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Abstract—This paper investigates deep learning techniques to
predict transmit beamforming based on only historical channel
data without current channel information in the multiuser
multiple-input-single-output downlink. This will significantly re-
duce the channel estimation overhead and improve the spectrum
efficiency especially in high-mobility vehicular communications.
Specifically, we propose a joint learning framework that incorpo-
rates channel prediction and power optimization, and produces
prediction for transmit beamforming directly. In addition, we
propose to use the attention mechanism in the Long Short-Term
Memory Recurrent Neural Networks to improve the accuracy
of channel prediction. Simulation results using both a simple
autoregressive process model and the more realistic 3GPP spatial
channel model verify that our proposed predictive beamforming
scheme can significantly improve the effective spectrum efficiency
compared to traditional channel estimation and the method that
separately predicts channel and then optimizes beamforming.

Index Terms—channel prediction, beamforming, deep learning.

I. INTRODUCTION

Timely and accurate channel state information (CSI) is
essential to exploit the full potential of multiuser multi-antenna
systems by designing the optimal transmission strategies such
as beamforming, but it is challenging to obtain in practice.
Traditionally downlink CSI is obtained at a base station (BS)
via either feedback from users, or channel estimation via
uplink pilots by using the channel reciprocity. Both methods
introduce significant overhead, extra error and latency, and as
a result the CSI at the BS becomes outdated for beamforming
design especially in high-mobility scenarios, e.g., unmanned
aerial vehicle and vehicle-to-everything communications.

A more efficient channel acquisition method is to predict
channels based on historical CSI data by exploiting the tem-
poral correlation. There has been a large body of research on
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channel prediction. Early works assume the accurate channel
model such as the autoregressive (AR) process or the long-
term channel statistics is available, and typically Kalman
filtering [1] is employed to estimate the AR coefficients.
However, practical channels may not be characterized by
analytical models and they could be non-stationary, which
degrade the performance of model-based prediction methods.

Recently deep learning based channel prediction has re-
ceived much attention for its ability to learn CSI from data
without prior knowledge about channel models. Starting from
a single-antenna system, an efficient long-short term memory
(LSTM) network, a type of recurrent neural network (RNN),
is proposed in [2] for CSI prediction and adaptation in non-
stationary changing channels. Going further, a data-driven re-
ceiver architecture that reduces the pilot overhead is designed
in [3], following RNN-based channel prediction. The work in
[4] begins by designing and conducting a measurement cam-
paign to collect IQ samples of the IEEE 802.11p transmission
and extract CSI in various real-world vehicular environments.
The LSTM method is then employed to predict future CSI
and received signal levels which is verified by trace-based
evaluation. Deep learning based channel prediction is extended
in [5] to massive multiple-input-multiple-output (MIMO) sys-
tems, which improves the channel prediction quality for both
low and high mobility scenarios. A comparative study on a
vector Kalman filter (VKF) predictor and a deep learning
based predictor for massive MIMO systems using the spatial
channel model (SCM) is carried out in [6], and it is shown that
both can achieve substantial gain over the outdated channel
in terms of the channel prediction accuracy and data rate.
Following channel prediction, the beamforming optimization
has also been studied. A deep learning approach is adopted
in [7] to predict the angles between the unmanned aerial
vehicle (UAV) and the user equipment in the presence of
jittering due to the inherent random wind gusts, such that the
UAV and the UE can prepare the transmit and receive beams
in advance. A versatile unsupervised deep learning based
predictive beamforming design is proposed in [8] in vehicular
networks, which implicitly learns the features of historical
channels and directly predicts the beamforming matrix to be
adopted for the next time slot. The proposed method not only
guarantees the required sensing performance, but also achieves
a satisfactory sum-rate. Predictive beamforming is studied
for dual-functional radar-communication (DFRC) systems in
vehicular networks [9], in which a novel message passing
algorithm based on factor graph is proposed to estimate the
motion parameters of vehicles, and the beamformers are then
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designed based on the predicted angles for establishing the
communication links.

