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Abstract

The Magnus hierarchy has been used for almost a century to study one-relator
groups. Taking a topological viewpoint, we refine the Magnus hierarchy. With this
new tool, we characterise quasi-convex one-relator hierarchies in the sense of Wise.
This new characterisation has several applications: we confirm a conjecture of
Louder and Wilton on one-relator groups with negative immersions, we characterise
hyperbolic one-relator groups with exceptional intersection, and answer a question of
Baumslag’s on parafree one-relator groups. Finally, we introduce two new families of
two-generator one-relator groups and prove that Gersten’s hyperbolicity conjecture

is true for all one-relator groups if and only if it is true for these families.



Chapter 1

Introduction

Almost a century ago, the theory of one-relator groups began when Magnus proved
the Freiheitssatz [Mag30]. An early triumph of the theory came with the solution of
the word problem [Mag32|. Despite their long history, one-relator groups have evaded
any form of geometric characterisation. With this thesis, we aim to partially remedy

this. We are motivated by the following, known as Gersten’s conjecture [Ger92b].

Conjecture. A one-relator group is hyperbolic if and only if it contains no Baumslag—
Solitar subgroups:
BS(m,n) = {a,t |t ta™t = a") .

The introduction of hyperbolic groups in [Gro87] revolutionised the study
of infinite groups; what was formerly known as combinatorial group theory, trans-
formed into geometric group theory. Hyperbolic groups are now well understood and
constitute a major component in any standard text [GdIH90, ABC*91,BH99, DK18].
Therefore, it can be very useful, when studying a class of groups, to seek a characteri-
sation of the hyperbolic groups within that class. Indeed, Gersten’s conjecture forms
part of a broader theme in geometric group theory to characterise hyperbolicity.

A more general conjecture, attributed to Gromov, states that a group with
finite K(G, 1) is hyperbolic if and only if it does not contain any Baumslag—Solitar
subgroups [Bes04]. Although this has recently been disproved [IMM21], there are
many subclasses of groups where this dichotomy holds. For example: Coxeter groups
[Mou88], free-by-cyclic groups [Bri00], three-manifold groups, special groups [CH09]
and ascending HNN-extensions of free groups [Mut21b]. Moreover, hyperbolicity is

decidable within several of these classes?.

!See [Mou88, Theorem 17.1] for Coxeter groups, [Bri00] and [FH18, Corollary 16.4] for free-by-
cyclic groups, [AFW15, Theorem 4.24] and the discussion preceding it for three-manifold groups,
and [Mut21a] for ascending HNN-extensions of free groups.



1.1 One-relator groups and the isoperimetric function

The isoperimetric function of a finitely presented group roughly measures the com-
plexity of the word problem. A geometric characterisation of hyperbolic groups is
that they are precisely the finitely presented groups with linear isoperimetric function.
By contrast, some one-relator groups have isoperimetric function not bounded above
by any finite tower of exponentials [Pla04]. The current best known uniform upper
bound is Ackermannian [Ber94].

A large class of one-relator groups that are known to be hyperbolic are those
with torsion. This is a corollary of Newman’s Spelling Theorem [New68]. For torsion-
free one-relator groups, hyperbolicity criteria generally rely on the Bestvina-Feighn
combination theorem [BF92|, as in the case of cyclically and conjugacy pinched
one-relator groups [FRS97a, Theorem B12], or on variations of small-cancellation
conditions [GS90,1S98, BM22].

Gersten also asked whether one-relator groups are automatic if and only if
they do not contain BS(m,n) subgroups with m # £n [Ger92b]. If this were true,
it would imply a gap in the isoperimetric spectrum: that is, all one-relator groups
would have isoperimetric function either at most quadratic or at least exponential
by [Ger92a, Theorem C|. However, by building on the work in [BB00], Gardam
and Woodhouse provide counterexamples, showing in [GW19] that the isoperimetric
spectrum of one-relator groups is as rich as possible: there exists a family of one-
relator groups with isoperimetric function ~ n® where the values of « are dense in
[2,00). These are also counterexamples to Wise’s conjecture that such one-relator
groups should act freely on a CAT(0) cube complex [Wis14, Conjecture 1.9]. Since
these groups contain copies of Z? =~ BS(1, 1), they are not counterexamples to the

hyperbolicity conjecture.

1.2 One-relator hierarchies

The most useful tool of this thesis, Theorem 7.1.2, is a criterion for when a one-relator
group is hyperbolic and has a quasi-convex hierarchy. The starting point for this
theorem is a new hierarchy for one-relator complexes: combinatorial 2-complexes
with precisely one 2-cell. We show that for any one-relator complex X, there is a

finite sequence of immersions of one-relator complexes

XN%...%qu»onX,



such that 71 (X;) splits as an HNN-extension over m(X;+1) and (X ) splits as
a free product of cyclic groups. This refines the well-known Magnus—Moldavanskii
hierarchy for one-relator groups. See Theorem 3.3.2 for the full statement and the
beginning of Chapter 3 for a more detailed discussion.

One of the main results in [Wis21] states that hyperbolic groups with a quasi-
convex hierarchy are virtually special. In [Wis21], Wise also shows that one-relator
groups with torsion have quasi-convex one-relator hierarchies and hence, coupled with
the Newman Spelling Theorem, that they are virtually special. Since special groups
embed in right-angled Artin groups, Wise obtains residual finiteness for one-relator
groups with torsion, answering an old question of Baumslag.

We here provide the first quasi-convex hierarchy criterion for all one-relator
groups. See the beginning of Chapters 4 and 7 for the relevant definitions appearing

in the following statement.

Theorem 7.1.2. Let X be a one-relator compler and let Xy b ... P X1 Xg =X

be a one-relator hierarchy. The following are equivalent:
1. XN P ... ¢ X1 9 Xo = X is a quasi-convez hierarchy and w1 (X) is hyperbolic,
2. XN P ... P X1 D Xo =X is an acylindrical hierarchy,

3 XN P ... » X1 D Xo = X is a stable hierarchy and 71(X) contains no

Baumslag—Solitar subgroups.

Given as input a finitely presented group, it is undecidable whether it is
hyperbolic. This follows from the Adian—Rabin Theorem and the fact that hyper-
bolicity is a Markov property. On the other hand, within the class of one-relator
groups, it is open whether hyperbolicity is decidable [KS05]. As a consequence of
Theorem 7.1.7, we show that hyperbolicity is decidable for one-relator groups that
possess a stable hierarchy. Although we do not know whether it is decidable if a
one-relator hierarchy is stable, we provide a simple algorithm to verify stability with

Proposition 6.1.7.

1.3 One-relator groups with negative immersions

Recently, Louder and Wilton have shown a number of strong results for one-relator
groups [LW22]. In order to describe them, we first need a definition, due to Puder
[Pud14]. The primitivity rank of an element w € F(X) is the following quantity:

m(w) = min {rk(K) |w e K < F(X) and w is imprimitive in K} € Nu {0} .



A one-relator group G = F(X)/{{w)) has torsion if and only if 7(w) = 1 by [KMS60].
Thus, by Newman’s Spelling Theorem, the case of interest is when 7(w) > 2.

Louder and Wilton showed that if 7(w) = k + 1 > 2, then G is k-free. Thus,
when 7m(w) > 3, we have that G cannot contain Baumslag—Solitar subgroups; this led
them to conjecture that such groups are hyperbolic [LW22, Conjecture 1.9]. Since G
also has negative immersions if 7(w) > 3 [LW22, Theorem 1.3], their conjecture can
be considered as a special case of an older conjecture of Wise [Wis04, Conjecture
14.2]. Indeed, their results grew out of earlier ideas of Wise [Wis03, Wis04]. Louder
and Wilton’s conjecture has been experimentally verified for all one-relator groups
with negative immersions that admit a one-relator presentation with relator of length
less than 17 [CH21].

In this thesis, we verify their conjecture and in fact prove more.

Theorem 7.1.3. One-relator groups with negative immersions are hyperbolic and

virtually special.

Before moving on to our main hyperbolicity result, we first discuss two
applications of Theorem 7.1.3.
Exceptional intersection groups

A one-relator group G = F(X)/{{w)) is an exceptional intersection group if there are
subsets A, B ¢ ¥ such that (A) n (B) # (A n B). Such groups were first studied
in [Col04,How05]. There, the intersections of Magnus subgroups of one-relator groups
were characterised. As a consequence of Theorem 5.2.8 and Theorem 7.1.3, we prove

that Gersten’s conjecture holds for exceptional intersection groups.
Corollary 7.1.5. An exceptional intersection group is hyperbolic (and virtually
special) if and only if it contains no Baumslag—Solitar subgroups.
Parafree groups
A group G is parafree if the following hold:
1. G is residually nilpotent,

2. there is some finitely generated free group F such that G/v,(G) = F/v,(F)
for all n > 1, where v;(G) = [vi-1(G), G] and 71(G) = [G,G].

First introduced in [Bau67al, examples of parafree one-relator groups abound [Bau69,
BCO06]. Often mentioned as examples demonstrating the difficulty of the isomorphism

problem for one-relator groups [CM82, BFR19], Baumslag asked in [Bau86, Problem



4] whether the isomorphism problem for parafree one-relator groups is solvable. Since
then, several authors have solved the isomorphism problem for certain subfamilies
[FRS97b, HK17, HK20, Che21] and carried out computational experiments [LL94,
BCHO4]. By showing that parafree one-relator groups have negative immersions, we

use Theorem 7.1.3 to answer Baumslag’s question.

Corollary 7.1.6. Parafree one-relator groups are hyperbolic and virtually special.

In particular, their isomorphism problem is decidable.

1.4 Gersten’s conjecture and primitive extension groups

In order to state our main hyperbolicity result, we now introduce two new families
of one-relator groups. The relators of these families are Christoffel words. First
appearing in [Chr73], these words have since been shown to have connections in
several different areas of mathematics. Christoffel words are parametrised by a

positive rational p/q € Q¢ and we denote them by:

prp/q(x,y) € F(.’L’,y) .

See Section 2.1.3 for their definition and a geometric interpretation. Now, for each

1 < j € Z, denote by
Apj={t tat' et Lt T at’} € Fa,t)
and let

re{Agp—1)— (A1),
ye(Arg) —(Arg-1),
z€ (A1)

be non-trivial elements (with some extra conditions explained in Section 7.2). Then,

a primitive extension group has one of the following presentations:

Eyq(x,y) = {a,t | prys(e,y)) ,
Fyrg(@,y,2) = a,t | pryy(zy, 2)) -
Examples of primitive extension groups include free-by-cyclic one-relator groups and

some Baumslag—Solitar groups. The primitive extension groups Ep/q(:c, y) all split as

graphs of free groups. The groups £}, (,y, 2) also admit a similar graph of groups



decomposition. In particular, the isoperimetric function of primitive extension groups

is at most exponential.

Theorem 7.2.3. A one-relator group is hyperbolic if and only if its primitive

extension subgroups are hyperbolic.
We conclude with a corollary.

Corollary 7.2.4. Gersten’s conjecture is true if and only if it is true for primitive

extension groups.

1.5 Structure of the thesis

In Chapter 2, we introduce the necessary notation and definitions. We then present
an overview of one-relator groups, stating the most important results that we will
need. In the remaining sections, we discuss some combinatorics on words, inert
subgroups of free groups, and graphs of spaces.

In Chapter 3, we refine the Magnus hierarchy using 2-complexes. We also
define the hierarchy length of a one-relator group and show that it is computable.
Finally, we prove the existence of hierarchies relative to w-subgroups.

In Chapter 4, we prove a criterion for when a one-relator group has a quasi-
convex hierarchy in the sense of Wise [Wis21]. In order to do this, we show that
hyperbolic one-relator groups with quasi-convex hierarchies have quasi-convex Magnus
subgroups.

In Chapter 5, we define exceptional intersection groups. In the first section,
we introduce primitive exceptional intersection groups and show that they have
negative immersions. In the second section, we prove that all other exceptional
intersection groups contain Baumslag—Solitar subgroups, establishing Theorem 5.2.8.

In Chapter 6, we introduce inertial one-relator extensions and develop their
Bass-Serre theory. We also introduce the graph of cyclic stabilisers and use it to prove
a criterion for when an inertial one-relator extension contains a Baumslag—Solitar
subgroup. We then show that, under certain conditions, the graph of cyclic stabilisers
is computable. Finally, we apply these results to the HNN-extensions that arise in
our one-relator hierarchies.

In Chapter 7, we combine all our main results from each chapter and prove
Theorem 7.1.2, our hierarchy equivalence theorem. Using this, we then prove

Theorems 7.1.3 and 7.2.2. Finally, we conclude with several open questions.



Chapter 2

Preliminaries

2.1 Definitions and notation

In this section, we fix notation and gather definitions that we will be using throughout
this thesis. The notions described here are standard and can be found in most
combinatorial and geometric group theory textbooks such as [MKS66] and [BH99].
Those that differ from the literature will be pointed out.

2.1.1 Graphs and combinatorial complexes

A graph T is a 1-dimensional CW-complex. We will write V(I") for the collection
of 0-cells or vertices and E(T") for the collection of 1-cells or edges. We will usually
assume I' to be oriented. That is, I' comes equipped with maps o : E(I') — V(T')
and t : E(I') — V(I'), the origin and target maps. The degree deg(v) of a vertex
v € V(I') is the number of adjacent edges, counted with multiplicity. In other words,
deg(v) = |o~*(v)| + [t ! (v)|. For simplicity, we will write I to denote any connected
graph whose vertices all have degree two, except for two vertices of degree one. Then
S will denote a connected graph, all of whose vertices have degree precisely two.
A map between graphs f : I' — IV is combinatorial if it sends vertices to
vertices and edges (homeomorphically) to edges, preserving orientations. We will
always assume that our maps between graphs are combinatorial. A combinatorial
map is an ¢mmersion if it is also locally injective. Such maps will be denoted by
the arrow 9. Combinatorial graph maps A : I — I', A : S — T" will be called paths
and cycles respectively. The reverse of a path A : I — I' is the path obtained from
A by reversing direction and it is denoted by A. If A\j, Ao : I — I' are two paths
with (A1) = o(\2), then the path obtained by concatenation is denoted by Aj * Ag.
The length of a combinatorial path A : I — T" is the number of edges in I and is



denoted by |A|. If A: I — X is a path, we may often identify the vertices of I with
the integers 0,1, ..., |\| so that A(i) is the i vertex that A traverses. We also put
o(A) = A(0) and t(\) = A(JA]). We similarly define the length of a cycle A : S — T.
If A :S! 9 I is an immersed cycle, we will write deg()\) to denote the maximal
degree of a covering map S' 9 S! that ) factors through. We say \ is primitive if
deg(\) = 1, imprimitive otherwise. Note that A being imprimitive is not the same
as [A] being imprimitive in 7 (I).

The core of a graph I is the subgraph consisting of the union of all the images
of immersed cycles S 9 I' and will be denoted by Core(T"). Note that if T is a
forest, then Core(I') = &F. A graph I is core if I' = Core(T").

Ifv:I'> Aand A: A 3 A are graph immersions, then their fibre product is
the graph I' x A A with:

V(I xa A) = {(v,w) e V(T') x V(A) [ y(v) = Aw)} ,
E( xa A) = {(e, ) € E(T) x E(A) | v(e) = ()},

and where o(e, f) = (o(e),o(f)) and t(e, ) = (t(e),t(f)) for each (e, f) € E(I' xaA A).
There are natural maps pr: I' xa A 3 ' and py : I' xao A & A given by projecting
to the first and second factor. It is an easy exercise to see that these projection maps
are immersions.

A combinatorial 2-complex X is a 2-dimensional CW-complex whose attaching
maps are all immersions. We will usually write X = (I', A) where I is the 1-skeleton
and X\ : S = 1S! & T are the attaching maps. We say X has a free face if there is
an edge e € F(T') that is traversed precisely once by \; that is, if A™!(e) consists of a
single edge. If e is a free face of X, then X is homotopy equivalent to the 2-complex
(' — e, \') where )\ is obtained from A\ by removing the component of S containing
A 1(e).

A combinatorial map of combinatorial 2-complexes f : Y — X is a map that
restricts to a combinatorial map of graphs fr : 'y — I'x and induces a combinatorial
map fs: Sy — Sx such that fr oAy = Ax o fs. We say that f is an immersion if
fr is an immersion and fg restricts to a homeomorphism on each component.

Since we will always be assuming that our maps are combinatorial, we will

often neglect to use the descriptor.

2.1.2 Hyperbolic spaces

Fix a geodesic metric space X. If § > 0 is some constant, we say X is d-hyperbolic if,

for every triple of geodesic paths «, 3,7 : I — X that form the sides of a triangle,



each of Im(a),Im(f3),Im(v) is contained in the d-neighbourhood of the other two.
We say that X is hyperbolic if it is d-hyperbolic for some ¢ > 0.

Let f: X — Y be a function between geodesic metric spaces and K > 0 a
constant. We call f a K-quasi-isometric embedding if for all points x,y € X, the

following is satisfied:

dx(@y) ~ K < dy(f(2), f(9) < Kx(e,) + K

We call f a K-quasi-isometry if, additionally, for all y € Y, there is some x € X such
that:

dy(y, f(z)) S K,

We call f a quasi-isometric embedding or a quasi-isometry if it is a K-quasi-isometric
embedding or a K-quasi-isometry for some K > 0.

A quasi-geodesic is a map ¢ : I — X that is a quasi-isometric embedding. We
write |c| to denote the length of c.

The definition of quasi-geodesics may be generalised in the following way. Let
X be a metric space and f : Ryg — R a monotonic increasing function. A path

c: I — X,is an f-quasi-geodesic if, for all 0 < p < g < |¢|, the following is satisfied:

q—p=di(p,q) < f(dx(c(p),c(q))) -

If f is bounded above by a linear function, then c is simply a quasi-geodesic. The
following theorem is essentially due to Gromov [Gro87]. We include a proof for

completeness.

Theorem 2.1.1. Let X be a geodesic §-hyperbolic metric space and f : Ryg — Ryg
a monotonic increasing subexponential function. There is a constant K(f) such that

all f-quasi-geodesics are K (f)-quasi-geodesics.

Proof. By [Gro87, Corollary 7.1.B], if f is a subexponential function, then there exists
some constant C' > 0, depending only on § and f, such that any f-quasi-geodesic
remains in the C-neighbourhood of any geodesic connecting its endpoints. In fact, by
taking C' large enough, any geodesic remains in the C-neighbourhood of any f-quasi-
geodesic connecting its endpoints. So now let v : [0,¢q] — X be an f-quasi-geodesic
and let 7/ : [0,p] — X be a geodesic connecting the endpoints of 7. Then there is
a sequence i1, iz, ..., i|p| such that d(v(i;),7'(j)) < C for all j € N [0,p]. Hence
d(y(75),7(ij41)) <2C +1 and so ij41 —ij < f(2C +1) for all j. Now we obtain that
qg<(p+1)f(2C + 1) and so f-quasi-geodesics are f(2C + 1)-quasi-geodesics. [



Now let Y < X be a subset and K > 0. We say Y is K-quasi-convez if every
geodesic in X joining two points in Y remains at distance at most K from Y. We
say it is quasi-conver if it is K-quasi-convex for some K > 0. If Y is hyperbolic, Y
being a quasi-convex subset is equivalent to Y being quasi-isometrically embedded
(see [BH99, Theorem III.H.1.7]).

2.1.3 Groups

Let G be a group. If g, h € G, we will adopt the usual convention that h9 = g~'hg
and [h,g] = h7'h9. If H < G is a subgroup, we will write [H] to denote the
conjugacy class of H in GG. More generally, if X,Y < G are subsets, then define the
Y -conjugacy class of X to be the following:

[X]y = {X¥|yeY}.

A subgroup H < G is said to be malnormal if H n HY # 1 implies that g € H. A
collection of subgroups Hy, ..., H; < G is said to be a malnormal family if H; me #1
implies that ¢ = 5 and g € H;.

Denote by rk(G) the rank of G, that is, the smallest number of elements
needed to generate G. Then we denote by rr(G) = max {0,1k(G) — 1} the reduced
rank of G.

Free groups

If ¥ is a set, then we write £ ! for the set of formal inverses of elements in 3. We

call each element of ¥ a letter. A word over X is simply an element of the free

*

monoid ¥*. Denote by € the empty word. We say a word w € (¥ 1 X71)
1

is freely
reduced if in w there does not appear a subword of the form oo~! or o~ 'o for any
o€ X. We call it cyclically reduced if the first and last letters of w are not inverses
of each other.

The free group generated by X is denoted by F'(X). We will often conflate
elements of the free group F(X) with words in the free monoid (X 1 X~ 1)*. A subset
of elements S < F(X) freely generates the subgroup (S) < F(X) if the natural
homomorphism F'(S) — F(X) is injective. If S freely generates (S), we say that S
is a free basis for (S). An element o € F(X) is primitive if it forms part of a free
basis for F(X), imprimitive otherwise.

We now explicitly describe a subset of the primitive elements of F'(a,b), that
we will be particularly interested in. These elements are known as Christoffel words

and were first introduced in [Chr73]. They are parametrised by a rational slope

10



Figure 2.1: L is in green with slope 5/6. The a edges are in blue and the b edges are
in red, so pr5/6(a, b) = a’babababab.

p/q € Qsp U {v}. Let I' ¢ R? denote the Cayley graph for Z? on the generating
set a = (1,0), b = (0,1). Let L = R? be the line segment beginning at the origin
and ending at the vertex (¢,p). Now let P < T" be the shortest length edge-path
connecting the endpoints of L, remaining below L and such that there are no integral
points contained in the region enclosed by L u P. See Figure 2.1 for an example.

The word in a and b traced out by P is denoted by:

pry/q(a,b) .

