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Abstract

We develop a functional framework suitable for the treatment of partial differential equations and varia-
tional problems on evolving families of Banach spaces. We propose a definition for the weak time derivative 
that does not rely on the availability of a Hilbertian structure and explore conditions under which spaces 
of weakly differentiable functions (with values in an evolving Banach space) relate to classical Sobolev–
Bochner spaces. An Aubin–Lions compactness result is proved. We analyse concrete examples of function 
spaces over time-evolving spatial domains and hypersurfaces for which we explicitly provide the defini-
tion of the time derivative and verify isomorphism properties with the aforementioned Sobolev–Bochner 
spaces. We conclude with the proof of well posedness for a class of nonlinear monotone problems on an 
abstract evolving space (generalising the evolutionary p-Laplace equation on a moving domain or surface) 
and identify some additional problems that can be formulated with the setting developed in this work.
© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

* Corresponding author.
E-mail addresses: alphonse@wias-berlin.de (A. Alphonse), Diogo.Caetano@warwick.ac.uk (D. Caetano), 

adjurdjevac@zedat.fu-berlin.de (A. Djurdjevac), C.M.Elliott@warwick.ac.uk (C.M. Elliott).
https://doi.org/10.1016/j.jde.2022.12.032
0022-0396/© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jde.2022.12.032&domain=pdf
http://www.sciencedirect.com
https://doi.org/10.1016/j.jde.2022.12.032
http://www.elsevier.com/locate/jde
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:alphonse@wias-berlin.de
mailto:Diogo.Caetano@warwick.ac.uk
mailto:adjurdjevac@zedat.fu-berlin.de
mailto:C.M.Elliott@warwick.ac.uk
https://doi.org/10.1016/j.jde.2022.12.032
http://creativecommons.org/licenses/by-nc-nd/4.0/


A. Alphonse, D. Caetano, A. Djurdjevac et al. Journal of Differential Equations 353 (2023) 268–338
1. Introduction

In this paper, we provide a theory and analysis of time-dependent function spaces suitable 
for posing and solving evolutionary variational problems on families of time-evolving Banach 
spaces. We further demonstrate our theory via examples and applications of partial differential 
equations on moving domains and surfaces.

By way of illustration, for each t ≥ 0, let H(t) be a Hilbert space and X(t) be a Banach space 
with dual X∗(t) such that

X(t) ⊂ H(t) ⊂ X∗(t)

is a Gelfand triple. We say that H(t) is the pivot space. Let A(t) : X(t) → X∗(t) be an elliptic 
operator and u̇ an appropriate time derivative (to be defined later) of u. With this, we can consider 
the abstract problem

u̇(t) + A(t)u(t) = f (t) in X∗(t),

u(0) = u0 in H(0).
(1.1)

One possible weak formulation concept for this problem would ask for the solution to satisfy

T∫
0

〈u̇(t), η(t)〉X∗(t),X(t) + 〈A(t)u(t), η(t)〉X∗(t),X(t) =
T∫

0

〈f (t), η(t)〉X∗(t),X(t)

for every appropriate test function η, as well as a given initial condition. To make this precise, 
one needs to specify

(i) the exact function spaces that the solutions lie in,
(ii) how to define the time derivative in an abstract evolving Banach space setting,

(iii) the properties of the above-mentioned spaces and objects that allow for analysis (e.g. exis-
tence of solutions) to be performed.

Our motivation comes from the study of partial differential equations on moving or evolv-
ing domains and manifolds. Such equations have received considerable attention in part due 
to their wide applicability in the biological and physical sciences. We mention applications 
in biomembranes [52], cell interactions [5], cardiovascular biomechanics [39], fluid mechan-
ics [14], chemotaxis [28], to name but a few. In addition to modelling aspects, the analysis 
[1–3,5,17,18,21,31,33,34] and numerics and simulation [25–27,30,40,43,44,54] of such prob-
lems is challenging and an active area of research.

In the case that X(t) is a Hilbert space, such issues have been considered. In particular, in 
[3] an abstract framework for the formulation and well posedness of solutions of equations of 
the form (1.1) was provided for linear parabolic problems in the Hilbert triple setting; for this, 
Lions-type solution spaces W p,q(X, X∗) (referring to the set of p-integrable functions that have 
values in X(t) with q-integrable weak time derivatives with values in X∗(t)) were defined and 
rigorously justified to have certain properties that are necessary for the existence theory. See also 
[4] for several concrete examples of applications of this theory.
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In this work, our setup involves not necessarily Gelfand triples but in fact more general fami-
lies of Banach spaces

X(t) ⊂ Y(t)

with no intermediate inner product structure available. As there is no pivot space to work with, 
the formulation and properties of the weak time derivative and evolving function spaces become 
more complicated. It is the aim of this paper to provide the theoretical background for con-
structing these spaces in the fully Banach space setting, to study their properties, and to provide 
examples that will cover most cases of interest to practitioners working with evolutionary vari-
ational problems on moving domains and surfaces. We will also provide an Aubin–Lions type 
compactness result (a tool widely used in the study of nonlinear problems) for these spaces. A 
crucial point in achieving the Aubin–Lions result (as well as other results and properties) is an in-
termediary result in which we give conditions under which the space W p,q(X, Y) is isomorphic 
to the standard Sobolev–Bochner space (or Lions space)

Wp,q(X0, Y0) := {u ∈ Lp(0, T ;X0) : u′ ∈ Lq(0, T ;Y0)},
where X0 := X(0) and Y0 := Y(0). Expending effort in achieving this isomorphism property is 
worthwhile since it has the advantage of allowing for a simple transferral of the properties of 
Wp,q(X0, Y0) onto the time-evolving version W p,q(X, Y). In particular, it leads to a relatively 
straightforward proof for the extension of the standard Aubin–Lions result to the evolving setting.

In summary, the novelty of the work is the following:

(1) we consider and define weak time derivatives in a fully Banach space setting (separability 
and reflexivity are not assumed); with no inner product or Gelfand triple structure to aid us, 
the formulation of such a time derivative is non-trivial and requires care and justification;

(2) we provide conditions that can be checked to ensure the isomorphism with equivalence 
of norms between the standard Sobolev–Bochner space Wp,q(X0, Y0) and the evolving 
Sobolev–Bochner spaces W p,q(X, Y) under consideration in this paper;

(3) we provide an Aubin–Lions result also in this generality (with no restriction needed for the 
evolving spaces to be related to domains or manifolds);

(4) we study a number of concrete examples involving function spaces of moving domains and 
surfaces that fit our abstract framework;

(5) we prove existence and uniqueness of solutions to a monotone first-order evolution equation 
(of the form (1.1)) in a Gelfand triple setting using the theory developed in this paper.

Under the assumptions on the evolution of the spaces in this paper, it is always possible to pull 
back equations such as (1.1) onto a reference space X0 and apply standard theory on fixed spaces 
once the relevant assumptions have been verified. However, our approach — which enables the 
problem to be treated directly in its natural formulation — offers a certain elegance and simplicity 
and is also of use in numerical and finite element analysis [27] on moving domains/surfaces (in 
addition to being an interesting mathematical problem in its own right). Furthermore, pulling 
back onto a reference domain nonetheless requires the checking of regularity of the resulting 
coefficients in order to apply standard theory and the analogue of this is performed for some 
rather general cases in §6, which we believe has a wide appeal for a variety of problems on 
moving domains and surfaces.
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Organisation of the paper The paper is split into two parts. Part 1 focuses on the abstract theory 
and Part 2 contains applications of the theory. Beginning in §2, we define and study properties 
of the evolving Bochner spaces Lp

X and their dual spaces. We move onto defining a weak time 
derivative in §3, as well as defining spaces of functions with weak time derivatives and their 
relation to the standard Sobolev–Bochner spaces. We study the conditions under which the two 
spaces are isomorphic. Proceeding in §4, we specialise the above theory to the setting where we 
have a Gelfand triple, which leads to a simplification in the statement of the assumptions that are 
required. We generalise the Aubin–Lions result to our setting in §5, concluding Part 1. Part 2 is 
devoted to examples and applications. In §6, we study several concrete examples of the abstract 
theory. Finally, in §7, we provide an application to a nonlinear parabolic equation.

Notation and conventions

• We will always work with real Banach spaces.
• The action of the linear map x∗ ∈ X∗ on x ∈ X is denoted by

〈x∗, x〉X∗,X = 〈x, x∗〉X,X∗ .

• Continuous, dense and compact embeddings of spaces will be denoted by ↪→, 
d

↪−→ and 
c

↪−→
respectively.

• We will usually leave out the differential in integrals, i.e., we write 
∫ T

0 f (t) rather than ∫ T

0 f (t) dt .
• For a function f : [0, T ] → X onto a Banach space, we denote the difference quotient

δhf (t) := f (t + h) − f (t)

h
.

• Given a, b ∈R, a ∧ b := min(a, b).
• The letters p and q will typically be used for (not necessarily conjugate) integrability expo-

nents in Lp-type spaces; the conjugate of p will always be denoted by p′ := p/(p − 1).
• We write D(�) ≡ C∞

c (�) to refer to the set of infinitely differentiable functions with com-
pact support in the open set � ⊂ Rn. Likewise, for a Banach space X, D((0, T ); X) ≡
C∞

c ((0, T ); X) denotes the space of smooth, compactly supported functions on (0, T ) with 
values in X. The dual space of D(�) will be denoted D∗(�), which is the space of continu-
ous linear functionals on D(�) (i.e., the space of distributions) endowed with the strong dual 
topology. The space D∗((0, T ); X) will stand for the space of continuous linear mappings 
from D(0, T ) into X, i.e.,

D∗((0, T );X) = L(D(0, T ),X),

see [8] for further details.

Part 1. Theory

This part is devoted to establishing the abstract theory necessary for the analysis of function 
spaces and the treatment of partial differential equations on evolving surfaces or bulk domains. 
We will assume familiarity with the classical theory of standard Bochner spaces Lp(0, T ; X); 
useful texts on this topic are [8,10,19,46,55].
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2. Time-evolving Bochner spaces Lp
X

The aim in this section is to define a generalisation of the Bochner spaces Lp(0, T ; X) to de-
scribe integrable (in time) functions with values in a Banach space that itself depends on time. In 
[1,3], two of the present authors defined and studied properties of spaces Lp

X given a sufficiently 
smooth parametrised family of Banach spaces {X(t)}t∈[0,T ]. These spaces were generalisations 
to the abstract Banach space setting of spaces introduced by Vierling in [53] in the context of 
Sobolev spaces on evolving surfaces. We now recall (and in some places, refine) the theory in [1]
so that the presentation is essentially self-contained.

For each t ∈ [0, T ], let X(t) be a real Banach space with X0 := X(0) and let

φt : X0 → X(t)

be a bounded, linear, invertible map with inverse

φ−t : X(t) → X0.

It follows that the inverse is also bounded. These maps ‘link’ the time-dependent spaces and we 
call φt the pushforward map and φ−t the pullback map. We assume these satisfy the following 
properties.

Assumption 2.1 (Compatibility). Suppose that

(1) φ0 is the identity,
(2) there exists a constant CX independent of t ∈ [0, T ] such that

‖φtu‖X(t) ≤ CX ‖u‖X0
∀u ∈ X0,

‖φ−t u‖X0
≤ CX ‖u‖X(t) ∀u ∈ X(t),

(3) for all u ∈ X0, the map t �→ ‖φtu‖X(t) is measurable.

We say that the pair (X(t), φt)t is compatible.

In what follows, we always assume that (X(t), φt)t satisfies Assumption 2.1 and we (for-
mally) identify the family {X(t)}t∈[0,T ] with the symbol X.

Remark 2.2. Under this compatibility assumption, note that for s, t ∈ [0, T ], the map U(t, s) :=
φsφ−t : X(t) → X(s) defines a 2-parameter semigroup in the sense of [45, Definition 1.1.1].

Let us define the disjoint union

XT :=
⋃

t∈[0,T ]
X(t) × {t}.

Definition 2.3 (The space Lp
X). For p ∈ [1, ∞], define the space

L
p
X := {u : [0, T ] → XT , t �→ (û(t), t) | φ−(·)û(·) ∈ Lp(0, T ;X0)

}
.
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Identifying u(t) = (û(t), t) with û(t), endow the space with the norm

‖u‖L
p
X

:=
⎧⎨⎩
(∫ T

0 ‖u(t)‖p

X(t)

) 1
p

for p ∈ [1,∞),

ess supt∈[0,T ] ‖u(t)‖X(t) for p = ∞.

Theorem 2.4. Under Assumption 2.1, Lp
X is a Banach space. If X is a family of Hilbert spaces, 

then L2
X is a Hilbert space with the canonical inner product

(u, v)L2
X

:=
T∫

0

(u(t), v(t))X(t).

Furthermore, Lp(0, T ; X0) and Lp
X are isomorphic via φ(·) with an equivalence of norms:

1

CX

‖u‖L
p
X

≤ ∥∥φ−(·)u(·)∥∥
Lp(0,T ;X0)

≤ CX ‖u‖L
p
X

for all u ∈ L
p
X. (2.1)

Proof. For the first two claims, see [3, Theorem 2.8] for the Hilbertian case and the paragraph 
after Definition 2.1 in [1] for the general Banach setting. The equivalence of norms is proved in 
[1, Lemma 2.3]. �
Spaces of smooth functions The following Ck-type spaces will also be of use later. We start by 
defining, for k ∈N ∪ {0}, the spaces Ck

X of k-times continuously differentiable functions (on the 
closed interval [0, T ])

Ck
X =

{
η : [0, T ] →XT , t �→ (η(t), t) | φ−(·)η(·) ∈ Ck([0, T ];X0)

}
.

We will also need the space DX of smooth, compactly supported functions (but now on the open
interval (0, T ))

DX = {η : [0, T ] → XT , t �→ (η(t), t) | φ−(·)η(·) ∈ D((0, T );X0)
}
.

2.1. Dual spaces

In this section, we study the dual space of Lp
X for appropriate p. First, we shall see that given 

a compatible pair (X(t), φt)t∈[0,T ], we can also define the space Lp
X∗ associated to the family 

{X∗(t)} by using dual maps. Indeed, denote by

φ∗−t : X∗
0 → X∗(t)

the dual operator of φ−t : X(t) → X0. Under the condition

t �→ ∥∥φ∗−t f
∥∥

X∗(t) is measurable for all f ∈ X∗
0 , (2.2)

it is not difficult to verify that the pair (X∗(t), φ∗−t )t∈[0,T ] is also compatible in the sense of the 
definition above (see [1, Remark 2.4]). This justifies the next definition.
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Definition 2.5 (The space Lp
X∗ ). Given a compatible pair (X(t), φt)t∈[0,T ], under (2.2), we define 

the space Lp
X∗ using the dual spaces {X∗(t)}t∈[0,T ] and the dual maps {φ∗

−(·) : X∗
0 → X∗(t)}.

Remark 2.6. Note that if X0 is separable, then so is X(t) for every t ∈ [0, T ] and the condition 
(2.2) follows from Assumption 2.1.

Regarding the relationship between the dual of a Bochner space and the Bochner space of 
the dual, recall that if Z is a reflexive Banach space, then Z∗ is also reflexive and hence it 
possesses the Radon–Nikodym property, which is key to identifying the dual of Lp(0, T ; Z) as 
Lp′

(0, T ; Z∗) whenever p �= ∞.

Theorem 2.7 (Identification of the dual of Lp
X with Lp′

X∗ ). Suppose that the family of reflexive 
Banach spaces {X(t)}t∈[0,T ] satisfies Assumption 2.1, (2.2) holds and let p ∈ [1, ∞). The dual 

space (Lp
X)∗ is isometrically isomorphic to Lp′

X∗ (taken as in Definition 2.5) with duality pairing

〈f,u〉
L

p′
X∗ ,L

p
X

=
T∫

0

〈f (t), u(t)〉X∗(t),X(t).

Furthermore, if p ∈ (1, ∞), then Lp
X is reflexive.

Proof. The proof follows the classical proof for the corresponding result for Bochner spaces [20, 
§IV] with modifications, see Theorem 2.5 in [1]. �

We now establish a version of the fundamental theorem of calculus of variations for the evolv-
ing space setting. The proof is simple but we provide it to illustrate the kind of argument required 
when working with these kinds of spaces.

Lemma 2.8. If u ∈ L1
X is such that

T∫
0

〈u(t), η(t)〉X(t),X∗(t) = 0 ∀η ∈ DX∗,

then u ≡ 0.

Proof. Given η ∈ DX∗ , by writing 
〈
u(t), η(t)

〉
X(t),X∗(t) = 〈

φ−t u(t), φ∗
t η(t)

〉
X0,X

∗
0

and setting 

ϕ := φ∗
(·)η(·) ∈ D((0, T ); X∗

0) it follows by the arbitrariness of η ∈ DX∗ that

T∫
0

〈
φ−t u(t), ϕ(t)〉X0,X

∗
0
= 0 ∀ϕ ∈D((0, T );X∗

0),

from where φ−(·)u(·) ≡ 0, hence u ≡ 0. �
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Remark 2.9 (Relation between the Riesz maps in the Hilbert space case). Suppose that 
{H(t)}t∈[0,T ] is a family of Hilbert spaces compatible with a family of maps {φt}t∈[0,T ] as above. 
Let us discuss the relationship between the various Riesz isomorphisms that are present in this 
situation.

Let R : L2
H → L2

H ∗ and St : H(t) → H ∗(t) be the associated Riesz maps. If u, v ∈ L2
H , by 

definition t �→ 〈St u(t), v(t)〉H ∗(t),H(t) = (u(t), v(t))H(t) is measurable and we have

(u, v)L2
H

=
T∫

0

(u(t), v(t))H(t) =
T∫

0

〈St u(t), v(t)〉H ∗(t),H(t)

but on the other hand, by Theorem 2.7,

(u, v)L2
H

= 〈Ru,v〉L2
H∗ ,L2

H
=

T∫
0

〈(Ru)(t), v(t)〉H ∗(t),H(t).

This implies that

Ru = S(·)u(·) in L2
H ∗

and thus (Ru)(t) = St u(t) ∈ H ∗(t) for almost all t . This suggests that identifying H(t) with 
H(t)∗ forces L2

H to be identified with L2
H ∗ and vice versa.

3. Time derivatives in evolving spaces

Having defined Bochner-type spaces to deal with evolving families of Banach spaces, we 
focus in this section on defining a notion of a weak time derivative for functions in such spaces. 
We recall the definition of a weak time derivative on a fixed setting: given X ↪→ Y , a function 
v′ ∈ L1(0, T ; Y) is the weak time derivative of v ∈ L1(0, T ; X) if

T∫
0

v′ϕ = −
T∫

0

vϕ′ ∀ϕ ∈DY ∗ . (3.1)

Firstly, since the pullbacks of functions in C1
X (recall the definition in §2) are differentiable, we 

are able to define a time derivative for such functions with a simple and natural formula.

Definition 3.1. A function u ∈ C1
X has a strong time derivative u̇ ∈ C0

X defined by

u̇(t) = φX
t

(
(φX−t u)′

)
, (3.2)

where (φX u)′ denotes the classical weak derivative of φX u as in (3.1).
−t −t
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Evidently, this time derivative depends on the maps {φX
t }. We will sometimes also use the 

notation ∂•u in place of u̇. A similar definition could be stated for higher order derivatives but 
we will not need it in this text.

Remark 3.2. This definition implies the following simple transport property: if u ∈ C1
X is of the 

form u = φX
t η for some η ∈ X0, then u̇ = 0.

The aim now is to look for a weaker notion of time derivative than the strong time derivative. 
Motivated by the integration by parts formula (3.1), we expect the definition of the weak time 
derivative to be similar to the non-moving setting but in view of the fact that the spaces here are 
evolving, we expect an additional term in its definition. Such a weak time derivative was defined 
in the setting of Hilbert triples X(t) ⊂ H(t) ⊂ X∗(t) (with each space a Hilbert space) in [3]. 
Here, we aim to drop the assumption of an existing pivot Hilbert space and define the weak time 
derivative in the full generality of the classical Banach space setting.

For the rest of this section, we work under the following assumptions:

Assumption 3.3. We fix families(
X(t),φX

t : X0 → X(t)
)
t∈[0,T ] and

(
Y(t),φY

t : Y0 → Y(t)
)
t∈[0,T ],

where X0 := X(0) and Y0 := Y(0), satisfying Assumption 2.1 and such that the Banach spaces 
X(t) ↪→ Y(t) continuously for all t ∈ [0, T ].

Remark 3.4. We do not assume that φX
t = φY

t |X0 ! Doing so would lead to a simplified setting in 
what follows, see Remark 3.7 (ii) for more details.

