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Missing continuous outcomes
under covariate dependent
missingness in cluster
randomised trials
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Abstract

Attrition is a common occurrence in cluster randomised trials which leads to missing outcome data. Two

approaches for analysing such trials are cluster-level analysis and individual-level analysis. This paper

compares the performance of unadjusted cluster-level analysis, baseline covariate adjusted cluster-level

analysis and linear mixed model analysis, under baseline covariate dependent missingness in continuous

outcomes, in terms of bias, average estimated standard error and coverage probability. The methods of

complete records analysis and multiple imputation are used to handle the missing outcome data. We

considered four scenarios, with the missingness mechanism and baseline covariate effect on outcome

either the same or different between intervention groups. We show that both unadjusted cluster-level

analysis and baseline covariate adjusted cluster-level analysis give unbiased estimates of the intervention

effect only if both intervention groups have the same missingness mechanisms and there is no interaction

between baseline covariate and intervention group. Linear mixed model and multiple imputation give

unbiased estimates under all four considered scenarios, provided that an interaction of intervention and

baseline covariate is included in the model when appropriate. Cluster mean imputation has been proposed

as a valid approach for handling missing outcomes in cluster randomised trials. We show that cluster mean

imputation only gives unbiased estimates when missingness mechanism is the same between the

intervention groups and there is no interaction between baseline covariate and intervention group.

Multiple imputation shows overcoverage for small number of clusters in each intervention group.
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1 Introduction

In cluster randomised trials (CRTs), identifiable clusters of individuals such as villages, schools,
medical practices – rather than individuals – are randomly allocated to each of intervention and
control groups, while individual-level outcomes of interest are observed within each cluster. The
number of clusters and/or the cluster sizes in each intervention group might be different. CRTs with
equal number of clusters in each intervention group with constant cluster size are known as balanced
CRTs. One important characteristic of CRTs is that the outcomes of individuals within the same
cluster may exhibit more similarity compared to the outcomes of individuals in the other clusters,
which is quantified by the intraclass correlation coefficient (ICC), denoted by �. In practice, the value
of ICC typically ranges from 0.001 to 0.05 and it is rare for clinical outcomes to have ICC above
0.1.1 Small values of ICC can lead to substantial variance inflation factors and should not be
ignored.2,3 CRTs are being increasingly used in the fields of health promotion and health service
research. Reasons for such popularity include the nature of intervention that itself may dictate its
application at the cluster level, less risk of intervention contamination and administrative
convenience.4 It is well known that the power and precision of CRTs are lower relative to trials
that individually randomise the same number of individuals.2 In spite of this, the advantages
associated with CRTs are perceived by researchers to outweigh the potential loss of statistical
power and precision in some situations.

Attrition is a common problem for CRTs, leading to missing outcome data. This not only
reduces the statistical power of the study but may result in biased intervention effect estimates.5

Handling missing data in CRTs is complicated by the fact that data are clustered. Inadequate
handling of the missing data may result in misleading inferences.6 A systematic review7 revealed
that, among all CRTs published in English in 2011, 72% of trials had missing values either in
outcomes or in covariates or in both. Among them only 34% of CRTs reported how they handled
missing data. One of the reasons may be that the methodological development for dealing with
missing data in CRTs has been relatively slow in spite of the increasing popularity of CRTs.
Cluster mean imputation has been suggested as a valid approach for handling missing outcome
data in CRTs.8

The impact of missing data on estimation and inference of a parameter of interest depends on the
missing data mechanism, the method used to handle the missing data, and the choice of statistical
methods used for data analysis. In this paper, we study the validity of three analysis methods –
unadjusted cluster-level analysis, adjusted cluster-level analysis and linear mixed model (LMM) –
when there is missingness in the continuous outcome, and this missingness depends on baseline
covariates, and conditional on these baseline covariates, not on the outcomes itself. We compare the
performance of these methods on complete records and multiply imputed datasets. In addition, we
investigate the validity of cluster mean imputation, as proposed by Taljaard et al.,8 under the same
missingness assumption.

This paper is organised as follows. Section 2 presents a brief review of the approaches to the
analysis of CRTs with complete data. In Section 3, the assumed missingness mechanism for CRTs is
described. Section 4 describes methods of handling missing data in CRTs. In Section 5, we
investigate the validity of complete records analysis of CRTs. Section 6 describes a simulation
study and presents the results. We conclude the study with some discussion in Section 7.

2 Analysis of CRTs with complete data

We begin by describing the two broad approaches to the analysis of CRTs in the absence of missing
data. These are cluster-level analysis and individual-level analysis.
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2.1 Cluster-level analysis

Cluster-level analysis can be done in two ways: unadjusted cluster-level analysis and baseline
covariate adjusted cluster-level analysis. This approach can be explained as a two-stage process.
In the first stage of unadjusted analysis, a relevant summary measure of outcomes is calculated for
each cluster. Then, in the second stage, the cluster-specific summary measures of the control and
intervention groups obtained in the first stage are compared using appropriate statistical methods.
The most common one is the standard t-test for two independent samples (here referred to as cluster-
level t-test) with degrees of freedom (DF) equal to the total number of clusters in the study minus
two. The basis of using this test is that the resulting summary measures are statistically independent,
which is a consequence of the clusters being independent of each other. In the case of baseline
covariate adjusted analysis, an individual-level regression analysis is carried out at the first stage
including all covariates as explanatory variables, except for the intervention indicator, and ignoring
the clustering of the data.4,9 The individual level residuals from the first-stage model are then used to
calculate the cluster-specific summary measures for the control group and the intervention group,
which are then compared using cluster-level t-test in the second stage of analysis to evaluate the
intervention effect adjusted for baseline covariates. The main purposes of adjusting for baseline
covariates are to increase the credibility of the trial findings by demonstrating that any observed
intervention effect is not attributed to the possible imbalance between the intervention groups in
term of baseline covariates and to improve the statistical power.10

2.2 Individual-level analysis

In individual-level analysis, a regression model is fitted to the individual-level outcomes, allowing for
the fact that observations within the same cluster are correlated. LMM is widely used as individual-
level analysis for CRTs with continuous outcomes. The LMM takes into account between-cluster
variability using cluster-level effects which are assumed to follow a specified probability distribution.
The parameters of that distribution are estimated using maximum likelihood methods together with
intervention effect and other covariates effects. Generalised estimating equations are an alternative
approach, but for continuous outcomes and an exchangeable correlation matrix, estimates are
identical to those from LMM with a random intercept.11

The adjusted t-test, proposed by Donner and Klar,2 is an alternative approach to test the
intervention effect for quantitative outcomes, which involves calculating the mean of the
individual outcome values in each intervention group. These means are then compared using
a t-test in which the standard error (SE) is adjusted to account for the intracluster correlation.
The adjusted t-test and the cluster-level t-test are identical for balanced CRTs.

