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Knowledge Distillation in Histology Landscape
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Abstract— Automatic tissue classification is a funda-
mental task in computational pathology for profiling tumor
micro-environments. Deep learning has advanced tissue
classification performance at the cost of significant com-
putational power. Shallow networks have also been end-to-
end trained using direct supervision however their perfor-
mance degrades because of the lack of capturing robust
tissue heterogeneity. Knowledge distillation has recently
been employed to improve the performance of the shallow
networks used as student networks by using additional
supervision from deep neural networks used as teacher
networks. In the current work, we propose a novel knowl-
edge distillation algorithm to improve the performance of
shallow networks for tissue phenotyping in histology im-
ages. For this purpose, we propose multi-layer feature dis-
tillation such that a single layer in the student network gets
supervision from multiple teacher layers. In the proposed
algorithm, the size of the feature map of two layers is
matched by using a learnable multi-layer perceptron. The
distance between the feature maps of the two layers is then
minimized during the training of the student network. The
overall objective function is computed by summation of
the loss over multiple layers combination weighted with a
learnable attention-based parameter. The proposed algo-
rithm is named as Knowledge Distillation for Tissue Pheno-
typing (KDTP). Experiments are performed on five different
publicly available histology image classification datasets
using several teacher-student network combinations within
the KDTP algorithm. Our results demonstrate a significant
performance increase in the student networks by using the
proposed KDTP algorithm compared to direct supervision-
based training methods.

Index Terms— Knowledge distillation, features distilla-
tion, histology image classification, tissue phenotyping.

I. INTRODUCTION

The development of modern slide scanners for capturing
multi-gigapixel Whole Slide Images (WSIs) has enabled sig-
nificant growth of computational pathology [9], [13], [30],
[35], [45], [49]. In clinical practice, these WSIs are considered
as a gold standard for better cancer grading, improved diag-
noses, and prognosis [47]. These WSIs have been leveraged
by many machine learning techniques to facilitate clinicians
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and pathologists to assess the degree of malignancy of cancer
by automatically analyzing the tumor micro-environment [47],
[54]. A typical WSI may contain tens of thousands of pixels at
the highest magnification level. Such enormous sizes of WSIs
pose significant challenges to machine learning techniques
due to the increased demand for computational power and
storage capacity. To handle this challenge, WSIs have often
been divided into patches of relatively smaller size which are
then processed by the machine learning techniques as shown
in Fig. 1. The main aim of machine learning techniques is to
assist pathologists in in improving their diagnosis performance
by increasing reproducibility and reducing inter-observer vari-
ations [11], [28], [37], [53].

Automatic tissue phenotyping in histology images is one
of the important tasks in computational pathology [4], [19],
[20], [44]. One of its aims is to learn cancer biomarkers
within the tumor-infiltrating lymphocytes landscape for better
cancer diagnosis, grading, prognosis, and evaluating response-
to-treatment [13], [22], [30], [32]. It also has an important
role in profiling intra-tumor heterogeneity, epigenetics, and
cancer progression [34]. Four different examples of tissue
classifications are shown in Fig. 1. This fundamental problem
has been addressed by many machine learning researchers.
However, wide variations of textures, tissue structure, and
heterogeneity in histology images pose significant challenges
to machine learning techniques [22]. In order to capture
such heterogeneity, deep neural networks have been employed
which require a large number of annotated training samples to
learn rich feature representations. Such deep neural networks
have obtained excellent results however, expensive compu-
tational resources are also required in addition to the huge
volume of annotated training WSIs [45], [47]. Therefore, such
tissue classification tools are not feasible on devices with
limited resources, e.g., embedded devices.

In order to reduce the amount of training data as well
as computational resources, knowledge distillation techniques
have recently been proposed that effectively train a lightweight
student network from a heavyweight teacher network [14].
The generalization ability of the student model can be im-
proved by training it to mimic the feature representations
and matching the predictions of the teacher model. Recently,
such techniques have also obtained significant attention in
the machine learning community for object classification [6],
action recognition [31], and object tracking applications [42].
In computational pathology, knowledge distillation can reduce
the resource requirements at the inference time thus improving
the response time and reducing the cost of equipment. Also,
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Fig. 1. Different applications of the tissue classification in computational pathology: (a) Tissue phenotyping of ColoRectal Cancer (CRC) in Whole
Slide Image (WSI) selected from TCGA [46] on the top and corresponding maps of tissue classes on the bottom. (b) Colon cancer classification
showing high grade, low grade, and normal grade tissue images from top to bottom [41]. (c) Gastrointestinal cancer classification showing tissue
images of micro-satellite stable on the left and micro-satellite instable on the right [23].

the generalization capability of the student model trained with
knowledge distillation is much better than the one trained
on just the tissue phenotyping data. It is because the teacher
network leverages the benefits of large-scale datasets such as
ImageNet for pre-training. This knowledge is then transferred
to the student model in the context of tissue phenotyping
resulting in improved performance. However, the strength
of knowledge distillation techniques is not fully explored in
computational pathology research for the purpose of training
lightweight models for tissue classification.