3.1. Definition and properties of the weak time derivative

For a function u ∈ L
p
X , we wish to define an appropriate concept of a weak time derivative 

u̇ ∈ L
q
Y motivated by the usual so-called transport formula in the non-moving setting. Taking a 

test function η ∈DY ∗ , we expect

d

dt
〈u(t), η(t)〉X(t),X∗(t) = 〈u̇(t), η(t)〉Y(t), Y ∗(t) + 〈u(t), η̇(t)〉X(t),X∗(t) + extra term, (3.3)

where the extra term accounts for the time-dependence of the duality pairing. Integrating over 
[0, T ], and using the fact that η is compactly supported, this would lead to a weak derivative 
formula of the integration by parts type, with an extra term which we now must identify. To 
isolate the effect of time-dependency that the evolution of the spaces induces in the associated 
duality product, we make the following assumption.

Assumption 3.5. We assume that

(i) the map

t �→ 〈
φX

t u0, (φ
Y−t )

∗v0
〉
X(t),X∗(t)

is continuously differentiable for each fixed u0 ∈ X0, v0 ∈ Y ∗;
0
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(ii) for all t ∈ [0, T ], the map

X0 × Y ∗
0 � (u0, v0) �→ ∂

∂t

〈
φX

t u0, (φ
Y−t )

∗v0
〉
X(t),X∗(t)

is continuous;
(iii) there exists C > 0 such that, for almost all t ∈ [0, T ] and all u0 ∈ X0, v0 ∈ Y ∗

0 ,∣∣∣∣ ∂

∂t

〈
φX

t u0, (φ
Y−t )

∗v0
〉
X(t),X∗(t)

∣∣∣∣≤ C ‖u0‖X0 ‖v0‖Y ∗
0
.

Here, we have used the fact that Y ∗(t) ↪→ X∗(t) continuously. It is convenient to define the 
bilinear form λ(t; ·, ·) : X(t) × Y ∗(t) → R by

λ(t;u,v) := ∂

∂t

〈
φX

t u0, (φ
Y−t )

∗v0
〉
X(t),X∗(t)

∣∣∣∣
(u0,v0)=(φX−t u,(φY

t )∗v)

. (3.4)

This leads us to the following generalization of the weak time derivative for functions that take 
values in evolving Banach spaces.

Definition 3.6 (Weak time derivative). We say u ∈ L1
X is weakly differentiable with weak time 

derivative v ∈ L1
Y if

T∫
0

〈u(t), η̇(t)〉X(t),X∗(t) = −
T∫

0

〈v(t), η(t)〉Y(t),Y ∗(t) −
T∫

0

λ(t;u(t), η(t)) ∀η ∈ DY ∗ . (3.5)

In §6.1.1, we will see that this definition recovers the well-established definition of the weak 
material derivative in the Gelfand triple setting where the pivot space is an L2-type space on an 
evolving domain or surface.

We note that this generalises to the fully Banach space case the definition in the work [3]
co-authored by the first and final authors where all spaces were assumed to be Hilbert spaces in 
a Gelfand triple setting.

Remark 3.7.

(i) The first two parts of Assumption 3.5 imply that λ is a Carathéodory function, thus for 
u ∈ L1

X and v ∈ L1
Y ∗ , the superposition map t �→ λ(t; u(t), v(t)) is measurable.

(ii) The expression for λ suggests that our definition could lead to problems in the case Y(t) :=
X(t) with the same maps φY

t ≡ φX
t , in which case λ ≡ 0 and the extra term in the definition 

of a weak time derivative would vanish. But this is indeed the case for smooth functions 
u ∈ C1

X . To wit, omitting the exponent in φt = φX
t , we have, for any η ∈DX∗(0, T ),

T∫
0

〈u̇(t), η(t)〉X(t),X∗(t) =
T∫

0

〈φt (φ−t u(t))′, η(t)〉X(t),X∗(t) = −
T∫

0

〈u(t), η̇(t)〉X(t),X∗(t).
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Hence, our setting includes the case Y(t) ≡ X(t) and the calculation above shows that 
u ∈ L

p
X is weakly differentiable (in the sense of (3.5)) if and only if φX−t u is weakly differ-

entiable in the classical sense, and it holds that u̇ = φX
t (φX−t u)′.

(iii) Note that the above is different to the case where there is a Hilbert triple framework in place 
and the derivative has sufficient smoothness to lie in Lq

X: in such a case, we would still get 
a non-zero λ term! That is,

{u ∈ L
p
X : u̇ ∈ L

q
X}

and

(X(t),H(t),X∗(t)) is a Gelfand triple; {u ∈ L
p
X : u̇ ∈ L

q
X∗ ∩ L

q
X}

are fundamentally different since the derivative ˙(·) in each set is a different operator; in par-
ticular, the second is defined through the pivot space. One should take care to not confuse 
the two.

By a simple application of Lemma 2.8, we can prove the next result.

Proposition 3.8 (Uniqueness of weak derivatives). Suppose u ∈ L1
X has weak time derivatives 

v1, v2 ∈ L1
Y . Then v1 ≡ v2.

Proposition 3.9 (Strong derivatives are also weak derivatives). Let u ∈ C1
X and u̇ ∈ C0

X be its 
strong time derivative. Then u is also weakly differentiable with weak time derivative u̇.

We provide the proof later on page 282 since we will need an additional result to prove it.

Remark 3.10. Proposition 3.9 shows that our notion of a weak derivative is indeed a general-
isation of the strong derivative (3.2). It would perhaps seem more natural to define the weak 
derivative by pulling back to the reference domain with the maps φX−t , differentiating in the usual 
(weak) sense, and pushing forward with φY

t . Even though this is the case when Y(t) ≡ X(t) (as 
per Remark 3.7), this approach does not lead to the same definition as above when the spaces do 
not coincide. On this topic, note further that:

(i) If u ∈ L
p
X is weakly differentiable in the sense we defined above, it is not necessarily the 

case that φX−t u has a weak time derivative (in the usual sense). Conditions under which this 
is true will be explored in §3.6.

(ii) Even if u ∈ L
p
X is such that φX−t u is weakly differentiable, then a simple calculation shows 

that the function φY
t (φX−t u)′ does not satisfy an expression of the form (3.5) unless Y(t) ≡

X(t). Indeed, it is easy to check that

T∫ 〈
φY

t (φX−t u)′, η
〉
Y(t), Y ∗(t)

= −
T∫ 〈

φY
t φX−t u, η̇

〉
Y(t), Y ∗(t)

∀η ∈ DY ∗ .
0 0
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3.2. Transport formula for smooth functions and further remarks

Having defined a notion of weak time derivative, we now demonstrate that a transport formula 
of the form (3.3) holds for sufficiently smooth functions.

Lemma 3.11. Let Assumption 3.5 hold. Given σ1 ∈ C1
X , σ2 ∈ C1

Y ∗ , the map t �→
〈σ1(t), σ2(t)〉X(t),X∗(t) is absolutely continuous and for almost all t ∈ [0, T ],
d

dt
〈σ1(t), σ2(t)〉X(t),X∗(t) = 〈σ̇1(t), σ2(t)〉X(t),X∗(t) + 〈σ1(t), σ̇2(t)〉X(t),X∗(t) + λ(t;σ1(t), σ2(t)).

For the proof, it becomes convenient to introduce the following notation and definitions.

Definition 3.12. For t ∈ [0, T ], we define the following objects:

(i) the evolution of the duality pairing,

π(t; ·, ·) : X0 × Y ∗
0 → R, π(t;u,v):=〈φX

t u, (φY−t )
∗v
〉
Y(t),Y ∗(t)=

〈
φX

t u, (φY−t )
∗v
〉
X(t),X∗(t);

λ̂(t; ·, ·) : X0 × Y ∗
0 → R, λ̂(t;u,v) := ∂

∂t
π(t;u,v).

(ii) the map �t : X0 → Y0 defined by

�tu := φY−t φ
X
t u,

which satisfies 〈
�tu, v

〉
Y0,Y

∗
0

= π(t;u,v).

(iii) the map ̂(t) : X0 → Y ∗∗
0 defined by

〈̂(t)u0, v0〉Y ∗∗
0 ,Y ∗

0
:= λ̂(t;u0, v0).

The fact that π(t; ·, ·) is defined over X0 × Y ∗
0 is motivated by the discussion preceding the 

definition of the weak time derivative above, allowing for the formulation in (3.5) with test func-
tions in DY ∗ . We see that λ, defined in (3.4), is the pushforward of the bilinear form λ̂:

λ(t;u,v) = λ̂(t;φX−t u, (φY
t )∗v).

For convenience, let us write Assumption 3.5 in terms of the notation of π and λ̂.

Remark 3.13. Assumption 3.5 is equivalent to the following:

(i) the map t �→ π(t; u, v) is continuously differentiable for each fixed u ∈ X0, v ∈ Y ∗
0 with 

derivative

λ̂(t; ·, ·) : X0 × Y ∗
0 → R, λ̂(t;u,v) := ∂

π(t;u,v);

∂t
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(ii) for all t ∈ [0, T ], the map (u, v) �→ λ̂(t; u, v) is continuous;
(iii) there exists C > 0 such that, for almost all t ∈ [0, T ] and all u ∈ X0, v ∈ Y ∗

0 ,

|λ̂(t;u,v)| ≤ C ‖u‖X0 ‖v‖Y ∗
0
.

With this, we obtain that ̂ has a dual operator

̂(t)∗ : Y ∗∗∗
0 → X∗

0 .

It is worthwhile noting that for u ∈ Lp(0, T ; X0), the map t �→ �tu(t) is measurable from 
(0, T ) → Y0 since φX

(·)u(·) ∈ L
p
X ⊂ L

p
Y and by definition of compatibility and (2.1), φY

−(·) : L
p
Y →

Lp(0, T ; Y0), ensuring measurability of the composition map.

Remark 3.14 (The Gelfand triple case). Some observations regarding the definition above are 
timely.

(i) Consider Y(t) := X∗(t) with maps φY
t = (φX−t )

∗, and suppose that there exists a family 

of Hilbert spaces H(t) such that X(t) 
d

↪−→ H(t). We suppose H(t) evolves with maps φH
t

satisfying φH
t |X0 = φX

t and that we have a Gelfand triple structure X(t) ↪→ H(t) ↪→ X∗(t). 
In this case, the definition of the operator π above becomes, for u ∈ X0, v ∈ X0,

π(t;u,v) = 〈φX
t u,φX

t v〉X(t),X∗(t) = 〈φH
t u,φH

t v〉X(t),X∗(t) = (φH
t u,φH

t v)H(t),

and this definition can be uniquely extended to H0 × H0 by density of X0 in H0. This also 
shows that the map �t satisfies

�t : X0 → H0 ⊂ X∗
0, �tu = (φH

t )AφX
t u,

where (·)A stands for the Hilbert adjoint. We can extend the latter map to H0 as the operator 
(still labelled �t )

�t : H0 → H0 ⊂ X∗
0, �tu = (φH

t )AφH
t u.

In particular, when X(t) is also a Hilbert space, we recover1 the definitions in [3].
(ii) In the setting above, observe that the definition of the operator π , and consequently of �t

and λ̂, can be expressed involving the flows and inner product solely of the intermediate 
Hilbert space H(t), and as such all of these are independent of the base space X(t) that is 
chosen.

Proof of Lemma 3.11. Let us first show that given σ̂1 ∈ C1([0, T ]; X0) and σ̂2 ∈ C1([0, T ]; Y ∗
0 ), 

the map t �→ π(t; σ̂1(t), σ̂2(t)) is in C1([0, T ]) and that for all t ∈ [0, T ],

1 In [3], the notations Tt and b̂ were used in place of �t and π respectively.
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d

dt
π(t; σ̂1(t), σ̂2(t)) = π(t; σ̂ ′

1(t), σ̂2(t)) + π(t; σ̂1(t), σ̂
′
2(t)) + λ̂(t; σ̂1(t), σ̂2(t)). (3.6)

To see this, start by considering for h > 0 the difference quotient

δhπ(t; σ̂1(t), σ̂2(t)) = π(t + h; σ̂1(t + h), σ̂2(t + h)) − π(t; σ̂1(t + h), σ̂2(t + h))

h

+ π
(
t; δhσ̂1(t), σ̂2(t + h)

)+ π
(
t;σ1(t), δhσ̂2(t)

)
.

The continuity of π with respect to the second and third variables and the regularity of σ̂1, σ̂2
imply that, for all t ∈ [0, T ], the sum of the last two terms on the right-hand side above converges, 
as h → 0, to

π(t; σ̂ ′
1(t), σ̂2(t)) + π(t; σ̂1(t), σ̂

′
2(t)).

We now use Assumption 3.5 (or equivalently, the conditions in Remark 3.13) to establish that for 
almost all t ∈ [0, T ],

π(t + h; σ̂1(t + h), σ̂2(t + h)) − π(t; σ̂1(t + h), σ̂2(t + h))

h

→ ∂π

∂t
(t; σ̂1(t), σ̂2(t)) = λ̂(t;σ1(t), σ2(t)).

Indeed, let us fix t ∈ [0, T ) and h > 0 sufficiently small so that t + h ≤ T . We have, using the 
absolute continuity of s �→ π(s; u, v) for fixed u and v,

π(t + h; σ̂1(t + h), σ̂2(t + h)) − π(t; σ̂1(t + h), σ̂2(t + h))

h
− λ̂(t;σ1(t), σ2(t)) =

= 1

h

t+h∫
t

λ̂(s; σ̂1(t + h), σ̂2(t + h)) ds − λ̂(t; σ̂1(t), σ̂2(t))

= I + II + III,

where we have set

I := 1

h

t+h∫
t

λ̂(s; σ̂1(t + h), σ̂2(t + h)) − λ̂(s; σ̂1(t), σ̂2(t + h)) ds

=
T∫

0

λ̂
(
s; δhσ̂1(t), σ̂2(t + h)

)
χ[t,t+h](s) ds,

II := 1

h

t+h∫
t

λ̂(s; σ̂1(t), σ̂2(t + h)) − λ̂(s; σ̂1(t), σ̂2(t)) ds =
T∫

0

λ̂
(
s; σ̂1(t), δhσ̂2(t)

)
χ[t,t+h](s) ds,
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and

III := 1

h

t+h∫
t

λ̂(s; σ̂1(t), σ̂2(t)) ds − λ̂(t; σ̂1(t), σ̂2(t)).

Now observe that, for sufficiently small h, the integrands in I and II are uniformly bounded and 
converge pointwise to 0, and so the Dominated Convergence Theorem implies that I, II → 0 as 
h → 0. Since for fixed u, v the map s �→ λ̂(s; u, v) is integrable, it follows from Lebesgue’s 
Differentiation Theorem that also III → 0 as h → 0 for all t ∈ [0, T ] proving that t �→
π(t; σ1(t), σ2(t)) has a continuous derivative and is thus C1([0, T ]). We can reason similarly 
for t ∈ (0, T ] and h > 0 with t − h ≥ 0, and this will show (3.6). From here, the claimed state-
ment can be obtained directly by taking σ̂1(t) := φX−t σ1(t) and σ̂2(t) :=

(
φY

t

)∗
σ2(t). �

With this transport formula at hand, we can prove our earlier claim that strong derivatives are 
also weak derivatives.

Proof of Proposition 3.9. We start by observing that u̇ ∈ C0
X ⊂ C0

Y ⊂ L1
Y . Given η ∈ DY ∗ , we 

have

T∫
0

〈u̇(t), η(t)〉Y(t),Y ∗(t)

= −
T∫

0

π(t;φX−t u(t),
(
(φY

t )∗η(t)
)′

) −
T∫

0

λ̂(t;φX−t u(t), (φY
t )∗η(t)) (by Lemma 3.11)

= −
T∫

0

〈u(t), η̇(t)〉X(t),X∗(t) −
T∫

0

λ(t;u(t), η(t)),

which proves the claim. �
3.3. A characterisation of the weak time derivative

We come now to an alternative characterisation of the weak time derivative related to the 
derivative of a duality product, which turns out to be useful in various situations (e.g. in the 
mechanics of applying the Galerkin method for existence of solutions to nonlinear PDEs, see 
§7), cf. [50, Lemma 1.1, §III] for the non-moving case. First, let us introduce some notation. For 
a Banach space Z, we denote by JZ : Z → Z∗∗ the (linear and bounded) canonical injection into 
the double dual:

〈JZu,f 〉Z∗∗,Z∗ := 〈f,u〉Z∗,Z , ∀f ∈ Z∗, u ∈ Z.

In part to avoid working with double and triple duals, it sometimes becomes useful to assume 
that
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̂(t)u ∈ Range(JY0), ∀t ∈ [0, T ], u ∈ X0. (3.7)

Remark 3.15. Regarding the assumption (3.7), note that

• it is automatically satisfied if Y0 is reflexive;
• the meaning of the assumption is that

∀u ∈ X0, ∃y ∈ Y0 : 〈JY0y,f 〉Y ∗∗
0 ,Y ∗

0
= 〈f,y〉Y ∗

0 ,Y0 = 〈̂(t)u,f 〉Y ∗∗
0 ,Y ∗

0
∀f ∈ Y ∗

0 ; (3.8)

• denoting the map u �→ y in (3.8) by y = Lu, we can write

〈f,Lu〉Y ∗
0 ,Y0 = 〈̂(t)u,f 〉Y ∗∗

0 ,Y ∗
0
,

which suggests that ̂(t) can be identified as a map ̂(t) : X0 → Y0 and this is indeed what 
we shall do below whenever the assumption is in force.

Proposition 3.16 (Characterisation of the weak time derivative). Assume (3.7). Let u ∈ L
p
X and 

g ∈ L
q
Y . Then u̇ = g if and only if

d

dt
〈u(t), (φY−t )

∗v〉X(t),X∗(t) = 〈g(t), (φY−t )
∗v〉Y(t),Y ∗(t)+〈(t)u(t), (φY−t )

∗v〉Y(t),Y ∗(t) ∀v ∈ Y ∗
0 .

(3.9)

Proof. Making the substitution η = (φY
−(·))∗v for arbitrary v ∈ Y ∗

0 in (3.9), we find by definition 
of the weak time derivative,

T∫
0

ψ ′(t)〈u(t), η(t)〉X(t),X∗(t)

= −
T∫

0

ψ(t)
(〈g(t), η(t)〉Y(t),Y ∗(t) + 〈(t)u(t), η(t)〉Y(t),Y ∗(t)

) ∀ψ ∈D(0, T ).

Collecting terms, we may write this as

0 =
T∫

0

〈ψ ′(t)φY−t u(t) + ψ(t)φY−t (g(t) + (t)u(t)), v〉Y0,Y
∗
0
.

Bringing the integral inside the first part of the duality pairing above, we get

d

dt
φY−t u(t) = φY−t (g(t) + (t)u(t)).

Now, as φY (g + u) ∈ L1(0, T ; Y0), this is equivalent to
−(·)
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T∫
0

〈φY−t u(t), ξ ′(t)〉Y0,Y
∗
0

= −
T∫

0

〈φY−t (g(t) + (t)u(t)), ξ(t)〉Y0,Y ∗
0

∀ξ ∈ D((0, T );Y ∗
0 ).

Setting ϕ := (φY
−(·))∗ξ ∈ DY ∗ so that ϕ̇ = (φY

−(·))∗ξ ′, we can pushforward the duality products 
above to obtain

T∫
0

〈u(t), ϕ̇(t)〉Y(t),Y ∗(t) = −
T∫

0

〈g(t), ϕ(t)〉Y(t),Y ∗(t) −
T∫

0

λ(t;u(t), ϕ(t)).

This being valid for every ϕ ∈ DY ∗ shows that u̇ = g by definition. The reverse implication 
follows since every step in the above proof is an equivalence. �
3.4. Evolving Sobolev–Bochner spaces

Having defined an appropriate notion of weak time derivative, we consider in this section the 
definition and properties of evolving Sobolev–Bochner spaces, which are the spaces in which 
solutions to parabolic PDEs (on evolving spaces) typically lie in. These can be considered to be 
the time-evolving versions of Wp,q(X, Y) defined as

Wp,q(X0, Y0) = {u ∈ Lp(0, T ;X0) : u′ ∈ Lq(0, T ;Y0)}. (3.10)

To reiterate, we again are enforcing Assumption 3.3.

Definition 3.17 (The space W p,q(X, Y)). For p, q ∈ [1, ∞], define the space

W p,q(X,Y ) := {u ∈ L
p
X | u̇ ∈ L

q
Y

}
with norm ‖u‖W p,q (X,Y ) := ‖u‖L

p
X

+ ‖u̇‖L
q
Y
.

Proposition 3.18. The space W p,q(X, Y) is a Banach space.

Proof. Let {un} be a Cauchy sequence in W p,q(X, Y). It follows that un → u in Lp
X to some u

and u̇n → w in Lq
Y to some w. We have for all η ∈DY ∗ ,

T∫
0

〈u̇n(t), η(t)〉Y(t),Y ∗(t) = −
T∫

0

〈un(t), η̇(t)〉X(t),X∗(t) −
T∫

0

λ(t;un(t), η(t)).

