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1.	Introduction	

Recently,	 algorithmic	 bias	 has	 attracted	 explosive	 attention	 in	 both	 industry	 and	 academia.	

Extant	 research	 has	 mostly	 approached	 examining	 algorithmic	 bias	 from	 a	 technical	

perspective,	with	many	studies	attempting	to	design	fair	algorithmic	models	(Khademi	et	al.,	

2019;	Xu	et	al.,	2020),	collect	better	quality	data	(Lu	et	al.,	2019),	and	operationalize	different	

types	of	fairness	for	AI	models	(Kasy	&	Abebe,	2020).	Few	studies	have	empirically	investigated	

the	decision	 bias	of	 human-machine	 collaborative	 decision-making,	wherein	 human	experts	

have	the	final	say	after	working	with	the	algorithms.		

The	 importance	 of	 investigating	 this	 topic	 is	 twofold.	 First,	 human-machine	 collaboration	

serves	as	an	 important	decision-making	paradigm	in	many	organizations	today	(Autor	et	al.,	

2019;	Daugherty	&	Wilson,	2018).	Particularly,	human	experts	are	 increasingly	employed	to	

work	 alongside	 AI	 in	 many	 complex	 decision-making	 contexts	 where	 the	 current	 industry	

standard	of	AI	predictive	power	is	far	from	a	level	that	can	warrant	full	automation.	Further,	

societal	demands	for	accountability,	regulations,	and	ethical	values	require	humans	to	stay	in	

the	 loop	with	 the	machines	even	 in	decision	contexts	with	significantly	higher	AI	predictive	

power.	 Second,	 besides	 machines,	 research	 has	 shown	 that	 humans	 make	 many	 biased	

decisions	themselves	(Bertrand	&	Mullainathan,	2004;	Tversky	&	Kahneman,	1974).	

Furthermore,	studies	have	also	empirically	shown	that	perceptions	of	decision	fairness	differ	

among	people,	depending	on	the	decision	context,	personal	ethical	values,	and	the	roles	people	

take	in	each	context	(e.g.,	whether	they	are	directly	affected	by	the	decisions,	are	the	decision-

makers,	 or	 are	 the	 designers	 of	 the	 decision-making	 model),	 how	 they	 are	 personally	
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rewarded/penalized	based	on	the	decisions	they	make	and	so	on.	It	is	therefore	crucial	to	move	

beyond	managing	the	bias	of	the	algorithm	component	alone	to	also	consider	the	perceptions	

and	biases	of	the	human	component	(Adomavicius	&	Yang,	2019)	and,	importantly,	to	examine	

the	bias	of	the	human-machine	collaborative	decision-making	entity	as	a	whole.	

The	 few	 studies	 in	 extant	 literature	 that	 investigated	 decision	 bias	 in	 human-machine	

collaboration	(e.g.	Rhue	2019,	Vaccaro,	2019)	have	not	looked	at	whether	different	levels	of	AI	

bias	have	varying	effects	on	the	decision	bias	of	the	human-machine	teams.	This	is	important	

to	examine	because	of	two	reasons.	First,	the	degree	of	AI	bias	often	fluctuates,	making	it	crucial	

to	understand	the	varying	effects	of	different	levels	of	AI	bias	on	the	decision	bias	of	human-

machine	teams.	Second,	it	has	not	been	empirically	studied	whether	technical	approaches	of	

bias	mitigation	from	the	algorithm	side	actually	mitigate	bias	in	algorithmic	decision-making	

wherein	human	experts	still	play	a	major	role.	Furthermore,	most	of	these	studies	have	also	not	

demonstrated	whether	 different	 levels	 of	 AI	 bias	 have	varying	 impacts	 on	 human	decision-

makers’	perceptions	of	fairness.	Understanding	this	can	potentially	further	explicate	decision-

makers’	behaviors	when	working	with	AI	in	the	examination	of	human-machine	teams’	decision	

bias.	 It	can	 	also	help	organizations	better	motivate	their	employees	and	sustain	employees’	

positive	morale	 for	 collaborating	with	 the	machines.	 Lastly,	most	 of	 these	 studies	 have	 not	

considered	 the	 possible	 exposure	 effect	 over	 time	 resulting	 from	 human	 decision-makers’	

repeated	 interactions	 with	 the	 AI.	 This	 is	 worth	 investigating	 because	 studies	 in	 the	 firm	

progress	 function	 literature	 (Dutton	 &	 Thomas	 1984,	 Lundberg	 1961)	 show	 that	 many	

organizational	processes	significantly	improve	in	efficacy	over	time,	simply	through	the	act	of	

being	carried	out	by	employees	repeatedly	(exposure).	

Thus,	we	wish	to	examine	the	following	research	questions,	specifically	in	the	context	of	human-

machine	collaboration	for	complex	organizational	decision-making:	RQ1:	What	is	the	effect	of	

AI	prediction	bias	(error	rate	imbalance1	between	groups)	on	firm	profit	and	human-machine	

teams’	 decision	 bias?	 	RQ2:	 What	 is	 the	 effect	 of	 AI	 prediction	 bias	 (error	 rate	 imbalance	

between	 groups)	 on	 human	 decision-makers’	 perceied	 fairness?	 RQ3:	What	 is	 the	 effect	 of	

exposure	 (number	 of	 decision	 periods	 where	 decision-makers	 work	 with	 the	 AI)	 on	

organizational	profit	and	human-machine	teams’	decision	bias)?		

 
1 i.e., inequality 
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To	 address	 these	 three	 questions,	 we	 conduct	 a	 controlled	 economic	 experiment	 with	 a	

repeated-round	 design.	 We	 assign	 participants	 with	 a	 task	 that	 models	 a	 complex	

organizational	decision-making	process	wherein	human	decision-makers	(DMs)	work	with	an	

AI	repeatedly	over	10	decision	periods	to	evaluate	consumer	loan	applications.	We	use	 loan	

data	from	a	large-scale,	historic	dataset	from	Lending	Club	and	manipulate	the	AI	predictions	to	

create	two	experimental	conditions:	(1)	Prediction	Bias,	where	DMs	work	with	AI	predictions	

that	discriminate	against	one	group	of	loan	applicants	and	favor	another,	and	(2)	No	Bias,	where	

DMs	work	with	AI	predictions	that	treat	the	two	loan	applicant	groups	equally.		

We	find	that	human	DMs	through	increasing	exposure	with	the	AI	learn	to	adapt	to	a	biased	

algorithm,	implicitly	detect	the	bias	in	the	AI,	adjust	their	behavior,	improve	significantly	their	

performance,	 and	 most	 importantly,	 outperform	 the	 biased	 AI	 working	 alone	 in	 terms	 of	

reducing	decision	bias	and	increasing	organizational	profit.	

2.	Related	Studies	

We	 review	 here	 the	 experimental	 studies	 examining	 decision	 bias	 in	 the	 realm	 of	 human-

machine	 collaborative	 decision-making.	 Rhue	 (2019)	 showed	 that	 biased	 algorithmic	

predictions	 influenced	 human	 decision-makers	 through	 the	 anchoring	 effect,	 making	 them	

make	 more	 biased	 final	 decisions	 compared	 to	 the	 humans	 working	 without	 algorithmic	

predictions.	In	addition,	the	author	showed	that	informing	the	human	DMs	with	the	AI’s	error	

rate	reduced	the	errors	in	the	humans’	final	decisions	(Rhue,	2019).		