In the current work, we bridge this research gap by propos-
ing a novel knowledge distillation algorithm for histology
image classification task. Most initial knowledge distillation
techniques proposed using prediction of the teacher model to
be used as a target for the student model [17], [57]. Although
it produces good results, however, the information is quite
abstract at the final layer. The student model gets only the
opportunity to learn the information kept by the final layers
ignoring rich information contained in the intermediate layers
of the teacher model [14]. In order to exploit this information,
feature-map-based knowledge distillation has been proposed
in which the feature maps of a student layer are matched with
the feature maps of a particular teacher layer [1], [14]. These
methods improved from the initial knowledge distillation work
however, the supervision provided by the teacher network is
still limited to the number of layers in the student network.
In order to handle this drawback, we propose multi-layer

supervision for a single student layer. More precisely, we
propose each student layer be supervised by multiple teacher
layers providing better knowledge distillation compared to the
existing feature-based techniques.

In the proposed algorithm, a lightweight student network
is trained to mimic the rich feature representations of a
heavyweight teacher network which is pre-trained using con-
ventional schemes. Each layer in the student model gets
supervision from multiple layers of the teacher model. The
existing feature map-based knowledge distillation techniques
proposed consecutive teacher layers to supervise the corre-
sponding student layers in the same order. We however pro-
pose a distributed supervision covering the whole spectrum of
feature maps in the teacher model. It is obtained by providing
backward links from the latter teacher layers to the earlier
student layers such that fewer student layers cover most of the
teacher layers. The multi-layer supervision enables the student
layers to encode rich information which was not possible from
direct training of the student model.

In order to make the distributed supervision more effective,
an attention mechanism is exploited which facilitates better
knowledge distillation from multiple teacher layers to a single
student layer. For this purpose, we compute self-similarity
between different student and teacher layers separately. The
similarity matrices are then non-linearly transformed into
queries and keys such that the overall algorithm performance
improves [48]. This is obtained by using two different fully
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connected neural networks. The queries and keys are then pro-
jected to obtain self-attention weights which appropriate the
supervision of different teacher layers to a particular student
layer. These self-attention weights transfer the rich semantic
information contained in the later layers of the teacher model
to the earlier layers of the student model through knowledge
distillation resulting in significant performance improvements.

The proposed algorithm is dubbed as Knowledge Distilla-
tion for Tissue Phenotyping (KDTP). A large number of ex-
periments are performed on five different tissue classification
datasets [8], [19], [22], [23], [41] using many combinations
of the teacher-student models with KDTP algorithm. In some
of these combinations, we observe the improved performance
of the student model even beyond that of the teacher model.
For instance, ResNet-18 when used as the student network and
trained using our proposed KDTP algorithm has consistently
outperformed the ResNet-50 used as the teacher model. This
demonstrates the effectiveness of using the proposed algorithm
for the tissue classification task. The main contributions of the
current work are as follows:

1) In this work, we improve the tissue classification perfor-
mance using a knowledge distillation algorithm that in-
cludes both multi-layer supervisions as well as response-
level distillation.

2) A novel multi-layer self-attention-based feature maps
distillation is proposed which facilitates multiple teacher
layers to supervise a single student layer.

3) A novel forward links-based distributed knowledge dis-
tillation is proposed which distributes the teacher super-
vision to each student layer.

4) Extensive teacher-student model combinations are tested
on five different datasets to validate the effectiveness of
the proposed algorithm.

The rest of this paper is organized as follows: Section
II presents a literature review on tissue phenotyping and
knowledge distillation methods. Section III explains the pro-
posed algorithm in detail. Section IV presents the exhaustive
experimental evaluations while Section V draws the conclusion
and future directions of the current work.

II. LITERATURE REVIEW

We divide the related work into two different sections
to briefly summarize state-of-the-art tissue phenotyping and
knowledge distillation methods.

A. Tissue Phenotyping Methods
The classical tissue phenotyping approaches compute local

texture features such as local binary patterns and Gabor
features which are then used for classifier training [2], [24],
[40]. For instance, Kather’s et al., used a multi-texture fea-
ture analysis method for tissue phenotyping of eight distinct
classes in CRC histology images [24]. Similarly, a dictionary
learning-based approach utilizing Gabor features has also been
proposed by Sarkar et al., [40]. Other classical texture features-
based approaches are also proposed in [2].

Moving towards deep learning era, state-of-the-art tissue
phenotyping performance has been advanced [22], [45], [52].

In end-to-end deep learning-based methods, a Convolutional
Neural Network (CNN) is trained on a set of training images
for the task of patch-based tissue phenotyping. For instance,
Bejnordi et al., employed three different networks to classify
stromal and epithelium tissues from breast cancer WSIs [12].
In some other methods, the CNN’s have also only been
used as a features extractor component to training a classifier
[3]. For instance, AlexNet architecture [27] was used for
deep features extraction by Yu et al., [52]. The extracted
features are then used to train a linear support vector machine
classifier for histology image segmentation. Some studies also
consider fine-tuning the existing trained networks [22], [40].
For instance, Kathers et al., fine-tuned a VGG-19 network
[43] on nine distinct tissue classes for the estimation of tumor-
stroma scores which is then used for a large-scale study for
survival prediction analysis [22]. Some other researchers have
recently proposed biologically more meaningful features based
on cellular interactions for tissue classification [19], [20].
Han et al. proposed weakly supervised semantic segmentation
method [15]. They used patch-level labels for the estimation of
pixel-level labels using weak supervision for tissue semantic
segmentation. Li et al. proposed a pyramidal deep broad
learning method for tissue classification [29].

In the current work, we propose to fine-tune a student
network using a pre-trained teacher network for the purpose of
tissue phenotyping. Our approach is based on multiple types
of knowledge distillation supervision including multi-layer
feature maps-based and network prediction-based supervision.
To the best of our knowledge, no such knowledge distilla-
tion technique containing multi-layer feature supervision has
previously been proposed for tissue phenotyping in histology
images.