It is immediate to pass to the limit in the first two terms, and for the last one we observe that, 
since λ is bilinear,∣∣∣∣∣∣

T∫
0

λ(t;un(t), η(t)) −
T∫

0

λ(t;u(t), η(t))

∣∣∣∣∣∣≤ C′ ‖η‖L∞
Y∗ ‖un − u‖L1

X
→ 0.

We then have
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T∫
0

〈w(t), η(t)〉Y(t),Y ∗(t) = −
T∫

0

〈u(t), η̇(t)〉X(t),X∗(t) −
T∫

0

λ(t;u(t), η(t)),

which shows, by uniqueness of weak derivatives (Proposition 3.8), that w = u̇. �
In Theorem 2.4, we saw that φ(·) acts as an isomorphism between the spaces Lp(0, T ; X0) and 

L
p
X with an equivalence of norms. A natural question to ask is: under which conditions does φ(·)

act as an isomorphism between W(X0, Y0) and W (X, Y) with an equivalence of norms? This 
question will be addressed in a later section. First, let us formalise this idea and give a simple 
density result under such an equivalence.

Definition 3.19. We say there is an evolving space equivalence between W p,q(X, Y) and 
Wp,q(X0, Y0) if

v ∈W p,q(X,Y ) if and only if φX
−(·)v(·) ∈ Wp,q(X0, Y0),

and the following equivalence of norms holds:

C1

∥∥∥φX
−(·)v(·)

∥∥∥
Wp,q (X0,Y0)

≤ ‖v‖W p,q (X,Y ) ≤ C2

∥∥∥φX
−(·)v(·)

∥∥∥
Wp,q (X0,Y0)

.

We may also say that W p,q(X, Y) has the evolving space equivalence property or that 
W p,q(X, Y) and Wp,q(X0, Y0) are equivalent instead of ‘evolving space equivalence’.

This notion of an evolving space equivalence is important as it ensures that properties of the 
classical spaces Wp,q(X0, Y0) carry over to the time-dependent W p,q(X, Y). As mentioned, we 
investigate when such an equivalence exists in §3.6. For now, we prove the following useful 
lemma, which contains direct generalisations of classical embedding results.

Lemma 3.20. Suppose that there exists an evolving space equivalence between Wp,q(X0, Y0)

and W p,q(X, Y).

(i) The embedding W p,q(X, Y) ↪→ C0
Y is continuous.

(ii) The space C1
X is dense in W p,q(X, Y).

Proof. The statement (i) is a consequence of the following series of implications:

u ∈ W p,q(X,Y ) ⇐⇒ φX
−(·)u(·) ∈Wp,q(X0, Y0) =⇒ φX

−(·)u(·) ∈ C0([0, T ];Y0) ⇐⇒ u ∈ C0
Y .

To prove (ii), let u ∈ W p,q(X, Y), so that v(·) := φX
−(·)u(·) ∈ Wp,q(X0, Y0). Take a sequence 

(vn)n ⊂ C1([0, T ]; X0) such that vn → v in Wp,q(X0, Y0) as n → ∞. Defining un(·) :=
φX

(·)vn(·) ∈ C1
X , we have, due to the evolving space equivalence,

‖un − u‖W p,q (X,Y ) ≤ C ‖φX
−(·)un − φX

−(·)u‖Wp,q (X,Y ) = C ‖vn − v‖Wp,q (X,Y ) → 0

as n → ∞. �
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3.5. Differentiating the duality product: transport theorem

In this section we state and prove a transport theorem for general functions in the abstract 
spaces defined above.

Theorem 3.21 (Transport theorem). Let either

(i) p ∈ [2, ∞], u ∈ W p,p′
(X, Y) and v ∈ W p,p′

(Y ∗, X∗)
or

(i’) p ∈ [1, ∞], u ∈ W p,p(X, Y) and v ∈W p′,p′
(Y ∗, X∗),

and suppose that in either case the spaces involved have the evolving space equivalence property. 
Then the map

t �→ 〈
u(t), v(t)

〉
X(t),X∗(t) (3.11)

is absolutely continuous and we have, for almost all t ∈ [0, T ],

d

dt
〈u(t), v(t)〉X(t),X∗(t) = 〈u̇(t), v(t)

〉
Y(t), Y ∗(t) + 〈u(t), v̇(t)〉X(t),X∗(t) + λ(t;u(t), v(t)).

(3.12)

Proof. Under either of the assumptions it follows that both (3.11) and the right-hand side of 
(3.12) define functions in L1(0, T ). This is clear for case (i’), and in case (i) simply observe that 
p′ ≤ 2 ≤ p, and thus u ∈ L

p
X ⊂ L

p′
X , so (3.11) and the last term in (3.12) are also integrable.

It therefore remains to prove that the right hand side of (3.12) is the weak derivative of (3.11). 
But this follows by density. Indeed, take sequences {un}n ⊂ C1

X , {vn}n ⊂ C1
Y ∗ such that

un → u in W p,p′
(X,Y ) and vn → v in W p,p′

(Y ∗,X∗).

We then have, using Lemma 3.11,

d

dt
〈un(t), vn(t)〉X(t),X∗(t) = 〈u̇n(t), vn(t)〉Y(t),Y ∗(t) + 〈un(t), v̇n(t)〉X(t),X∗(t) + λ(t;un(t), vn(t)).

Writing this in terms of the definition of the weak derivative and then passing to the limit, we 
find that (3.12) holds in the weak sense, giving the conclusion. �
Remark 3.22. Let us motivate the conditions on the exponents in the statement above. Assume 
that u ∈W p1,q1(X, Y) and v ∈ W p2,q2(Y ∗, X∗) and suppose that these spaces have the evolving 
space equivalence property. The displayed equations in Theorem 3.21 above reveal that condi-
tions on the exponents are necessary:

• (3.11) must define an integrable function, but this is the case for any exponents p1, q1, p2, q2, 
due to the extra regularity v ∈ C0

X∗ ;
• the right-hand side of (3.12) must also be integrable:
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– the first and second terms show that we must have Lp2 ⊂ Lq ′
1 and Lp1 ⊂ Lq ′

2 ;
– the last term requires Lp1 ⊂ Lp′

2 .

This shows that the extra term λ(t; u(t), v(t)) — which is not present in the classical setting — 
holds us back from stating a general result for u, v ∈W p,p′

, though in some applications we can 
find a way around this obstacle (as we will see in Sections 4 and 6).

3.6. Criteria for evolving space equivalence

Here, we focus on obtaining conditions that can be checked ensuring an evolving space equiv-
alence (see Definition 3.19) between Wp,q(X0, Y0) and W p,q(X, Y). The main result is the next 
theorem which states the precise conditions required; the reader is also referred to Theorem 4.6
for the statement (and proof) of this theorem applied to the particular case of a Gelfand triple 
(the setting of which results in some simplifications in the conditions that are needed). We recall 
the operators and bilinear forms in Definition 3.12 and we write M(0, T ; Z) to stand for the set 
of Bochner measurable maps f : (0, T ) → Z into a Banach space Z.

Theorem 3.23 (Criteria for evolving space equivalence). Let Assumption 3.5 hold, let p, q ∈
[1, ∞] and suppose that for all t ∈ [0, T ], the range condition (3.7) and the following hold:

�t : X0 → Y0 has a linear extension �t : Y0 → Y0 which is bounded uniformly in t ,

(3.13)

�(·)u ∈ M(0, T ;Y0) for all u ∈ X0, (3.14)

�
−1
t : Y0 → Y0 exists and is uniformly bounded in t, (3.15)

�
−1
(·) v ∈ M(0, T ;Y0) for all v ∈ Y0, (3.16)

(�
†
)−1 : Wp,q(Y ∗

0 , Y ∗
0 ) →Wp,p∧q(Y ∗

0 , Y ∗
0 ) where ((�

†
)−1f )(t) := (�

∗
t )

−1f (t). (3.17)

Then there is an evolving space equivalence between Wp,q(X0, Y0) and W p,q(X, Y).

More precisely,

(i) under (3.13) and (3.14), if u ∈Wp,q(X0, Y0), then φX
(·)u ∈ W p,q(X, Y) and

∂•φX
t u(t) = φY

t �tu
′(t).

(ii) under (3.7) and (3.13)–(3.17), if u ∈ W p,q(X, Y), then φX
−(·)u ∈Wp,q(X0, Y0) and

(
φX−t u(t)

)′ = �
−1
t φY−t u̇(t).

Remark 3.24. Regarding these assumptions, let us make the following observations.

(i) If X0
d

↪−→ Y0, then (3.14) follows immediately from (3.13). Indeed, for any y ∈ Y0, take a 
sequence xn ∈ X0 with xn → y in Y0. As �txn = �txn → �ty in Y0 and the pointwise 
limit of measurable functions is measurable, the claim holds.
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(ii) Assumptions (3.15) and (3.16) imply that (�
†
)−1 : Lp(0, T ; Y ∗

0 ) → Lp(0, T ; Y ∗
0 ) is a 

bounded linear operator for any p.
(iii) Assumption (3.17) is analogous to the assumption on the differentiability of �t (or πt ).
(iv) One should bear in mind that �t has an inverse only on the set �t(X0) (i.e. its range):

X0
φX

t−→ X(t)
φY−t |X(t)−→ φY−t

(
X(t)

)⊂ Y0.

It is not clear that �t(X0) is closed (and hence not necessarily a Hilbert space in its own 
right) so the dual of �−1

t is not well defined in general. This is why we only talk about the 
inverses of � and its dual operator.

The rest of this section is dedicated to proving this result, which will be done in a number of 
steps. We begin with some preliminaries: we have the pointwise dual maps

�∗
t : Y ∗

0 → X∗
0 and �

∗
t : Y ∗

0 → Y ∗
0

and it is not difficult to see that for every f ∈ Y ∗
0 ,

〈�∗
t f, x〉Y ∗

0 ,Y0 = 〈�∗
t f, x〉X∗

0 ,X0 whenever x ∈ X0. (3.18)

Let us construct the Nemytskii operators

(�u)(t) := �tu(t), (�u)(t) = �tu(t), (�†f )(t) = �∗
t f (t), (�

†
f )(t) = �

∗
t f (t).

We have that

� : Lp(0, T ;X0) → Lp(0, T ;Y0), � : Lp(0, T ;Y0) → Lp(0, T ;Y0),

�† : Lp(0, T ;Y ∗
0 ) → Lp(0, T ;X∗

0), �
† : Lp(0, T ;Y ∗

0 ) → Lp(0, T ;Y ∗
0 ),

are all bounded and linear for any p: for the first two maps this follows respectively by definition 
(see §3) and by (3.13) and (3.14),2 and the latter two because the dual of a bounded linear 
operator is also bounded and linear with the same operator norm. Note carefully that �† is in 
general not the same as �∗ (which is defined as the dual of �) since we are not necessarily in 
the reflexive setting (and likewise for �

†
)! See the next remark for more on this.

Remark 3.25.

(i) Regarding � and �, we know that their dual operators satisfy by definition, for any p ∈
[1, ∞],

�∗ : Lp(0, T ;Y0)
∗ → Lp(0, T ;X0)

∗ and �
∗ : Lp(0, T ;Y0)

∗ → Lp(0, T ;Y0)
∗.

2 The measurability of the image of the latter operator follows because �(·)(·) is by assumption a Carathéodory func-
tion.
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If it were the case that we could identify the duals of the above Bochner spaces with the 
expected spaces (which we can do for example in the reflexive setting for appropriate expo-
nents p), then the above can be written as

�∗ : Lp′
(0, T ;Y ∗

0 ) → Lp′
(0, T ;X∗

0) and �
∗ : Lp′

(0, T ;Y ∗
0 ) → Lp′

(0, T ;Y ∗
0 ),

and it is easy to see in this case that

�† ≡ �∗ and �
† ≡ �

∗
.

(ii) Assumptions (3.15) and (3.16) imply that �
†

has an inverse given by

(�
†
)−1 ≡ (�

−1
)† where ((�

−1
)†f )(t) := (�

−1
t )∗f (t) = (�

∗
t )

−1f (t),

and furthermore, both maps

�
−1 : Lp(0, T ;Y0) → Lp(0, T ;Y0) and

(�
†
)−1 ≡ (�

−1
)† : Lp(0, T ;Y ∗

0 ) → Lp(0, T ;Y ∗
0 )

are bounded linear operators.

The next proposition shows that � and �
†

take differentiable functions into differentiable 
functions thanks to the assumptions on the differentiability of π that were made earlier. Even 
though one does not usually distinguish between an element of a Banach space and its action 
as an element of the corresponding double dual space, in the proofs below, to emphasise that 
we do not assume reflexivity of neither X0 nor Y0, we will always write explicitly the canonical 
injections JX0, JY0 , JY ∗

0
.

Proposition 3.26 (Differentiability of �u). Let p, q ∈ [1, ∞] and suppose that (3.13) and (3.14)
hold. If u ∈Wp,q(X0, Y0), then �u satisfies

T∫
0

〈
�tu(t), ϕ′(t)

〉
Y0, Y

∗
0

= −
T∫

0

〈
�tu

′(t), ϕ(t)
〉
Y0, Y

∗
0

+ 〈̂(t)u(t), ϕ(t)〉Y ∗∗
0 , Y ∗

0
∀ϕ ∈D((0, T );Y ∗

0 ).

In particular, if ̂(t)u(t) ∈ Range(JY0), then �u ∈Wp,p∧q(Y0, Y0) with

(�u)′(t) = �tu
′(t) +J −1

Y0
̂(t)u(t). (3.19)

Proof. Let us take ϕ ∈ D((0, T ); Y ∗
0 ) and u ∈ C1([0, T ]; X0) to obtain, by (3.6) in the proof of 

Lemma 3.11,
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T∫
0

〈
ϕ′(t),�tu(t)

〉
Y ∗

0 ,Y0
= −

T∫
0

〈
�tu

′(t), ϕ(t)
〉
Y0,Y

∗
0

+
〈
̂(t)u(t), ϕ(t)

〉
Y ∗∗

0 ,Y ∗
0

.

If ̂u is in the range of JY0 , then we can write the last term above as

T∫
0

〈
J −1

Y0
̂(t)u(t), ϕ(t)

〉
Y0,Y

∗
0

,

proving (3.19) (with the right-hand side belonging to Lp∧q(0, T ; Y0)) for u ∈ C1([0, T ]; X0). 
The conclusion now follows from the density of C1([0, T ]; X0) in W1,1(X0, Y0) and the conti-
nuity of �, � and ̂. �

Note that the assumption that was needed for (3.19) above is exactly (3.7). Now we look for 
a converse of Proposition 3.26. In order to do so, we need a preparatory result in the form of the 
next lemma.

Lemma 3.27 (Differentiability of �
†
v). Let p, q ∈ [1, ∞] and suppose that (3.13) and (3.14)

hold. If v ∈Wp,q(Y ∗
0 , Y ∗

0 ), then �
†
v ∈Wp,p∧q(Y ∗

0 , X∗
0) with

(�
†
v)′(t) = �

∗
t v

′(t) + ̂(t)∗JY ∗
0
v(t).

Proof. We will first prove the intermediary result that �†v ∈Wp,p∧q(X∗
0, X∗

0) with

(�†v)′(t) = (�∗
t v(t))′ = �

∗
t v

′(t) + ̂(t)∗JY ∗
0
v(t) in X∗

0 (3.20)

for v taken as stated in the lemma. Indeed, approximating with v ∈ C1([0, T ]; Y ∗
0 ) and denoting 

a test function by ϕ ∈D((0, T ); X0), we have

T∫
0

〈
�∗

t v(t), ϕ′(t)
〉
X∗

0 ,X0
= −

T∫
0

〈
ϕ(t),�∗

t v
′(t) + ̂(t)∗JY ∗

0
v(t)

〉
X0,X

∗
0

.

Take ϕ(t) = ψ(t)x where ψ ∈D(0, T ) and x ∈ X0; this becomes

T∫
0

ψ ′(t)
〈
�∗

t v(t), x
〉
X∗

0 ,X0
= −

T∫
0

ψ(t)
〈
x,�∗

t v
′(t) + ̂(t)∗JY ∗

0
v(t)

〉
X0,X

∗
0

. (3.21)

Manipulating and pulling the integrals inside the duality pairing, we get

〈 T∫
0

ψ ′(t)�∗
t v(t) + ψ(t)(�∗

t v
′(t) + ̂(t)∗JY ∗

0
v(t)), x

〉
X∗

0 ,X0

= 0.
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Since this is true for every x ∈ X0, this gives, by definition of the weak time derivative,

(�∗
t v(t))′ = �∗

t v
′(t) + ̂(t)∗JY ∗

0
v(t)

and here, using the identity (3.18) relating �
∗
t and �∗

t as well as a density argument for v, we 
deduce that (3.20) is satisfied for each v ∈Wp,q(Y ∗

0 , Y ∗
0 ).

Now, let us conclude. Again with v ∈ C1([0, T ]; Y ∗
0 ) and a test function ϕ ∈ D((0, T ); X0), 

we calculate

T∫
0

〈
�

∗
t v(t), ϕ′(t)

〉
X∗

0 ,X0
= −

T∫
0

〈
ϕ(t),�

∗
t v

′(t) + ̂(t)∗JY ∗
0
v(t)

〉
X0,X

∗
0

,

and from here we follow the same argument elucidated above (beginning with the derivation 
of (3.21)) and this will show that �

†
v ∈ Wp,q(X∗

0, X∗
0). Since we already know that �

†
v ∈

Lp(0, T ; Y ∗
0 ), the claim follows. �

We are now ready to provide a converse to Proposition 3.26.

Proposition 3.28 (“Differentiability of �−1v”). Let p, q ∈ [1, ∞]. Suppose (3.7) and (3.13)–
(3.17) hold. If u ∈ Lp(0, T ; X0) is such that �u ∈Wp,p∧q(Y0, Y0), then u ∈ Wp,q(X0, Y0) with

u′ = �
−1

(�u)′ − �
−1J −1

Y0
̂u.

Proof. Let ϕ ∈D((0, T ); Y ∗
0 ) and define v := (�

†
)−1ϕ. By (3.17), v ∈Wp,p∧q(Y ∗

0 , Y ∗
0 ) and we 

can apply Lemma 3.27 to get (noting that p ∧ (p ∧ q) = p ∧ q)

ϕ′ = �
†
v′ + ̂∗JY ∗

0
v in Lp∧q(X∗

0).

Taking u as stated, noting that

〈u(t), ̂∗(t)JY ∗
0
v(t)〉X0,X

∗
0
= 〈̂(t)u(t), v(t)〉Y0,Y ∗

0

(with the final equality as explained in Remark 3.15), we find

T∫
0

〈u(t), ϕ′(t)〉X0,X
∗
0
= −

T∫
0

〈�−1
t (�tu(t))′, ϕ(t)〉Y0,Y

∗
0

− 〈�−1
t ̂(t)u(t), ϕ(t)〉Y0,Y ∗

0
.

Assumptions (3.15), (3.16) and the assumptions on ̂ imply that

�
−1 (

(�u)′
) ∈ Lq(0, T ;Y0) and �

−1
̂u ∈ Lp(0, T ;Y0)

and thus u ∈Wp,p∧q(X0, Y0) as desired. �
Finally, we are able to prove the main result.
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Proof of Theorem 3.23. Suppose u ∈ Wp,q(X0, Y0), then immediately φX
(·)u(·) ∈ L

p
X , so it re-

mains to prove that this function has a weak time derivative in Lq
Y . Let η ∈DY ∗ , then

T∫
0

〈
φX

t u(t), η̇(t)
〉
X(t),X∗(t) = −

T∫
0

〈
φY

t

(
�tu

′(t)
)
, η(t)

〉
Y(t), Y ∗(t)

−
T∫

0

λ(t;φX
t u(t), η(t)),

from where we conclude that t �→ φX
t u(t) has a weak time derivative as desired.

For the converse direction, we begin by fixing u ∈ W p,q(X, Y). By definition, for any η ∈
DY ∗ ,

T∫
0

〈
u̇(t), η(t)

〉
Y(t),Y ∗(t) = −

T∫
0

〈
u(t), η̇(t)

〉
X(t),X∗(t) −

T∫
0

λ(t;u(t), η(t)),

which we can pull back, arguing as in the previous paragraph and rearrange to obtain

T∫
0

〈
φY−t u̇(t),

(
φY

t

)∗
η(t)

〉
Y0,Y

∗
0

+
〈
̂(t)φX−t u(t),

(
φY

t

)∗
η(t)

〉
Y ∗∗

0 ,Y ∗
0

= −
T∫

0

〈
�t

(
φX−t u(t)

)
,
((

φY
t

)∗
η(t)

)′〉
Y0,Y

∗
0

.