By [0Z81, Theorem 1.2], every primitive element of F'(a,b) is conjugate into the set

{prp/q (ail, bil) ‘ g € Q>0 (@] {CD}} .

We provide an alternative proof of this fact with Corollary 3.3.10.

Using graph immersions to understand the subgroups of free groups is a
powerful tool that was popularised by Stallings in [Sta83]. We will take advantage
of this idea several times throughout this thesis. The main facts that we shall use

repeatedly are the following:

1. If A is a finite graph, there is a bijection between immersions of finite core graphs
I' $ A and conjugacy classes of finitely generated subgroups of 71 (A), induced
by the 71 functor. Moreover, this bijection is algorithmic, see [Sta83, Algorithm
5.4].
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2. fT'$ A and A & A are a pair of immersions of finite graphs, then there is a bi-
jection between components of Core(I" x o A) and double cosets (71 (I"))g(m1(A))
such that 71 (I')9 n 71 (A) # 1, induced by the m; functor. Moreover, this bijec-
tion is algorithmic, see [Sta83, Theorem 5.5].

Group presentations

Let ¥ be a set, R ¢ F(X) — {1} a subset and denote by ((R)) the normal closure of
R in F(X). A group G has presentation (X | R) if:

G=FE)/(R)) -

There is a natural 2-complex X = (I',\) associated with a group presentation
(X | R) called the presentation complez: it has one vertex, one edge for each
generator o € X and one 2-cell for each relator r € R, with attaching map spelling

out the corresponding relation.

Hyperbolic groups

A finitely generated group G is hyperbolic if its Cayley graph with respect to some
finite generating set is hyperbolic with the path metric. Since hyperbolicity is a
quasi-isometry invariant [BH99, Theorem III.H.1.9], if G has a hyperbolic locally
finite Cayley graph, then every locally finite Cayley graph for G must be hyperbolic.

A subgroup H < G of a hyperbolic group is quasi-convez if for some finite
generating set S © G, H is a quasi-convex subspace of Cay(G,S). The property of
being quasi-convex does not depend on the chosen generating sets. Quasi-convex sub-
groups of hyperbolic groups are finitely generated and hyperbolic [BH99, Proposition
I11.H.3.7].

Distortion

Let H < G be a pair of finitely generated groups and fix finite generating sets for H
and G. Let dyg and dg be given by the path metrics in the Cayley graphs for H and
G respectively. The distortion of H in GG is given by the function:

58 (n) = max {dp(1,9) | g€ H,dg(1,9) < n} .

Varying generating sets for H and G produce Lipschitz equivalent distortion functions.

A finitely generated subgroup H < G is undistorted if it has a distortion function
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bounded above by a linear function. The quasi-convex subgroups of hyperbolic
groups are precisely those that are undistorted [BH99, Corollary I11.H.3.6].

It follows from Theorem 2.1.1 that there is a gap in the spectrum of possible
distortion functions of subgroups of hyperbolic groups. This is known by work of

Gromov [Gro87]. It also appears as [Kap01, Proposition 2.1].

Corollary 2.1.2. Subexponentially distorted subgroups of hyperbolic groups are

undistorted and hence, quasi-conver.

2.1.4 Graphs of groups

See [Ser03] for a comprehensive treatment of graphs of groups. Our definitions here
deviate from the standard ones only in that we do not use Serre graphs. A graph of

groups is a tuple

G = (T, {Gu}lev(r) {Geteenm) {02 }eenm))

where I is the underlying graph, G, are the vertex groups, G are the edge groups

and

0, :Ge — Go(e) ,
a;_ : Ge — Gt(e) y

are monomorphisms called the edge maps. We abuse notation and write o(e ™) = t(e)
and t(e™!) = o(e) and 07, = 97 and 0, = OF.

Consider the group

F(E(F))*( % Gv> .

veV (I)
Then the path groupoid is the subgroupoid consisting of elements
g=9go-el' g1 € Gn
where the following hold:
1. ¢, =+1 and ¢; € E(T") for all 1 <i < n,
2. v = o(ef"), vy = t(e) and ¢ (ef') = v; = o (e;}}') for all 1 < i <n,

3. i€ Gy, forall 0 <i < n.

13



€i+1

We say g is reduced if for each 1 < i < n such that e;* = ¢;\]', we have

gi ¢ Im (0:%1) .

If v, = vg, then we say g is cyclically reduced if g is reduced and when e* = e,

we have
gngo ¢ Tm (0%, ) -
We call ef * ... = €5 the path associated with g.

The fundamental groupoid 7 (G) is the quotient of the path groupoid by the

normal closure of the elements:
0 (9)=e-05(g)-e7",

for all e e E(I") and g € G.. Then, given a vertex v € V(I'), the fundamental group
m1(G,v) is the subgroup of 71(G) consisting only of those elements whose associated
path begins and ends at v.

Following [Ser03, §5.3], there is a tree associated with a graph of groups,
known as the Bass-Serre tree. If T is the Bass-Serre tree associated with G, then
m1(G,v) acts on T with vertex stabilisers the conjugates of vertex groups, edge
stabilisers the conjugates of edge groups, and with m(G,v)\T' = I".  We say an
element g € 7 (G,v) acts elliptically on T if it fixes a vertex. We say it acts
hyperbolically if infyep d(t, g - t) > 0. An element g acting hyperbolically on a tree has
a unique embedded line on which it acts by translations by inf,er d(¢, g - t), called
its axis.

We will mostly be concerning ourselves with the case in which I' is a graph
with a single edge e. If V(I') = {v, w}, then

m1(G,v) = Gy & Guw
is the amalgamated free product of G, and G, along Ge. If V(') = {v}, then
ﬂ-l(gvv) = G’U*Ge

is the HNN-extension of G, along G.. We will also use the notation G,*, where
=0 0(0,):Im(d,) — Im(0)).
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2.2 Counting subwords

In this section, we prove a couple of lemmas regarding subwords of powers of elements
in the free group F(X). These will be of use to us in Chapter 5. The first lemma we
prove essentially follows from the Fine and Wilf periodicity Theorem (see [FW65]
and [Lot97, Proposition 1.3.5]). The second is a little more specialised.

Let v,w € F(X). We say that w is a subword of v if v is equal to a freely
reduced word viwvy € F(X). If v; =1, we say w is a prefiz. If vg = 1, we say w is a
suffiz. We say that v = vjwve = vjwvh are distinct occurrences of w as a subword of

v if |ug] # V).

Lemma 2.2.1. Let 1 # y lzy € F(A) be a freely reduced word with z cyclically

reduced and not equal to a proper power. Then:

1. ify = 1 and z appears as a subword of 2*, then i > 1 and z is a subword in

precisely 1 different ways,

L2dy for some i, j € Z— {0}, then

2. ify # 1 and y~ 2%y occurs as a subword of y~
1=7.

Proof. Let us first suppose that y = 1. By comparing prefixes and suffixes, if z
appears as a subword of 22 in three different ways, this implies that z = 2125 and
z = z9z1. Then by [LS62, Lemma 2], we contradict the assumption that z is not
a proper power. If z appears as a subword of 272, then z = 2129 and 27! = 2p2;.
This implies that 21,2 = 1 and so z = 1. Thus, z appears as a subword of 2 in
i different ways when ¢ > 1 and does not appear as a subword of 2* when i < —1.
iy occurs as a subword of y !

Now suppose that y # 1 and that y 'z 2Jy for some

non-zero integers i < j. By length considerations, z must occur as a subword of 22

2

or z~“ in at least three distinct ways and we have completed the proof. ]

Lemma 2.2.2. Let zbe F(A, B) be a cyclically reduced word such that z begins and
ends with an element in A L1 A~ and b € (B). If zb is not a proper power and z
appears as a subword of (zb)!, then i = 1 and z appears as a subword in precisely i

different ways.

Proof. By Lemma 2.2.1, we may assume that b # 1. It suffices to show that z cannot
be a subword of (zbz)~! and can only be a subword of zbz in two ways. If z is a
subword of (zbz) !, then either z = 2!, which is not possible, or there is a copy
of z in 27'b~ 127! that overlaps with both copies of z~!. But this would only be

possible if z had a non-trivial suffix equal to its own inverse and so z does not appear
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as a subword of (zbz)~!. Now suppose that z is a subword of zbz in more than two

ways. Then:
Z = 212273 ,
z = z3bzy
for some z1, 29,23 € F(A, B). If |z1| = |23], then 22 = b and we have zb = z1bz1b =

(21b)?, contradicting our assumption. So suppose that |2;| < |z3|. Note that z; and
23 are cyclically reduced since z was. Since the first letter of z3 is in A U A™!, we
have that |z3| > |2122]. Now by [LS62, Lemma 1], we have 23 = (2122)2’ for some
1 > 1 and where 2’ is a proper prefix of z129. Then we have:

i1

z = (2122)

)

2z = (2122)"2bz .
By comparing suffixes, we have:
21207 = 2'bzy .

But now we obtain equalities of the same form as before, with 2’ playing the role of
z3. Since |2'| < |z3|, by induction on length, we see that zo = b and so we obtain a

contradiction as before. ]

2.3 One-relator groups

The study of one-relator groups was initiated in 1930 by Magnus [Mag30] with his
proof of the Freiheitssatz.

Definition 2.3.1. A Magnus subgroup of a one-relator group F(X)/{((w)) is a
subgroup generated by a subset A < ¥, such that w is not conjugate into (A) within
F(¥%).

The Freiheitssatz can now be stated as follows.

Theorem 2.3.2. Let G = F(X)/{{w)) be a one-relator group and A < ¥ a subset
generating a Magnus subgroup. Then (A) < G is a free group, freely generated by A.

In order to prove the Freiheitssatz, Magnus proved the existence of a hierarchy
of one-relator groups. Using the hierarchy, Magnus also proved the following in
[Mag32].
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Theorem 2.3.3. The membership problem is solvable for Magnus subgroups of

one-relator groups.
Corollary 2.3.4. The word problem is solvable for one-relator groups.

As will be discussed in Chapter 3, Magnus’ hierarchy was refined by Moldavan-
skii in [Mol67] and by Masters in [Mas06]. A key tool in this thesis is a simplification
of these hierarchies using 2-complexes. See Theorem 3.3.2 for the statement. Our
main hierarchy results, Theorem 7.1.2 and Theorem 7.2.2, use this hierarchy and

induction on hierarchy length as the overarching proof strategy.

2.3.1 Primitivity rank

First introduced in [Pud14, Definition 1.7], the primitivity rank of a word w € F(X)
is the following quantity:

m(w) = min {rk(K) |w e K < F(X) and w is imprimitive in K} € Nu {00} ,

with 7m(w) = 0o if w is primitive in F(X). In a recent series of articles [LW17, LW20,
LW21,LW22], the primitivity rank of w has been related with several properties
of the subgroup structure of the one-relator group F(X)/{{w)). In this, and the
following subsection, we state some of these results. The first result we shall need
is the following freedom theorem, appearing as [LW22, Theorem 1.5 and Corollary
6.18].

Theorem 2.3.5. Let k > 2 be an integer and w € F(X). The following are equivalent:
o F(X)/Kw)) is k-free,
o w(w) =k+1.

Note that being 1-free is equivalent to being torsion-free, so Theorem 2.3.5
also recovers the main result of [KMS60].

In [Bau74], Baumslag conjectured that all one-relator groups are coherent:
that is, that every finitely generated subgroup of a one-relator group is also finitely
presented. This conjecture has motivated several important advances in the theory
of one-relator groups. For instance, Wise and, independently, Louder and Wilton
showed that one-relator groups with torsion are coherent in [Wis22] and [LW20]
respectively. Moreover, Louder and Wilton showed in [LW22] that if w € F(X) with
m(w) = 3, then G = F(X)/{{w)) is coherent. In the same article, they also prove
several strong results about the subgroups of G. We collect below the statements
from [LW22, Theorem A and Theorem B] that we make use of.
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Theorem 2.3.6. Let w € F(X) such that m(w) = 3 and G = F(X)/{{w)). Then the
following hold:

1. G 1is coherent.

2. Ewvery finitely generated non-cyclic freely indecomposable subgroup of G is not

isomorphic to any proper subgroup of itself.

3. For any natural number n, there are only finitely many conjugacy classes of

non-cyclic subgroups H < G with abelianised rank at most n.

Theorem 2.3.6 is an essential ingredient in the proof of Theorem 6.3.3, and
hence in our resolution of [LW22, Conjecture 1.9]. The bound on the number of
conjugacy classes of subgroups of fixed rank will allow us to make strong conclusions

about the action of such a one-relator group on its Bass-Serre tree.

2.3.2 w-subgroups

If we F(X) is a word with m(w) < 00, a w-subgroup is a finitely generated subgroup
K < F(X), satisfying the following:

1. we K and w is not a primitive element of K,
2. 1k(K) = 7(w),
3. If K’ < F(X) is a subgroup properly containing K, then rk(K') > rk(K).

By [LW22, Lemma 6.4], for any fixed w, there are only finitely many conjugacy classes
of w-subgroups. Moreover, a complete list of these subgroups, up to conjugacy, is
computable. By [LW22, Theorem 6.17], if 7(w) < 00 and K < F(X) is a w-subgroup,

then the natural map
K/ w)) — F(X)/(w))

is an injective homomorphism. This allows us to treat P = K /{({w)) as a subgroup
of G = F(X)/{{w)). In a slight abuse of notation, we will also call P a w-subgroup
of G. The following result connects w-subgroups with the subgroup structure of
F(X)/{w)). It appears as [LW22, Theorem 1.5 and Corollary 1.10].

Theorem 2.3.7. Let w e F(X) and G = F(X)/{w)). Then G has finitely many
conjugacy classes of w-subgroups Py, ..., P, < G and, for every subgroup H < G of
rank 7(w), one of the following hold:

1. H is free,

18



2. H 1is conjugate into some P;.

Moreover, if m(w) = 2, then there exists only one conjugacy class of w-subgroup

P <.

We prove the existence of a one-relator hierarchy relative to any w-subgroup
in Chapter 3, see Theorem 3.3.16. This allows us to prove that the membership
problem is decidable for w-subgroups (see Corollary 3.3.17).

2.4 One-relator complexes

The principal objects of study in this thesis will be one-relator complexes.

Definition 2.4.1. A one-relator complex is a combinatorial 2-complex of the form
X = (I, \) where X : S! 95 T' is an immersion of a single cycle. We denote by

X, © X the smallest one-relator subcomplex of X.

The first example of a one-relator complex is the presentation complex of a
one-relator group. As we shall see in Chapter 3, more general one-relator complexes

arise naturally.

2.4.1 Magnus subcomplexes

A Magnus subcomplex A < X = (I',\) of a one-relator complex is a connected
subgraph of I" in which the attaching map A is not supported. This is the topological
analogue of Magnus subgroups of one-relator groups. The classic Freiheitssatz may

be restated as follows for one-relator complexes.

Theorem 2.4.2. Let X = (I', \) be a one-relator complex. If A < T is a Magnus

subcomplex, then the induced map m (A) — m(X) is injective.

In the Magnus—Moldavanskii hierarchy, a one-relator group is decomposed
as an HNN-extension over another one-relator group with shorter relator length,
after possibly passing to a one-relator overgroup. At each step in this hierarchy, a
pair of Magnus subgroups are identified. In our version of the hierarchy, we will
instead be identifying subgroups that correspond to fundamental groups of Magnus
subcomplexes of a one-relator complex.

Let X be a one-relator complex and let A, B ¢ X be a pair of Magnus
subcomplexes. If A n B is connected, we may obtain a one-relator presentation
for m1(X) in which both m(A) and m1(B) are Magnus subgroups. If A n B is not

connected, this may no longer be true. However, we have the following lemma.
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Lemma 2.4.3. Let X = (I', \) be a one-relator complex and let A, B < X be Magnus
subcomplexes. Then 71(A) and w1 (B) are free factors of a pair of Magnus subgroups

for some one-relator presentation of m(X) = F', where F' is some free group.

Proof. If A B is connected, there is nothing to prove. So suppose that A n B is not
connected. We may add edges {e1,es,...} = E to I' so that (A n B) u E is connected.
Let Z be the resulting one-relator complex. Now A u E, B u FE c Z are Magnus
subcomplexes with connected intersection. Since 71(Z) = m1(X) = F' for some free

group F', the result follows. O

2.4.2 Non-positive and negative immersions

The non-positive immersion property for 2-complexes was first introduced by Wise
in [Wis03]: a finite 2-complex X is said to have non-positive immersions if for
every immersion of finite connected 2-complexes Z & X, either x(Z) <0, or Z is
contractible.

The connection with one-relator complexes is provided by the w-cycles con-
jecture, stated in [Wis03]. This conjecture was resolved independently by Helfer and
Wise in [HW16] and by Louder and Wilton in [LW17]. A direct consequence was a

characterisation of one-relator complexes with non-positive immersions.

Theorem 2.4.4. Let X = (I', \) be a one-relator complex. Then X has non-positive
immersions if and only if m(X) is torsion-free. Equivalently, X has non-positive

immersions if and only if \ is primitive.

Wise later introduced a stronger property in [Wis04], called negative immer-
sions. In [Wis20], Wise proved several strong results for 2-complexes with negative
immersions such as coherence and 2-freeness.

The version of negative immersions that we shall be using is due to Louder
and Wilton [LW22]: a finite 2-complex X is said to have negative immersions if for
every immersion of finite connected 2-complexes Z & X, either x(Z) < 0, or Z is
reducible. We will not define what a reducible complex is as we shall not need it.
The interested reader is referred to [LW22, Definition 3.5]. The important property
to keep in mind is that if Z is reducible, then Z is homotopy equivalent to a graph.
The following characterisation of one-relator complexes with negative immersions is
proved in [LW22, Theorem 1.3].

Theorem 2.4.5. Let X be a one-relator complex. Then X has negative immersions
if and only if T (X) is 2-free.
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By Theorems 2.4.4 and 2.4.5, it makes sense to talk about one-relator groups
with non-positive immersions or negative immersions.
If X = (I',\) is a one-relator complex, then every conjugacy class of w-

subgroup in 71 (X) can be realised by an immersion:
Qe X

of one-relator complexes (see [LW22, Section 6.1]). By Theorems 2.3.7 and 2.4.5, if
X has non-positive immersions, but does not have negative immersions, then there

exists precisely one such immersion.

2.5 Strongly inert subgroups

A subgroup H < G is called inert if for every subgroup K < G, we have:
rk(H n K) < rk(K) .

This definition was first introduced in [DV96], motivated by the study of fixed
subgroups of endomorphisms of free groups. More generally, as defined in the
introduction of [Ival8|, we say that H is strongly inert if for every subgroup K < G,
we have:
2 r(H n K9) <1r(K) .
[HNK9]

Ivanov shows in [Ival8, Theorem 1.2] that, given as input a collection of elements of
a free group, it is decidable whether the subgroup they generates is strongly inert.

Examples of strongly inert subgroups of free groups are:

1. subgroups of rank at most two [Tar92, Theorem 1],

2. subgroups that are the fixed subgroups of an injective endomorphism [DV96,
Theorem IV.5.5],

3. subgroups that are images of immersions of free groups, as defined in [Kap00,
Definition 3.1].

The latter example follows by observing that the fibre product of two rose graphs is
again a disjoint union of a rose graph and some cycles. It is unknown whether inert
subgroups of free groups are strongly inert or whether there exists an algorithm to
decide if a subgroup of a free group is inert.

The following lemma will produce more examples of strongly inert subgroups

of free groups.
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Lemma 2.5.1. Let F be a free group and A < F' a subgroup. If A+ B < F = B is

inert for all free groups B, then A is strongly inert.

Proof. Assuming that A is finitely generated, let us represent A < F' by an immersion
of graphs v : I' 3 A. Then A is strongly inert if and only if for every graph immersion
At AP A, we have x(Core(I" xa A)) = x(Core(A)). So suppose for a contradiction
that there exists a graph immersion A : A & A such that:

X (Core(T" xa A)) < x(Core(A)) .

Let O1,...,0; < T' xa A be the distinct connected core subgraphs such that x(0;) <
—1 for all 7 and Zle x(©;) = x(Core(I' xa A)). Then each ©; has a vertex
(vi,w;) € V(T') x V(A) such that deg(v;, w;) = 3. Let A’ be the graph obtained from
A by attaching edges ey, ..., ex_1 along their endpoints to the basepoint of A. Then
let TV be the graph obtained from I" by attaching edges fi, ..., fr—1 connecting the
basepoint of I" with itself. Denote by 4’ : TV & A the graph immersion obtained by
extending v, mapping f; to e; for each i. By assumption, 7,71 (I") is inert in 71 (A").

Now let g1,...,gr—1 : I & I’ be paths such that for each i, g; begins at v;
and ends at v; 1, traversing f;. Let A’ be the graph obtained from A by attaching
segments connecting w; with w;;q for each ¢ < k. Let M : A’ - A be the map
obtained by extending A, mapping each extra segment to the path v o g;. Finally, let
A" A" & A be the graph immersion obtained from \’ by folding. By construction,
the folding map A’ — A” is a homotopy equivalence. We have y(A”) = x(A) — k + 1,

and so:

X(Core(I” x s A")) = x(Core(T” x a1 A)) — & + 1
< x(Core(A")) .

However, Core(I" x o A”) only has one component with non-zero Euler characteristic

by construction, contradicting the fact that v, (I) is inert in 71 (A"). O

Let F be a finitely generated free group and A < F' a subgroup. We say
A is an echelon subgroup if there exists a free basis x1, z9, ..., 2, for F, such that
tk(A N {x1,y oy mg)) — tk(A N (1, x-1)) < 1 for all 1 < ¢ < n, where g is
understood to be 1.

