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Abstract

Infectious diseases of plants present an ongoing and increasing threat to international biose-

curity, with wide-ranging implications. An important challenge in plant disease management

is achieving early detection of invading pathogens, which requires effective surveillance

through the implementation of appropriate monitoring programmes. However, when moni-

toring relies on visual inspection as a means of detection, surveillance is often hindered by a

long incubation period (delay from infection to symptom onset) during which plants may be

infectious but not displaying visible symptoms. ‘Sentinel’ plants–alternative susceptible host

species that display visible symptoms of infection more rapidly–could be introduced to at-

risk populations and included in monitoring programmes to act as early warning beacons for

infection. However, while sentinel hosts exhibit faster disease progression and so allow

pathogens to be detected earlier, this often comes at a cost: faster disease progression typi-

cally promotes earlier onward transmission. Here, we construct a computational model of

pathogen transmission to explore this trade-off and investigate how including sentinel plants

in monitoring programmes could facilitate earlier detection of invasive plant pathogens.

Using Xylella fastidiosa infection in Olea europaea (European olive) as a current high profile

case study, for which Catharanthus roseus (Madagascan periwinkle) is a candidate sentinel

host, we apply a Bayesian optimisation algorithm to determine the optimal number of senti-

nel hosts to introduce for a given sampling effort, as well as the optimal division of limited

surveillance resources between crop and sentinel plants. Our results demonstrate that

including sentinel plants in monitoring programmes can reduce the expected prevalence of

infection upon outbreak detection substantially, increasing the feasibility of local outbreak

containment.

Author summary

Plant diseases affect the environment and the economy negatively, with implications for

biodiversity and food security. Fast detection of invading pathogens is essential to prevent
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widespread transmission. This is challenging, however, because many plant diseases have

a long presymptomatic period (delay from initial infection to symptom onset) in globally

important hosts. During this presymptomatic period, infection may spread undetected to

other plants. While the presymptomatic period can be long, plant diseases often affect

multiple host species, with different epidemiological characteristics. This provides an

opportunity for planting sentinel plants, which are alternative host species that display vis-

ible symptoms of infection quickly, as early warning beacons for infection. In this research

article, we use mathematical modelling to explore the potential for sentinel plants to aid

plant disease monitoring programmes. We show that, for a high-profile plant pathogen

(Xylella fastidiosa, which is currently devastating olive groves in southern Europe), the use

of sentinel plants allows new outbreaks to be identified quickly, reducing the prevalence

of infection when outbreaks are detected. Model simulations also indicate that our results

apply more generally. Sentinel plants have the potential to assist fast detection of a wide

range of invading plant pathogens.

1. Introduction

Infectious disease outbreaks in plant populations have devastating economic, environmental

and societal consequences [1–8]. The global plant trade means that the spread of invasive plant

pathogens poses an ever-increasing threat to international biosecurity [9,10]. Developing effi-

cient and cost-effective methods for surveillance and control of invasive plant pathogens is

therefore a vital area of current research [11–16].

Mathematical modelling is increasingly used to guide surveillance and intervention strate-

gies for plant pathogens [11,14,17–19], helping policy-makers understand how to direct lim-

ited resources for control to reduce transmission [20–25]. Multiple studies of different

pathogens have focused on the question of how to optimise control measures when a pathogen

is known to be in a particular host landscape (‘reactive’ control). For example, using citrus can-

ker (a bacterial disease of citrus plants) in Florida as a case study, Cunniffe et al. [26] showed

how roguing (removal of confirmed infected plants) can be extended to removal of all plants

in the proximity of a confirmed infected host. They demonstrated a modelling approach for

identifying the optimal removal radius around confirmed infected hosts, balancing the reduc-

tion in the risk of further spread with the cost of destroying potentially healthy plants. Simi-

larly, White et al. [27] investigated the efficacy of ‘buffer zones’ for intensive surveillance on

the border of a region of known infection, and Adrakey et al. [28] developed a Bayesian

approach for prioritising the removal of infected hosts based on the infection risk they pose to

other plants.

While reactive control has been well-studied, a key additional challenge is designing surveil-

lance methods specifically to achieve early outbreak detection [29]. This increases the chance

of eradicating the pathogen from the landscape before it becomes widespread (‘preventive’

control). Parnell et al. [30,31] used probabilistic techniques to derive a simple ‘rule of thumb’

relating the expected prevalence of infection upon discovery to the sampling effort. This

approach was extended by Mastin et al. [32] to a setting in which pathogen transmission via

vectors is modelled explicitly, and used to investigate how to divide sampling resources opti-

mally between hosts and vectors. Alonso-Chavez et al. [33] also applied this technique to

explore the use of within-nursery surveillance for reducing the risk of growers selling infected

plant material.
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For many plant pathogens, a major obstacle to achieving early detection is a long incuba-

tion period (the time between initial infection and symptom onset; this has also been referred

to as the cryptic, asymptomatic or presymptomatic period) [18,33–38]. If transmission by

infected hosts can occur prior to symptom onset, monitoring programmes that rely upon

visual inspection of potential hosts for signs of infection (as are standard across plant health

[39,40]) may fail to identify the presence of a pathogen before widespread transmission has

occurred. Indeed, Alonso-Chavez et al. [33] showed that if presymptomatic transmission

occurs and the pathogen is discovered early in an outbreak, the expected prevalence of infec-

tion in the population at the time of discovery increases exponentially with the duration of the

incubation period.

The incubation period of a pathogen may, however, vary substantially between different

host species, or between hosts of different ages [35–37,41,42]. This suggests that in some cases

there may be the potential to use alternative hosts with relatively short incubation periods as

‘sentinels’ to detect new outbreaks. In this context, we refer to a sentinel as a susceptible plant

species specifically chosen to have a short incubation period, which is placed amongst the crop

plants and regularly monitored for visible signs of infection (we note that, in the literature, the

term ‘sentinel’ has alternatively been used to refer to plant species that are grown outside of

their natural habitat and monitored to assess whether pests native to the new location pose a

risk to that species, which is distinct from the context of this study [43]).

The rapid onset of visible symptoms in sentinel plants could result in earlier detection of

the pathogen in the population. If this leads to a reduced prevalence of infection upon discov-

ery, this could reduce the cost of reactive control. However, sentinels may also have drawbacks.

The increased rate of symptom development in sentinel plants could result in more rapid

onward transmission, which may counteract the positive effect of early detection and lead to

an increased discovery prevalence. Therefore, research is needed to understand this trade-off

and infer the conditions under which sentinel plants are likely to be beneficial for reducing the

discovery prevalence. If sentinel plants are deployed, one key consideration is how many senti-

nel plants should be added to the population to provide sufficient opportunity for early detec-

tion whilst limiting the concurrent increase in the transmission rate. Another important

question is how to divide limited surveillance resources optimally between crop and sentinel

plants.