Letting ϕ :=
(
φY

(·)
)∗

η ∈D((0, T ); Y ∗
0 ) and using assumption (3.7), this is equivalent to

T∫
0

〈
φY−t u̇(t) +J −1

Y0
̂(t)φX−t u(t), ϕ(t)

〉
Y0,Y

∗
0

= −
T∫

0

〈
�t

(
φX−t u(t)

)
, ϕ′(t)

〉
Y0,Y

∗
0

,

from where we conclude that(
�tφ

X−t u(t)
)′ = φY−t u̇(t) +J −1

Y0
̂(t)φX−t u(t)

with �φX
−(·)u ∈ Wp,p∧q(X0, Y0). By Proposition 3.28 it now follows that φX

−(·)u ∈ Wp,q(X0, Y0).
The equivalence of norms is a result of the uniform boundedness of the flow maps and their 

inverses, and from the assumptions on ̂ and �. �
4. The Gelfand triple X(t) ⊂ H(t) ⊂ X∗(t) setting

We now specialise the theory and results of §3 to the important case of a Gelfand triple

X(t)
d

↪−→ H(t) ↪→ X∗(t)
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for all t ∈ [0, T ], that is, X(t) is a reflexive Banach space continuously and densely embedded 
into a Hilbert space H(t) which has been identified with its dual via the Riesz map. This setup 
arises frequently in the study of evolutionary variational problems and several concrete examples 
will be given in §6 and §7.

In the context of §3, we are taking Y(t) := X∗(t) with the inclusion of X(t) into Y(t) given 
through compositions of the maps involved in the Gelfand triple. Naturally, we wish to make 
use of the theory developed in the previous sections and the basic assumptions that one needs 
(namely, Assumption 3.5) translated into this Gelfand triple framework are as follows.

Assumption 4.1. For all t ∈ [0, T ], assume the existence of maps

φH
t : H0 → H(t), φX

t := φH
t |X0 : X0 → X(t)

such that

(H(t),φH
t )t∈[0,T ] and (X(t),φX

t )t∈[0,T ] are compatible pairs.

We assume the measurability condition (2.2), i.e.,

t �→ ∥∥φ∗−t f
∥∥

X∗(t) is measurable for all f ∈ X∗
0 .

Furthermore, suppose that

(i) for fixed u ∈ H0,

t �→ ‖φH
t u‖2

H(t) is continuously differentiable;

(ii) for fixed t ∈ [0, T ],

(u, v) �→ ∂

∂t
(φH

t u,φH
t v)H(t) is continuous,

and there exists C > 0 such that, for almost all t ∈ [0, T ] and for any u, v ∈ H0,∣∣∣∣ ∂

∂t
(φH

t u,φH
t v)H(t)

∣∣∣∣≤ C‖u‖H0‖v‖H0 . (4.1)

It follows that

(X∗(t), (φX−t )
∗)t∈[0,T ] is a compatible pair.

Under the final assumption above, the map ̂(t) : X0 → X∗
0 , defined in Definition 3.12, is in fact 

such that ̂(t) : H0 → H ∗
0 is bounded and linear with

〈̂(t)u, v〉H ∗,H = λ̂(t;u,v) ∀u,v ∈ H0.
0 0
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Remark 4.2. Parts (i) and (ii) of Assumption 4.1 say that, with3

�t = (φH
t )AφH

t , π(t;u,v) = (φH
t u,φH

t v)H(t), (4.2)

the map (u, v) �→ λ̂(t; u, v) = ∂π(t; u, v)/∂t is continuous and there exists C > 0 such that, for 
almost all t ∈ [0, T ] and for any u, v ∈ H0,

|λ̂(t;u,v)| ≤ C‖u‖H0‖v‖H0 .

Taking into view the Hilbert structure, the definition of the weak time derivative in (3.5)
becomes the following.

Definition 4.3 (Weak time derivative). We say u ∈ L1
X has a weak time derivative v ∈ L1

X∗ if

T∫
0

(u(t), η̇(t))H(t) = −
T∫

0

〈v(t), η(t)〉X∗(t),X(t) −
T∫

0

λ(t;u(t), η(t)) ∀η ∈DX.

It is convenient to state Proposition 3.16 applied to this setting.

Proposition 4.4 (Characterisation of the weak time derivative). Assume 3.7. Let u ∈ L
p
X and 

g ∈ L
q
X∗ . Then u̇ = g if and only if

d

dt
(u(t), φH

t v)H(t) = 〈g(t),φX
t v〉X∗(t),X(t) + λ(t;u(t),φH

t v) ∀v ∈ X0.

4.1. Differentiating the inner product: transport theorem

We now specialise Theorem 3.21 to this setting. We first obtain the extra regularity 
W (X, X∗) ↪→ C0

H as a consequence of the evolving space equivalence property, and then use it 
to obtain a general statement.

Theorem 4.5 (Transport theorem in the Gelfand triple setting). Let p ∈ [1, ∞] and suppose that 
there exists an evolving space equivalence between Wp,p′

(X0, X∗
0) and W p,p′

(X, X∗). Then

(i) the embedding W p,p′
(X, X∗) ↪→ C0

H is continuous;

(ii) given u, v ∈W p,p′
(X, X∗), the map

t �→ (u(t), v(t))H(t) (4.3)

is absolutely continuous and we have, for almost all t ∈ [0, T ],
d

dt
(u(t), v(t))H(t) = 〈u̇(t), v(t)

〉
X∗(t),X(t)

+ 〈u(t), v̇(t)〉X(t),X∗(t) + λ(t;u(t), v(t)). (4.4)

3 See Remark 3.14 (i).
294



A. Alphonse, D. Caetano, A. Djurdjevac et al. Journal of Differential Equations 353 (2023) 268–338
Proof. The proof of (i) follows from

u ∈W p,p′
(X,X∗) ⇐⇒ φX

−(·)u ∈Wp,p′
(X0,X

∗
0) =⇒ φX

−(·)u ∈ C ([0, T ];H0) ⇐⇒ u ∈ C0
H ,

where we have used the assumption and the fact that φH
t |X0 = φX

t . We now turn to the proof of 
(ii). The fact that (4.3) is an element of L1(0, T ) and that (4.4) is the weak time derivative of 
(4.3) follows as in the proof of Theorem 3.21, so it suffices now to check that the right-hand side 
of (4.4) is also in L1(0, T ). Due to (i) and the stronger assumption (4.1) we may conclude with

T∫
0

|λ(t;u(t), v(t))| dt ≤ C

T∫
0

‖u(t)‖H(t)‖v(t)‖H(t) dt ≤ C T ‖u‖C0
H
‖v‖C0

H
. �

Let us now study criteria for the spaces W (X, X∗) and W(X0, Y0) to be equivalent like in 
§3.6.

4.2. Criteria for evolving space equivalence

The evolving space equivalence criteria of Theorem 3.23 tailored to the situation under con-
sideration are as follows. It is worth pointing out that these conditions are considerably easier to 
check in practice than the ones given in [3, Theorem 2.33].

Theorem 4.6 (Criteria for evolving space equivalence in the Gelfand triple setting). Let Assump-
tion 4.1 hold. If for all t ∈ [0, T ],

�t : X0 → X0 is bounded uniformly in t, (4.5)

�−1
t : X0 → X0 exists and is bounded uniformly in t, (4.6)

�−1
(·) u ∈M(0, T ;X0) for all u ∈ X0, (4.7)

�−1 : Wp,q(X0,X0) →Wp,p∧q(X0,X0), (4.8)

then W p,q(X, X∗) and Wp,q(X0, X∗
0) are equivalent.

More precisely, with �t as in (4.11),

(i) under (4.5), if u ∈Wp,q(X0, X∗
0), then φX

(·)u ∈ W p,q(X, X∗) and

∂•φX
t u(t) = (φX−t )

∗�tu
′(t). (4.9)

(ii) under (4.5)–(4.8), if u ∈ W p,q(X, X∗), then φX
−(·)u ∈ Wp,q(X0, X∗

0) and

(
φX−t u(t)

)′ = �
−1
t (φX

t )∗u̇(t). (4.10)

Proof. The idea is to verify the assumptions of Theorem 3.23. Since we are in the reflexive 
setting, assumption (3.7) is automatic and Remark 3.25 applies and we do not need to distinguish 
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between �† and �∗. Assumption (4.5) implies that the existence of the dual �#
t : X∗

0 → X∗
0 to 

�t considered as an operator �t : X0 → X0 which is defined (as usual) by

〈�#
t f, x〉X∗

0 ,X0 := 〈f,�tx〉X∗
0 ,X0 ∀f ∈ X∗

0, x ∈ X0.

Now, if f ∈ X0, the right-hand side equals (f, �tx)H0 . On the other hand, because (4.5) is in 
force, by the self-adjoint property of �t : X0 → X∗

0 ,

〈�tf,x〉X∗
0 ,X0 = (f,�tx)H0 ∀f,x ∈ X0.

This shows that �#
t |X0 ≡ �t and hence we may take as an extension (of �t )

�t := �#
t . (4.11)

Observe that �t : X∗
0 → X∗

0 is bounded uniformly in t because �t : X0 → X0 is bounded uni-
formly by assumption and taking the dual preserves norms. This gives (3.13). The measurability 
assumption (3.14) follows by Remark 3.24.

Let us now see that the inverse of �t exists and that (3.15) is verified. Thanks to (4.6), we may 
define (�−1

t )# : X∗
0 → X∗

0 as the dual of �−1
t : X0 → X0. We also see that, arguing as above,

(�−1
t )#|X0 = (�−1

t )∗ = �−1
t ,

i.e., (�−1
t )# extends �−1

t . We claim that (�−1
t )# is indeed the inverse of �t . To see this, take 

y ∈ X∗
0 and a sequence xn ∈ X0 with xn → y in X∗

0 . It follows that

(�−1
t )#�txn = �−1

t �txn = xn → y

but by continuity, the left-hand side converges to (�−1
t )#�ty, and hence we have shown that 

(�−1
t )# = (�t )

−1 (in the sense of the left inverse; the right inverse follows by the same ar-
gument). The remaining claims in assumption (3.15) follow by the same reasoning as above. 
Assumption (3.16) on the measurability is implied by (4.7) and (again) a density argument just 
as in Remark 3.24.

By reflexivity, it follows that �
∗
t ≡ �t and hence (�

∗
t )

−1 = �−1
t , so that (4.8) directly gives 

(3.17). The conclusion now follows from Theorem 3.23. �
Remark 4.7. It is important to emphasise that �t := �#

t defined in the proof above is, in general, 
different to �∗

t , the dual of �t : X0 → X∗
0 .

Remark 4.8. The result above, and the more general Theorem 3.23, are a generalisation of the 
results previously obtained by the first and last authors in [3, Theorem 2.33]. Indeed, the as-
sumptions in Theorems 3.23 and 4.6 imply the assumption in [3, Theorem 2.33] that �t maps 
functions in W(X0, X∗

0) to the same space, and are more detailed than those in [3, Theorem 
2.33] making them easier to verify. With regards to the operators Ŝ(t), D̂(t) appearing in [3], an 
analysis of our proof shows that we have Ŝ(t) = �t and D̂(t) ≡ 0, and thus the assumptions in 
[3, Theorem 2.33] on those operators are in fact guaranteed by those on �t in our result.
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4.3. Alternative criteria for the assumption (4.8)

For some applications, it may turn out that (4.8) (or (3.17)) is too cumbersome or inconvenient 
to verify in practice (as will be the case in one of the examples we consider below), so we would 
like to have alternative criteria to replace it. This is what we focus on now. Defining the Hilbert 
adjoint ξt := (φH−t )

A, it follows that the pair (H(t), ξt )t∈[0,T ] is compatible if

H0 is separable or t �→
∥∥∥(φH−t )

Au

∥∥∥
H(t)

is measurable for u ∈ H0. (4.12)

Lemma 4.9. Under (4.5), (4.6), (4.7), (4.12) and if for all t ∈ [0, T ],

Assumption 3.5 holds for the maps ξt , (4.13)

̂ξ (t) : X0 → X∗
0 satisfies ̂ξ (t)(X0) ⊂ X0, (4.14)

(�−1
t )∗ : X0 → X0 exists and is bounded uniformly in t, (4.15)

then assumption (4.8) holds.

Proof. These assumptions allow us to apply the theory developed in this section now with the 
maps ξt . The proof of Theorem 4.6 above shows that �t := �#

t : X∗
0 → X∗

0 is an extension of 

�t to X∗
0 . Likewise, the map �ξ = ξA

t ξt = �−1
t : X0 → X0 has an extension �

ξ

t = (�−1
t )∗ to 

X∗
0 , which by (4.15) satisfies (3.13), (3.14). We can, using (4.14), thus apply Proposition 3.26

to �ξ = �−1 (with the X0 and Y0 in the statement of the proposition chosen to be X0), which 
implies (4.8) with

(�−1
t u(t))′ = (�−1

t )∗u′(t) + ̂ξ (t)u(t) ∀u ∈Wp,q(X0,X0). �
Remark 4.10. Note that the map (�−1

t )∗ : X∗
0 → X∗

0 relates to �#
t via (�−1

t )∗ = (�#
t )

−1.

4.4. Evolving space equivalence for the space W (X, H)

It can sometimes be the case that solutions to PDEs have the time derivative belonging not just 
to Lq

X∗ but the more regular space Lq
H . In this case, we say that solutions belong to W (X, H)

and it can be useful to know under which circumstances this space is equivalent to W(X0, H0).

Theorem 4.11 (Criteria for regularity of evolving space equivalence in the Gelfand triple set-
ting). Let the assumptions of Theorem 4.6 hold. Then W p,q(X, H) and Wp,q(X0, H0) are 
equivalent.

Proof. We first need some basic properties of the various adjoint and dual maps. An easy calcu-
lation shows that (φX

t )∗|X(t) ≡ (φH
t )A : X(t) → H0 and hence, by density of X(t) ⊂ H(t),

(φX
t )∗|H(t) ≡ (φH

t )A. (4.16)

By the same reasoning,
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(φX−t )
∗|H0 ≡ (φH−t )

A. (4.17)

Now, from the formula (4.9), for u ∈ Wp,q(X0, H0) ⊂ Wp,q(X0, X∗
0), we have ∂•φX

t u(t) =
(φX−t )

∗�tu
′(t). Since �t = �t on X0 and the right-hand side is well defined and bounded from 

H0 into H0 (see (4.2)), we have �t |H0 = �t too. Thanks to this and utilising the additional 
regularity that u′ ∈ Lq(0, T ; H0), we get

∂•φX
t u(t) = (φX−t )

∗�tu
′(t) = (φX−t )

∗(φH
t )AφH

t u′(t) = φH
t u′(t)

where for the last equality we used (4.17).
In the other direction, taking u ∈W p,q(X, H), now the formula (4.10) gives4

(φX−t u(t))′ = �
−1
t (φX

t )∗u̇(t) = �
−1
t (φH

t )Au̇(t) = �−1
t (φH

t )Au̇(t) = ((φH
t )AφH

t )−1(φH
t )Au̇(t)

= φH
t u̇(t)

where we made use of (4.16) and the fact that �
−1
t can be defined on H0 (just as we argued 

above). �
The proof reveals that a function u ∈W (X, H) has a weak time derivative given by

u̇(t) = φH−t (φ
X−t u(t))′

which is a natural generalisation of the formula for the strong time derivative.

5. The Aubin–Lions lemma in evolving spaces

Our aim is to generalise the following result (see e.g. [46, Lemma 7.7]).

Aubin–Lions lemma. Let X, Y and Z be Banach spaces such that X is separable and reflexive. 

Suppose X
c

↪−→ Z is compact and Z ↪→ Y is injective. Then Wp,q(X, Y) 
c

↪−→ Lp(0, T ; Z) is also 
compact for any 1 < p < ∞ and 1 ≤ q ≤ ∞

The Aubin–Lions lemma provides a compactness result which is often used in the study of 
nonlinear evolutionary equations. The first result on the compact embedding of spaces of Banach-
valued functions was shown by Aubin [6], then it was extended by Dubinskiĭ [7,22] and improved 
by Simon in [48]. For more details, see [15].

In recent years, motivated by applications in biology [28] and fluid dynamics [14], the topic of 
extending the previous results to the case when the target set is a family of time-evolving spaces 
has become very popular. We refer the interested reader to [34] for the discussion about the origin 
of time-varying problems and its applications. Among first tasks in this direction is to define a 
weak time derivative in the moving setting and to consider the corresponding Sobolev–Bochner 
spaces. This has been done for example in [29] where the authors construct a generalisation of 
an Lp direct integral. One of the first proofs of a compactness lemma in the case of a moving 

4 Let us note that t �→ (φH
t )Aw(t) is measurable for every w ∈ L

p
H

from (0, T ) to H0 since (φH
t )Aw(t) = �tφ

H−tw(t)

is measurable as remarked in §3.
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domain is considered for the treatment of incompressible Navier–Stokes equations in moving 
domains and is presented in [31]. For similar results, see [9,35,41]. We now state and prove our 
Aubin–Lions-type compactness based on the spaces that we have introduced. We work under the 
following assumption:

Assumption 5.1. In addition to the compatible pairs(
X(t),φX

t : X0 → X(t)
)
t∈[0,T ] and

(
Y(t),φY

t : Y0 → Y(t)
)
t∈[0,T ],

with X(t) ⊂ Y(t) (just as in §2), we assume the existence of an additional family of Banach 
spaces ({Z(t)}t∈[0,T ],

(
φZ

t : Z0 → Z(t)
)
t∈[0,T ]

)
such that (Z(t), φZ

t )t∈[0,T ] is compatible and X0
c

↪→ Z0 ↪→ Y0. We also assume

φZ
t |X0 = φX

t .

Theorem 5.2 (Aubin–Lions lemma). Under Assumption 5.1, suppose that Wp,q(X0, Y0) and 
W p,q(X, Y) are equivalent in the sense of Definition 3.19. For any p ∈ (1, ∞) and q ∈ [1, ∞], 
the embedding

W p,q(X,Y )
c

↪−→ L
p
Z

is compact.

Proof. Suppose (un)n is a bounded sequence in W p,q(X, Y), then by the equivalence of spaces 
(φX

−(·)un(·))n is bounded in Wp,q(X0, Y0). By the classical Aubin–Lions lemma, it has a conver-

gent subsequence in Lp(0, T ; Z0), say (φ−(·)unk
(·))k . Using the uniform boundedness of φZ

(·), 
(φZ

(·)φ
X
−(·)unk

)k = (unk
)k also converges in Lp

Z , proving the result. �
Remark 5.3. As shown above, assuming the evolving space equivalence property makes the 
proof of the Aubin–Lions lemma straightforward. It is not the aim of this section to obtain the 
most general statement but rather to prove that, within the setting of an evolving space equiva-
lence, the classical results on fixed domains carry over to the time-dependent framework. It is 
worthwhile mentioning that compactness results in the spirit of the Aubin–Lions lemma have 
been obtained in certain evolving space applications, with assumptions weaker than the ones we 
present above. See for instance [42, Theorem 3.1].

Part 2. Applications

6. Examples of function spaces on evolving domains and surfaces

In the following examples we consider spaces of Lebesgue integrable or Sobolev functions 
over evolving domains and surfaces. We will prove that the theory of this paper can be applied to 
these cases, which should be useful when studying a wide variety of evolutionary problems on 
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moving domains and surfaces. In particular, we will show that evolving space equivalences hold, 
which can be rather non-trivial.

Evolving domains and surfaces Let us begin with the basic assumptions and notations that we 
need in order to describe evolving domains and surfaces. In what follows, T ∈ (0, ∞) is a fixed 
positive real number.

Assumption 6.1. We assume the following.

(i) Let

M0 be a bounded C2 domain �0 ⊂ Rn or a C2 n-dimensional hypersurface �0 ⊂ Rn+1,

with �0 connected and �0 closed (i.e., compact and without boundary) and connected.
(ii) Define

d =
{

n if M0 = �0

n + 1 if M0 = �0
. (6.1)

Let

w : [0, T ] ×Rd → Rd ∈ C0([0, T ],C2(Rd ,Rd))

be a given vector field that we interpret to be a velocity field. We define a flow map

�0
(·) : [0, T ] ×Rd →Rd

via the ODE

d

dt
�0

t (p) = w(t,�0
t (p)), p ∈M0,

�0
0 = Id on M0.

(iii) Denoting M(t) := �0
t (M0),

(iii.a) �0
t : M0 → M(t) is a C2-diffeomorphism satisfying �0

t (M0) = M(t) and
�0

t (∂M0) = ∂M(t);
(iii.b) �0

t |M0 : M0 → M(t) and �0
t |∂M0 : ∂M0 → ∂M(t) are also C2-diffeomorphisms.