B. Knowledge Distillation Techniques

Earlier knowledge distillation methods relied on the predic-
tions of a larger teacher neural network to distill knowledge
to the student network [14], [17]. For instance, Hinton et al.,
used the predictions of the teacher network as soft targets
for the student network for image classification problem [17].
Zagoruyko et al., used the attention maps of the teacher
network to train the student network [55]. Thus the attention
is transferred from the teacher to the student improving
the student’s classification performance. Wang et al., also
transferred attention using selected features for knowledge
distillation [50]. The importance of the features is dynamically
established during the knowledge distillation step. Chen et al.,
used the logits for the knowledge transfer in object detection
task [7]. Zhang et al., employed the heatmaps generated by
the teacher model for knowledge distillation to the student
network in human pose estimation task [56]. Zhang et al.,
extended the idea of using a single teacher network towards
using multiple teachers or students [57]. His work proposed
mutual learning of multiple deep networks using logits. These
early studies reported improved performance in different tasks
however, these methods rely on the final output of the teacher
network which is difficult for the student network to learn
especially at the initial and intermediate layers [14].
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In addition to the teacher network response, feature maps
at the intermediate layers have also been used for distilling
knowledge to the student network [1]. A variety of feature-
based knowledge distillation methods have been proposed in
the literature [1], [10], [14]. For instance, Romero et al., di-
rectly matched the feature activations of the teacher model and
the student model for knowledge distillation [1]. Passalis and
Tefas distilled knowledge by using the probability distribution
in the features space [38]. Kim et al., proposed an improved
form of the intermediate representation for better knowledge
transfer using feature maps [26]. Jin et al., used the concept of
hint layers to better supervise the student model [21]. Chen et
al., proposed to adaptively assign attention weights to different
teacher layers which are then used to distill knowledge to
student model in a cross-layer manner [6].

Despite significant progress in knowledge distillation re-
search, its applications in computational pathology are quite
sparse [5], [25], [36]. Chaudhury et al., proposed mutual learn-
ing of teacher and student networks for breast cancer classifi-
cation [5]. Marini et al., also proposed a knowledge distillation
method for Gleason score classification in prostate cancer
images [36]. Recently, Dipalma et al., proposed resolution-
based distillation for improving histology image classification
[10]. Ke et al., used the self-distillation model for identi-
fying patch-level MSI and MSS in histology images [25].
In contrast to these knowledge distillation approaches, we
propose multi-layer supervision for each student layer which is
distributed on multiple teacher layers. The student supervision
is distributed over all intermediate layers of the larger teacher
model by exploiting an attention mechanism. To the best of
our knowledge, our proposed algorithm is novel not only
in computational pathology applications but also in general
knowledge distillation research.

III. PROPOSED METHODOLOGY

In this section, we explain the proposed Knowledge Distil-
lation for Tissue Phenotyping (KDTP) algorithm in detail. Our
KDTP algorithm consists of one deeper teacher network and
one shallower student network. Both networks are pre-trained
on ImageNet dataset [39] for the natural image classification
task. Both networks are then fine-tuned on different histol-
ogy image datasets for classification tasks shown in Fig. 1.
The fine-tuned student network is then further trained using
the proposed knowledge distillation algorithm consisting of
teacher response supervision as well as intermediate repre-
sentations supervision. Our proposed knowledge distillation
algorithm is shown in Fig. 2. The details of the proposed
algorithm are discussed in the following subsections.

1) Teacher Response-based Knowledge Distillation: Let
X = {di, yi}ni=1 be the training dataset consisting of n tissue
instances from c distinct tissue classes, where di is the feature
vector and yi is the corresponding ground-truth label in the
form of one hot-encoded vector. The teacher and student
logits are normalized using a soft-max layer with a softening
parameter 0 < σ ≤ 1.0 to get their respective responses as
[14]:

rs/t(i, j) =
exp(σg(i, j))∑c
i=1 exp(σg(i, j))

, (1)

where g(i, j) is the logit corresponding to j-th class and i-
th instance in a batch and rs/t is the normalized response
of student or teacher model. The response rt ∈ Rb×c of the
teacher model for each input tissue instance di in batch b is
used to supervise the corresponding student response rs ∈
Rb×c using Kullback Leibler (KL) divergence as [14]:

KL(rs||rt) =
b∑

i=1

c∑
j=1

rs(i, j) log
rs(i, j)

rt(i, j)
, (2)

where b is mini-batch size. In addition to KL, the multi-class
cross-entropy classification loss function LCE(yi, rs) is also
used to train the student network [14], [17]. The combined
response-based loss function to be minimized while training
the student network is given as follows:

Lr = LCE(yi, rs) +
1

α2
KL(rs||rt), (3)

where α is the hyper-parameter that is used to ensure the
relative importance of both loss terms.

