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Missing binary outcomes under
covariate-dependent missingness in
cluster randomised trials
Anower Hossain,a,b*† Karla DiazOrdaza and
Jonathan W. Bartlettc

Missing outcomes are a commonly occurring problem for cluster randomised trials, which can lead to biased and
inefficient inference if ignored or handled inappropriately. Two approaches for analysing such trials are cluster-
level analysis and individual-level analysis. In this study, we assessed the performance of unadjusted cluster-level
analysis, baseline covariate-adjusted cluster-level analysis, random effects logistic regression and generalised
estimating equations when binary outcomes are missing under a baseline covariate-dependent missingness mech-
anism. Missing outcomes were handled using complete records analysis and multilevel multiple imputation. We
analytically show that cluster-level analyses for estimating risk ratio using complete records are valid if the true
data generating model has log link and the intervention groups have the same missingness mechanism and the
same covariate effect in the outcome model. We performed a simulation study considering four different scenar-
ios, depending on whether the missingness mechanisms are the same or different between the intervention groups
and whether there is an interaction between intervention group and baseline covariate in the outcome model.
On the basis of the simulation study and analytical results, we give guidance on the conditions under which each
approach is valid. © 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

Keywords: cluster randomised trials; missing binary outcome; baseline covariate-dependent missingness;
complete records analysis; multiple imputation

1. Introduction

Cluster randomised trials (CRTs), also known as group randomised trials, are increasingly being used to
evaluate the effectiveness of interventions in health services research [1,2]. The unit of randomisation for
such trials are identifiable clusters of individuals such as medical practices, schools or entire communities.
However, individual-level outcomes of interest are observed within each cluster. One important feature
of CRTs is that the outcomes of individuals within the same cluster are more likely to be similar to
each other than those from different clusters, which is usually quantified by the intraclass correlation
coefficient (ICC, denoted as 𝜌). Although typically in primary care and health research the value of ICC
is small (0.001 < 𝜌 < 0.05) [3], it can lead to substantial variance inflation factors and should not be
ignored [2,4]. This is because ignoring the dependence of the outcomes of individuals within the clusters
will underestimate the variance of the intervention effect estimates and consequently give inflated type I
error rates [5]. It is well known that the power and precision of CRTs are lower compared with trials that
individually randomise the same number of units [2]. However, in practice, CRTs have several advantages
including that the nature of the intervention itself may dictate its application at the cluster level, less
risk of intervention contamination and administrative convenience [6]. These advantages are sometimes
judged by researchers to outweigh the potential loss of statistical power and precision.
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Missing data are a commonly occurring threat to the validity and efficiency of CRTs. In a systematic
review of CRTs published in English in 2011, 72% of trials had missing values either in outcomes or in
covariates or in both, and only 34% of them reported how missing data had been handled [7]. Dealing
with missing data in CRTs is complicated because of the clustering of the data. In statistical analysis,
if there are missing values, an assumption must be made about the relationship between the probability
of data being missing and the underlying values of the variables involved in the analysis. The mecha-
nisms that caused the data to be missing can be classified into three broad categories. Data are missing
completely at random (MCAR) if the probability of missingness is independent of the observed and unob-
served data. MCAR is generally a very restrictive assumption and is unlikely to hold in many studies. A
more plausible assumption is missing at random (MAR) where, conditioning on the observed data, the
probability of missingness is independent of the unobserved data. Missing not at random is the situa-
tion where the probability of missingness depends on both the observed and unobserved data. In CRTs,
an assumption regarding missing outcomes that is sometimes plausible is that missingness depends on
baseline covariates, but conditioning on these baseline covariates, not on the outcome itself. We refer to
this as covariate-dependent missingness (CDM). This is an example of MAR when baseline covariates
are fully observed. In this paper, we will consider the case of a binary outcome that is partially observed
and assume that all baseline covariates are fully observed.

Two approaches for analysing CRTs are cluster-level analyses, which derive summary statistics for
each cluster, and individual-level analyses, which use the data for each individual in each cluster [6].
Complete records analysis (CRA) and multiple imputation (MI) (described in Section 3) are the most
commonly used methods for handling missing data. A number of recent studies have investigated how to
handle missing binary outcomes in CRTs under the assumption of CDM [8–11]. However, as we describe
in detail in Section 3, these previous studies simulated datasets in ways that arguably do not correspond
to how data arise in CRTs raising doubt about their conclusions.

In the case of missing outcome under MAR for individually randomised trials, Groenwold et al. [12]
showed that CRA with covariate adjustment and MI give similar estimates as long as the same covariates
and same functional form are used. It can be anticipated that a similar result holds for CRTs. In the case
of missing continuous outcomes in CRTs, Hossain et al. [13] showed that there is no gain in terms of
bias or efficiency of the estimates using MI over CRA adjusted for covariates, where both approaches
used the same covariates with the same functional form, and the same modelling assumptions. Therefore
in situations where they are equivalent, CRA is clearly preferable.

All of these previous studies [8–11] considered only individual-level analysis and estimated odds ratio
(OR) as a measure of intervention effect. The risk difference (RD) or risk ratio (RR) may be of interest
as measures of intervention effect and have a number of advantages over OR [14]. For example, they are
arguably easier to understand, and they are ‘collapsible’, that is, the population marginal and conditional
(on covariates or cluster effects or both) values are identical. Cluster-level analysis methods can be used to
analyse CRTs where RD or RR is estimated as a measure of intervention effect [6], and these analyses can
also incorporate adjustment for baseline covariates. These methods have the advantage of being simple
to apply compared with the individual-level analysis methods. To date, the performance of cluster-level
analysis approaches with incompletely observed binary outcomes has not been investigated.

The aim of this paper is twofold. The first is to investigate the validity of estimating RD and RR as
measures of intervention effect using unadjusted and adjusted cluster-level analysis methods when binary
outcomes are missing under a CDM mechanism. The second is to investigate the validity of individual-
level analysis approaches considering the limitations of previous studies [8–11], which we describe in
Section 3. CRA and MI are used to handle the missing outcomes.

This paper is organised as follows. We begin in Section 2 by giving a brief review of the approaches to
the analysis of binary outcome in CRTs with full data. Section 3 describes methods of handling missing
data in CRTs. In Section 4, we investigate the validity of CRA of CRTs under CDM assumption for
missing binary outcomes. In Section 5, we report the results of a simulation study to investigate the
performance of our considered methods. Section 6 presents an example of application of our results to
an actual CRT. We conclude in Section 7 with some discussion.

2. Analysis of CRTs with full data

We begin by describing the two broad approaches to the analysis of CRTs in the absence of missing data.
These two approaches are cluster-level analysis and individual-level analysis. Let Yijl be a binary outcome
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of interest for the lth (l = 1, 2,… ,mij) individual in the jth ( j = 1, 2,… , ki) cluster of the ith (i = 0, 1)
intervention group, where i = 0 corresponds to control group and i = 1 corresponds to intervention
group. For convenience, we assume that both control and intervention groups have the same number of
clusters (ki = k) and constant cluster size across the groups (mij = m). Also let Xijl be an individual-level
baseline covariate value for lth individual in the (ij)th cluster. Note that these methods can be extended
to the case of multiple baseline covariates, some of which are individual level and some are cluster level.