Different from the aforementioned works that focus on
channel prediction only or have assistance from radar, we
propose a deep learning framework that takes historical CSI
data as input and directly predicts the beamforming solution
for future channels to maximize the sum rate performance of a
multiuser multi-antenna system. The framework incorporates
an LSTM-based channel prediction module and a power
optimization module which helps reconstruct the beamforming
vectors using hybrid supervised-unsupervised learning. Fur-
thermore, we propose to use the attention mechanism in the
LSTM network such that the impact of historical channels in
different coherent intervals will be correctly reflected in the
channel prediction and this thus improves the performance of
beamforming prediction.

The remainder of this paper is organized as follows. Section
II introduces the system model and the problem formulation.
Section III presents the proposed deep learning framework
for predictive beamforming. Simulation results are given to
validate the proposed method in Section IV and we conclude
our work in Section V.

Notation: All boldface letters indicate vectors (lower case)
or matrices (upper case). The superscripts (·)† and (·)−1

denote the conjugate transpose and the matrix inverse, respec-
tively. vec(·) denotes the vector operation of a matrix. The
identity matrix is denoted by I. ∥z∥ denotes the L2 norms of
a complex vector z.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a multi-input single-output (MISO) downlink
system in which a BS with Nt-antennas serves K single-
antenna users that employ single-user detection. Suppose sk
is the transmit signal to the user k with unit power and the BS
transmits with a total power PT . The transmitted data symbol
sk is mapped onto the antenna array elements by multiplying
the beamforming vector wk ∈ CNt×1. The received signal at
the user k can be expressed as

yk = h†
kwksk +

∑
j ̸=k

h†
kwjsj + nk, (1)

where hk ∈ CNt×1 is the channel between the BS and the
user k, the second term represents the interference and nk

denotes the additive white Gaussian noise (AWGN) component
with zero mean and variance σ2

k. Therefore, the signal-to-
interference-plus-noise ratio (SINR) that measures quality of
the data detection at the k-th user is given by

Γk =
|h†

kwk|2∑
j ̸=k |h

†
kwj |2 + σ2

k

. (2)

We choose the sum rate as the system performance metric to
maximize and the resulting problem is expressed as

max
{wk}

R ≜
K∑

k=1

log(1 + Γk), s.t.
K∑

k=1

∥wk∥2 ≤ PT . (3)

The sum rate optimization problem in (3) is nonconvex and
the standard approach to find its suboptimal solution is to
use the weighted minimum mean squared error (WMMSE)
algorithm [10] assuming the CSI {hk} is available which nor-
mally relies on pilot-based channel estimation and introduces
substantial overhead.

B. Problem Formulation

In this paper, we adopt a hybrid channel-estimation-
prediction scheme to solve the problem (3), in which we have
CSI estimation of a certain number of channels and then use
it to predict CSI of some future channels. Specifically, we
assume the time horizon is divided into frames of N + P
coherent intervals, and within each frame, the CSI of the first
N coherent intervals is available, and the CSI of the rest P
coherent intervals will be predicted without estimation.

The known CSI estimation is written as

ĥk(n) = hk(n) + ek(n),∀n = 1, · · · , N, (4)

where hk(n) is the true CSI of user k at the n-th coherent in-
terval and ek(n) is the channel estimation error that follows the
complex Gaussian distribution with zero mean and variance
matrix of σ2

e,kI. We assume the least-square channel estimation
is used, so σ2

e,k depends on pilot transmission power.
The CSI prediction is expressed as

h̃k(N +m) =M({ĥk(n)},∀n = 1, · · · , N),∀m = 1, · · · , P,
(5)

with M(·) being the mapping from the known channel esti-
mation to the channel prediction.

With the hybrid scheme, our aim is to solve the problem
(3) by predicting the beamforming solutions directly for those
P unkown channels given the N known channels.