2) Teacher Intermediate Representations-based Knowledge
Distillation: The intermediate representation supervision is ob-
tained by minimizing some distance measures between the
feature maps of the teacher and the student at intermediate
layers. Let sp(i) ∈ Rcp×hp×wp and tq(i) ∈ Rcq×hq×wq be the
feature maps of the p-th student layer and q-th teacher layer
for i-th tissue image, where c, h, and w represent the number
of channels, height, and the width of the respective feature
maps. The feature-based knowledge distillation is obtained by
minimizing the following loss function [14], [17]:

Lpq(i) = ||fs(sp(i))− ft(tq(i))||2, (4)

where fs(·) and ft(·) are the transformation functions to match
the spatial dimensions of the teacher and student features
map using the pooling operations and Multi-Layer Perceptron
(MLP). Since a single student layer gets supervision from
multiple teacher layers, therefore, the overall features-based
distillation loss is given by:

LIR =

ps∑
p=1

qt∑
q=1

b∑
i=1

np,q(i)Lpq(i), (5)

where ps and qt are the total number of layers in the student
and teacher networks. The parameter np,q(i) is an attention
map for each position in a batch and is learned in an end-to-
end manner as discussed in the following section. The overall
objective function of the proposed algorithm is given by:

Ltotal = Lr +
1

β
LIR, (6)

where β is a hyper-parameter to be learned on the training
dataset.
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Fig. 2. System diagram of the proposed Knowledge Distillation for Tissue Phenotyping (KDTP) algorithm. As an example, a teacher network
ResNet-50, and a student network VGG-16 are shown. Teacher-student feature maps are first projected to a common subspace representation and
then the attention weights np,q are learned in an end-to-end manner. Only the student network is re-trained by mimicking features from the teacher
model.

A. Learning Transformation Functions

In order to compute the similarity between teacher and
student intermediate representations as shown by Eq. 4, the
spatial dimensions of the two layers should be transformed to a
common subspace using fs(·) and ft(·). These transformations
are obtained by first applying a pooling operation on the larger
height and width of any of the two layers to match it with the
smaller dimension. Then, we use an MLP to reduce the larger
number of channels to the smaller ones in the two layers.
This MLP consists of three sequential layers each comprising
3 × 3 convolutional filters. The number of filters in each
layer is selected such that the number of target channels is
obtained at the output. The weights of these MLPs are learned
in an end-to-end fashion while training the overall network.
In order to reduce the number of these MLPs for the deeper
teacher-student combinations, we employ them at the block
level instead of the layer level.

B. Attention mechanism

Layer semantics in a deep neural network varies with the
depth. Earlier layers provide local semantics while the later
layers provide global context. For effective feature map-based
knowledge distillation, an attention mechanism is required to
guide the supervision process. It is required to identify the
effectiveness of a particular teacher layer to be the supervisor
of a specific student layer. For this purpose, we compute the
similarity between the feature maps for each teacher layer and
the student layer within a particular batch. More specifically,
the feature map at the p-th student layer sp ∈ Rcp×hp×wp is
vectorized as Rcphpwp×1. For the i-th instance of the tissue
image within the batch b, the similarity map is given by:

ρs(i, p) = S>p sp(i), (7)

where Sp is the matrix of feature maps at layer p for a full
batch and ρs(i, p) ∈ Rb is the similarity of i-th instance sp(i)
with all other vectors in the batch b. Similarly, for the teacher
network, the similarity of the same image i within the same
batch b for the q-th layer is given by:
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ρt(i, q) = T>q tq(i), (8)

where Tq is the matrix of feature maps at layer q for a full
batch and ρt(i, q) ∈ Rb is the similarity of i-th instance tq(i)
with all other vectors in a batch. The batch similarity vectors
are then transformed using two different fully connected net-
works θs(i, p) = FCs(ρs(i, p)) and θt(i, q) = FCt(ρs(i, q)),
where θs(i, p) ∈ Rz and θt(i, q) ∈ Rz are transformed
similarity vectors having dimension z < b, the batch size.
Each of these fully connected networks shares their parameters
across all batches and all images. These fully connected
networks are learned in an end-to-end fashion to minimize
student network loss.

Motivated by self-attention mechanisms in [48], [51], the
attention weights are computed by using the exponential of
the similarity function as:

ap,q(i) = exp(θs(i, p)
>θt(i, q)), (9)

the sum of attention weights for a particular student layer
across all teacher layers is given by:

Sp(i) =

qt∑
q=1

ap,q(i), (10)

where qt is the number of teacher layers. The normalized
attention weights are then given by:

np,q(i) =
ap,q(i)

Sp(i)
, (11)

In this formulation, the sum of normalized attention weights
for a particular instance and fixed student layer turns out to
be one across all teacher layers. This will ensure that the
feature magnitude is not amplified due to the usage of attention
weights. The attention weight np,q(i) is then used in Eq. 5 for
the computation of intermediate representation loss.

IV. EXPERIMENTAL EVALUATIONS

In this section, we evaluate the proposed KDTP algorithm
on five publicly available benchmark datasets including Inva-
sive Ductal Carcinoma (IDC) classification in breast cancer
histology images [8], Colon cancer classification into high,
low, and normal grades [41], tissue phenotyping using CRC-
TP dataset [19], Kather’s Colon Cancer dataset [22], and
classification of micro-satellite stability/instability in gastroin-
testinal cancer [23]. The results are compared with several
baseline individual teacher and student networks as discussed
in the following sub-sections.

A. Teacher-Student Architectures
We employ a number of teacher-student combinations based

on well-known deep networks including VGG [43], ResNet
[16], MobileNet [18], and ShuffleNet [33] for evaluation. For
rigorous evaluation of the proposed algorithm, the shallow
and deeper versions of these networks are employed in our
experiments. For the case of the student network, we employed
VGG-8, VGG-13, VGG-19, ShuffleNetV1, ShuffleNetV2, and

MobileNetV2. For the case of the teacher network, we used
ResNet-8, ResNet-34, ResNet-50, VGG-19, and ShuffleNetV2.