Also	 focused	 on	 the	 anchoring	 effect	 of	 AI	 bias	 on	 human	 decision-makers’	 decision	 bias,	

Vaccaro	 (2019)	 showed	 that	 DMs	 working	 with	 a	 biased	 AI	 made	 more	 biased	 decisions	

compared	to	the	DMs	working	alone.	The	author	thus	argued	that	in	certain	cases	such	as	this	

where	 the	 anchoring	 effect	 is	 at	 play,	 the	 human-machine	 collaborative	 decision-making	

paradigm	caused	decision	bias	to	worsen	compared	to	the	humans	working	by	themselves.	The	

two	 studies	 therefore	 raised	 the	 concerns	 that	 including	 AI	 in	 decision-making	 process	

alongside	humans	does	not	necessarily	improve	human	decision-making	performance	in	terms	

of	bias,	and	can	actually	make	the	bias	worse.	

Although	in	Vaccaro’s	(2019)	and	Rhue’s	(2019)	experiments,	participants	worked	with	an	AI	

on	 the	 same	 tasks	 (predicting	 recidivism	 rate	 in	 the	 former,	 and	guessing	 people’s	 age	 and	

rating	their	beauty	score	in	the	latter)	for	a	number	of	times,	they	did	so	in	a	one-shot	manner.	
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More	 specifically,	 these	 participants	working	with	 an	 AI	made	 their	multiple	 decisions	 one	

immediately	after	another	in	a	single	decision	period,	and	did	not	receive	feedback	about	their	

own	and	the	AI’s	decision	performances,	either	after	each	decision	or	after	a	series	of	decisions	

throughout	 the	experiment.	Thus,	 these	 two	studies	did	not	 consider	 the	possible	exposure	

effects	of	the	DMs	who	worked	with	an	AI	and	received	performance	feedback	repeatedly	for	

multiple	decision	periods	over	time.		

In	 addition,	 for	 the	 comparison	 of	 performance	 regarding	 decision	 bias	 among	 the	 human-

machine	teams,	the	humans	alone,	and	the	machine	alone,	these	two	studies	only	employed	one	

particular	AI,	thus	largely	overlooking	AI’s	varying	performance	characteristics	(varying	levels	

of	bias)	 that	could	potentially	alter	human	DMs’	behavior,	perceptions,	and	decision-making	

performance	when	working	with	the	AI.		

Further,	these	studies	did	not	examine	the	impact	of	working	with	a	biased	AI	on	the	decision-

makers’	perception	of	AI	fairness,	which	potentially	plays	an	important	role	in	explaining	the	

humans’	decision-making	behavior,	their	performance	and	decision	bias	resulting	from	their	

collaboration	with	the	AI.	

3.	Theoretical	Framework	

We	 use	 insights	 from	 computer	 science/human-computer	 interaction,	 statistics,	 economics,	

along	 with	 Rational	 Choice	 Theory	 as	 the	 theoretical	 basis	 for	 our	 research	 model.	 In	 the	

following	subsections,	we	review	the	multiple	approaches	to	defining	and	measuring	decision-

making	bias,	along	with	extant	empirical	findings	on	people’s	perceptions	of	fairness.	We	then	

present	our	research	hypotheses	grounding	in	Rational	Choice	Theory	and	previous	empirical	

findings.	

3.1	Bias	and	Fairness	

We	first	clarify	what	we	refer	to	when	we	use	the	terms	bias	and	fairness	in	our	paper.	We	view	

bias	as	an	objective	construct	that	can	be	mathematically	measured,	and	fairness	as	a	subjective,	

perception-based	 construct,	 used	 for	 evaluating	 whether	 a	 decision	 is	 in	 accordance	 with	

established	ethical	values	and	social	norms.		

Bias,	which	in	our	study	we	specifically	focus	on	group	bias,	arises	when	there	is	a	measurable	

difference	in	decision	outcomes,	through	comparing	the	predictive	accuracy	and/or	error	rate	
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balance	between	groups	of	people	who	are	affected	by	the	decisions.	The	source	of	this	bias	can	

come	from	the	data	used	for	training	the	predictive	algorithm	(i.e.,	data	bias),	the	actual	coding	

of	algorithms	(i.e.,	algorithm	bias),	or	human	decision-makers’	minds	(i.e.,	cognitive	bias).	As	

such,	 bias	 can	 be	 objectively	 (mathematically)	 established	 by	 inspecting	 the	 data,	 the	

predictions	of	the	algorithms,	or	the	decisions	of	the	humans	or	human-machine	teams.	

Fairness,	which	in	our	study	we	also	specifically	focus	on	group	fairness,	on	the	other	hand	is	

when	people	perceptually	evaluate	whether	the	differences	found	in	decision	outcomes	are	fair	

or	not	for	all	of	the	groups	that	the	decisions	affect.	In	other	words,	fairness	is	a	higher	level	

evaluation	of	the	implications	of	decision	bias	across	groups.	Fairness	deals	with	social	norms	

about	 justice	 and	 equal	 outcomes	 being	 viewed	 as	 the	 desired	 outcomes.	More	 specifically,	

fairness	 is	 predicated	 on	 the	 philosophical	 assumptions	 that	 society	 needs	 to	 create	 equal	

outcomes	across	different	groups	of	people.		

To	 that	 end,	 we	 use	 bias	 in	 our	 study	 to	 specifically	 refer	 to	 the	 objective,	 mathematical	

measures	of	whether	or	not	a	set	of	predictions	or	decisions	produce	unequal	outcomes	among	

groups	 of	 people.	We	 use	 fairness	 to	 specifically	 refer	 to	 people’s	 subjective	 evaluations	 of	

whether	or	not	a	set	of	predictions/decisions	complies	with	social	norms	of	justice	and	equal	

outcomes	among	groups.	

3.2	Measuring	Bias	

The	 decision	 context	 of	 our	 study	 —	 loan	 applications	 review	 —	 falls	 under	 the	 binary	

classification	 decision	 problem.	Many	 other	 common,	 complex	 decisions	 also	 belong	 to	 this	

category	 of	 decision-making	 type.	 Examples	 include	 hiring	 decisions,	 college	 admission	

decisions,	medical	diagnoses,	predicting	recidivism	when	setting	bail	amounts,	and	so	on.		

In	this	classification	decision	problem,	there	are	typically	two	possible	decisions/predictions	

and	 two	 possible	 outcomes.	 In	 the	 case	 of	 loan	 applications	 review,	 the	 two	 possible	

decisions/predictions	 would	 be	 approving	 a	 loan	 application	 and	 rejecting	 it.	 Because	 the	

variable	 of	 interest	 to	 lending	 organizations	 is	 usually	whether	 the	 loan	will	 be	 a	 bad	 loan	

(defaulting,	 late	 payments,	 etc.),	 approving	 a	 loan—predicting	 low	 risk	 of	 becoming	 a	 bad	

loan—is	considered	a	negative	decision,	and	rejecting	a	loan—predicting	high	risk	of	becoming	

a	 bad	 loan—is	 considered	 a	 positive	 decision.	 Similarly,	 the	 two	possible	 outcomes	 of	 loan	

applications—turning	out	to	be	a	good	loan	and	turning	out	to	be	a	bad	loan	would	constitute	
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respectively	a	negative	and	a	positive	outcome.	A	confusion	matrix	(see	table	1)	can	thus	be	

constructed	 to	 evaluate	 the	 different	 possible	 types	 of	 decision/prediction	 errors	 resulting	

from	this	decision	problem.	