In the case of a continuous outcome, it is common to assume that the expectation of the outcome
is linearly dependent on the covariate and intervention indicator. However, this assumption is not very
plausible in the case of a binary outcome. Two commonly used alternatives in the case of binary outcome
are to assume a log or logit link between the mean of the outcome and the linear predictor.

In the case of a log link, each binary Yijl is assumed to be generated by

𝜋ijl = exp(𝛽0 + 𝛽1i + fi(Xijl) + 𝛿ij), (1)

where 𝛽0 is a constant, 𝛽1 is the true intervention effect, fi(Xijl) is a function of baseline covariate Xijl in
the ith intervention group, 𝛿ij is the (ij)th cluster effect with mean 0 and 𝜋ijl = P

(
Yijl = 1|𝛿ij,Xijl

)
. On the

other hand, assuming a logit link for the true data generating model, we have

𝜋ijl = expit
(
𝛽0 + 𝛽1i + fi(Xijl) + 𝛿ij

)
, (2)

where expit(t) = exp(t)∕(1 + exp(t)).

2.1. Cluster-level analysis

This approach is conceptually very simple and can be explained as a two-stage process. Two different
ways of doing cluster-level analysis are unadjusted cluster-level analysis and (baseline covariate) adjusted
cluster-level analysis. For binary outcomes, RD or RR is usually estimated as a measure of intervention
effect in cluster-level analysis [6].

2.1.1. Unadjusted cluster-level analysis (CLU). In the first stage of analysis, a relevant summary measure
of outcomes is obtained for each cluster. For binary outcomes, the cluster-level proportion of success is
usually used as the summary measure for each cluster. Let pij be the observed proportion of success in
the (ij)th cluster. Then RD is estimated as

R̂Dunadj = p̄1 − p̄0,

where p̄i is the mean of the cluster-specific proportions of success in the ith intervention group. In the
second stage, a test of the hypothesis RD = 0 is performed using an appropriate statistical method. The
most popular one is the standard t-test for two independent samples with degrees of freedom (DF) 2k−2.
The reason for using this test is that the cluster-specific summary measures are statistically independent,
which is a consequence of the clusters being independent of each other.

On the basis of the first stage cluster-level summary measures, RR is estimated as

R̂Runadj =
p̄1

p̄0
.

Then, in the second stage, a test of the hypothesis log (RR) = 0 is performed using t-test with DF 2k− 2,
where V̂

(
log(R̂Runadj)

)
can be calculated as [6]

V̂
(

log(R̂Runadj)
)
≈

s2
0

kp̄2
0

+
s2

1

kp̄2
1

with s2
i =

∑k
j=1

(
pij − p̄i

)2

k − 1
.

It can be shown that, with full data, R̂Dunadj is unbiased for RD, and R̂Runadj is consistent (and, therefore,
asymptotically unbiased) for RR as k → ∞ (see Appendix A in the Supporting Information).
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2.1.2. Adjusted cluster-level analysis (CLA). In CRTs, baseline covariates that may be related to the out-
come of interest are often collected and incorporated into the analysis. The main purpose of adjusting
for covariates is to increase the credibility of the trial findings by demonstrating that any observed inter-
vention effect is not attributable to the possible imbalance between the intervention groups in terms of
baseline covariates [15].

In an adjusted cluster-level analysis, an individual-level regression analysis of the outcome of interest
is carried out at the first stage of analysis ignoring the clustering of the data, which incorporates all
covariates into the regression model except intervention indicator [6, 16]. A standard logistic regression
model is usually fitted for binary outcomes, which assumes that

logit
(
𝜋ijl

)
= log

(
𝜋ijl

1 − 𝜋ijl

)
= 𝜆1 + 𝜆2Xijl. (3)

Let Nij and N̂ij be the observed and predicted number of successes in the (ij)th cluster, respectively. After
fitting model (3), N̂ij is calculated as

N̂ij =
m∑

l=1

�̂�ijl =
m∑

l=1

expit
(
�̂�1 + �̂�2Xijl

)
.

Then the observed and predicted numbers of success are compared by computing a residual for each clus-
ter. In the case of no intervention effect, the residuals should be similar on average in the two intervention
groups.

If we want to estimate the adjusted RD, the residual, known as difference residual, for each cluster is
calculated as 𝜖d

ij = (Nij − N̂ij)∕m, where the d superscript refers to difference residual. The adjusted RD
is then estimated as

R̂Dadj = 𝜖 d
1 − 𝜖 d

0 ,

where 𝜖d
i is the mean of the difference residuals across the clusters of the ith intervention group and where

R̂Dadj can be rewritten as

R̂Dadj = R̂Dunadj +
1

mk

k∑
j=1

(
N̂0j − N̂1j

)
. (4)

Because the distribution of X (in expectation) is the same between the intervention groups as a conse-
quence of randomisation, and the prediction from the first-stage regression model (3) depends only on
Xijl, E

(
N̂0j

)
= E

(
N̂1j

)
. Hence, from (4), R̂Dadj is unbiased for RD because R̂Dunadj is unbiased for RD.

In the second stage, a test of hypothesis RDadj = 0 is performed using t-test with DF 2k − 2.
If we want to estimate the adjusted RR, the residual, also known as ratio residual, for each cluster

is calculated as 𝜖r
ij = Nij∕N̂ij, where the r superscript refers to ratio residual. The adjusted RR is then

estimated as

R̂Radj =
𝜖 r

1

𝜖 r
0

, (5)

where 𝜖 r
i is the mean of the ratio residuals across the clusters of the ith intervention group. It can be

shown that, with full data, R̂Radj is consistent and, therefore, asymptotically unbiased (as k → ∞) for true
RR if (i) the true data generating model is a log link model; (ii) the functional form of the covariates is
the same between the intervention groups; and (iii) the distribution of random effect is the same between
the intervention groups (see Appendix B in the Supporting Information for details). In the second stage,
a test of hypothesis log

(
RRadj

)
= 0 is performed using t-test with DF 2k− 2, where V̂

(
log(R̂Radj)

)
can

be calculated as

V̂
(

log(R̂Radj)
)
≈

s2
𝜖0

k
(
𝜖r

0

)2
+

s2
𝜖1

k
(
𝜖r

1

)2
with s2

𝜖i =

∑k
j=1

(
𝜖r

ij − 𝜖
r
i

)2

k − 1
.
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2.2. Individual-level analysis

In individual-level analysis, a regression model is fitted to the individual-level outcome that allows us
to analyse the effects of intervention and other covariates in the same model. For binary outcomes, two
commonly used individual-level analysis methods are random effects logistic regression (RELR), which
estimates cluster-specific (also known as conditional) intervention effects, and generalised estimation
equations (GEEs), which estimate population-averaged (also known as marginal) intervention effects.
Both of these approaches are extensions of the standard logistic regression models modified to allow for
correlation between the outcomes of individuals in the same cluster. We also note that for both methods,
one can obtain estimates of RD or RR by integrating over the fixed and random effects in the case of
RELR and by integrating over the fixed effects in the case of GEE.

