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Poisson-Dirichlet distributions and weakly first-order
spin-nematic phase transitions
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We provide a quantitative characterization of generic weakly first-order thermal phase transi-
tions out of planar spin-nematic states in three-dimensional spin-one quantum magnets, based on
calculations using Poisson-Dirichlet distributions (PD) within a universal loop model formulation,
combined with large-scale quantum Monte Carlo calculations. In contrast to earlier claims, the
thermal melting of the nematic state is not continuous, instead a weakly first-order transition is
identified from both thermal properties and the distribution of the nematic order parameter. Fur-
thermore, based on PD calculations, we obtain exact results for the order parameter distribution
and Binder cumulants at the discontinuous melting transition. Our findings establish the thermal
melting of planar spin-nematic states as a generic platform for quantitative approaches to weakly
first-order phase transitions in quantum systems with a continuous SU(2) internal symmetry.

The theory of phase transitions is fundamental to mod-
ern approaches to many-body systems and quantum mat-
ter. In particular continuous phase transitions are a
central topic in various areas of physics in view of the
universality of critical phenomena. More recently, also
weakly first-order phase transitions, i.e., discontinuous
phase transitions with correlations lengths well beyond
the lattice scale, became a topical subject in condensed
matter research and beyond [1–9]. Different renormal-
ization group (RG) scenarios explain the emergence of
quasi-scaling near weakly first-order phase transitions: In
the "tuning" mechanism, the RG-flow passes near a real
infrared fixed-point in theory space; in the case of "walk-
ing", the RG-flow passes between two fixed-points at
complex couplings, associated to the collapse of two real
fixed-points [1, 4]. An example, for which the latter sce-
nario can be demonstrated explicitly, is the q-state Potts
model with a discrete Zq symmetry, featuring weakly
first-order transitions for q > 4 in two dimensions [5, 10–
12]. Similar ideas relate to the hierarchy generation in
four-dimensional gauge theories of high-energy physics
within the framework of walking as a slowly running cou-
pling constant at intermediate energy scales [4, 13–15].

For quantum many-body systems weakly first-order
transitions are also central to some recently proposed
interpretations of the deconfined quantum criticality
(DQC) scenario [16–20] in terms of walking, fixed-point
annihilation, and complex fixed points [2, 3, 21, 22]: For
DQC, quantum many-body systems are considered with
continuous internal symmetries, such as U(1) or spin
SU(2), for which the anticipated DQC points separate
ordered regions with non-compatible symmetry-breaking
patterns. The debate is still ongoing, regarding the true
nature of the quantum phase transitions observed in var-
ious DQC designer models, as well as their relation to
specific quantum materials [23, 24]. In view of these de-
velopments, it is crucial to establish quantum systems
in which weakly first-order transitions can be robustly
demonstrated and exact results for the properties at the

transition point can be provided by insightful approaches.
Here, we uncover weakly first-order transitions in spin-

one quantum magnets on the three-dimensional cubic
lattice with SU(2) symmetric interactions. By large-
scale quantum Monte Carlo (QMC) simulations, we es-
tablish that in contrast to earlier claims of a continuous
transition [25], the planar spin-nematic (ferroquadrupo-
lar) phase that emerges in this system melts across a
weakly first-order transition. Its discontinuous nature
becomes apparent (in both the thermodynamic proper-
ties as well as the order parameter distribution) only on
sufficiently large length scales, beyond those accessed pre-
viously [25]. In contrast to the case of the Potts model
and designer models of DQC, in this system the weakly
first-order transition takes place between a paramagnet
and a low-temperature ordered phase that breaks a con-
tinuous internal SU(2) symmetry. Moreover, we show
how calculations based on PD within a universal loop-
model formulation of the spin-one lattice model can be
used to derive the exact order parameter distribution in
the spin-nematic phase as well as order parameter Binder
cumulants at the transition point, thereby providing us
with a quantitative characterization of this weakly first-
order thermal order-disorder transition. We note that
the spin-one material NiGa2S4 is a candidate system for
the planar spin-nematic state considered here [26–31].

Model and planar spin-nematic. To stabilize the pla-
nar spin nematic state, we consider the generic SU(2)-
symmetric spin-one Hamiltonian, i.e., with both bilinear
and biquadratic interactions, on a simple cubic lattice Λ,

H = −J
∑

〈i,j〉∈BΛ

[
u (Si · Sj) + v (Si · Sj)2

]
, (1)

with |Λ| = L3 sites, and a sum over the (nearst-neighbor)
bonds BΛ of Λ (with periodic boundary conditions). It is
convenient to fix v = 1 and keep u as a free parameter.
Alternatively, an angular parametrization, u = cos(φ),
v = sin(φ) can be used. In any case, we fix J = 1. For
u ∈ (0, 1) [i.e., φ ∈ (π/4, π/2)], H harbors an extended
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FIG. 1. Illustration of the loop model on different small lat-
tices (for H, Λ is the cubic lattice).

planar spin-nematic phase [25, 32–36], in which magnetic
fluctuations are constrained to the plane perpendicular
to a director ~a ∈ PS2, the projective sphere, i.e., ~a is
identified with −~a. Each director corresponds to an ex-
tremal Gibbs state 〈·〉~a [36]. The symmetric Gibbs state
at inverse temperature β = 1/T , 〈·〉β = Tr · e−βH/Z,
Z = Tr e−βH , in the infinite-volume limit, then has the
decomposition [36] limL→∞〈·〉β =

