

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/173244

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/173244
mailto:wrap@warwick.ac.uk

Predictive Analysis of Code Optimisations on
Large-Scale Coupled CFD-Combustion Simulations

using the CPX Mini-App
A. Powell, G.R. Mudalige

University of Warwick, Coventry, UK
{a.powell.3, g.mudalige}@warwick.ac.uk

Abstract—As the complexity of multi-physics simulations in-
creases, there is a need for efficient flow of information be-
tween components. Discrete ‘coupler’ codes can abstract away
this process, improving solver interoperability. One such multi-
physics problem is modelling a gas turbine aero engine, where
instances of rotor/stator CFD and combustion simulations are
coupled. Allocating resources correctly and efficiently during
production simulations is a significant challenge due to the large
HPC resources required and the varying scalability of specific
components, a result of differences between solver physics. In
this research, we develop a coupled mini-app simulation and an
accompanying performance model to help support this process.
We integrate an existing Particle-In-Cell mini-app, SIMPIC,
as a ‘performance proxy’ for production combustion codes in
industry, into a coupled mini-app CFD simulation using the CPX
mini-coupler. The bottlenecks of the workload are examined,
and the performance behavior are replicated using the mini-app.
A selection of optimizations are examined, allowing to estimate
the workload’s theoretical performance. The coupling of mini-
apps is supported by an empirical performance model which is
then used to load balance and predict the speedup of a full-
scale compressor-combustor-turbine simulation of 1.2Bn cells, a
production representative problem size. The model is validated on
40K-cores of an HPE-Cray EX system, predicting the runtime of
the mini-app work-flow with over 75% accuracy. The developed
coupled mini-apps and empirical model combination demon-
strates how rapid design space and run-time setup exploration
studies can be carried out to obtain the best performance from
full-scale Combustion-CFD coupled simulations.

Index Terms—Coupling, Mini-App, Performance model, CFD,
Combustion

I. INTRODUCTION

Concurrent execution of multiple physical models as a sin-
gle simulation has emerged as an important approach for
modelling large-scale multi-physics phenomena. This strategy,
as opposed to carrying out a single monolithic simulation,
allows for decomposing complex systems into a series of
smaller, interconnected components, which can utilize the
optimal method for modelling the physics of each sub-domain.
Not only does this approach simplify code development and
maintenance, but also allows domain scientists to select the
optimal numerical methods and architectural optimizations for
modelling different physical environments.

The challenge with such a modular approach is the efficient
flow of information between the multiple models through
common interfaces that does not lead to (1) numerical errors
that a non-coupled or monolithic simulation would not have

caused and (2) performance bottlenecks degrading the time-
to-solution or throughput. A coupler acts as a discrete piece
of code dedicated to implementing this flow of information
and its design crucially determines the performance of the full
simulation. For the domain of computational fluid dynamics
(CFD), coupled simulations provide flexibility to combine
specialized flow solvers and/or different turbulence models.
Such coupled simulations are currently common practice in
industry. Examples include the coupling of incompressible
flow solvers for modelling flow within a combustion chamber
with the compressible flow in the outlet vane [1] or using
a hybrid RANS/LES modelling approach where the problem
domain is decomposed and different turbulence models are
applied depending on flow conditions of each zone [2], [3].

The most complex coupling scenarios consists of close
interaction of CFD models with other numerical simulations,
including FEM and combustion, for real-world systems. One
such example [4] is modelling a gas turbine engine, consisting
of multiple high-pressure compressor and/or turbine stages
interacting with the combustion chamber. In this setup (see
Figure 1), cold air entering the engine is compressed before
it is delivered to the combustion chamber, where it is sprayed
with fuel and ignited. The exhaust air from the resulting
combustion provides the thrust that drives the turbines which,
in turn, spins the compressor and fan. Currently, the compo-
nents are designed and manufactured separately, which can
lead to reduced engine performance due to optimizations
made within individual elements being negated as a result of
integration with other components. This is because without
coupled simulations, there is information loss as unsteady
interaction between components cannot be modelled [5]. Such
coupled simulations have become furthermore important with
the industry ambitions to reach virtual certification of full
aero-engine designs [6], [7]. Ultra-high fidelity simulations
are required, pushing current model sizes of 10-100 million
elements to tens of billions of elements.