3 Missingness mechanism assumptions for CRTs

In this paper, we will consider the common setting where the outcomes are continuous, and only
outcomes are missing. In statistical analysis, if there are missing values, an assumption must be made
about the missingness mechanism, which refers to the relationship between missingness and the
underlying values of the variables in the data.12 According to Rubin’s framework,13 a missingness
mechanism can be classified as (i) missing completely at random (MCAR), where the probability of a
value being missing is independent of the observed and unobserved data; (ii) missing at random
(MAR), where conditioning on the observed data, the probability of a value being missing is
independent of the unobserved data; and (iii) missing not at random (MNAR), where the
probability of value being missing depends on both observed and unobserved data.
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In CRTs, an assumption that may sometimes be plausible is that missingness in outcomes
depends on covariates measured at baseline and conditional on these baseline covariates, not on
the outcome itself. We refer to this as covariate dependent missingness (CDM). For example, blood
pressure outcome data could be CDM if missingness in blood pressure measurement depends on
covariates (e.g. age, BMI or weight), but given these, not on the blood pressure measurement itself.
CDM is an example of a MAR mechanism when covariates are fully observed.

Let Yijl be a continuous outcome of interest for the lth ðl ¼ 1, 2, . . . ,mijÞ individual in the jth
ð j ¼ 1, 2, . . . , kiÞ cluster of the intervention group i ði ¼ 1, 2Þ, where i¼ 1 corresponds to control
group and i¼ 2 corresponds to intervention group. We assume that the Yijl follow a LMM given by

Yijl ¼ �i þ �iXijl þ �ij þ �ijl ð1Þ

where �i is a constant for ith intervention group, Xijl is a baseline covariate value for ðijl Þth
individual, �i is the effect of baseline covariate X on Y in intervention group i, �ij is the ðij Þth
cluster effect and eijl is the individual error term. We also assume that the cluster effect ð�ijÞ and
the individual error ð�ijlÞ are statistically independent, and E �ij

� �
¼ 0, Var �ij

� �
¼ �2b and

E �ijl
� �
¼ 0, Var �ijl

� �
¼ �2w, where �2b and �2w are the between-cluster variance and within-cluster

variance, respectively. Later we will sometimes make normality assumptions on these random
effects/random errors. Suppose the baseline covariate X has mean �x. Then

E �Yi

� �
¼ �i þ �i�x ¼ �i

where �Yi ¼ ð1=kiÞ
Pki

j¼1 ð1=mijÞ
Pmij

l¼1 Yijl ¼ ð1=kiÞ
Pki

j¼1
�Yij. Here, �Yi and �Yij are the mean outcome of

the ith intervention group and the ðij Þth cluster, respectively. With complete data, the cluster-level

analysis estimate of the intervention effect, say 	̂, is then calculated as

	̂ ¼ �Y1 � �Y2

With complete data, this estimator is unbiased for the true intervention effect, that is

Eð	̂Þ ¼ �1 � �2

Suppose there are some missing values for outcome Y. Define a missing data indicator Rijl such
that

Rijl ¼
1, if Yijl is observed

0, if Yijl is missing

�

Then
Pmij

l¼1 Rijl is the number of observed outcomes in the ðij Þth cluster. The CDM assumption can
then be expressed as

PðRijl ¼ 0jYij,XijÞ ¼ PðRijl ¼ 0jXijlÞ

where Yij ¼ ðYij1,Yij2, . . . ,Yijmij
Þ and Xij ¼ ðXij1,Xij2, . . . ,Xijmij

Þ are the vectors of the outcomes and
the baseline covariate values, respectively, in the ðij Þth cluster. In other words, the missingness of the
ðijl Þth individual’s outcome Yijl depends only on that individual’s baseline covariate value Xijl.

1546 Statistical Methods in Medical Research 26(3)



4 Methods of handling missing data in CRTs

Common approaches for handling missing data in CRTs include complete records analysis (CRA),
single imputation and multiple imputation (MI). This section describes these approaches. In this
paper, we focused on CRA and MI since they are the most commonly used methods for handling
missing data.

4.1 CRA

In CRA, often referred to as complete case analysis, only individuals with outcome observed are
considered in the analysis, while individuals with missing outcome are excluded. It is widely used
because of its simplicity and is usually the default method of most statistical packages. It is well
known that CRA is valid if data are MCAR or if missingness is independent of the outcome,
conditional on covariates.12 Likelihood-based CRA is valid under MAR, if missingness is only in
the outcome and all predictors of missingness are conditioned on in the model.12 CRA is also valid
under MNAR mechanisms where missingness in a covariate is dependent on the value of that
covariate, but is conditionally independent of outcome.14,15

4.2 Single imputation

Single imputation imputes a single value for each missing outcome and creates a complete dataset. In
general, single imputation is not recommended, since estimates of uncertainty are biased
downwards, leading to anti-conservative inferences. However, for CRTs two choices for single
imputation are group mean imputation and cluster mean imputation.8 In the first case, missing
outcomes in each intervention group are replaced by the mean outcome calculated using complete
records pooled across clusters of that group. This approach reduces the variability among the
clusters means and, therefore, gives inflated Type I error.8 In cluster mean imputation, missing
outcomes in each cluster are replaced by the mean outcome calculated using complete records of
that cluster. This approach has been suggested as a good approach for handling missing outcomes
by Taljaard et al.8 They showed that cluster mean imputation gives Type I error close to nominal
level under MCAR, using adjusted t-test with balanced CRTs. However, under MAR or CDM,
adjusted t-test with cluster mean imputation may not be valid. We note that, with balanced CRTs,
the cluster-level t-test and the adjusted t-test are identical with cluster mean imputation since after
imputation the cluster sizes become constant and the cluster means remain unchanged by the
imputation. Consequently, our later results for the validity of cluster level t-test can also be
applied to infer the validity of results after using cluster mean imputation. One additional
problem with cluster mean imputation is that it distorts the estimates of between-cluster
variability and within-cluster variability, which often are of interest.