2.2.1. Random effects logistic regression. RELR models take into account between-cluster variabil-
ity by incorporating cluster-specific random effects, which are almost always assumed to be normally
distributed, into the logistic regression. These models are fitted by maximising the likelihood function
numerically, because the likelihood function and its derivative cannot be derived analytically as this
involves an integral over the distribution of the random effects. Numerical integration methods are used
to approximate the integral and so approximate the likelihood function. It is recommended to have at
least 15 clusters in each intervention group to acquire the correct size and coverage for significance
tests and confidence interval [6]. Li and Redden [17] examined the performance of five denominator
degrees of freedom (DDF) approximations, namely, residual DDF, containment DDF, between-within
DDF, Satterthwaite DDF and Kenward–Roger DDF. They recommended to use between-within DDF
approximation, which is equal to the total number of clusters in the study minus the rank of the design
matrix, as it gave type I error rate close to nominal level and higher power compared with the other four
methods. Ukoumunne et al. [18] examined the properties of t-based confidence intervals for log(OR)
from CRTs using DF 2k − 2 assuming the same number of clusters in the two intervention groups. They
found that the coverage rates were close to the nominal level, although this approach gave overcoverage
with very small ICC (0.001). In this paper, we used the quantiles from t-distribution with DF 2k−2 rather
than quantiles from N(0, 1) to construct the confidence interval for intervention effect.

2.2.2. Generalised estimating equations. GEEs are commonly used as a method for analysing binary
outcomes in CRTs while taking into account the correlation among the outcomes of the same cluster using
a working correlation matrix. In CRTs, it is usual to assume that the correlation matrix is exchangeable,
because outcomes on individuals in different clusters are uncorrelated, while outcomes on individuals in
the same cluster are equally correlated.

In GEE, the sandwich standard error (SE) estimator is typically used to estimate the SE of the parameter
estimates. Although the sandwich SE estimator is consistent even when the working correlation structure
is specified incorrectly, the sandwich SE of the regression coefficient tends to be biased downwards when
the number of clusters in each intervention group is small [6,18]. Moreover, the estimate of SE is highly
variable when the number of clusters is small. It is recommended to have at least 40 clusters in the study
to acquire reliable SE estimates [5]. A number of methods have been proposed for dealing with the
limitations of the sandwich variance estimator [18, 19]. In this paper, we used the method proposed by
Ukoumunne (2007) [18] to correct the bias for small number of clusters in each intervention group. Firstly,
the downward bias of the sandwich SE estimator was adjusted by multiplying it by

√
k∕(k − 1), where

k is the number of clusters in each intervention group. Secondly, the increased small sample variability
of the sandwich SE estimator was accounted for by constructing the confidence interval for intervention
effect on the basis of the quantiles from a t-distribution with DF 2k−2 rather than quantiles from N(0, 1).
However, if some baseline covariates were cluster level, the DF would be adjusted downwards as 2k −
2− q to account for this, where q is the number of parameters corresponding to the cluster-level baseline
covariates.

3. Methods of handling missing data in CRTs

Common methods for handling missing data in CRTs are CRA, single imputation and MI. In this paper,
we focused on CRA and MI because they are the most commonly used methods for handling missing
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data. All the analysis methods described in the previous section can be implemented using either complete
records or MI. This section briefly describes these two approaches.

3.1. Complete records analysis

In CRA, often referred to as complete case analysis, only individuals with complete data on all variables
in the analysis are considered. It has the advantage of being simple to apply and is usually the default
method in most statistical packages. It is well known that CRA is valid if data are MCAR. CRA is also
valid if, conditioning on covariates, missingness is independent of outcome and and the outcome model
being fitted is correctly specified [20]. On the basis of simulations for CDM in CRTs, Ma et al. [9, 10]
showed that GEE using CRA performs well in terms of bias when the percentage of missing outcomes is
low. In contrast, they concluded that RELR using CRA does not perform well. This is because they gen-
erated the data in such a way that they knew what the true population-averaged log(OR) was, but after
fitting RELR, they compared estimates of conditional (on cluster random effects and covariates) log(OR)
with the true population-averaged log(OR). In addition, in the data generating mechanism used in these
studies [9, 10], the baseline covariate was generated independently of the outcome, which in general is
not a plausible assumption. It is therefore difficult to draw conclusions about what would happen in CRTs
where the baseline covariates are related to the outcome. Caille et al. [11] reported through simulations
that GEE using unadjusted CRA and using adjusted (for covariates) CRA are biased for estimating inter-
vention effects. However, in their simulation study, individual-level continuous outcomes were generated
at first using a linear mixed model that includes intervention indicator and a cluster random effect for
each cluster, but without covariates. Each continuous outcome was then dichotomised to obtain a binary
outcome. Then, baseline covariates were generated dependent on the continuous outcomes. So it appears
the data generation mechanism used would mean that baseline covariates were associated with interven-
tion group, which is not possible (in expectation) because of randomisation. In addition, as the authors
noted, they compared estimates of covariate conditional ORs with the true unconditional ORs, which
would be expected to differ even with full data because of non-collapsibility. It is therefore difficult to
draw general conclusions from their results about the methods’ performance in CRTs.

3.2. Multiple imputation

In MI, a sequence of Q imputed datasets are obtained by replacing each missing outcome by a set of
Q ≥ 2 imputed values that are simulated from an appropriate distribution or model. Imputing multiple
times allows the uncertainty associated with the imputed values because the imputed values are sampled
draws for the missing outcomes instead of the actual values. This uncertainty is taken into account by
adding between-imputation variance to the average within-imputation variance. Each of the Q imputed
datasets are analysed as a full dataset using standard methods, and the results are then combined using
Rubin’s rules [21]. One important feature of MI is that the imputation model and the analysis model do
not have to be the same. However, in order for Rubin’s rules to be valid, the imputation model needs to
be compatible or congenial with the analysis model [22].

There are at least four different types of MI that have been used in CRTs [7]. These are standard
MI, also known as single-level MI, that ignores clustering in the imputation model, fixed effects MI that
includes a fixed effect for each cluster in the imputation model, random effects MI where clustering is
taken into account through a random effect for each cluster in the imputation model and within-cluster MI
where standard MI is applied within each cluster. From now, we refer to random effects MI as multilevel
multiple imputation (MMI).

The MI inference is usually based on a t-distribution with DF given by

𝜐 = (Q − 1)
(

1 + Q
Q + 1

W
B

)2

,

where B and W are the between-imputation variance and the average within-imputation variance, respec-
tively. This DF is derived under the assumption that the complete data (full data) DF, 𝜐com, is infinite
[23]. In CRTs, the value of 𝜐com is calculated on the basis of the number of clusters in the study rather
than the number of individuals and, therefore, is usually small. In CRTs with equal number of clusters in
each intervention group, 𝜐com is calculated as 2k − 2 [24]. If 𝜐com is small and there is a modest propor-
tion of missing data, the value of 𝜐 can be much higher than 𝜐com, which is not appropriate [23]. In such
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a situation, a more appropriate DF, proposed by Barnard and Rubin (1999) [23], is calculated as

𝜈adj =
(
𝜐−1 + �̂�−1

obs

)−1
≤ 𝜈com where �̂�obs =

(
𝜈com + 1

𝜈com + 3

)
𝜈com

(
1 + Q + 1

Q
B
W

)−1

.