In this paper we focus on one such complex scenario – the
coupled CFD simulation of the compressor-combustor-turbine
components, directed by these industry challenges. In this
setup, the compressor and turbine are typically modelled using
a density-based, explicit CFD solver, with the combustion
chamber employing a LES turbulence model with Lagrangian
fuel spray [9], and a pressure-based, implicit CFD solver. The

Fig. 1: A breakdown of the 1.5Bn Rolls-Royce test case setup for both the mini-app and full-scale simulation (Right). The chambers have
been labelled on a representative RR Trent XWB Engine [8] (Left, reproduced with permission).

rotor/stator interaction in the density solver, uses the sliding
planes method. A steady-state approach is used to model
interaction between the density and pressure solvers [10].
Dedicated coupler(s) software implements these interactions.
Our motivating problem is a representative 1.5Bn cell test case
from Rolls-Royce plc., consisting of 13 compressor rows, a
combustor chamber, and two turbine rows. Work is in progress
to run this test case using Rolls-Royce’s internal density-
based CFD application [11], pressure-based combustion CFD
application [9], and an in-house coupling framework [12]. As
the content of this work is applicable to any typical coupled
gas-turbine engine simulation using equivalent solvers, we
will use the term ‘density solver’ and ‘pressure solver’ when
referring to these applications.

When coupling between component simulations, codes are
tasked with communicating boundary information, where the
coupler(s) map values/fields from one simulation to the other,
interpolating data and transferring them as required [13]. A
key challenge to gain efficient execution is load balancing. Re-
sources (e.g. compute processes) need to be carefully allocated
for each component simulation, to elicit maximum concur-
rency. At the same time, couplers themselves need sufficient
dedicated resources to execute the transfer of information,
without which they will lead to performance bottlenecks, slow-
ing down the overall simulation. However, given the different
coupling interfaces and interactions between components, the
scale of production executions, including long execution times
(in the order of days or weeks) and the need to use large HPC
systems, a direct, brute force tuning of runtime parameters
and load balancing is prohibitively expensive and unachievable
under production settings.

As a solution, in this work, we create a simplified version of
a full scale Compressor-Combustor-Turbine simulation using
scaled-down, but representative applications. The idea follows
on from the widely used technique in HPC where simplified
versions of large applications, called mini-apps, are used to
explore co-design, performance and optimum configurations
of applications on HPC systems [14], [15]. Building on the
coupled multi-row compressor mini-app from [13] with MG-
CFD [16] and CPX [13] as the proxy for the density-solver
and coupler respectively, a new pressure solver proxy modelled
by the SIMPIC [17] Particle-In-Cell (PIC) code is added to
create the compressor-combustor-turbine triple-components as

a coupled mini-app simulation. A comparison of the full-scale
and proxy simulations can be seen in Figure 1, along with a
diagram highlighting the related engine components simulated.
An extended empirical performance model is developed to
reason-about and explore the optimal resource allocation for
the coupled mini-apps when executing a large mini-app engine
simulation. We then use the analysis and predictions from
the mini-app simulation and performance model to predict the
optimum allocation of resources for the full-scale simulation
of the 1.5B HPC-Combustor-HPT test case. More specifically,
we make the following contributions:
• The electrostatic Particle-In-Cell mini-app, SIMPIC [17],

is used as a black-box performance proxy to model the
behavior of the combustor pressure solver typically found in
aero-engine simulations. This base SIMPIC test-case (Base-
STC) is tested using a variety of configurations, predicting
the pressure-solver run-time with a max error of 22%. The
mini-app is used to gain insights into the main bottlenecks
of the production pressure solver.

• A selection of particle and multigrid solver optimizations
are explored, and their contribution to performance are
estimated theoretically, if applied to the production pressure-
solve. An optimized SIMPIC test-case (Optimized-STC),
is created from SIMPIC which synthetically matches this
theoretical performance.