Echelon subgroups of free groups were introduced in [Ros13, Definition 3.2]
and were shown to be inert in [Ros13, Theorem 3.2]. As a corollary of Lemma 2.5.1,

we establish that they are also strongly inert.

Corollary 2.5.2. Echelon subgroups of free groups are strongly inert.
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2.6 Graphs of spaces

A graph of spaces is a tuple:

X = (T AXo}oev(r), {Xeeenm) {02 Yeerm)

where I' is a connected graph called the underlying graph, X, are CW-complexes

called the vertex spaces, X. are CW-complexes called the edge spaces, and

6; : Xe g Xo(e) 5
oF : X — Xi(e)

are 71 injective continuous maps called the edge maps. The geometric realisation of

X is the following space:
Xe=| || Xou || Kex[-1,1)) / (z,+1) ~ 0F(z) .
veV (T) eeE(T)

This space has an induced CW-complex structure. We will say a cell ¢ € Xy is
horizontal if its attaching map is supported in a vertex space, vertical otherwise.

There is a natural vertical map
v XX - T y

where X, maps to v and X, x (—1,1) maps to the open edge e in the obvious way.

The following fact about the vertical map v is well known, see [Ser03].

Lemma 2.6.1. The map:
Vy - 71'1(ng) — 7T1(F)

18 surjective.

Define Hy to be the space obtained from Xy by identifying {z} x [—1,1] to
a point for each e € E(I') and each z € X.. Then we call the quotient map

h: Xy —> Hy,

the horizontal map. A path p: I — Xy is a vertical path if h o p is the constant
path. It is a horizontal path if v o p is the constant path.
In general, not much can be said about the horizontal map. However, with

sufficient restrictions on the edge maps, we can show that A is a homotopy equivalence.
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Proposition 2.6.2. Let X = (I',{X,},{X.}, {0%}) be a graph of spaces. Suppose

that 0 are given by inclusions of subcomplexzes. Then the following hold:

1. h: Xy — Hy is a homotopy equivalence if and only if ngl) does not support

any vertical loops,

2. if h is a homotopy equivalence, then Hy has a CW-structure inherited from

Xx and h | X, is an immersion for all ve V(T).

Proof. Let ¢ be a horizontal 0-cell. Then h=(h(c)) is a graph we denote by T'.. We
have that I'. is a tree for all horizontal O-cells ¢ if and only if X S) supports no vertical
loops. So first suppose that I'; is not a tree for some O-cell c. Let p: I - ' > Xy
be a non-trivial loop. Then v o p is a non-trivial loop in the graph I'. Thus, by
Lemma 2.6.1, [p] € m1(Xx) is a non-trivial element. But then the map h, sends [p]
to a trivial element and so h cannot be a homotopy equivalence. So now suppose
that I, is a tree for all O-cells c.

Since each edge map 0% is an inclusion of subcomplexes, if ¢ is any horizontal
cell, then A~ !(h(c)) has a product decomposition ¢ x I'. where T, is a graph immersing
into I'. Denote by 7. : I'c & I' this immersion. If the image of the attaching map of
the cell ¢ has non-empty intersection with an open cell d, then I'. immerses into I'y.
Hence, since I', is a tree for all 0-cells ¢, this implies that I'. must be a tree for all
higher dimensional cells c.

Denote by hg : Xy — X the map obtained by collapsing each component of
Uceng) ¢ x I'c to a point. Then we may inductively define the maps h; : X;—1 — X;
by collapsing each ¢ x I'; to ¢ for each horizontal i-cell c¢. By definition, h factors
through h; o ... 0 hy o hg for all i. If Xy is finite dimensional, then for some n we
have h, o...ohiohg = h. If Xy is infinite dimensional, we may take the direct limit
and we see that it coincides with h.

By the following lemma, each h; is a homotopy equivalence and thus, so is A.

This proves (1).

Lemma 2.6.3. Let X be a CW-complex and let B ¢ A < X be subcomplezes.
Suppose there exists a deformation retraction fy : A — A such that f1(A) = B. Then

q: X = X/(A~ fi(A))

1s a homotopy equivalence.

Proof. Exactly the same proof as [Hat02, Proposition 0.17]. O
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By construction of the maps h;, we see that Hy has a CW-structure. By
induction on dimension, we can also see that if I'. is a tree for all horizontal cells c,

then X, immerses into Hy for all v e V(T'). O

If X is a graph of spaces, then the universal cover Xy — Xy also has a graph
of spaces structure where each vertex space is the universal cover of some vertex

space of X and each edge space is the universal cover of some edge space of X'. We

will denote this by i 3 ~ .
x = (r{%} {%} {o5}) .

where T is the Bass-Serre tree of the graph of groups m1(Xy). There is a natural
covering action of 7m1(Xy) on X x which pushes forward to an action on 7. Indeed,

we have the following 71 (X x)-equivariant commuting diagram:

Xy=X; — Xz

| |

7 —— T

If X satisfies the hypothesis of Proposition 2.6.2, then we also have a 71 (X x)-

equivariant commuting diagram:

Xy —— Hy
T XX*>HX

N

where H 3 = I:IX.

2.6.1 Hyperbolic graphs of spaces

Acylindrical actions were first defined by Sela in [Sel97].

Definition 2.6.4. Let G be a group acting on a tree T and let k = 0. We say the
action is k-acylindrical if every finite segment in 7" of length at least k has finite

stabiliser. We will say the action is acylindrical if it is k-acylindrical for some k > 0.

By putting constraints on the geometry of the vertex and edge spaces of

a graph of spaces X', we may deduce acylindricity of the action of m(Xx) on its
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Bass-Serre tree. The following is essentially well-known, we include a proof for

completeness.

Proposition 2.6.5. Let X = ([',{X,},{Xc}, {0%}) be a finite graph of finite spaces
such that X’S) 1s hyperbolic with the path metric and X'e(l) - XS) S a quasi-isometric
embedding for each e € E(I'). Then m(Xx) acts acylindrically on its Bass-Serre tree
T.

Proof. Suppose not. Then there exist segments S; < T of length ¢ for all i € N,
such that Stab(S;) is infinite. Let § be the hyperbolicity constant for Xx. Since X,
is quasi-isometrically embedded in Xy for each e € E (T"), there exists a constant
M > 0 with the following property: if I — X, is a geodesic, then any geodesic
I — X with the same endpoints is contained in its M -neighbourhood and vice
versa. This is known as the Morse property, see [BH99, Theorem III.H.1.7]. Now let
n > 20 + M be an integer. Let g € Stab(Ss,) be an element of infinite order. Since
71(Xx) is hyperbolic, such an element exists by [GAIH90, Corollary 36]. Denote by
Xe, X P X x the two translates of edge spaces associated with the endpoints of Sa,.
Let v : I — Xy be a shortest path connecting X, with Xf. We have |y| = 2n. Let
a;: I — X, and B; : I — X; be geodesics such that t(a;) = ¢ - o(;) = ¢' - o(v) and
t(Bi) = g* - o(B;) = g* - (7). Let k be large enough so that d(o(B), t(Br)) > || + 20.
By construction, we have that g’ - v is a geodesic connecting the endpoints of ; and
Bi. Now consider the quadrangle v U B U ¢* - ¥ U ay.. The midpoint of v is either at
distance at most 26 from ¢ - v or at distance at most 26 + M from ay, or ;. In the
first case, we get a contradiction by our choice of k. In the second case, we get a

contradiction by our choice of n. Thus, 71 (Xy) must act acylindrically on 7. I

Proposition 2.6.5 can be thought of as a converse to [Kap01, Theorem 1.2].

Putting the two together, we obtain the following statement.

Theorem 2.6.6. Let X = (T, {X,},{X.},{0%}) be a finite graph of finite spaces
where X'f,(,l) is hyperbolic with the path metric for all v e V(T) and 0F is a quasi-
isometric embedding for all e € E(T"). Then m(Xx) acts acylindrically on the Bass-
Serre tree T, if and only if XE\}) s hyperbolic with the path metric and X}(}l) — XE\})

is a quasi-isometric embeddings for all v e V(T).

26



Chapter 3
One-relator hierarchies

This chapter is dedicated to refining the Magnus—Moldavanskii hierarchy using 2-
complexes. First conceived by Magnus in his thesis [Mag30], the Magnus hierarchy
is possibly the oldest general tool in the theory of one-relator groups. After the
introduction of HNN-extensions, the hierarchy was later refined to be called the
Magnus—Moldavanskii hierarchy [Mol67]: if G is a one-relator group, then there is a

diagram of monomorphisms of one-relator groups

G =Gy —— G

Gl‘—>G,1

e

e

Gn

such that G = G;41*y, where 1; identifies two Magnus subgroups of G;41, and G
splits as a free product of cyclic groups. The proofs of many results for one-relator
groups then proceed by induction on the length of such a hierarchy. See [MKS66] for
a classical introduction to one-relator groups with many such examples.

In the preprint [Mas06], Masters showed that we can dispense with the
horizontal homomorphisms. In other words, if G is a one-relator group, there is a

sequence of monomorphisms of one-relator groups:
GN<—>...<—>G1‘—>G0=G
such that G; = Gy 1%y, where ¢; identifies two Magnus subgroups of G;.1, and G
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splits as a free product of cyclic groups. However, the one-relator presentation of
(11 is not easily obtainable from the one-relator presentation of Gj.

The versatility of the Magnus—Moldavanskii hierarchy comes from the fact
that it may be described very explicitly in terms of one-relator presentations. Masters’
hierarchy is conceptually simpler, but is not so explicit. By working with 2-complexes,
we may reconcile both of these advantages. Our version of the hierarchy can be

stated as follows.

Theorem 3.3.2. Let X be a one-relator complex. There exists a finite sequence of

immersions of one-relator complezxes:
XN%...%Xl%X():X,

such that m(X;) = m1(Xigp1)*y, where ; is induced by an identification of Magnus

subcomplexes, and such that 71 (Xy) splits as a free product of cyclic groups.

3.1 Tree domains

Let X be a CW-complex and let F' be a free group. An F-cover is a regular cover
p:Y — X such that Deck(p) = F. A free cover is an F-cover for some free group
F. We now introduce tree domains. These are subcomplexes of Y that allow us
to construct a homotopy equivalence between X and a graph of spaces. Thus, tree
domains will correspond to (multiple) HNN-splittings of m1(X), forming the basis
for our one-relator hierarchies.

Let p: Y — X be a free cover, F' = Deck(p) and S c F' a free generating
set. A subcomplex D c Y is S-connected if, for every open cell ¢ € D and every
freely reduced word sj...s, € (S U S™1)* such that s;...s, - ¢ © D, we also have that

s1...8;-cc D for all i < n.

Definition 3.1.1. Let p: Y — X be a free cover, F' = Deck(p) and S < F' a free

generating set. A subcomplex D c Y is an S-tree domain if the following hold:
1. F-D=Y,
2. D is S-connected,
3. D ns-D is connected and non-empty for all s € S.

We will denote by TD(p, S) the set of all S-tree domains. A minimal S-tree domain

is an S-tree domain, minimal under the partial order of inclusion.
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When the generating set is clear from context, we will often simply write
TD(p) and refer to D € TD(p) as a tree domain. For example, this is always clear
when F' = Z.

Example 3.1.2. Let S, be the orientable surface of genus g > 1 and v : ST — 3,
a non-separating simple closed curve. We may give S, a CW-structure so that
is in the 1-skeleton. The curve y determines an epimorphism m(S,) — Z via the
intersection form. Let p : ¥ — S, be the induced cyclic cover. Consider the subspace
Z < Y obtained by taking the closure of some component of p~1(S; — Im(v)). Its
translates cover Y and intersect in lifts of . Hence, Z is a (minimal) tree domain

for p.

Now let p: Y — X be a free cover, S ¢ F = Deck(p) a free generating set

and D c Y an S-tree domain. Consider the following families of spaces:

{D¢} rer ,

{Df,s}feF,seS 5
where Dy = D and Dy, = D ns-D. There are natural inclusion maps:
tys  Dps = Dy

and

L}is :Dypg— Dy,

given by the inclusions D ns-D < D and Dns-D < s-D. With this data we
define the space:

O(p,S,D) = |_| Dy | |_| Dy x [—1,1] / (x,£1) ~ Lis(l‘) .
feF feF,seS
We also have an action of F' on O(p, S, D) induced by the action on {D¢} fep.

Lemma 3.1.3. If the map w1 (D n s- D) — w1 (D) is injective for all s € S, then
O(p, S, D) is a graph of spaces. Moreover, in this case, the horizontal map is an

F-equivariant homotopy equivalence to Y :
h:0O(p,S,D)—->Y,

and the vertical map is an F-equivariant map to the Cayley graph of F' with generating

29



set S:
v:0(p,S,D) - Cay(F,S) .

Proof. The fact that the horizontal map is an F-equivariant map to Y is by construc-
tion. Similarly for the vertical map. By Proposition 2.6.2, the map h : O(p, S, D) - Y
is a homotopy equivalence if Cay(F,S) is a tree. Since S is a free basis, the result

now follows. O

Proposition 3.1.4. Let p : Y — X be a free cover and let D < Y be an S-tree
domain for some free generating set S ¢ F = Deck(p). If O(p, S, D) is a graph of
spaces, then

m(X) 2 m(F\O(p, S, D)) .

In particular, 71(X) splits as a multiple HNN-extension with vertex group w1 (D) and
edge groups m (D ns- D) for each s€ S.

Proof. Since Cay(F,S) is a tree and ©(p, S, D) is a graph of spaces, it follows
from Proposition 2.6.2 and Lemma 3.1.3 that the map h : ©(p,S,D) — Y is a
homotopy equivalence. By equivariance, this descends to a homotopy equivalence
F\O(p, S,D) — X. The space F\O(p, S, D) is a graph of spaces over F\ Cay(F,S),
which is a rose on |S| petals. Thus, 7 (F(S)\©(p, S, D)) splits as a multiple HNN-

extension over 71 (D) with edge groups (D n s - D) for each s € S. O

3.2 Minimal cyclic tree domains

3.2.1 Cyclic covers

From now on, we will only focus on cyclic covers. That is, free covers whose deck
group is Z. In this section we will show that tree domains always exist for cyclic
covers of finite CW-complexes.

Let us first set up some notation. Let p: Y — X be a cyclic cover. Choose
some spanning tree T X1 and some orientation on X (1), this induces an identifi-
cation of w1 (X)) with F(X), the free group on

Y = {e}cem(xmpnB(T) -

For any subset A c X, define:

T4 =Ty (gxe) :

30



Choose some lift of T' to Y and denote this by Ty < Y. Then, since p is regular,
every lift of T' is obtained by translating Ty by an element of Z. We introduce the
notation:

Tivj=1-Tj .

For each e € F (X(l)), denote by e; the lift of e such that o(e;) € T;. If e ¢ X, then
t(e;) € Ti. If e € X, then t(e;) € Ty, () where

L: > (X(l),x) — 7

is the induced map.
Ifee ¥ and C' < Z, define C, = C' to be the subset consisting of the elements
i € C such that i + t(e) € C. Then, if A c 3, we define the following subcomplex of

the 1-skeleton of Y:
ieC ecAieC,

Examples of such subcomplexes can be seen in Figures 3.1 and 3.2. We also write

Ka=4(A))<Z,
ka=1[Z:Kj] .

Remark 3.2.1. The quantity k4 is precisely the number of connected components
of Tf. In fact, if we contract all the lifts of 7' in YY), then the resulting graph is
the Cayley graph for Z over the generating set +(X). So the connected components
of Ti‘ correspond to K4 cosets in Z.

We call a subset C' < Z connected if C' = {i,i+ 1,...,j} for some i < j € Z.

Proposition 3.2.2. Let p: Y — X be a cyclic cover such that [((X)| < c0. For any
subset A < X and any connected subset C' C Z, the following hold:

1. If ka = o0, then TZ consists of |C| connected components.

2. If ks < o0, then there exists some constant k = k(A) = 0 such that T(’;‘ consists

of ka connected components whenever |C| = k.

Proof. For (1), note that we have K4 = {0}. Hence, each edge e; with e € A has
both endpoints in T;. So for each j € C, the subcomplexes TjA c Té4 are all pairwise
disjoint and cover Té“.

By assumption |¢(A)]| is bounded above. So for (2), we use induction on |¢(A)].
Denote by A; = t='(i) n A. For the base case, suppose t(A) = {i}. We show the

31



result holds for all C' with |C| > |i| = k4. For each e € A;, we have o(e;) € T} and
t(ej) = o(ej1;) € Tj4; by definition. Hence, T(‘;‘ consists of k4 connected components
when |C| = k4 + |i].

Now let |¢(A)| = 2, by induction we may assume the result holds for A’ ¢ A
with ¢(A") = «(A)\{i}. So for A’ there exists some k' = k(A’) > 0 such that T4’
consists of k4 = k4 connected components for all C' ¢ Z with |C| = k. If kar = ky
then the result is clear and we may take k = £/, so assume k4 > k4. We claim that
if

C] > k= max (K, (k. — k) + |il}

then T, (’;4 consists of k4 connected components. By Remark 3.2.1, we note that for
each j,j +i € C, we must have T and T}, are in distinct components of TCA’. For
any e € A;, by adding e; edges to T(‘Jf‘, with both endpoints in Té“/, we decrease the
number of connected components. If there are k4 connected components, then after
adding k4 — k4 of the e; edges, we obtain a graph with k4 connected components.
Since the minimal number of connected components is k4 by Remark 3.2.1, this

number is attained. O
Proposition 3.2.3. Cyclic covers of finite CW-complexes have finite tree domains.

Proof. Let X be a finite CW-complex and p : Y — X a cyclic cover. We prove
this by induction on n-skeleta of X. Denote by p, : Y — X (™ the restriction
of p to the n-skeleton of Y. Since X is finite, [¢(X)| is finite. As ky, = 1, we may
apply Proposition 3.2.2 and obtain an integer k(X) > 0 such that Tg is connected
for all |C| = k. So if we choose C so that |C| >k + 1, then T5 is a tree domain for
p1: v o x @)

Now suppose we have a tree domain D,, 1 for p, 1 : y(-1) _, x(-1) Then
for any connected subset C' c Z, the subcomplex | J iec J - Dn—1is also a tree domain
for p,—1. We may choose C large enough so that UjeC j - Dp—1 contains a lift of
each attaching map of n-cells in X. Then the full subcomplex of Y (™ containing

Ujec J - Dn—1 is a tree domain for py,. =

3.2.2 Graphs

If we restrict our attention to graphs, the topology of minimal tree domains is much

simpler.

Lemma 3.2.4. Let I' be a finite graph and let p : Y — T be a cyclic cover. If
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D € TD(p) is a minimal tree domain, then

x(Dnl1-D)=1.

Proof. Up to contracting a spanning tree, we may assume that I' has a single vertex
and n edges. Let D € TD(p) be a minimal tree domain. We have x(D n1-D) =
X(D) +n — 1 by definition. Since D is minimal, we must have that D n1- D is
actually a tree, otherwise we could remove some edge. Thus x(D) = x(I') +1. O

As a consequence of Lemma 3.2.4 and Proposition 3.1.4, we see that minimal
tree domains of cyclic covers of graphs I' correspond to certain free product decom-
positions of w1 (I'). In the case where x(I') = —1, the free product decompositions

are much more rigid.

Lemma 3.2.5. Let I' be a rose graph and let p : Y — T be a cyclic cover. If
x(T') = —1, then, up translations and changes of orientations, TD(p) has a unique

minimal element.

Proof. As I is a rose and x(I') = —1, we have E(I') = ¥ = {e, f}. Since ¢(X)
generates Z, t(e) and ¢(f) must be coprime. Up to changing the orientations of e and
f, we may assume that «(e) > ¢(f) = 0. Let D € TD(p) be a minimal tree domain. If
t(f) = 0, then we must have t(e) = 1. In this case, ¢y U fy is a minimal tree domain
and is unique, up translations and changes of orientations. So now suppose that
ve) = u(f)=1. If C ={0,...,c(e) + ¢(f) — 1}, it is not hard to see that:

— e f _ 7S
D= Tce U TCf TC
is the unique minimal tree domain. O

In Section 3.3.2, using Lemma 3.2.5, we provide an alternative proof of [OZ81,
Theorem 1.2]. That is, that there is a correspondence between proper free factors of

m1(I') and cyclic covers of I', when x(I') = —1. See Corollary 3.3.10 for the statement.

Example 3.2.6. Let I' be a graph with a single vertex and two edges, so x(I') = —1.
The spanning tree is the unique vertex v € I'. Let ¥ = {a, b} be the two edges and
let ¢ : F(a,b) — Z be the homomorphism that sends a to 5 and b to 3. Then let
p:Y — T be the corresponding cyclic cover. Let C' = {0, 1, ...,6}, then T can be
seen in Figure 3.1. The numbers ¢ in the diagram correspond to 7T;, the lower black

edges are lifts of @ and the upper red edges are lifts of b. This is not quite a tree
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Figure 3.1: Not quite a tree domain.

—_— . ——

Figure 3.2: A minimal tree domain.

domain as its intersection with a translate is disconnected. However, we can see that
T CZU7 is a genuine tree domain, see Figure 3.2. In fact, it is the unique minimal tree
domain for p. The unique primitive cycle that factors through Tgw, represents the

unique conjugacy class of primitive element in ker(¢).

3.2.3 One-relator complexes

Another special case is that of one-relator complexes. The following two propositions

are essential ingredients for our one-relator hierarchies.

Proposition 3.2.7. If X = (T',\) is a finite one-relator complex and p:Y — X a

cyclic cover, then there ezists a finite one-relator tree domain D € TD(p).