We refer to the family {M(t)}t∈[0,T ] as an evolving domain/surface. It follows from the as-
sumption above that �0

(·) ∈ C1([0, T ], C2(Rd , Rd)). Furthermore we denote

�t := (�0
t )

−1.
0

300



A. Alphonse, D. Caetano, A. Djurdjevac et al. Journal of Differential Equations 353 (2023) 268–338
Remark 6.2. The regularity required in the assumption above is sufficient for the applications 
we have in mind, including cell biology or biomembranes, see e.g. [5,52], where one is led to 
consider PDEs on smooth surfaces. It would be natural to contemplate a more general framework 
in which the underlying domain is less regular or in which the transformations between the 
domains do not preserve the initial smoothness. This would be interesting from the point of view 
of applications, allowing for a treatment of more complex structures, as well as from the analysis 
side by including more ambitious systems arising from free boundary problems. We leave these 
considerations for future work.

In the next sections, we study the following cases involving Gelfand triples:

(i) H(t) = L2(M(t)) with X(t) = W 1,r (M(t)),
(ii) H(t) = H 1(M(t)) with X(t) = W 2,r (M(t)),

(iii) H(t) = H−1(�(t)) with X(t) = Lp(�(t)) ∩ H−1(�(t)),

and the non-Gelfand triple examples

(iv) X(t) = Wk,r (�(t)) with Y(t) = L1(�(t)) (for k = 0, 1),
(v) X(t) = W

2,r
0 (�(t)) with Y(t) = W

1,1
0 (�(t)).

We stress that these spaces are independent of the flow map �t
0. Before we proceed, we need to 

introduce some more concepts and properties.

Pushforward and pullback maps For functions u : M0 → R, we define the pushforward map 
φt by

φtu := u ◦ �t
0. (6.2)

Its inverse φ−t v = v ◦ �0
t acting on functions v : M(t) → R is called the pullback map.

Differential operators and integration by parts The notation g(t) will be used to refer to the 
Riemannian metric tensor associated to M(t) and ∇g(t) will stand for the usual gradient when 
M(t) = �(t) and the surface gradient (or tangential gradient) when M(t) = �(t); the latter 
can be seen as the projection of the gradient (of a suitable extension) of the function onto the 
tangent space. We write D�0

t for the Jacobian matrix of partial derivatives of �0
t (which, in case 

M(t) = �(t), refers to the tangential partial derivatives with respect to the ambient space). Note 
that, in either case, this denotes an (n + 1) × (n + 1) matrix.

The integration by parts formula on surfaces [24, Theorem 2.10] for sufficiently smooth func-
tions is ∫

�(t)

u∂iv = −
∫

�(t)

v∂iu +
∫

�(t)

uvh�(t)νi(t),

where ∂i refers to the ith component of ∇g(t), ν(t) is the unit normal vector on �(t), and h�(t)

is the mean curvature of �(t) defined as the sum of the principal curvatures.
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Defining the determinant of the Jacobian matrix

J 0
t := |detD�0

t |,

from continuity and J 0
0 = 1 we have its uniform boundedness: there exists a constant CJ > 0

such that

0 < C−1
J ≤ J 0

t ≤ CJ ∀t ∈ [0, T ].

Moreover, from the regularity assumptions on the velocity field, it follows J 0
(·) ∈ C1([0, T ] ×

M0) and

d

dt
J 0

t = φ−t (∇g(t) · w(t))J 0
t . (6.3)

We also sometimes use the following transport formula (see [24, Equation (5.8)] in the case of 
an evolving surface):

d

dt

∫
M(t)

∇g(t)u · ∇g(t)v =
∫

M(t)

∇g(t)u̇ · ∇g(t)v + ∇g(t)u · ∇g(t)v̇ + ∇g(t)u
ᵀH(t)∇g(t)v,

(6.4)

where the notation (·)ᵀ means the transpose of the matrix and we defined the deformation tensor

H := (∇g · w)Id − (Dgw + (Dgw)
ᵀ)

.

We refer the reader to [4,23,24] and citations therein for full details on (evolving) hypersurfaces 
and their definitions in this context.

For later use it is convenient to introduce the following positive-definite (with a constant that 
is uniform in time) matrix and its determinant

A0
t :=

{
(D�0

t )
ᵀD�0

t if M(t) = �(t),

(Dg0�
0
t )

ᵀDg0�
0
t + ν0 ⊗ ν0 if M(t) = �(t),

a0
t := det A0

t .

When M(t) = �(t), we have that (see Proposition 4.1 of [16])

(A0
t )

−1 = φ−t ((Dg(t)�
t
0)(Dg(t)�

t
0)

ᵀ
) + ν0 ⊗ ν0.

Transformation of differential operators We record the following expressions (see [49, Propo-
sition 2.29, Lemma 2.30, Lemma 2.62, Equation (2.91), p. 64] for the flat case, and [16, Section 
3] for surfaces):

J t
0 = φt ((J

0
t )−1),

and, given sufficiently smooth functions u : M(t) → R and v : M0 → R, we have:
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(i) for the gradient operator, via the chain rule for tangential gradients,

∇g0 (φ−t u) = (Dg0�
0
t )

ᵀ
φ−t

(∇g(t)u
)
,

and to invert the formula in the case of a surface we need again to add the term corresponding 
to the normal component, yielding

φ−t

(∇g(t)u
)= Dg0�

0
t (A

0
t )

−1∇g0 (φ−t u) , (6.5)

(ii) for the Laplace–Beltrami operator,

φ−t (�g(t)u) = 1√
a0
t

∇g0 ·
(√

a0
t (A

0
t )

−1∇g0φ−t u

)
, (6.6)

φt (�g0v) = 1√
at

0

∇g(t) ·
(√

at
0(A

t
0)

−1∇g(t)φtv

)
. (6.7)

In the next two sections we explore some particular examples.

6.1. Gelfand triple examples

In the following, we omit the calculations and proofs of the evolving space equivalence prop-
erty and refer to §6.3 for these details.

6.1.1. L2(M(t)) pivot space
In this subsection we present the most commonly occurring case where the pivot space is an 

L2 space, namely

H(t) := L2(M(t)).

This example was already analysed (for M(t) = �(t) and various X(t)) in [4] but due to its im-
portance and universal role in many applications, we will treat it afresh here for the convenience 
of the reader and for completeness.

Let r ≥ 2 and define X(t) := W 1,r (M(t)) and Y(t) := X∗(t) = W 1,r (M(t))∗; for X(t), we 
take the usual norm

‖u‖W 1,r (M(t)) :=
⎛⎜⎝ ∫
M(t)

|u|r + |∇g(t)u|r
⎞⎟⎠

1/r

.

Hence, we have the Gelfand triple structure

W 1,r (M(t)) ⊂ L2(M(t)) ⊂ W 1,r (M(t))∗.

We denote by φt the pushforward map defined above in (6.2). It is an easy calculation to verify 
that, under Assumption 6.1, the pairs (L2, φt )t∈[0,T ] and (W 1,r , φt )t∈[0,T ] are compatible. By 
using the transport formula, we can establish:
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Lemma 6.3. Under Assumption 6.1, we have

λ(t;u,v) =
∫

M(t)

uv∇g(t) · w(t).

This leads to the definition:

Definition 6.4 (L2(M) weak time derivative). A function u ∈ L2
X has a weak time derivative 

u̇ ∈ L2
X∗ if and only if

T∫
0

〈u̇(t), η(t)〉X∗t),X(t) = −
T∫

0

∫
M(t)

u(t)η̇(t) −
T∫

0

∫
M(t)

u(t)η(t)∇g(t) · w(t) ∀η ∈DX.

We can then prove:

Proposition 6.5. Under Assumption 6.1, given r ≥ 2 and for any p, q ∈ [1, ∞], there ex-
ists an evolving space equivalence between the spaces Wp,q(W 1,r (M0), W 1,r (M0)

∗) and 
W p,q(W 1,r , (W 1,r )∗).

Applications There are numerous examples of PDEs on evolving domains or surfaces with L2

as the pivot space. Some equations are analysed in [1,4,5], and here we mention a few of them.

(1) The archetypal equation (on a surface) is the surface advection-diffusion equation

u̇ − �gu + u∇g · w = 0 on �(t),

u(0) = u0 on �0,

where u0 ∈ L2(�0). In this case, X(t) = H 1(�(t)) and the evolving space equivalence and well 
posedness are proved in [4].

(2) Similar results can be derived for systems of equations with bulk-surface interactions. 
Here we mention the coupled bulk-surface system that was studied in [4], in which case both 
�(t), �(t) ⊂ Rn+1 and we have �(t) = ∂�(t):

u̇ − ��u + u∇� · w = f on �(t),

u̇ − ��v + v∇� · w + ∇�u · ν = g on �(t),

∇�u · ν = βv − αu on �(t),

u(0) = u0 on �0,

v(0) = v0 on �0,

where u0 ∈ H 1(�0), v0 ∈ H 1(�0), α, β > 0 are given constants. Setting X(t) = H 1(�(t)) ×
H 1(�(t)) and H(t) = L2(�(t)) × L2(�(t)), one can show existence for the system (see [4, 
§5.3]). The analysis and properties of a more complicated and nonlinear coupled bulk-surface 
system can be found in [5].
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(3) Moreover in [4, §5.4.1] the authors considered the fractional Sobolev space X(t) =
H 1/2(�(t)) and proved that W (X, X∗) and W(X0, X∗

0) are equivalent — a fact which was used 
to aid with the study of the fractional porous medium equation

u̇ + (−�g)
1/2(um) + u∇g · w = 0 on �(t),

u(0) = u0 on �0,

in [2]. Here, m ≥ 1, u0 ∈ L∞(�0), um := |u|m−1u and (−�g(t))
1/2 is a square root of the 

Laplace–Beltrami operator on �(t).

(4) Another example is the Cahn–Hilliard system on an evolving surface {�(t)}t∈[0,T ]

u̇ + u∇� · w = �gμ in �(t),

−�gu + W ′(u) = μ in �(t),

u(0) = u0,

where W is a given potential. This is analysed in [26] with W(r) = (r2 −1)2/4, where the authors 
obtain, for u0 ∈ H 2(�0), u ∈ W∞,2(H 1, L2). This has been generalised in [13] by the second 
and last authors for a wider class of potentials and u0 ∈ H 1(�0), where conditions are obtained 
so that the solution u ∈W∞,2(H 1, H−1) and μ ∈ L2

H 1 .

6.1.2. H 1(M(t)) pivot space
Beside the standard choice of L2 as pivot space, another possibility for a pivot space is H 1. A 

typical example is the bi-Laplace (also called biharmonic) equation which involves a fourth order 
elliptic operator and is important in applied mechanics, in particular in the theory of elasticity. 
The equation is analysed for example in [37, §3, 4.7.5, Example 5].

Let H(t) = H 1(M(t)) with φt : H0 → H(t) as in (6.2). In this example we work with

X(t) = W 2,r (M(t)) for r ≥ 2.

We start by verifying that φt takes X0 into X(t). We require more regularity for w and �, namely

w ∈ C0
(
[0, T ];C3(Rd ,Rd)

)
and �

(·)
0 ∈ C1

(
[0, T ];C3(Rd,Rd)

)
, (6.8)

where d is as in (6.1). As before, under Assumption 6.1 and the extra regularity (6.8), it is easy 
to show that the pairs (H 1, φt )t∈[0,T ] and (W 2,r , φt )t∈[0,T ] are compatible. Again by using the 
differentiation formulas we can prove:

Lemma 6.6. For u, v ∈ H(t),

λ(t;u,v) =
∫

uv∇g · w(t) + ∇gu
ᵀH(t)∇gv.
M(t)
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Definition 6.7 (H 1(M) weak time derivative). A function u ∈ L
p
X has a weak time derivative 

u̇ ∈ L
q
X∗ if and only if

T∫
0

〈u̇(t), η(t)〉X∗(t),X(t) = −
T∫

0

∫
M(t)

u(t)η̇(t) −
T∫

0

∫
M(t)

u(t)η(t)∇g · w(t) + ∇gu(t)
ᵀH(t)∇gη(t)

for all η ∈DX .

Also in this case we establish the evolving space equivalence property:

Proposition 6.8. Under Assumption 6.1 and (6.8), for any p, q ∈ [1, ∞], there exists an evolving 
space equivalence between the spaces Wp,q(W 2,r (M0), W 2,r (M0)

∗) and W p,q(W 2,r , (W 2,r )∗).

Application We explore an example which motivates the choice of H 1
0 as a pivot space. We 

present it in the fixed domain setting for simplicity, but it can be easily generalised to an evolving 
domain or hypersurface. Let � ⊂Rn be a sufficiently regular bounded domain. We consider the 
bi-Laplace equation

∂u

∂t
+ �2u = f in � × (0, T ), (6.9)

u = ∂�u

∂ν
= 0 on ∂� × (0, T ),

u(x,0) = u0 in �.

Let H := H 1
0 (�) with the standard scalar product (u, v)H := ∫

�
∇u ·∇v and define the subspace

V :=
{
v ∈ H : ∂

∂xi

�v ∈ L2(�), i = 1, . . . , n

}
, ‖v‖2

V := ‖v‖2
H +

n∑
i=1

∥∥∥∥ ∂

∂xi

�v

∥∥∥∥2

L2(�)

.

The duality pairing between V ∗ and V is defined by

〈g, v〉V ∗,V := 〈g,−�v〉H−1(�),H 1
0 (�). (6.10)

We select u0 ∈ H and f ∈ L2(0, T ; V ∗). Taking v ∈ V , we can formally multiply (6.9) by −�v, 
integrate by parts and use (6.10) to obtain

〈u′(t), v〉V ∗,V +
∫
�

∇(�u(t)) · ∇(�v) = 〈f (t), v〉V ∗,V ∀v ∈ V. (6.11)

By [37, §, Prop. 4.5], there exists u ∈ L2(0, T ; V ) with u′ ∈ L2(0, T ; V ∗) such that (6.11) holds, 
i.e.,

u′(t) + �2u(t) = f (t) in V ∗.
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If we assume more regularity on the forcing term, namely f ∈ L2(0, T ; H 1
0 (�)), and then set 

v := −�g, (6.11) reads as

(u′(t), v)L2(�) + (−∇(�u),∇v)L2(�) = (f (t), v)L2(�). (6.12)

So the equation holds weakly for every v in the set W := {v : v = −�g for some g ∈ V }, which 
contains H 1(�), hence (6.12) holds for all v ∈ H 1(�). By [37, §2, Sect. 9.9], u satisfies (6.9).

6.1.3. H−1(�(t)) pivot space
The choice of H−1 as a pivot space appears in the study of very weak solutions of certain 

evolutionary problems following an idea of Brezis [11], see for example [36, §2.3], [47, §III, 
Example 6.C] and [38]; once we have introduced some notation, we will motivate the study 
through the porous medium equation. Inspired by this as well as the aforementioned literature, 
we consider the case of

X(t) = Lp(�(t)) ∩ H−1(�(t)) and H(t) = H−1(�(t)), with p ∈ (1,+∞)

on a bounded evolving domain {�(t)}t∈[0,T ] in Rn, where H−1(�(t)) is the dual space of 
H 1

0 (�(t)) which we endow with the inner product

(u, v)H 1
0 (�(t)) =

∫
�(t)

∇u · ∇v.

With −�t : H 1
0 (�(t)) → H−1(�(t)) denoting the Dirichlet Laplacian on �(t), we endow the 

pivot space H(t) with the inner product defined by5

(u, v)H(t) := 〈u, (−�t)
−1v〉H−1(�(t)),H 1

0 (�(t)).

We then identify H(t) ≡ H(t)∗ via the Riesz map (with respect to this inner product). The norm 
of f ∈ X(t) is defined as

‖f ‖X(t) = ‖f ‖Lp(�(t)) + ‖f ‖H−1(�(t)),

and with this, X(t) is a separable and reflexive Banach space. Observe that X(t) 
d

↪−→ H(t) as 
X(t) contains D(�(t)). For simplicity of notation, we will denote the Laplacian by

Lt = −�t .

5 Given u ∈ H−1(�(t)), the function (−�t )
−1u ∈ H 1

0 (�(t)) is the unique weak solution w of the elliptic problem

−�tw = u on �(t),

w = 0 on ∂�(t).

.
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Remark 6.9. Some important observations are timely:

(i) In contrast to the previous section, we do not identify H 1
0 (�(t)) with H−1(�(t)) via the 

Riesz map, but rather H−1(�(t)) with its dual.
(ii) The inner product above indeed defines a norm on H−1(�(t)) which is equivalent to the 

usual dual norm.
(iii) Since p ∈ (1, ∞) and Lt is uniformly elliptic we have the regularity

u ∈ Lp(�(t)) =⇒ L−1
t u ∈ W 2,p(�(t)) with ‖L−1

t u‖W 2,p(�(t)) ≤ C‖u‖Lp(�(t))

(6.13)

by Calderón–Zygmund theory for elliptic equations (see for instance [32, §9.2]). The con-
stant C > 0 above can be taken to be independent of t .

(iv) We identify Lp(�(t)) with Lp′
(�(t))∗ so that, in rigour,

X(t) = Lp(�(t)) ∩ H−1(�(t)) ≡ (Lp′
(�(t))∗ ∩ H−1(�(t)) and

X∗(t) = Lp′
(�(t)) + H−1(�(t)).

Given f ∈ X(t) and g = g1 + g2 ∈ X∗(t), the duality pairing is given by

〈g,f 〉X∗(t),X(t) = 〈g1, f 〉
Lp′

(�(t)),Lp(�(t))
+ (g2, f )H(t) =

∫
�(t)

g1f + (g2, f )H(t).

This identification of Lp(�(t)) with Lp′
(�(t))∗ (giving rise to a second identification!) 

does not lead to any contradictions as we do not identify X(t) with X∗(t). In fact, X∗(t) is 
strictly larger than X(t).

(v) If n = 1, 2 we have X(t) ≡ Lp(�(t)), but in higher dimensions this space is generally 
strictly smaller than Lp(�(t)). Observe however that we have

X(t) = Lp(�(t)) if p ≥ 2n/(n + 2),

as in this case the well-known Sobolev embedding H 1
0 (�(t)) ↪→ Lp′

(�(t)) holds.

As a change of notation, let ψt : H 1
0 (�0) → H 1

0 (�(t)) be the map that we called φt (defined 
in (6.2)) in the previous examples. Note that since we are working over flat domains �(t), we 
have A0

t = (D�0
t )

ᵀD�0
t , which simplifies the formulae (6.5), (6.6), (6.7). In particular, we note 

that D�0
t is invertible and

ψt(D�0
t ) = (D�t

0)
−1.

We again assume the extra regularity in (6.8) in order to use the results of the previous section. 
We now define

φt : H0 → H(t) by φt := (ψ−t )
∗.
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The action of this map is as follows: given f ∈ H0, u ∈ H 1
0 (�(t)), we have

〈φtf,u〉H(t),H 1
0 (�(t)) := 〈f,ψ−t u〉H0,H

1
0 (�0)

=
∫
�0

∇L−1
0 f · ∇ψ−t u

=
∫

�(t)

ψt

(
(J 0

t )−1D�0
t ∇gL−1

0 f
)

· ∇u, (6.14)

allowing us to identify

φtf = −∇g · ψt

(
(J 0

t )−1D�0
t ∇gL−1

0 f
)

. (6.15)

Analogously, for g ∈ H−1(�(t)), we have

φ−t g = −∇g ·
(
J 0

t D�0
t ψ−t (∇gL−1

t g)
)

.

We can perform similar calculations to compute the adjoint maps φA
t and φA−t : given u ∈ H(t)

and v ∈ H0,

(u,φtv)H(t) =
∫

�(t)

ψt ((J
0
t )−1D�0

t )∇(ψtL
−1
0 v) · ∇L−1

t u =
∫
�0

∇(L−1
0 v) · ∇(ψ−tL

−1
t u)

= 〈v,ψ−tL
−1
t u〉H−1(�0),H

1
0 (�0)

= (v,L0ψ−tL
−1
t u)H0 ,

from where we obtain that φA
t : H(t) → H0 and φA−t : H0 → H(t) satisfy

φA
t u = L0ψ−tL

−1
t u and φA−t u = LtψtL

−1
0 u. (6.16)

Due to (6.13) these also satisfy

φA
t |X(t) : X(t) → X0 and φA−t |X0 : X0 → X(t).

It is important to note that since we identify H−1(�(t)) with its dual, the maps φ∗
t are also 

defined with φ∗
t : H−1(�(t)) → H−1(�0), and up to composition with the Riesz map and its 

inverse they coincide with φA
t calculated above. In particular, the map φ∗

t = (ψ∗−t )
∗ is not the 

same as ψ−t . This is another manifestation of the fact that we are not identifying H 1
0 with its 

dual.
We observe also that, if f ∈ X0, then f ∈ Lp(�0) and due to (6.13) we have L−1

0 f ∈
W 2,p(�0). In particular, we can integrate by parts in (6.14) to obtain, for u ∈ H 1

0 (�(t)) ∩
Lp′

(�(t)), the simpler formula

〈φtf,u〉H(t),H 1
0 (�(t)) =

∫
�0

f ψ−t u =
∫

�(t)

J t
0ψtf u. (6.17)
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Under Assumption 6.1 and (6.8), it follows that the pairs (H−1, φt )t∈[0,T ] and (Lp ∩ H−1,

φt )t∈[0,T ] are compatible. The proof of the next lemma is complicated and is given in §6.3. 
In this example we need to assume the additional regularity

�
(·)
0 ∈ C2

(
[0, T ];C2(Rd ,Rd)

)
,

Lemma 6.10. Under Assumption 6.1 and (6.8), we have

λ(t;u,v) =
∫

�(t)

H(t)∇(L−1
t u) · ∇(L−1

t v).