• SIMPIC is then coupled with multiple instances of the MG-
CFD mini-app together with the CPX mini-coupler to create
a coupled mini-app simulation. An empirical performance
model is developed, extended from [13], to include the
pressure solver and its coupling. This allows us to load
balance and predict the speedup of the complete mini-
simulation. Both the Base-STC and Optimized-STC versions
are modelled.

• The model predicts the runtime of each individual com-
ponent of the coupled mini-app simulation, each with less
than 25% error. Furthermore, the large coupled mini-app
simulation of the HPC-Combustor-HPT test case is executed
on up to 40,000 cores on the ARCHER2 (HPE-Cray EX) su-
percomputer comparing runtimes with predictions from the
performance model. Predictions are over 75% accurate for
the both Base-STC and Optimized-STC coupled versions.

The primary objective of the work is to predict the best
allocation of resources for running coupled CFD/combustion

2

using mini-apps, as there can be a significant bottleneck on
the parallel efficiency of the simulation if resources are not
adequately distributed. Using the full production codes will
waste HPC resources and due to the scale required to run, the
problem quickly becomes intractable when reaching current
production problem sizes that are at 1B to 5B cells. The
challenge of configuration exploration becomes even greater
as the amount of compute resources increases. In addition,
we aim to determine the bottlenecks for the workload in the
codes themselves and examine optimizations, speculating what
the optimized run-time would be. Similarly, without mini-
apps, it becomes difficult and time consuming to achieve
due to the size and complexities of the production codes.
Addressing these bottlenecks represents a step as part of an
ongoing push towards virtual certification. While we focus
on the behavior of this gas-turbine simulation problem, the
use of CPX can be applied when coupling mini-apps in other
domains. Additionally, the particle and solver optimizations
mentioned can also be applied to other similar problems.

II. BACKGROUND AND RELATED WORK
Numerical simulations based modelling of aero-engine de-
sign, traditionally limit their scope to individual seg-
ments/componenets of the engine such as the compressor or
combustion chamber. Interactions between different sections
are handled using boundary conditions, often taken from the
time-averaged solution of the adjacent components. However,
information is often lost as a result of this process, as bidi-
rectional transfer of some information, particularly unsteady
interactions such as turbulence intensity, are not possible.
Therefore, it is desirable to run multiple components together
in a single simulation such that interactions can be more
accurately captured [5].

A common approach to model components together is to
use a Large Eddy Simulation (LES) or Reynolds-averaged
Navier-Stokes (RANS) approach in the Combustor and a
Unsteady Reynolds-averaged Navier-Stokes (URANS) for the
blade rows [5]. While this method has been applied to a variety
of coupled gas turbine models [18] [19], accurately coupling
together all three components (compressor, combustor, tur-
bine) remains a key challenge. The first published example,
by Stanford University’s Centre for Turbulence Research, use
a LES approach for the Combustor and URANS for the com-
pressor and turbine. However, due to the difficulty in coupling
the codes, the work reports inaccuracies with the generated
results [20]. The first mathematically accurate example was
performed by NUMECA, simulating compressor-combustor-
turbine interaction in a KJ66 gas turbine engine [21]. However,
this was achieved using a RANS approach throughout the sim-
ulation, which is a much low accuracy method compared to a
URANS or LES model that is typically needed for production
aero-engine design. Furthemore, the engine simulated was two
orders of magnitude smaller in length than a typical aero-
engine found on commercial aircraft [22].

More recently, a team at CERFACS successfully ran a
coupled three component simulation, modelling the fan, com-
pressor, and combustion chamber of a DGEN-380 turbine

Fig. 2: A comparison between the compute-communication pattern
of both the pressure-solver and SIMPIC [23] [24] [17]

engine [5]. This simulation used a LES approach throughout,
which ensures very high accuracy. However, the solution
require an initial simulation of a group of smaller components
as stand-alone simulations; the integrated/coupled simulation
cannot finish without this. Nevertheless, their work provides a
good point of reference as the mesh size used is very similar to
the test case we are examining in this research (2.1Bn cells),
albeit with fewer components.