Ma et al. [8] examined within-cluster MI, fixed effects MI and MMI for missing binary outcomes under
CDM mechanism in CRTs. They showed that all these strategies give quite similar results for low percent-
ages of missing data or for small value of ICC. With high percentage of missing data, the within-cluster
MI underestimates the variance of the intervention effect that may result in inflated type I error rate. In
two subsequent studies, Ma et al. [9, 10] compared the performance of GEE and RELR with missing
binary outcomes using standard MI and within-cluster MI. Results showed that GEE performs well when
using standard MI and the variance inflation factor is less than 3 and using within-cluster MI when vari-
ance inflation factor is ≥3 and cluster size is at least 50. Ma et al. [10] concluded that RELR does not
perform well using either standard MI or within-cluster MI. However, in the latter two studies [9, 10],
as we described in Section 3.1, they compared estimates of conditional (on cluster random effects and
covariates) log(OR) with the true population-averaged log(OR), and their data generation mechanisms
do not correspond to how data arise in CRTs. In the first study [8], the simulation was based on a real
dataset, so the conclusions to other design settings may be limited. It is therefore again difficult to draw
conclusions from their results about the performance of GEE and RELR with different MI strategies
under CDM mechanism. Caille et al. [11] compared different MI strategies through a simulation study
for handing missing binary outcomes in CRTs assuming CDM, assessing bias, SE and coverage rate of
the estimated intervention effect. They showed that MMI with RELR and single-level MI with standard
logistic regression give better inference for intervention effect compared with CRA in terms of bias, effi-
ciency and coverage. However, as we described in Section 3.1, their data generation mechanism does not
correspond to how data arise in CRTs. It is therefore again difficult to draw general conclusions from
their results about the MI strategies’ performance in CRTs.

In the case of missing continuous outcome in CRTs, Andridge [24] showed that the true MI variance
of group means are underestimated by single-level MI and are overestimated by fixed effects MI. She
also showed that MMI is the best among these three methods and recommended its use for practitioners.
DiazOrdaz et al. [25] showed that for bivariate outcomes, MMI gives coverage rate close to nominal
level, whereas single-level MI gives low coverage and fixed effects MI gives overcoverage. In this paper,
we therefore used MMI for missing binary outcome.

4. Validity of CRA of CRTs

In this section, we investigate the validity of CLU, CLA, RELR and GEE using complete records, when
binary outcomes are missing under CDM.

In settings where the expectation of the outcome is assumed to be linearly dependent on the covariate
and intervention indicator, both unadjusted and adjusted cluster-level analyses using complete records
for estimating mean difference as a measure of intervention effect are unbiased in general only when the
two intervention groups have the same CDM mechanism and the same covariate effect on the outcome
[13]. However, as described in Section 2, the assumption of the expectation of the outcome being linear
in baseline covariate and intervention indicator is not very plausible in the case of a binary outcome.
Two common alternatives are to use a log or logit link between the mean of the outcome and the linear
predictor.

Define a missing outcome data indicator Rijl such that Rijl = 1 if Yijl is observed and Rijl = 0 if Yijl is
missing. Then

∑m
l=1 Rijl is the number of complete records in the (ij)th cluster.

4.1. Cluster-level analyses for estimating RD

In unadjusted cluster-level analysis using complete records, RD is estimated as

R̂D
cr

unadj = p̄ cr
1 − p̄ cr

0 ,

where p̄ cr
i is the mean of the cluster-specific proportions of success, calculated using complete records,

in the ith intervention group. The superscript cr refers to complete records.
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A. HOSSAIN, K. DIAZORDAZ AND J. W. BARTLETT

In adjusted cluster-level analysis, recall that a logistic regression model is fitted to the data at the first
stage of analysis ignoring intervention and clustering of the data. Then the observed and predicted number
of successes in each cluster are compared by computing a residual for each cluster. The adjusted RD
using complete records is estimated as

R̂D
cr

adj = 𝜖
d(cr)
1 − 𝜖 d(cr)

0 ,

where 𝜖 d(cr)
i is the average of the cluster-specific difference residuals in the ith intervention group using

complete records. Then R̂D
cr

adj can be written in terms of R̂D
cr

unadj as

R̂D
cr

adj = R̂D
cr

unadj +
1
k

k∑
j=1

[
1∑m

l=1 Rijl

(
N̂cr

0j − N̂cr
1j

)]
, (6)

where N̂cr
ij is the predicted number of successes using complete records in the (ij)th cluster.

We aim to derive conditions under which the cluster-level analyses for RD using complete records are
unbiased. To this end, we write the individual-level probabilities of success, 𝜋ijl, as

𝜋ijl = 𝜋i + gi

(
Xijl, 𝛿ij

)
,

where gi

(
Xijl, 𝛿ij

)
is a function of baseline covariate Xijl and random cluster effect 𝛿ij and which deter-

mines how individual-level probabilities of success differ from group-level probability of success in each
intervention group. Then it can be shown that R̂D

cr

unadj will be unbiased for true RD if and only if

E
(
g1

(
X1jl, 𝛿1j

) |R1jl = 1
)
= E

(
g0

(
X0jl, 𝛿0j

) |R0jl = 1
)
, (7)

(see Appendix C of the Supporting Information for more details). Assuming the data are generated from
log link model (1) or logit link model (2) and there is an intervention effect (𝛽1 ≠ 0) in truth, the condition
(7) is not satisfied even if the two intervention groups have the same missingness mechanism and the same

covariate effects in the data generating model for the outcome. Hence, R̂D
cr

unadj is biased for true RD (≠ 0)
when the true data generating model has log link or logit link. However, under the null hypothesis of no
intervention effect (𝛽1 = 0), if the two intervention groups have the same covariate effects and the same
missingness mechanism, the condition (7) is satisfied, and hence, R̂D

cr

unadj is unbiased for true RD = 0.
Referring to equation (6), if the two intervention groups have the same missingness mechanism and the

same covariate effect, then E
(

N̂cr
0j

)
= E

(
N̂cr

1j

)
. Hence, with 𝛽1 ≠ 0, from equation (6), we can conclude

that because R̂D
cr

unadj is biased for RD (≠ 0) with both log and logit links for the true data generating

model, R̂D
cr

adj is also biased for RD (≠ 0) with both log and logit links in the true data generating model.

However, with 𝛽1 = 0, since R̂D
cr

unadj is unbiased for RD = 0 with both log and logit links, when the two

intervention groups have the same missingness mechanism and the same covariate effect, R̂D
cr

adj is also
unbiased for RD = 0 under the same conditions. It can also be shown that the expectation of gi

(
Xijl, 𝛿ij

)
over ( j, l) is zero for i ∈ {0, 1} for both log and logit links in the data generating model, and hence, both
R̂Dunadj and R̂Dadj are unbiased for true RD with full data.