Thus the definition of a weak time derivative is the following.

Definition 6.11 (H−1(�) weak time derivative). A function u ∈ L
p
X has a weak time derivative 

u̇ ∈ L
q
X∗ if and only if

T∫
0

〈u̇(t), η(t)〉X∗(t),X(t) = −
T∫

0

(u(t), η̇(t))H(t) −
T∫

0

∫
�(t)

H(t)∇(L−1
t u) · ∇(L−1

t η) ∀η ∈DX.

We can finally conclude.

Proposition 6.12. Under Assumption 6.1 and (6.8), for any p, q ∈ [1, ∞], there exists an evolv-
ing space equivalence between Wp,q(X0, X∗

0) and W p,q(X, X∗).

Applications Let us motivate, again in the simpler case of a fixed domain, this choice of pivot 
space by giving more details for the porous medium equation (PME) as considered in [47, §III, 
Example 6.C]:

u′ − ��(u) = f on (0, T ) × �,

�(u) = 0 on (0, T ) × ∂�,

u(0) = u0 on �,

(6.18)

where �(u) := |u|m−1u (or an appropriate generalisation) with m := p−1 and f ∈ Lp′
(0, T ; X∗)

for X = H−1(�) ∩ Lp(�). If we take the inner product of the equation in H−1(�) with an ele-
ment g ∈ Lp(�) ∩ H−1(�), we get

(u′(t), g)H +
∫
�

�(u(t))g =
∫
�

(−�)−1f (t)g ∀g ∈ X.

Suppose that p ≥ 2n/(n + 2) so that X = Lp(�). Define f̃ ∈ Lp′
(0, T ; X∗) by

〈f̃ (t), v〉 :=
∫

f (t)v for v ∈ X
�
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and A : X → X∗ and B : X → X∗ by

〈A(u), v〉 :=
∫
�

�(u)v and for u,v ∈ H , 〈Bu,v〉 := (u, v)H ,

it follows by [47, Proposition 6.2, §III.6] that there is a unique u ∈ Lp(0, T ; X) with (Bu)′ ∈
Lp′

(0, T ; X∗) such that

(Bu(t))′ + A(u(t)) = f̃ (t) in X∗.

Since 〈(Bu(t))′, v〉 = (u′(t), v)H , this implies that

〈u′(t), (−�)−1g〉 + 〈�(u(t)), g〉 = 〈f̃ (t), g〉 ∀g ∈ X.

Setting v := (−�)−1g, we get existence of solutions for the very weak formulation of (6.18):∫
�

u′(t)v + �(u(t))(−�)v =
∫
�

f (t)(−�)v ∀v ∈ H 1
0 (�) : �v ∈ Lp(�).

Under the additional regularity f ∈ Lp′
(0, T ; H), replacing the definition of f̃ above by

〈f̃ (t), v〉 :=
∫
�

v(−�)−1f (t) for v ∈ X,

so that f̃ ∈ Lp′
(0, T ; H 1

0 (�)), then by [47, Corollary 6.2 and Proposition 6.3, §III.6] we have 
existence of the equation in Lp′

(0, T ; H) and �(u) ∈ Lp′
(0, T ; H 1

0 (�)) (so the boundary con-
dition is satisfied). The equation in (6.18) holds pointwise a.e. in time in H−1(�) and the initial 
condition is satisfied in the sense that u(t) → u0 as t → 0 in H−1(�). This concept of solution 
is called the H−1-solution of the PME. See [51, §6.7] in this context.

Of a similar form to this problem is the Stefan problem on a moving domain {�(t)}t∈[0,T ]:

ė − �gu + e∇g · w = f in �(t),

e(0) = e0,

e ∈ E(u),

where the maximal monotone graph E is defined via

E(r) =

⎧⎪⎨⎪⎩
r for r < 0

[0,1] for r = 0

r + 1 for r > 0

,

which was considered by the first and final authors in [1]. For f ∈ L1
L1 and e0 ∈ L1(�0), the 

authors look for u, e ∈ L1
L1 , and for f ∈ L∞

L∞ and e0 ∈ L∞(�0) one looks for u ∈ L2
H 1 and 

e ∈ L∞∞ .
L
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6.2. Non-Gelfand triple examples

In the previous examples we obtained the definition of the weak derivative for three different 
cases in which there is a pivot Hilbert space, whose inner product structure we could exploit 
to establish the evolving space equivalence property of the evolving Sobolev–Bochner spaces. 
To conclude this section, we now consider several examples in which we do not assume the 
existence of a pivot space. We fix, for all the examples below,

r ∈ (1,2).

Again, all proofs are relegated to §6.3.

6.2.1. Lr(�(t)) ↪→ L1(�(t))

The simplest example one can consider is obtained by taking X(t) = Lr(�(t)) and Y(t) =
L1(�(t)), where the evolution of {�(t)} is determined by the flow map (6.2). As in Remark 3.7, 
we have �t = IdX0 for all t , and it is immediate to see:

Lemma 6.13. Under Assumption 6.1, we have

λ(t;u,v) = 0.

We then have the usual integration by parts formula:

Definition 6.14. A function u ∈ L
p
Lr has a weak time derivative u̇ ∈ L

q

L1 if and only if

T∫
0

∫
�(t)

u̇(t)η(t) = −
T∫

0

∫
�(t)

u(t)η̇(t) ∀η ∈DX.

It follows immediately that:

Proposition 6.15. Under Assumption 6.1, for any p, q ∈ [1, ∞], there exists an evolving space 
equivalence between Wp,q(Lr(�0), L1(�0)) and W p,q(Lr , L1).

6.2.2. W 1,r (�(t)) ↪→ L1(�(t))

Consider X(t) = W 1,r (�(t)) and Y(t) = L1(�(t)) where the flow maps of each are defined 
as in (6.2) but are different to each other, say

φX
t u = u ◦ �t

0 and φY
t = u ◦ �̃t

0,

where �0
t and �̃0

t are flows determined by given velocity fields w and ̃w, respectively. We assume 
that these have the same normal component (indeed they must otherwise the surfaces will be 
different) but with potentially different tangential parts, say wτ and w̃τ . In general, we denote 
quantities of interest (such as the determinant of the Jacobian) using the notation (̃·) for the 
corresponding quantity derived from �̃t

0. We have the following expression for the extra term in 
the definition of the weak derivative.
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Lemma 6.16. Under Assumption 6.1, we have

λ(t;u,v) =
∫

�(t)

(
φX

t (D�0
t )

ᵀ∇gu
)

· (D�t
0 (w̃τ (t) − wτ (t))

)
v.

Therefore in this case:

Definition 6.17. A function u ∈ L
p

W 1,r has a weak time derivative u̇ ∈ L
q

L1 if and only if

T∫
0

∫
�(t)

u̇(t)η(t) = −
T∫

0

∫
�(t)

u(t)η̇(t)

+
T∫

0

∫
�(t)

(
φX

t (D�0
t )

ᵀ∇gu
)

· (D�t
0 (w̃τ (t) − wτ (t))

)
η(t) ∀η ∈DX.

Remark 6.18. Observe that in the case where w and w̃ have the same tangential component, we 
do indeed recover the situation of the previous example.

It is useful to note here that

�t : W 1,r (�0) → L1(�0), �tu = u ◦ �t
0 ◦ �̃0

t .

Proposition 6.19. Under Assumption 6.1, for any p, q ∈ [1, ∞], there exists an evolving space 
equivalence between Wp,q(W 1,r (�0), L1(�0)) and W p,q(W 1,r , L1).

6.2.3. W
2,r
0 (�(t)) ↪→ W

1,1
0 (�(t))

As a final example we take X(t) = W
2,r
0 (�(t)) and Y(t) = W

1,1
0 (�(t)) under the same as-

sumptions as the previous case. In this case, �t has the same formula as above, but we note 
that

π(t;u,v) = 〈�tu, v〉
W

1,1
0 (�0),W

−1,∞(�0)

and so we need a representation for elements of W−1,∞(�0). By [12, Proposition 9.20], given 
f ∈ W−1,∞(�0), there exist f1, . . . , fn ∈ L∞(�0) such that

〈f,u〉
W−1,∞(�0),W

1,1
0 (�0)

= −
n∑

i=1

∫
�0

fiDiu. (6.19)

In other words, writing f = (f1, . . . , fn), the functional f acts on W 1,1 as the operator ∇ · f; in 
what follows we always identify f ≡ f and define its action on W 1,1

(�0) by (6.19).
0
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Lemma 6.20. Under Assumption 6.1, we have

λ(t;u,v) =
∫

�(t)

v · ∇ ((D�t
0)

−ᵀ∇u · D�t
0 (w̃τ (t) − wτ (t))

)
.

This leads to the definition:

Definition 6.21. A function u ∈ L
p

W
2,r
0

has a weak time derivative u̇ ∈ L
q

W
1,1
0

if and only if

T∫
0

∫
�(t)

u̇ηηη = −
T∫

0

∫
�(t)

uη̇ηη −
T∫

0

∫
�(t)

∇ ((D�t
0)

−ᵀ∇u · D�t
0 (w̃(t) − w(t))

) ·ηηη ∀ηηη ∈DW−1,∞ .

Similar calculations as before lead to the main result:

Proposition 6.22. Under Assumption 6.1, for any p, q ∈ [1, ∞], there exists an evolving space 
equivalence between Wp,q(W

2,r
0 (�0), W

1,1
0 (�0)) and W p,q(W

2,r
0 , W 1,1).

Remark 6.23. The techniques of the previous examples can be extended to deal with the case of 
W p,q(Wk,r , Wk−1,1), k ≥ 2.

6.3. Proofs of evolving space equivalence

We now provide the proofs of the results stated in §6.1 and §6.2. For readability we restate all 
the results.

6.3.1. L2 pivot space

Lemma 6.3. Under Assumption 6.1, we have

λ(t;u,v) =
∫

M(t)

uv∇g(t) · w(t).

Proof. Since we have a Gelfand triple structure, by Remark 3.14, the evolution of the duality 
pairing has the form

π(t;u,v) =
∫

M0

u0v0J
0
t .

By simply differentiating and using the formula (6.3) for differentiating the determinant of the 
Jacobian and then pushing forward, we obtain the desired expression. �
Proposition 6.5. Under Assumption 6.1, given r ≥ 2 and for any p, q ∈ [1, ∞], there ex-
ists an evolving space equivalence between the spaces Wp,q(W 1,r (M0), W 1,r (M0)

∗) and 
W p,q(W 1,r , (W 1,r )∗).
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Proof. From §6.1.1, we see that �t : H0 → H0 is defined by �tu := uJ 0
t with inverse 

�−1
t u := u/J 0

t . The regularity assumptions on the velocity field imply that J 0
(·), (J

0
(·))−1 ∈

C1([0, T ], C1(Rd , Rd)) and hence

‖�tu‖W 1,r (M0)
≤ C‖u‖W 1,r (M0)

where C depends on the L∞(0, T ; W 1,∞(M0)) norm of J 0
t . We can prove in the same way 

that the inverse �−1
t is bounded as well. It is not difficult to check that �−1 : Wp,q(X0, X0) →

Wp,q(X0, X0) due to the smoothness assumptions on �0
t and hence the evolving space equiva-

lence holds by Theorem 4.6. �
6.3.2. H 1 pivot space

Lemma 6.6. For u, v ∈ H(t),

λ(t;u,v) =
∫

M(t)

uv∇g · w(t) + ∇gu
ᵀH(t)∇gv.

Proof. We see that for u, v ∈ H0, by using the formula (6.4) for differentiating the Dirichlet 
energy,

λ̂(t;u,v) = d

dt

⎛⎜⎝ ∫
M(t)

φtuφtv + ∇gφtu
ᵀ∇gφtv

⎞⎟⎠=
∫

M(t)

φtuφtv∇g · w(t) + ∇gφtu
ᵀH(t)∇gφtv.

This then immediately implies the result. �
The proof of Proposition 6.8 (evolving space equivalence between the spaces

Wp,q(W 2,r (M0), W 2,r (M0)
∗) and W p,q(W 2,r , (W 2,r )∗)) requires us to check the conditions 

of Theorem 4.6, which we will do now in a series of lemmas.
Firstly, writing (�tu, v)H0 = (φtu, φtv)H(t) and at the same time expanding the inner product 

on the left-hand side,

(�tu, v)H0 =
∫

M0

�tuv + ∇g�tu · ∇gv =
∫

M0

uvJ 0
t + (D�0

t (A
0
t )

−1∇gu)
ᵀD�0

t (A
0
t )

−1∇gvJ 0
t

=
∫

M0

uvJ 0
t + ∇gu

ᵀB0
t ∇gv,

where we denoted

B0
t := (A0

t )
−ᵀ

(D�0
t )

ᵀD�0
t (A

0
t )

−1J 0
t . (6.20)

By comparing these two expressions, we are able to obtain relevant properties of �t .
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Lemma 6.24. Under Assumption 6.1 and (6.8), we have �t : X0 → X0 is a bounded linear map.

Proof. Given u ∈ X0, setting w = �tu, we have by the above displayed equation∫
M0

wv + ∇gw
ᵀ∇gv =

∫
M0

uvJ 0
t + ∇gu

ᵀB0
t ∇gv ∀v ∈ H0. (6.21)

As a function of v, the right-hand side is clearly an element of H 1(M0)
∗, so by the Lax–Milgram 

lemma, there exists a unique w ∈ H 1(M0) satisfying the above equation. By smoothness, we can 
rewrite this as ∫

M0

wv + ∇gw
ᵀ∇gv =

∫
M0

(uJ 0
t − ∇g · (B0

t ∇gu))v ∀v ∈ H0,

i.e., w is a weak solution w − ��w = (uJ 0
t − ∇g · (B0

t ∇gu)) ∈ Lr(�0). We may apply elliptic 
regularity theory (by making use of the usual estimates, e.g. [32, §9.2] on Euclidean balls and 
using a patching argument to extend to the manifold case if M(t) = �(t), as is standard) to this 
variational formulation to deduce that w ∈ W 2,r (M0) as well as

‖w‖W 2,r (M0)
≤ C

∥∥∥uJ 0
t − ∇g · (B0

t ∇gu)

∥∥∥
Lr(M0)

. �
Lemma 6.25. Under Assumption 6.1 and (6.8), the map �t : X0 → X0 is invertible with uni-
formly bounded inverse with t �→ �−1

t w measurable. Hence �−1 : Lr(0, T ; X0) →Lr(0, T ; X0).

Proof. In this case, one needs to show that given w ∈ X0, there exists u ∈ X0 such that (6.21)
holds and the proof is almost identical to the previous lemma after realising that the right-hand 
side of (6.21) is an equivalent inner product on H0. The measurability follows because J 0

t and 
B0

t are continuous. �
Lemma 6.26. Under Assumption 6.1 and (6.8), we have �−1:Wp,q(X0, X0) →Wp,p∧q(X0, X0)

for any p, q ∈ [1, ∞].
Proof. We shall first show that �−1 : C1([0, T ]; X0) → Wp,p∧q(X0, X0) and then extend by 
density. Take w ∈ C1([0, T ]; X0) and set u = �−1w. We have that u(t) satisfies∫

M0

u(t)vJ 0
t + ∇gu(t)

ᵀB0
t ∇gv =

∫
M0

w(t)v + ∇gw(t)
ᵀ∇gv ∀v ∈ H0.

Taking the difference at times t + h and t , this becomes, for all v ∈ H0,∫
M0

δhu(t)vJ 0
t+h + u(t)δhJ

0
t v + ∇gδhu(t)

ᵀB0
t+h∇gv + ∇gu(t)

ᵀ
δhB0

t ∇gv

=
∫

M0

δhw(t)v + ∇gδhw(t)
ᵀ∇gv.
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Now, adding and subtracting y(t) where y(t) is defined as the solution of∫
M0

y(t)vJ 0
t + ∇gy(t)B0

t ∇gv =
∫

M0

w′(t)v + ∇gw
′(t)∇gv − u(t)v(J 0

t )′

−
∫

M0

∇gu(t)(B0
t )

′∇gv ∀v ∈ H0, (6.22)

we obtain∫
M0

(δhu(t) − y(t)) vJ 0
t+h + u(t)δhJ

0
t v + ∇g

(
δhu(t)

ᵀ − y(t)
)

B0
t+h∇gv + ∇gu(t)

ᵀ
δhB0

t ∇gv

+
∫

M0

y(t)vJ 0
t+h + ∇gy(t)B0

t+h∇gv =
∫

M0

δhw(t)v + ∇gδhw(t)
ᵀ∇gv.

Observe that, using the definition of y(t), the final term on the left-hand side is∫
M0

y(t)vJ 0
t+h + ∇gy(t)B0

t+h∇gv

=
∫

M0

y(t)v(J 0
t+h − J 0

t ) + ∇gy(t)(B0
t+h − B0

t )∇gv

+
∫

M0

w′(t)v + ∇gw
′(t)∇gv − u(t)(J 0

t )′v − ∇gu(t)(B0
t )

′∇gv,

so the above becomes∫
M0

(δhu(t) − y(t)) vJ 0
t+h + u(t)

(
δhJ

0
t − (J 0

t )′
)

v + ∇g

(
δhu(t)

ᵀ − y(t)
)

B0
t+h∇gv

+
∫

M0

∇gu(t)
ᵀ (

δhB0
t − (B0

t )
′)∇gv +

∫
M0

y(t)v(J 0
t+h − J 0

t ) + ∇gy(t)(B0
t+h − B0

t )∇gv

=
∫

M0

(
δhw(t) − w′(t)

)
v + ∇g

(
δhw(t)

ᵀ − ∇gw
′(t)
)∇gv.

Taking v = δhu(t) − g and using Young’s inequality with ε multiple times, we find

C ‖δhu(t) − y(t)‖2
H0

≤ ∥∥δhw(t) − w′(t)
∥∥2

H
+
∥∥∥δhJ

0
t − (J 0

t )′
∥∥∥2

∞ ‖u(t)‖2

0 L (M0)
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+
∥∥∥δhB0

t − (B0
t )

′
∥∥∥2

L∞(M0)

∥∥∇gu(t)
∥∥2

L2(M0)
+
∥∥∥J 0

t+h − J 0
t

∥∥∥2

L∞(M0)
‖y(t)‖2

L2(M0)

+
∥∥∥B0

t+h − B0
t

∥∥∥2

L∞(M0)

∥∥∇gy(t)
∥∥2

L2(�)
,

which shows that u is strongly differentiable; more precisely, u = �−1w ∈ C1([0, T ]; H0) with 
u′ = g.

By the same reasoning as the previous lemma applied to the weak formulation for y(t) (see 
(6.22)), we obtain in fact that∥∥∥(�−1

t w(t))′
∥∥∥

W 2,r (M0)
≤ C(

∥∥w′(t)
∥∥

W 2,r (M0)
+
∥∥∥�−1

t w(t)

∥∥∥
W 2,r (M0)

).

Hence �−1 : C1([0, T ]; X0) → Wp,p∧q(X0, X0) is such that �−1 : Wp,q(X0, X0) →
Wp,p∧q(X0, X0) is bounded. By density, we obtain the result. �
Proposition 6.8. Under Assumption 6.1 and (6.8), for any p, q ∈ [1, ∞], there exists an evolving 
space equivalence between the spaces Wp,q(W 2,r (M0), W 2,r (M0)

∗) and W p,q(W 2,r , (W 2,r )∗).

Proof. Having checked all conditions of Theorem 4.6 above, the result follows. �
6.3.3. H−1 pivot space

To provide the expression for λ in Lemma 6.10, we now verify that Assumption 3.5 is satisfied. 
Given u ∈ H0, we must check that ‖φtu‖2

H(t) is differentiable. Define w(t) ∈ H 1
0 (�(t)) by

Ltw(t) = φtu, (6.23)

so that, as we argued above,

‖φtu‖2
H(t) =

∫
�(t)

|∇tw(t)|2. (6.24)

Observe that the right-hand side of (6.23) is clearly in C∞
H with zero time derivative, and hence 

as is the left-hand side, i.e., Lw ∈ C∞
H with

∂•(Lw) = 0.

To prove that (6.24) is differentiable, we need w itself to belong to C1
H 1

0
, which the next lemma 

shows is the case. In the proof below we make use of the notation δh again to denote the difference 
quotient.