4.3 MI

MI, first proposed by Rubin,16 is a method of filling in the missing outcomes multiple times by
simulating from an appropriate model. The aim of imputing multiple times is to allow for the
uncertainty about the missing outcomes due to the fact that the imputed values are sampled
draws for the missing outcomes. A sequence of Q imputed datasets is obtained by replacing each
missing outcome by a set of Q � 2 imputed values that are simulated from an appropriate
distribution or model. Each of the Q datasets is then analysed as a completed dataset using a
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standard method. The results from the Q imputed datasets are then combined using Rubin’s rules.16

The combined inference is based on a t-distribution with DF given by


 ¼ ðQ� 1Þ 1þ
Q

Qþ 1

WMI

BMI

� �2

ð2Þ

where BMI is the between-imputation variance and WMI is the average within-imputation variance.
This formula for DF is derived under the assumption that the complete data DF, 
com, is infinite.

17

In CRTs, 
com is usually small as it is based on the number of clusters in each intervention group
rather than the number of individuals. For unadjusted cluster-level analysis and individual-level
baseline covariate adjusted cluster-level analysis, 
com is calculated as k1 þ k2 � 2 for statistical
inference using cluster-level t-test4 and adjusted t-test.8 An adjustment is made to the 
com to
adjust for cluster-level baseline covariates using cluster-level analysis. In this case, we reduce the
complete data DF from 
com ¼ k1 þ k2 � 2 to 
com ¼ k1 þ k2 � 2� p, where p is the number of
parameters corresponding to the cluster-level baseline covariates in the first-stage regression model.4

When 
com is small and there is a modest proportion of missing data, the repeated-imputation
DF, 
 (given in equation (2)), for reference t-distribution can be much higher than 
com, which is not
appropriate.17 In such a situation, a more appropriate DF, 
adj, proposed by Barnard and Rubin,17

is calculated as


adj ¼
1



þ

1


̂obs

� ��1
� 
com ð3Þ

where


̂obs ¼ 1þ
Qþ 1

Q

BMI

WMI

� ��1 
com þ 1


com þ 3

� �

com ð4Þ

At least four different types of MI have been used in CRTs.7 These are standard MI which ignores
clustering, fixed effects MI which includes a fixed effect for each cluster in the imputation model,
random effects MI where clustering is taken into account through random effects in the imputation
model and within-cluster MI where standard MI is applied within each cluster. Andridge18 showed,
with balanced CRTs under MCAR and MAR missingness in a continuous outcome with a single
covariate in addition to intervention indicator, that MI models that incorporate clustering using
fixed effects for cluster can result in a serious overestimation of variance of group means and this
overestimation is more serious for small cluster sizes and small ICCs. This overestimation of
variance results in a decrease in power, which is particularly dangerous for CRTs which are
often underpowered.18 MI using random effects for cluster gave slight overestimation of variance
of group means for very small values of �. Andridge also showed that using an MI model that
ignores clustering can lead to severe underestimation of the MI variance for large values of �
(>0.005). This underestimation of variance leads to inflated Type I error.

Taljaard et al.8 examined the performance of MI in a simple setup considering balanced CRTs
where there are no covariates except intervention indicator using standard regression imputation,
which ignores clustering, and random effects MI which does account for intraclass correlation. They
also considered the Approximate Bayesian Bootstrap (ABB) procedure, proposed by Rubin and
Schenker,19 as a non-parametric MI. In ABB, sampling from the posterior predictive distribution of
missing data is approximated by first generating a set of plausible contributors drawn with

1548 Statistical Methods in Medical Research 26(3)



replacement from the observed data, and then imputed values are drawn with replacement from the
possible contributors. Two possible uses of ABB in CRTs are pooled ABB and within-cluster ABB,
where the set of possible contributors are sampled from all observed values across the clusters in
each group or from observed values in the same cluster, respectively. They showed that none of these
four MI procedures tend to yield better power compared to the power of adjusted t-test using no
imputation and cluster mean imputation under MCAR.

We note that in the case of missing outcome under MAR for individually randomised trials,
Groenwold et al.20 showed that CRA with covariate adjustment and MI give similar estimates so
long as the same set of predictors of missingness is used. It can be anticipated that similar result
holds for CRTs. An obvious advantage of CRA over MI is that it is much easier to apply, and
therefore in situations where they are equivalent, CRA is clearly preferable.

5 Validity of CRA of CRTs

In this section, we describe the unadjusted cluster-level analysis, baseline covariate adjusted cluster-
level analysis and LMM analysis methods using complete records, and derive conditions under
which they give valid inferences under the CDM assumption.

5.1 Unadjusted cluster-level analysis using complete records

The mean of the observed outcomes in the ith intervention group can be calculated as

�Yobs
i ¼

1

ki

Xki
j¼1

�Yobs
ij

where �Yobs
ij ¼ 1=

Pmij

l¼1 Rijl

� �Pmij

l¼1 RijlYijl is the observed mean of ðij Þ th cluster. The estimate of
intervention effect is given by

	̂obs ¼ �Yobs
1 �

�Yobs
2 ð5Þ

In Appendix 1, we show that

E 	̂obs
� �

¼ �1 � �2 þ �1 �x11 � �xð Þ � �2 �x21 � �xð Þ ð6Þ

and

Var 	̂obs
� �

¼
X2
i¼1

1

ki
�2i �

2
�xi1
þ �2b þ

�2w
�i

� �
ð7Þ

where �xi1 is true mean of the baseline covariate X in the ith intervention group among those

individuals with observed outcomes, �2�xi1 is the variance of the cluster-specific means of X among

those with observed outcomes and 1=�i ¼ E 1=
P

l Rijl

� �
. From equation (6), it follows that the

unadjusted cluster-level analysis using CRA will be unbiased if

�1 �x11 � �xð Þ ¼ �2 �x21 � �xð Þ, or equivalently ,
�1
�2
¼
�x21 � �x

�x11 � �x
ð8Þ

A sufficient condition for equation (8) to hold is that �1 ¼ �2 (i.e. there is no interaction between
baseline covariate and intervention group in the outcome model) and that the missingness
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mechanisms are the same in the two intervention groups, so that �x11 ¼ �x21. It can also be seen
from equation (6) that, when there is no missing data, �x11 ¼ �x21 ¼ �x, and hence the unadjusted
cluster-level analysis results in unbiased estimates of intervention effects even when �1 6¼ �2.