Although using sentinel plants to facilitate early detection of invasive pathogens has been

suggested as a possibility previously [43,44], the question of how to design effective surveil-

lance strategies using sentinel hosts targeted at a specific pathogen in a given region has not yet

been addressed [43]. Here, we explore the potential for sentinel plants to aid early outbreak

detection, using a plant pathogen of significant current importance as a case study (Xylella fas-
tidiosa–see below). We construct a stochastic compartmental model of pathogen transmission

that includes two different host types (crops and sentinels), and consider monitoring pro-

grammes in which, at regular intervals, a fixed number of plants are sampled at random and

inspected for visible disease symptoms. A surveillance strategy is defined by: i) the number of

sentinel plants added to the population; ii) the number of crops and sentinels to be examined

in each sampling round, and; iii) the time interval between successive sampling rounds. For a

given surveillance strategy, we use model simulations to calculate the expected detection prev-

alence (EDP) of the pathogen in the crop population at the time of discovery. We investigate

the conditions under which including sentinel plants in a surveillance programme allows us to

attain a lower EDP than standard monitoring (i.e., the analogous surveillance strategy but

without any sentinel plants). For a given choice of sample size and sample interval, we apply a

Bayesian optimisation algorithm to determine the minimum attainable EDP and the surveil-

lance strategy for which this is achieved.
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We demonstrate that including sentinel plants in a surveillance programme has the poten-

tial to reduce the EDP compared to a standard monitoring programme of equivalent sampling

effort. Sentinel plants are particularly beneficial when limited resources are available for plant

disease surveillance. We show that both the total number of sentinels deployed and the divi-

sion of the sample between crop and sentinel plants are crucial in determining the effectiveness

of a surveillance strategy. It can be preferable to sample a mixture of both sentinel and crop

plants, rather than exclusively sampling sentinels. Overall, our results demonstrate that senti-

nel plants are a useful tool to improve early detection monitoring, and encourage further

research to identify the range of host-pathogen systems for which sentinel plants can reduce

the damage caused by invading plant pathogens.

1.1 Case study: Xylella fastidiosa infection in Olea europaea (European

olive)

An important example of a pathogen for which the development of effective surveillance strat-

egies is currently critical is Xylella fastidiosa [45], a vector-borne bacterial pathogen first iso-

lated from infected grapevines in 1978 [46]. It is pathogenic to over 600 host plant species [47],

including economically important crops such as olives, grapevines, almonds, citrus and coffee

[48,49]. Depending on the host species and specific bacterial strain, symptoms of X. fastidiosa
infection include leaf tissue necrosis (leaf scorch), stunted growth, decrease in fruit produc-

tion, dieback and eventual death [36,48,49]. Outbreaks of X. fastidiosa in commercial crops

therefore have substantial negative economic effects [22,50,51].

Of particular current concern is a strain of X. fastidiosa, subspecies pauca, known as

CoDiRO (Complesso del Disseccamento Rapido dell’Olivo—loosely, ‘rapid drying disease of

olive trees’), which was discovered in the Apulia region of south-east Italy in 2013 and subse-

quently identified as the causative agent of Olive Quick Decline Syndrome (OQDS) in that

region [27,52]. CoDiRO spreads rapidly, is difficult to contain, and results in significant crop

loss, threatening olive farming throughout Europe [22,35,48,53–55]. Recent projections indi-

cate that the economic impact on olive farming in Italy, Greece and Spain alone could exceed

€24 billion over the next 50 years if feasible control strategies are not devised [22]. However,

the wide range of possible hosts for X. fastidiosa means that this pathogen poses a risk to Euro-

pean agriculture on an even broader scale [35,54–56].

Despite ongoing research, there is currently no effective treatment for OQDS, or X. fasti-
diosa infection more generally [48,49]. Control methods mainly consist of roguing infected

plants and removing healthy plants in their vicinity, and reducing vector transmission using

insecticides [27]. However, these interventions are costly, and must be swift in order to be

effective [26,55,57]. The sooner control interventions are implemented, the less opportunity

there is for the pathogen to be exported to new locations [14,26]. Devising appropriate moni-

toring programmes to facilitate early detection is therefore critical to the success of contain-

ment strategies [35].

X. fastidiosa is a prime example of a pathogen for which the incubation period can provide

a major obstacle to achieving early detection. X. fastidiosa subsp. pauca has a long incubation

period in European olive (Olea europaea) with a mean duration of around 15 months [35],

and transmission by infected hosts can occur prior to symptom onset [36]. Since surveillance

strategies for OQDS typically rely upon visual inspection of potential hosts as a first line of

defence [40,48], presymptomatic transmission significantly limits the efficacy of current infec-

tion monitoring programmes (although molecular tests are able to detect X. fastidiosa infec-

tion before symptom onset [58,59], the costs of large-scale presymptomatic sampling are

prohibitive [40]). Despite its long incubation period in O. europaea, there is substantial
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variation in the incubation period of X. fastidiosa across its large host range, depending on fac-

tors such as plant species and age, pathogen subspecies, and climatic conditions [35,36]. For

this reason, the use of sentinel plants for surveillance of X. fastidiosa is a clear possibility, and

has been identified as a key research area in the G20 Meetings of Agricultural Chief Scientists

[36].

Here, we consider the candidate sentinel plant species Catharanthus roseus, a herbaceous

flowering plant commonly known as Madagascan periwinkle. C. roseus is a known host of X.

fastidiosa subsp. pauca, with a mean time from infection to symptom onset of around seven

weeks (a factor of nine times shorter than X. fastidiosa in O. europaea) [35]. Although native to

Madagascar, C. roseus has a wide geographical distribution and is already found across Italy

and the rest of Europe, making it an ecologically suitable choice as a sentinel host [60]. Addi-

tionally, the small size of C. roseus plants allows them to be intercropped in olive groves.

Although here we use X. fastidiosa infection in O. europaea as an important case study, our

modelling framework is intended to be general and extensible. It may also be applied to inves-

tigate the use of sentinel plants against other invasive pathogens for which presymptomatic

infection hinders existing monitoring approaches.

2. Methods

2.1 Transmission model

We considered a compartmental model of pathogen transmission in which plants are classified

as ‘Healthy’ (H), ‘Undetectable’ (U) or ‘Detectable’ (D). The model includes two host types–

crop plants (denoted by subscript C) and sentinel plants (denoted by subscript S). Healthy

crops (HC) and sentinels (HS) are uninfected plants that are susceptible to infection. Undetect-

able crops (UC) and sentinels (US) are plants that have been infected (and are infectious) but

are not currently displaying visual symptoms. Once visual symptoms develop, plants progress

into the Detectable compartment (DC or DS for crops and sentinels, respectively). A schematic

illustrating the different compartments for both crop and sentinel plants is shown in Fig 1A.