Proof. Let T X be a spanning tree and let X be the remaining edges. Fix a lift
X:SY s Y of A If A traverses e € ¥, then define:

M. = max {kle; nIm(\) # &, €41 N Im(N) # F} .

This quantity is independent of the choice of lift . Denote by £, = ¥ — {e}.
Let a: I —» Y be a path of shortest length that factors through )\, traverses
a lift of an edge in ¥ and such that o(«), () € T; for some j € Z. Let e € 3 be the

edge whose lift a traverses first. Up to changing orientation, we may assume that «
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traverses e; first. If ky,, = 1, then by Proposition 3.2.2, there is a finite tree domain
D € TD(p) with precisely M, lifts of e. Hence, D can only support one lift of A
and so must be one-relator. So now suppose that ky,_ # 1, and so t(e;) = Tj4; for
some i # 0. Then o must remain within a component of 7. ZEe’ distinct to that of T},
until it traverses another lift of e. So « either traverses e; in the reverse direction, a
contradiction to minimality of [a|, or traverses some €k, for some I # 0. Thus,
M, > kyx, and so by Proposition 3.2.2 there is a finite tree domain D € TD(p) with

precisely M, many lifts of e. As before, D must be one-relator. O

Remark 3.2.8. More generally, by [How87, Lemma 2], if X is a staggered 2-complex
and p:Y — X a cyclic cover, then every tree domain D € TD(p) is also a staggered
2-complex. Furthermore, by [HWO01, Corollary 6.2] and Proposition 3.1.4, each
D € TD(p) induces a HNN-splitting of 71 (X) over m1(D).

Define the complezity of a one-relator complex X = (I', A) to be the following

0= ( oy~

We endow the complexity of one-relator complexes with the dictionary order so that

quantity:

(¢,7) < (s,t)ifg<sorq=sandr<t.

Proposition 3.2.9. Let X be a one-relator complex and p: Y — X a cyclic cover.

If D € TD(p) is a minimal one-relator tree domain, then:
(D) < e(X) .

Proof. 1t is clear that if ¢(D) = (¢q,r) and ¢(X) = (s,t), we cannot have g > s.
Suppose that for some one-relator tree domain D € TD(p), we have g = s, then we
must have that X actually lifts to D. But then this implies that X is a subcomplex
of D. So applying Lemma 3.2.4 to the induced cyclic cover of the graph X /(X ~ pt),
we see that x(D) = x(X) + 1 when D is minimal. Thus, » < t and ¢(D) < ¢(X)

when D is minimal. O

3.3 Omne-relator hierarchies

Let X = (I', \) be a one-relator complex. By Proposition 3.2.7, if p : ¥ —» X
is a cyclic cover, there exists a one-relator complex X; € TD(p). If X; admits a
cyclic cover, we may repeat this and obtain a sequence of immersions of one-relator

complexes Xy ... X1 P Xy = X where X; is a one-relator tree domain of a
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cyclic cover of X;_1. We will call this a one-relator tower. Note that each immersion
is a tower map in the sense of [How81]. If X does not admit any cyclic covers, we

will call this a mazimal one-relator tower.

Proposition 3.3.1. Every finite one-relator complex X has a maximal one-relator
tower Xy ¢ ... X1 Xo = X.

Proof. The proof is by induction on ¢(X), the base case is ¢(X) = (0,0). We
have ¢(X) = (0,0) precisely when I' ~ S'. This is the only case where X does
not admit any cyclic cover. This is because if ¢(X) > (0,0), then x(X) < 0 and
so tk(H1(X,Z)) > 1. Hence the base case holds. The inductive step is simply
Proposition 3.2.9. 0

Now we are ready to prove our version of the Magnus—Moldavanskii hierarchy

for one-relator complexes.

Theorem 3.3.2. Let X be a one-relator complex. There exists a finite sequence of

immersions of one-relator complexes:
XNq—)...C)—)qu—)X():X,

such that m1(X;) = m1(Xigp1)*y, where ; is induced by an identification of Magnus

subcomplexes, and such that w1 (Xy) splits as a free product of cyclic groups.

Proof. By Proposition 3.3.1 there is a maximal one-relator tower Xy & ... 3 X &
Xy = X. By Theorem 2.4.2, the inclusions X; n 1 - X; — X; are all injective on
m1. Thus, by Lemma 3.1.3 and Proposition 3.1.4, m1(X;) = m1(Xit1)*y, for some

isomorphisms v; induced by an identification of Magnus subcomplexes. O

We call a splitting m1(X;) = m1(X;41)%y as in Theorem 3.3.2 a one-relator
splitting. Then the associated Magnus subcomplexes inducing ¢ are A = —1- X;,1 N
Xi+1 and B=1-A.

3.3.1 The hierarchy length of a one-relator complex

A one-relator tower Xy & ... X1  Xg = X is a hierarchy of length N if
m1(Xn) splits as a free product of cyclic groups. Denote by h(X) the hierarchy
length of X. That is, the smallest integer IV such that a hierarchy for X of length N
exists. We extend this definition also to one-relator presentations (¥ | w) by saying
that the hierarchy length of a one-relator presentation is the hierarchy length of
its presentation complex. A hierarchy Xy ¢ ... X1 & Xy = X is minimal if
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N = h(X). In this section we show that we can actually compute h(X) effectively,
and that an upper bound is given by the length of the attaching map.

Lemma 3.3.3. Let X = (I',\) and X' = (I", X') be one-relator complezes and let
q: X 9 X' be an immersion. Then h(X) < h(X') with equality if q is an embedding.

Proof. The proof is by induction on h(X’). We may assume that A\ and )\ are
primitive. The fact that h(X) = h(X’) if ¢ is an embedding is clear. Hence, since
h(X) = h(X)), without loss we assume X = X,. The base case is when h(X') = 0.
If h(X') =0, then 71 (X’) is free and 71 (X) must also be free. This is because [\']
would have to be a primitive element of 71 (I'') and since g o A = X, [A\] must be a
primitive element of m1(I"). Hence h(X) = h(X’) = 0. Now suppose h(X') > 1.

Let X % ... X/, = X' be some hierarchy for X’ with h(X') = N. Let
¢ : m1(X’) = Z be the homomorphism inducing the first cyclic cover p : Y — X'. Let
us first consider the case that q.(m1(X)) < ker(¢'). Then there is a lift ¢; : X — Y’
of q. Since ¢ was an immersion, we must actually have that ¢; restricts to a lift of
X to X]. The inductive hypothesis applies and we have h(X) < h(X]) < h(X').
Now assume that ¢, (71(X)) is not a subgroup of ker(¢’). Then the map ¢’ o g,
induces an epimorphism 71 (X) — Z. Let p: Y — X be the associated cyclic cover
and X; € TD(p) a one-relator tree domain. Then (q o p).(7m1(X1)) < ker(¢’) and, as
before, we get h(X1) < h(X]) < h(X). Since h(X) = h(X;) or h(X) = h(X;1) + 1,

we are done. O

An abelian cover is a regular cover p : Y — X where Deck(p) is abelian.
The mazimal torsion-free abelian cover is the cover a : A — X with Deck(a) =
H,(X,Z)/L where L < Hi(X,Z) denotes the torsion subgroup.

Infinite cyclic covers of X are in correspondence with codimension one sub-
groups of Deck(a). Indeed, for any codimension one subgroup K < Deck(a), we
obtain a cyclic covering p : K\A =Y — X. If we denote by f, : A — Y the quotient
map, it is not hard to see that for any finite subcomplex Z < A, we may choose a
codimension one subgroup K < Deck(a) such that Z — A — K\A is actually an
embedding. Thus, we obtain the following.

Lemma 3.3.4. There exists a cyclic cover p:Y — X such that for any attaching
map X : ST — A, the map
o | A5 i Ay =Y

1s an embedding.
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Proposition 3.3.5. Let X = (I', \) be a one-relator complex with h(X) > 1, let
A — X be the mazimal torsion-free abelian cover and let X : S' — A be a lift of .

Then we have:
h(X) = h(A5) + 1 < |A|/deg(A) .

Proof. Let X1 & X be a one-relator tower with A(X) = h(X;) + 1. Now we have
an immersion A; % X1, induced by f, : A — Y. So by Lemma 3.3.3, we have
h(A5) < h(X1). By Lemma 3.3.4, we have h(Aj5) = h(X1). Since A5 > X is not an
embedding, we see by induction on h(X) that h(X) < |\|/deg()). O

Corollary 3.3.6. If X = (', \) is a one-relator complex, then h(X) is computable

in time polynomial in |A|.

Proof. Let N : S — T be the unique primitive immersion that A factors through.
By using the Knuth-Morris—Pratt algorithm [KMP77], for instance, this may be
computed in linear time. Since h(X') = h(X), where X’ = (', \’), we may as well
assume that A is primitive. The proof is by induction on A(X). In the base case,
h(X) = 0 which may be decided in polynomial time [RVWO07, Corollary 3.10]. For
the inductive step, we may use the equality h(X) = h(A5) + 1 from Proposition
3.3.5. O

The hierarchy length of a one-relator complex is not preserved under homotopy

equivalence. This is illustrated by the following examples.

Example 3.3.7. Let p,q € Z — {—1,0,1} be a pair of coprime integers. The

Baumslag—Solitar group BS(p, ¢) has (at least) two one-relator presentations:
BS(p, q) = <a,t|t_1apt = a?) = (b, s| prp/q(b, s_lb_ls)> ,

such that the hierarchy length of the first presentation is two, but of the second it is
one. We see this by noting that

<b,$ | prp/q(b7 8_1b_18)> = <b07b178 | S_lbls = b()vprp/q(b17b()_1)>

and that (b, b1) = Z by definition of pr,,.
free one-relator groups are aspherical by Lyndon’s Identity Theorem [Lyn50], the

Since presentation complexes of torsion-

two associated presentation complexes are homotopy equivalent.
Note that neither ¢t 'aPta 7 nor (t 'aPta?)~! are in the same Aut(F(a,t))
orbit as pr /q(a,t_la_lt). One can see this by applying Whiteheads algorithm

p,
[Whi36].
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We may do the same with the Baumslag—Gersten groups:

BG(p,q) = {a,t|t tata’t 'a 't = a?) = (b, s| PIp/q(b, s thsbts b ts)) .

The hierarchy length of the first presentation is three, but of the second it is two.

More generally, by reverse engineering the hierarchy, we may produce examples
of one-relator groups with one-relator presentations of hierarchy length n and n + 1
for all n > 1.

We now move on to one-relator complexes that are low down in the hierarchy.

3.3.2 Hierarchy length zero and primitives of the free group of rank

two

The one-relator complexes X = (I, \) with A(X) = 0 are precisely those in which [A]
represents a power of a primitive element of 71 (I'). Such elements are well understood
thanks to the large body of work that followed Whiteheads seminal paper [Whi36].

In this section we relate one-relator towers with primitive elements of free groups.

Proposition 3.3.8. Let X = (I, \) be a one-relator complex. If 1 — x(X) = N and

X possesses a maximal one-relator tower of length N, then h(X) = 0.

Proof. Without loss, we may assume that A is primitive. The proof is by induction
on N. If N = 0, then m(X) is finite cyclic and so A(X) = 0. Now assume the
inductive hypothesis. Let Xy & ... X7 & Xy = X be a maximal one-relator
tower for X. Since x(X) =1—- N, x(Xn) =1 and x(Xi+1) < x(X;) + 1, it follows
that x(X1) = x(X) + 1. But then:

X(X1nl-Xp)=x(X1))+N-1=x(X)+N=1,

Thus, X1 n1- X7 is a tree and so 71 (X) = m1(X1) * Z. d
When y(X) = 0, the converse to Proposition 3.3.8 is also true.

Lemma 3.3.9. Let X = (I', \) be a one-relator complex with x(X) = 0. Then X

has a mazimal one-relator tower of length one if and only if h(X) = 0.

Proof. One direction is Proposition 3.3.8. If x(X) = 0 and h(X) = 0, then there is
precisely one cyclic cover p: Y — X. Let D € TD(p) be a minimal one-relator tree
domain. Since m1(Y) = #%7Cqeq(n), Where Cyeg(n) denotes the cyclic group of order
deg()), we must have m1 (D) = Cyeg(n)- O
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As an application of Lemma 3.3.9, we provide a topological proof of [OZ81,

Theorem 1.2], characterising the primitive elements of the free group of rank two.

Corollary 3.3.10. Conjugacy classes of primitive elements of Fo are in bijection

with primitive elements of Z? via the abelianisation map ab : Fy — Z2.

Proof. Let T' be a rose graph with 71(I') =~ F5. Then each primitive element
x € Z? corresponds to a cyclic cover p : Y — T' induced by the homomorphism
() — Z? — 7Z2/{{z)), where the first map is the abelianisation map. Now let
x € Z? be primitive and let A : S' 9 I' be an immersion representing a conjugacy
class of a primitive element in ab™!(z). Consider the one-relator complex X = (I, \)
and its unique cyclic cover p : Y — X. Since m1(Y') = 1, it follows that =1 (D) =1
for any tree domain D € TD(p). Now this must mean that D is a disc and so D) is
a minimal tree domain for the cyclic cover Y() — T'. Lemma 3.2.5 tells us that this

is unique. Since D) ~ S the immersion A is also uniquely defined by z. O

The proof also gives us a straightforward way of computing the conjugacy
class of primitive elements in ab™!(p, ¢) for any primitive (p, q) € Z2. See Example
3.2.6.

3.3.3 Hierarchy length one and Brown’s criterion

A one-relator complex X = (I, \) satisfies h(X) = 1 only if m(X) splits as an
HNN-extension of a free product of cyclic groups. By Example 3.3.7, the converse
is not necessarily true. However, by Brown’s criterion [Bro87], if m1(X) splits as
an ascending HNN-extension of a free group, then h(X) = 1. Brown’s criterion is
moreover straightforward to use in practice. In this section we will prove a sufficient
condition for when h(X) = 1, without making use of Whiteheads algorithm. Before
stating the criterion, we will need to make some definitions.

Let F(X) be the free group freely generated by 3 and let r € F(3) be some
cyclically reduced word. Let I' © RI®I be the Cayley graph of Z*l embedded in the
obvious way. The word r determines a path in I, starting at 0, via the identification
of ¥ with a basis for Z*I. Denote this path by w, : I — RI®I and call it the trace of
r. A vertex or edge in I traversed exactly once by w, is called simple. With this

language, Brown’s criterion [Bro87, Theorem 4.2] can be stated as follows.
Theorem 3.3.11. Let G = F5/{{r)) be a one-relator group.

1. If r € [Fy, F»], then G splits as an ascending HNN extension of a free group if
and only if there exists a line L < R? on one side of the trace of r, intersecting

it in a single simple vertex or edge.
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2. If r ¢ |Fy, F5] and the trace of r ends at the vertex (p,q), then G splits as
an ascending HNN-extension of a free group if and only if there exists a line
L < R? with slope p/q, on one side of the trace of v, intersecting it in a single

stmple vertex or edge.

Brown also shows that G is free-by-cyclic if and only if there are two parallel
lines L and L’ on opposite sides of the trace as above, each intersecting the trace in
a single simple vertex or edge.

In [DTO06] it is shown that there is a definite proportion of two generator
one-relator groups that do not split as ascending HNN-extensions of free groups.
Moreover, one-relator groups with three or more generators cannot split as ascending
HNN-extensions of free groups. We provide a result, similar in flavour to Brown’s

criterion, that applies to a generic one-relator complex.

Theorem 3.3.12. Let X = (I', \) be a one-relator complex. Let T < T' be a spanning
tree and ¥ = E(T') — E(T) so that m1(X) = F(X)/{r)) with [r] = [A]. Let P < RI®l
be a hyperplane parallel to t(w,). If P intersects w, in a single simple vertex or

simple edge, then X has a one-relator hierarchy
X1 SEd Xo =X R

such that X1 has a free face.

Proof. Let n = |X|. Given some vector with rational coordinates v € R", this
determines a homomorphism Z" — Z in the following way: let P be a hyperplane
orthogonal to v, then since v has rational coordinates, P can be spanned by vectors
with integer coordinates. These vectors are linearly independent so P n Z" =
Z" ! and the homomorphism is given by Z" — Z"/P n Z"™ =~ Z. Now there is
some vector w, orthogonal to P, such that (w, P nZ") = Z". Geometrically, this
homomorphism can be thought as a height function in the direction of v. More
specifically, kw + P n Z"™ — k.

If there exists a hyperplane parallel to the endpoint of w, that intersects
w, in a single simple vertex or simple edge, then there exists such a hyperplane P,
spanned by integral vectors. So by the above, this determines a homomorphism
¢ : F(¥) — Z. Furthermore, since P was parallel to the endpoint of w,, we have
#(r) = 0. This descends to a homomorphism ¢ : 71(X) — Z. Let |r| = k and r; be
the prefix of r of length i. If P intersects w, in a single simple vertex, then there
is some 4 such that ¢(r;) # ¢(r;) for all j # i. If P intersects w, in a single simple

edge, then there is some i such that ¢(r;) = ¢(r;+1) and there is no j # i such that
o(ri) = ¢(rj) = ¢(rj+41)-
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Let p: Y — X be the cyclic cover associated with ¢. By construction of ¢, if
P intersects w, in a single simple vertex or simple edge, the attaching map A of any
one-relator tree domain D € TD(p) traverses some edge precisely once, thus X; = D

has a free face. O

Remark 3.3.13. Let F' = F(X) be a free group of rank at least two. By [Fu06,
Theorem 3.1.1] and [Sv1ll, Lemma 3.5], for generic r € F, there is a hyperplane
P c RI¥| satisfying the hypothesis of Theorem 3.3.12. By [Pud15, Corollary 8.3],
r is generically imprimitive. So by Theorem 3.3.12, we see that generic one-relator

presentations (X | r) have hierarchy length one.

3.3.4 Primitivity rank and w-subgroups

Recall the definition of w-subgroups from Section 2.3.2. We now relate w-subgroups

to one-relator hierarchies. First, we shall need the following lemma.

Lemma 3.3.14. Let G = F(X)/{(w)) be a one-relator group with w(w) < |X|. If
H < G is a finitely generated subgroup with tk(H) < w(w), then either H is free or

there exists some surjective homomorphism ¢ : G — Z such that H < ker(¢).

Proof. Since rk(H) < m(w), we have that either H is free, or H is conjugate into some
w-subgroup of G by Theorems 2.3.5 and 2.3.7. Hence, we may assume in fact that
H is a w-subgroup for G, so H =~ F(X')/{(wg)) with |[¥'| = m(w). Let v : H »> G
be the inclusion homomorphism. If wy € [F(X'), F(X')], then w € [F(X), F(X)].
In particular, rk(Hy(H,Z)) < rk(H1(G,Z)) and so there is some codimension one
subgroup A < H1(G,Z) such that the image of Hi(H,Z) in H1(G,Z) is contained
in A. Now G — H(G,Z)/A = 7Z is a homomorphism of the required form. O

If X is a one-relator complex, then the w-subgroups of 71(X) are represented
by a finite collection of immersions {g; : Q; © X} where each @); are also one-relator

complexes (see Section 2.3.2).

Corollary 3.3.15. Let X be a one-relator complex and let q : Q & X represent
some w-subgroup. If Q # X, there exists a cyclic cover p:Y — X such that @ lifts
toY.

Proof. If Q # X then rk(m(Q)) < rk(m (X)), so m1(X) is indicable and by Lemma
3.3.14, there is a homomorphism ¢ : 7 (X) — Z such that (¢)«(71(Q)) < ker(¢).

The cyclic cover p: Y — X associated with ¢ is hence the required cover. ]
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Theorem 3.3.16. Let X be a one-relator complex and let q : Q b X represent some

w-subgroup. Then there exists a one-relator tower
Q=XrgP .. X=X

Proof. The proof is by induction on ¢(X). The base case is trivial, so let us assume
the inductive hypothesis. By Corollary 3.3.15, there is a cyclic cover p: Y — X such
that @ lifts to Y. Let D € TD(p) be a minimal tree domain. Then D is one-relator
and ¢(D) < ¢(X) by Proposition 3.2.9. Since ¢ is a combinatorial immersion of
one-relator complexes and @ = @), some lift of @) factors through D. So now either
@ = D, in which case we are done, or () immerses properly into D and so the

inductive hypothesis applies. O

As a consequence of Magnus’ classical result that the membership problem is
solvable for Magnus subgroups of one-relator groups, Theorem 2.3.3, we obtain the

following.

Corollary 3.3.17. The membership problem for w-subgroups in one-relator groups

18 solvable.
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Chapter 4

Quasi-convex one-relator

hierarchies

In [Wis21], Wise introduced the notion of a quasi-convex hierarchy. There, he proved
that one-relator groups with torsion have a quasi-convex hierarchy, resolving an old
conjecture of Baumslag. In this chapter, we aim to generalise his results, providing
criteria for when an arbitrary one-relator group has a quasi-convex hierarchy. First,

let us specialise the definition of a quasi-convex hierarchy to one-relator complexes.

Definition 4.0.1. A one-relator tower (hierarchy) Xy & ... » X5 & Xy is a
quasi-convex one-relator tower (hierarchy) if, for each i < N, the induced maps
Ait1, Biz1 < X; are quasi-isometric embeddings, where A;,1, Bit1 € Xit1 are the

associated Magnus subcomplexes.

Most of this chapter will be dedicated towards proving the main ingredient
needed for our quasi-convex hierarchy criterion, Corollary 4.3.2: if X has a quasi-
convex one-relator hierarchy and m(X) is hyperbolic, then A — X is a quasi-
isometric embedding for all subcomplexes A < X.

To state our result, we need one more definition.

Definition 4.0.2. A one-relator tower (hierarchy) Xy ¢ ... & X7 & X is an
acylindrical one-relator tower (hierarchy) if w1 (X;) acts acylindrically on the Bass-

Serre tree associated with the splitting 71 (Xj41)#y, for all i < N.
The main result of this chapter is the following.