4.2. Cluster-level analyses for estimating RR

In both unadjusted and adjusted cluster-level analyses, RR is estimated using complete records as,
respectively,

R̂R
cr

unadj =
p̄ cr

1

p̄ cr
0

and R̂R
cr

adj =
𝜖

r(cr)
1

𝜖
r(cr)
0

, (8)

where 𝜖 r(cr)
i is the average of the ratio residuals in the ith intervention group using complete records.

We aim to establish conditions under which the cluster-level analyses for RR using complete records
are consistent. To this end, we write 𝜋ijl as

𝜋ijl = 𝜋i hi

(
Xijl, 𝛿ij

)
,

© 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2017, 36 3092–3109
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A. HOSSAIN, K. DIAZORDAZ AND J. W. BARTLETT

where hi

(
Xijl, 𝛿ij

)
is a function of baseline covariate Xijl and random cluster effect 𝛿ij and which deter-

mines how individual-level probabilities of success differ from group-level probability of success. Then
it can be shown that R̂R

cr

unadj will be consistent for true RR if only if

E
(
h1

(
X1jl, 𝛿1j

) |R1jl = 1
)

E
(
h0

(
X0jl, 𝛿0j

) |R0jl = 1
) = 1, (9)

(see Appendix D of the Supporting Information for more details). Assuming the data are generated from
log link model (1), the condition (9) is satisfied if the two intervention groups have the same missingness
mechanism and the same covariate effects, and hence, R̂R

cr

unadj is consistent (and, therefore, asymptotically
unbiased) for true RR.

On the other hand, assuming the data are generated from logit link model (2) with 𝛽1 ≠ 0, the condition
(9) is not satisfied even if the two intervention groups have the same missingness mechanism and the same
covariate effects. Hence, R̂R

cr

unadj is not consistent for true RR (≠ 1). However, under the null hypothesis of
no intervention effect (𝛽1 = 0), if the two intervention group have the same missingness mechanism and
the same covariate effect, the condition (9) is satisfied, and hence, R̂R

cr

unadj is consistent for true RR = 1.

In Appendix E of the Supporting Information, we show that R̂R
cr

adj is consistent and, therefore, asymp-
totically unbiased (as k → ∞) for true RR if (i) the true data generating model is a log link model, (ii)
the functional form of the covariates in the outcome model is the same between the intervention groups,
(iii) the missingness mechanism is the same between the intervention groups and (iv) the distribution
of random effects is the same between the intervention groups. If the data are generated from logit link
model (2) with 𝛽1 ≠ 0, R̂R

cr

adj is not consistent for true RR (≠ 1). However, under the null hypothesis

of no intervention effect (𝛽1 = 0), R̂R
cr

adj is consistent (as k → ∞) for true RR (= 1) if (i) the true data
generating model is a logit link model, (ii) the functional form of the covariates is the same between the
intervention groups, (iii) the missingness mechanism is the same between the intervention groups and
(iv) the distribution of random effects is the same between the intervention groups.

4.3. RELR and GEE using complete records

For individually randomised trials, it is well known that likelihood-based CRA is valid under MAR,
if missingness is only in the outcome and all predictors of missingness are included in the model as
covariates [20]. So it is anticipated that RELR using CRA will give consistent estimates of intervention
effect, if the covariate X, which is associated with the missingness, is included in the model and the model
is correctly specified. We also expect that GEE using CRA adjusted for covariate X that is associated
with the missingness in outcomes will give consistent estimates of intervention effect.

When it is assumed that the two intervention groups have the same covariate effects on outcome, we fit
RELR with fixed effects of intervention indicator and covariate and a random effect for cluster, while we
fit GEE with intervention indicator and covariate assuming exchangeable correlation for the outcomes
of the same cluster. If it is assumed that the baseline covariate effect on outcome could be different in
the two intervention groups, an interaction between intervention and covariate must be included in the
model. This implies that the intervention effect varies with level of covariate values. In those scenarios
where an interaction is present, we will target the intervention effect at the mean value of the covariate.
Let X∗ denote the empirically centred covariate X − X̄, where X̄ is the mean of X using data from all
individuals. Then, we fit RELR with fixed effects of intervention indicator, X∗ and their interaction, and a
random effect for cluster, while we fit GEE including the intervention indicator, X∗ and their interaction,
and assuming an exchangeable correlation for the outcomes of the same cluster. One may need to account
for the centring step in the variance estimation. We will investigate in the simulation whether ignoring
this has any negative impact on confidence interval coverage.

5. Simulation study

A simulation study was conducted to assess the performance of CLU, CLA, RELR and GEE under CDM
mechanism. CRA and MMI were used to handle the missing data. The average estimate of intervention
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A. HOSSAIN, K. DIAZORDAZ AND J. W. BARTLETT

effect, its average estimated SE and coverage rates were calculated for each of the methods and compared
with each other. We considered balanced CRTs, where the two intervention groups have the same number
of clusters and constant cluster size (before missing outcomes were introduced), and a single continuous
individual-level baseline covariate.

5.1. Data generation

Data were generated using the model in equation (2) with a logit link, as described in Section 2, with
fi(Xijl) = 𝛽2(i)Xijl, where 𝛽2(i) is the effect of covariate of X in the ith intervention group. For each individual
in the study, a value of Xijl was generated using the model

Xijl = 𝛼ij + uijl,

where 𝛼ij is the (ij)th cluster effect on X and uijl is the individual-level error on X. We assumed that 𝛼ij ∼
N
(
𝜇x, 𝜎

2
𝛼

)
independently of uijl ∼ N

(
0, 𝜎2

u

)
, where 𝜇x is the mean of X, 𝜎2

𝛼
and 𝜎2

u are the between-cluster
and within-cluster variance of X, respectively. The total variance of X can be written as 𝜎2

x = 𝜎2
𝛼
+ 𝜎2

u ,
and thus, the ICC of X is 𝜌x = 𝜎2

𝛼
∕𝜎2

x . Then, we generated logit(𝜋ijl) for each individual in the study
using model (2) assuming 𝛿ij ∼ N

(
0, 𝜎2

b

)
. Finally, Yijl was generated as Bernoulli random variable with

parameter 𝜋ijl.
Once the complete datasets (full data) were generated, we introduced missing outcomes by generating

a missing outcome data indicator Rijl (defined in Section (4)), independently for each individual, under
CDM mechanism according to a logistic regression model

logit(Rijl = 0|Yij,Xij) = 𝜓i + 𝜙iXijl, (10)

where Yij and Xij are the vectors of outcome and covariate values, respectively, of the (ij)th cluster.
The constants 𝜓i and 𝜙i were chosen such that the ith intervention group had the desired proportion
of observed outcomes. The value of 𝜙i in equation (10) represents the degree of association between
the missingness and the covariate X in the ith intervention group. In this study, we assumed the same
covariate effects for the probability of having a missing outcome in the two intervention groups and thus
set 𝜙0 = 𝜙1 = 1 in equation (10) corresponding to the OR of having a missing outcome of 2.72 for a 1
unit change in X.

