) is formal.

Proof. We firstly examine the case G =T = Mpe. Regarding S! as the unit circle in C, let
g, = €2™/P" be a generator for Hpn as a subgroup of S', so that g = g, ;. S0 u,« is the union
of these subgroups, regarded as an infinite discrete group.

pMpn = [Fp[Xn]/(X£ ). We put
an internal Z[llj]—grading on the group algebra ku,. by setting |X,| = 1/p". Then the fact that
X 5 = X,,_; implies that the inclusion F,u,n < F,u,n+1 preserves the internal grading. Thus the

Set X,, = g, — 1, a generator for the radical J(F,up,). Then F

union e is Z[%]-graded, with all degrees lying in the interval [0,1).
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6 | BENSON AND GREENLEES

Assuming that p" > 3, we have H*(Bu,n; Fp) = F[x,] ® A(t,). This ring inherits an internal
grading from the group algebra, and we have |x,,| = (—2,—1) and |¢,,| = (-1, —pin). The restric-
tion map from H*(Bupn+1;Fp) to H*(Buye;Fp) sends X, to x, and ¢, to zero. Therefore
H*(Bppe;Fp) = k[x] with |x| = (=2, -1).

Now the A, structure maps m; : H* (B e} [Fp)®i — H*(Bu,e; F,) given by Kadeishvili’s the-
orem [16] preserve the internal grading, and increase the homological grading by i — 2. To prove
that C*(Bu,e; F,) is formal, we must show that we may take m; to be zero for i # 2. But for every
non-zero element of H*(Bupe; Fp), the homological grading is twice the internal grading. So for
m; to be non-zero, we must have i = 2. Thus C*(B,upoo; [Fp) is a formal A, algebra.

Similarly, for a larger rank torus, T = ,u; «>We put an internal Z[%]-grading onfF, /x; « by adding
the internal gradings on the factors y,«, so that all degrees lie in the interval [0, ). This puts an
internal grading on H* (Bu;oo ;Fp), so that it is a polynomial ring on r indeterminates, all in degree

(=2,—1). The same argument as in the case of Mpe nOW implies that C*(BT; [Fp) is formal.
Next, we come to the case where T' = ,u;w is normal in G and W = G/T is a finite p’-group. In
this case, the extension

1-T>G-o>W->1

splits by Theorem 3.2.

In this case, we need to be more careful about the invariance under W of the grading. The
group W acts on the subgroup ,u; of elements of T of order p, and this defines an [ ,W-module
M of dimension r. The action of W on J ([Fp/,t; DT Z(Fpu;,,) makes it a F,W-module canonically
isomorphic to M. Since F,W is semisimple, the short exact sequence of F,,W-modules

0 = F2(F ) = JE ) = J(Fpul ) [T (F i) = 0

splits. Such a splitting gives us a W-invariant gradingon I, ,u; .» by lifting a basis. The problem is
that it is not unique, so we need to worry about compatibility.
Now the diagram

le:u;n(—> IFp:u;nH

N

Fpiyn

commutes, because over F,, we have (}; a;x;)P = ¥, aixf’ . So a splitting for n + 1 gives a splitting
for n by taking pth powers. Since there are only finitely many splittings at each stage, it follows
using Kénig’s lemma that we may choose consistent splittings for all n > 0. The graph to which
the lemma is applied has as vertices the pairs consisting of a value of n and a splitting for the above
sequence. The edges go from the pairs with n + 1 to the pairs with n, by taking pth powers. A ray
in this graph consists of a consistent set of splittings for all n > 0.

Let X, ;,...,X,,, be bases for such a consistent set of splittings, so that Xf 11 = Xni- We may
now put a grading on [Fp/,t; « in such a way that the degree of X, ; € [Fp/x; . isequal to 1/p", and
W preserves the grading.