5.2 Adjusted cluster-level analysis using complete records

Recall that the first step of the adjusted cluster-level analysis involves fitting a regression model
for Y with X as covariate, but ignoring the intervention indicator and clustering of the data.
The residual �̂ijl is then given by

�̂ijl ¼ Yijl � Ŷijl

where Ŷijl ¼ � þ Xijl is the predicted outcome for the ðijl Þth individual based on the first-stage
model fit. The mean of the observed residuals of the ith group is given by

�̂�obsi ¼
1

ki

Xki
j¼1

�̂�obsij

where �̂�obsij ¼ 1=
Pmij

l¼1 Rijl

� �Pmij

l¼1 Rijl�̂ijl is the mean of observed residuals of the ðij Þth cluster. The
baseline covariate adjusted estimator of intervention effect is given by

	̂obsadj ¼
�̂�obs1 �

�̂�obs2 ð9Þ

We show in Appendix 2 that

E 	̂obsadj

� �
¼ �1 � �2 þ �1 �x11 � �xð Þ � �2 �x21 � �xð Þ þ  �x21 � �x11ð Þ ð10Þ

Hence, the estimator (9) will be unbiased if (i) �1 ¼ �2 and �x11 ¼ �x21, or if (ii)  ¼ �1 ¼ �2.
Equation (10) is derived (see Appendix 2) assuming fixed values of � and  instead of their
estimates. In practice, � and  are unknown and must be estimated by fitting the first-stage
regression model for the observed outcomes. We are not worried about the estimate of the
intercept parameter � since the expression (10) is independent of �. If  is estimated consistently,
then 	̂obsadj will be a consistent estimator of intervention effect when in truth  ¼ �1 ¼ �2. The
estimator of , say ̂, is calculated using complete records and will be unbiased (and therefore
consistent) if Rijl??YijljXijl. This is true only when the two intervention groups have the same
missingness mechanisms and have the same baseline covariate effects on outcome in the outcome
model. Therefore, assuming CDM, the baseline covariate adjusted cluster-level analysis is consistent
only if the two intervention groups have the same covariate effects on outcome in the outcome model
and the same missingness mechanisms. We also note that with no missing data �x11 ¼ �x21 ¼ �x,
hence, equation (10) guarantees that the adjusted cluster-level analysis, which assumes that the
covariate effect on outcome is the same in both groups, is unbiased, regardless of whether the
covariate effect is the same in the intervention groups.

The variance of the estimator (9) can be written as (see Appendix 2 for derivation)

Var 	̂obsadj

� �
¼
X2
i¼1

1

ki
�i � ð Þ

2�2�xi1 þ �
2
b þ

�2w
�i

� �
ð11Þ
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This shows that when �1 ¼ �2 and the missingness mechanisms are the same in the two
intervention groups, in order for the estimator ð55Þ to have minimum variance one should replace
the unknown  by an estimate of �1 ¼ �2 ¼ �.

5.3 LMM using complete records

Let Z be the intervention indicator which is zero for control group and is one for intervention group.
When it is assumed that the two intervention groups have the same covariate effects on outcome, we
fit a LMM with fixed effects of X and Z, and a random effect for cluster. Then the estimate of the
coefficient of Z will be the estimated intervention effect accounting for X.

If one thinks that the baseline covariate effects on outcome could be different in the two
intervention groups and there are missing outcome values, an interaction of X and Z must be
included in the model. This implies that the intervention effect varies with X. Then the estimate
of the intervention effect at the mean value of X is an estimate of the average intervention effect. Let
X� denote the empirically centred variable X� �X, where �X is the mean of X calculated using data
from all individuals. If the baseline covariate effects on outcome are assumed to be different in the
two groups, we fit a LMM, using complete records, with fixed effects of X�, Z and their interaction,
and a random effect for cluster. The estimate of the coefficient of Z will then be the estimated
average intervention effect. One may need to account for the centring step in the variance
estimation. We will investigate in the simulations whether ignoring this has any negative impact
on CI coverage.

In the general theory of LMM, the variances of the fixed effects parameter estimates, which are
calculated based on their asymptotic distributions, are known to be underestimated for small sample
sizes.21 In this paper, we used quantiles from t-distribution with DF k1 þ k2 � 2 rather than the
quantiles form the standard normal distribution to construct the confidence interval for the
intervention effect, as this has been used in other papers for individual-level analysis using mixed
models for CRTs.22,23

6 Simulation study

A simulation study was conducted to investigate the performance of unadjusted cluster-level
analysis, baseline covariate adjusted cluster-level analysis and LMM using CRA under baseline
CDM in outcomes. We also investigated whether there is any gain using MI over CRA. The
average estimate of intervention effect, its average estimated SE and coverage probability were
calculated and compared. We considered balanced CRTs, where the two intervention groups
have equal number of clusters ðki ¼ kÞ and constant cluster size ðmij ¼ mÞ.