All networks are pre-trained on the ImageNet dataset.
We first fine-tuned teacher models on the aforementioned
histology image datasets for the tissue classification task.
Also, the last layer of each student model is fine-tuned to a
particular histology image dataset while the rest of the network
weights are kept frozen. These networks are then used for
the evaluation of the proposed KDTP algorithm We set a
momentum of 0.9 in all our experiments for network training
using stochastic gradient descent. We also employed data
augmentation techniques including horizontally and vertically
flipped images, rotation using five different angles, and image
blurring. We set the initial learning rate as 0.01 and batch size
of 64 in all architectures. We fine-tuned all the student and
teacher models using 240 epochs.

B. Training Details of KDTP

To minimize our proposed KDTP loss function (Eq. 6), we
set the hyper-parameter β to 2.5 × 10−3 and the softening
parameter σ in Eq. 3 to 0.25. The transformation functions
used in Eq. 5 consist of a stack of three layers with 1 × 1,
3×3, and 1×1 convolutions to match the dimensions of teacher
and student feature maps. The transformation functions are
learned in an end-to-end manner. The fully connected layers
of the attention mechanism FCs and FCt are also learned in
an end-to-end manner.

C. Datasets

1) CRC-TP Dataset [19]: CRC-TP dataset is proposed by
Javed et al., consisting of 280k patches belonging to seven dis-
tinct tissue classes including tumor, stroma, complex stroma,
smooth muscle, necrotic, normal benign, and lymphocytes.
The dataset is generated using 20 H & E stained WISs of
20 distinct CRC patients. Each patch in this dataset consists
of 150× 150 pixels extracted at 20× magnification level. We
employed the same training and testing splits of the seven
tissue phenotypes provided by the respective authors.

2) Breast Cancer Dataset [8]: This dataset is proposed by
Cruz-Roa et al., and used to classify positive and negative
patches of IDC. It consists of 277,524 patches extracted at
40× resolution level from 162 WSIs. The size of each patch
is 50 × 50 pixels. Out of those, 198,738 patches belong to
negative IDC and 78,786 patches belong to positive IDC. Our
algorithm is evaluated on this dataset for binary classification
problems using 70% of training and 30% of testing patches.

3) Kather’s Colon Cancer Dataset (KCCD) [22]: It contains
nine different tissue classes: Muscle, Normal colon mucosa
(Norm), Tumor colorectal adenocarcinoma epithelium (Tu-
mor), background, adipose, Mucus, Lymphocytes (Lympho),
Debris, and Complex stroma distributed over 100K training
samples and 7.18K testing samples. Each sample has a reso-
lution of 224×224 pixels and is extracted at 20× magnification
level.
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TABLE I
PERFORMANCE COMPARISON OF TEACHER-STUDENT MODELS FOR TISSUE IMAGE CLASSIFICATION ON CRC-TP DATASET [19] USING WEIGHTED

AVERAGE SCORE F̂ ON SEVEN DISTINCT CLASSES.

Only Student Model VGG-8 VGG-13 ShuffleNetV2 ShuffleNetV2 MobileNetV2 ShuffleNetV1 ResNet-18 ShuffleNetV1 MobileNetV2 MobileNetV2 VGG-8
76.60% 77.88% 73.33% 73.33% 70.16% 72.56% 80.11% 72.56% 70.16% 70.16% 76.60%

KDTPr 78.10% 79.00% 74.60% 78.11% 73.20% 75.98% 82.33% 75.40% 73.70% 72.22% 78.55%
KDTP1−1 82.40% 82.22% 77.20% 82.22% 77.20% 78.11% 84.66% 77.01% 77.33% 74.22% 79.91%

Proposed KDTP 84.30% 84.50% 79.10% 84.60% 82.29% 81.70% 86.10% 80.02% 83.33% 76.66% 80.22%

Only Teacher Model ResNet-50 ResNet-50 VGG-13 ResNet-50 ResNet-18 ResNet-50 ResNet-50 ResNet-18 ResNet-50 ShuffleNetV2 VGG-13
81.8% 81.8% 77.88% 81.8% 80.11% 81.8% 81.8% 80.11% 81.8% 73.33% 77.88%

4) Gastrointestinal cancer classification Dataset [23]: This
dataset contains 218,578 unique tissue patches derived from
histological images of gastric cancer patients in the TCGA co-
hort [46]. All images are derived from formalin-fixed paraffin-
embedded (FFPE) diagnostic slides. This dataset is used for
the binary classification of Micro-satellite Instablity (MSI) and
stability (MSS). The training and testing images of each class
are provided by the original author. The training and testing
splits of MSI consist of 50285 and 27904 unique tissue images.
The MSS training and testing splits contain 50285 and 90104
samples.

5) Colorectal Cancer Grading Dataset (CCGD) [41]: The
extended CRC dataset consists of 300 visual fields with an
average size of 5000× 7300 pixels [41]. This dataset is used
for three class classification of tissue images into normal, low,
and high-grade cancer. Similar to [41], we have also performed
a three-fold cross-validation experiment. For each class in each
fold, we extracted 25,000 patches each of size 224×224 from
the visual fields. Each fold is once used for training, testing,
and validation.

D. Performance Measures
The tissue image classification performance is evaluated

using the weighted average F̂ score. For a particular class
z, we compute Fz score as:

Fz = 2× Precisionz ×Recallz
Precisionz +Recallz

, where

Recallz =
TPz

TPz + FNz
, P recisionz =

TPz

TPz + FPz
,

(12)

where TPz denotes the True Positives which are the number
of tissue images belonging to class z and also predicted as
class z, FNz is the False Negatives which are the number of
tissue images belonging to class z but predicted as some other
class, FPz are the False positives which are tissue images not
belonging to class z but predicted as class z. The aim is to
maximize Fz measure so that its value is close to one. The
weighted F̂ measure is computed as a weighted average of Fz

overall all classes as given below:

F̂ =

c∑
z=1

pzFz, (13)

where pz = nz/n is the probability of the z-th class, nz are
the number of samples in that class, and n is the total number
of tissue samples.