A. Interface types
In this work, we focus on a coupled URANS-LES simulation,
with URANS used for the density solver (compressor and
turbine), and LES used for the pressure solver (combustion
chamber). While this is faster than using a LES through-
out, URANS-LES interaction does result in approximation
of some quantities. Therefore, frequent interaction/transfer
between components is required to ensure stability of the
overall system. When building the mini-app simulation, we
will therefore explore the overhead of using an overlapping
approach, where a composite domain is created from a larger
portion of the interacting meshes. This is similar to using
‘overset’ methods for modelling rotor/stator interaction [25].

The coupling between density-solvers is modeled as a
sliding-plane interaction, whereas the interaction between the
density and pressure solvers is modeled as steady-state. In a
sliding-plane, the rows of rotor blades move relative to the
stator blades rows every timestep, thus the mapping between
each domain must be recomputed every time-step [25] so
that data can be transferred to and from each instance. The
recalculation, consisting of a search routine among other oper-
ations, incurs significant computational overheads [13]. On the
other hand, the density-pressure interaction requires a larger
interface (5% of the mesh compared to 0.42% in sliding plane
interaction), but the instances are not moving relative to one
another. Thus, the mapping between the domains only needs to
be computed once. As a result, the interaction between density-
pressure solver contributes a much smaller overhead to the
run-time over the course of the entire simulation than that of
the density-density solvers.
B. Coupling
As Figure 1 highlights, the component interactions/transfers
are carried out by a series of coupled components. For the

3

domain scientists, this provides the flexibility to select, for
instance, the best numerical method and problem scale for
each component, or even parallellization/target architecture to
execute the sub-components. It also significantly simplifies
code maintenance and extension essentially implementing a
horizontal separation of concerns approach, akin to the “ver-
tical” separation of concerns achieved by DSL’s [26] in HPC,
where expertise in developing different simulation models can
be leveraged to gain the best results.

There are a number of tools available which implement
the required information exchange between discrete codes.
These frameworks vary in scope and function; frameworks
such as MUI [27] and preCISE [28] act purely as an interface
where data can be sent and retrieved, whereas others, such as
MCT [29], are more involved, with dedicated classes for data
fields and methods for interpolation and other transformations.
JM76, modeled in this research, operates at a lower level,
with the communication and interpolation being hand coded;
however, from a design perspective it most closely resembles
the OpenPALM framework, developed in-part by CERFACS
[30].

Regardless of the chosen framework, the significant chal-
lenges of resource allocation in coupled codes is well doc-
umented [12]. Depending on the coupling approach, the ex-
change of information between solvers may contribute signifi-
cantly to the run-time of the simulation. Since the publication
of previous work covering coupled compressor problems [13],
significant progress has been made to reduce the coupling
overhead to less than 10% of run-time, resulting in 88%
parallel efficiency of the simulation at ∼10,000 cores [31].
It makes use of the same Rolls-Royce internal density solver
and coupling framework as modelled in this paper. We demon-
strates equivalent efficiency with smaller test cases. Thus, we
can conclude that similar level of parallel efficiency can be
achieved in the compressor and turbine stages of the proposed
test case in this research.

Existing research suggests the scalability of the pressure
solver application used in the combustor is comparatively
worse; in an 84M cell test case, the parallel efficiency dropped
below 50% parallel efficiency at only 896 cores [32]. Even
when improvements were made to eliminate the overhead of
the particle load balancing, parallel efficiency still dropped
below 80% at the same 896 cores.

While hardware differences make a direct comparison with
current knowledge difficult (with the pressure solver being
tested on a machine with 32 Cores per node vs 128 Cores
per node for the density solver), current analysis suggests in a
coupled gas-turbine engine simulation, the pressure solver will
most likely be the bottleneck. This is further exacerbated as the
length of the pressure solver time-step is approximately half
as long as those of the density solver, resulting in twice the
number of iterations being required in a coupled simulation.
This is due to the pressure solver using a more accurate LES
model compared to the URANS model of the density solver,
which typically requires a finer temporal resolution [33], [34].