∫
PS2〈·〉~a d~a. Here, d~a

denotes the uniform probability measure on PS2. In gen-
eral 〈·〉~a depends on β (for small β the Gibbs state is
unique and 〈·〉~a does not depend on ~a). A suitable local
operator to detect nematic order is Qi = (Sz

i )
2 − 2

3 , and
we denote by n∗ the "spontaneous nematisation" in the z
direction, n∗ = 〈Qi〉~ez , where i is any site. From the PD
formulation introduced below, it follows that n∗ < 0 [37].
In contrast to the axial nematic state that appears, e.g.,
for H with classical spins at u = 0 [38, 39], the planar
nematic phase is characterized by the minimization of
the fluctuations in the plane perpendicular to the direc-
tor, and 〈·〉~a = limh→0+ limL→∞〈·〉H+h

∑
i∈Λ(~a·~Si)2 (no-

tice the "+" sign in front of h) [36]. This is a genuine
quantum mechanical phenomenon, related to the m = 0
state of the spin-one variables in this system. For u = 0
and u = 1, the model exhibits an enhanced SU(3) sym-
metry and ferromagnetic low-temperature order [36, 40].
In the following, we study the properties of the model H
at finite T , in particular the nature of the thermal melting
of the spin-nematic state and its quantitative description.

Loop model and PD predictions. Loop models involve
one-dimensional objects "living" in d-dimensional space.
Phases may occur where loops of diverging lengths are
present. It was recently observed in [41] that the joint
distribution of the lengths of long loops displays universal
behaviour: It is always given by the stationary distribu-
tion of a split-merge process, which is PD characterized
by a real number, the PD parameter θ (cf. [37] for a basic
introduction to PD and split-merge processes). We de-
note the corresponding distribution by PD(θ). It is pos-
sible to derive a loop model representation for H using
the Trotter or Duhamel formulæ for the Gibbs operator
e−βH . It is restricted to u ∈ [0, 1] (outside this domain,
the representation involves negative weights). This com-
bines representations due to Tóth [42] and to Aizenman
and Nachtergaele [43] and was proposed in [40]. The lat-
ter article contains a detailed derivation. The resulting
representation is illustrated in Fig. 1. On top of each

bond of the spatial lattice Λ is the "time" interval [0, β].
In each interval is an independent Poisson point process
where "crosses" occur with intensity u and "double bars"
occur with intensity 1 − u. One then defines the loops
as the closed trajectories obtained by moving vertically,
and jumping on the neighbouring site when encountering
a cross or a double bar. If it is a cross, one continues in
the same vertical direction, while if it is a double bar,
one changes the vertical direction. The role of the loops
is twofold:(i) they affects the probability of the loops be-
cause of a factor 3#loops, (ii) quantum correlations are
given by loop correlations. The relation between quan-
tum spins and loops concerns the partition function via

Z = e2β|BΛ|
∞∑

k,`=0

(1− u)ku`

k! `!

×
∑

b1,...,bk
c1,...,c`

∫ β

0

ds1 . . . dskdt1 . . . dt` 3|L(ω)|.
(2)

Here, ω denotes a configuration in terms of b1, . . . , bk ∈
BΛ (c1, . . . , c` ∈ BΛ), the bonds corresponding to double
bars (crosses), and s1, . . . , sk ∈ [0, β] (t1, . . . , t` ∈ [0, β]),
the times at which double bars (crosses) occur. L(ω)
denotes the set of loops.

Furthermore, we obtain for the characteristic function
of the "nematic histogram", i.e., the distribution function
ρQ of the ferroquadrupolar operator Q = 1

|Λ|
∑
i∈ΛQi in

the Gibbs state 〈·〉β , the identity (for any k ∈ C)

〈
eikQ

〉
β
=

〈 ∏
γ∈L(ω)

(
1
3e
− 2

3
ik
|Λ| `(γ) + 2

3e
1
3

ik
|Λ| `(γ))〉loops

β

, (3)

where the length `(γ) of the loop γ is defined as the num-
ber of sites traversed by the loop at time 0, and 〈·〉loops

β
denotes the expectation with respect to the loop mea-
sure above. This measure can be viewed as the invariant
measure of a Markov process, involving the insertion and
removal of double bars and crosses [36, 44], as detailed
in [37] (note that this process would be too slow to use
in simulations.) Any new cross or double bar between
two loops causes them to merge. When u ∈ (0, 1), a
subtle phenomenon occurs: a new cross or double bar
may either cause a loop to split, or reorganise it without
splitting it (this is akin to 0 ↔ 8); either occurs with
probability 1

2 . The lengths of macroscopic loops can be
shown to satisfy an effective split-merge process, and the
invariant distribution is PD(3/2) [41, 45, 46]. For u = 0
or u = 1, the subtle phenomenon above does not occur;
splits then happen at twice the rate, and θ = 3.