Lemma 6.27. Under Assumption 6.1 and (6.8), for u ∈ H0, we have w ≡ L−1
(·) φ(·)u ∈ C1

H 1
0

and ẇ

satisfies, for all t ∈ [0, T ],∫
∇ẇ(t) · ∇ϕ = −

∫
∇w(t)

ᵀH(t)∇ϕ ∀ϕ ∈ H 1
0 (�(t)).
�(t) �(t)
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Proof. Let us show that w ∈ C1
H 1

0
by proving that w̃ := ψ−(·)w ∈ C1((0, T ); H 1

0 (�0)). Due to 

(6.5) and reusing the notation B0
t from (6.20), we see from (6.23) that w̃ satisfies∫

�0

∇w̃(t)
ᵀB0

t ∇ψ−t ϕ = 〈ψ∗−t u, ϕ〉 = 〈u,ψ−t ϕ〉 ∀ϕ ∈ H 1
0 (�(t)).

Hence ∫
�0

∇w̃(t)
ᵀB0

t ∇η = 〈u,η〉 ∀η ∈ H 1
0 (�0). (6.25)

Take two times t, s ≥ 0 and consider the difference of the above equality at those times:∫
�0

∇(w̃(t)
ᵀ − w̃(s)

ᵀ
)B0

t ∇η + w̃(s)
ᵀ
(B0

t − B0
s )∇η = 0.

Taking η = w̃(t) − w̃(s), this implies the bound

C ‖∇w̃(t) − ∇w̃(s)‖L2(�0)
≤ ‖w̃(s)‖L2(�0)

∥∥∥B0
t − A0

s

∥∥∥
L∞(�0)

,

and the right-hand side clearly tends to zero as t → s, proving that w̃ ∈ C0([0, T ]; H 1
0 (�0)).

Regarding the derivative, let h > 0 and take the difference in (6.25) between times t + h and 
t and divide by h: ∫

�0

∇δhw̃(t)B0
t+h∇η +

∫
�0

∇w̃(t)
ᵀ
δhB0

t ∇η = 0. (6.26)

We now show that the difference quotient for w̃(t) converges to the (unique) solution v(t) ∈
H 1

0 (�(t)) of ∫
�0

∇v(t)
ᵀB0

t ∇η = −
∫
�0

∇w̃(t)
ᵀ
(B0

t )
′∇η ∀η ∈ H 1

0 (�0).

In (6.26), if we add and subtract the same term, we see∫
�0

∇(δhw̃(t) − v(t))
ᵀB0

t+h∇η + ∇v(t)
ᵀB0

t+h∇η + ∇w̃(t)
ᵀ
δhB0

t ∇η = 0,

and here adding and subtracting 
∫
�0

∇v(t)
ᵀB0

t ∇η and using the equation defining v(t), we end 
up with∫
�0

(∇δhw̃(t) − ∇v(t))
ᵀ B0

t+h∇η + ∇v(t)
ᵀ (B0

t+h − B0
t

)
∇η + ∇w̃(t)

ᵀ (
δhB0

t − (B0
t )

′)∇η = 0.
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Taking η appropriately, using positive-definiteness and smoothness of A, we get

C ‖δh∇w̃(t) − ∇v(t)‖L2(�0)
≤ ‖∇v(t)‖L2(�0)

∥∥∥B0
t+h − B0

t

∥∥∥
L∞(�0)

+ ‖∇w̃(t)‖L2(�0)

∥∥∥δhB0
t − (B0

t )
′
∥∥∥

L∞(�0)
,

and in the limit h → 0, the right-hand side tends to zero and hence

δhw̃(t) → v(t) in H 1
0 (�0)

but then we must have that w̃′ exists and w̃′ ≡ v. By considering the equation defining v = w̃′
and making a similar argument to how we showed that w̃ is continuous, we can show that w̃′ ∈
C0([0, T ]; H 1

0 (�0)). Pushing forward the integrals defining w̃′(t), we see that∫
�0

∇w̃(t)
ᵀ
(B0

t )
′∇η =

∫
�(t)

J t
0∇w(t)

ᵀ
ψt(D�0

t )ψt ((B0
t )

′)ψt (D�0
t )

ᵀ∇ϕ

=
∫

�(t)

J t
0∇w(t)

ᵀ
(D�t

0)
−1ψt((B0

t )
′)(D�t

0)
−ᵀ∇ϕ.

The identity in Lemma A.2 gives a simplification of the right-hand side above and provides the 
desired result. �
Lemma 6.10. Under Assumption 6.1 and (6.8), we have

λ(t;u,v) =
∫

�(t)

H(t)∇(L−1
t u) · ∇(L−1

t v).

Proof. Using the transport formula (6.4) on (6.24) and plugging the result of the previous lemma 
in, we derive

d

dt
‖φtu‖2

H(t) =
∫

�(t)

2∇ẇ(t) · ∇w(t) − H(t)∇w(t) · ∇w(t) =
∫

�(t)

H(t)∇w(t) · ∇w(t).

We have then that

λ̂(t;u0, v0) := 1

4

(
d

dt
‖φt (u0 + v0)‖2

H(t) − d

dt
‖φt (u0 − v0)‖2

H(t)

)
= 1

4

( ∫
�(t)

H(t)∇z(t) · ∇z(t) −
∫

�(t)

H(t)∇y(t) · ∇y(t)
)
,

where z(t) and y(t) are defined via Lt z(t) = ψ∗−t (u0 + v0) and Lt y(t) = ψ∗−t (u0 − v0). Defining 
also
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Ltw(t) = ψ∗−t u0 and Lt v(t) = ψ∗−t v0,

and using linearity, the above simplifies to

λ̂(t;u0, v0) =
∫

�(t)

H(t)∇w(t) · ∇v(t) =
∫

�(t)

H(t)∇(L−1
t ψ∗−t u0) · ∇(L−1

t ψ∗−t v0),

and a simple calculation shows that Assumptions 3.5 (ii), (iii) (see Remark 3.13) are also satis-
fied. Pushing forward to �(t) now yields the desired expression. �

We now check the evolving space equivalence result for this example again by verifying the 
assumptions of Theorem 4.6.

Lemma 6.28. Under Assumption 6.1 and (6.8), for u ∈ H0, we have

�tu = L0ψ−tL
−1
t φtu

and �t : X0 → X0 is uniformly bounded and invertible with uniformly bounded and measurable 
(in time) inverse.

Proof. The formula follows directly from (6.16). Recalling that φt (resp. φ−t ) maps X0 to X(t)

(resp. X(t) to X0) and is bounded, we can easily see that �t : X0 → X0 is bounded due to the 
elliptic regularity of (6.13). It also has an inverse defined by �−1

t = φ−tLtψtL
−1
0 with the same 

properties. Measurability of �tu, �−1
t u, for u ∈ H0, follows from the fact that the composition 

of measurable maps is measurable. �
Thus, we have the fulfilment of (4.5), (4.6) and (4.7).

Lemma 6.29. Under Assumption 6.1 and (6.8), the conditions of Theorem 4.6 are fulfilled.

Proof. We shall make use of the alternative criteria provided in Lemma 4.9 here to verify (4.8). 
First, as we already stated, note that 

(
H 1

0 (�(t)),ψt

)
t

is a compatible pair and furthermore, As-

sumption 3.5 is satisfied (the associated operators πψ , λ̂ψ satisfy the conditions in Remark 3.13). 
In this setting, we have6 (see Definition 6.7)

λ̂ψ (t;u,v) =
∫

�(t)

H(t)∇(ψtu) · ∇(ψtv). (6.27)

(4.13): Defining

ξt := (φH−t )
A,

6 The inner product we use on H 1
0 (�(t)) has no lower order term and thus no term involving the divergence of the 

velocity appears in the expression defining λ̂ψ .
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it follows from separability of H0 that (H(t), ξt )t is a compatible pair. We now observe that, for 
fixed u ∈ H0,

‖ξtu‖2
H(t) = ‖LtψtL

−1
0 u‖2

H(t) = ‖ψtL
−1
0 u‖2

H 1
0 (�(t))

,

and this is continuously differentiable since 
(
H 1

0 (�(t)),ψt

)
t∈[0,T ] satisfies Assumption 3.5. The 

remaining points follow immediately; simply note that from the calculation above we obtain

πξ (t;u,v) = (ψtL
−1
0 u,ψtL

−1
0 v)H 1

0 (�(t)) = πψ(t;L−1
0 u,L−1

0 v)

=⇒ λ̂ξ (t;u,v) = λ̂ψ (t;L−1
0 u,L−1

0 v).

(4.14): If u ∈ X0 and v ∈ H0, then we have from using the relation between λ̂ξ and λ̂ψ and the 
formula for the latter in (6.27) that

λ̂ξ (t;u,v) = −
〈
∇ · (H(t)∇(ψtL

−1
0 u)),ψtL

−1
0 v
〉
H−1(�(t)),H 1

0 (�(t))

= −
〈
L−1

0 J t
0ψ−t∇ · (H(t)∇(ψtL

−1
0 u)), v

〉
H−1(�0),H

1
0 (�0)

where we used (6.17) (or rather the inverse of the expression given by that formula) since u ∈ X0

and the fact that L−1
0 is self-adjoint in the above manipulation. With this, we can identify

̂ξ (t)u = −L−1
0 J t

0ψ−t∇ · (H(t)∇(ψtL
−1
0 u))

and as u ∈ Lp(�0) then (6.13) implies that also ̂ξ (t)u ∈ Lp(�0), proving the claim.
(4.15): We have already shown that �t : X0 → X0 is a bijection with inverse given by �−1

t u =
φ−tLtψtL

−1
0 u, and from this formula we can immediately identify

(�−1
t )∗ : X∗

0 → X∗
0, (�−1

t )∗f = L−1
0 φ−tLtφ

∗−t f.

In particular, if f ∈ X0, we have

(�−1
t )∗f = L−1

0 φ−tLtφ
∗−t f = L−1

0 φ−tLtφ
A−t f,

which is bounded due to (6.13) and the formula in (6.16). �
Now an application of Theorem 4.6 yields the following.

Proposition 6.12. Under Assumption 6.1 and (6.8), for any p, q ∈ [1, ∞], there exists an evolv-
ing space equivalence between Wp,q(X0, X∗) and W p,q(X, X∗).
0
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6.3.4. Lr(�(t)) ↪→ L1(�(t))

As in Remark 3.7, we have �t = IdX0 for all t , and, given p, q ∈ [1, +∞], a function u ∈ L
p
Lr

has weak time derivative u̇ ∈ L
q

L1 if

T∫
0

∫
�(t)

u̇η = −
T∫

0

∫
�(t)

uη̇, ∀η ∈DL∞ .

The evolving space equivalence property for W p,q(Lr, L1) follows immediately. The same 
is true if we take X(t) = Wk,r (�(t)), Y(t) = Wk,1(�(t)), for general k ∈N .

6.3.5. W 1,r (�(t)) ↪→ L1(�(t))

It is clear that both pairs (X(t), φX
t )t and (Y (t), φY

t )t are compatible and it is easy to check 
that the dual map of φY

t and its inverse are given by

(φY−t )
∗ : L∞(�0) → L∞(�(t)), (φY−t )

∗v = J̃ t
0φY

t v = J̃ t
0 v ◦ �̃t

0,

(φY
t )∗ : L∞(�(t)) → L∞(�0), (φY

t )∗v = J̃ 0
t φY−t v = J̃ 0

t v ◦ �̃0
t .

Recall that

π(t;u,v) = 〈�tu, v〉L1(�0),L
∞(�0)

=
∫
�0

�tuv,

and since �t = φY−t φ
X
t , we have by the chain rule

d

dt
(�tu) = d

dt

(
φY−t φ

X
t u
)

= φY−t φ
X
t ∇gu ·

[
φY−t (∂t�

t
0) + φY−t (D�t

0)φ
Y−t w̃(t)

]
= φY−t φ

X
t ∇gu · φY−t

[
∂t�

t
0 + D�t

0w̃(t)
] (6.28)

from where we identify

λ̂(t;u,v) = d

dt
π(t;u,v) =

∫
�0

φY−t φ
X
t ∇gu · φY−t

[
∂t�

t
0 + D�t

0 w̃(t)
]
v.

Pushing forward then yields, for u ∈ X(t) and v ∈ Y ∗(t),

λ(t;u,v) =
∫

�(t)

φX
t (D�0

t )
ᵀ∇gu · (∂t�

t
0 + D�t

0w̃τ (t)
)
v.

Let us assume that �(·)
0 ∈ C1([0, T ]; L2(Rd ; Rd)). Differentiating with respect to t the identity

�t
0 ◦ �0

t (p) = p, p ∈ �0,

we obtain, for all p ∈ �0,
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0 = (∂t�
t
0)(�

0
t (p)) + D�t

0(�
0
t (p))∂t�

0
t (p) = (∂t�

t
0)(�

0
t (p)) + D�t

0(�
0
t (p))w(t,�0

t (p)).

Pushing forward to �(t) the above is equivalent to

∂t�
t
0 + D�t

0 w = 0,

which we plug into the expression above to find

λ(t;u,v) =
∫

�(t)

(
φX

t (D�0
t )

ᵀ∇gu
)

· (D�t
0w̃τ (t) − D�t

0w(t)
)
v

=
∫

�(t)

(
φX

t (D�0
t )

ᵀ∇gu
)

· (D�t
0 (w̃τ (t) − wτ (t))

)
v.

We then conclude that, given p, q ∈ [1, +∞], a function u ∈ L
p

W 1,r has weak time derivative 
u̇ ∈ L

q

L1 if

T∫
0

∫
�(t)

u̇η = −
T∫

0

∫
�(t)

uη̇ −
T∫

0

∫
�(t)

(
φX

t (D�0
t )

ᵀ∇gu
)

· (D�t
0 (w̃τ (t) − wτ (t))

)
η ∀η ∈DL∞ .

We now aim to explore the conditions of Theorem 3.23. Assumption 3.5 on the regularity of λ is 
easily seen to be true from the expression of λ above. The condition (3.7) is also satisfied; in fact, 
it follows from the formula for λ that, given u ∈ W 1,r (�0), ̂(t)u ∈ L1(�0) ⊂ JL1(L1(�0)). 
So we are left to verify the remaining conditions stated in Theorem 3.23. We note that all the 
operators involved can be calculated explicitly. Indeed, we have

�t : W 1,r (�0) → L1(�0), �tu = u ◦ �t
0 ◦ �̃0

t ,

�t : L1(�0) → L1(�0), �tu = u ◦ �t
0 ◦ �̃0

t ,

�
−1
t : L1(�0) → L1(�0), �

−1
t u = u ◦ �̃t

0 ◦ �0
t ,

which can easily be seen to satisfy (3.13), (3.14), (3.15), (3.16), as well as the adjoints

�
∗
t : L∞(�0) → L∞(�0), �

∗
t v = J 0

t J̃ t
0 ◦ �0

t v ◦ �̃t
0 ◦ �0

t ,

(�
∗
t )

−1 : L∞(�0) → L∞(�0), (�
∗
t )

−1v = J t
0 ◦ �̃0

t J̃ 0
t v ◦ �t

0 ◦ �̃0
t ,

which satisfy (3.17). It is important to observe that the adjoint operator above is calculated as the 
L1-L∞ adjoint, which simplifies its explicit expression (see example below for a more involved 
case). It then follows that the space W p,q(W 1,r , L1) enjoys the evolving space equivalence prop-
erty.
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6.3.6. W
2,r
0 (�(t)) ↪→ W

1,1
0 (�(t))

We need to find the adjoint of φY
t : given u ∈ W

1,1
0 (�0) and v ∈ W−1,∞(�0), we have〈

v, φY
t u
〉
W−1,∞(�(t)),W

1,1
0 (�(t))

= −
∫

�(t)

v · ∇(φY
t u) = −

∫
�0

J̃ 0
t (D�̃0

t )
−1φY−t v · ∇u

from where we conclude

(φY
t )∗ : W−1,∞(�(t)) → W−1,∞(�0), (φY

t )∗v = J̃ 0
t (D�̃0

t )
−1φY−t v.

We then have

π(t;u,v) =
∫
�0

v · ∇�tu,

and, recalling the formula in (6.28), this leads to

λ̂(t;u,v) = d

dt
π(t;u,v) =

∫
�0

v · ∇
(

d

dt
�tu

)

=
∫
�0

v · ∇
(
φY−t φ

X
t ∇gu · φY−t

[
∂t�

t
0 + D�t

0w̃(t)
])

.

We finally push forward to time t : given u ∈ W
1,r
0 (�(t)), v ∈ W−1,∞(�(t)),

λ(t;u,v) =
∫

�(t)

v · ∇ ((D�t
0)

−ᵀ∇u · [∂t�
t
0 + D�t

0w̃(t)
])

.

Again assuming that �(·)
0 ∈ C1([0, T ]; L2(Rd ; Rd)), we can reason as in the previous example 

to obtain

∂t�
t
0 + D�t

0w = 0,

so that

λ(t;u,v) =
∫

�(t)

v · ∇ ((D�t
0)

−ᵀ∇u · D�t
0 (w̃τ (t) − wτ (t))

)
. (6.29)

Hence in this case, given p, q ∈ [1, +∞], a function u ∈ L
p

W 2,r has weak time derivative u̇ ∈
L

q

W 1,1 if

T∫
0

∫
�(t)

u̇ηηη = −
T∫

0

∫
�(t)

uη̇ηη −
T∫

0

∫
�(t)

∇ ((D�t
0)

−ᵀ∇u · D�t
0 (w̃(t) − w(t))

) ·ηηη, ∀ηηη ∈DW−1,∞ .
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We now analyse the conditions for the evolving space equivalence. From (6.29) it follows that

(t)u(t) = (D�t
0)

−ᵀ∇u · D�t
0 (w̃τ (t) − wτ (t)) ,

and thus Assumption 3.5 is satisfied. Equation (3.7) also holds since, for any u ∈ W
2,r
0 (�0), we 

have ̂(t)u ∈ W
1,1
0 (�0) ⊂ J

W
1,1
0

(W
1,1
0 (�0)). Now, as in the previous case, the extension of �t

to the larger space is trivial:

�t : W
2,r
0 (�0) → W

1,1
0 (�), �tu = u ◦ �t

0 ◦ �̃0
t ,

�t : W
1,1
0 (�0) → W

1,1
0 (�0), �tu = u ◦ �t

0 ◦ �̃0
t ,

�
−1
t : W

1,1
0 (�0) → W

1,1
0 (�0), �

−1
t u = u ◦ �̃t

0 ◦ �0
t ,

which can easily be seen to satisfy (3.13), (3.14), (3.15), (3.16). We now work to identify the 
adjoint

�
∗
t : W−1,∞(�0) → W−1,∞(�0).

Let v ∈ W−1,∞(�0) and u ∈ W
1,1
0 (�0). A careful application of the formulas at the beginning 

of this chapter shows that

〈v,�tu〉
W−1,∞,W

1,1
0

= −
∫
�0

((
J̃ t

0 ◦ �0
t

)
J 0

t

[
(A0

t )
−T D�̃0

t ◦ �̃t
0 ◦ �0

t D�0
t

]
v ◦ �̃t

0 ◦ �0
t

)
· ∇u

from where we identify

�
∗
t : W−1,∞(�0) → W−1,∞(�0),

�
∗
t v =

(
J̃ t

0 ◦ �0
t

)
J 0

t

[
(A0

t )
−T D�̃0

t ◦ �̃t
0 ◦ �0

t D�0
t

]
v ◦ �̃t

0 ◦ �0
t ,

which is invertible with

(�
∗
t )

−1 : W−1,∞(�0) → W−1,∞(�0),

(�
∗
t )

−1v = J̃ 0
t J t

0 ◦ �0
t

[
D�̃0

t ◦ �̃t
0 ◦ �0

t D�0
t

]−1
v ◦ �t

0 ◦ �̃0
t .

Under our setting, because the coefficient is uniformly bounded in t again it is easily checked 
that (3.17) is also satisfied. This implies that W p,q(W

1,r
0 (�0), W 1,1(�0)) enjoys the evolving 

space equivalence property.
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7. Well-posedness for a nonlinear monotone equation

In this final section, we establish some results regarding existence and uniqueness of weak 
solutions for a class of nonlinear equations in order to illustrate the applicability of the functional 
framework developed in the text and how it can be used to formulate general problems in a 
Banach space setting.

Let p ∈ (1, ∞). For generality, we consider a family of (not necessarily linear) operators 
A(t) : X(t) → X∗(t) defined on a separable, reflexive Banach space X(t) satisfying the follow-
ing properties: for all u, v ∈ X(t),

(i) (Measurability) the map t �→ 〈A(t)u, v〉X∗(t),X(t) is measurable
(ii) (Monotonicity) 〈A(t)u − A(t)v,u − v〉X∗(t),X(t) ≥ 0

(iii) (Hemicontinuity) the map s �→ 〈A(t)(u + sv), v〉X∗(t),X(t) is continuous (from R to R)
(iv) (Boundedness) there exists a constant Cb > 0 independent of t and cb ∈ Lp′

(0, T ) such 
that

∣∣〈A(t)u, v〉X∗(t),X(t)

∣∣≤ Cb‖u‖p−1
X(t)‖v‖X(t) + cb(t)‖v‖X(t)

(v) (Coercivity) there exist Cc > 0 and cc ≥ 0 independent of t such that

〈A(t)u,u〉X∗(t),X(t) ≥ Cc‖u‖p

X(t) − cc.