Theorem 4.4.1. Let X be a one-relator complex and let Xy b ... > X1 P Xg =X

be a one-relator hierarchy. The following are equivalent:

1. XN P ... ¢ X1 9 Xg = X is a quasi-convex hierarchy and m1(X) is hyperbolic,
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2. XN P ... P X1 P Xog =X is an acylindrical hierarchy.

In Chapter 7 we prove a more general statement, Theorem 7.1.2.

4.1 Normal forms

Computable normal forms for one-relator complexes can be derived from the original
Magnus hierarchy [Mag30]. Following the same idea, we build normal forms for
universal covers of one-relator complexes. The geometry of these normal forms will
then allow us to prove our main theorem.

Let X be a combinatorial 2-complex. We define I(X) to be the set of all

combinatorial immersed paths I ¢ X,

Definition 4.1.1. A normal form for X is a map 1 : X(© x X© - J(X) where
o(Np,q) = p and t(npe) = ¢, for all p,q € X© We say that 7 is prefiz-closed if
for every p,q € X and i € {0,1, ..., |Np.ql}, we have that n,, = 1,4 | [0,7] where

T = Tpgq (1)

We will be particularly interested in certain kinds of normal forms, defined
below. The first being quasi-geodesic normal forms and the second being normal

forms relative to a given subcomplex.

Definition 4.1.2. Let K > 0. A normal form 7 : X x X©) — [(X) is K-quasi-
geodesic if every path in Im(n) is a K-quasi-geodesic. We will call n quasi-geodesic if

it is K-quasi-geodesic for some K > 0.

Definition 4.1.3. Suppose Z ¢ X is a subcomplex. A normal form 7 : X(©@ x X —
I(X) is a normal form relative to Z if, for any r € X(© and p, ¢ contained in the

same connected component of Z, the following hold:
1. mpq is supported in Z,
2. My * 7q,r is supported in Z after removing backtracking.
The following proposition will be of use to us in Chapter 7.

Proposition 4.1.4. Let X be a finite connected combinatorial complex and A < X a
connected subcomplex. Then X admits T (X)-equivariant quasi-geodesic prefix-closed

normal forms relative to A if and only if A is quasi-isometrically embedded in X .

Proof. One direction is clear. So let us suppose now that Ais quasi-isometrically

embedded in X. Let T c A be a spanning tree and 77 c X a spanning tree extending
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T. If there exist normal forms of the required form for the combinatorial complex
obtained from X by contracting T' to a point, then we may extend these to normal
forms of the required form for X. So without loss, assume that X has a single vertex.

Fix a vertex z € A9, We inductively define sets P; as follows: Py = {x} and
P;41 is obtained from P; by adding 71 (A) orbit representatives of the vertices p such

that, for some p’ € P;, we have
d(z,p) = d(z,p') + 1= d(z,p") + d(p/,p) = d(A,p) .

Then we can see that 71 (A) - P; consists of all vertices at distance precisely i from A
and contains each vertex precisely once. Similarly to the construction of the sets P;,

we may inductively define a map:
n : Py — I(X)

as follows. The map 79 simply sends z to the constant path. So assume we have
defined 7; and we want to define n; 1. For each p € P;;1, choose a neighbouring
vertex p’ € P; and define 7;41(p) = n;(p’) * e where e € E(X) is an edge connecting
p’ with p.

Let us first assume that A is a point. Then for all p € |J,o P, define
n(x, ) = Na(z,p)(p). Extending 71 (X)-equivariantly, we obtain quasi-geodesic prefix-
closed normal forms relative to x.

Now suppose that A is not a point. By the above, we may construct m(A)-
equivariant quasi-geodesic prefix-closed normal forms for A, relative to a point. For
each a € m1(A), we define n(z,a - p) to be the concatenation of the normal form for
A joining x with a - x and the path a - nd(x,p)(m, p). Since Ais quasi-isometrically
embedded in X, these paths are always quasi-geodesics. Furthermore, they are
prefix-closed. By extending 71 (X )-equivariantly, we obtain normal forms for X that

are quasi-geodesic prefix-closed relative to A. O

4.2 Graph of spaces normal forms

For simplicity, we only discuss normal forms for graphs of spaces with underlying
graph containing a single vertex and a single edge. However, the construction is
essentially the same for any graph.

Let X = (T, {X},{C},0%) be a graph of spaces where I" consists of a single
vertex and a single edge, X and C are combinatorial 2-complexes and 0+ are

inclusions of subcomplexes. Denote by A = Im(0~) and B = Im(é%). We may
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orient the vertical edges so that they go from the subcomplex A to the subcomplex
B. When it is clear from context which path we mean, we will abuse notation and
write t* for all k > 0, to denote a path that follows k vertical edges consecutively,
respecting this orientation. We will write ¢t for all k > 0, for the path that follows
k vertical edges in the opposite direction. Since 0* are embeddings, these paths are
uniquely defined given an initial vertex.

The universal cover Xy — Xy also has a graph of spaces structure with
underlying graph the Bass-Serre tree of the associated splitting, the vertex spaces
are copies of the universal cover X, the edge spaces are copies of the universal cover
C and the edge maps are 71 (X)-translates of lifts 0= : C' — X of the maps 0*. We
will denote by X the underlying graph of spaces so that X = X . Every path
cel (X /{,) can be uniquely factorised:

c=coxtrxerx. xtTxc,

with ¢; = +1 and where each ¢; is supported in some copy of X. Note that each ¢;
can be the empty path. We say c is reduced if there are no two subpaths ¢;, ¢;, with
i # j, that are both supported in the same copy of X in X 3. In other words, the
path v o ¢ is immersed, where v : Xy — T is the vertical map to the Bass-Serre tree
T.

A wertical square in Xy is a 2-cell with boundary path e * t€ * f % t¢ where
e and f are edges in two different copies of X. We will call the paths e = €, ¢ « f,
f*t7¢ t7¢xe and their inverses, corners of this square. We may pair up each corner
so that their concatenation forms the boundary path of the square. In this way, each
corner exhibits a vertical homotopy to the opposing corner it is paired up with. For
instance, there is a vertical homotopy through the square between t¢ % f and e * t¢.

Now let

nji: X0« xO - (X)),

UrE X©O) « x(© —>I()~()

be 71 (X)-equivariant normal forms relative to A and B respectively. Since these are

m1(X)-equivariant, it is not important which lift of A and B we choose. Let
Ng XO x xO - (X)),

be a 71(X)-equivariant normal form for X. From this data, we may define normal
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forms for X ; as follows. We say a normal form

n:X/,(g) XX‘%))—)I(XX-)

is a graph of spaces normal form, induced by ({ns},{n.nz}), if the following holds

for all ¢ = ¢o # t % ¢ = ... %t % ¢, € Im(n):

1. ¢ = UX(O(CO),t(CO))‘

2. If ¢; = 1 then ¢; = np(o(c;), t(c;)). Furthermore, if e is the first edge c; traverses,

then ¢ * e does not form a corner of a vertical square.

3. If ¢, = —1 then ¢; = nj;(o(c;),t(c;)). Furthermore, if e is the first edge ¢;

traverses, then t~! % e does not form a corner of a vertical square.

Our definition of graph of spaces normal form and the following theorem are the
topological translations of the algebraic definition and normal form theorem [LSO01,
Chapter IV, Section 2].

Theorem 4.2.1. If nz,nz and ng are as above, there is a unique graph of spaces
normal form n, induced by ({ng},{nz,ng}). Moreover, the following are satisfied:

1. n is m1(Xx)-equivariant,
2. the action of m(X) on n and ng coincide,
3. if ng, nz and ng are prefir-closed, then so is 1.

Now suppose further that the horizontal map h : Xy — Hy is a homotopy
equivalence (see Proposition 2.6.2). Let s : Hg)) — Xg)) be a section and let
5: Hp — X3 be a lift of s, extended 7 (X)-equivariantly. Then, given graph of
space normal forms 7 : ng) X ng) — I(Xx), we may define normal forms

,u:HEEO) ng))aI(H)?) ,
by setting:
(P, @) = hon(s(p),3(q)) -

We call normal forms obtained in such a way, collapsed graph of spaces normal forms.

These normal forms will be important for the proof of Theorem 4.3.1.
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4.2.1 Quasi-geodesic normal forms for graphs of hyperbolic spaces

The following result can be thought of as a refinement of [Kap01, Corollary 1.1]. We

make use of Theorem 2.1.1.

Theorem 4.2.2. Let X = (I, {X},{C}, {0%}) be a graph of spaces with T consisting
of a single vertex and edge. Let n; : X0 » x© - 1(X), ureE X0 x X© 5 1(X)
and ng : X0 x x© I(X) be the graph of spaces normal forms induced by
({nx}, {ni-nz}). Suppose that the following are satisfied:

1. XM s hyperbolic with the path metric,
2. m(Xx) acts acylindrically on the Bass-Serre tree T,
3. Mi, ng and ng are prefiz-closed quasi-geodesic normal forms.

Then the graph of spaces normal form induced by ({775(}7 {ni, 773})-’
n: X'/,(YO) X Xf\?) — I(Xy)

is prefiz-closed and quasi-geodesic.

Proof. By Theorem 2.6.6, we have that Xy is d-hyperbolic and X — Xy is a
quasi-isometric embedding. Thus, there is a constant K > 1 such that the images of
Nz, Ng and ng are K-quasi-geodesics in Xv. Now let z, Y€ X'E,?) be any two points

and v a geodesic connecting them. We may factorise this geodesic

Y=oty w Iy

such that ¢, = £1, each ~; is path homotopic into a copy of X and there is no
subpath ; # t“+! % ... * v; with ¢ < j that is path homotopic into some copy of X.
If pe I(Xx), we write Xp to denote the copy of X in Xy that p ends in. When it
makes sense, we do the same for A and B. This is well defined since all the 71 (Xx)
translates of these subcomplexes are disjoint or equal.

Let pe X,(YO), let a be a geodesic connecting y with p and let 8 be a geodesic
connecting o(v) with p. Denoting by L = § + M + 1, we claim that

[Mepl < K(k +1) (KL + 7| + o)
where M = M (K,J) is the maximal Hausdorff distance of all n¢, ; and 75 normal

forms from their respective geodesics in X y.
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The proof is by induction on k. First suppose that £k = 0. We will write
~ to mean path homotopic. Since § ~ 7, * a and o(8),t(8) € X'y, we get that
n(z,p) = ng(x,p) is actually a K-quasi-geodesic path. This establishes the base
case.

Now suppose it is true for all i < k. Suppose €, = —1, the other case is the
same. Let 8" = n;(o(vk),p) = a* ¢ where a C A5, and the first edge of ¢ is not in
fly*%. By assumption, ¢ is a K-quasi-geodesic. Hence there is a point ¢ € § such
that d(t(a),q) < M. But then since f U a U v forms a geodesic triangle, there is
a point z € o U 7y such that d(¢(a), z) < L. We may now divide into two subcases:
either z € a or z € .

First suppose z is a vertex traversed by «, see Figure 4.1. It follows that

d(o(a), t(a)) < vl + L+ af ,
lef < K(L + |af) -

Since a is supported in a copy of [l, the path t~!  a may be homotoped through
vertical squares to a path b t~!, where b is supported in Bgv*%*t. Let o/ be the

geodesic connecting o(b) to t(b). We have
/| < d(o(a),t(a)) +2 < || + L + o] +2.
Let t(o/) = p'. By definition of graph of space normal forms we have

1
Nep = Nagp ¥1 " % C.

Hence, we may apply the inductive hypothesis with ~g = t°! % ... % y,_1 playing the
role of v and o' playing the role of a. Putting everything together, we obtain the

following inequality:

|N2p| <Kk ((k — 1)L+ ot #.ox ey, 1] + |o/|) + || +1
SKk((k—1)L+|y|+L+|o|+1)+ K(L+|a])+1
<K(k+1) (KL + |y + o) -
Now we deal with the other case, see Figure 4.2. If z is a vertex traversed by v,

then
d(o(a),t(a)) < d(o(y),2) + L ,

le| < K(L +d(z,t(7)) + |of) -
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Just as before, we may define the paths b and o/. We have
|o'| < d(o(a),t(a)) +2 < d(o(yk),2) + L+2.
So we apply the inductive hypothesis again:

1N pl SKk((k— 1)L+ |yo =t ... yp_1] + d(o(7x), 2) + L + 2)
+ K(L +d(z,t(7)) + |a]) + 1
<K(k+1) (kKL + |y + |af) -

This concludes the proof of the claim.

Consider the polynomial function f: N — R given by

f(n) = (K)*n(n+1)(L+1).

< f(d(z,y))/K. We now want
to show that the graph of spaces normal forms are actually f-quasi-geodesics.

Let h = hg %t % hy x ... % t% x hy, € Im(n) be a normal form and let h' =
R} % ¢+ % hiyq x ... %t x b} be a subpath of h. Then we have that

We have shown that for all z,y € ng), we have 1)y

To(h') t(h) = No(he) a(hty * 170 % hisy % coo# 9 I

is the corresponding normal form since 74, 75 and 75 are prefix closed. We showed

that Fd(o(). 1))
oy n) | < K

and so we know that

1) = 1noury.any| = 1oy ey | + 103
< Koy (nr)|
< f(d(o(h'), t(h))) .

By Theorem 2.1.1, it follows that there is some constant K’ = K’(f) such that 7 is

a K'-quasi-geodesic normal form. ]
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Figure 4.1: First case, z € a.

Th—1 s Vi Y

Figure 4.2: Second case, z € 7.

4.3 Quasi-convex Magnus subcomplexes

In order to prove that one-relator groups with torsion have quasi-convex (one-relator)
hierarchies, Wise showed in [Wis21, Lemma 19.8] that their Magnus subgroups are
quasi-convex. When the torsion assumption is dropped, this is certainly no longer
true. However, under additional hypotheses, we may recover quasi-convexity of

Magnus subgroups.

Theorem 4.3.1. Let X = (I', \) be a one-relator complex, p: Y — X a cyclic cover
and Z € TD(p) a finite one-relator tree domain. Suppose further that the following
hold:

1. m1(X) is hyperbolic,
2. m1(C) is quasi-convex in w1 (X) for all connected subcomplexes C < Z
Then m1(C) is quasi-convez in w1 (X) for all connected subcomplexes C < X.

Proof. Let C < X be a connected subcomplex. Denote by Z = (A, 5\) We may
assume that C' is a Magnus subcomplex and that E(C) = E(I') — {f} with f non
separating.

Now let T'c X be a spanning tree not containing f. After choosing a lift of

T in Y as in Section 3.2.1, since Z is a subcomplex of Y, we have that each edge in
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E(Z) is of the form e; where e € E(I") and 7 is an integer. Denote by m, the smallest
integer such that e, is traversed by 5\, and by M, the largest (as in the proof of
Proposition 3.2.7). We have two cases to consider.

Case 1. For all f; € E(A), we have that my < i < My and f; is non
separating in A.

The action of Deck(p) on Y gives us a graph of spaces X = (S, {Z},{Z 1-

Z},{0%}) as in Proposition 3.1.4. Moreover, we have have a map
h . XX - X

that is a homotopy equivalence obtained by collapsing the edge space onto the vertex

space as in Proposition 2.6.2. This lifts to a map in the universal covers:
h:X X

Denote by A, B c Z the Magnus subcomplexes that are the images of 0. That is,
A=(-1)-(Znl-Z)yand B=Zn1-Z.

Denote by A’ = A — fu, and B'=A—-fn, ;- These are Magnus subcomplexes
containing A and B respectively. In particular, p~!(C)nZ < A’ ~B’. By Proposition
4.1.4, there are prefix-closed, quasi-geodesic, 71 (Z)-equivariant normal forms 7z, 15
for Z, relative to A’ and B’ respectively. By the Freiheitssatz, these are also normal
forms relative to A and B so that we may apply Theorem 4.2.1 to obtain unique
prefix-closed 7 (X x)-equivariant graph of spaces normal forms 7 for X ;, induced
by ({77,21} , {nA,nB}). By Theorems 2.6.5 and 4.2.2, ) is also quasi-geodesic.

So now let s : X — Z(0) be a section. This section, along with the
graph of spaces normal forms 7, induce collapsed graph of spaces normal forms
p: X % X0 - [(X) as in Section 4.2. By construction, since 7 was prefix-closed,
quasi-geodesic and 1 (X )-equivariant, then so is y. We now show that u is a normal
form relative to C, from which the result in this case will follow.

Let ¢ = co#t *cy*...xt" x ¢, be a path in X 3 such that each ¢; is supported
in lifts of p~1(C) n Z. Note that each ¢; is supported in lifts of A’ n B’. Thus, up
to homotoping one corner of vertical squares t # ¢} to another ¢ % ¢, this path is
actually in normal form by construction. These vertical homotopies do not change
the image of the path in X. Therefore, p, 4 is supported in C if P, q are in the same
C component.

Now let ¢ = cg # t' % ¢y * ... %t % ¢, and d = dg * ¥ = dy * ... = t"* = di be
normal form paths in X ; such that the origins of ¢ and d are contained in the same

copy of C and their endpoints coincide. We want to show that, up to removing
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backtracking, the path ¢ = d projects to a path supported in C < X. Note that ¢ = d
is homotopic to the path 7.) 4(0) that projects to C. Hence, unless ¢ * d already
projects to C, we must have that €, = —v and ¢, * dj is supported in some A’
or B’ component, depending upon the sign of €, and up to removing backtracking.
Then, by homotoping ¢ * ¢, * dj, * t "% through vertical squares, we obtain a new
path ¢}, = d}, that projects to the same path in X. By taking this reasoning forward
until no more such vertical homotopies may be performed, we obtain a path that
is supported in the preimage of C. Therefore we may conclude that p = UGREE:!
normal form relative to C. Thus, since 1 was a quasi-geodesic normal form, m(C)
is quasi-convex in 7 (X).

Case 2. There is some f; € E(A) such that either i < my, or i > My, or f;
is separating in A.

Let X’ be the one-relator complex obtained from X by adding a single edge,
d. Thus, we have m (X’) = m(X) = {x). If ¢ : m(X) — Z is the epimorphism
inducing p, denote by ¢’ : m1(X') — Z the epimorphism such that ¢’ | 7 (X) = ¢
and ¢'(z) = 1. Let Z"” c Z be the subcomplex obtained from Z by removing each f;
with i < mys ori> M. If p' : Y' — X' is the cyclic cover induced by ¢', then Z”

lifts to Y. Moreover, for appropriately chosen integers k < [, we see that

l
N Ny=2"=2"0 (U d,)
i—k
is a one-relator tree domain for p’. By construction, for all f; € E(A’), we have that
my < i < My and that f; is non separating in A’. Moreover:
k— i

l
* m(A4)"

7T1(Z/) o

where each A; is a (possible empty) subcomplex of Z. By hypothesis, 71 (A’) is
quasi-convex in m1(X’) for all subcomplexes A’ = Z’. By the proof of the first
case, we see that 71(C) is quasi-convex in 71(X’). But then 71(C) must also be
quasi-convex in 71 (X) and we are done.

O]

Corollary 4.3.2. Let X = (I',\) be a one-relator complex. Suppose that m1(X)
is hyperbolic and X admits a quasi-convex one-relator hierarchy. Then m(A) is

quasi-convez in 71 (X) for all subcompleres A — X.

Proof. The proof is by induction on hierarchy length. The base case is clear. Propo-
sition 2.6.5 and Theorems 2.6.6 and 4.3.1 handle the inductive step. ]
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4.4 Quasi-convex one-relator hierarchies

We conclude this chapter with the first part of our main hierarchy equivalence result,
Theorem 7.1.2.

Theorem 4.4.1. Let X be a one-relator complex and let Xy b ... 9 X1 Xg =X

be a one-relator hierarchy. The following are equivalent:
1. XN P ... » X1 Xo = X is a quasi-convez hierarchy and m1(X) is hyperbolic,
2. XN P ... P X1 P Xog =X is an acylindrical hierarchy.

Moreover, if either of the above is satisfied, then w1 (X) is virtually special and 71 (A)

is quasi-convex in w1 (X) for any subcomplex A < X;.

Proof. If m1(X) is hyperbolic, then 71 (X;) is hyperbolic for all ¢ by [Ger96, Corollary
7.8]. Then the fact that (1) implies (2) is Proposition 2.6.5.

So let us show that (2) implies (1). The proof is by induction. Clearly Xy
is hyperbolic and each subcomplex of X has quasi-convex fundamental group. So
now suppose that the result is true for Xy % ...  X;. By Corollary 4.3.2, A, and
B quasi-isometrically embed in X;. By Theorem 2.6.6, 71 (X) is hyperbolic and Ay
and B; quasi-isometrically embed in X.

Virtual specialness is [Wis21, Theorem 13.3]. The fact that m1(A) is quasi-

convex in 71 (X) for any subcomplex A c X; follows from Corollary 4.3.2. O

Remark 4.4.2. In [Kap01] it is remarked that one-relator groups with torsion
have acylindrical one-relator hierarchies. Thus, Theorem 4.4.1 also encompasses the

torsion case, proved by Wise [Wis21].
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Chapter 5
Exceptional intersection groups

The interactions between Magnus subgroups of one-relator groups are well understood.
The following is [Col04, Theorem 2].

Theorem 5.0.1. Let F'(X)/{{w)) be a one-relator group and suppose ¥ = AuBuC.
If (A, B) and {B,C) are Magnus subgroups, then one of the following holds:

1. (A, BY  (B,C) = (B,
2. (A, B) ~(B,C) = (B)« L.

We say (A, B) and (B, C') have exceptional intersection if the latter situation

occurs.