The PD conjecture [36, 41] states that, as L → ∞,
we can replace the expectation in the loop model by the
expectation with respect to PD(θ), scaled by a number
η = η(u, β) ∈ [0, 1] that represents the fraction of sites
in long loops at imaginary time 0. This can be used to
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θ 〈Q2〉β 〈Q3〉β 〈Q4〉β
u ∈ (0, 1) 3/2 4

45
η2 − 16

27·35η
3 16

27·35η
4

u ∈ {0, 1} 3 1
18
η2 − 1

135
η3 1

135
η4

TABLE I. PD results for the moments of Q.

calculate the characteristic function of ρQ explicitly [37]:

lim
L→∞

〈
eikQ

〉
β

= e−
2
3 ikη

∞∑
r=0

Γ( 3
2 )

Γ(r + 3
2 )

(ikη)r. (4)

Inverse Fourier transform finally gives [37]

ρQ(s) =

{
1

2
√
η
√

1
3η−s

if − 2
3η ≤ s ≤ 1

3η,

0 otherwise.
(5)

From here, we can calculate the moments 〈Qn〉β in
the nematic phase. It is more insightful however, to
derive them from the loop representation directly, us-
ing the PD conjecture to write them all in terms of the
single unknown variable η. Cumulant ratios, such as
UQ = 1− 1

3 〈Q4〉β/〈Q2〉2β , are then given by ratios that do
not depend on η any more. We provide the calculations
in some details since they cannot be found in the liter-
ature, to the best of our knowledge [37]. The identities
for the 2nd, 3rd and 4th moment that are exact in the
infinite-volume limit read

〈Q2〉β = 2
9P

loops
β [i1, i2 in same loop],

〈Q3〉β = − 2
27P

loops
β [i1, i2, i3 in same loop],

〈Q4〉β = 2
27P

loops
β [i1, i2, i3, i4 in same loop]

+ 4
27P

loops
β [i1, i2 in same loop, i3, i4 in other loop].

(6)

Here i1, i2, i3 and i4 are sites that are very distant from
one another. Since the sites are distant, it is necessary
that they belong to long loops in order to have a chance to
be in the same loop. We can then use the PD conjecture
to obtain the probability Ploops

β [i1, . . . , in in same loop],
that i1, ..., in belong to the same loop, in term of the
probability that, if we choose a random partition of [0, 1]
according to PD(θ), and n independent points in [0, 1],
all n points are in the same partition element [37]:

Ploops
β [i1, . . . , in in same loop]

= ηnPPD(θ)[n random points in same partition element]

= ηn
Γ(1 + θ)Γ(n)

Γ(n+ θ)
,

and similarly

Ploops
β [i1, i2 in same loop, i3, i4 in other loop]

= 2η4
∑
k<`

PPD(θ)[i1, i2 in kth element, i3, i4 in `th el.]

= 2η4 θΓ(1 + θ)

Γ(4 + θ)
.
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FIG. 2. Comparison of the nematic histogram obtained
from QMC at u = cot(3π/8) with the PD prediction for
η = 0.8981(9). The inset show the histogram for various L at
the transition temperature Tc = 1.64900(1).

The resulting moments are given in Tab. I. We ob-
tain an η-independent value U−Q = 2/7 for the Binder
cumulant in the thermodynamic limit within the pla-
nar spin-nematic phase, and η-independent values for
the ratios of the moments towards the SU(3) end
points, such as limu→0+〈Q2〉β(u)/〈Q2〉β(u = 0) =
limu→1−〈Q2〉β(u)/〈Q2〉β(u = 1) = 8/5. The moments
of Q can also be calculated using symmetry breaking ex-
tremal states [37], for which however the heuristics is
more subtle and the result may be uncertain.

Comparison to QMC. We verify the above results, ob-
tained from the PD conjecture, by making use of unbi-
ased large-scale QMC simulations, based on the stochas-
tic series expansion [47, 48]. Figure 2 compares the
PD prediction for ρQ with the nematic histogram ob-
tained using QMC simulations for u = cot(φ = 3π/8) =
0.41412..., i.e., at the center of the spin-nematic regime
in the angular parametrization of H, at a low tempera-
ture of T = 0.5 in the ordered phase (similar results are
obtained for other values of u). We observe a remark-
able agreement between the nematic histogram and the
PD prediction. In Fig. 3, we show the thermal evolution
of UQ and find that within the ordered phase, the QMC
data converges towards the PD prediction upon increas-
ing the system size (UQ converges to 0 in the paramag-
netic regime). We also examine in the inset of Fig. 3 the
u-evolution of 〈Q2〉β at a fixed low temperature T = 0.5.
We observe an explicit u-dependence of the 2nd moment
(reflected by the u-dependence of η in the PD predic-
tion), as well as the agreement in the relative size of its
jump to both SU(3) end points with the PD prediction.