We denote the total number of crop and sentinel plants in the population by PC =

HC+UC+DC and PS = HS+US+DS, respectively, with a total population size of P = PC+PS. In

each of our model simulations, fixed values of P, PC and PS are used, since we consider only

the time until first detection and not the subsequent period during which infected plants and

other nearby plants may be removed.

Undetectable and Detectable plants may generate new infections in any Healthy plant, with

crops and sentinels assumed to be equally susceptible. The mode of transmission (insect vec-

tors in the case of X. fastidiosa) is captured implicitly through the model parameterisation,

rather than modelled explicitly. The parameters βC and βS represent the daily per capita rates

at which individual infected Detectable crop and sentinel plants generate new infections,

respectively. We also introduce the scaling parameters εC and εS to represent the relative infec-

tiousness of Undetectable crops and sentinels compared to Detectable ones, so that the daily

rates at which individual Undetectable crop and sentinel plants generate new infections are

εCβC and εSβS respectively. In reality, Undetectable plants are unlikely to become infectious

immediately after they are infected themselves. However, in the absence of detailed informa-

tion on the time from infection to onset of infectiousness, we make a simplifying assumption

that Undetectable plants are equally infectious throughout their presymptomatic period. To

reflect the fact that Undetectable plants are likely to be less infectious than Detectable ones, we

set 0<εC, εS<1. The different transmission routes and the corresponding rates at which infec-

tions occur are illustrated in Fig 1B. The mean duration of the crop and sentinel Undetectable

(i.e. presymptomatic) periods are given by the parameters γC and γS respectively.
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The resulting compartmental differential equation model representing pathogen transmis-

sion is given by

dHC

dt
¼ � �HC;

dHS

dt
¼ � �HS;

dUC

dt
¼ �HC �

1

gC
UC;

dUS

dt
¼ �HS �

1

gS
US; ð1Þ

dDC

dt
¼

1

gC
UC;

dDS

dt
¼

1

gS
US;

where the force of infection, ϕ, acting on each Healthy plant is

� ¼ bCðεCUC þ DCÞ þ bSðεSUS þ DSÞ: ð2Þ

In our analyses, we run simulations of the analogous stochastic model using the direct

method version of the Gillespie stochastic simulation algorithm, as described in Section 2.5.

Fig 1. Schematic diagrams illustrating the compartments in the model (and how individual plants move between

them) and the rates at which infections occur. A. Model transitions. For plants of either type (crop or sentinel),

individual hosts begin in the Healthy compartment (HC or HS) before moving to the corresponding Undetectable

compartment (UC or US) upon infection. Undetectable plants progress to the appropriate Detectable compartment (DC
or DS) once visual symptoms develop. B. Force of infection. The rates at which different infectious hosts generate new

infections. A Detectable crop plant can infect a Healthy crop or sentinel at rate βC whilst an Undetectable crop can

infect a Healthy crop or sentinel at the scaled rate εCβC. Similarly, Detectable and Undetectable sentinels infect Healthy

plants at rates βS and εSβS, respectively.

https://doi.org/10.1371/journal.pcbi.1010884.g001
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2.2 The baseline case—Reduced model in the absence of sentinel plants

In the absence of sentinel plants (PS = 0), the transmission model reduces to

dHC

dt
¼ � �bHC;

dUC

dt
¼ �bHC �

1

gC
UC;

dDC

dt
¼

1

gC
UC; ð3Þ

where the force of infection, ϕb, acting on each Healthy plant is

�b ¼ bCðεCUC þ DCÞ: ð4Þ

Throughout, this reduced system is what we will refer to as the ‘baseline case’ for a particu-

lar choice of model parameterisation or surveillance strategy. It provides a point of reference

for the EDP, allowing us to determine whether the EDP is reduced or increased when sentinel

plants are introduced. Specifically, the effect of including sentinel plants in a surveillance strat-

egy may then be assessed relative to the baseline case with equivalent parameterisation and

sampling effort (i.e. the same total sample size and sample interval). When considering the

baseline case, we again run model simulations of the analogous stochastic model using the

direct method version of the Gillespie stochastic simulation algorithm.

2.3 Sampling and detection

We considered a monitoring programme in which different random samples of N hosts are

taken from the population every Δ days and inspected for symptoms of disease. We chose ran-

dom sampling since, in a “well-mixed” model that assumes spatial homogeneity in the infec-

tion risk across the landscape, it outperforms repeated sampling of the same hosts (see S1 Text

and S1 Fig), whilst being straightforward to implement computationally. For a given surveil-

lance strategy (choice of N and Δ), we fix the number of crop plants and sentinel plants in the

sample so that N = NC+NS, where NC is the crop sample size and NS is the sentinel sample size

(in the baseline case, NS = 0 and NC = N). To reflect the introduction of the pathogen at a ran-

dom time relative to the sampling scheme, we begin sampling from our model disease system

at a time selected uniformly at random from the interval [0, Δ]. We then sample every Δ days

until detection occurs. In our analyses, we assume that Detectable plants in a sample are always

correctly identified as being infected, Undetectable plants are never correctly identified as

being infected, and Healthy plants are always correctly identified as uninfected. Therefore,

detection occurs at a given time if and only if at least one Detectable plant (crop or sentinel) is

included in the sample selected at that time.

2.4 Model parameterisation

We selected the epidemiological parameters of our model (Table 1) to be consistent with X.

fastidiosa subsp. pauca infection in the crop plant O. europaea (European olive) and the senti-

nel plant C. roseus (Madagascan periwinkle) [35,61]. In our main analyses, we assumed that

the transmission coefficient for Detectable sentinels (βS) was equal to that for Detectable crops

(βC). In other words, infected sentinel plants were assumed to generate the same number of

infections (on average) as infected crop plants. Whilst some studies have suggested that C.

roseus may be more susceptible to X. fastidiosa infection than O. europaea [62], others have

indicated that the rate at which the vector acquires the pathogen from C. roseus is lower than

from O. europaea [63], and detailed information on how these conflicting factors affect the

overall transmission rates is lacking. We were also required to assume the relative infectious-

ness of Undetectable sentinels compared to Detectable sentinels. The value chosen (εS = 0.1) is

a conservative choice compared to the equivalent parameter for crop plants (εC = 0.015) since
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it assumes that Undetectable sentinels are substantially more infectious than Undetectable

crops. This choice aims to provide a lower bound on the utility of sentinel plants. Due to the

uncertainty in these parameter values, we performed extensive sensitivity analyses to deter-

mine how the choice of parameterisation affected our results (Section 3.4, S2 Text, S1–S2

Tables and S2–S10 Figs). In each case that we considered, our overall finding–that sentinel

hosts can be helpful to reduce the EDP–was unchanged.