E. Variants of the Proposed Algorithm

In addition to the proposed KDTP algorithm, we have also
evaluated the performance on two other variants including
KDTPr which minimizes Lr given by Eq. (3). KDTPr

minimizes the cross-entropy loss and KL divergence between
the logits.

The second variant is KDTP1−1 in which one layer of the
student is projected to only one layer of the teacher model as
in most of the existing methods. In the KDTP1−1 variant,
the later layers of the wider teacher model are not used. It
minimizes cross-entropy loss, KL-divergence as in Eq. (3),
and feature matching loss between only corresponding layers
as in Eq. (4). It is because the number of layers in student
models is less than that of the teacher models.

In the proposed KDTP algorithm, Eq. 6 is minimized
which includes cross-entropy loss, KL-divergence, and feature
matching loss with attention as given in Eq. 5.

F. Evaluation on CRC-TP Dataset

Table I shows the performance comparison of the proposed
algorithm with other baseline methods. In all our experiments,
we observe that the KDTPr variant is consistently better
than the corresponding student model. The proposed KDTP
algorithm has even performed better than KDTPr. In most
cases, the KDTP is even more accurate than the teacher model.
For the case of ResNet-18/ResNet-50, the proposed KDTP has
obtained 86.10% weighted average F̂ score which is 4.30%
better than the corresponding teacher model.

G. Evaluation on Breast Cancer Dataset

Table II shows the comparative results of the proposed
algorithm with other KD-based methods in terms of weighted
average F̂ score. In all experiments, the proposed KDTP algo-
rithm has remained more accurate than all variants including
KDTPr, KDTP1−1, and the student model. In some of
the cases such as ResNet-18 as student and ResNet-50 as
teacher network, the proposed KDTP has obtained 83.10%
weighted average F̂ score which is even higher than the
only teacher model. A similar trend has been observed when
student networks were VGG-8 and VGG-13 and the teacher
network was ResNet-50. Compared to the teacher network,
the maximum performance gained is 4.33% for the case of
MobileNetV2 as a student and ShuffleNetV2 as a teacher. This
demonstrates the effectiveness of our algorithm for histology
image classification tasks.
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TABLE II
PERFORMANCE COMPARISON OF TEACHER-STUDENT MODELS FOR IDC VS NON-IDC CLASSIFICATION ON BREAST CANCER DATASET [8] USING

WEIGHTED AVERAGE SCORE F̂

Only Student Model VGG-8 VGG-13 ShuffleNetV2 ShuffleNetV2 MobileNetV2 ShuffleNetV1 ResNet-18 ShuffleNetV1 MobileNetV2 MobileNetV2 VGG-8
72.22% 74.11% 70.11% 70.11% 68.55% 69.77% 77.22% 69.77% 68.55% 68.55% 72.22%

KDTPr 74.44% 75.11% 71.33% 72.33% 69.55% 71.20% 79.00% 71.22% 69.11% 70.00% 73.23%
KDTP1−1 77.77% 79.10% 72.33% 75.55% 72.22% 74.44% 81.33% 72.66% 72.22% 71.11% 76.66%

Proposed KDTP 80.22% 82.30% 74.33% 78.56% 75.44% 78.22% 83.10% 75.81% 75.66% 74.44% 78.88%

Only Teacher Model ResNet-50 ResNet-50 VGG-13 ResNet-50 ResNet-18 ResNet-50 ResNet-50 ResNet-18 ResNet-50 ShuffleNetV2 VGG-13
79.11% 79.11% 74.11% 79.11% 77.22% 79.11% 79.11% 77.22% 79.11% 70.11% 74.11%

TABLE III
PERFORMANCE COMPARISON OF TEACHER-STUDENT MODELS FOR TISSUE IMAGE CLASSIFICATION ON KATHER’S COLON CANCER DATASET [22]

USING WEIGHTED AVERAGE SCORE F̂ ON NINE DISTINCT CLASSES.

Only Student Model VGG-8 VGG-13 ShuffleNetV2 ShuffleNetV2 MobileNetV2 ShuffleNetV1 ResNet-18 ShuffleNetV1 MobileNetV2 MobileNetV2 VGG-8
82.84% 85.55% 83.22% 83.22% 76.10% 83.10% 87.22% 81.32% 76.10% 76.10% 82.84%

KDTPr 84.18% 87.00% 85.88% 86.11% 80.20 % 85.60% 89.33% 83.27% 78.91% 77.68% 83.20%
KDTP1−1 92.11% 93.55% 87.65% 94.61% 84.20% 89.22% 92.22% 90.11% 88.10% 80.33% 85.22%

Proposed KDTP 94.80% 95.51% 90.11% 96.10% 89.22% 92.22% 95.51% 93.20% 92.11% 84.92% 86.10%

Only Teacher Model ResNet-50 ResNet-50 VGG-13 ResNet-50 ResNet-18 ResNet-50 ResNet-50 ResNet-18 ResNet-50 ShuffleNetV2 VGG-13
90.19% 90.19% 85.55% 90.19% 87.22% 90.19% 90.19% 87.22% 90.19% 83.22% 85.55%

TABLE IV
PERFORMANCE COMPARISON OF TEACHER-STUDENT MODELS FOR MSS VS MSI TISSUE IMAGE CLASSIFICATION ON GASTROINTESTINAL CANCER

DATASET [23] USING WEIGHTED AVERAGE SCORE F̂ .