III. PREDICTIVE BEAMFORMING SOLUTION

A. The General framework

Our proposed deep learning based framework to predict the
beamforming solution is illustrated in Fig. 1 below.

Loss Function

Channel 

Prediction 

Module

Known 

Channel 
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Power 

Module

Predictive 

Beamforming 

Construction

Fig. 1. The proposed framework for predictive beamforming.

The proposed framework includes three key modules. The
first module is an neural network (NN) for channel prediction,
which realizes the mapping M(·) from the input known
channel estimations ĥk(n), n = 1, · · · , N to the predicted
channel h̃k(N + m),m = 1, · · · , P . Supervised learning is
adopted and the associated loss function is

LH =
1

2LK

L∑
l=1

K∑
k=1

P∑
m=1

(
∥hk(N +m)(l) − h̃k(N +m)(l)∥2

)
,

(6)
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where L is the number of batches, and the superscript (l) de-
notes the index of the batch. Details of the channel prediction
module will be introduced in the next subsection.

The second module is an NN to predict power vectors
in order to facilitate the prediction of beamforming solution.
With the predicted channel, the beamforming solution could
be inferred directly using supervised learning, but the high
dimensional beamforming will make the training challenging
and reduce the accuracy of inference. Instead, we exploit the
following parameterized structure of the beamforming solution
for the sum rate maximization problem:

w̃k =
√
pk

(
I+

∑K
j=1

qj
σ2
j
h̃jh̃

†
j

)−1

h̃k

∥
(
I+

∑K
j=1

qj
σ2
j
h̃jh̃

†
j

)−1

h̃k∥
, (7)

where {q} and {p} are the uplink and downlink power
vectors, respectively, with the same total sum power of PT .
This structure is adapted from the result for perfect CSI [11].
It can be seen that once the channel prediction is obtained,
we can employ an NN to predict the power vectors {q}
and {p} using supervised learning, and then reconstruct the
beamforming solution using (7). The labelled data can be
obtained using the WMMSE algorithm [10]. For simplicity, we
use fully connected layers for the power module with details
provided in Section IV. Suppose the associated loss is given
by

LP =
1

2LK

L∑
l=1

P∑
m=1

(
∥q(N+m,l) − q̃(N+m,l)∥2

)
(8)

+
(
∥p(N+m,l) − p̃(N+m,l)∥2

)
, (9)

where q̃ and p̃ are the output of the power NN.
The next module will leverage the predicted channel and

power to construct the predictive beamforming solution using
(7). To improve the end performance of maximizing the sum
rate, we also consider to incorporate the sum rate expression
R({h̃k, w̃k}) in (3) into the loss function for training the
overall NN. The overall loss function is thus given as a
weighted sum below:

L = LH + LP − bR({h̃k, w̃k}), (10)

where b is a positive coefficient. The novel design of the loss
function (10) reflects the fact that our proposed solution is a
joint learning framework that incorporates channel prediction
and power optimization, while it produces prediction for
transmit beamforming directly. The rest of this section is
devoted to the development of the channel prediction module.

B. Attention-based LSTM Channel Prediction

Channel prediction is to predict future CSI given historical
CSI data by exploiting the temporal correlation between them.
The RNN is a well-suited machine learning technology to
predict time series data [12]. However, standard RNNs have
the issues of vanishing and exploding gradients during back-
propagation, which makes predicting long time series data
sequences challenging. LSTM is one of the most successful

variants of RNNs to predict the correlate time series data and
can solve the issues of vanishing and exploding gradients [12],
so it is adopted in this paper to predict the temporal correlated
channel.

An LSTM is composed of a memory cell which can store
data for long periods. The flow of information into and out of
the cell is managed by three gates. Specifically, the forget gate
determines what information from the previous state cell will
be memorized and what information will be removed that is
no longer useful; the input gate determines which information
should enter the cell state; and the output gate determines and
controls the outputs.