Throughout, we considered a crop population of PC = 1000 plants. The size of the sentinel

population, PS, varied between simulations. We initialised each simulation with a single Unde-

tectable infected host, with the probability of that host being a crop or a sentinel plant deter-

mined by their respective proportions within the population.

2.5 Computational implementation

As noted above, for a given number of sentinels, PS, added to the population, we performed

simulations of pathogen spread using the Gillespie stochastic simulation algorithm (direct

method) [64], generating stochastic epidemic curves in which the numbers of Undetectable

and Detectable crops and sentinels were tracked over time until the entire population became

infected (S11A Fig). Then, given the remaining parameters defining the surveillance strategy

(values of N, NC, NS and Δ), we implemented the corresponding monitoring programme on

these simulated epidemics as described in Section 2.3 (S11B and S11C Fig). For each sampling

run and subsequent detection completed on a unique epidemic curve, we recorded the total

prevalence of infection in crop plants when the pathogen was discovered (i.e., we recorded the

value of UC+DC on discovery) (S11C Fig). Repeatedly implementing the same surveillance

strategy on many simulated epidemic curves, we obtained a distribution on the discovery prev-

alence amongst crop plants for that surveillance strategy and computed the EDP as the mean

value of that distribution (note that this does not include the prevalence amongst sentinel

plants, since we assume that damage to the crop population is the primary concern for com-

mercial growers) (S11D Fig). For any given choice of N and Δ, the baseline EDP for that strat-

egy is computed in the same way, setting PS (and thus also NS) equal to 0. Throughout, the

EDP for a given surveillance strategy (choice of PS, NC, NS, and Δ) was calculated by perform-

ing sampling on 25,000 simulated epidemic curves.

Initially, we considered the effects of implementing a monitoring programme without sen-

tinel plants (the baseline case described in Section 2.2) (Section 3.1). A schematic of the

reduced version of the model system in this case is shown in Fig 2A. In the absence of sentinel

plants, the monitoring programme requires selecting a random sample of NC = N plants at reg-

ular time intervals Δ and checking for the presence of Detectable plants (DC) in the sample

(Fig 2B). Doing so, we computed the baseline EDP for sample sizes NC = 25, 30, 35, . . ., 200

and sample intervals Δ = 30, 35, 40, . . ., 150 days (Fig 2C).

Table 1. The epidemiological parameters of the model, their meanings, and their baseline values chosen to be consistent with X. fastidiosa infection in O. europaea
(crop) and C. roseus (sentinel). Other model parameter values are considered in S2 Text, S1–S2 Tables, and S2–S10 Figs.

Parameter Meaning Value Justification

βC Transmission coefficient for Detectable crops 5×10−5 Chosen so that βCPC = 0.05 [61]

βS Transmission coefficient for Detectable sentinels 5×10−5 Assumed

εC Transmission scaling factor for Undetectable crops 0.015 [61]

εS Transmission scaling factor for Undetectable sentinels 0.1 Assumed

γC Mean duration of crop Undetectable period 452 days [35]

γS Mean duration of sentinel Undetectable period 49 days [35]

https://doi.org/10.1371/journal.pcbi.1010884.t001
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Next, we considered three fixed values for the number of sentinels (PS) added to the popula-

tion: PS = 50, PS = 100 and PS = 200 (Section 3.2). We allowed the total sample size N to take

values N = 25, 50, 75, . . ., 200, and considered five values for the sample interval: Δ = 30, 60,

90, 120 and 150 days. In each case, we allowed the number of sentinels included in the sample

(NS) to be chosen in the range [0, min(PS, N)], and applied a Bayesian optimisation algorithm

([65,66]; see also S3 Text) to identify the choice of NS for which the EDP was maximally

reduced compared to the baseline level. The choice of upper limit on NS ensures that the num-

ber of sentinels sampled does not exceed the total sample size (N) or the total number of senti-

nels available (PS).
Finally, we considered varying the number of sentinels in the population (PS) and in the

sample (NS) simultaneously and sought to identify the pair of values ðP�S ;N
�
S Þ that maximised

the reduction in EDP compared to the baseline (Section 3.3). In that case, we allowed the total

sample size N to take values N = 25, 30, 35, . . ., 200, and the sample interval to take values Δ =

30, 35, 40, . . ., 150 days. For each pair of (N, Δ) values we allowed the total number of sentinels

added to the population (PS) to vary in the range [0,350], and the number of sentinels included

in the sample (NS) to vary in the range [0, min(PS, N)]. The upper bound of 350 on PS was

selected following trial simulations that indicated this would be sufficient to identify the opti-

mal value of PS across the (N, Δ) range considered. For each (N, Δ) pair, we applied a Bayesian

optimisation algorithm to determine the optimal values of PS and NS, and constrained it to

ensure that the number of sentinels included in the sample could not exceed the total number

of sentinels available in the population (S3 Text).

3. Results

3.1 The baseline case–a monitoring programme without sentinel plants

We first considered the effects of implementing a monitoring programme without sentinel

plants (the baseline case described in Section 2.2). As expected, lower EDPs were achieved

Fig 2. The baseline case–the model in the absence of sentinel plants. A. Schematic illustrating how crop plants progress through the model compartments,

and the rates at which transmissions occur. Individual hosts begin in the Healthy compartment (HC), move to the Undetectable compartment (UC) upon

infection and progress to the Detectable compartment (DC) once visual symptoms develop. A Detectable crop infects Healthy crops at per capita rate βC whilst

an Undetectable crop generates infections at the scaled per capita rate εCβC. B. Schematic illustrating the implementation of the monitoring programme.

Monitoring begins at a random time δ relative to the time of primary infection, where δ is drawn from a U[0, Δ] distribution. Random samples of size N are

subsequently selected from the population at regular time intervals Δ. Infection is detected at a given time if a Detectable plant is contained in the sample

selected at that time. C. The baseline EDP, expressed as a percentage of the total crop population size, as the sample size (N = NC) and sample interval (Δ) vary.

https://doi.org/10.1371/journal.pcbi.1010884.g002
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with larger sample sizes NC (inspecting more plants) and smaller sample intervals Δ (inspect-

ing more frequently) (Fig 2C). These baseline values provide a point of comparison that we

will use to evaluate the relative effects of sentinel-based strategies in subsequent sections. We

also performed sensitivity analyses for different baseline parameter values (S2 Text, S1 Table

and S2 and S3 Figs). In every case that we considered, the qualitative behaviour of the baseline

EDP as N and Δ were varied was unchanged.