For	 this	 type	 of	 classification	 decision	 problem,	 there	 are	 various	 statistical	measures	 (e.g.,	

predictive	parity,	accuracy	equity,	error	rate	balance,	etc.)	that	are	commonly	used	to	assess	

whether	an	algorithm	or	a	decision-maker	is	biased	against	certain	groups	of	people.	Depending	

on	the	decision	context	and	the	decision-maker’s	priority,	one	or	several	of	them	can	be	selected	

and	compared	among	different	groups	of	people.		

The	first	set	of	measures	are	referred	to	as	predictive	parity	among	groups.	This	consists	of	

positive	predictive	value	and	negative	predictive	value,	which	either	or	both	are	computed	and	

compared	among	groups.	

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒	𝑉𝑎𝑙𝑢𝑒 =
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
	

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒	𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒	𝑉𝑎𝑙𝑢𝑒 =
𝑇𝑟𝑢𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
	

	

The	second	set	of	measures	are	referred	to	as	error	rate	balance	among	groups.	This	consists	

of	false	positive	balance	and	false	negative	balance.	Specifically,	false	positive	rate	and/or	false	

negative	rate	are	computed	and	then	compared	among	groups.	

𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑅𝑎𝑡𝑒 =
𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

	𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 	𝑇𝑟𝑢𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
	

𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒	𝑅𝑎𝑡𝑒 =
𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
	

	

Third,	accuracy	equity	is	another	measure	that	can	be	used	to	determine	whether	there	is	bias	

against	 certain	 groups.	 Specifically,	 the	 prediction/decision	 accuracy	 rate	 is	 computed	 and	

compared	among	groups.	

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	𝑅𝑎𝑡𝑒 =
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 	𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠	
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In	our	paper,	we	focus	on	specifically	two	measures:	False	Positive	Balance	(difference	in	the	

false	positive	rate	between	groups)	and	False	Negative	Balance	(difference	in	the	false	negative	

error	rate	between	groups).			

3.3	Evaluating	Fairness	

Even	 though	 the	 statistical	measures	 described	 above,	 among	many	 others,	 are	 considered	

objective,	mathematical	measures	of	bias,	there	is	usually	a	significant	amount	of	subjectivity	

involved	 in	 choosing	 which	 measure(s)	 to	 assess	 decision	 fairness.	 In	 fact,	 different	

stakeholders	 have	 been	 found	 to	 often	 have	 differing	 opinions	 about	 which	 	objective	

measure(s)	should	be	used	to	evaluate	whether	a	set	of	decisions	or	predictions	are	fair	or	not	

(Cowgill	&	Tucker,	2020).2	For	 instance,	 in	 the	COMPAS	(an	algorithm	predicting	recidivism	

risk)	 case,	 the	 defendants	 and	 social	 justice	 critics	 were	 more	 interested	 in	 false	 positive	

balance	 between	 racial	 groups,	whereas	 the	 designers	 of	 the	 algorithm	 (Northpointe)	were	

more	interested	in	predictive	parity.		

Similarly,	empirical	research	on	perceptions	of	fairness	have	also	demonstrated	that	people’s	

fairness	perceptions	vary	drastically	among	different	stakeholders.	For	instance,	in	the	human-

computer	interaction	literature,	Lee	and	Baykal	(2017)	showed	that	despite	the	programmers’	

efforts	to	design	unbiased	algorithms,	a	sizable	portion	of	users	felt	they	were	treated	unfairly	

by	 the	AI.	The	authors	 found	 that	 the	main	 reason	 for	 this	was	 fairness	definitions	differed	

between	the	end	users	and	the	algorithm	designers/programmers,	and	even	among	the	end	

users.	

Relatedly,	 in	 the	 economics	 literature,	 Babcock	 et	 al.	 (1995)	 demonstrated	 through	 an	

experiment	that	in	bargaining	decision	contexts,	the	people	involved	judged	fairness	differently	

in	a	self-serving	manner,	and	this	tendency	intensified	as	the	amount	of	provided	information	

increased.	Their	 results	 echo	 findings	 in	 the	experimental	psychology	 literature	 that	people	

often	view	decisions	that	satisfy	their	self-interests	as	fairer	than	the	ones	that	do	not.	

Taking	a	different	 approach,	Konow	 (2009)	examined	 if	 people	 can	 achieve	 convergence	 in	

fairness	perceptions	when	they	are	(unlike	in	the	cases	and	studies	described	thus	far	in	this	

section)	not	 the	directly	 implicated	parties	 in	 the	decision	outcomes.	The	author	 found	that	

 
2 See also 21 Fairness Definitions and Their Politics, Narayanan ACM FAccT ‘18 
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consensus	on	perceptions	of	what	is	fair	in	this	case	did	occur	when	more	detailed	information	

about	the	decision	context	was	provided	to	the	people	evaluating	decision	fairness.	Further,	the	

author	also	found	that	varying	personal	characteristics	did	not	significantly	influence	people’s	

fairness	perspectives	(Konow,	2009).	

4.	Research	Hypotheses	

4.1	AI	Bias	and	the	Human-Machine	Teams’	Performance	

Based	on	 anchoring	 theory	 (Tversky	&	Kahneman,	 1974),	which	 has	 been	 demonstrated	 in	

empirical	 studies	 regarding	 the	 anchoring	 effect	 of	 AI	 predictions	 in	 human-machine	

collaborative	decision-making	(Vaccaro	2019,	Rhue	2019),	we	posit	 that	those	working	with	

the	biased	AI	would	be	influenced	to	some	extent	by	its	predictions,	and	thus	would	make	more	

biased	decisions	and	in	turn	make	less	profit	for	their	organization	compared	to	those	working	

with	those	working	with	an	unbiased	AI.	Hence,	our	H1a	-	H1c	:	

H1a:	AI	prediction	bias	is	positively	associated	with	human-machine	teams’	decision	bias	in	terms	

of	false	positive	rate	imbalance.	

H1b:	AI	prediction	bias	is	positively	associated	positively	associated	with	human-machine	teams’	

decision	bias	in	terms	of	false	negative	rate	imbalance.	

H1c:	AI	prediction	bias	 is	negatively	associated	with	the	organizational	profit	produced	by	the	

human-machine	teams.	