Next, we consider the phase transition. We demon-
strate that in contrast to earlier claims, the planar spin-
nematic order melts across a (weakly) first-order thermal
transition. A basic quantity for this purpose is the spe-
cific heat C, the T dependence of which is shown in Fig. 4.
For sufficiently large systems, we clearly identify a promi-



4

1.646 1.648 1.650 1.652

T

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

U
Q

u = cot(3π/8)U−
Q

UcQ

Tc

0.0 0.5 1.0

u

0.04

0.06

0.08
Q2

T = 0.5
PD jump
L = 80

L = 48
L = 64
L = 72

L = 80
L = 96
L = 128

FIG. 3. Temperature dependence of the Binder cumulant
UQ near the phase transition for different system sizes at
u = cot(3π/8) from QMC. The PD-based predictions U−

Q

in the ordered phase and UcQ at the transition temperature
Tc are indicated by dashed lines. The right inset shows the
u-dependence of the second moment 〈Q2〉β .
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FIG. 4. Temperature dependence of the specific heat C for
different system sizes at u = cot(3π/8) from QMC. The inset
shows the scaling of the maximum Cmax with system size,
extracted from the shown Lorentzian interpolations.

nent peak with a scaling Cmax ∝ |Λ|, characteristic of a
first-order transition. From an extrapolation of the peak
position [37], we obtain the estimate Tc = 1.64900(1) for
the transition temperature at this parameter value.

Further evidence for the first-order character of the
transition is obtained from considering the nematic his-
togram at Tc. This is shown in the inset of Fig. 2, and
exhibits the coexistence of two contributions: (i) a broad
low-T contribution akin to the one in the main panel,
and (ii) a further, comparably sharp peak near Q = 0,
i.e., related to disordered states. The latter emerges only
mildly upon increasing the system size, but it is clearly
resolved for L & 100. This indicates the rather weak
first-order character of the transition. Histograms based
on the internal energy also support this conclusion [37].

Another quantity that exhibits genuine behavior at
first-order transitions is the Binder cumulant UQ, shown
in Fig. 3 across the transition region. Two properties are
noticeable: (i) UQ develops a substantial dip just above
Tc, which grows and sharpens with increasing L, an-
other characteristic feature of first-order transitions [49].
(ii) The data for UQ from different system sizes exhibit
a crossing at Tc. We can calculate the crossing point
value U cQ as follows from considering the coexistence
of ordered and disordered states: Denoting by α the
weight of the ordered states at coexistence, such that
〈·〉βc

= α limβ→β+
c
〈·〉β + (1 − α) limβ→β−c 〈·〉β , we can

express U cQ in terms of the previously calculated mo-
ments of Q in the nematic phase, taking into account
that they vanish in the paramagnetic phase. This gives
U cQ = 1 − 5/(7α). We finally need to determine the
mixing parameter α at the first-order transition in the
quantum system described by H. A related issue ap-
pears for first-order transitions in classical models with
continuous variables, and this has been addressed only
recently [50]: Based on the fact that for the discrete q-
state Potts model the corresponding parameter is given
in terms of the number q of distinct degenerate low-T
sectors with respect to the single paramagnetic sector
by α = q/(q + 1), it was argued that for the continuous
case, α is obtained upon replacing q in the above formula
by the integral measure of the space of extremal states.
In the current case this measure is given by the area
2π of the projective sphere PS2, i.e., α = 2π/(2π + 1).
The value of U cQ = 2/7 − 5/(14π) = 0.1720 . . . result-
ing from this heuristics indeed matches remarkably well
to the QMC data, cf. the inset in Fig. 3. This demon-
strates that PD calculations provide an accurate quanti-
tative description of the planar spin-nematic phase of the
spin-one quantum magnet. It would be valuable to base
the heuristics of Ref. [50] on more rigorous considerations
for both continuous and quantum variables.

Conclusions. We used a combination of QMC and PD
calculations, based on a loop model formulation, to un-
cover weakly first-order thermal melting transitions of
planar spin-nematic states realized in quantum spin-one
systems with SU(2)-symmetric interactions. We demon-
strated explicitly how generic properties of both the low-
temperature nematic phase and the phase coexistence
line can be calculated based on the PD conjecture, with
remarkable agreement to QMC results. Further studies,
e.g., based on RG approaches, will be useful in order
to explain the weakness of these transitions via the tun-
ing mechanism, or by connecting it to the ideas of walk-
ing and fixed-point annihilation within this well-defined
framework of a comparably simple quantum spin model.
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Supplemental Materials for "Poisson-Dirichlet distributions and weakly first-order
spin-nematic phase transitions"

I. POISSON-DIRICHLET DISTRIBUTIONS
AND SPLIT-MERGE PROCESSES

We introduce here the family of Poisson-Dirichlet dis-
tributions and explain how they relate to split-merge pro-
cesses in general. This also helps to understand why these
distributions appear in the loop models, and more impor-
tantly, it allows us to later calculate the PD parameter θ
that identifies the distribution of loop lengths.

The relevant objects here are partitions (X1, X2 . . . ) of
[0, 1]. That is, the numbers Xi satisfy X1 ≥ X2 ≥ · · · ≥ 0
and

∑∞
i=1Xi = 1. The simplest definition of Poisson-

Dirichlet involves the related Griffiths-Engen-McCloskey
(GEM) distribution. The latter is a residual allocation
measure built from Beta(1, θ) random variables. Recall
that a Beta(1, θ) random variable has probability den-
sity function θ(1− s)θ−1, s ∈ [0, 1], where the parameter
θ is positive. Then, with Y1, Y2, . . . being independent
Beta(1, θ) random variables, we consider the vector(

Y1, (1− Y1)Y2, (1− Y1)(1− Y2)Y3, . . .
)
.

One can check that these positive numbers add up to 1.
Rearranging them in decreasing order, one gets a ran-
dom partition of [0, 1] selected with the Poisson-Dirichlet
distribution PD(θ).