We investigated four scenarios, varying whether the baseline covariate effects on outcome and the
missingness mechanisms were the same in the two intervention groups. For generating Xijl, we chose
𝜇x = 0, 𝜎2

u = 3.37 and 𝜎2
𝛼
= 0.18, and thus, we had 𝜎2

x = 3.55 and 𝜌x = 0.05. Then, to generate Yijl,
we set 𝜎2

b = 0.20, 𝛽0 = 0 and 𝛽1 = 1.36 and varied 𝛽2(0) and 𝛽2(1) across the four scenarios to obtain
the value of success rates 𝜋0 = 0.50 and 𝜋1 = 0.70 in the control and intervention groups, respectively,
on average over 1000 datasets. The value of ICC for outcome is expected to be different in the control
and intervention groups because, for binary outcome, ICC depends on the success rate [26]. We used the
expression 𝜌i = Var

(
𝜋ij

)
∕
(
𝜋i(1 − 𝜋i)

)
[6, 27], where 𝜋ij is the true proportion of success in the (ij)th

cluster, to estimate the value of ICC for the ith intervention group. Firstly, we estimated Var
(
𝜋ij

)
from

a very big dataset with large number of clusters in each intervention group and with large cluster size.
Then, with the success rates stated earlier for the control and intervention groups, the estimated ICC for
outcome in the control and intervention groups were 0.037 and 0.032, respectively. We varied the number
of clusters in each intervention group as k = (5, 10, 20, 50) and fixed the cluster size m = 50. In the
simulation studies, the four scenarios considered were (S1) 𝛽2(0) = 𝛽2(1) = 1 and 𝜓0 = 𝜓1 = −1.34;
that is, both intervention groups have the same covariate effects on outcome and the same missingness
mechanisms; (S2) 𝛽2(0) = 𝛽2(1) = 1 and 𝜓0 = −1.34, 𝜓1 = 0.65; that is, both intervention groups have the
same covariate effects on outcome but different missingness mechanisms; (S3) 𝛽2(0) = 0.588, 𝛽2(1) = 1
and 𝜓0 = 𝜓1 = −1.34; that is, both intervention groups have different covariate effects on outcome
but the same missingness mechanisms; and (S4) 𝛽2(0) = 0.588, 𝛽2(1) = 1 and 𝜓0 = −1.34, 𝜓1 = 0.65;
that is, both intervention groups have different covariate effects on outcome and different missingness
mechanisms. In S1 and S3, there were 30% missing outcomes in each of the two intervention groups,
while in S2 and S4, there were 30% missing outcomes in the control group and 60% missing outcomes
in the intervention group.

© 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2017, 36 3092–3109
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A. HOSSAIN, K. DIAZORDAZ AND J. W. BARTLETT

5.2. Data analysis

Each generated full and incomplete datasets were then analysed by CLU, CLA, RELR and GEE. Missing
outcomes were handled using CRA and MMI. We included the interaction between intervention and
baseline covariate into the analysis models RELR and GEE in the case of S3 and S4. The R packages
lme4 and geepack were used to fit RELR and GEE, respectively. We used MMI, with a RELR imputation
model, so that the imputation model was correctly specified. For S3 and S4, an interaction between
intervention and baseline covariate was included in the imputation model. The R package jomo [28] was
used to multiply impute each generated incomplete dataset 15 times, although this package uses probit
link between the mean of the outcome and the linear predictor. Both links give similar results as long as
individual-level probabilities of success are not too small and not too large. The algorithm used by jomo
[28] is essentially the same used by the REALCOM-IMPUTE software for MMI, details of which can
be found in [29]. We used 100 burn-in iterations, which through preliminary investigations, we found to
be sufficient for convergence to the posterior distribution of the parameters of our imputation model, and
thinning rate 25 to reduce the autocorrelation between successive draws. When fitting the GEE models
using the package geepack in R, we encountered convergence problems (maximum of three times out of
1000 simulation runs) in the case of S2 and S4. In such situation, we fitted GEE assuming independent
correlation structure.

5.3. Simulation results

Figure 1 represents the average estimates of RD and coverage rates of nominal 95% confidence intervals
over 1000 simulation runs using CLU and CLA with CRA and MMI for each of the four scenarios. The
corresponding numerical results using full data, CRA and MMI are available in Table F1 in Appendix
F of the Supporting Information. The RD estimates using full data and using MMI followed by cluster-
level analyses were unbiased for each of the four scenarios. However, CRA estimates were biased using
both the CLU and CLA for each of the four scenarios. These results support our derived analytical results
for RD estimates in Section 4.1. Under scenario S3, the CRA estimates of RD using both the CLU and
CLA were coincidentally close to the true value of RD. In further simulations, where the parameter values
were changed, the corresponding estimates of RD, using both the CLU and CLA, were found to be biased
(see Table F2 in Appendix F in the Supporting Information). As expected, the average estimated SEs of
CLA are smaller than that of CLU, using full data, CRA and MMI. This is because the CLA removes the
differences between the outcome values of the two intervention groups that can be attributed to differ-
ences in the baseline covariate. MMI with adjusted DF estimates gave overcoverage for nominal 95%
confidence intervals for small number of clusters in each intervention group.

Figure 2 shows the average estimates of log(RR) and coverage rates for nominal 95% confidence
intervals over 1000 simulation runs using CLU and CLA with CRA and MMI for the all four considered
scenarios. The corresponding numerical results using full data, CRA and MMI are available in Table F3
in Appendix F of the Supporting Information. The full data estimates of log(RR) using CLU and CLA
were very close to the true value. However, our analytical result showed that CLA estimates of RR are
biased if the data are generated from a logit link model. In this simulation, CLA estimates were close to the
true value because of the parameters’ configuration. In a further simulation, where the parameters’ values
were changed, the estimates of log(RR) using CLA were found to be biased (see Table F4 in Appendix F
in the Supporting Information). The MMI followed by cluster-level analyses estimates of log(RR) were
unbiased for all four considered scenarios. The CRA estimates were biased using both CLU and CLA for
all four considered scenarios. These results support our derived analytical results for RR in Section 4.2.
MMI with adjusted DF estimates resulted in the overcoverage of nominal 95% confidence intervals for
small number of clusters in each intervention group.