4.2	AI	Bias	and	the	DMs’	Perceptions	

In	our	experiment,	the	participants	are	financially	rewarded	and	penalized	based	on	decision-

making	performance,	with	their	incorrect	decisions	being	quite	seriously	penalized.	Thus,	they	

can	be	considered	a	group	of	stakeholders	directly	implicated	by	the	outcomes	of	 their	joint	

loan	review	decision-making	process	with	the	AI.	This	means	that	participants’	perceptions	of	

AI	 fairness,	motivated	by	their	own	financial	 interests,	would	depend	to	some	extent	on	the	

performance	 of	 the	 AI	 assigned	 to	 them,	 which	 as	 per	 H1	 would	 likely	 influence	 the	

performance	of	their	collaborative	work	with	the	AI.	Because	participants	receive	immediate	

feedback	after	each	round	in	the	experiment	on	the	performance	of	the	AI	predictions	and	of	

their	 joint	 decision-making	 with	 the	 AI,	 along	with	 how	much	 they	 earned	 personally,	 the	

participants	working	with	the	biased	AI	 should	be	more	 likely	 than	 those	working	with	 the	

unbiased	AI	to	perceive	their	algorithmic	partner	as	less	fair.	We	base	our	postulation	on	the	

Electronic copy available at: https://ssrn.com/abstract=3988456



empirical	 findings	regarding	the	anchoring	effect	of	AI	bias	and	perceived	fairness	reviewed	

above	and	on	Rational	Choice	Theory	(RCT)	which	would	predict	that	DMs,	independent	of	their	

personal	biases	if	any,	would	want	to	maximize	their	earnings.	Hence	our	H2	:	

H2:	AI	prediction	bias	is	negatively	associated	with	human	decision-makers’	perceived	algorithmic	

fairness	in	human-machine	collaboration.	

4.3	Exposure	and	Performance		

Also	 following	 the	 logics	of	RCT	and	additionally	 the	Horndal	plant	 labor	 (Lundberg,	1961)	

effect	 found	 in	 the	 firm	 progress	 function	 literature,	 we	 posit	 that	 through	 repeatedly	

interacting	with	the	AI	and	continually	receiving	feedback	on	the	performance	of	the	AI	and	of	

their	 joint	 work	 with	 the	 AI,	 decision-makers	 –	 both	 those	 working	 with	 the	 biased	 and	

unbiased	AI,	would	begin	to	adapt	their	behavior,	motivated	by	their	self-interests	to	maximize	

their	 earnings,	which	 in	 turn	would	 improve	 their	performance	 relative	 to	 the	AI	operating	

alone	 over	 time.	 Specifically,	 the	 difference	 in	 the	 profit	 they	 make	 for	 their	 organization	

relative	to	that	of	the	AI	would	increase	over	time.	Hence,	our	H3	:	

H3:	There	are	positive	exposure	effects	in	human-machine	collaboration:	over	time,	the	difference	

between	the	organizational	profit	made	by	the	human-machine	teams’	and	that	made	by	the	AI	

alone	 increases.	 	 (Note	:	We	 focused	on	 the	difference	 in	organizational	profit	 to	remove	the	

potential	influence	(anchoring)	of	AI	predictions	on	the	human-machine	teams’	performance.)	

5.	Study	Design	

5.1.	Research	Method,	Dataset,	Algorithm	Predictions	

We	adopt	experimental	economics	as	our	main	research	method	and	design	a	decision-making	

platform	that	simulates	actual	organizational	decision	contexts.	We	have	run	experimental	pilot	

sessions	with	28	participants	in	the	No	Bias	treatment	and	35	in	the	Prediction	Bias	treatment.	

In	addition,	we	also	ran	a	session	of	the	Prediction	Bias	treatment	with	extended	decision	time	

(Prediction	Bias	Extended	 treatment,	n	=	9)	 to	preliminarily	 test	whether	allowing	 the	DMs	

additional	time	for	reviewing	the	loan	applications	would	have	an	impact	on	their	performance	

and	decision	fairness.		

The	participants	were	undergraduate	students	majoring	in	Business	at	a	large	university	in	the	

U.S.	We	paid	 participants	with	 financial	 rewards	 to	 induce	 rational	behavior	 (Smith,	 1976).	

Participants	earned	a	flat	reward	($5)	for	completing	the	entire	session	and	a	bonus	reward	
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determined	by	their	decision-making	performance	in	the	experiment	(total	ranging	$5	–	$20,	

averaging	$10).		

In	 the	 experiment,	 participants	 worked	 with	 an	 AI	 tool	 to	 evaluate	 100	 consumer	 loan	

applications	 and	 made	 the	 final	 decisions	 (approve/reject).	 We	 derived	 the	 100	 loan	

applications	that	the	participants	reviewed	from	a	real	world,	large-scale,	historic	dataset	from	

LendingClub	(n	=	~50,000).	This	100-loan	subset	contains	50	loans	that	performed	poorly	(bad	

loans)	and	50	loans	that	performed	well	(good	loans).		

This	historic	dataset	 includes	real	consumer	 loan	applications'	 information	(e.g.,	occupation,	

income,	outstanding	debt,	 loan	purpose,	 loan	 requested	amount,	 income,	 etc.)	 and	 real	 loan	

performance	data	for	the	loans	that	were	funded	(e.g.,	loan	interest	rates,	monthly	payments,	

defaults,	late	payments,	etc.).	Because	of	that,	we	knew	which	loans	performed	well	and	which	

did	not.	The	participants	in	the	experiment	saw	the	simplified	consumer	loan	application	data	

but	not	the	loan	performance	data	when	they	made	their	decisions.	The	participants’	decision-

making	performance,	however,	was	determined	based	on	the	real	loan	performance	data.	

5.2	Experimental	Task	

The	 experimental	 task	 comprised	 10	 repeated	 but	 distinct	 rounds.	 In	 each,	 the	 DMs	made	

decisions	(approve/reject)	for	10	loan	applications	(total	of	100)	with	the	aid	of	an	AI.	The	DMs	

received	immediate	decision	feedback	at	the	end	of	each	round.	There	were	3	stages	in	each	

round:	 Initial	 Decisions,	 Final	 Decisions,	 and	 Results.	 In	 the	 Initial	 Decisions	 stage,	 the	 DMs	

viewed	 a	 loan	 data	 table	 that	 contained	 the	 loan	 applicants’	 information,	made	 their	 initial	

decisions	 (approve/reject),	 and	 rated	 their	 initial	 level	 of	 confidence	 (1-100).	 In	 the	 Final	

Decisions	stage,	the	DMs	viewed	the	same	loan	table	but	that	had	been	updated	with	their	own	

initial	 decisions	 and	 the	 AI	 predictions	 (presented	 next	 to	 each	 other).	 Based	 on	 this	 new	

information,	the	DMs	now	had	the	opportunity	of	revising	their	initial	decisions	and	confidence	

levels	before	submitting	the	final	decisions	and	confidence	ratings.	In	the	Results	stage,	the	DMs	

received	 feedback	on	how	 the	 loans	actually	performed,	 the	DMs’	 and	 the	AI!s	performance	

statistics	(i.e.,	rate	of	correct	decisions),	and	their	cash	earnings	from	each	decision,	the	round	

total,	as	well	as	the	cumulative	total.	

5.3	Financial	Reward	Structure	
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The	DMs	in	all	experimental	conditions	earned	$0.2	for	each	correct	decision	(i.e.,	approve	or	

reject),	 and	$0	 for	each	wrong	 reject	(false	positve).	They	 lost	$0.4	 for	each	wrong	approve	

decision	(false	negative).	This	incentive	mechanism	was	designed	to	connect	the	DMs’	rewards	

to	the	assumed	risk-averse,	conservative	lending	strategy	that	we	stipulated	for	the	study,	i.e.,	

discouraging	 the	 DMs	 from	 making	 risky	 bets	 via	 high	 penalties	 for	 the	 wrong	 approve	

decisions	(false	negative).	Table 2 shows this reward structure in the form of a pay-off matrix.	