3.2 Introducing sentinel plants–choosing PS and NS carefully is critical

We next considered introducing sentinel plants to the population using the full model

described in Section 2.1. This raises two important questions.

i. How many sentinels should we add to the population (PS)? Although the relatively fast

symptom development of sentinels facilitates the rapid detection of disease, this is only ben-

eficial if the faster discovery time corresponds to a lower EDP. Since adding sentinels will

also increase the rate of pathogen transmission, including too many sentinels negates the

benefits of fast detection, particularly if (as assumed here) sentinel plants are more infectious

than crop plants when Undetectable.

ii. How many of those sentinels should we include in the sample (NS)? Although a natural

choice may be to sample preferentially from the available sentinel population (i.e. to include

as many sentinels as possible in the sample), this is not necessarily optimal. For example, if

the number of sentinels in the population is close to the sample size, this strategy would

lead to frequent repeated sampling of the same set of plants, resulting in a reduction in the

information gained per sample (see S1 Text and S1 Fig).

In this section, we demonstrate how choosing PS and NS carefully is critical to avoid the

introduction of sentinel plants having a negative effect and instead achieve the maximum pos-

sible reduction in EDP for a given sampling effort. For almost all values of PS, N and Δ that we

considered, when the number of sentinels included in the sample was optimised (as indicated

in Fig 3), a reduction in the EDP compared to the baseline value was achieved (Figs 4A, 4B and

4C). However, when the number of sentinels in the population or the sample was chosen non-

optimally, sentinel plants were less beneficial and in some cases detrimental (Fig 3A).

As described in Section 2.5, we considered three fixed values for the number of sentinels

added to the population (PS = 50, PS = 100 and PS = 200) and a range of sample sizes (N) and

sample intervals (Δ). For each combination of (PS, N, Δ) that we considered, we ran the Bayes-

ian optimisation algorithm (see Section 2.5 and S3 Text) to identify the choice of NS corre-

sponding to the greatest reduction in EDP compared to the baseline value for that (N, Δ) pair.

We denoted this optimal choice of NS by N�S . For example, in the case PS = 50, N = 50, and Δ =

30 days, the optimisation indicated that the maximum reduction in EDP was achieved when

N�S ¼ 17 sentinels were included in each sampling round (out of a total possible maximum of

50) (Fig 3A). This choice of sampling strategy (indicated by the green circle) led to a 16%

reduction in the EDP compared to the baseline value. When NS was instead chosen to take

another of the values considered, smaller reductions (or even increases) in the EDP were

achieved. The optimal number of sentinels N�S to include in the sample across the range of

sample sizes (N) and sample intervals (Δ) is shown for PS = 50, 100 and 200 in Figs 3B, 3C and

3D respectively, with the corresponding reductions in the EDP compared to the baseline

shown in Figs 4A, 4B and 4C.

The optimal number of sentinel plants to include in the sample depended strongly on the

sample interval and on the relationship between the sample size and the total number of senti-

nels available (Figs 3B, 3C and 3D). When Δ = 90 days, 120 days or 150 days, the optimal

PLOS COMPUTATIONAL BIOLOGY Using ‘sentinel’ plants to improve early detection of invasive plant pathogens

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010884 February 2, 2023 10 / 24

https://doi.org/10.1371/journal.pcbi.1010884


strategy in every case we considered was to sample the maximum possible number of sentinels

(i.e. N�S ¼ minðPS;NÞ). Since this result is identical for all three of those cases, they are repre-

sented by the single yellow line in Figs 3B, 3C and 3D. However, for the shorter sample inter-

vals of Δ = 30 and 60 days (blue and pink lines respectively), the optimal monitoring strategy

involved sampling a combination of sentinel plants and crop plants. In other words, in those

scenarios it was preferable to sample fewer than the maximum allowable number of sentinels

(i.e. N�S < minðPS;NÞ) for a range of choices of PS and N, particularly when the total number

of sentinels in the population was not substantially larger than the sample size.

These results may be explained by noting that, if the total number of sentinels available to

sample from (PS) is not substantially larger than the sample size (N), then sampling the maxi-

mum allowable number of sentinels (min(PS, N)) results in many or all of the same plants

Fig 3. The optimal number of sentinel plants to include in the sample depends on the sample size, sample interval and the total number of sentinels in

the population. A. The effect of varying the number of sentinels included in the sample (NS) on the percentage change in EDP compared to the baseline level,

in the case PS = 50, N = 50, Δ = 30 days. The number of sentinels in the sample for which the reduction in EDP is maximised (N�S ¼ 17) is indicated by the

green circle. Black dashed line marks the baseline EDP. B. The optimal number of sentinels N�S to include in the sample when PS = 50, as the sample size (N)

and sample interval (Δ) vary. Solid black line marks the maximum possible number of sentinels that could be sampled at any time (min(PS, N)). Grey shading

marks the unfeasible region in which NS exceeds this maximum. Green circle marks the case considered in A (PS = 50, N = 50, Δ = 30 days). C. The analogous

figure to B, but with PS = 100 sentinels added to the population. D. The analogous figure to B, but with PS = 200 sentinels added to the population.

https://doi.org/10.1371/journal.pcbi.1010884.g003
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being repeatedly selected in every sampling round. If the sample interval is short, this leads to

the frequent re-inspection of plants whose disease-free status was already established in the

recent past, limiting the information gained per sampling round. However, this effect dimin-

ishes as the sample interval increases, because the disease status of plants inspected in the pre-

vious sample becomes less informative of their state at the next sample time. Thus, when the

sample interval is large, sampling the maximum possible number of sentinels is the optimal

strategy (N�S ¼ minðPS;NÞ) regardless of the sample size (N) or the total number of sentinels

available (PS). These results confirm the need to consider the division of the sample between

crops and sentinels as a variable quantity that should be chosen carefully based on the precise

conditions under which surveillance is taking place. If the number of sentinels included in the

Fig 4. Optimal reductions in EDP compared to the baseline level. A. The best achievable percentage changes in the EDP compared to the baseline level for

each (N, Δ) pair when PS = 50, corresponding to the optimal strategies identified in Fig 3B. Green circle marks the case considered in Fig 3A (PS = 50, N = 50,

Δ = 30 days). Note that the baseline level depends on N and Δ (Fig 2C, S12A Fig), so the relative changes in EDP shown here are not a measure of the resultant

EDP. The resultant EDP decreases with sampling effort (S12B, S12C and S12D Fig). B. The analogous figure to A, but with PS = 100 sentinels added to the

population and results corresponding to the strategies identified in Fig 3C. C. The analogous figure to A, but with PS = 200 sentinels added to the population

and results corresponding to the strategies identified in Fig 3D. D. Combinations of the sample size N and sample interval Δ for which adding PS = 50 (dark

green), PS = 100 (light green) or PS = 200 (blue) sentinels to the population led to the greatest reduction in the EDP compared to the baseline level (of the three

values of PS considered).

https://doi.org/10.1371/journal.pcbi.1010884.g004
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sample is suboptimal, smaller reductions in the EDP will be achieved, and sentinel plants may

even have a detrimental effect (Fig 3A).