6.1 Data generation and analysis

For each individual in the study a single covariate value X was generated independently as
X � Nð0, 1Þ. Since �2x ¼ 1, we can write the coefficient of X in equation (1) as �i ¼ �i�y, where �

2
y

is the total variance of Y within each intervention group and �i is the correlation coefficient between
Y and X in intervention group i. We fixed �2y ¼ 100, �1 ¼ 20 and �2 ¼ 25. Then the outcome Y was
generated using the model

Yijl ¼ �i þ �i�yXijl þ �ij þ �ijl
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where �ij � Nð0, ��2yÞ and �ijl � Nð0, ð1� �2i � �Þ�
2
yÞ. We chose the cluster size m¼ 30 for each

cluster. Parameters that were varied in generating the data include the number of clusters in each
group, k ¼ ð5, 10, 20, 30Þ and the unconditional ICC, � ¼ ð0:001, 0:05, 0:1Þ. The missing data
indicators Rijl under CDM assumption were generated, independently for each individual,
according to a logistic regression model

logit Rijl ¼ 0jYij,Xij

� �
¼ �i0 þ �i1Xijl

The intercept �i0 and slope �i1 were chosen so that Ejl Rijl

� �
¼ pi, where pi is the desired proportion of

observed values in intervention group i. The degree of correlation between missingness and baseline
covariate depends on the value of �i1. We used �11 ¼ �21 ¼ 1, which gives the odds ratio for having a
missing outcome ðYÞ is 2.72 associated with a one unit increase in the covariate ðXÞ value. Missing
data indicators were then imposed to each generated complete data to get the incomplete data.

Four possible scenarios were considered:

(1) �10 ¼ �20 ¼ �1 and �1 ¼ �2 ¼ 0:5: missingness mechanism is the same between the intervention
groups and there is no interaction between intervention group and baseline covariate in the
outcome model.

(2) �10 ¼ �1, �20 ¼ 0:5 and �1 ¼ �2 ¼ 0:5: missingness mechanism is different between the
intervention groups and there is no interaction between intervention group and baseline
covariate in the outcome model.

(3) �10 ¼ �20 ¼ �1 and �1 ¼ 0:4, �2 ¼ 0:6: missingness mechanism is the same between the
intervention groups and there is an interaction between intervention group and baseline
covariate in the outcome model.

(4) �10 ¼ �1, �20 ¼ 0:5 and �1 ¼ 0:4, �2 ¼ 0:6: missingness mechanism is different between the
intervention groups and there is an interaction between intervention group and baseline
covariate in the outcome model.

In the first and third scenarios, there was 30% missing outcomes in both the intervention groups.
In the second and fourth scenarios, there was 30% missing outcomes in the control group and 60%
missing outcomes in the intervention group. Each generated incomplete dataset was then analysed
using unadjusted cluster-level analysis, baseline covariate adjusted cluster-level analysis and LMM
using complete records. We included the interaction between intervention and covariate into the
LMM in the third and fourth scenarios, where the two intervention groups have different covariate
effects on outcome in the data-generating model for outcome.

The R package jomo24 was used to multiply impute each generated incomplete dataset using MI
with number of imputations 20. A random intercept LMM was used as the imputation model so that
the imputation model was correctly specified. We used 200 burn-in iterations and 10 iterations
between two successive draws after examining, respectively, the convergence of the posterior
distributions of the parameters estimates of the imputation model and the plots of their
autocorrelation functions. The completed datasets were then analysed using LMM. An
interaction between intervention and baseline covariate was included in both the imputation
model and the analysis model when the two intervention groups have different covariate effects
on outcome in the data-generating model. We always used restricted maximum likelihood
estimation method to fit the LMM. The Wald t-test with adjusted DF, given in equation (3), with

com ¼ 2ðk� 1Þ was used to test the null hypothesis of intervention effect. We had maximum 50
convergence warnings in 10,000 simulations when LMM was fitted using the R package lme4.25
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6.2 Results

Empirical average estimates of intervention effect, average estimated SEs and coverage probabilities
of nominal 95% confidence interval over 10,000 simulation runs for each of the four scenarios are
presented in Tables 1 to 4, respectively.

When the missingness mechanism is the same between the intervention groups and there is no
interaction between intervention and baseline covariate in the outcome model, both the unadjusted
and adjusted cluster-level analyses gave unbiased estimates of intervention effect with coverage
probabilities very close to the nominal level (see Table 1). However, these two methods gave
biased estimates of intervention effect if the two intervention groups had either different
missingness mechanisms or there was an interaction between intervention and covariate in the
outcome model or both (see Tables 2 to 4). In scenario 2, (two-stage) adjusted cluster-level
analysis was very slightly downwardly biased (see Table 2). Under scenario 2, the two
intervention groups have the same covariate effects ð�1 ¼ �2Þ but the missingness mechanism is
different between the intervention groups, implying �x11 6¼ �x21. However, although
Rijl??YijljXijl,Zi, Rijl 6??YijljXijl, where Zi is the intervention indicator. Therefore, the estimate of
regression coefficient ðÞ of the first-stage analysis using CRA was biased as the regression model
was fitted without considering Zi, the intervention indicator. Consequently, the second-stage
analysis gave slightly biased estimates of intervention effect. These results support our derived
conditions explained in Sections 5.1 and 5.2, respectively, for unadjusted and adjusted cluster-
level analyses to be unbiased using CRA, where we showed that these two methods are unbiased
only if the missingness mechanism is the same between the intervention groups and there is no
interaction between intervention and baseline covariate in the data-generating model for the
outcome. These results also imply that cluster mean imputation, as proposed by Taljaard et al.8

Table 1. Simulation results-missingness mechanism is the same between the intervention groups and there is no

interaction between intervention and baseline covariate in the data-generating model for outcome. Empirical average

estimates of intervention effect, average estimated SEs and coverage probabilities of nominal 95% confidence interval

over 10,000 simulation runs for unadjusted cluster-level analysis (CL(unadj)), baseline covariate adjusted cluster-level

analysis (CL(adj)) and linear mixed model (LMM), using CRA and MI. Monte Carlo errors for average estimates and

average estimated SEs are all less than 0.023 and 0.016, respectively. The true value of the intervention effect is 5.