We	induced	this	assumed,	fixed	conservative,	risk-averse	organizational	lending	strategy	in	our	

experiment,	by	telling	the	subjects	in	the	instructions	to	“imagine	that	you	are	a	loan	officer	for	

a	traditional	retail	bank”	and	“your	task	is	to	identify	good	loan	applications	for	approval	and	

risky	loan	applications	for	rejection”.	

5.4	Experimental	Procedures	

The	 experimental	 sessions	 were	 conducted	 synchronously	 online	 via	 Zoom	meetings,	 each	

lasting	between	60–75	minutes	from	check-in	to	check-out.	The	number	of	participants	varied	

(ranging	2–16)	 for	each	session.	 In	each	session,	after	all	participants	have	 joined	the	Zoom	

meeting,	 the	 experimenter	 welcomed	 and	 introduced	 briefly	 to	 the	 participants	 the	 basic	

structure	of	 the	session	which	 included	3	parts:	a	pre-experiment	survey,	a	decision-making	

task,	and	a	post-experiment	survey.		

Next,	the	experimenter	sent	the	participants	the	URL	to	the	online	experimental	platform	and	

instructed	the	participants	to	complete	the	pre-experiment	survey	that	consists	of	questions	

about	 their	 demographic	 characteristics	 and	 personality	 traits.	 After	 making	 sure	 every	

participant	had	finished	the	survey,	the	experimenter	presented	the	instructions	slides	on	the	

Zoom	meeting	screen	and	also	at	the	same	time	read	the	instructions	aloud	to	explain	in	detail	

the	loan	review	task	and	the	financial	reward	structure,	i.e.,	the	pay-off	matrix	detailing	how	

much	they	will	earn	or	lose	for	each	correct	(incorrect)	loan	decision.	

The	participants	did	not	know	that	there	were	multiple	treatments,	nor	did	they	know	which	

particular	treatment	they	were	participating	in.	After	the	participants	finished	the	experimental	

task,	they	were	required	to	complete	the	post-experiment	survey	which	contained	questions	

about	their	decision-making	process	and	their	perceptions	(e.g.	regarding	how	fair	the	AI	was,	

how	much	they	trusted	the	AI,	how	fair	their	cash	earnings	were,	etc.).	Finally,	the	participants	
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were	dismissed	and	later	on	were	paid	via	online	bank	transfers	according	to	how	much	money	

they	earned	in	the	task.	

5.5	Treatment	Manipulations		

5.5.1	The	Two	Groups	of	Loan	Applicants	

We	operationalized	the	two	groups	of	loan	applicants	in	our	experiment	by	randomly	splitting	

the	100	historic	loan	applications	used	in	our	experiment	into	two	(fictional)	groups	with	equal	

size:	Purple	(n	=	50)	and	Orange	(n	=	50).		

We	represented	these	two	groups	in	the	experiment	by	highlighting	the	loans’	IDs	and	group	

names	respectively	in	the	(Loan)	ID	and	Applicant	Type	columns	in	the	loan	applications	table	

shown	to	the	DMs,	accordingly	with	two	colors	–	purple	and	orange	(See	Figure	1	for	a	partial	

view	 of	 the	 experimental	 interface).	We	 also	 informed	 the	 participants	 of	 this	 detail	 in	 the	

instructions	portion	at	the	start	of	the	experiment.		

We	operationalized	the	two	 loan	applicant	groups	through	color	 labels	(Orange	and	Purple)	

because	 we	 wanted	 to	 avoid	 any	 confounding	 effects	 that	 might	 result	 from	 using	 the	

applicants’	 personal	 information	 such	 as	 gender,	 ethnicity,	 occupation,	 names,	 or	 any	 other	

stimuli	(visuals,	names,	etc.)	which	different	people	can	have	different	personal	responses	to.	

We	are	not	interested	in	how	people	personally	respond	to	certain	groups	of	the	population.	

In	both	treatments,	there	are	25	loans	for	each	of	the	four	categories:	Good	Purple,	Bad	Purple,	

Good	Orange,	Bad	Orange.	

5.5.2	Prediction	Bias	

In	the	Prediction	Bias	treatment,	while	the	loan	data	used	in	the	experiment	are	unbiased	with	

respects	 to	 the	Orange	and	Purple	groups,	 the	algorithm	predictions	 shown	 to	 the	DMs	 are	

biased	against	the	Purple	group	and	for	the	Orange	group.	Specifically,	the	Orange	and	Purple	

groups	 have	 different	 false	 positive	 rates	 (Orange	 =	 0.2,	 Purple	 =	 0.6)	 and	 different	 false	

negative	rates	(Orange	=	0.6,	Purple	=	0.2).	 In	other	words,	 the	algorithm	predictions	 in	 the	

Predict	Bias	treatment	inaccurately	discriminate	against	the	Purple	(rejecting	more	good	loans)	

compared	to	the	Orange	group,	while	inaccurately	favoring	the	Orange	(approving	more	bad	

loans)	over	the	Purple	group.	The	overall	accuracy	of	the	algorithm	predictions	in	the	Prediction	

Bias	condition	is	60%.	
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In	 the	 No	 Bias	 condition,	 both	 the	 loan	 data	 and	 the	 algorithm	 predictions	 used	 in	 the	

experiment	are	unbiased	between	the	two	groups.	Specifically,	both	Orange	and	Purple	groups	

have	 the	 same	 rates	of	 0.2	 for	 false	positive	 and	 false	negative.	 The	 overall	 accuracy	 of	 the	

algorithm	predictions	in	the	No	Bias	condition	is	80%.		

Tables	3	–	5	summarize	the	AI’s	decision	bias	metrics	in	each	condition.	

5.5.3	Decision	Time	

In	 the	 Prediction	 Bias	 Extended	 treatment,	 the	 Initial	 Decision	 stage	 had	 a	 time	 limit	 of	 3	

minutes,	the	Final	Decision	stage	2	minutes,	and	the	Results	stage	1.5	minutes,	whereas	in	the	

other	two	treatments	run	with	regular	decision	time,	the	Initial	Decision	stage	had	a	time	limit	

of	2	minutes,	the	Final	Decision	stage	1	minute,	and	the	Results	stage	1	minute	as	well.	