We denote EPD(θ) the expectation with respect to
Poisson-Dirichlet PD(θ). We will apply it to functions
of the form

∏∞
i=1 f(Xi) where f is a bounded function

[0, 1]→ C such that f(s) = 1 + o(s) around s = 0 — this
guarantees that the infinite product converges, and also
that small loops do not contribute. Since the order of
partition elements is not important we can directly use
the GEM measure. Concretely, this gives

EPD(θ)

[ ∞∏
i=1

f(Xi)

]
=

( ∞∏
i=1

∫ 1

0

θ(1− si)θ−1dsi

)
f(s1)f

(
(1− s1)s2

)
f
(
(1− s1)(1− s2)s3

)
. . .

(S1)

If the function f has the Taylor series f(s) = 1 +∑
k≥1 aks

k, the expectation above can be computed with
the help of the moments formula obtained in [51]; we get

EPD(θ)

[ ∞∏
i=1

f(Xi)

]

=

∞∑
n=0

1

n!

∞∑
k1,...,kn=1

ak1
. . . akn

θn Γ(θ) Γ(k1) . . .Γ(kn)

Γ(θ + k1 + · · ·+ kn)
.

(S2)

See [44, Eq. (4.16)].
The split-merge process (also called coagulation-

fragmentation) is a Markov process on partitions of [0, 1].

Each step consists of either merging two distinct ele-
ments, or splitting in two a given element (in which case
it is split uniformly). Let gm, gs be two positive param-
eters. In its continuous-time version, the partition ele-
ments Xi, Xj (i 6= j) are merged at rate 2gmXiXj ; the
elementXi is split at rate gsX2

i . The invariant measure is
Poisson-Dirichlet with parameter θ = gs/gm [41, 45, 46].

II. IDENTIFYING THE POISSON-DIRICHLET
PARAMETER

We first present a Markov process that has the mea-
sure obtained from the loop model representation of the
quantum partition function Z as the invariant measure.
Based on this formulation, we can then obtain the PD
parameter θ.

It is convenient to first discretise the "time" interval
[0, β] with mesh 1/n. Given a realisation ω of crosses
and double bars, let C(ω) and B(ω) denote the number
of crosses and double bars, respectively. On an arbitrary
finite lattice Λ with set of bonds BΛ, the measure can be
written as

µ(ω) =
1

Z
3|L(ω)|(u

n

)C(ω)( 1−u
n

)B(ω)

×
(
1− 1

n

)|BΛ|βn−C(ω)−B(ω)
.

(S3)

Let R(ω, ω′) denote the transition matrix ω 7→ ω′, the
detailed balance equation is

3|L(ω)| (n
u

)C(ω) ( 1−u
n

)B(ω)
R(ω, ω′) =

3|L(ω′)| (n
u

)C(ω′) ( 1−u
n

)B(ω′)
R(ω′, ω).

(S4)

Here is a natural process that satisfies the equation
above:

• A new cross appears in {i, j} × [t, t + 1
n ] at rate√

3un if it causes a loop to split; at rate 1√
3
u
n if it

causes two loops to merge; at rate u
n if the number

of loops does not change.

• Same with double bars, but with 1 − u instead of
u.

• An existing cross or double bar is removed at rate√
3 if its removal causes a loop to split; at rate 1√

3
if its removal causes two loops to merge; at rate 1
if the number of loop remains constant.

Notice that any new cross or double bar between two
loops causes them to merge. When u ∈ (0, 1), a subtle
phenomenon occurs: a new cross or double bar may ei-
ther cause it to split, or reorganise it without splitting it
(this is akin to 0↔ 8); either occurs with probability 1

2 .
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Let γ, γ′ be two macroscopic loops of lengths
`(γ), `(γ′). They are spread all over Λ and they inter-
act between one another, and among themselves, in an
essentially mean-field fashion. There exists a constant
c1 such that a new cross or double bar that causes γ to
split, appears at rate 1

4

√
3 c1

`(γ)2

β|Λ| ; a new cross or dou-
ble bar that causes γ and γ′ to merge appears at rate
(c1/
√

3) `(γ)`(γ′)
β|Λ| . There exists another constant c2 such

that the rate for an existing cross or double bar to dis-
appear is 1

4

√
θ c2

`(γ)2

β|Λ| if γ is split, and (c2/
√

3) `(γ)`(γ′)
β|Λ| if

γ and γ′ are merged. Consequently, γ splits at rate

1
4

√
3(c1 + c2)

`(γ)2

β|Λ| ≡
1
2rs`(γ)2 (S5)

and γ, γ′ merge at rate

1√
3

(c1 + c2)
`(γ)`(γ′)
β|Λ| ≡ rm`(γ)`(γ′). (S6)

Because of effective averaging over the whole domain, the
constants c1 and c2 are the same for all loops and for both
the split and merge events. This key property is certainly
not obvious and the interested reader is referred to a de-
tailed discussion for lattice permutations with numerical
checks [52]. It follows that the lengths of macroscopic
loops satisfy an effective split-merge process, and the in-
variant distribution is Poisson-Dirichlet with parameter
θ = rs/rm = 3/2 [41, 45, 46].