Definition 5.0.2. A one-relator group G is an exceptional intersection group if,
for some one-relator presentation of G, it has a pair of Magnus subgroups with

exceptional intersection.
The following result appears as [Col04, Corollary 2.3].
Corollary 5.0.3. Ezxceptional intersection groups are torsion-free.

By Theorem 2.4.4, it follows that exceptional intersection groups have non-
positive immersions. The aim of this chapter is to characterise when exceptional

intersection groups have negative immersions; see Theorem 5.2.8.

5.1 Primitive exceptional intersection groups

In this section, we introduce primitive exceptional intersection groups and show that

they have negative immersions.
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Let F(A, B,C) be a free group, freely generated by disjoint sets A, B, C. Let
p/q € Q¢ and let:
ve (A, By—(B),
ye(B,Cy—(B).
Then we call prp/q(a:, y) a primitive exceptional intersection word of the first type if
the following hold:

1. {{z),{y)} is a malnormal family,

2. if p/q = 1, then there is no a € (A, B) — (B), ¢ € {(B,C) — {(B) such that

pry(z,y) = pry(a,c) and {{a),{c)} is not a malnormal family.
By definition, we see that (x, y) is an infinite cyclic subgroup of G = F(A, B, C) /{{w))

where w = prp/q(x, y). We find that G has the following exceptional intersection:

(A,B) n(B,C) =g (B)={a?) =(B)*{y ™) .
The following example demonstrates why we require the second condition in the

definition.

Example 5.1.1. Consider the word pry(a?b~!,bc?) € F(a,b,c). Although the

subgroups {(a?b~1),{(bc*)} form a malnormal family, we have

pry(a®b 1, be?) = pry(a®,¢%) = a?c?

where {{(a?), {c?)} is not a malnormal family. Hence, pry(a?b !, bc?) is not a primitive
exceptional intersection word of the first type.

Now let z € (B) — 1. We call pr, /q(:ny, z) a primitive exceptional intersection

word of the second type if the following hold:
1. {z) is malnormal,

2. if p/q = 1/k, then there is no a € (A, B) — (B), c € {(B,C) — (B) such that
pryk(2y, 2) = pri(a, c) and {{a),{c)} is not a malnormal family.

By definition, we see that (xy, z) is an infinite cyclic subgroup of G = F(A, B, C) /{{w)),
where w = pr,, . (zy, z). Hence, (zy)~12(zy) =¢ 2 and we find that G has the follow-

ing exceptional intersection:

(A,BY " (B,C) =¢ (B) # (x7 zz) = (B) * (yzy~ ) .
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A word w € F(A, B,C) is a primitive exceptional intersection word if w is

conjugate to a primitive exceptional intersection word of the first or second type.

Definition 5.1.2. A group G is a primitive exceptional intersection group if G =

F(X)/{{w)y where w is a primitive exceptional intersection word.

Example 5.1.3. Consider the word prl/k(aszCQ,b) = a’b>c?* € F(a,b,c). Al-
though this is equal to pry(a?b?>~* b=%c2b*) where (b~*c?b*) is not malnormal, it
is also equal to the word pr; /2(a2b2_k,b_kcbk) which is a primitive exceptional

intersection word of the first type. Thus
G = F(a,b,c)/{{a®b*bF))

is a primitive exceptional intersection group for all & > 1.

The proof of the following theorem is rather involved and will take up the

remainder of this section.
Theorem 5.1.4. Primitive exceptional intersection groups have negative immersions.

Proof. If G is a primitive exceptional intersection group, then there is a free group

F(A, B,C), a rational number p/q € Q~¢, and elements:

z€(A,B)—(B),
ye(B,C)=<(B),
ze(B)—1,

such that G = F(A, B, C)/{{w)) where one of the following holds:
1. w=pr, /q(a;, y) is a primitive exceptional intersection word of the first type,
2. w=pr, /q(my, z) is a primitive exceptional intersection word of the second type.

Let us assume for sake of contradiction that G does not have negative immersions.
Then by Corollary 5.0.3 and Theorem 2.4.5, m(w) = 2. We will handle only the first
case in full detail as the two cases are very similar.

Let X = (A,w) be the one-relator presentation complex for (A, B,C | w).
The edges of A will be given labels according to the generators they correspond
to and can be partitioned into A-edges, B-edges and C-edges. By Theorem 2.3.7,
the w-subgroup of m1(X) is represented by an immersion of one-relator complexes
Q v X where @ = (A, ) and x(Q) = 0. Now let I' 3 A be the graph immersion
of core graphs representing (z,y) < m1(A). Then there is a lift v : S' 9 I of w,
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making Z = (I, ) a one-relator complex, immersing into X. Note that I" and A are

core graphs.

Lemma 5.1.5. There is some connected component © < Core(I' xa A) such that
O =S and A =pp | ©.

Proof. By [Ken09, Theorem 1], either x(Core(I' x A A)) = 0, or rk({m (A), 71 (I')9)) =
2 for some g € m1(A). In the first case, we must have that A factors through some
component © < Core(I' xa A). Since X has non-positive immersions, w and \ are
primitive by Theorem 2.4.4 and we are done.

Now suppose that rk({m(A), 71(I')9)) = 2. We claim that Z factors through
Q. Since m1(A) is a w-subgroup for w, I' must factor through A. Since 71(Q) is not
free, Q cannot have a free face. Thus, by [LW17, Theorem 1.2], A xa S', where
the factor on the right is given by A, must consist of a single cycle of degree one as
X(A) = —1. If T factors through A, then the cycle

STHT A,

must be equal to A\. Hence, Z must actually factor through ). We split the remainder
of the proof into two parts, according to whether w is of the first or second type.

Suppose that w is of the first type. Then since Z factors through @, there
must be loops based at the same vertex in A with labels x and y, covering A. Since
a path labelled by x cannot traverse any C-edges and a path labelled by y cannot
traverse any A-edges, it follows that there is a decomposition Q) = Q1 U Q2 where
x(Q1), x(Q2) = 0 and Q4 only contains A-edges and B-edges and @2 only contains
B-edges and C-edges. Moreover, the path labelled by x is supported in ()1 and the
path labelled by y is supported in Q3. If Q1 N Q2 is connected, then since x and
y are not proper powers by assumption, it follows that m(Q) = {(x,y). But this
contradicts the fact that 71(Q) is not free. If @1 N Q2 is not connected, then x would
be conjugate to y*!, contradicting malnormality of {{(x), (y)}.

Now suppose that w is of the second type. Since Z factors through @), there
must be loops based at the same vertex in A with labels xy and z, covering A. Since z
only traverses B-edges, it follows that there is a decomposition Q) = Q1 U Q2 U Q3
where x(Q1) = 0, @1 only contains B-edges, x(Q2) = x(Q3) = 1, Q2 only contains
A-edges and B-edges and Q)3 only contains B-edges and C-edges. Moreover, z is
supported in @1, x is supported in Q1 U Q)2 and y is supported in ()1 U Q3. Since z
is not a proper power by assumption, it follows that m1(Q) = {(xy, z), contradicting

the assumption that m1(Q) was not free. O
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We will make use of the following factorisations of x and y:

$=bl-$fl-$2-$1-b2,

y=Dbs-y; Y2 y1-ba,

as freely reduced words, where by, bo, b3, by € (B), ml_l -x9 - x1 and yl_l -2 - y1 do not
begin or end with a B-letter and xo and g9 are cyclically reduced.
If n > 1, denote by w, the free reduction of xl_lxgxl(bgblxl_lxgxl)”*l. Simi-

larly, denote by vy, the free reduction of y; Yoy (babzy, Loy )1,

Lemma 5.1.6. Letn > 1 and let a: I & A be a path labelled by u, or v,. Then o

must traverse a vertex of degree at least three, other than at its endpoints.

Proof. We shall prove the result for u, as the other case is identical. Firstly, we
show that I' supports precisely one path with label u,. By definition, I" has at least
one, so let us suppose that there are two paths in I' with label u,. Recall that
m1(I') = {x,y). Since u,, begins and ends with an A-letter and does not contain any
C-letters, it follows that:

1. if boby # 1 or beby = 1 = 1, then w,, must be a subword of u,,1 that is not a

-1

prefix or a suffix, or u, is a subword of v, {,

1

2. if boby = 1 and 1 # 1, then u, must be a subword of u,}{ for some m > n.

Since {x) is malnormal, x is not a proper power. The first situation cannot happen
by Lemma 2.2.2. The second situation cannot happen by Lemma 2.2.1.

Now, since there is precisely one path in I' with label u,, there can be at
most one lift of a to Core(I" xa A) by definition of the fibre product graph. If «
does not traverse vertices of degree three or more, except possibly at its endpoints,
then it must factor through any cycle in A whose image shares an edge with the
image of . Since « is injective on edges, any edge in the image of o has at most one
preimage in E(Core(I" xa A)). So by Lemma 5.1.5, \ traverses some edge precisely

once. But then ) must have a free face and so cannot represent a w-subgroup. [

We now use Lemma 5.1.6 to derive a contradiction to the definitions of
primitive exceptional intersection words. Let o : I & A be a path satisfying the

following:
1. « factors through A,

2. « is labelled by w, for some n > 0,
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3. there is no path o : I & A, strictly extending o and satisfying the above.

We similarly define 8 : I % A, replacing u, with v,. Such paths exist by definition
of w.

By Lemma 5.1.6, o and 8 must traverse a vertex of degree at least three,
away from their endpoints. Now the idea is to use this fact to divide A according to
where « or § are supported. Since « does not traverse any C-edges and [ does not
traverse any A-edges, they will block each other from traversing certain regions of A.

Since x(A) = —1, and A is a core graph, we only have three topologically

distinct cases to consider:
1. A is a rose graph, see Figure 5.1,
2. A is a theta graph, see Figure 5.2,
3. A is a spectacles graph, see Figure 5.4.

Figures 5.1, 5.2 and 5.4 contain all the different cases, up to symmetry. Before
proceeding with the case analysis, we briefly explain the diagrams. The red regions
indicate sections that « traverses and must contain an A-edge; 5 cannot traverse any
edge in a red region. The blue regions indicate sections that § traverses and must
contain a C-edge; a cannot traverse any edge in a blue region. The yellow regions
indicate sections that « or 8 or both o and 3 traverse. In any case, the yellow regions
must only contain B-edges, but are allowed to have length zero when this does not
change the topology of the underlying graph. The black regions indicate sections
that are not traversed by either « or 8 and are also allowed to have length zero when
this does not change the topology of the underlying graph. The red vertices and
blue vertices indicate the start and endpoints of o and S respectively.

Topologically, in each graph there can be at most three edges. The path «
must leave one of these edges by Lemma 5.1.6 and re-enter another edge, leaving
enough space for 5 to do the same elsewhere. Given these constraints, the reader
should check that these are indeed all the cases to consider.

Case 1. We handle this case more in detail than the others as the arguments
are mostly identical. We have three subcases to consider, according to Figure 5.1.

Suppose we are in the situation of the first subdiagram. When A traverses a
red segment from a red vertex, it must then be followed by the other red segment.
Otherwise we would obtain a contradiction to Lemma 5.1.6. Similarly for the blue
segments. Thus, since \ is primitive, it must traverse each edge precisely once. Hence,

(@) would have a free face which is a contradiction.
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Figure 5.1: Rose graph cases.

Now consider the second subdiagram. Any (maximal) w,, labelled path must
begin at one red vertex and end at the other red vertex. Similarly for the v, labelled
paths. But this then implies that only one power of z and one power of y appears in
w. Thus, if w is of the first type, then it must be equal to xy. If w is of the second
type, it must be equal to zyz’ for some i > 1. By Lemma 5.1.6, A\ must traverse

both loops at least twice. We may now deduce that there exist elements:

ae (A B)—{(B),
be(B)—1,
ce(B,C)—{(B),

such that w = (ab~!)(bc) and that 7w(a),7(c) # 1. Hence, {{a),{c)} is not a
malnormal family, contradicting our assumptions on w.

Let us move onto the third subdiagram. Similarly to the second subcase, we
see that if w is of the first type, it must be equal to zy and if w is of the second type,
it must be equal to zyz® for some i > 1. From the diagram we may now deduce that

there exist elements:

a€(A,B)—{(B),
be(B),
ce(B,C)—{(B),

such that w = (ab~!)(bc) and that (a)? n {c) # 1 for some g € F(A, B,C). Hence,

{¢a),{c)} is not a malnormal family, contradicting our assumptions on w. It follows
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NN

Figure 5.2: Theta graph cases.

that A cannot be a rose graph.

Case 2. Consider the first subdiagram in Figure 5.2. By collapsing the yellow
edge, we see that we may handle this case in the same way as the first subcase of
the rose case. Similarly, we may reduce the second and third subcases to the second
and third subcases of the rose case.

So now let us consider the new cases appearing in the fourth and fifth
subdiagrams. Now if bob; # 1 and « was labelled by u, with n > 2, then we would
have that A would support a path labelled by u; that does not traverse a vertex of
degree at least three, away from its endpoints. But this contradicts Lemma 5.1.6.
So if bab; # 1 and n = 1, then there can be no other u,,-labelled path beginning or
ending at a red vertex as A & A is an immersion. This would imply that there can
be no other wu,,-labelled paths in A for any m > 1 and so A traverses the red segments
only once by Lemma 5.1.5. Hence, () would have a free face, a contradiction. So
now we may assume that bob; = 1. By a symmetric argument, we may assume that
bgbs = 1. Similarly, we must have x1,y; # 1. As before, there must be at least
one other path o : I % A labelled by u,, for some m > 1. We may assume that
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Figure 5.3: Extra theta cases.

Oa®
—

Figure 5.4: Spectacles graph cases.

o/ is maximal. We see that o and o must traverse a common segment. We now
have two subcases to consider, up to symmetry, depending on whether o and o'
traverse a common segment in the same direction or the opposite direction. See
Figure 5.3. In either case, there can only be one lift of the segment with label z5'x;
to Core(I" x o A) for the following reason: the projection of any loop in Core(I" x A A)
traversing the segment labelled z5'x1, must then traverse a blue segment labelled by
N 1y§ for some k > 0. Since there is only one path in I with this label, there can be
only one lift of these segments to Core(I' x A A). Now Lemma 5.1.5 tells us that @
has a free face. It follows that A cannot be a theta graph.

Case 3. The first subdiagram in Figure 5.4 is analogous to the first subdia-
gram of the rose case. The second, third and fourth subdiagrams are analogous to
the second subdiagram of the rose case. The fifth subdiagram is analogous to the
third subdiagram of the rose case. Hence, A cannot be a spectacles graph.

Now we may conclude that G has no w-subgroups of rank two and hence,

must have negative immersions. O
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5.2 The general case

In this section, we show that primitive exceptional intersection groups are the only
exceptional intersection groups which have negative immersions. Moreover, we show
that exceptional intersection groups that do not have negative immersions, must
contain a Baumslag—Solitar subgroup.

Theorem 5.0.1 was generalised to one-relator products in [How05]. As a
consequence, we have the following strengthening of Theorem 5.0.1, appearing
as [How05, Theorem C].

Theorem 5.2.1. Let F(X)/{{w)) be a one-relator group and suppose ¥ = A BuC.
If (A, B) and {B,C) are Magnus subgroups with exceptional intersection, then there

18 a monomorphism of free groups
t: F(a,c) — F(X),

with the following properties. There is some r € F(a,c) with «(r) conjugate to w and
some m,n # 0, such that one of the following holds:
1. a™ =" in F(a,c)/{{r)y with v(a) =z, t(c) =y and

z € (A, By —(B),
ye(B,C)—<(B).

2. ac™a~! = " in F(a,c)/{{r)) with (a) = zy, 1(c) = z and

xe(A,B)—(B),

ye(B,C)—(B),
ze(By—1.

Using this result and the algorithm to compute the centre of a one-relator
group from [Bau67b], Howie also showed that a generating set for the intersection of
given Magnus subgroups is computable [How05, Theorem E]J.

In the discussion following [Col04, Theorem 4], Collins points out the following.

Corollary 5.2.2. Assume the notation of Theorem 5.2.1 and suppose that we are in

the first case. Denote by

H = (B) F(a,c)/{{r)) -
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Then we have:

G =~ (A B) (B,C) .

* H *
B(a)y=(B,ay  {B,cy=(B,i(c))
Corollary 5.2.3. Assume the notation of Theorem 5.2.1 and suppose that we are in
the second case. Let 1(a) = x -y where x € (A, B) — (B) and y € (B,C) —(B) and
denote by

H = (B) o F(a,c)/[{{r)) @ de>F (d,e) .

Then we have:

G =~ {(A,B) (B,C) .

® H *
(Byxy=(B,dy (B,e)=(B.y)
Remark 5.2.4. There is a minor typographical error in the splitting provided by

Collins for the second case. Corollary 5.2.3 is the corrected version.
The following follows directly from Corollaries 5.2.2 and 5.2.3.

Corollary 5.2.5. Assume the notation of Theorem 5.2.1. The monomorphism ¢

descends to a monomorphism of one-relator groups:

e: F(a, o) [{{r)) = F(X)/wp) -

Theorem 5.2.1, coupled with Corollary 5.2.5, finds us two-generator one-
relator subgroups of exceptional intersection groups. We now characterise precisely

what these subgroups can be.

Lemma 5.2.6. Let H = F(a,c)/{r)) be torsion-free such that a™ = " in H for
some m,n # 0. Then one of the following hold:

1. r € F(a,c) is primitive and so H = 7Z,
2. H 1is non-cyclic with non-trivial centre.

Proof. Note that H has non-trivial centre as {a"") is an infinite subgroup contained
in the centre. By [LS01, Chapter II Proposition 5.11], H is cyclic if and only if r is

primitive. O

Lemma 5.2.7. Let H = F(a,c)/{r)) be torsion-free such that a~*c™a = ¢ in H
for some m,n # 0. Then one of the following hold:

1. r € F(a,c) is primitive and so H = Z,

2. H is non-cyclic with non-trivial centre,
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3. r or v~ is conjugate to prp/q(c_l,a_lca) for some p/q € Q<o and so H =
BS(p,q).
4. v or r~' is conjugate in F(a,c) to an element ' € {c,a”'ca) such that

{e,a tea) = F(c,a tea) /{(r'y) is non-cyclic with non-trivial centre.

Proof. Suppose that |m| is smallest possible. If n = m = +1, then either r is
primitive or H >~ Z2. If n = m # +1, then H has non-trivial centre generated
by ¢"”. So if n = m, we have obtained conclusion (1) or (2). Now suppose that
n # m. Therefore, the exponent sum of ¢ in r must be non-zero. There is a single

epimorphism, up to sign change, ¢ : F(a,c) — Z such that ¢(r) = 0, given by

a0 — —o¢(r)
ged(oa(r), 0c(r))
- oa(r)

ged(oa(r), oc(r))

where o4(r),0.(r) denote the exponent sum of a and ¢ in r respectively. But now
¢(a"tc™ac™™) = 0 from which it follows that

0=9¢(c™) —o(c") = (m —n)oa(r) .

Now let X be the presentation complex for F'(a,c)/{{r)) and p: Y — X the cyclic
cover associated with the homomorphism ¢ : H — Z given by ¢(a) = 1, ¢(c) = 0.

Let Z € TD(p) be a one-relator tree domain. We see that m(Z) is generated as

a one-relator group by ¢,a 'ca, ...,a *ca® for some k € N. By the Freiheitssatz, it

follows that k = 1. If m(Z) = Z, then we have obtained conclusion (3). If not, then

we have obtained conclusion (4). O
We are now ready to prove the main result of this chapter.

Theorem 5.2.8. Let G be an exceptional intersection group. The following are

equivalent:
1. G contains a Baumlsag—Solitar subgroup,
2. G is not a primitive exceptional intersection group,

3. G does not have negative itmmersions.

Proof. By Theorem 2.4.5, (1) implies (3). By Theorem 5.1.4, (3) implies (2). So all
that is left to show is that (2) implies (1). Suppose for a contradiction that G is not

a primitive exceptional intersection group and does not contain Baumslag—Solitar
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subgroups. Let H < G be the two-generator subgroup from Theorem 5.2.1. We may
assume that H is maximal in the sense that there is no subgroup properly containing
H and that is of the same form as the two-generator subgroup from Theorem 5.2.1.
By Lemmas 5.2.6 and 5.2.7 and Corollary 5.2.5, H is infinite cyclic. Thus, G has

one of the following presentations:
1. G =(¥ | pryq(,y)) for some x € (A, B) — (B) and y € (B,C) —(B),
2. G = (Z | pry,(ry, 2)) for some z € (A, B)—(B), y € (B,C)—(B) and z € (B).

where H = (z,y) in the first case, and H = {(xy, z) in the second case.

Suppose that we are in the first situation. By Definition 5.1.2, we may assume
that either {(x),{y)} is not a malnormal family, or that p/¢ = 1 and that there exist
elements a € (A, B) — (B) and c e (B,C) — (B) such that pr;(z,y) = pr(a,c) and
{¢a),{c)} is not a malnormal family. As the two cases are identical, it suffices to
assume that {{(z), (y)} is not a malnormal family. Now, if {(z), (y)} is not a malnormal
family, then either z is a proper power, y is a proper power, or a conjugate of (x)
intersects (y) non-trivially. If either x or y is a proper power, by adjoining a root of x
or y to H, we obtain a contradiction to maximality of H. If (z)f n {y) # 1 for some
f € F(X), it follows that there must be elements g € (A, B) —(B), he€ (B,C) —(B),
d € (B) such that (z)9 n (y)" ' < (d) < (B). Now H would be properly contained
in {gh,h~'dh). However, since (gh)(h~'dh)"(gh)~' = (h~'dh)™ holds for some
m,n # 0, we obtain a contradiction to maximality of H.