As expected, the resultant EDP following the implementation of the optimal sentinel strat-

egy decreased with greater sampling effort: taking larger samples and/or sampling more fre-

quently always led to a lower EDP (S12 Fig). However, larger percentage reductions in the

EDP relative to the baseline level were mostly achieved when the sampling effort was low (i.e.

when the sample size was small and/or the sample interval was large) (Figs 4A, 4B and 4C).

This is because, when the sampling effort was low, the baseline EDP was much higher to begin

with (Fig 2C). In those cases, the potential for the use of sentinel plants to lead to a large rela-

tive improvement in the EDP was greater than when the sampling effort was high and the

baseline EDP was already low.

As well as affecting the magnitude of the reduction in EDP compared to the baseline, the

choice of sample size and sample interval also affected the total number of sentinels for which

the greatest reduction was achieved (Fig 4D). For example, when the sample size was N = 25

and the sample interval was Δ = 150 days, choosing PS = 50 led to the greatest reduction in

EDP of the three values considered (54%, compared to a 50% reduction when PS = 100 and a

39% reduction when PS = 200). However, for N = 100 and Δ = 30 days, choosing PS = 200 gave

the greatest reduction in EDP (11%, compared to 2% and 6% when PS = 50 and 100, respec-

tively). Overall, introducing fewer sentinels was preferable when the sampling effort was either

low or very high, with larger numbers preferable for intermediate sampling efforts (Fig 4D).

This variation in the optimal number of sentinels for different values of (N, Δ) reflects the

crucial trade-off between the benefits and drawbacks of sentinel plants. Although adding senti-

nels to the population helps to facilitate early detection, it also leads to an increased rate of

pathogen transmission (particularly if sentinels are more infectious than crop plants when

Undetectable, as assumed here). Therefore, including more sentinel plants is only beneficial if

the advantage gained from sampling them outweighs the impact of increased transmission.

For small sample sizes N, the capacity to exploit large numbers of sentinel plants is limited.

Although increasing the number of sentinels is beneficial up to a point, since it allows for sam-

pling without frequently inspecting the same sentinel plants, there is a threshold number of

sentinels to introduce beyond which there will be no further improvement in detection to

counterbalance the concurrent increase in overall transmission. The benefit of increasing PS is

more limited when the sample interval Δ is large, since in that scenario a past negative sample

is less likely to indicate that the current sample will be negative. Thus, the same sentinels may

be resampled without a substantial correlation between successive samples. Smaller numbers

of sentinels are therefore preferable when the sampling effort is low (Fig 4D). At the opposite

extreme, when sampling is very intensive (large sample size N and small sample interval Δ)

then the baseline EDP is low (Fig 2C) and the potential for sentinel plants to reduce it is lim-

ited. In such a case, including a very large number of sentinels in the population is also not

optimal, since this limited reduction is outweighed by the consequent higher rate of transmis-

sion. Therefore, smaller numbers of sentinels are also preferable when the sampling effort is

very high (Fig 4D). However, for intermediate sampling efforts, larger numbers of sentinels

perform better, since the capacity to exploit them and the scope to reduce the EDP compared

to the baseline are less restricted. These results emphasise that judicious selection of the total

number of sentinel plants added to the population is required to ensure that the benefits of

including them are sufficient to offset their drawbacks in terms of increasing transmission.

This emphasises the need for an epidemiological modelling framework as provided here to

guide the number of sentinel plants to introduce, and we explore how the number of sentinel

plants can be optimised in the next section.
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3.3 Optimising the number of sentinel plants included in the population

We next considered optimising the total number of sentinel plants added to the population

(PS) and the number of sentinels included in the sample (NS) simultaneously. As outlined in

Section 2.5, for each (N, Δ) pair considered we applied a constrained Bayesian optimisation

algorithm to identify the values ðP�S ;N
�
S Þ that reduced the EDP most compared to the baseline

value.

Including sentinel plants in the population was beneficial across the range of sampling

strategies considered, with the optimal number of sentinels added to the population (P�S)

greater than zero for all values of (N, Δ) (Fig 5A). This shows that deploying sentinel plants has

Fig 5. Optimising the number of sentinels to include in the population. A. The optimal number of sentinel plants to include in the population, P�S , for which

the maximal reduction in the EDP compared to the baseline level is achieved (if NS is also chosen optimally). Region 1: When the sampling effort was small, P�S
was low. P�S increased for larger sample sizes (moving to the right on the figure) and smaller sample intervals (moving downwards on the figure). Region 2: P�S
dropped again when the sampling effort was very high. In that region, the baseline EDP was very low (Fig 2C), and the scope for reducing it insufficient to

offset the increase in transmission rate caused by adding large numbers of sentinel plants into the population. Region 3: When the sample interval (Δ) was

large, the optimal number of sentinel plants to include in the population was equal to the sample size (N) (contour lines are vertical). In that region, the sample

interval was long enough to allow for repeated sampling of the same plants, eliminating the need for PS to exceed the sample size. Region 4: When the sample

interval (Δ) was small, the optimal total number of sentinels in the population was substantially larger than the sample size. In that region, a large sentinel

population was necessary to avoid frequent repeated sampling of the same plants. B. The percentage change in the EDP compared to the baseline value at the

optimum, achieved when PS ¼ P�S and NS ¼ N�S . C. The resultant value of the EDP at the optimum, expressed as a percentage of the total crop population.

https://doi.org/10.1371/journal.pcbi.1010884.g005
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the potential to reduce the EDP. However, the optimal number of sentinels to use varied sub-

stantially with the sample size (N) and sample interval (Δ). Consistent with Fig 4D, P�S was low

when the sampling effort was small (region 1 in Fig 5A), with the optimal number of sentinels

increasing for larger sample sizes and smaller sample intervals. This is again due to the benefit

of avoiding repeated sampling of the same plants when the sampling effort is high. By includ-

ing more sentinels, the chance of repeatedly sampling the same sentinel plants is reduced. As

in Fig 4D, P�S dropped again when the sampling effort was very high (region 2 in Fig 5A). In

that region, the baseline EDP was very low (Fig 2C), and the scope for reducing it insufficient

to offset the increase in transmission rate caused by adding large numbers of sentinel plants

into the population. When the sample interval (Δ) was large, the optimal number of sentinel

plants to include in the population was equal to the sample size (N) (region 3 in Fig 5A in

which the contour lines are vertical). In that region, the sample interval was long enough to

allow for repeated sampling of the same plants, eliminating the need for PS to exceed the sam-

ple size.