Average Estimate Average estimated SE Coverage (%)

� k CL(unadj) CL(adj) LMM MI CL(unadj) CL(adj) LMM MI CL(unadj) CL(adj) LMM MI

0.1 5 4.98 4.99 4.99 4.98 2.31 2.21 2.23 2.19 95.2 95.1 95.2 96.3

10 5.01 4.98 5.00 4.99 1.66 1.59 1.60 1.59 95.1 95.3 95.3 95.5

20 4.99 4.99 4.99 4.99 1.18 1.14 1.14 1.14 94.9 95.0 94.9 94.8

30 5.01 5.00 5.01 5.01 0.97 0.93 0.93 0.93 95.0 95.0 94.9 95.0

0.05 5 5.00 4.98 5.00 5.00 1.88 1.76 1.78 1.76 95.2 95.1 95.6 96.2

10 5.01 5.00 5.01 5.01 1.35 1.28 1.28 1.26 95.1 95.2 95.1 95.4

20 5.01 5.00 5.01 5.01 0.96 0.91 0.91 0.90 95.0 95.0 95.1 95.0

30 4.99 4.99 4.99 4.99 0.79 0.75 0.74 0.74 95.0 95.0 95.0 95.0

0.001 5 4.98 4.98 4.99 4.99 1.34 1.18 1.31 1.35 95.2 95.1 96.2 99.6

10 5.01 5.00 5.01 5.01 0.96 0.85 0.90 0.93 95.1 95.1 96.8 97.8

20 4.99 4.99 5.00 5.00 0.69 0.61 0.63 0.64 94.8 94.9 96.2 96.7

30 5.00 5.00 5.00 5.00 0.56 0.50 0.51 0.52 95.1 95.3 96.2 96.8
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Table 3. Simulation results-missingness mechanism is the same between the intervention groups and there is an

interaction between intervention and baseline covariate in the data-generating model for outcome. Empirical average

estimates of intervention effect, average estimated SEs and coverage probabilities of nominal 95% confidence interval

over 10,000 simulation runs for unadjusted cluster-level analysis (CL(unadj)), baseline covariate adjusted cluster-level

analysis (CL(adj)) and linear mixed model (LMM), using CRA and MI. Monte Carlo errors for average estimates and

average estimated SEs are all less than 0.024 and 0.016, respectively. The true value of the intervention effect is 5.

Average Estimate Average estimated SE Coverage (%)

� k CL(unadj) CL(adj) LMM MI CL(unadj) CL(Adj) LMM MI CL(unadj) CL(Adj) LMM MI

0.1 5 4.46 4.44 4.97 4.97 2.31 2.22 2.25 2.22 94.3 94.3 95.0 96.4

10 4.50 4.49 5.01 5.02 1.66 1.59 1.61 1.60 93.7 93.6 94.7 94.8

20 4.48 4.48 5.00 5.00 1.19 1.14 1.15 1.15 92.5 92.6 94.9 94.9

30 4.49 4.49 5.00 5.00 0.97 0.93 0.94 0.94 91.3 91.2 94.7 94.7

0.05 5 4.45 4.43 4.96 4.97 1.88 1.76 1.81 1.80 94.0 93.7 95.3 97.1

10 4.51 4.49 5.01 5.01 1.36 1.28 1.30 1.29 93.7 93.4 95.0 95.5

20 4.50 4.50 5.01 5.01 0.97 0.91 0.92 0.92 91.9 91.6 94.8 94.8

30 4.50 4.50 5.01 5.01 0.79 0.75 0.76 0.75 90.4 89.8 94.6 94.6

0.001 5 4.48 4.46 4.99 4.99 1.34 1.18 1.35 1.39 93.4 93.5 98.1 99.4

10 4.50 4.49 5.02 5.01 0.96 0.85 0.93 0.96 92.3 91.6 96.9 97.9

20 4.49 4.49 5.00 5.00 0.69 0.61 0.65 0.66 88.9 87.2 96.3 96.8

30 4.48 4.48 4.99 4.99 0.56 0.50 0.52 0.54 84.9 81.6 95.6 96.3

Table 2. Simulation results-missingness mechanism is different between the intervention groups and there is no

interaction between intervention and baseline covariate in the data-generating model for outcome. Empirical average

estimates of intervention effect, average estimated SEs and coverage probabilities of nominal 95% confidence interval

over 10,000 simulation runs for unadjusted cluster-level analysis (CL(unadj)), baseline covariate adjusted cluster-level

analysis (CL(adj)) and linear mixed model (LMM), using CRA and MI. Monte Carlo errors for average estimates and

average estimated SEs are all less than 0.025 and 0.017, respectively. The true value of the intervention effect is 5.

Average Estimate Average estimated SE Coverage (%)

� k CL(unadj) CL(adj) LMM MI CL(unadj) CL(Adj) LMM MI CL(unadj) CL(Adj) LMM MI

0.1 5 3.83 4.94 5.01 5.01 2.44 2.32 2.34 2.28 93.2 95.1 95.2 97.0

10 3.81 4.94 5.03 5.03 1.76 1.67 1.68 1.66 89.9 95.4 95.2 95.5

20 3.78 4.91 5.00 4.99 1.25 1.19 1.19 1.19 84.2 94.9 94.8 94.8

30 3.79 4.93 5.01 5.01 1.02 0.98 0.98 0.98 79.1 95.4 95.3 95.4

0.05 5 3.77 4.90 4.98 4.98 2.04 1.90 1.94 1.92 91.7 94.9 95.7 98.3

10 3.78 4.90 5.00 4.99 1.48 1.38 1.38 1.36 87.5 95.0 95.0 95.8

20 3.76 4.92 4.98 4.98 1.05 0.98 0.98 0.97 79.4 95.2 95.1 95.1

30 3.77 4.92 4.99 4.99 0.86 0.80 0.80 0.80 70.7 94.8 94.6 94.7

0.001 5 3.77 4.89 5.00 5.00 1.58 1.39 1.54 1.60 89.4 95.1 98.3 99.7

10 3.76 4.89 4.99 4.98 1.14 1.01 1.06 1.10 82.1 95.0 97.3 98.5

20 3.78 4.91 5.00 5.00 0.81 0.72 0.74 0.76 68.8 95.2 96.4 97.3

30 3.78 4.92 5.00 5.00 0.66 0.59 0.60 0.61 56.1 94.9 95.8 96.5
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(described in Section 4.2), is not valid under CDM assumption unless the two intervention groups
have the same missingness mechanisms and there is no interaction between intervention and baseline
covariate in the outcome model. The bias in average intervention effect estimates could be in either
direction. But, in this paper, we always have downward bias in the reported intervention effect

Table 4. Simulation results-missingness mechanism is different between the intervention groups and there is an

interaction between intervention and baseline covariate in the data-generating model for outcome. Empirical average

estimates of intervention effect, average estimated SEs and coverage probabilities of nominal 95% confidence interval

over 10,000 simulation runs using unadjusted cluster-level analysis (CL(unadj)), baseline covariate adjusted cluster-

level analysis (CL(Adj)) and linear mixed model (LMM), using CRA and MI. Monte Carlo errors for average estimates

and average estimated SEs are all less than 0.025 and 0.018, respectively. The true value of the intervention effect is 5.