6.	Results	

6.1	Prediction	Bias	and	Human-Machine	Teams’	Performance	(H1a-c)	

To	examine	the	impact	of	the	experiment	factor	(Prediction	Bias)	on	the	human-machine	teams’	

performance,	 in	 terms	 of	 decision	 bias	 (false	 positive	 rate	 imbalance	 between	 Purple	 and	

Orange	 groups,	 false	 positive	 rate	 imbalance	 between	 Orange	 and	 Purple	 groups),	 and	

organizational	profit,	we	developed	the	following	regressions:	

𝐹𝑃𝐼!"#$% = 𝛽& + 𝛽!'()𝛴)*+
, 𝑃𝐸𝑅) + 𝛽!-𝑃𝐵 + 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 + 𝜑	

𝐹𝑁𝐼$%#!" = 𝛾& +	𝛾!'(!𝛴)*+
, 𝑃𝐸𝑅) +	𝛾!-𝑃𝐵 + 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 + 𝜇	

𝑂𝑃 = 𝛼& + 𝛼!'(!𝛴)*+
, 𝑃𝐸𝑅) +	𝛼!-𝑃𝐵 + 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 +	e	

In	the	equations	above,	𝐹𝑃𝐼!"#$% ,	𝐹𝑁𝐼$%#!" ,	𝑂𝑃	respectively	refer	to	false	positive	imbalance	

between	Purple	and	Orange	groups,	false	negative	imbalance	between	Orange	and	Purple	

groups,	and	organizational	profit;		𝛼,	𝛽,	𝛾	are	the	intercepts;	𝑃𝐸𝑅&	(𝑖	=	1	to	9)	are	dummy	

variables	that	represent	the	10	decision	rounds;	PB	refers	to	prediction	bias	(1	for	bias,	0	for	

no	bias);	and	e,	𝜑,	𝜇	are	error	terms.		

The	dummy	variables	representing	the	10	decision	rounds	are	included	in	the	regressions	

because	we	collected	decision-making	data	over	10	repeated	and	distinct	rounds,	with	

feedback	provided	to	the	participants	after	each	round,	and	thus	we	wanted	to	control	for	the	

possible	learning	effects	that	we	conjectured	had	occurred	over	the	rounds.	
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The	final,	unbalanced	sample	used	for	analyzing	our	two	main	experimental	treatments	(No	

Bias	and	Prediction	Bias)	included	63	participants.	Because	we	used	round-level	data,	we	had	

in	total	10	rounds	×	63	participants	=	630	observations.	Table	6	presents	the	descriptive	

analysis	of	our	experimental	data.		

The	other	control	variables	account	for	the	participants’	traits	and	demographics	which	

include	quantitative	and	financial	competency,	college	level,	ethnicity,	gender,	and	cognitive	

style.	The	descriptive	statistics	of	the	participants’	performance,	traits,	demographics,	and	

perceptions	are	included	in	Tables	7,	8.	

Specifically,	we	conducted	a	hierarchical	multiple	linear	regression	for	each	of	the	

performance	variables,	in	3	stages	(see	Table	9a-c,	Models	0–2).	In	each,	we	respectively	

added	the	main	independent	variable	(prediction	bias),	the	experimental	period	dummy	

variables	𝑃𝐸𝑅&	(𝑖	=1–9),	and	finally	in	Model	2,	the	other	control	variables.		

We	computed	false	positive	imbalance	between	purple	and	orange	by	computing	the	

difference	in	the	false	positive	error	rates	between	the	purple	group	and	the	orange	group	

(subtracting	the	false	positive	error	rate	of	orange	group	from	that	of	purple	group).	

We	computed	false	negative	imbalance	between	orange	and	purple	by	computing	the	

difference	in	the	false	negative	error	rates	between	the	orange	group	and	the	purple	group	

(subtracting	the	false	negative	error	rate	of	purple	group	from	that	of	orange	group).	

We	computed	organizational	profit	(in	USD)	resulted	from	the	loan	review	decisions	by	

calculating	the	net	present	values	of	the	historical,	approved	loans.	

Results	 show	 that	 the	 human-machine	 teams	 in	 the	 biased	 predictions	 treatment	 had	 a	

significantly	higher	positive	rate	imbalance	between	purple	and	orange	groups	than	those	in	

the	unbiased	treatment	(8%	higher,	p	<	0.05).	In	addition,	working	with	biased	predictions	led	

to	significantly	higher	negative	rate	imbalance	between	orange	and	purple	groups	compared	to	

working	with	unbiased	predictions	(10.4%,	p	<	0.001).	In	other	words,	the	presence	of	biased	

algorithmic	predictions	did	negatively	influence	(anchor)	the	human	DMs’	decisions	in	the	same	

way	 that	 the	AI	 is	 biased:	 discriminating	 against	 the	 purple	 group	 and	 favoring	 the	 orange	

group.		
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The	 human-machine	 teams	 in	 the	 biased	 predictions	 treatment	 also	made	 significantly	 less	

profit	 for	 the	 organization	 than	 those	 in	 the	 unbiased	 predictions	 treatment,	 costing	 their	

organization	around	$6,036	on	average	in	each	round	(p	<	0.001).	Thus,	our	H1a,	H1b,	and	H1c	

are	supported.	

6.2	Prediction	Bias	and	Human	DMs’	Algorithmic	Fairness	Perception	(H2)	

We	 measured	 perceived	 algorithmic	 fairness	 by	 asking	 the	 participants	 after	 they	 had	

completed	the	entire	experimental	task	to	rate	on	a	Likert	scale	of	1-7	(1	=	Strongly	Disagree,	7	

=	 Strongly	 Agree)	 regarding	whether	 they	 think	 that	 the	 AI	 treated	 all	 the	 loan	 applicants	

equally.	

To	examine	the	impact	of	prediction	bias	on	perceived	algorithmic	fairness,	we	conducted	a	

two-way	 t-test	 to	 compare	 the	 perceived	 algorithmic	 fairness	measure	 between	 the	 biased	

predictions	treatment	and	the	unbiased	treatment.	Results	show	that	 there	was	a	small	and	

insignificant	(p	=	0.4)	difference	in	perceived	fairness	between	those	working	with	the	biased	

AI	(m	=	4.8)	those	working	with	the	unbiased	AI	(m	=	5.1).	We	further	found	that,	however,	the	

former	rated	their	trust	in	the	AI	(m	=	11.3)	significantly	(p	<	0.01)	less	than	the	latter	(m	=	

13.3)	for	a	decrease	of	15	%.	We	measured	this	AI	Trust	construct	by	adapting	the	3-item	Trust	

Belief	scale	by	Robert,	Dennis,	and	Hung	(2009).	Thus,	the	DMs	appeared	to	implicitly	recognize	

the	biased	predictions	of	the	AI	rather	than	explicitly.	

Interestingly,	we	found	a	significant,	albeit	weakly,	difference	(p	=	0.08)	when	we	compared	

perceived	algorithmic	fairness	between	the	DMs	working	with	the	biased	predictions	and	given	

extra	 time	 limits	 for	 making	 decisions	 (m	 =	 4.1)	 and	 those	 working	 with	 the	 unbiased	

predictions	(m	=	5.1),	for	a	decrease	of	19.6	%.	

6.3	Exposure	and	Organizational	Profit		(H3)	

We	first	computed	the	difference	in	organizational	profit	between	the	human-machine	teams	

and	the	AI	alone.	Then,	following	the	standard	practice	in	the	experimental	economics	literature	

(Cadsby	&	Maynes,	1998;	Embrey	et	al.,	2018;	Fréchette,	2009)	for	analyzing	potential	learning	

effects	 in	 repeated	 round	 experiments,	 we	 compared	 the	 average	 of	 this	measure	 between	

clusters	of	decision	periods.	Specifically,	we	looked	at	the	earlier	5	rounds	vs.	the	later	5	rounds.	