Only Student Model VGG-8 VGG-13 ShuffleNetV2 ShuffleNetV2 MobileNetV2 ShuffleNetV1 ResNet-18 ShuffleNetV1 MobileNetV2 MobileNetV2 VGG-8
69.99% 72.22% 68.10% 68.10% 65.30% 67.11% 73.33% 67.11% 65.30% 65.30% 69.99%

KDTPr 72.10% 73.10% 70.20% 70.22% 67.33% 68.10% 75.22% 68.22% 68.22% 66.41% 72.20%
KDTP1−1 75.51% 75.55% 71.88% 71.59% 69.11% 70.22% 78.22% 70.22% 71.21% 68.88% 74.55%

Proposed KDTP 77.77% 77.20% 74.22% 74.22% 71.71% 73.20% 80.22% 71.30% 74.44% 69.10% 76.77%

Only Teacher Model ResNet-50 ResNet-50 VGG-13 ResNet-50 ResNet-18 ResNet-50 ResNet-50 ResNet-18 ResNet-50 ShuffleNetV2 VGG-13
75.60% 75.60% 72.22% 75.60% 73.33% 75.60% 75.60% 73.33% 75.60% 68.10% 72.22%

TABLE V
PERFORMANCE COMPARISON OF TEACHER-STUDENT MODELS ON COLORECTAL CANCER GRADING DATASET [41] USING WEIGHTED AVERAGE

SCORE F̂ ON THREE DISTINCT CLASSES INCLUDING LOW, NORMAL, AND HIGH-GRADE CANCER.

Only Student Model VGG-8 VGG-13 ShuffleNetV2 ShuffleNetV2 MobileNetV2 ShuffleNetV1 ResNet-18 ShuffleNetV1 MobileNetV2 MobileNetV2 VGG-8
80.22% 81.11% 72.55% 72.55% 70.33% 68.22% 84.55% 68.22% 70.33% 70.33% 80.22%

KDTPr 82.31% 83.22% 74.11% 73.90% 73.33% 71.11% 87.22% 72.88% 72.22% 73.33% 83.22%
KDTP1−1 85.55% 85.11% 77.58% 76.55% 75.55% 74.44% 90.00% 75.22% 75.31% 75.09% 84.41%

Proposed KDTP 88.88% 87.90% 80.11% 80.22% 79.91% 78.88% 94.44% 78.11% 78.88% 78.88% 86.66%

Only Teacher Model ResNet-50 ResNet-50 VGG-13 ResNet-50 ResNet-18 ResNet-50 ResNet-50 ResNet-18 ResNet-50 ShuffleNetV2 VGG-13
87.20% 87.20% 81.11% 87.20% 84.55% 87.20% 87.20% 84.55% 87.20% 72.55% 81.11%

H. Evaluation on Kather’s Colon Cancer Dataset

Table III shows the performance comparison of our pro-
posed algorithm in terms of weighted average F̂ score. The
proposed algorithm variant KDTPr is more accurate than
the only student model in all experiments. The second variant
KDTP1−1 which involves both feature-based and response-
based knowledge distillation further improves the tissue image
classification performance even beyond the teacher model.
The final proposed KDTP algorithm has remained the most
accurate among all variants. This is because of the multi-layer
supervision obtained from the teacher model. The maximum
performance gained by the KDTP algorithm from the student
model is 13.12% for the case of MobileNetV2 as a student
model and ResNet-18 as a teacher model. The performance
of KDTP compared to the teacher model has improved up to
5.91% for the case of ShuffleNetV2 as a student and ResNet-

50 as a teacher.

I. Evaluation on Gastrointestinal Cancer Classification
Dataset

Table IV presents the comparative results of the proposed
algorithm with other KD-based methods in terms of weighted
average F̂ score. The proposed KDTP algorithm has consis-
tently remained the best performer compared to other variants.
Similar to other datasets, the teacher-student combination of
ResNet-50 and ResNet-18 has obtained the best performance
of 80.22% which is 4.62% better than the teacher network. The
same trend has also been observed for other teacher-student
combinations such as VGG-13 and VGG-8, and ShuffleNetV2
and MobileNetV2.
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TABLE VI
PERFORMANCE COMPARISON OF THE PROPOSED KDTP ALGORITHM

WITH SOTA METHODS ON THE THREE DIFFERENT DATASETS FOR

TISSUE CLASSIFICATION. RESULTS ARE REPORTED USING WEIGHTED

AVERAGE SCORE F̂ ON SEVEN, NINE, AND THREE DISTINCT CLASSES

OF CRC-TP, KCCD, AND CCGD. THE BEST TWO PERFORMANCES

ARE SHOWN IN RED AND BLUE COLORS, RESPECTIVELY.