Finally, suppose that we are in the second situation. As before, we may
assume that (z) is not malnormal by Definition 5.1.2. Then z is a proper power and

we contradict maximality of H. O

Example 5.2.9. We give two examples of groups with exceptional intersection that
do not have negative immersions. Let p/q € Q<o and n,m # 0. Consider the group
with presentation:

G = <CO7 a1 | prp/q(cglv cfn)> .

The relation ¢ff " = ¢{" holds in G and so it has an exceptional intersection of the
first type. In [MPS73], this group was shown to be isomorphic to a generalised

Baumslag—Solitar group with presentation:
{co,b,c1 | gt =040 = ¢y,

and so does not have negative immersions.
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Now consider the HNN-extension:

V=) ={co,c1,a | acopa™ = €1, Prp/(cg’s e ™))

= (a,c | pry(c™, a e "a))

m n —
{co,b,c1,a | gt = b1, 0P = cf,acpa

The relation a~'¢™%a = ¢™ holds in this group and so
(ap, a1, ¢ | prp/q(c™, (apar)"Le ™ (apar))

has an exceptional intersection of the second type. This group also contains a

generalised Baumslag—Solitar group and so does not have negative immersions.

Remark 5.2.10. More generally, by [Pie74] and [MPS73, Theorem 1], if G is an
exceptional intersection group that does not have negative immersions, G has a

w-subgroup isomorphic to a non-cyclic generalised Baumslag—Solitar group.
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Chapter 6

Bass-Serre theory of one-relator

splittings

In this chapter, we aim to understand more in detail the action of a one-relator group
on the Bass-Serre tree associated with one of its one-relator splittings. Since stabilisers
of (non-trivial) segments in the Bass-Serre tree are subgroups of intersections of
conjugates of Magnus subgroups, the first step towards this goal is to understand

such intersections. The following is [Col08, Theorem 2.

Theorem 6.0.1. Let F\(X)/{{w)) be a one-relator group and let A, B < G be Magnus
subgroups. For all g € G, one of the following holds:

1. ge B- A,
2. AnBY =1,
3. An B9 = 7.

We may, in some sense, strengthen Theorems 5.0.1 and 6.0.1 to incorporate
intersections of subgroups of Magnus subgroups. First, we will need the following

lemma.

Lemma 6.0.2. Let F(X)/{{w)) be a one-relator group and let A, B be Magnus
subgroups. Then A n B is strongly inert in A and B.

Proof. By Theorem 5.0.1, A n B is an echelon subgroup of A and B. Now Corollary
2.5.2 implies the result. O

Theorem 6.0.3. Let G = F(X)/{(w)) be a one-relator group and let A,B < G
be Magnus subgroups. If C < A, D < B are finitely generated subgroups, then the
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following is satisfied:

Z rr(C' n DY) = Z rr(C' n DY) < 1r(C)rr(D) .
[CADYc [CADIc
geG geB-A

Moreover, if C is a strongly inert subgroup of A, then

Z rr(C n DY) = Z rr(C n DY) <rr(D) .
[CAD9o [CAD9)c
geG geB-A

Proof. The first equality in both cases follows from Theorem 6.0.1. Lemma 6.0.2

implies the other inequalities when C' = A. Since

Z rr(C'n DY) = Z r(C N ((An B) n D%?),
[CnDI]c [CAD%]c
geB-A beB,acA

the first inequality now follows from the Hanna Neumann inequality [Min12, Fril5].
The second inequality follows from the definition of strongly inert subgroups. O
6.1 Inertial one-relator extensions

Let H be a group and 9 : A — B an isomorphism between subgroups A, B < H.
Inductively define

AY = {[HT} AV ={BIL AT = {0(A 0 A ey -

Then we denote by fﬁ/} c Af the subset corresponding to the conjugacy classes of

non-cyclic subgroups. Define the stable number s(v) of ¢ as
s(¥) =sup{k +1| A # &} e Nu {00},

where s(¢) = o0 if AV # & for all i € N. We say that Hs=, is stable if s(¢) < oo

Definition 6.1.1. Let H be a finitely generated one-relator group and let ¢ : A —» B
be an isomorphism between finitely generated, strongly inert subgroups of Magnus

subgroups of H. We call Hx,, an inertial one-relator extension.

Remark 6.1.2. By Lemma 2.4.3, all one-relator splittings of a one-relator group

are inertial one-relator extensions, up to possibly adding a free factor.
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For the purposes of this section, let us fix an inertial one-relator extension
Hy. Let T' denote the associated Bass-Serre tree. See Section 2.1.4 and [Ser03] for
the relevant notions in Bass-Serre theory. Each vertex of T' can be identified with a
left coset of H. Denote by

o = {5 | S a geodesic segment of length n with endpoint at gH} ,

Sy = JSom

Each edge in T has an orientation induced by 1. The elements [A4,] € AY correspond
to stabilisers of segments S € S}, such that rr(Stab(S)) # 0 and such that S consists
of edges only oriented towards H.

For inertial one-relator extensions, the ranks of stabilisers of elements in S;H

are bounded in a strong sense.

Lemma 6.1.3. For alln > 1, the following holds:

D1 m(Stab(S)) =2 > m(4,) < 2rr(A)

SeSy [An]eAY
[Stab(S)]
Proof. Let S € S}, then Stab(S) = H n H¢ where ¢ is equal to a reduced word of
the form:

¢ = cottert. e,

with €¢; = +1 and ¢; € H. By Theorem 6.0.3, if there is some 4 such that ¢; = —¢;11,
then Stab(S) is either cyclic or trivial since our word was reduced. Then by Theorem

6.0.3 and induction on n, it follows that

Z rr(Stab(9)) = Z rr(Ay) |+ Z rr(A;,)

SeS? 1Y 1
[Stab(S{_S]H [An]e-An [A,L]E.An
=2 Z rr(Ay) .
[An]eAY

O

The following lemma tells us that essentially, each element in flﬁ corresponds

to a unique segment in Sy, directed towards the vertex H.

Lemma 6.1.4. Let [A,] € AY. Then one of the following holds:
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1. if [A,] € ftf_l, there are precisely two H-orbits of elements S € 8§y such that
[Stab(S)]g = [An]H,

2. if [An] ¢ fm_l, there is precisely one H-orbit of elements S € Sf; such that
[Stab(S)]a = [An]a-

Proof. Suppose S, S’ € S}; are in distinct H-orbits and that Stab(S) = Stab(S’) =
A,. Let g, h € G be elements such that the endpoints of S and S’ are gH and hH

respectively. Then g and h are equal to reduced words:

g = got'go..t" gn,
h = hot™hs...t" h,,.

By Lemma 6.1.3, we have that ¢, = 1 or ¢, = —1 for all 4. Similarly for ;. If ¢, = »;
for all i, then g~ h € H or rr(H n H" '9) = 0. The former implies that S and S’
were in the same H-orbit and the latter implies that rr(A,) = 0 as A,, stabilises the
geodesic connecting gH and hH. Hence, we must have ¢; = —n; for all <. Then, by
definition, we have [A,] € A O

The following proposition is key in our proof of Corollary 6.3.4, where we

show that one-relator groups with negative immersions have stable hierarchies.

Proposition 6.1.5. If s(¢) = oo, then there are 1 < n < rr(A) many H-orbits of
biinfinite geodesics S I such that the following holds:

1. S contains the vertex H,

2. every finite subset of S has non-cyclic, non-trivial stabiliser subgroup.
Moreover, for every such S, the following holds:

1. every edge in S is directed in the same direction,

2. there exists an element g € G acting by translation on S.

Proof. The fact that every such geodesic must consist of edges directed in the same
direction is Lemma 6.1.3. The fact that there are 1 < n < rr(A) many such geodesics
follows from Lemma 6.1.4 and by definition of s(¢)). So now let S, ..., S, be the
collection of such biinfinite geodesics in T'. Identify each vertex of S; with an integer
so that H is the vertex associated with 0. Let g; ; € G be an element such that
gi,jH is the 4 vertex in S;. Then g;j - S; must be in the same H-orbit of some S,,.
But then by the pigeonhole principle, S;, 9i - 11 - Siy s g;ri( 4)° S; must contain two
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biinfinite geodesics in the same H-orbit. Suppose that hig, kl - Si = hag; ll -5, =5
for some hi, hy € H. Then we have

S; = hagii(higix)™' - Si,
where hggi7l(hlgi7k)_1 acts by translation on S;. O

Remark 6.1.6. The main consequence of Proposition 6.1.5 is that if s(i) = oo,

then there exists some element g € G acting hyperbolically on T, and such that
rr(H n H9") # 0 for all n € Z.

We conclude this subsection with an algorithm to compute generating sets

for conjugacy class representatives of elements in fl%.
Proposition 6.1.7. There is an algorithm that, given as input the following:
1. a one-relator presentation H = (X | r),
2. a pair of subsets X,Y < X that generate a pair of Magnus subgroups of H,

3. a tuple of words {ai,...,ar} < F(X) that form a free basis of the subgroup
A< H,

4. a tuple of words {by,...,bp} < F(Y) that form a free basis of the subgroup
B < H,

5. an integer n = 1,

computes generating sets in F(Y') for representatives of each conjugacy class in AY
where ¥ : A — B is given by ¥ (a;) = b;.

Proof. By [How05, Theorem EJ, we may compute generating sets {c1, ..., ¢} € F(X)
and {dy,...,dn} < F(Y) for the subgroup (X)n{Y). We may assume that ¢; = d; as
elements in H. The proof is by induction on n. The base case of n = 1 is immediate.

So now suppose that n > 2 and that we have computed flﬁfl. Let

{{yl,l; yl,?: --~7y1,m1}7 sy {yk,la yk,27 7yk,mk}}

be generating sets in F(Y") for conjugacy class representatives of elements in -’iz—r
Denote by Y; = (i1, ..., Yim;) < F(Y). By our discussion of the results in [Sta83] in
Section 2.1.3, we may compute generating sets for conjugacy class representatives
of each [D n Y]p(yy where D = {dy, ...,dp,) and y € F(Y). By substituting each
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appearance of d; with ¢; and then ¥(c;), we obtain generating sets in F\(Y') for

conjugacy class representatives of each conjugacy class in the set

{[v(D" n Yf)]}a:e(X),ye(Y),léiék .

Then by Theorem 6.0.3, after removing each generating set of a cyclic group, we are
done. O

Remark 6.1.8. Proposition 6.1.7 provides us with a partial algorithm to decide
stability of inertial one-relator extensions. The existence of a full algorithm is not

known.

Example 6.1.9. Consider the following one-relator group:
{a,b| b*a*b~raba®b"2a2) |

This group appears as BBABaBBAAbbaa in the database [Cas21]. We see that it

has one-relator splitting:

Hy = (x,y, 2 | z2y22x_2>*w ,

where 1 is given by ¥ (z) = y, ¥(y) = 2. Since y = 27222272, we see that (x,y, 2) is

a free group freely generated by z and z. Thus we have:

A = {[(x, 2]}

AV = {[* 2]}

AY = {[(z722%272)2 )]}
AY = g .

Hence, s() = 3 and Hy, is stable.

6.2 Finding Baumslag—Solitar subgroups

6.2.1 The graph of cyclic stabilisers

We now introduce the graph of cyclic stabilisers. This is a graph of cyclic groups G,
associated to an inertial one-relator extension Hx,, that encodes relations between
the cyclic stabilisers of segments leading out of H in the Bass-Serre tree. An important
consequence of the construction is that certain Baumslag—Solitar subgroups of H,,

can be read off from 7(G).
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Fix a non-cyclic one-relator group H and an isomorphism ¢ : A — B such that
Hx,, is an inertial one-relator extension. Denote by A the set of all the A-conjugacy
classes of maximal cyclic subgroups of A with the following property: for any S € Sg
with Stab(S) cyclic, either Stab(S) is H-conjugate into some representative in A,
or it is not H-conjugate into A. We similarly define B, replacing A with B. Since
A and B are free groups, every element is contained in a unique maximal cyclic
subgroup and so these sets are well defined. If S € Sy is any segment with Stab(.S)
cyclic, then Stab(S) is H-conjugate into some representative in A or B.

We now define the graph of cyclic stabilisers G = (T, {{cy)}, {{ce)}, {0F}) as
follows. Identify V' (I") with the disjoint union A 1 B. Choose any map v : V(I') > H
sending an element [{(a)]4 € A to a generator of a conjugacy class representative
a € A and [{(b)]p € B to a generator of a representative b € B. There are two types
of edges: H-edges and t-edges.

For each pair of vertices v,w € V(I') and each double coset {v(v))h{v(w)),
such that he H or he At~'B L BtA and

w() n ) # 1,

there is an edge e connecting v and w. If v,w € A or v,w € B, then we assume that
h ¢ (v(v)Xv(w)). If he At71B, then v € A and w € B. If h € BtA, then v € B and
w e A.

The boundary maps 0F are induced by the monomorphisms

W)y A Ww)Ht — (v())
W' A p(w)) = ww)) .

If h € H, then we say that e is an H-edge and if h € At~'B L BtA, we say that e is
a t-edge. All edges between vertices in A and B are oriented towards B and a choice
of orientation is made for the remaining edges.

Note that our construction of G did not depend on the choice of map v. We

record this with the following lemma.
Lemma 6.2.1. The isomorphism class of G as a graph of groups depends only on .

Choose any map & : E(I') — G such that £(e) € (v(o(e)))h{v(t(e))) where
{v(o(e)))h{v(t(e))) is the double coset associated with e. For each v € V(I'), we may

define a group homomorphism, induced by the choices v, £, from the fundamental
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group of the graph of cyclic stabilisers
w:m(G,v) > G,

as follows.

Each element of 71 (G, v) can be represented by words of the form

’i() €1 ’il €n in
Cop€1 Cyy-+-€p Cyr s

where €; = 1, vg,v, = v, ¢; € E(I'), v; = t(e;) and v; = o(ej4+1). Then we define
pleer ey enreys) = v(vg) 0€(en) v(v)™..&(en) " v (vn)™ .

One can check that this is well defined and depends only on v, &. We will call u the
homomorphism induced by v, &.

A path v : I — I is alternating if it does not traverse two H-edges or t-edges
in a row. An H-path is a path v : I — I that only traverses H-edges. We say a word

€1 .11 €n Ain j ; if o€ €2 €n 3 3

el et egre is an alternating word if €' x €5’ * ... xef is an alternating path. Recall
10 €1 401

that a word c;Q ey ¢y} ..

) .e;”cfj; is cyclically reduced if all of its cyclic permutations

€
J
of its cyclic permutations are also alternating.

€5j—1 ’L'j,1

i en pin i : : L
e cy ey 0...6]71 Cy;_, are also reduced. A word is cyclically alternating if all

A generalised Baumslag—Solitar group is a group that splits as the fundamental
group of a graph of groups with infinite cyclic vertex and edge groups. A non-cyclic

generalised Baumslag—Solitar group always contains a Baumslag—Solitar subgroup.

Lemma 6.2.2. If c = e’ cf}l...e;" cfj; 1s a cyclically reduced and cyclically alternating

word, then p(c) is a cyclically reduced word. In particular, if n = 2, then G contains

a Baumslag—Solitar subgroup that is not conjugate into H.

Proof. If n = 1, then the result is clear. So from now on assume that n > 2. We
may also assume that e; is a t-edge. Taking indices modulo n, we have that p(c) is

not cyclically reduced if and only if €3;_1 = —e€2;41 = 1 for some j and
v(vgj-1)" 1€ (eg)) @ v(g;)"* € A,

or €gj_1 = —€gj4+1 = —1 for some j and
V(v2j-1)"71€ () v(va;)" € B .

In the first case, v(vg;j—1)"2-1€(eq;) v(ve;)™ € A if and only if £(ezj)» € A. But
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this would then imply that vpj_1 = vgj. Since A is free and v(vpj) generates a
maximal cyclic subgroup, it follows that £(e;)** € (v(v2;)) which is not possible by
construction. The same argument is valid for the other case and so u(c) is cyclically
reduced. In particular, since n > 2, we have that p(c) acts hyperbolically on 7'

Now, by definition of G, there are integers k, [, such that

k

p(e) plew,)Fule) = plew,)'

We may assume that k& and [ are minimal possible. If kK = +1 or [ = +1, then
{u(e), pley, )y = BS(1, +1) or BS(1, +k) respectively. Since p(c) acts hyperbolically
on T, it follows that this Baumslag—Solitar subgroup is not conjugate into H. If
k,l # +1, since pu(c) is cyclically reduced, we have that [u(c), p(cy, )] is also cyclically
reduced. Thus, {u(c,,)!, [u(c), ey, )] = Z2. As before, this copy of Z? cannot be
conjugate into H. [

We will denote by G, the full subgraph of groups of G on the vertices corre-
sponding to the maximal cyclic subgroups containing some Stab(S) where S € S}I

and ¢ < k. Under certain conditions, we may compute Gy.

Theorem 6.2.3. There is an algorithm that, given as input:
1. a one-relator presentation H = (X | r), where H is hyperbolic and non-cyclic,
2. a pair of subsets X,Y < X that generate a pair of Magnus subgroups of H,

3. a tuple of words {ai,...,am} < F(X) that form a free basis of a subgroup A,

strongly inert in F(X) and quasi-convex in H,

4. a tuple of words {by,...,bm} < F(X) that form a free basis of a subgroup B,

strongly inert in F(Y) and quasi-convex in H,
5. an isomorphism v : A — B given by ¥(a;) = b;,
6. an integer k = 0,
computes Gi. Furthermore, if s(1) < 00, then Gy = G.

Proof. By [KMW17, Proposition 6.7], for any pair of vertices v, w € V(G), there are
at most finitely many edges connecting them. By [KMW17, Corollary 6.10], given a
choice of representatives v : V(I') — H, for any given pair of vertices v, w € V(G),
we may decide if v and w are connected by an edge. Moreover, we may find double
coset representatives for each such edge. Hence, in order to compute Gy, it suffices

to find representatives vy : V(I'y) — H, where Iy is the underlying graph of G.
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Note that I'g = & since H is non-cyclic. If A and B are cyclic, then A = {[A]}
and B = {[B]}. If not, then S}; only contains segments with non-cyclic stabilisers
and so I'y = @&. Thus, representatives 1y and v are computable.

By [KMW17, Proposition 6.7 and Corollary 6.10], there exist finite computable
sets Rap, Rpa, Raa and Rppg, satisfying the following:

1. Rap is a complete set of A, B double coset representatives with the property
that A9 " B # 1 for all g € Rap,

2. Rpa is a complete set of B, A double coset representatives with the property
that An BY # 1 for all g € Rpa,

3. Raga is a complete set of A, A double coset representatives with the property
that A9 " A #1forall g€ Raa,

4. Rpp is a complete set of B, B double coset representatives with the property
that B9 n B # 1 for all g € Rpp.

Let S € Sy. We have Stab(S) = H n H® where c is equal to a reduced word
t61C1d1t6202d2...t6ncn ,

with ¢, = 1, ¢, € H and such that the following hold:

1. if ¢, = ;41 = 1, then ¢; € Rap for some j and d; € B,

2. if ¢, = ¢;,,1 = —1, then ¢; € R4 for some j and d; € A,
3.ife =1, ¢,41 = —1, then ¢; € Ra4 for some j and d; € A,
4. if ¢, = —1, ¢;41 = 1, then ¢; € Rgp for some j and d; € B.

Denote by ¢; j = t%c;d;...t%cjdj and A" = (X) and B’ = {Y'). If for some ¢ we have
€ = —€i+1, then
H A HGE < H A gEGdt™ ~ 7

by Theorem 6.0.1. Similarly, if ¢;, = ¢;,1 = 1 and ¢; ¢ A’B’, or ¢; = ¢;,1 = —1 and
ci ¢ B'’A’, then
H o HGE < J oA gEadt™ ~ g,

But since H n H!" ¢4 = Stah(S) for some S € S, it suffices to only consider
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the words of the form:

talbltagbg...tanbn ,
t Lhtagbs...tanby, |
tilblaltflbgal...tflbnan ,

tgtflbgag...flbnan ,

where h € Rgp, g € Raa and a; € A', b; € B’. The first two cases are the same as
the seccond two up to symmetry.

Denote by W, the collection of words of the first type where ¢ appears n
times. If C < A’ is a finitely generated subgroup, then there are finitely many
B'-conjugacy classes of subgroups B n C% = (BbA N C?)? where a € A’ and be B’
(see Section 2.1.3). Since B is a finitely generated subgroup of the free group B’,
there are also finitely many B-conjugacy classes of such subgroups. We may apply

the same argument, replacing B with A. This implies that the sets

{[H N HC]Aﬂ [H N HC]B}CEW2 )

-1 -1
{[H nH' hC]Av [H nH' hc]B}hGRBB,ceV\b
are finite. Hence, by induction on n, the sets

{[H n H]|a,[H n H|B}cew, ,

1 -1
{lH nH" "4, [H o H "B} herpp comn

are also finite. The symmetric argument covers the remaining cases and we see that
V(T'y) must be finite for all £ > 0. By [How05, Theorem E], we may compute a free
basis for the free group A’ n B’ in the generators for A’ or B’. We may use Stallings
graphs (again, see Section 2.1.3 and [Sta83]) to find double coset representatives and
compute all the other intersections in the same way as in the proof of Proposition
6.1.7. Thus, a representative v : V(I'y) — H is computable.

Now suppose that k > s(¢). By definition, if ¢ € Wy, then we have HNnH® =~ 7Z
or Hn H¢ = 1. Since Stab(S7) < Stab(S3) for any pair of segments Sy < S; < T,
we get that G = Qs(¢) and thus G = gs(¢). O

Example 6.2.4. Let us consider the one-relator group

{a,b,t | ta®t 1bab tat tbab™1) |
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(y)

Figure 6.1: The graph of cyclic stabilisers G

appearing in the one-relator group database [Cas21] as BBABaBABa. It has a

one-relator splitting:

{a,b,t | ta®t™ bab~at™ bab™ by = (x,y, 2, t | tat ™! = y, P2z yza )

> (x,y, 2 | yPraz tyzaz T ) wy

This one-relator splitting is also a one-relator hierarchy of length one since the element
y?zxz lyzazz—! is primitive in F(z,y, z). One can check that this HNN-extension is
stable and so it satisfies the hypotheses of Theorem 6.2.5.