For u = 0 or u = 1, the "subtle phenomenon" above
does not occur; splits then happen at twice the rate, and
the Poisson-Dirichlet parameter is θ = 3.

III. POISSON-DIRICHLET CALCULATION OF
"NEMATIC HISTOGRAM"

We study the distribution of the operator Q =
1
|Λ|
∑
i∈ΛQi in the Gibbs state 〈·〉β . To be precise, we

seek to identify the density ρQ such that for any function
g, we have

〈g(Q)〉β =

∫ ∞
−∞

ρQ(s)g(s)ds. (S7)

Choosing g(s) = eiks gives the characteristic function of
ρQ. Happily, we can use Eq. (3) from the main text to
get an expression that involves the lengths of the loops.
The Poisson-Dirichlet conjecture states that, as Λ→ Z3,
we can replace the expectation in the loop model by the
expectation with respect to PD(3/2), scaled by a number
η = η(β) that represents the fraction of sites in long loops
at imaginary time 0 (η ∈ [0, 1]). We then get

lim
L→∞

〈eikQ〉β = EPD( 3
2 )

[ ∞∏
j=1

(
1
3e
− 2

3 ikηXj + 2
3e

1
3 ikηXj

)]
= e−

2
3 ikη EPD( 3

2 )

[∏
j≥1

(
1
3 + 2

3e
ikηYj

)]
.

(S8)

We can use Eq. (S2) and we get (see [44] for more details)

lim
L→∞

〈eikQ〉β = e−
2
3 ikη Γ( 3

2 )

∞∑
r=0

(ikη)r

Γ(r + 3
2 )
. (S9)

We calculate below its inverse Fourier transform, see Eq.
(S22).

IV. SYMMETRY BREAKING CALCULATION
OF "NEMATIC HISTOGRAM"

Let n∗ denote the "spontaneous nematisation" in the
z direction

n∗ = 〈Qi〉~ez , (S10)

where i is any site. Let Q~ai be the spin rotation of the
operator Qi, namely

Q~ai =
(
a1S

x
i + a2S

y
i + a3S

z
i

)2 − 2
3 . (S11)

Its expectation can be expressed in terms of n∗:

〈Q~ai 〉~ez =
∑

j=x,y,z

a2
j 〈(Sji )2 − 2

3 〉~ez +
∑

j,k=x,y,z
j 6=k

ajak〈Sji Ski 〉~ez .

(S12)
It is clear that 〈·〉~ez is invariant under spin rotations
around ~ez, and also that 〈Sz

i 〉~ez = 0, so that 〈Sji Ski 〉~ez = 0
for all j 6= k. Further, since (Sx

i )2 + (Sy
i )2 + (Sz

i )
2 = 2,

we have

〈(Sx
i )2− 2

3 〉~ez = 〈(Sy
i )2− 2

3 〉~ez = − 1
2 〈(Sz

i )
2− 2

3 〉~ez . (S13)

This gives

〈Q~ai 〉~ez = n∗(a2
3 − 1

2a
2
1 − 1

2a
2
2). (S14)

This allows to calculate

lim
L→∞

〈eikQ〉β = lim
L→∞

∫
PS2

〈
e

ik
|Λ|

∑
i∈Λ Qi

〉
~a
d~a

= lim
L→∞

∫
PS2

〈
e

h
|Λ|

∑
i∈Λ Q

~a
i

〉
~ez
d~a

=

∫
PS2

eikn
∗(a2

3− 1
2a

2
1− 1

2a
2
2)d~a

= eikn
∗
∫ π/2

0

dθ sin θ e−
3
2 ikn

∗ sin2 θ.

(S15)

Expanding the exponential in Taylor series and calculat-
ing the trigonometric integrals, we obtain

lim
L→∞

〈eikQ〉β = eikn
∗
Γ( 3

2 )

∞∑
r=0

(− 3
2 ikn

∗)r

Γ(r + 3
2 )

. (S16)

We recover the result in Eq. (S9) provided that

n∗ = − 2
3η. (S17)
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It is worth pointing out that n∗ is negative. This allows
to understand the nature of the nematic extremal states.
Indeed, a natural candidate is the "axial nematic" state

〈·〉~a = lim
h→0+

lim
L→∞

〈·〉H−h∑
i∈Λ(~a·~Si)2 . (S18)

One can write a loop representation for the state 〈·〉~ez
where short loops have spin values −1, 0,+1 and long
loops have spin values −1,+1. The nematic order pa-
rameter would then be equal to

ñ = lim
L→∞

〈Q〉~ez = 1
3η. (S19)

This contradicts Eq. (S17). Instead, it turns out that
extremal states are "planar nematic":

〈·〉~a = lim
h→0+

lim
L→∞

〈·〉H+h
∑

i∈Λ(~a·~Si)2 . (S20)

(Notice the "+" sign in front of h). In its loop represen-
tation, long loops have the spin value 0, and Eq. (S17)
holds true. The fact that extremal states are planar ne-
matic was pointed out in [35].

We can calculate the density ρQ starting from Eq.
(S15).