Most existing works in channel prediction use a simple
LTSM and only its last hidden state is fed into a fully con-
nected layer to produce the predicted channels. In this paper
we propose an improved solution by introducing the attention
mechanism to allow the algorithm to put focus on different
historical channels. Specifically, the attention scheme will put
higher weights on more recent channels to improve the future
channel prediction. This is intuitive since not all historical
CSI data have the same impact on a future channel, and it
is mostly influenced by more recent channels. The advantage
of the proposed attention scheme is that the weights will be
optimized by training and do not need to be predetermined
manually.

In this paper we propose an improved solution by intro-
ducing the attention mechanism to allow the algorithm to
put focus on different historical channels. Specifically, the
attention scheme will assign higher weights on more recent
channels to improve the future channel prediction. This is
intuitive since not all historical CSI data have the same impact
on a future channel, and it is mostly influenced by more recent
channels. The attention mechanism has gained remarkable
success in sequence-to-sequence tasks like language transla-
tion and handwritten word recognition [13], but has not been
used for channel prediction.

The proposed channel prediction module using LSTM with
the attention mechanism is depicted in Fig. 2. It has N time
steps each corresponding to the known channel estimation
in one coherent interval. In order to best make use of the
historical data we create an attention layer, which is located
between the LSTM and the fully connected layer. This layer
assigns a weight cn to the hidden state output of each time step
n with

∑N
n=1 cn = 1, and then combines the weighted sum

of the original hidden states as the LSTM output state. This
will allow the importance of channel estimation in different
coherent intervals to be correctly characterized. The new
output state is then fed into fully connected layers to produce
the predicted channels. Instead of treating the weights {cn}
as hyperparameters, one distinct advantage of the proposal
scheme is to incorporate them in the overall neural network
training, so there is no need to adjust them manually.

C. Effective Sum Rate

In this subsection we define and analyze the effective sum
rate RE as a performance metric that incorporates the sum
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Fig. 2. (a) The traditional channel prediction using LSTM without attention;
(b) The proposed channel prediction using LSTM with an attention layer.

rates of estimated channels and predicted channels, which can
be written as

RE =
(1− α)N

N + P
Re +

P

N + P
Rp, (11)

where α as the portion of the channel estimation overhead
in an coherent interval and therefore it satisfies α < 1, Re

is the average sum rate for the estimated channels, which
can be obtained using the existing neural network method
such as that in [14] as if the CSI is perfect, while Rp is
the average sum rate for the predicted channels, which is
obtained using the proposed predictive beamforming method.
Note that compared to the traditional channel estimation
based optimization method, our proposed method reduces the
channel estimation overhead by αP . Intuitively, the signalling
overhead caused by channel estimation reduces the effective
sum rate, so choosing a large N may be beneficial. However,
the quality of channel prediction also relies on the number
of known channel estimations. Therefore, the effective sum
rate is in general not monotonically varying according to N
and P , and a balance between low overhead and high-quality
prediction needs to be achieved in practice.

IV. NUMERICAL RESULTS

A. Simulation setup

In this section, we provide numerical results to validate and
evaluate the performance of the proposed deep learning-based
predictive beamforming solution. Unless otherwise specified,
we consider a MISO downlink consisting of Nt = 4 transmit
antennas and K = 3 users. The transmit signal-to-noise
(SNR) PT and the variance of channel estimation error is
σ2
e,k = 1/PT ,∀k. The channel estimation overhead is set to

be α = 0.1. Unless otherwise specified, we assume N = 20
known CSI data are available and PT is 20 dB. In our sim-
ulation, we generate 30,000 training labels and 1,000 testing
samples, respectively, using the WMMSE algorithm in [10].
For the LSTM layer, we use 2NtKN units while three fully
connected layers each with 30NtK neurons, relu activation
are used for the power NN. b is chosen to be 0.001 in (10).
We use Python and Keras in Tensorflow to train the proposed
deep learning model. All simulation results are generated by
using a computer with an Intel i7-7700 CPU and an NVIDIA

Titan Xp GPU. The normalized MSE (NMSE) defined below
is used as the performance metric for channel prediction:

NMSE = E

[
∥H− H̃∥2

∥H∥2

]
. (12)

The following benchmark schemes are considered for com-
parison:

• Predict beamforming without attention. It is the same as
the proposed method except that the channel prediction
module does not employ the attention mechanism.