Overall,	 across	 all	 treatments	 of	 the	 human-machine	 teams,	 the	 average	 difference	 in	

organizational	 profit	 compared	 to	 the	 AI	 alone’s	 organizational	 profit	 per	 round	 increased	
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significantly	in	the	later	periods,	with	a	rise	of	of	179%	(p	<	0.001).	More	specifically,	in	the	

earlier	5	 rounds,	 the	human-machine	 teams	made	on	average	$3,012	 less	 than	the	AI	alone	

while	in	the	later	5	rounds,	they	made	on	average	$2,383	more	than	the	AI	alone.		

Analyzing	 conditions	 separately,	 we	 found	 that	 this	 improvement	 in	 organizational	 profit	

relative	 to	 the	 AI	 alone	 was	 also	 significant.	 However,	 those	 working	 with	 the	 biased	 AI	

improved	in	the	later	5	rounds	considerably	more	than	those	working	with	the	unbiased	AI.	

Specifically,	while	the	former	improved	in	their	organizational	profit	relative	to	the	AI	alone	by	

383%,	the	latter	only	did	so	by	59%.	Moreover,	while	those	working	with	the	biased	AI	in	the	

later	5	rounds	made	for	 the	organization	on	average	$4,546	more	than	the	AI	alone	 in	each	

round,	those	working	with	the	unbiased	AI	in	the	later	5	rounds	made	for	the	organization	on	

average	$2,395	less	than	the	AI	alone	in	each	round.		

Intrigued	 by	 this	 finding,	 we	 further	 directly	 compared	 the	 human-machine	 teams’	

performance	with	the	AI	alone’s	performance	using	the	Wilcoxon	Signed	Rank	test	for	matched	

pairs.	 We	 found	 that	 overall,	 across	 all	 treatments,	 on	 average	 in	 each	 round	 the	 human-

machine	teams	outperformed	the	AI	alone,	in	both	achieving	higher	organizational	profit	(p	=	

0.06)	and	reducing	bias	–	lowering	both	false	positive	imbalance	(p	<	0.001)	and	false	negative	

imbalance	(p	<	0.001).	This	superiority	was	found	to	be	stronger	when	we	only	included	the	

performance	measures	of	the	later	5	rounds.	Analyzing	treatments	separately,	we	found	that,	

however,	human-machine	teams	in	the	unbiased	treatment	in	particular	did	not	outperform	the	

unbiased	AI	alone.	

7.	Discussion	

We	contribute	to	research	on	bias	in	human-machine	collaboration	by	showing	that,	contrary	

to	what	current	related	studies	have	shown,	human	DMs	can	learn	to	work	with	an	imperfect,	

biased	AI	to	improve	significantly	their	performance	over	time	and	also	outperform	the	biased	

AI	working	on	 its	own.	Working	with	 a	 biased	AI	 is	often	 the	 case	 in	 reality	 as	 it	 is	 almost	

impossible	to	design	a	completely	unbiased	AI.	As	such,	our	research	shows	that	with	repeated	

interactions,	timely	feedback,	and	an	appropriate	incentive	mechanism,	organizations	can	reap	

benefit	from	having	human	DMs	work	with	biased	algorithms,	to	reduce	bias	significantly	and	

improve	their	profit.	
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Second,	 we	 contribute	 by	 empirically	 demonstrating	 that	 human	 DMs	 working	 with	 a	 less	

biased	 (in	 this	 case,	 a	 completely	unbiased)	AI	 can	produce	 less	biased	decisions	and	made	

higher	organizational	profit.	This	shows	that	bias	mitigation	in	the	algorithm	component	can	

translate	to	bias	mitigation	 in	human-machine	decision-making	partnership	when	combined	

with	 the	 right	 conditions	 –	 incentive	mechanism,	 time,	 exposure,	 and	 clear	 feedback.	Most	

current	studies	have	not	examined	or	demonstrated	this.	

Our	third	contribution	is	adding	a	dynamic	perspective.	Unlike	most	present	behavioral	studies	

on	bias	in	human-machine	collaboration,	our	experiment	features	the	repeated	round	design	

(as	opposed	to	one-shot),	which	allowed	us	to	perform	a	longitudinal	analysis	that	shows	the	

more	nuanced	dynamics	of	how	DMs	interact	with	AI	over	time.	In	real-world	organizational	

decision-making	 contexts,	 it	 is	 usually	 through	 repeated	 interactions	 (exposure)	 with	 new	

technologies	 that	 organizaitonal	 DMs	 gain	 familiarity	 and	 improve	 their	 performance	

significantly.		

Methodologically,	 we	 are	 the	 first,	 to	 our	 knowledge,	 to	 examine	 bias	 in	 human-machine	

decision-making	 that	 operationalized	 bias	 in	 terms	 of	 error	 rate	 imbalance	 between	 two	

fictional	groups	with	neutral	labels,	which	allowed	us	to	reduce	(if	not	completely	avoid)	the	

potential	confounding	effects	of	DMs’	personal	biases.		

On	 a	 related	 note,	 we	 expect	 to	 find	 similar	 results	 in	 future	 research	 where	 instead	 of	

manipulating	 the	 loan	 applicant	 groups	 through	 fictional	 neutral	 labels,	 we	 do	 so	 by	 using	

certain	information	such	as	race,	gender,	religion,	etc.,	which	DMs	likely	have	varying	personal	

responses	 (biases)	 to.	 Specifically,	 we	 expect	 that	 over	 time,	 DMs	motivated	 by	 their	 self-

interest	 to	maximize	 their	 financial	 earnings,	 can	 also	 learn	 to	 adapt	 their	 decision-making	

behvaior,	and	to	some	extent	overcome	both	their	own	biases	and	the	AI’s	biases	to	improve	

their	performance,	reduce	decision	bias,	and	increase	profit	for	their	organization.		
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Figure	1.	Top	to	Bottom	:	Initial	Decision	Page	(partial	view),	Final	Decision	Page	(partial	view),	Results	Page	

 
Table	1.	Classification	Decision	Problem	–	Confusion	Matrix	
	 Approve	

(Predicting	Low	Risk	of	Bad	
Outcome)	

Reject	
(Predicting	High	Risk	of	

Bad	Outcome)	
Good	Loan	Outcome		 True	Negative	 False	Positive	
Bad	Loan	Outcome	 False	Negative	 True	Positive	
	
Table	2.	Participants’	Pay-off	Matrix	in	the	Experiment	

	 Approve	 Reject	
Good	Loan	Outcome	 $	0.2	 $	0	
Bad	Loan	Outcome	 -	$0.4	 $	0.2	
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Table	3.	AI’s	Confusion	Matrix	-	Prediction	Bias	Treatment	(Against	Purple,	For	Orange)	
	 AI	Approves	 AI	Rejects	
Good	Loans	 30	True	Negatives	

10	Purple,	20	Orange	
20	Type	I	Errors	
15	Purple,	5	Orange	

Bad	Loans	 20	Type	II	Errors	
5	Purple,	15	Orange	

30	True	Positives	
20	Purple,	10	Orange	

	

Table	4.	AI’s	Confusion	Matrix	–	No	Bias	Treatment	(Orange	and	Purple	Treated	Equally)	
	 AI	Approves	 AI	Rejects	
Good	
Loans	