ρQ(s) =
1

2π

∫ ∞
−∞

dk e−iske−
2
3 ikη

∫ π/2

0

dθ sin θ eikη sin2 θ

=
1

2π

∫ π/2

0

dθ sin θ

∫ ∞
−∞

dk eik(−s− 2
3η+η sin2 θ)

=

∫ π/2

0

dθ sin θ δ(η sin2 θ − s− 2
3η)

=
1

2η

∫ η

0

dt√
1− t

η

δ(t− s− 2
3η).

(S21)

We used the change of variables t = η sin2 θ. We finally
obtain the density for the nematic observable:

ρQ(s) =

{
1

2
√
η
√

1
3η−s

if − 2
3η ≤ s ≤ 1

3η,

0 otherwise.
(S22)

V. BINDER CUMULANTS

We can use the loop representation to get expressions
for the moments of the operator Q = 1

|Λ|
∑
i∈ΛQi; then

we use the Poisson-Dirichlet conjecture to write them all
in terms of a single unknown variable, the fraction of sites
in long loops η. The Binder cumulants follow, and they
are given by ratios that do not depend on η any more. We
write the calculations in some details since they cannot
be found in the literature, to the best of our knowledge.

Here are identities that are exact in the infinite-volume
limit:

〈Q2〉β = 2
9P

loops
β [i1, i2 in same loop],

〈Q3〉β = − 2
27P

loops
β [i1, i2, i3 in same loop].

(S23)

Here i1, i2, i3 (and i4 below) are sites that are very distant
from one another. The first identity can be found in [40];
the second identity is similar. As for the 4th moment, we
have

〈Q4〉β = 2
27P

loops
β [i1, i2, i3, i4 in same loop]

+ 4
27P

loops
β [i1, i2 in same loop, i3, i4 in other loop].

(S24)

Since the sites are distant, it is necessary that they belong
to long loops in order to have a chance to be in the same
loop. We can then use the Poisson-Dirichlet conjecture
and we get

Ploops
β [i1, . . . , in in same loop]

= ηnPPD(θ)[n random points in same partition element].
(S25)

The latter is the probability that, if we choose a random
partition of [0, 1] according to PD(θ), and n independent
points in [0, 1], all n points find themselves in the same
partition element. This does not depend on the order
of the elements so we can replace the Poisson-Dirichlet
distribution by the GEM distribution. We calculate it by
summing over the probability that the n random points
belong to the kth element; namely,

Ploops
β [i1, . . . , in in same loop]

= ηn
∞∑
k=1

PPD(θ)[n points in kth partition element]

= ηn
∞∑
k=1

E{Yi}[(1− Y1)n . . . (1− Yk−1)nY nk ].

(S26)

Since the {Yi} are independent, the expectation factorises
and we get

Ploops
β [i1, . . . , in in same loop] = ηn

EBeta(1,θ)[Y
k]

1− EBeta(1,θ)[(1− Y )k]

= ηn
Γ(1 + θ)Γ(n)

Γ(n+ θ)
.

(S27)

A similar calculation gives

Ploops
β [i1, i2 in same loop, i3, i4 in other loop]

= 2η4
∑
k<`

PPD(θ)[i1, i2 in kth element, i3, i4 in `th el.]

= 2η4
∞∑

k,`=1

E{Yi}[(1− Y1)4 . . . (1− Yk−1)4

· Y 2
k (1− Yk)2 . . . (1− Yk+`−1)2Y 2

k+`]

= 2η4 EBeta(1,θ)[Y
2(1− Y )2]EBeta(1,θ)[Y

2]

(1− EBeta(1,θ)[(1− Y )4])(1− EBeta(1,θ)[(1− Y )2])

= 2η4 θΓ(1 + θ)

Γ(4 + θ)
.

(S28)
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Combining the terms above we get the moments for
the nematic phase (θ = 3/2) and for the SU(3) phases
(θ = 3) given in Tab. I of the main text. Alternatively
we could have looked at the Taylor series of 〈eikQ〉β from
the expression in Eq. (4).

We now calculate the moments using symmetry break-
ing; we express them in terms of n∗. The kth moment is
given by

〈Qk〉β =
1

|Λ|k
∑

i1,...,ik

〈Qi1 . . . Qik〉β

=
1

|Λ|k
∑

i1,...,ik

∫
PS2

d~a 〈Qi1〉~a . . . 〈Qik〉~a.
(S29)

We used the fact that extremal states are "clustering"
and that for Λ large, the main contribution in the sum
comes from distant sites. We now use translation invari-
ance and we rotate the observable rather than the state,
so as to get

〈Qk〉β =

∫
PS2

d~a 〈Q~ai 〉k~ez

= (n∗)k
∫
PS2

d~a (a2
3 − 1

2a
2
1 − 1

2a
2
2)k

= (n∗)k
∫ π/2

0

dθ sin θ ( 3
2 cos2 θ − 1

2 )k.

(S30)

We used Eq. (S14) to get the second line. Calculating
the integral we finally get

〈Q2〉 = 1
5 (n∗)2,

〈Q3〉 = 2
35 (n∗)3,

〈Q4〉 = 3
35 (n∗)4.

(S31)

This is compatible with the values in the Table I if we
assume validity of the relation (S17). Notice that n∗
happens to be negative.

The calculation using symmetry breaking is simpler
than that with Poisson-Dirichlet. However, the heuristics
is more subtle and the result may be uncertain. For u =
0 and u = 1, the Poisson-Dirichlet calculations can be
carried out without much hesitation (with θ = 3) but
symmetry breaking is not immediate.