For almost all of the (N, Δ) values considered, the optimal number of sentinels to include in

the sample (N�S ) was the maximum possible (i.e. N�S ¼ minðPS;NÞ) (S13 Fig). As observed in

Section 3.2, preferential sampling of sentinel plants was always optimal when the sample

interval (Δ) was large, since the same plants could be sampled repeatedly while still gaining

new information about pathogen transmission each time. Sampling the maximum possible

number of sentinels was also optimal when the sample interval and sample size were both

small. In that region, the optimal total number of sentinels in the population was substan-

tially larger than the sample size (region 4 in Fig 5A), meaning that preferential sampling of

sentinels did not result in repeated sampling of the same plants. N�S only fell below min(PS,

N) when the sampling effort was very high (large N and small Δ). In that region, the total

number of available sentinels dropped below the sample size (region 2 in Fig 5A) and the

issue of repeated sampling again became relevant. However, since the sample size substan-

tially exceeded the number of sentinels in that region, repeated sampling had a relatively

small effect and the consequent reduction in the optimal proportion of sentinels to sample

was not large (S13 Fig).

When PS and NS were chosen optimally, reductions in the EDP compared to the baseline

value were achieved for almost all (N, Δ) values considered (Fig 5B). Of course, since the base-

line itself (Fig 2C) can theoretically always be achieved by choosing PS = 0, we would not

expect the optimal resultant EDP to exceed the baseline substantially for any choice of N and

Δ. However, in cases where the optimal sentinel strategy has little effect on the EDP, small

increases in the EDP compared to the baseline may still occur due to the stochasticity of our

simulations. This was observed for some very large values of N and very small values of Δ
(Fig 5B).

As in all previous cases, the resultant EDP decreased with greater sampling effort: increas-

ing the sample size (N) and/or decreasing the sample interval (Δ) always led to a smaller EDP

(Fig 5C).

3.4 Robustness of the results to the parameter values used

As far as possible, the epidemiological parameters used in our analyses were chosen based on

literature estimates for X. fastidiosa infection in O. europaea and C. roseus (Table 1). However,

reported estimates were not available for all parameters. In particular, we were required to

assume values for the transmission coefficient for Detectable sentinels (βS) and the transmis-

sion scaling factor for Undetectable sentinels (εS) (see Section 2.4). Therefore, we also con-

ducted supplementary analyses to determine how variation in the model parameters affected
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our results. These analyses are crucial for demonstrating the generalisability of our results. As

well as varying βS and εS, we considered variation in the transmission scaling factor for Unde-

tectable crops (εC), the mean durations of the crop and sentinel Undetectable periods (γC and

γS), the crop population size (PC) and the initial number of Undetectable infected individuals

(U0). For each of these, we generated plots analogous to Fig 5 for two different values of the rel-

evant parameter (S2 Text, S1–S2 Tables and S4–S10 Figs).

Although the optimal total number of sentinel plants to include in the population (P�S ; pan-

els A and B in each of S4–S10 Figs) exhibited some variation with the changes in parameter

values, the overall results remained qualitatively similar in most respects. In half of the cases

that we considered, the main qualitative change was that the drop in P�S observed in region 2 of

Fig 5A did not occur (S4, S5, S8, S9 and S10 Figs). In general, this arose in cases in which senti-

nel plants became relatively more beneficial due to the parameter change–for example, when

the mean duration of the sentinel Undetectable period (γS) or the relative infectiousness of

Undetectable sentinels (εS) was reduced. In some other cases, when the parameter change led

to sentinel plants becoming less beneficial, such as increasing the transmission coefficient for

Detectable sentinels (βS) or the relative infectiousness of Undetectable sentinels (εS), then

smaller numbers of sentinels were preferable (S4, S6, S7 and S8 Figs). The optimal number of

sentinels was also predictably reduced when the crop population size was halved (PC = 500; S9

Fig), confirming that sentinel-based strategies must be assessed in context and tailored to the

specific crop population being considered.

As expected, larger percentage reductions in the EDP compared to the baseline were

observed for parameter changes that increased transmission amongst crop plants or that made

sentinel plants relatively more beneficial (panels C and D in S4, S5, S6, S8 and S10 Figs). This

included increasing the relative infectiousness of Undetectable crops, increasing the initial

number of infected hosts, and decreasing the infectiousness of sentinels or the mean duration

of their Undetectable period. Similarly, for parameter changes that made sentinel plants rela-

tively less beneficial, such as increasing the mean duration of their Undetectable period or

their relative infectiousness, smaller reductions in the EDP were observed (S4, S6 and S8 Figs).

The resultant EDP at the optimum (panels E and F in each figure) remained qualitatively

similar with variation in each parameter. In every case, increasing the sampling effort (increas-

ing the sample size N and/or reducing the sample interval Δ) led to a smaller resultant EDP.

The resultant EDP also remained quantitatively similar for almost all parameter changes, with

the only substantial change occurring when the transmission scaling factor for Undetectable

crops was increased from εC = 0.015 to εC = 0.25 (S5 Fig).

4. Discussion

An important challenge in plant disease management is to detect invading pathogens before

they become widespread in the host population. In this article, we have considered how early

detection of invasive pathogens can be aided by the introduction of sentinel plants, which are

alternative hosts that display symptoms of infection more quickly than the main host species.

We have explored the trade-off between faster detection of the pathogen using sentinel plants

and the potential for sentinel plants to increase transmission, which is likely if the onset of

symptoms is associated with high infectivity. Overall, our results indicate that sentinel plants

have the potential to facilitate substantial reductions in the EDP for a wide range of sampling

efforts (Figs 4A, 4B, 4C and 5B). The practical benefits of a reduced EDP are multiple. A lower

prevalence of infection on pathogen discovery minimises the number of plants that must be

removed, with benefits including lowering the total value of damaged crops, a lower reduction

in crop yield and a reduced logistical cost of plant removal. Fast discovery of an invading
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pathogen also limits the opportunity for dispersal to other locations, meaning that incorporat-

ing sentinel plants into surveillance programmes may be beneficial for disease containment on

a broader scale [14,26]. Discovering the pathogen at a low prevalence may increase the chance

that local eradication is feasible, although evaluating whether the benefits of sentinel plants are

sufficient to allow this would require control strategies to be accounted for explicitly in our

model.