40	(True	Negatives)	
20	Purple,	20	Orange	

10	(False	Positives)	
5	Purple,	5	Orange	

Bad	Loans	 10	(False	Negatives)	
5	Purple,	5	Orange	

40	(True	Positives)	
20	Purple,	20	Orange	

	
Table	5.	AI’s	False	Positive	and	False	Negative	Rates	Across	Treatments	
	 Treatments	
	 No	Bias	 Prediction	Bias	
False	Positive	Rate	 All	Loans:	0.2;	

Orange:	0.2;	Purple:	0.2	
All	Loans:	0.4;	

Orange:	0.2;	Purple:	0.6	
False	Negative	Rate		 All	Loans:	0.2;	

Orange:	0.2;	Purple:	0.2	
All	Loans:	0.4;	

Orange:	0.6;	Purple:	0.2	
	

Table	6.	Descriptive	Statistics	of	Performance	Measures	
	 Prediction	Bias	 No	Bias	

Organizational	Profit	 -$22,929.47	($18,828.66)	 -$17,164.55	($16,627.34)	

False	Positive	Imbalance	(Purple	–	Orange)	 0.14	(0.43)	 0.06	(0.46)	

False	Negative	Imbalance	(Orange	–	Purple)	 0.16	(0.43)	 0.05	(0.37)	
Purple	Type	I	Rate	 0.34	(0.35)	 0.30	(0.36)	

Orange	Type	II	Rate	 0.40	(0.35)	 0.26	(0.28)	

Type	I	Rate	 0.28	(0.22)	 0.27	(0.23)	

Type	II	Rate	 0.33	(0.22)	 0.24	(0.18)	
Note:	Numbers	outside	parentheses	are	the	means,	inside	are	the	standard	deviations	

	
Table	7.	Participants’	Ethnicities	
East	Asian		 17	 23.6%	
South	Asian	 5	 6.9%	
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South	East	Asian	 7	 9.7%	

Black	 5	 6.9%	

Hispanic/Latino	 14	 19.4%	
Pacific	Islander	 1	 1.4%	

White	-	Europe	 13	 18.1%	

White	-	Middle	East	or	North	Africa	 10	 13.9%	

	
Table	8.	Participants’	Demographics	
Gender	 Female	:	22	(30.6%);	Male:	50(69.4%)	

College	Level	 Sophomore:	41	(56.9%);	Junior:	22	(30.6%);	Senior	:	9	(12.5%)	

Upper	(Senior/Junior):	31	(43.1%)	
Lower	(Freshman/Sophomore)	:	41	(56.9%)	

Minority		-	Ethnicity	3	 30	(41.7%)	

Quant/Financial	Competence	 Mean	(SD)	:	48.6	(19)	;	Min	:	0	;	Med	:	51.7	;	Max	:	85.1	

Cognitive	Style	–	Intuition	(vs.	Analytic)	 Mean	(SD)	:	25	(5.7)	;	Min	:	9	;	Med	:	25	;	Max:	35	

	
Table	9a.	Impact	of	Prediction	Bias	on	Organizational	Profit	

	 Org	Profit		
	 Model	0	 Model	1	 Model	2	

Prediction	Bias	 -5,764.927****	 -5,764.927****	 -6,035.511****	
round_1	 	 19,925.210****	 19,925.210****	
round_2	 	 9,763.642****	 9,763.642****	
round_3	 	 3,944.116*	 3,944.116*	
round_4	 	 -15,592.470****	 -15,592.470****	
round_5	 	 -3,527.116	 -3,527.116	
round_6	 	 -3,405.232	 -3,405.232	
round_7	 	 23,390.640****	 23,390.640****	
round_8	 	 -15,438.520****	 -15,438.520****	
round_9	 	 -6,872.970***	 -6,872.970***	
QuantFinComposite	 	 	 92.732****	
CollegeUpper	 	 	 3,866.205****	
EthnMinor	 	 	 861.158	
Male	 	 	 277.726	
FaithIntuition	 	 	 -94.639	

Constant	 -17,164.550****	 -18,383.280****	 -22,523.610****	
Observations	 630	 630	 630	
R2	 0.025	 0.512	 0.532	
Adjusted	R2	 0.024	 0.504	 0.521	
F	Statistic	 16.164****	(df	=	1;	628)	 64.989****	(df	=	10;	619)	 46.550****	(df	=	15;	614)	

Note:	 *	p<0.1;	**	p<0.05;	***	p<0.01;	****	p<0.001	
	

 
3	Includes	Pacific	Islander,	Hispanic/Latino,	Black,	White	–	Middle	East/North	Africa	
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Table	9b.	Impact	of	Prediction	Bias	on	False	Positive	Imbalance	

	 False	Positive	Imbalance	(Purple	–	Orange)		
	 Model	0	 Model	1	 Model	2	

Prediction	Bias	 0.081**	 0.081**	 0.080**	
round_1	 	 -0.484****	 -0.484****	
round_2	 	 -0.749****	 -0.749****	
round_3	 	 -0.754****	 -0.754****	
round_4	 	 -0.798****	 -0.798****	
round_5	 	 	 	

round_6	 	 -0.435****	 -0.435****	
round_7	 	 -0.772****	 -0.772****	
round_8	 	 	 	

round_9	 	 -0.725****	 -0.725****	
QuantFinComposite	 	 	 -0.0003	
CollegeUpper	 	 	 -0.024	
EthnMinor	 	 	 -0.011	
Male	 	 	 -0.005	
FaithIntuition	 	 	 -0.006*	

Constant	 0.064**	 0.654****	 0.844****	
Observations	 504	 504	 504	
R2	 0.008	 0.342	 0.347	
Adjusted	R2	 0.006	 0.331	 0.329	
F	Statistic	 4.089**	(df	=	1;	502)	32.158****	(df	=	8;	495)	19.992****	(df	=	13;	490)	

Note:	 *	p<0.1;	**	p<0.05;	***	p<0.01;	****	p<0.001	
	
	
	

Table	9c.	Impact	of	Prediction	Bias	on	False	Negative	Imbalance	
	 False	Negative	Imbalance	(Orange	–	Purple)	
	 Model	0	 Model	1	 Model	2	

Prediction	Bias	 0.104***	 0.104****	 0.104****	
round_1	 	 -0.209****	 -0.209****	
round_2	 	 -0.630****	 -0.630****	
round_3	 	 -0.370****	 -0.370****	
round_4	 	 -0.058	 -0.058	
round_5	 	 -0.511****	 -0.511****	
round_6	 	 -0.526****	 -0.526****	
round_7	 	 0.069	 0.069	
round_8	 	 -0.045	 -0.045	
round_9	 	 -0.209****	 -0.209****	
QuantFinComposite	 	 	 -0.001	
CollegeUpper	 	 	 0.021	
EthnMinor	 	 	 -0.065**	
Male	 	 	 0.025	
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FaithIntuition	 	 	 -0.001	

Constant	 0.053**	 0.302****	 0.381****	
Observations	 630	 630	 630	
R2	 0.016	 0.345	 0.355	
Adjusted	R2	 0.014	 0.334	 0.339	
F	Statistic	 10.136***	(df	=	1;	628)	32.586****	(df	=	10;	619)	22.538****	(df	=	15;	614)	

Note:	 *	p<0.1;	**	p<0.05;	***	p<0.01;	****	p<0.001	
	

Electronic copy available at: https://ssrn.com/abstract=3988456