VI. ENERGY HISTOGRAMS

Further evidence for the first-order character of the
planar spin nematic melting transition is obtained from
analysing energy histograms PE near the transition tem-
perature. Within the stochastic series expansion QMC
approach, the energy histogram PE is readily available
from the histogram of the expansion order [47]. We ob-
tain histograms with a pronounced two-peak structure
for sufficiently large system sizes, indicative of phase co-
existence. In particular, we can use standard histogram-
reweighting [53] in order to access the energy histograms
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FIG. S1. Energy histograms PE for u = cot(φ = 3π/8) =
0.41412... for various system sizes L at temperatures with
equal peak height.
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FIG. S2. Left panel: Cumulant UE of the energy distribution
as a function of temperature near Tc at u = cot(φ = 3π/8) =
0.41412... for various system sizes L. Right panel: Finite-size
extrapolation of the minimum value Umin

E of UE .

at any temperatures T in the vicinity of a base temper-
ature, at which the QMC simulations were actually per-
formed. For each system size, this base temperature was
taken from the peak position of the specific heat. This
reweighting approach allows us to adjust T such as to ob-
tain histograms PE with an equal peak height of the two
peaks [54]. These are shown in Fig. S1 for our reference
value of u = cot(φ = 3π/8) = 0.41412.... We identify a
pronounced two-peak structure for L & 64. While the
dip for L = 64 is still shallow, it becomes deeper for in-
creasing values of L, in agreement with the predictions
by Binder [49] and Lee and Kosterlitz [54, 55] for a first-
order transition. The fact that the minimum takes on a
substantial value even for L = 128 reflects the fact that
the transition is weakly first-order.

We also analyzed the fourth-order cumulant

UE = 1− 1

3

〈H4〉β
〈H2〉2β

(S32)
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FIG. S3. Energy histograms PE for various values of u for
L = 96 at temperatures with equal peak height. For better
comparison the individual histograms are shown shifted with
respect to the energy E0 of the minimum.
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FIG. S4. Finite-size extrapolation of different estimators for
the transition temperature Tc at u = cot(φ = 3π/8) =
0.41412....

of the energy distribution in the vicinity of Tc. This is
shown for different system sizes in Fig. S2. We observe
a narrow dip in UE at a temperature that approaches Tc
upon increasing L. While the minimum value Umin

E tends
towards 2/3 for increasing L, a finite-size extrapolation
with a 1/L3-scaling (cf. the right panel of Fig. S2) shows
that in the thermodynamic limit UE remains well below
2/3. This is another strong indication for the first-order
character of the phase transition [56].

Thus far, we concentrated on u = cot(φ = 3π/8) =
0.414..., but we also performed QMC simulations at dif-
ferent values of u across the planar spin nematic regime.
Energy histograms PE for several values of u = cot(φ) are
shown in Fig. S3. Here, the energy has been shifted with
respect for the dip position, denoted E0, for better com-
parison. The energy histograms PE all exhibit a char-
acteristic two-peak structure. We furthermore find that
upon approaching the u = 0 (φ = π/2) end point of the
planar spin nematic phase, the relative value of the min-
imum between the peaks increases slightly. For example,
at u = 0.414... the ratio between the the local minimum
value of PE and its maximum value is about 0.51, while
at u = 0.031.., this ratio has increased to about 0.71.
This indicates that the transition becomes even weaker
first-order upon approaching this SU(3) point. Moving
towards the other end point of the planar spin nematic
phase at u = 1 (φ = π/4), we do not observe a simi-
lar weakening of the first-order character of the nematic
transition. Previous work on the thermal transitions out
of the ferromagnetic phase at both SU(3) points claims
that both transitions are continuous [25]. We note that
on the L = 96 system size, we similarly were not able to
resolve any two-peak structure in PE at the SU(3) point
at u = 1. It would thus certainly be interesting to further
examine the SU(3) points in more detail in future work
(where the low-T phase is ferromagnetically ordered) on
even larger lattices than accessible to us, in order to as-
sess the conclusion of Ref. [25] regarding the nature of
the phase transitions at the SU(3) points.

VII. DETERMINATION OF Tc

Here, we detail the estimation of the transition tem-
perature Tc, focusing again on our reference value u =
cot(φ = 3π/8)=0.41412..... We consider three different
estimators for Tc, obtained upon performing an extrap-
olation to the thermodynamic limit of (i) the position of
the maximum in the specific heat C, (ii) the position of
the minimum in UE , and (iii) the temperature for which
the peaks in the energy histogram PE have equal height.
As shown in Fig. S4, all three quantities extrapolate with
a 1/L3-scaling for large system sizes to a mean estimate
Tc = 1.64900(1) for the transition temperature, as quoted
in the main text.


	Poisson-Dirichlet distributions and weakly first-order  spin-nematic phase transitions
	Abstract
	 References
	I Poisson-Dirichlet distributions and split-merge processes
	II Identifying the Poisson-Dirichlet parameter
	III Poisson-Dirichlet calculation of "nematic histogram"
	IV Symmetry breaking calculation of "nematic histogram"
	V Binder cumulants
	VI Energy histograms
	VII Determination of Tc