Recall that RELR estimates cluster-specific (also known as conditional) intervention effect, while GEE
estimates population-averaged (also known as marginal) intervention effect. In this study, the simulation
data were generated using a RELR model (equation (2)), where we set 𝛽1 = 1.36, which can be interpreted
as conditional (on cluster random effects and baseline covariate X) log(OR) of developing the event of
interest in the intervention group compared with the control group. The corresponding marginal value of
𝛽1 will be smaller because the general effect of using a population-averaged model over cluster-specific
model is to attenuate the regression coefficient [27]. Table I displays the average estimates of the log(OR),
their average estimated SE and coverage rates of nominal 95% confidence intervals using RELR and GEE.
The full data estimates of GEE is slightly lower as expected than that of RELR. For GEE, the CRA and
MMI estimates were compared with the mean of the full data estimates as the true population-averaged
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A. HOSSAIN, K. DIAZORDAZ AND J. W. BARTLETT

Figure 1. Simulation results for risk difference (RD). The columns represent the four scenarios considered in the
simulation studies. The first and second rows represent the average estimates of RD and coverage rates for nominal
95% confidence interval, respectively, using unadjusted cluster-level analysis. The third and fourth rows represent
the similar estimates using adjusted cluster-level analysis. Results are shown for complete records analysis (∙) and

multilevel multiple imputation (▴) over 1000 simulation runs. The lines (—) correspond to the true value.

log(OR) was unknown. The CRA estimates of RELR and GEE were unbiased with nominal coverage
rates. This is because we were adjusting for the baseline covariate that was associated with missingness.
However, RELR with MMI gave slightly upward biased (maximum 8.6%) estimates of intervention effect
with small number of clusters in each intervention group, while GEE with MMI gave unbiased estimates.
The study by Caille et al. [11] showed similar results to ours regarding good performance of GEE with
respect to bias and coverage rate using MMI. The average estimated SEs of RELR estimates using CRA
were lower than that of RELR using MMI, whereas the average estimated SEs of GEE estimates using
CRA and MMI are fairly similar. Therefore, there is no benefit in doing MMI over CRA when the CRA
and MMI use the same functional form of baseline covariates.

© 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2017, 36 3092–3109
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A. HOSSAIN, K. DIAZORDAZ AND J. W. BARTLETT

Figure 2. Simulation results for risk ratio (RR). The columns represent the four scenarios considered in the simu-
lation studies. The first and second rows represent the average estimates of log(RR) and coverage rates for nominal
95% confidence interval, respectively, using unadjusted cluster-level analysis. The third and fourth rows represent
the similar estimates using adjusted cluster-level analysis. Results are shown for complete records analysis (∙) and

multilevel multiple imputation (▴) over 1000 simulation runs. The lines (—) correspond to the true value.

6. Example

We now illustrate the methods compared here using the data from Health and Literacy Intervention
(HALI) trial, a factorial CRT designed to investigate the impact of two interventions among school chil-
dren in class 1 and class 5 on the south coast of Kenya [30]. The interventions were intermittent screening
and treatment (IST) for malaria on the health and education of school children in class 1 and class 5 and
a literacy intervention (LIT) on education only being applied in class 1. One hundred and one govern-
ment primary schools were randomised to one of the four groups receiving (i) IST alone (25 schools);
(ii) LIT alone (25 schools); (iii) both IST and LIT (26 schools); or (iv) neither IST nor LIT (25 schools).
On average, the number of children per school in the four groups were, respectively, 107 (standard devi-
ation (SD) = 7.54 ), 99 (SD = 17.84), 103 (SD = 6.28) and 102 (SD = 7.51). The primary outcomes were

3104
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A. HOSSAIN, K. DIAZORDAZ AND J. W. BARTLETT

anaemia at either 12 or 24 months and educational achievement at 9 and 24 months assessed by a battery
of tests of reading, writing and arithmetic. Baseline characteristics of the school (school mean exam score
and school size), the child (age, sex, sleep under net and baseline anaemia) and the household (pater-
nal education and household size) were collected. For the purpose of illustration, we restricted attention
to anaemia (binary) measured at the 24 months follow-up. A paper published based on this study [30]
showed no evidence of interaction between the two interventions in class 1 where both were imple-
mented. We therefore merged groups (i) and (iii) where IST was implemented and considered this as
the intervention group and merged groups (ii) and (iv) where IST was not implemented and considered
this as the control group. The control group and the intervention group consisted of 2502 and 2674 chil-
dren, respectively, and among them, 475 (18.98%) and 501 (18.74%) had missing anaemia at 24 months,
respectively. The covariate baseline anaemia had some missing values as well. To illustrate our methods
for the case where only outcomes are missing and all baseline covariates are fully observed, we excluded
the children from the analysis with missing baseline anaemia value. Hence, in our analysis, the control
group and the intervention group consisted of 2373 and 2451 children, respectively, and among them,
430 (18.12%) and 424 (17.30%) had missing anaemia at 24 months, respectively.

The original trial’s prespecified analysis planned to adjust for the baseline covariates’ age, sex, exam
score, literacy group and baseline anaemia. In our analysis, firstly, we investigated the association of the
baseline covariates (age, sex, exam score, literacy group and baseline anaemia) with anaemia at 24 months
and with the probability of anaemia outcome at 24 months being missing by fitting RELR models (see
Table F5 in Appendix F of the Supporting Information). Age and baseline anaemia were strongly asso-
ciated with anaemia at 24 months, and there was no evidence of interaction between IST intervention
and baseline covariates in the model for anaemia at 24 months. Older children were more likely to have
anaemia at 24 months missing, and children receiving LIT were less likely to have anaemia at 24 months
missing. There was weak evidence of interaction between IST intervention and literacy group on the
missingness of anaemia at 24 months. Based on these analyses, a working assumption is that missing-
ness of anaemia at 24 months depends mainly on age and that this dependence does not differ between
the two intervention groups as there was no evidence of interaction between IST intervention and age.

We analysed the data using the methods CLU, CLA, RELR and GEE, assuming that the missingness in
anaemia at 24 months depends on the baseline covariates, but conditioning on these, not on the anaemia
at 24 months itself, that is, a CDM mechanism. GEE models were fitted assuming both logit and log links
for the true outcome model to estimate OR and RR, respectively. The objective of fitting GEE with log
link was to estimate RR using individual-level analysis and to compare these estimates with the similar
estimates obtained using cluster-level analyses. In addition, we wanted to compare our estimates of RR
using GEE with the estimates of RR reported in the original paper [30] published based on this HALI
trial data. The missing anaemia data at 24 months were handled using CRA and MMI. The RELR, GEE
and adjusted cluster-level analyses were adjusted for the baseline covariates age, sex, school mean exam
score, literacy group and baseline anaemia. MMI was carried out using the R package jomo [28], with
an imputation model adjusted for the aforementioned baseline covariates. We used 100 imputed datasets
in MMI. GEE with log link after MMI was not congenial with the imputation model, as the imputation
model used probit link. The estimates and confidence intervals of RD, RR and OR obtained by CRA and
MMI are displayed in Table II. Columns M0 and M1 in Table II represent the number of children in the
control and intervention groups, respectively. All measures showed no evidence of IST intervention effect
in improving health of school children by alleviating anaemia. The CRA estimates of RD and RR using
cluster-level analyses are very similar to the corresponding estimates obtained by MMI. This is because
CRA is valid in this case as there is no evidence of intervention effect and no evidence of interaction
between covariates and intervention. The estimates and CIs of unadjusted and adjusted OR obtained by
CRA were found to be very close to the corresponding estimates obtained by MMI. This is because, as
we found in our simulation results, there is no gain in terms of bias or efficiency of the estimates using
MMI over CRA as long as the same functional form of the same set of predictors of missingness are used
by both methods.