• Separate optimization, i.e., to use the proposed LSTM-
based method with attention to predict the channel, and
the zero-forcing (ZF) beamforming is used to optimize
the sum rate of both the predicted channels and the known
channels.

• Channel estimation followed by ZF beamforming. This is
the traditional estimation scheme with pilot overhead in
which no channel prediction is used. It may not always
be feasible due to the latency.

• Kalman filtering. This scheme uses Kalman filtering for
channel prediction and ZF for optimizing the sum rate.

B. Channel models

We consider two different scenarios for modelling the
channel dynamics.

• The first scenario is the first-order AR process. Suppose
we collect all users’ channel as H. In this scenario, the
temporal evolution of the channel is given by

vec(Hn) = βvec(Hn−1) + un, (13)

where β = J0(2πfDTs), J0(·) is the zeroth-order Bessel
function of the first kind, fD is the maximum Doppler
frequency shift and Ts is the sampling duration. un is
the zero-mean Gaussian excitation noise with covariance
matrix σ2

uI with σ2
u = 1−β2. The composite term fDTs

denotes the normalized Doppler rate. In the simulation,
we choose fDTs = 0.005, so β = 0.9998, which
corresponds to a slow user velocity of 2.7 km/h at a
frequency of 2 GHz and sampling duration of 1 ms. For
the Kalman filtering, an AR model with the prediction
order of one in (13) is used together with the measure data
in (4) to estimate the channels {hn}, 1 ≤ n ≤ N . While
to predict the channels without measurement data, the
simple state evolution is used: hN+m = βhN+m−1, 1 ≤
m ≤ P . Note that we have assumed that the model
in (13) with the parameter β is known when designing
the Kalman filtering, while for the proposed prediction
method, neither the model nor the parameter is available
and it will learn directly from the data.

• The second scenario is the 3GPP urban micro SCM which
represents a more realistic but challenging channel envi-
ronment [15]. We employ the default SCM parameters in
[15] except that NumBsElements is Nt, NumMsElements
is 1, and NumPaths is set to 1.
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C. Results

We first consider the first scenario of AR model. The
NMSE results of the channel prediction are depicted in Fig.
3(a) against the number of predicted channels P . In general,
the more channels to predict, the higher the NMSE is. It
is observed that our proposed channel prediction with the
attention mechanism is superior to the counterpart without
attention, and both achieve much lower NMSE than the
traditional channel estimation scheme. Note that this is because
our proposed prediction exploits the temporal correlation of
the channel, while the traditional channel estimation does not
and it simply uses pilots to estimate the current channel. As the
number of predicted channel becomes larger, the performance
of prediction will unavoidably degrade and become worse
than the traditional channel estimation. In the sequel for our
proposed solution we assume attention is always used. Kalman
filtering achieves the lowest NMSE among all considered
schemes by making use of the model information and known
parameters, which are not available to the proposed prediction
method. The accuracy of the first N channel estimation results
will affect the subsequent channel prediction performance,
and therefore in Fig. 3(b) we show the results of NMSE of
predicted channels versus the training SNR for the estimated
channels when P = 20. As can be seen, the NMSE of
the traditional channel estimation keeps decreasing as the
SNR increases; while for the prediction methods, the NMSE
saturates when the SNR is above a certain threshold. This is
because the performance of channel prediction is limited by
the number of predicted channels no matter how accurate the
channel estimation is.
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Fig. 3. The NMSE of the predicted channels versus the number of predicted
channels; and (b) SNR, P = 20.