Average Estimate Average estimated SE Coverage (%)

� k CL(unadj) CL(adj) LMM MI CL(unadj) CL(Adj) LMM MI CL(unadj) CL(Adj) LMM MI

0.1 5 3.02 4.09 5.00 5.00 2.44 2.31 2.42 2.37 89.0 93.4 95.7 98.1

10 3.03 4.10 5.01 5.01 1.76 1.67 1.73 1.71 82.0 93.5 95.8 96.3

20 3.03 4.11 5.01 5.01 1.25 1.19 1.23 1.23 66.6 88.8 95.6 95.6

30 3.03 4.11 5.01 5.02 1.02 0.97 1.01 1.01 52.8 85.9 95.2 95.2

0.05 5 3.02 4.10 5.01 5.01 2.05 1.89 2.06 2.04 87.0 93.9 96.5 99.0

10 3.02 4.10 5.01 5.01 1.47 1.36 1.45 1.44 75.9 90.4 95.7 96.7

20 3.01 4.08 4.98 4.98 1.05 0.98 1.03 1.03 55.3 84.9 95.8 95.9

30 3.02 4.10 5.01 5.00 0.86 0.80 0.84 0.84 38.0 81.1 95.6 95.7

0.001 5 3.02 4.07 4.99 4.99 1.57 1.37 1.69 1.75 80.4 91.1 98.5 99.8

10 3.03 4.10 5.00 5.00 1.13 0.99 1.17 1.21 63.0 87.6 97.6 98.7

20 3.02 4.10 5.00 5.00 0.81 0.71 0.81 0.84 33.4 77.7 97.0 97.7

(continued)

Table 5. Comparison between the complete data DF ð
comÞ and the average estimates of adjusted DF ð
adjÞ, over

10,000 simulation runs, used by MI, when the two intervention groups have different missingness mechanisms and

different covariate effects on outcome in the data-generating model for outcome (scenario 4). The last two columns

show the upper 2.5% points of the t-distribution with 
com and 
adj DF, respectively.

� k 
com 
adj t
com
ð0:025Þ t
adj

ð0:025Þ

0.1 5 8 4.58 2.31 2.64

10 18 11.72 2.10 2.18

20 38 25.71 2.02 2.06

30 58 38.74 2.00 2.02

0.05 5 8 3.92 2.31 2.80

10 18 9.64 2.10 2.24

20 38 20.61 2.02 2.08

30 58 30.18 2.00 2.04

0.001 5 8 3.12 2.31 3.11

10 18 7.12 2.10 2.36

20 38 13.73 2.02 2.14

30 58 19.01 2.00 2.09

DF: degrees of freedom.

Hossain et al. 1555



estimates. This is because we considered a positive correlation between baseline covariate and
outcome in the data generation process, and a positive association between baseline covariate and
probability of missingness in outcomes. As a result, a large value of outcome has higher chance of
being missing compared to a low value of outcome. In our simulations the degree of bias was high if
the two intervention groups had different covariate effects on outcome and it goes up if, in addition,
the two intervention groups have different missingness mechanisms (see Tables 3 and 4). LMM and
MI gave unbiased estimates of intervention effect under all the four considered scenarios, provided
that an interaction of intervention and baseline covariate was included in the model to allow for
different covariate effects on outcome in the two intervention groups (scenario 3 and 4).

The LMM and MI had similar empirical average estimated SEs of the intervention effect
estimates. The LMM gave coverage probabilities close to nominal level except for very small �
and small k, where it showed slightly overcoverage. However, while LMM with 
com gave good
coverage, MI using 
adj gave overcoverage, and this can be attributed to it using a smaller DF. The
average estimates of 
adj, used by MI, over 10,000 simulations runs and 
com for scenario 4 are
presented in Table 5. Results showed that the estimates of 
adj are smaller compared to 
com.

7 Discussion and conclusion

In this paper, we aimed to investigate the validity of the unadjusted and adjusted cluster-level
analyses, and LMM for analysing CRTs, where the outcomes are continuous and only outcomes
are missing under CDM assumption. We used CRA and MI for handling the missing outcomes. The
contributions of the paper can be summarised as follows:

First, we found that both the unadjusted and adjusted cluster-level analyses are in general biased
using CRA unless there is no interaction between intervention and baseline covariate in the data-
generating model for outcome and the missingness mechanism is the same between the interventions
groups, which is arguably unlikely to hold in practice. Cluster-level analysis is used by many
researchers to analyse CRTs because of its simplicity. We therefore caution researchers that these
methods may commonly give biased inferences in CRTs with missing outcomes. However, we note
that these two methods are unbiased with full data, even when there is an interaction between
baseline covariate and intervention in the true data-generating model for outcome.

Second, cluster mean imputation has been previously recommended as a valid approach for
handling missing outcomes in CRTs. We found that cluster mean imputation gave invalid
inferences under CDM assumption unless missingness mechanism is the same between the
intervention groups and there is no interaction between intervention and baseline covariate in the
data-generating model for outcome.

Third, the LMM using CRA gave unbiased estimates of intervention effect regardless of whether
missingness mechanisms are the same or are different between the intervention groups and whether
there is an interaction between intervention and baseline covariate in the data-generating model for
the outcome, provided that an interaction between intervention and baseline covariate was included
in the model when such interaction exists in truth.