7. Discussion and conclusion

In this paper, we showed analytically and through simulations that cluster-level analyses for estimating
RD using complete records are valid only when there is no intervention effect in truth and the intervention
groups have the same missingness mechanism and the same covariate effect in the outcome model. For
estimating RR, cluster-level analyses using complete records are valid if the true data generating model

© 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2017, 36 3092–3109
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Table II. Risk difference, risk ratio and odds ratio estimates using CRA and MMI for the IST intervention
trial data.

Analysis approach M0 M1 Risk difference Risk ratio Odds ratio

Estimate (95% CI) Estimate (95% CI) Estimate (95% CI)

Cluster-level analysisa

CRA
Unadjusted 2027 2173 0.019 (−0.040, 0.077) 1.047 (0.908, 1.208)
Adjusted 1935 2027 0.022 (−0.033, 0.077) 1.037 (0.908, 1.185)

MMI
Unadjusted 2373 2451 0.021 (−0.038, 0.080) 1.053 (0.911, 1.218)
Adjusted 2373 2451 0.017 (−0.035, 0.070) 1.040 (0.910, 1.189)

Individual-level analysis

CRA
RELR
Unadjusted 2027 2173 — 1.090 (0.841, 1.414)
Adjusted 1935 2027 — 1.088 (0.839, 1.409)
GEEb

Unadjusted 2027 2173 1.048 (0.908, 1.209) 1.082 (0.850, 1.378)
Adjusted 1935 2027 1.019 (0.911, 1.141) 1.070 (0.842, 1.359)

MMI
RELR
Unadjusted 2373 2451 — 1.101 (0.849, 1.428)
Adjusted 2373 2451 — 1.089 (0.841, 1.413)
GEE
Unadjusted 2373 2451 1.053 (0.912, 1.215) 1.090 (0.856, 1.389)
Adjusted 2373 2451 1.019 (0.911, 1.140) 1.072 (0.843, 1.363)

aCluster-level analysis was used to estimate the risk difference and the risk ratio.
bGEE was used to estimate the risk ratio using log link and to estimate the marginal odds ratio using logit link.
CRA, complete records analysis; MMI, multilevel multiple imputation; RELR, random effects logistic regression;
GEE, generalised estimation equation; IST, intermittent screening and treatment; CI, confidence interval.

has log link and the intervention groups have the same missingness mechanism and the same covariate
effect in the outcome model. However, if the true data generating model has logit link, cluster-level
analyses using complete records for estimating RR are valid only when there is no intervention effect in
truth and the intervention groups have the same missingness mechanism and the same covariate effect in
the outcome model. But, in practice, it is impossible to know in advance whether there is an intervention
effect. We therefore caution researchers that cluster-level analyses using complete records, assuming
logit link for the true data generating model, in general results in biased inferences for RR in CRTs.
However, when the true data generating model follows a log link and the parameter of interest is RR,
cluster-level analyses using complete records give valid inferences if the intervention groups have the
same missingness mechanism and the same covariates effect in the outcome model.

In contrast, MMI followed by cluster-level analyses gave unbiased estimates of RD and RR regard-
less of whether missingness mechanisms were the same or different between the intervention groups
and whether there is an interaction between intervention and baseline covariate in the outcome model,
provided that an interaction was allowed for in the imputation model when required. However, MMI
resulted in overcoverage for the nominal 95% confidence interval with small number of clusters in each
intervention group. Similar results were found for continuous outcomes in CRTs by Hossain et al. [13].

The full data estimates of conditional (on cluster random effects and covariates) log(OR) using RELR
were unbiased with good coverage rates. These results differ from the results found by Ma et al. [10],
where they concluded that full data estimates using RELR were biased. As noted previously, we believe
this is because they generated the data in such a way that they knew what the true population-averaged
log(OR) was, but after fitting RELR, they compared the estimates of conditional log(OR) with the true

© 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2017, 36 3092–3109
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population-averaged log(OR). As noted earlier, population-averaged log(OR) is marginal with respect to
the cluster random effects [31].

The CRA estimates of conditional log(OR) using RELR were unbiased with coverage rates close to
the nominal level regardless of whether the missingness mechanism is the same or different between the
intervention groups and whether there is an interaction between the intervention and baseline covariate
in the data generating model for outcome, provided that if there is an interaction in the data generating
model for the outcome, then this interaction is included in the model fitted to the data. This conclusion
contradicts the results of a previous study by Ma et al. [10], where they found that CRA estimates using
RELR are biased under CDM assumption. Again we believe this is because they compared RELR esti-
mates of the conditional log(OR) with the true marginal log(OR). The conclusions of Ma et al. [10] have
subsequently been cited in a recent textbook on CRT design and analysis [27]. We hope that our results
and explanations help in understanding some of the surprising results and conclusion in Ma et al. [8–10].
In our study, we also found that the RELR with MMI gave slightly upward biased estimates of conditional
log(OR) for small number of clusters in each intervention groups.

The GEE using CRA and MMI gave unbiased estimates of population-averaged log(OR)with coverage
rates close to the nominal level regardless of whether the missingness mechanism was the same between
the intervention groups and whether there was an interaction between the intervention group and baseline
covariate in the data generating model. Similar results had been found by Ma et al. [10] for GEE in terms
of bias, although as described earlier, in their data generating mechanism, the covariate was generated
independently of the outcome.

In this study, we assumed the same covariate effects for the probability of having a missing outcome
in the two intervention groups. Another possible scenario would be that the two groups have different
missingness mechanism in the sense that the covariate effects on the probability of having missing out-
come are different between the two intervention groups. To address this, we have carried out a further
simulation with different covariate effects (𝜙0 = 0.5, 𝜙1 = 1) on the probability of having a missing out-
come between the two groups. The results showed, as expected by theory, that CRA gives valid estimates.
This is because, CRA is valid as long as conditional on the covariates in the model, the missingness is
independent of the outcome. We also assumed baseline CDM assumption for binary outcome, which is
an example of MAR as our baseline covariate was fully observed. In practice, it cannot be identified on
the basis of the observed data that missingness assumption is appropriate [32, 33]. Therefore, sensitivity
analyses should be performed [33, Ch. 10] to explore whether inferences are robust to the primary work-
ing assumption regarding the missingness mechanism. Furthermore, we focused on studies with only one
individual-level baseline covariate; the methods described can be extended to more than one baseline
covariate.

In conclusion, as long as both MMI and CRA use the same covariates with the same functional form,
RELR or GEE using complete records can be recommended as the primary analysis approach for CRTs
with missing binary outcomes if we are willing to assume that the missingness depends on baseline
covariates and conditional on these, not on the outcome. In addition, where the aim is to estimate RD
or RR, MMI can be used followed by cluster-level analysis to acquire valid estimates under the CDM
assumption for missing binary outcomes, but one should be cautious when making inferences as this
approach results in overcoverage for small number of clusters in each intervention group.
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