Now we can put a grading on [Fpé by choosing a copy of W in G complementary to T, and
putting it in degree zero. Then

H*(BG;F,) = H*(BT;F,)"
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FORMALITY OF COCHAINS ON BG | 7

inherits an internal grading, and the homological grading of all elements is again twice the inter-
nal grading. So as before, all m; with i # 2 in the A, structure on H*(BG; F,) are forced to be zero.
It follows that C*(BG; F p) is a formal A, algebra. O

Proof of Theorem 1.1. By Theorem 3.2, the A algebra C*(BG;F,) is quasi-isomorphic to
C*(BG; F,), which by Theorem 4.2 is formal. O

5 | FINAL REMARKS

It follows from Stasheff and Halperin [19, Theorem 9] that if X is a space and R is a commutative
ring of coefficients such that H*(X; R) is a polynomial algebra, then C*(X; R) is formal. For exam-
ple, H*(BSU(n); Z) and H*(BU(n); Z) are polynomial rings on Chern classes, and H*(BSp(n); Z)
is a polynomial ring on Pontryagin classes, so the algebras of cochains are formal for all commuta-
tive coefficients in these cases. Similarly, H*(BO(n); F,) and H*(BSO(n); F,) are polynomial rings
on Stiefel-Whitney classes, so the algebras of cochains are formal over any commutative ring in
which 2 = 0.

In the case of a connected, simply connected compact Lie groups G, Borel [4-8] and Stein-
berg [20] have investigated torsion in H*(BG; Z). Borel comments at the end of Volume II of his
(Euvres that the upshot of these papers is that the following are equivalent.

(1) H*(G;Z) has no p-torsion.

(2) H*(G; [Fp) is an exterior algebra on odd degree classes.

(3) H*(BG; [Fp) is a polynomial algebra on even classes.

(4) H*(BG; Z) has no p-torsion.

(5) H*(G/T;F,) is generated by elements of degree two, where T is a maximal torus.
(6) Every elementary abelian p-subgroup is contained in a torus.

(7) Every elementary abelian p-subgroup of rank at most three is contained in a torus.
(8) The multiplicity of some fundamental root in the dominant coroot is divisible by p.

The primes p for which this occurs are called the torsion primes for G. They are a subset of the
bad primes, which are those for which the multiplicity of some fundamental root in the dominant
root is divisible by p. But these are not the same set. For example, if G = Sp(n), then there are no
torsion primes, but 2 is a bad prime. If G = G,, then the only torsion prime is 2 but the bad primes
are 2 and 3.

Putting these together, if G is a connected, simply connected compact Lie group, k is a field of
characteristic p and p is not a torsion prime, then H*(BG; k) is a polynomial ring on even classes,
and C*(BG;k) is formal.

Here is a table of the torsion primes and bad primes.

type bad torsion type bad torsion
A, %] %] E {2,3} {2,3}
B, {2 {2} E; {2,3} {2,3}
Cu {2 @ Ey {2,3,5} {2,3,5}
D, {23 {2} F, {2,3} {2,3}
G, {2,3} {23
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8 | BENSON AND GREENLEES

If G is a compact Lie group which is connected but not simply connected, then there exists a
torus T" and a simply connected group H, such that if 7 is the torsion subgroup of 7, (G), then G
sits in a short exact sequence

1-7->T"XH—->G->1.

So H*(BG; Z) has p-torsion if and only if H*(G; Z) has p-torsion, which happens if and only if
either p divides |7| or p is a torsion prime for H. Otherwise, H*(BG;F) is a polynomial ring
in even degree generators, and C*(BG;F,) is formal. The case where p divides |7| is studied in
Borel [5], Mimura and Toda [18].

For non-connected compact Lie groups, the situation is quite different. For example, let G be a
semidirect product T2 X Z /2, where Z /2 acts on the 2-torus T2 by inverting every element. Then
H*(BG; Fs) is isomorphic to H*(BT?; F;)%/2. We have H*(BT?;F3) = F5[x, y] with |x| = |y| = 2,
and H*(BG;F,) is the subring generated by x2, xy, y?, which is not a polynomial ring. On the
other hand, 3 is not a torsion prime for H*(BG; Z), and C*(BG; F) is formal by Theorem 1.1.

For a finite group G and a prime p dividing |G|, it follows from Benson and Carlson [2]
that H*(BG;F ) is a polynomial ring if and only if p = 2, G/O(G) is an elementary abelian 2-
group and the polynomial generators are in degree one; C*(BG;[F,) is formal in this case. More
generally, if p =2 and G has elementary abelian Sylow 2-subgroups, then C*(BG;F,) is for-
mal, even though the cohomology ring does not have to be polynomial. There are also other
formal examples. For example, it is shown in Benson [1] that C*(BM,,;F,) is formal, whereas
H*(BM,y;F,) = F,[x,y,z]/(x*y + z%) with |x| = 3, |y| =4, |z| = 5 is not a polynomial ring. It
would be interesting to know whether there are any formal examples in odd characteristic.
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