Finally, we compared the results of LMM using CRA with the results of MI. As expected, we
found that MI gave unbiased intervention effects estimates regardless of whether missingness
mechanisms are the same or are different in the two intervention groups and whether there is an
interaction between intervention and baseline covariate. The LMM and MI had similar empirical
SEs of the estimates of intervention effects. However, MI using adjusted DF estimates gave
overcoverage for the nominal 95% confidence interval. This is due to underestimation of adjusted
DF used by MI compared to complete data DF. Groenwold et al.20 showed that there is little to be
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gained by using MI over LMM in the absence of auxiliary variables. Moreover, when missingness is
confined to outcomes, LMMs fitted using maximum likelihood are fully efficient and valid under
MAR.

Throughout this paper, we have assumed CDM mechanism in a continuous outcome, which is an
example of MAR as our baseline covariate was fully observed. In practice, we cannot identify on the
basis of the observed data which missingness assumption is appropriate.14,26 Therefore, sensitivity
analyses should be performed26 (Ch. 10) to explore whether our inferences are robust to the primary
working assumption regarding the missingness mechanism. Furthermore, we focused on studies with
only one individual-level covariate; the methods described can be extended for more than one
covariate.

In conclusion, in the absence of auxiliary variables, LMM using complete records can be
recommended as the primary analysis approach for CRTs with missing outcomes if one is willing
to make baseline CDM assumption for outcomes.
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Appendix 1. Unadjusted cluster-level analysis using complete records

The mean of the observed outcomes in a particular cluster can be written as

�Yobs
ij ¼

1

Pmij

l

Rijl

Xmij

l¼1

RijlYijl

¼
1P

l

Rijl

Xmij

l¼1

Rijl �i þ �iXijl þ �ij þ �ijl
� �

¼ �i þ �i
1P

l

Rijl

Xmij

l¼1

RijlXijl þ �ij þ
1P

l
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Rijl�ijl

¼ �i þ �i �Xobs
ij þ �ij þ
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l
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l¼1

Rijl�ijl

where �Xobs
ij ¼ 1=

P
l Rijl

� �Pmij

l¼1 RijlXijl is the observed mean of the baseline covariate X in the ðij Þth

cluster. The expected value of �Xobs
ij across the clusters in the ith intervention group will be the true

mean of X among those individuals with observed outcomes. Let �xi1 denote the true mean of the
baseline covariate X in the ith intervention group among those individuals with observed outcomes.
Then

E �Yobs
ij

� �
¼ �i þ �i�xi1 þ E

1P
l

Rijl

Xmij

l¼1

Rijl�ijl

0
B@

1
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Let Rij ¼ ðRij1,Rij2, . . . ,Rijmij
Þ be the vector of missing data indicators for the ðij Þth cluster. Then

E
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since eijl’s are independent of Rijl’s and Eð�ijlÞ ¼ 0. Therefore, we have

E �Yobs
ij

� �
¼ �i þ �i�xi1

The variance of �Yij can be written as
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where �2�xi1 is the variance of the cluster-specific means of X among those with observed outcomes.
Now
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where E 1=
Pmij

l Rijl

� �� �
¼ 1=�i ðsayÞ. Therefore

Var �Yobs
ij

� �
¼ �2i �

2
�xi1
þ �2b þ

�2w
�i

The observed mean of the ith intervention group is calculated as

�Yobs
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1
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Then
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and
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The estimator of intervention effect in unadjusted cluster-level analysis based on observed values
is given by

	̂obs ¼ �Yobs
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which tends to zero as ðk1, k2Þ tend to infinity.

Appendix 2. Adjusted cluster-level analysis using complete records

The mean of observed residuals of a particular cluster is given by

�̂�obsij ¼
1

Pmij

l

Rijl

Xmij

l¼1

Rijl�̂ijl
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¼
1P

l

Rijl

Xmij

l¼1

Rijl Yijl � Ŷijl

� �

¼
1P

l

Rijl

Xmij

l¼1

Rijl �i þ �iXijl þ �ij þ �ijl � � � Xijl

� �

¼ �i þ �i � ð Þ
1P

l

Rijl

Xmij

l¼1

RijlXijl þ �ij þ
1P

l

Rijl

Xmij

l¼1

Rijl�ijl � �

¼ �i þ �i � ð Þ �Xobs
ij þ �ij þ

1P
l

Rijl

Xmij

l¼1

Rijl�ijl � �

Then

E �̂�obsij

� �
¼ �i þ �i � ð Þ�xi1 � �

and

Var �̂�obsij

� �
¼ �i � ð Þ

2�2�xi1 þ �
2
b þ

�2w
�i

using the results (12) and (13). The mean of observed residuals of the ith intervention group can be
written as

�̂�obsi ¼
1

ki

Xki
j¼1

�̂�obsij

Then

E �̂�obsi

� �
¼ �i þ �i � ð Þ�xi1 � �

and

Var �̂�obsi

� �
¼

1

ki
�i � ð Þ

2�2�xi1 þ �
2
b þ

�2w
�i

� �

The baseline covariate adjusted estimator of intervention effect, based on observed values, is
given by

	̂obsadj ¼
�̂�obs1 �

�̂�obs2

Then

E 	̂obsadj

� �
¼ �1 þ �1 � ð Þ�x11 � �ð Þ � �2 þ �2 � ð Þ�x21 � �ð Þ

¼ �1 þ �1�xð Þ � �2 þ �2�xð Þ þ �1 �x11 � �xð Þ � �2 �x21 � �xð Þ þ  �x21 � �x11ð Þ

¼ �1 � �2 þ �1 �x11 � �xð Þ � �2 �x21 � �xð Þ þ  �x21 � �x11ð Þ
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and

Var 	̂obsadj

� �
¼

1

k1
�1 � ð Þ

2�2�x11 þ �
2
b þ

�2w
�1

� �
þ

1

k2
�2 � ð Þ

2�2�x21 þ �
2
b þ

�2w
�2

� �

¼
X2
i¼1

1

ki
�i � ð Þ

2�2�xi1 þ �
2
b þ

�2w
�i

� �

which tends to zero as ðk1, k2Þ tend to infinity.
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