Next, we plot the sum rate and the effective sum rate
normalized by the sum rate achieved by the WMMSE solution
against the number of predicted channels in Fig. 4(a) and
Fig. 4(b), respectively. It can be seen from Fig. 4(a) that
our proposed solution achieves the highest sum rate while the
sum rate with the traditional channel estimation is the lowest.
The separate solution that first predicts the channel and then
uses ZF beamforming achieves slightly lower sum rate than
that of Kalman filtering. The same trend can be observed
from the Fig. 4(b) about the effective sum rate. Because
the channel estimation overhead is taken into account, the

achievable effective sum rates are lower than those in Fig. 4(a).
For our proposed solution, the sum rate performance shows
ceiling effect as the number of predicted channels increases.
As per the analysis in Section III.C, this is because more future
channels will reduce the prediction accuracy, and consequently
the effective sum rate.
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Fig. 4. The normalized sum rate results against the number of predicted
channels.

Next, we examine the effect of the user velocity on the
normalized sum rate and the results are provided in Fig.
5. As expected, the sum rate decreases for all schemes as
user mobility increases. Kalman filtering performs well at low
velocity, but it cannot track the change of channel dynamics
well at high user mobility. Our proposed method achieves
much higher effective sum rate than Kalman filter and the
separate approach. The channel estimation method clearly
outperforms others at high user mobility in theory, but it may
not be practical to obtain the channel estimation in time.
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Fig. 5. The normalized sum rate results against the user velocity.

We then consider the second scenario of the urban micro
SCM model. The normalized sum rate and effective sum rate
results are shown in Fig. 6. Kalman filtering is not included
in the comparison because in the simulation we found its
performance is not satisfactory and this may be because the
channel dynamic is too complex for Kalman filtering to pre-
dict. We can see from Fig. 6(a) that as the number of predicted
channels increases, the sum rate of the separate optimization
degrades quickly and is even much worse than the traditional
channel estimation based optimization. Our proposed solution
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still achieves the highest sum rate although as the number of
predicted channels increases, the performance gap with the
traditional solution becomes smaller. This highlights the im-
portance of end to end learning of the predictive beamforming.
Fig. 6(b) depicts the effective sum rate results. As expected,
our proposed solution achieves superior performance, while
the performance of the separate solution is worse than the
estimation-based optimization when the number of predicted
channels is high. The sum rates of both our proposed solution
and the separate solution demonstrate the trend of first increas-
ing and then decreasing. This again validates our analysis in
Section III.C that a balance between the reduced overhead and
high-quality channel prediction is necessary. For instance, for
our proposed solution and the separate solution, the optimal
numbers of predicted channels are 10 and 5, respectively.
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Fig. 6. The normalized sum rate results against the number of predicted SCM
channels.

Finally, we assess the impact of the number of predicted
channels P given a total frame length of N + P = 40 in
Fig. 7. There is no quantitative criterion on how to choose
the optimal N and P . Intuitively, when N is larger, we have
more channel information available to predict future channels
more accurately, but this also causes higher overhead which
will reduce the effective sum rate. A good tradeoff can be
obtained by empirical study for a specific scenario. As can be
seen from Fig. 7, for the AR-model, the channel is relatively
easy to predict, i.e., with a small number of known channels
N , the proposed algorithm can predict a large number (P =
30) of future channels. While for the SCM model, it is more
challenging to track the channel evolution, so only a small
number (P = 10) of future channels are predicted in order to
achieve a high effective sum rate.

V. CONCLUSIONS

In this paper, we have studied the predictive beamforming
using the deep learning approach in the multiuser MISO
downlink. A general framework that predict the beamforming
solution to maximize the sum rate with historical channel
measurement data was proposed. An LSTM with an attention
layer was devised to improve the performance of channel
prediction. Simulation results have shown that the proposed
deep learning based solution achieves significantly higher
effective sum rate over the traditional channel estimation based
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Fig. 7. The impact of the number of predicted channels on the normalized
sum rate results given a fixed frame length of N + P = 40.

optimization and the separate prediction and then optimization
scheme.
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