These are the standard assumptions that are made for nonlinear monotone problems [56, §30.2]. 
We assume a Gelfand triple structure

X(t) ⊂ H(t) ⊂ X∗(t)

and we suppose that X(t) and H(t) are evolving under a map φt and X∗(t) is evolving under the 
dual map φ∗−t , such that

(X(t),φt )t∈[0,T ], (H(t),φt )t∈[0,T ], (X∗(t), φ∗−t )t∈[0,T ]

are all compatible pairs. Furthermore, we assume the equivalence of W (X, X∗) and W(X0, X∗
0). 

We refer to the previous section for examples of such spaces and proofs of the evolving space 
equivalence.

Defining the superposition operator (Au)(t) = A(t)u(t), we consider the equation

u̇ + Au + u = f in L
p′
X∗ ,

u(0) = u0 in H0.
(7.1)

Definition 7.1. Given f ∈ L
p′
X∗ and u0 ∈ H0, a weak solution of (7.1) is a function u ∈

W p,p′
(X, X∗) satisfying
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T∫
0

〈u̇(t), v(t)〉X∗(t),X(t) + 〈A(t)u(t), v(t)〉X∗(t),X(t) + λ(t;u(t), v(t))

=
T∫

0

〈f (t), v(t)〉X∗(t),X(t) ∀v ∈ L
p
X,

u(0) = u0.

Our aim in this section is to prove the next result.

Theorem 7.2. Under the above assumptions (i)-(v), given f ∈ L
p′
X∗ and u0 ∈ H0, there exists a 

unique weak solution u ∈W p,p′
(X, X∗) to (7.1).

A concrete example of (7.1) is the evolutionary p-Laplace equation as the next example 
demonstrates. Aside from this, equations of the form (7.1) may arise as regularisations of PDEs 
with a more complicated structure.

Example 7.3 (The p-Laplace equation on an evolving surface/domain). Let p ∈ (1, ∞) and take 
M(t) to be an evolving surface �(t) ⊂ R3 or domain �(t) ⊂ R2 under the same regularity 
assumptions as in 6.1. Define

X(t) =
{

W
1,p

0 (M(t)) : if M(t) = �(t)

W 1,p(M(t)) : if M(t) = �(t)

and the p-Laplace operator −�
p

g(t)
: X(t) → X∗(t) which has the action

〈−�
p

g(t)u, v〉X∗(t),X(t) :=
∫

M(t)

|∇g(t)u|p−2∇g(t)u · ∇g(t)v.

Take a constant α > 0.7 We consider the equation8

u̇ − �
p
gu + αu|u|p−2 + u∇g · w = f,

u(0) = u0,

which, if M(t) = �(t), we supplement with the boundary condition u = 0 on ∂�(t). The oper-
ator A is defined by A(t)(u) := αu|u|p−2 − �

p

g(t)u.
We have the Gelfand triple structure

X(t) ⊂ L2(M(t)) ⊂ X∗(t).

7 The choice of α = 0 is also possible if M(t) = �(t).
8 Observe that selecting p = 2 and α = 0 recovers the heat equation.
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This is obvious if p ≥ 2, and in the case 1 ≤ p < 2, recalling that the dimension of the manifold 
is 2, it follows from the Sobolev embedding

W 1,p(M(t)) ↪→ L2p/(2−p)(M(t)) ↪→ L2(M(t)).

Evidently, the pivot space is H(t) = L2(M(t)) and we are in the setting of §6.1.1 from where 
we identify the extra term in the definition of the time derivative to be (t)u = u∇g · w and we 
also have the evolving space equivalence property.

7.1. Proof of well-posedness

We now proceed to establish existence, uniqueness and stability of weak solutions via the 
Faedo–Galerkin method. We start by choosing an orthogonal basis {w0

j }j∈N for X0 and transport 

it along the flow to {wt
j := φtw

0
j }j∈N , which forms a basis for X(t) satisfying the following 

useful property

ẇt
j ≡ 0 ∀j ∈ N.

Define the approximation spaces

Vn(t) = span{wt
1, . . . ,w

t
n} and L

p
Vn

:= {η ∈ L
p
X : η(t) ∈ Vn(t), t ∈ [0, T ]} .

It follows that ∪nL
p
Vn

is dense in Lp
X . We also make use of the projection operator P t

n : H(t) →
Vn(t) ⊂ X(t) determined by the formula

(P t
nh − h,ϕ)H(t) = 0 for all ϕ ∈ Vn(t).

Lemma 7.4. For each n ∈ N , there exists a unique solution un ∈ L
p
Vn

to the Galerkin approxi-
mation

〈u̇n(t), v(t)〉X∗(t),X(t) + 〈A(t)un(t), v(t)〉X∗(t),X(t) + λ(t;un(t), v(t))

= 〈f (t), v(t)〉X∗(t),X(t) ∀v ∈ L
p
Vn

,

un(0) = P 0
n u0,

(7.2)

of the form un(t) =∑n
j=1 un

j (t)w
t
j .

The proof of this lemma is standard and is relegated to the appendix.

A priori estimates Test v = un in (7.2) to obtain, using Young’s inequality with ε and coercivity 
of the operator A,

1

2

d

dt
‖un(t)‖2

H(t) + Cc‖un(t)‖p

X(t)
≤ C1‖f (t)‖p′

X∗(t) + ε‖un(t)‖p

X(t)
+ C2‖un(t)‖2

H(t) + cc.

Choosing ε = Cc/2 we can manipulate the above and integrate it to get
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‖un(t)‖2
H(t) + Cc

t∫
0

‖un‖p

X(t) ≤ ‖u0‖2
H0

+ 2C1‖f ‖p′

L
p′
X∗

+ 2C2

t∫
0

‖un‖2
H(t) + 2T cc,

whence an application of Gronwall’s inequality implies that

(un)n is uniformly bounded in L∞
H ∩ L

p
X, (7.3)

(un(T ))n is uniformly bounded in H(T ).

Observe also that, due to Hölder’s inequality, we have for all η ∈ L
p
X∣∣∣∣∣∣

T∫
0

〈Aun,η〉X∗(t),X(t)

∣∣∣∣∣∣≤
T∫

0

Cb‖un‖p−1
X ‖η‖X + cb(t)‖η‖X(t)

≤ Cb‖un‖L
p
X
‖η‖L

p
X

+ ‖cb‖Lp′
(0,T )

‖η‖L
p
X

,

whence

(Aun)n is uniformly bounded in L
p′
X∗ . (7.4)

Remark 7.5. It is an open question whether P t
n : Vn(t) → Vn(t) is bounded uniformly in n when 

t > 0. Without an affirmative answer, it becomes more challenging to obtain a bound on u̇n in 
the dual space Lp

X∗ by the usual duality method but it is typically still possible by pulling back 
the equation onto the reference space and using the boundedness of P 0

n .

Existence, uniqueness, and stability of weak solutions For clarity of the argument, we proceed 
with several separate results. We start by identifying the limits of the approximating sequences. 
The bounds in (7.3)–(7.4) give the existence u ∈ L

p
X ∩ L∞

H , z ∈ H(T ) and χ ∈ L
p′
X∗ such that, up 

to a subsequence,

un
∗
⇀ u in L∞

H , un ⇀ u in L
p
X, un(T ) ⇀ z in H(T ), and Aun ⇀ χ in L

p′
X∗ .

We use these to pass to the limit in the approximating equations (7.2).

Proposition 7.6. The limit function u ∈W p,p′
(X, X∗) ∩ C0

H satisfies

u̇ + χ + u = f in L
p′
X∗ ,

u(0) = u0,

u(T ) = z.

Proof. For any v ∈ W p,p(Vn, Vn) we can integrate by parts in (7.2) and put the time derivative 
onto the test function:

d

dt
(un(t), v(t))H(t) + 〈Aun(t), v(t)〉X∗(t),X(t) = 〈f (t), v(t)〉X∗(t),X(t) + (un(t), v̇(t))H(t).
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For j ≤ n, take v(t) = ψ(t)wt
j with ψ ∈ C1([0, T ]), which clearly satisfies v ∈ W p,p(Vn, Vn). 

Integrating over time and then passing to the limit n → ∞, we obtain

(z,ψ(T )wT
j )H(T ) − (u0,ψ(0)wj )H0 +

T∫
0

〈
χ(t),ψ(t)wt

j

〉
X∗(t),X(t)

=
T∫

0

〈
f (t),ψ(t)wt

j

〉
X∗(t),X(t)

+
T∫

0

(u(t),ψ ′(t)wt
j )H(t).

(7.5)

Since {w0
j } is a basis for X0, given v ∈ X0, there exist coefficients aj ∈ R and a sequence 

vn =∑n
j=1 ajw

0
j such that vn → v in X0. Hence φtvn =∑n

j=1 ajw
t
j converges to φtv in X(t). 

Multiplying the above displayed equality by aj and summing up j = 1, ..., n gives

(z,ψ(T )φT vn)H(T ) − (u0,ψ(0)vn)H0 +
T∫

0

〈χ(t),ψ(t)φtvn〉X∗(t),X(t)

=
T∫

0

〈f (t),ψ(t)φtvn〉X∗(t),X(t)

+
T∫

0

(u(t),ψ ′(t)φtvn)H(t).

Take furthermore ψ ∈D(0, T ). Passing to the limit n → ∞ by using the dominated convergence 
theorem, we obtain

T∫
0

〈χ(t),ψ(t)φtv〉X∗(t),X(t) =
T∫

0

〈f (t),ψ(t)φtv〉X∗(t),X(t) +
T∫

0

(u(t),ψ ′(t)φtv)H(t).

This is exactly the statement

d

dt
(u(t), φtv)H(t) = 〈f (t) − χ(t),φtv〉X∗(t),X(t) ∀v ∈ X0.

Hence, by the characterisation offered in Proposition 4.4, it follows that u ∈W p,p′
(X, X∗) with

u̇ + u − χ = f
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as desired. The fact that u ∈ C0
H follows from the continuous embedding W p,p′

(X, X∗) ↪→ C0
H .

To check the initial condition, let v ∈ W p,p′
(X, X∗). Using the transport formula in Theo-

rem 3.21 and the equation for u, we have

(u(T ), v(T ))H(T ) − (u(0), v(0))H0 =
T∫

0

〈u̇(t) + (t)u(t), v(t)〉X∗(t),X(t) + 〈v̇(t), u(t)〉X∗(t),X(t)

=
T∫

0

〈v̇(t), u(t)〉X∗(t),X(t) + 〈f (t) − χ(t), v(t)〉X∗(t),X(t) .

Taking v(t) = ψ(t)wt
j for arbitrary j ∈N and ψ ∈ C1([0, T ]), this becomes

(u(T ),ψ(T )wT
j )H(T ) − (u(0),ψ(0)wj )H0

=
T∫

0

〈
ψ ′(t)wt

j , u(t)
〉
X∗(t),X(t)

+
〈
f (t) − χ(t),ψ(t)wt

j

〉
X∗(t),X(t)

.

Comparing this with (7.5), we see that

(u(T ),ψ(T )wT
j )H(T ) − (u(0),ψ(0)wj )H0 = (z,ψ(T )wT

j )H(T ) − (u0,ψ(0)wj )H0 .

Picking ψ such that ψ(T ) = 0 removes the first term on both sides and then the density of {w0
j }

in H0 implies that u(0) = u0. A similar argument gives the final condition. �
The final step for existence is now to identify the nonlinear term χ in the equation. In the 

classical setting, the proof of the statement relies on the monotonicity of the operator A, see for 
example [56, Lemma 30.6]. In our case, the presence of  in the equation (and integration by 
parts formulae) means that in general, the elliptic operator A + is non-monotone. However, as 
 is a lower order term, we are able to mitigate its effects by using an exponential scaling trick.

Proposition 7.7. We have χ = Au in Lp′
X∗ .

Proof. Let us define, for γ > 0 to be chosen later, the functions

v(t) = e−γ tu(t) and vn(t) = e−γ tun(t).

Since e−γ t belongs to L∞(0, T ), vn ∈ L
p
Vn

and we have

vn
∗
⇀ v in L∞

H and vn ⇀ v in L
p
X.

Define also χγ (t) = e−γ tχ(t) and Aγ (t)ξ = e−γ tA(t)eγ t ξ , which is still a monotone operator. 
Noting that
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v̇n(t) = −γ vn(t) + e−γ t u̇n(t) and v̇(t) = −γ v(t) + e−γ t u̇(t),

it follows that the new approximations (vn)n and the function v satisfy

〈v̇n + Aγ vn, η〉X∗(t),X(t) + 〈(γ + )vn, η〉X∗(t),X(t) = 〈e−γ tf, v〉X∗(t),X(t) ∀η ∈ L
p
Vn

,

〈v̇ + χγ ,η〉X∗(t),X(t) + 〈(γ + )v,η〉X∗(t),X(t) = 〈e−γ tf, v〉X∗(t),X(t) ∀η ∈ L
p
X.

(7.6)

Now define

Lγ (t) : X(t) → X∗(t) by
〈
Lγ (t)v, η

〉
X∗(t),X(t)

= 1

2
〈(2γ + )v,η〉X∗(t),X(t).

We choose the constant γ in such a way that Lγ is monotone (in the case of the p-Laplace 
equation, any γ satisfying 2γ ≥ ‖∇g · w‖L∞ works, and in general such a choice is possible 
due to Assumption 3.5 (iii), see also the third condition in Remark 3.13). Now, on the one hand, 
testing (7.6) with η = v leads to

1

2

d

dt
‖v‖2

H(t) + 〈χγ +Lγ v, v
〉
X∗(t),X(t)

= 〈e−γ tf, v
〉
X∗(t),X(t)

,

which we integrate over [0, T ] to obtain

T∫
0

〈
χγ +Lγ v, v

〉
X∗(t),X(t)

=
T∫

0

〈
e−γ tf, v

〉
X∗(t),X(t)

+ ‖u0‖2
H0

2
− e−γ T ‖u(T )‖2

H(T )

2
.

(7.7)

On the other hand, the same calculation for the approximation vn now gives

T∫
0

〈
(Lγ + Aγ )vn, vn

〉
X∗(t),X(t)

=
T∫

0

〈
e−γ tf, vn

〉
X∗(t),X(t)

+ ‖Pnu0‖2
H0

2
− e−γ T ‖un(T )‖2

H(T )

2
,

whence taking the limit superior and using the weak lower-semicontinuity of norms, we obtain

lim sup
n

T∫
0

〈
(Aγ +Lγ )vn), vn

〉
X∗(t),X(t)

≤
T∫

0

〈
e−γ tf, v

〉
X∗(t),X(t)

+ ‖u0‖2
H0

2
− e−γ T ‖u(T )‖2

H(T )

2
.

(7.8)

Combining (7.7) with (7.8) then gives

T∫
0

〈
χγ +Lγ v, v

〉
X∗(t),X(t)

≥ lim sup
n

T∫
0

〈
(Aγ +Lγ )vn, vn

〉
X∗(t),X(t)

. (7.9)
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Now take an arbitrary η ∈ L
p
X . Monotonicity of Aγ +Lγ implies that 

〈
(Aγ +Lγ )(vn) − (Aγ +

Lγ )(η), vn − η
〉≥ 0, which we can expand to obtain

T∫
0

〈
(Aγ +Lγ )vn, vn

〉
X∗(t),X(t)

≥ 〈(Aγ +Lγ )vn, η
〉
X∗(t),X(t)

+ 〈(Aγ +Lγ )η, vn − η
〉
X∗(t),X(t)

.

Taking the limit superior and using (7.9) on the left-hand side and the convergence results on the 
right-hand side, we get

T∫
0

〈
χγ +Lγ v, v

〉
X∗(t),X(t)

≥ 〈χγ +Lγ v, η
〉
X∗(t),X(t)

+ 〈(Aγ +Lγ )η, v − η
〉
X∗(t),X(t)

.

This reads

T∫
0

〈
χγ +Lγ v − Aγ η −Lγ η, v − η

〉
X(t),X∗(t) ≥ 0.

To conclude the proof we apply the well-known Minty’s monotonicity trick, which gives χγ =
Aγ v and hence χ = Au. �

All in all, combining the previous results shows that the limit function u is indeed a weak 
solution as per Definition 7.1. Finally, the result below establishes stability of solutions with 
respect to initial conditions and uniqueness follows as a consequence, concluding the proof of 
Theorem 7.2.

Proposition 7.8. If u1 and u2 are weak solutions of (7.1) corresponding to initial data u10 and 
u20, then

‖u1(t) − u2(t)‖H(t) ≤ eCwt/2‖u10 − u20‖H0 .

In particular, weak solutions are unique.

Proof. By testing the equation for both u1 and u2 with v = u1 − u2 and subtracting we obtain

1

2

d

dt
‖u1 − u2‖2

H(t) + 〈Au1 − Au2, u1 − u2〉X∗(t),X(t) ≤ Cw

2
‖u1 − u2‖2

H(t).

Monotonicity of A implies that we can neglect the second term on the left-hand side and then 
Gronwall’s inequality gives the result. �
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Appendix A. Technical results

Lemma A.1. The derivative of A0
t = J 0

t (D�0
t )

−1(D�0
t )

−ᵀ satisfies

∂tA0
t = φ−t (∇ · w(t))A0

t − J 0
t (D�0

t )
−1(φ−t (Dw(t)) + (φ−t (Dw(t)))

ᵀ
)(D�0

t )
−ᵀ

.

Proof. To ease presentation, we define Dt = D�0
t . We begin with

∂tA0
t = J 0

t φ−t (∇ · w(t))(Dt )
−1(Dt )

−ᵀ + J 0
t ∂t ((Dt )

−1(Dt )
−ᵀ

).

To simplify the second term, using the formula (M−1)′ = −M−1M ′M−1 for differentiating the 
inverse of a matrix M , and the identity

∂tDt = φ−t (Dw(t))Dt ,

we get

∂t ((Dt )
−1(Dt )

−ᵀ
) = −(Dt )

−1φ−t (Dw(t))(Dt )
−ᵀ − (Dt )

−1(φ−t (Dw(t)))
ᵀ
(Dt )

−ᵀ
.

Hence

∂tA0
t = J 0

t φ−t (∇ · w(t))(Dt )
−1(Dt )

−ᵀ − J 0
t ((Dt )

−1φ−t (Dw(t))(Dt )
−ᵀ

+ (Dt )
−1(φ−t (Dw(t)))

ᵀ
(Dt )

−ᵀ
)

= φ−t (∇ · w(t))A0
t − J 0

t (Dt )
−1(φ−t (Dw(t)) + (φ−t (Dw(t)))

ᵀ
)(Dt )

−ᵀ
. �

Let us now give an expression ∂tA0
t and see how it acts.

Lemma A.2. For v ∈ H 1
0 (�(t)), we have the identity∫

�(t)

J t
0∇v(t)

ᵀ
(D�t

0)
−1φt (∂tA0

t )(D�t
0)

−ᵀ∇ψ

=
∫

�(t)

∇v(t)
ᵀ∇ψ∇ · w(t) − ∇v(t)

ᵀ
(Dw(t) + (Dw(t))

ᵀ
)∇ψ

for all ψ ∈ H 1(�(t)).
0
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Proof. The formula φt (∇φ−t v) = φt (D�0
t )

T ∇v and Lemma A.1 allows us to write∫
�0

∇ṽ(t)
ᵀ
∂tA0

t ∇ϕ =
∫

�(t)

∇v(t)
ᵀ∇ψ∇ · w(t) − ∇v(t)

ᵀ
(Dw(t) + (Dw(t))

ᵀ
)∇ψ. �

Proof of Lemma 7.4. Denoting the solution vector Un(t) = (un
1(t), . . . , un

n(t)), the linear terms

B(t)ij = (wt
i ,w

t
j )H(t), G(t)ij = λ(t;wt

i ,w
t
j ), F (t)j =

〈
f (t),wt

j

〉
X∗(t),X(t)

,

and the nonlinear term

A(t;Un(t))j =
〈
A(t)un(t),w

t
j

〉
X∗(t),X(t)

,

the problem (7.2) is equivalent to the system of ODEs

B(t)U̇n(t) + A(t;Un(t)) + G(t)Un(t) = F(t),

Un(0) = (α1, . . . , αn),

where {αj } are the coefficients of Pnu0 =∑n
j=1 αjw

0
j . Since B(t) is a Gram matrix (and hence 

invertible) and the operators defining the lower-order terms are measurable in time and continu-
ous in ‘space’, the conclusion follows from the classical Carathéodory existence theory. �
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