In addition to the overall potential of sentinel plants to facilitate early detection, our results

highlight that both the optimal number of sentinel plants to introduce to the population and

the optimal proportion of sentinel plants to include in each sample vary according to the sam-

pling resources available (Figs 3, 4, 5A). The deployment of sentinel plants can be substantially

less beneficial, or even detrimental, if either of these quantities are chosen without carefully

assessing the impact of the monitoring programme in advance (Figs 3A, 4A, 4B, 4C).

In this study, our focus was investigating the degree to which including sentinel plants in a

surveillance programme could reduce the EDP. Although our analyses suggest that sentinel

plants may be effective for this purpose, there is clear motivation to consider these results

within a wider economic context. In practice, an important consideration is the cost of imple-

menting the surveillance programme, which must be compared against the benefits of fast

detection of the invading pathogen. Further research is needed to quantify the economic costs

of surveillance and control, accounting for the cost of sampling as well as the cost of removing

infected plants and the resulting loss in plant value. The specific objective of the control strat-

egy also needs to be carefully considered. For example, if reducing the opportunity for the

pathogen to be exported to a new location prior to detection is a particular focus, the decision

maker may wish to consider the ‘global’ epidemic cost associated with pathogen exportation in

addition to the ‘local’ cost incurred in the controlled region [20,26], or to seek surveillance

strategies that minimise the detection prevalence in the sentinel population as well as the crop

population (for a preliminary analysis, see S4 Text and S14 Fig).

Although here we considered X. fastidiosa infection in O. europaea and C. roseus as a case

study, our model provides a general framework that can be used to assess sentinel-based sur-

veillance strategies in other scenarios. For example, we could consider alternative sentinel spe-

cies by adjusting the model parameters appropriately. One possibility for an alternative

sentinel species is alfalfa, a known host of many X. fastidiosa strains. A benefit of alfalfa is that

it is itself economically valuable, which may increase its attractiveness to growers. However,

alfalfa has a longer presymptomatic period than C. roseus, of around 6–9 months [67], which

could limit its effectiveness as a sentinel host. An exploration of this trade-off may require the

incorporation of economic considerations in our epidemiological modelling approach. Our

framework could similarly be adapted to apply to alternative pathosystems. For example, mon-

itoring programmes for citrus greening disease (a bacterial infection of citrus with causal

agents Candidatus Liberibacter spp.) are hindered by a long period of presymptomatic infec-

tion in mature trees [37,38]. Younger trees develop symptoms more quickly [37,42], but also

tend to support more rapid growth rates in the vector population [68,69]; our model could be

used to explore their suitability for use as sentinel plants, taking this drawback into account.

An important limitation of our modelling framework is that we did not include vector

dynamics explicitly. Since our goal was to use the simplest possible model to investigate the

potential of sentinel plants to facilitate early detection of invasive pathogens, we instead

assumed that vector behaviour was captured implicitly through the model parameterisation

(specifically, through the parameters βC and βS, which characterise the rate at which the patho-

gen is transmitted between hosts). Whilst a similarly implicit characterisation of vector behav-

iour has been used in previous modelling studies (see, for example, [26,27,61]), it does limit

the possibility of altering the assumptions underlying the vector dynamics and observing the
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resulting effects on epidemiological dynamics. For example, our model assumes that vectors

are equally attracted to crop and sentinel plants. If instead vectors exhibit a strong preference

for crop plants, or are simply more likely to feed on them due to their much larger size, the rel-

ative rate at which sentinel plants become infected may be too low for them to be useful as

early warning beacons for infection. On the other hand, if vectors preferentially feed on senti-

nel plants their benefit may be greater, as the rate at which crop plants become infected will be

reduced. Similarly, we assume that vectors make no distinction between hosts that are display-

ing symptoms and hosts that are not. This is not necessarily the case–for example, vectors of X.

fastidiosa in grapevine appear to prefer feeding on nonsymptomatic hosts rather than symp-

tomatic ones [70]. Such a preference may alter the transmission dynamics between crop and

sentinel plants, since sentinels are assumed to remain nonsymptomatic for a shorter period of

time than crop plants. These dynamics can be approximated in our model by altering the

transmission rate parameters (see S15 Fig for an example in which the susceptibility to infec-

tion of sentinels is half that of crop plants). However, extending our model to include explicit

vector compartments would allow us to perform a thorough investigation into the influence of

vector ecological dynamics on the effectiveness of sentinel-based surveillance strategies.

Throughout, we assumed that visual inspection was perfectly sensitive for identifying infec-

tion in Detectable plants and not at all sensitive for Undetectable plants, with no distinction

between crop and sentinel hosts (see Section 2.3). However, allowing for false negatives in

Detectable plants and/or positives in Undetectable plants would affect the EDP and the opti-

mal number of sentinels to include in the population for a given sample size and sample inter-

val. If the chance of testing errors differed between crop and sentinel hosts, the optimal

allocation of sampling effort between crops and sentinels would vary. Although a detailed

exploration of the impact of varying detection sensitivities is beyond the scope of this study,

this is a key focus of our ongoing research.

Our model could also be extended to incorporate additional realism in other ways. For

example, we could extend the transmission model considered here to account for the spatial

structure of the population, allowing the likelihood of transmission between any two plants to

depend on the distance between them [19,21,26–28,30]. Considering a spatially heterogeneous

model would raise additional questions regarding the optimal spatial placement of sentinel

plants and their selection as part of a monitoring programme, particularly if the risk of patho-

gen invasion also varied in space [71]. In addition to spatial heterogeneities, we could also con-

sider temporal heterogeneities in the probability of invasion and detection that arise due to

seasonal effects that impact vector dynamics [55,72] and the level of symptoms displayed by

infected hosts [36,73,74]. These heterogeneities motivate considering temporally varying sam-

pling strategies that allow sampling resources to be optimally allocated throughout the year.

Further avenues for investigation include incorporating a latent period (time from when infec-

tion occurs to when the plant becomes infectious) in the model, or more generally a graduated

progression through model compartments in which symptom expression and/or the likeli-

hood of detection increase between successive compartments [75–77].

In summary, our results represent a step towards understanding how sentinel plants may

be used to facilitate the early detection of invasive plant pathogens. As we have shown, senti-

nels have the potential to reduce the expected incidence of disease upon pathogen discovery

substantially, thereby increasing the chance of pathogen containment and lowering the cost of

reactive control. These results encourage further research into the economic and logistical via-

bility of using sentinel plants as a means of combatting the problem of presymptomatic or

asymptomatic infection, as well as into the precise epidemiological characteristics of particular

sentinel-crop-pathogen combinations. Monitoring programmes involving sentinel plants have

the potential to reduce the negative impacts of a range of invading plant pathogens.
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