Since the edge groups of this splitting are cyclic, it follows that G has two
vertices, one corresponding to (x) and the other to {(y), with a t-edge connecting
them. Since y?zxz lyzaz—! = pr3/2(y,zxz*1), we see that zax22~! = y~3. Hence,
there is an edge connecting (x) with {(y) corresponding to conjugation by z, where
the edge monomorphisms are given by multiplication by 2 and —3 respectively. See
Figure 6.1 for the graph of cyclic stabilisers G.

We see that m1(G) has a cyclically alternating and cyclically reduced word
zt~! and so our one-relator group contains a Baumslag-Solitar subgroup by Lemma

6.2.2. More explicitly, we have

(x,2t™" = {a,bt7') =~ BS(2,-3) .

6.2.2 A criterion

Lemma 6.2.2 told us that certain Baumslag-Solitar subgroups of H#, could be
read off from its graph of cyclic stabilisers. Although we may not find all such
subgroups in this way, we now show that under certain conditions, if H#,; does

contain Baumslag—Solitar subgroups, then Lemma 6.2.2 will always produce a witness.

Theorem 6.2.5. Let G = H=*y be an inertial one-relator extension where H is
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non-cyclic and v identifies A and B. Suppose that s(1) < oo, H is hyperbolic and

that A and B are quasi-convex in H. The following are equivalent:

1. G acts acylindrically on T,
2. G does not contain any Baumslag—Solitar subgroups,

3. m1(G) does not admit any cyclically alternating and cyclically reduced word.

Proof. We prove that (3) implies (1), that (1) implies (2) and that (2) implies (3) by
proving the contrapositive statements.

Let G be the graph of cyclic stabilisers of ¢ and let v : V(I') — H be a choice
of representatives. Suppose that G does not act acylindrically on T'. Then, for any
n = 1, there exists a sequence of geodesic segments S; < Sy € ... © S, with S; € S}I,
each with infinite stabiliser. Let g; € G be an element such that the endpoints of \S;
are H and ¢g; H. For all i > s(¢), by Lemma 6.1.3, Stab(S;) is cyclic. By Theorem
6.2.3, each subgroup Stab(g;' - S;) is H-conjugate into some {v/(v)) where v € V(T).
By the pigeonhole principle, there are three integers s(¢) < i < j < k such that
Stab(g; *S;), Stab(g;lsj) and Stab(g, ' Sy) are H-conjugate into some (v (v)). Thus,
since Stab(Sy) < Stab(S;) < Stab(S;) < (h), there are elements hy, hg, hs, ha such
that:

<h>gjh2 A <h>gihl £1,
<h>gkh4 A <h>gih3 £1.

In particular, if f = gihlhglgjfl and g = gﬂly,h;lg];l, then

By by #1
(hy n(h)y? #1,
(hy (A9 # 1.

Suppose first that both f and g act elliptically on T. If they do not both fix a
common vertex, then fg acts hyperbolically on T'. So suppose that they both fix
a common vertex u. Now the geodesic connecting v with S must meet Sy at the
midpoint between g; H and g; H and the midpoint between g; H and g H. Since j < k,
this is not possible and so we may assume that one of f, g or fg acts hyperbolically
on T. The cyclic reduction of f, g or fg provides us with a cyclically alternating
and cylically reduced word in 71(G) by construction.

Now suppose that G contains a Baumslag—Solitar subgroup J < G. Since H

is hyperbolic, it cannot contain a Baumslag—Solitar subgroup. This implies that J
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cannot act elliptically on 7T'. It follows from [MO15, Theorem 2.1] that J cannot act
acylindrically on 7. Hence G does not act acylindrically on 7" and (1) implies (2).
Finally, Lemma 6.2.2 shows that (2) implies (3). O

Corollary 6.2.6. Let G = Hy, be an inertial one-relator extension where v identifies
A and B. Suppose that s(v) < oo, that H is hyperbolic and that A and B are quasi-
convex in H. Then there is an algorithm that decides if G contains a Baumslag—Solitar

subgroup.

Example 6.2.7. Consider the one-relator group:
{a,b| b*a®b taba®b 2a %)
from Example 6.1.9. It has one-relator splitting
Hiy = (x,y,2 | 22y22x72>*w ,

where 1) : A — B is given by ¢¥(z) = y, ¥(y) = 2. In Example 6.1.9, we showed that
Hxy, is stable and that the vertex group was freely generated by x,z. We see that
the edge groups are generated by x, 222222 and 22, 2 respectively. Every subgroup
of the form A n B9, An A9 or B n BY is either trivial, or conjugate to A, B or one

of the following:

(r, 2722272 n (22, 2) = (&2, 27222 272) |
(,27%2%27%) 0 (@®, 2)" = (%),

(2%, 2) n (&2, 2)° = (&?) .

By applying ¢ to z and ¥~ to 22 = 22y22, we see that the vertices in I" corresponding
to stabilisers of elements in S% are the B-vertex [(y)] and the A-vertices [(y)] and
[(y?2y?)]. The graph of cyclic stabilisers can be seen in Figure 6.2. By Theorem
6.2.5, since G does not admit any cyclically alternating and cyclically reduced words,

we see that H#, does not contain any Baumslag—Solitar subgroups.

6.3 Stable one-relator splittings

6.3.1 One-relator groups with torsion

The following lemma allows one to easily establish stability of a one-relator splitting
in certain cases: if the edge groups of a one-relator splitting have no exceptional

intersection, then the splitting is stable.
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Figure 6.2: The graph of cyclic stabilisers G

Lemma 6.3.1. Let X be a finite one-relator complex and let m(X) = m(Z)*y
be a one-relator splitting where A, B c Z are the associated Magnus subcomplezes.
Let A", B" ¢ Z be Magnus subcomplexes such that Ac A', Bc B' and A’ n B’ is
connected. If 1 (A") nm(B') = m (A’ n B’), then s(1)) < oo.

Proof. Let Y — X be the cyclic cover containing Z. Let 8 : © & A be a graph
immersion with x(©) < —1. By assumption and Theorem 6.0.1, 6 is homotopic in
Z to a graph immersion #; : ©1 & B = 1- A, if and and only if § is homotopic in
A to a graph immersion 6; : ©1 & A n B. If s(y) > 2, there are graph immersions
0,01 as a above, such that 8, : ©1 9 A~ B — 1- A is homotopic in 1 - Z to a graph
immersion 0 : © > An1l-An2-A—1-(An B). Carrying on this argument,
we see that if s(¢)) > n, then there exists a graph immersion 6 : © $ A such that
X(0) < —1 and such that 6 factors through An1-An...nn-A. However, for large
enough n we have that An1-An...nn-A=¢. O

The condition from Lemma 6.3.1 always holds for one-relator splittings of
one-relator groups with torsion by Remark 6.1.2 and Corollary 5.0.3, yielding the

following.

Corollary 6.3.2. All one-relator splittings of one-relator groups with torsion are
stable.

6.3.2 One-relator groups with negative immersions

The aim of this subsection is to show that every one-relator splitting of a one-relator

group with negative immersions is stable. In order to do this, we show that certain
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constraints on the subgroups of H#, that are not conjugate into H imply stability.

Theorem 6.3.3. If every descending chain of non-cyclic, freely indecomposable

proper subgroups of bounded rank
G=Hy>H>..>H,> ..

is either finite or eventually conjugate into H, then s(i) < 0.

Proof. Suppose for a contradiction that s(¢) = co. Denote by ¢ : G — G/{(H)) = Z.
Then, by Proposition 6.1.5, there is some biinfinite geodesic S in the Bass-Serre tree
for Hx,, containing the vertex H, such that there exists some element g € G acting
by translations on S. Moreover, we have that ¢(g) # 0. Hence, H n H9" # 1 for all
n.

Consider the descending chain of subgroups
G={(Hg)>{H g >. . >Hg> > ..

and denote by Hy, = (H, ¢2"). Since rk(H}) < tk(H) + 1, the ranks in this chain are
bounded. The chain must be proper since ¢(H;) = {¢p(g)2") # {p(9)2’) = ¢(H;) for
all ¢ # j.

Each H; has a Grushko decomposition

Hl' = F(X,L) * g1 k. ik;

that is unique up to permutation and conjugation of factors and where each J; ; is
non-cyclic and freely indecomposable. By the Kurosh subgroup theorem, each J; ; is
a conjugate of a subgroup of some J;_; ;. Furthermore, we have that | X;| + 2k; <
rk(H) + 1.

Now the claim is that for some integer m > 0, each J; ; is either a conjugate
of some J;_1 4, or is conjugate into H, for all ¢ > m. If this was not the case, then
there would be infinite sequences of integers ig, i1, 72, ... and jg, j1, j2, ... and elements
g1, 92, ... € G, such that

. g1 g2
JZO,JO > Jz‘l,j1 > Ji2,j2 Z

where the inclusions are all proper and no J; is conjugate into H. But this

k>Jk
contradicts the hypothesis and so the claim is proven.

So now set J; = J;1 *...% J;,. For all i > m, we have that ¢(J;) = {I)
for some fixed I. But since ¢(H;) = {(¢(g)2"), this forces .J; < ker(¢). Thus, the

induced homomorphism ¢ | H,, factors through the projection H,, — Hp,/{{Jm)) =
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F(X,,). But now ¢(g2") is a generator of ¢(H,,), so there is some primitive element
r € F(X,,) that maps to a generator of ¢(H,,) and such that = = kg?" for some
k € ker(¢ | Hy,). Since z is primitive in F'(X,,), we have:

Hm:<x>*K:<k92m>*K7

for some subgroup K < H,, such that ((K)) = ker(¢).

Now let T},, be the Bass-Serre tree associated with the HNN-extension with
trivial edge groups, (z) * K. Each vertex is stabilised by a conjugate of K and each
edge has trivial stabiliser. Since H < H,,,, H < ker(¢) and H is finitely generated,
it follows that H is a subgroup of a free product of finitely many conjugates of K.
Since ¢g2" acts hyperbolically on 7}, and T}, has trivial edge stabilisers, it follows
that

Hou®" =1

for all k sufficiently large. But then this contradicts the assumption that s(¢) =
0. O

Corollary 6.3.4. All one-relator splittings of one-relator groups with negative

immersions are stable.

Proof. Let X be a one-relator complex with negative immersions. Let m(X) =
m1(Z)#y be a one-relator splitting where A, B < Z are the Magnus subcomplexes
identified. By Remark 6.1.2, we may assume that m(A4) and m(B) are strongly
inert subgroups of Magnus subgroups of 71(Z) for some one-relator presentation.
This is because adding a free factor preserves stability. Now the result follows from
Theorems 2.3.6 and 6.3.3. O

6.3.3 The general case

A one-relator group that does not have torsion or negative immersions may not have
any stable one-relator splittings. However, there is still something to be said in the
general case: let G be a one-relator group and G' = H#, a one-relator splitting.
Either Hx,, is stable or H is a one-relator group with exceptional intersection by

Lemma 6.3.1. In particular, by Theorem 5.2.8, one of the following hold:
1. Hy is stable,
2. H has negative immersions,

3. H contains a Baumslag—Solitar subgroup.
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Chapter 7

Main results and further

questions

7.1 Hierarchies

We are finally ready to prove our main results. Let us first define stable hierarchies.

Definition 7.1.1. A one-relator tower (hierarchy) Xy & ... X1 & X is a stable
one-relator tower (hierarchy) if each associated one-relator splitting 71 (X;q1)#y, is
stable.

The most important tool established in this thesis is the following one-relator

hierarchy equivalence theorem.

Theorem 7.1.2. Let X be a one-relator complex and Xy b ... > X1 P Xg=X a

one-relator hierarchy. The following are equivalent:
1. XN P ... ¢ X1 9 Xo = X is a quasi-convex hierarchy and w1 (X) is hyperbolic,
2. XN P ... X1 D Xg =X is an acylindrical hierarchy,

3 XN P ... » X1 D Xo = X is a stable hierarchy and 71(X) contains no

Baumslag—Solitar subgroups.

Moreover, if any of the above is satisfied, then m(X) is virtually special and m1(A)

is quasi-convex in w1 (X) for any subcomplex A c X;.

Proof. The equivalence of (1) and (2) is Theorem 4.4.1.
We prove that (2) and (3) are equivalent by induction on hierarchy length. The

base case is clear. Suppose that the equivalence holds for all one-relator hierarchies
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XN ... Xi. F Xy ... X1 9 Xg = X is an acylindrical hierarchy, then
clearly it is a stable hierarchy. By Theorem 4.4.1, 71 (X) is hyperbolic and so contains
no Baumslag—Solitar subgroups; this shows that (2) implies (3). By Theorem 6.2.5
and induction, we see that (2) and (3) are equivalent.

If any of (1), (2) or (3) hold, then the remaining assertions hold by Theorem
4.4.1. O

We now prove a stronger form of [LW22, Conjecture 1.9].

Theorem 7.1.3. Let X be a one-relator complex with negative immersions. Then
m1(X) is hyperbolic, virtually special and all of its one-relator hierarchies Xy

.. P X1 P Xo = X are quasi-convex hierarchies.

Proof. Since 71(X) does not contain any Baumslag—Solitar subgroups by Theorem
2.3.5, the result follows from Corollary 6.3.4 and Theorem 7.1.2. O

Corollary 7.1.4. Let X be a one-relator complex with negative immersions. Then

every finitely generated subgroup of w1(X) is hyperbolic.
Proof. Follows from Theorem 7.1.3, [Ger96, Corollary 7.8] and Theorem 2.3.6. [J

Corollary 7.1.5. An exceptional intersection group is hyperbolic (and virtually

special) if and only if it does not contain a Baumslag-Solitar subgroup.
Proof. Follows from Theorems 5.2.8 and 7.1.3. O

Corollary 7.1.6. Parafree one-relator groups are hyperbolic and virtually special.

In particular, their isomorphism problem is decidable.

Proof. By [Bau69, Theorem 4.2] and Theorem 2.4.5, parafree one-relator groups have
negative immersions. Now the result follows from Theorem 7.1.3 and [DG11, Theorem
1]. O

In [MUWI11, Problem 1.2], it is asked whether it is decidable if a one-relator
group contains a Baumslag—Solitar subgroup. We show that for one-relator groups

with stable hierarchies, this is indeed the case.

Theorem 7.1.7. There is an algorithm that, given as input a one-relator complex
that has a stable one-relator hierarchy, decides whether m1(X) contains a Baumslag—

Solitar subgroup or not.
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Proof. We may enumerate hierarchies Xy ¢ ... X1 Xy = X and by Proposition
6.1.7, check if the induced one-relator splittings are stable. Since X has a stable
hierarchy, we will eventually find a hierarchy Xy & ... & X; & X¢ = X that is
stable. Now the result follows from Theorem 7.1.2, Corollary 6.2.6 and by induction
on N. O

7.2 Gersten’s conjecture

In [Ger92b], Gersten conjectured that a one-relator group is hyperbolic if and only if
it does not contain a Baumslag—Solitar subgroup. Theorem 7.1.3 tells us that if a
counterexample exists to Gersten’s conjecture, then it must be a one-relator group
that contains a non-cyclic two-generator one-relator subgroup. In this section, we
obtain a further restriction.

If i < j € Z are integers, denote by

i1

AZ?] = {atl’a ’“_’atj} - F(a7t) .

For each rational p/q € Q~¢, we define two new families of one-relator groups. The

first family is parametrised by two words

z € (Agk-1) — (A1 k-1) ,
yeAig) — (A g—1),

such that pr, /q(m, y) is a primitive exceptional intersection word of the first type.
We then define:

Epjq(x,y) = a,t | pry,(z,y)) - (7.1)

We call this a primitive extension group of the first type.

The second family is parametrised by three words

x € (Ao k—1) — (A1 k-1) ,
ye (A — (Arg—1) ,
A <A17k_1> -1,

such that pr, . (zy, z) is a primitive exceptional intersection word of the second type.
We then define:

Fp/q(xv Y, Z) = <(Z, t | pI‘p/q(I‘y, Z)> . (72)

We call this a primitive extension group of the second type.
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Definition 7.2.1. A group G is a primitive extension group if it is a primitive

extension group of the first or second type.

We now show that Gersten’s conjecture is true if and only if it is true for
primitive extension groups. In order to do so, a more refined hierarchy result is

required.

Theorem 7.2.2. Let X = (I', ) be a one-relator complex such that m1(X) does not

contain Baumslag—Solitar subgroups. There exists a stable one-relator tower:
XNq—>...q—>X1q—>X0=X,

such that one of the following holds:
1. m(Xn) is finite,
2. m1(XnN) is a primitive extension group.

Moreover, if m(Xn) is hyperbolic, then the tower is acylindrical and w1 (X) is

hyperbolic.

Proof. By Theorem 7.1.3, we may assume that X does not have negative immersions.
We may also assume that A is primitive. By Theorem 3.3.16, there is a one-relator
tower:

Q=XgP .. X1 X=X,

such that m1(Q) is the 2-generator w-subgroup. Thus, by Theorem 2.3.7, every
two-generator subgroup of 7;(X) is either free or conjugate into m(Q). Since
m1(X) cannot contain Baumslag—Solitar subgroups, we have that no 1 (X;) can have
exceptional intersection by Theorem 5.2.8. Thus, by Lemma 6.3.1, each splitting is
stable.

Now let p : Y — @ be any cyclic cover and Z € TD(p) a minimal tree domain.
Since x(Q) = 0, there is a pair of generators a,t for m(Q) such that

k
w (a, at,....a )>

and both a and a!" are mentioned in w. Moreover, m(Q) = m1(Z)*y where ¢

th

m(Z) = <a,at,...,a

maps (a,a’,...,a" ") to (al,a’,...,a" . If these Magnus subgroups have exceptional
intersection, then by Theorem 5.2.8, 71(Z) must be a primitive exceptional intersec-

tion group. Then by definition, 71(Q) must be a primitive extension group. If the
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Magnus subgroups do not have exceptional intersection, since ¢(Z) < ¢(X), we may

use induction to complete the tower to a stable tower:
XN%...C}»qu—»X():X,

where 71 (X ) is either finite or is a primitive extension group.

All that is left to prove is that this tower is acylindrical when 7 (Xy)
is hyperbolic. If (X ) is finite, by Theorem 7.1.2, we have that the tower is
acylindrical. Suppose then that 71 (X ) is not finite. Since x(Xn) = 0 and 71(Xn)
is hyperbolic, each Magnus subgroup is cyclic and so must be quasi-convex. Then, by
Theorems 4.3.1 and 6.2.5 and induction, we see that the tower must be acylindrical.

[

Theorem 7.2.3. A one-relator group is hyperbolic if and only if its primitive

extension subgroups are hyperbolic.

Proof. If G is a one-relator group containing a finitely presented non-hyperbolic
subgroup, then G cannot be hyperbolic by [Ger96, Corollary 7.8]. So now suppose
that G is a one-relator group not containing any non-hyperbolic primitive extension
subgroup. Since BS(1,n) is a primitive extension group for all n # 0, it follows that
G does not contain any Baumslag—Solitar subgroups. Now the result follows from
Theorem 7.2.2. O

Corollary 7.2.4. Gersten’s conjecture is true if and only if it is true for primitive

extension groups.

7.3 Further questions

Extending results in this thesis to all one-relator groups would require a better
understanding of one-relator hierarchies that are not stable. Therefore, we pose the

following problems.
Problem 7.3.1. Characterise one-relator hierarchies that are not stable.
Problem 7.3.2. Find an algorithm to decide stability for one-relator splittings.

Any one-relator group satisfying the hypothesis of Brown'’s criterion, either has
a one-relator splitting that is not stable, or is isomorphic to a Baumslag—Solitar group
BS(1,n). More generally, if m;(X) = m1(Z)#,, is a one-relator splitting and there is
some g € m1(X) acting hyperbolically on its Bass-Serre tree and some 4,, € [4,] € AY
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such that A}, < A, then (A, g) splits as an ascending HNN-extension of a finitely

generated free group. We ask whether this is the only situation that can occur.

Question 7.3.3. Let X be a finite one-relator complex and let 71(X) = 71 (Z)%*y
be a one-relator splitting that is not stable. Is there some n > 0 such that one of the

following holds

“Ztﬁ = AZ}H )
— =1 — =1
A% = AZ}H )

for all 7 > 07
If so, does there exist an immersion of one-relator complexes () & X that does
not factor through Z ¢ X and such that 71 (Q) splits as an ascending HNN-extension

of a non-trivial, finitely generated free group?

In light of the results in [LW22] and this thesis, we generalise a question asked
by Moldavanskii [KM18, Question 11.63].

Question 7.3.4. Let G be a one-relator group and let [P], ..., [P,] be the conjugacy
classes of w-subgroups of G. If H < G is a subgroup such that H n{(P, ..., P,)) =1,
is H free?

By [Sel95] and [DG11], the isomorphism problem for one-relator groups with
torsion and negative immersions is solvable. Before then, it was known by [Pri77]
that the isomorphism problem was decidable for 2-generator one-relator groups
with torsion. There, Pride proves a stronger result: that freely indecomposable
2-generator one-relator groups with torsion have precisely one generating set, up to
Nielsen equivalence. To conclude, we agk if this property holds also for one-relator

groups with negative immersions.

Question 7.3.5. Do one-relator groups with negative immersions have only one

generating set, up to Nielsen equivalence?
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