Methods CRC-TP KCCD CCGD
Hinton et al. [17] 78.22% 85.55% 82.71%

Zagoruyko et al. [55] 81.11% 90.66% 87.92%
Chen et al. [6] 82.33% 91.33% 88.22%

Proposed KDTP 86.10% 95.51% 94.44%

J. Evaluation on Colorectal Cancer Grading Dataset
Table V presents the comparative results of the proposed

algorithm with existing KD-based methods and teacher-student
models in terms of weighted average F̂ score. Similar to
the aforementioned datasets, the proposed KDTP algorithm
has maintained its superiority over the rest of the variants.
Also, the best performer teacher-student pair is the ResNet-50
and ResNet-18 model which obtained 94.44% F̂ score higher
than the rest of the other teacher-student combinations. It is
also 7.24% better than the only-teacher model which obtained
87.20%. This shows the effectiveness of the proposed KDTP
algorithm in performance improvement of a smaller network
ResNet-18 to outperform a deeper network ResNet-50.

K. Comparison with SOTA Methods
We have also compared the proposed KDTP algorithm with

existing State-of-the-Art (SOTA) methods including knowl-
edge distillation methods proposed by Hinton et al. [17],
Zagoruyko et al. [55], and Chen et al. [6]. For a fair
comparison, we evaluated these methods using ResNet-18
as a student model and ResNet-50 as a teacher model. The
source codes released by the original authors are used for our
implementation. All methods are trained on CRC-TP, Kather’s
colon cancer, and colorectal cancer grading datasets similar
to our proposed algorithm. The results of the trained student
model are compared in Table VI. The proposed algorithm
has consistently outperformed the compared methods on three
datasets for the tissue image classification task.

L. Computational Time Analysis
During testing, only the student model is employed for

all teacher-student combinations. Therefore, the computational
time will depend on the size of the student model. For the case
of ResNet-18 as a student model, an average time of 1.31
seconds is observed for an image patch of 224 × 224 pixels.
This demonstrates that the proposed KDTP algorithm provides
significant performance gained despite the low computational
time.

V. DISCUSSION AND CONCLUSION

In this paper, we proposed a KDTP algorithm for improving
the performance of shallow networks for the task of tissue
phenotyping. It is a fundamental clinical pathology task for an-
alyzing the tumor micro-environment for better cancer grading

and survival analysis. Automatic tissue phenotyping has been
well investigated using deep neural networks. However, the
practical implementation of these networks suffers from many
clinical challenges such as the need for excessive memory and
computational resources which may not be feasible in clinical
settings. On the other hand, computationally less expensive
neural networks have shown degraded performance for tissue
phenotyping. In order to enable these low computationally
complex neural networks to perform well in clinical appli-
cations, we propose the use of knowledge distillation. It has
not been well explored in computational pathology. In this
technique, supervision from deeper networks is utilized for
better training of shallower networks. For this purpose, we
have proposed the KDTP algorithm which is employed on
many teacher-student combinations where the teacher is a
deeper neural network and the student is a shallower network.
The KDTP algorithm is evaluated on five different histology
image classification datasets including CRC-TP, Breast cancer,
Kather’s colon cancer, Gastrointestinal cancer, and Colorectal
cancer grading.

The trained shallow networks have performed significantly
better than their previous versions as well as their teachers.
For example, MobileNetV2 is trained under the supervision
of ResNet50 as a teacher model. As a result, we observed
significant performance improvements in MobileNetV2 on all
datasets. For the CRC-TP dataset, it was originally obtained
70.16% weighted average F̂ score. Once, we retrained this
network using the proposed KDTP algorithm its performance
increased to 83.33% on the same dataset. Compared to the
teacher network which obtained 81.80%, the shallow network
has obtained even better scores.

The same teacher-student combination when employed in
the breast cancer dataset has exhibited performance improve-
ment from 68.55% to 79.11%. Similarly, on the Kather’s
colon cancer dataset the performance of MobileNetV2 im-
proved from 76.10% to 92.11%. It is further evaluated on the
gastrointestinal cancer dataset where the performance of Mo-
bileNetV2 is increased from 65.30% to 74.44%. In addition,
we also evaluated this combination on the colorectal cancer
grading dataset. The performance of MobileNetV2 is increased
from 70.33% to 78.88%. These performance improvements
are obtained without requiring any additional computational
complexity at test time. Thus, our experiments demonstrate
the significance of knowledge distillation algorithms in the
field of computational pathology.

Considering another teacher-student combination of
ResNet-50 and ResNet-18, the evaluations are performed
on all five datasets. For the case of the CRC-TP dataset,
the performance of ResNet-18 is improved from 80.11%
to 86.10%. On the Breast cancer dataset, its performance
is improved from 77.22% to 82.10%. On Kather’s colon
cancer dataset, its performance improved from 87.22% to
95.51%. For the case of the gastrointestinal cancer dataset, its
performance is improved from 73.33% to 80.22%. Similarly,
for the colorectal cancer grading dataset, its performance is
improved from 84.55% to 94.44%. In all of these experiments,
we observed that the shallower network, ResNet-18, has
outperformed its teacher the deeper network, ResNet-50, by
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a significant margin. These experiments also demonstrated
that the shallower networks can outperform deeper networks
if trained properly using our proposed KDTP algorithm.
Please note that the shallower networks are easy to deploy in
clinical settings due to reduced resource requirements. Such
a scheme can be potentially beneficial for the deployment of
deep neural networks in resource-constrained hardware due
to the reduction in computational and memory requirements.

In conclusion, we have presented a knowledge distillation
network that can conduct histology image classification task in
an automated and robust manner. The ability to automatically
classify tissue images of various types has a direct bearing on
the downstream analysis in pathology. It holds great potential
not only for expediting the diagnostic process in clinics but
also for extending our understanding of tissue/cellular charac-
teristics, leading to an improved patient care and management.
In the future, this technique may potentially be used for the
discovery of low-cost cancer biomarkers.
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