C. The pressure solver and mini-apps

The pressure solver operates using a synchronous coupled
Lagrangian-Eulerian approach; within a time-step, flow, com-
bustion, and turbulence fields are updated, passed to the
particles, and the particle field is then updated [24] [9]. This
process is then repeated for the next time-step, in Figure 2.

In previous coupled simulation work, where the compressor
stage of a gas turbine engine was modelled [13], a “proxy”
simulation was created by developing a new coupling mini-
app, CPX, and coupling instances of the density solver mini-
app, MG-CFD [16]. In this paper, we extend this mini-
simulation by modelling the compressor, combustion chamber
and turbine stages. Additionally, previously the size of all
of the instances’ meshes and their respective interfaces were
the same; in our mini-simulation we are using a selection of
meshes and coupling interface sizes to more accurately model
the simulation.

In contrast to that work, a suitable functional mini-app for
the pressure solver is not available. Hence an existing electro-
static mini-app, SIMPIC [35], developed by Sandia National
Laboratories, was selected to represent the pressure solver.
SIMPIC, in this case was chosen to act as a “performance
proxy” - an application in a similar domain, designed to repli-
cate the performance characteristics of an application rather
than the functions within. The aim with a performance proxy
is to demonstrate how the parallel efficiency of one solver can
affect the scalability of a large connected simulation.

SIMPIC is used to model plasma interaction within nuclear
fusion simulations, combining a particle-in-cell approach with
a Poisson solver. Similar to production pressure solvers, it
follows a synchronous Lagrangian-Eulerian approach; each
time-step, the program solves an electric field, passing this
information to the particles, which then update their field
respectively [17]. A comparison between the two applica-
tions can be seen in Figure 2. SIMPIC is small (LoC≈
1500), open source, and follows our motivating compute-
communication pattern found in a typical pressure-solve. It
is also written in C++, thus simplifying the integration into
the CPX mini-coupler in comparison to say a Fortran-based
pressure-solver [9]. Additionally, SIMPIC input files are highly
customizable, enabling us to generate a selection of test cases
which replicate different parallel efficiency characteristics and
pressure solver run-times. However, there are limitations in
using such an application. For example, SIMPIC operates
over a 1-dimensional domain compared to the 3 dimensional
domain of a typical cumbustion pressure solver. Nevertheless,
the utility of the application in this research is its performance
characteristics and scalability, not the underlying solver. It is
for this reason we describe it as a “performance proxy”, rather
than a direct proxy application.

D. Performance modelling
To assist our mini-app simulation, an existing predictive per-
formance model used to predict run-time in coupled CFD
simulations will be adopted [13]. The use of performance
modelling is well documented, and have been used for a

4

variety of single program, multiple domain (SPMD) applica-
tions. These include models for particle transport and wave-
front applications [36] and nonlinear solvers [37]. Performance
models incorporate a number of parameters, such as domain
size and frequency of certain loops, using these to produce
an approximation for the run-time, or an optimized setup.
The model from [13] is extended by adding support to model
SIMPIC and its coupled interaction. In this research, we use
the predictive model for two purposes: (1) allocating MPI
ranks to ensure the lowest possible run-time, and (2) predicting
speedups with the Optimized-STC over the Base-STC in the
mini-app simulation. A detailed explanation of the model, its
use, as well as the extensions model over [13] is presented in
Section V.

III. PERFORMANCE ANALYSIS OF THE PRESSURE SOLVER
AND A REPRESENTATIVE SIMPIC TEST CASE

Fig. 3: A comparison between the pressure solver test cases and
the equivalent SIMPIC test cases which replicate the performance
behavior.

Figure 1 shows the combustion chamber in the context of
the engine. In our initial performance analysis of the pressure
solver, we will examine two test cases: (1) a single sector swirl
combustion case, with 28M cells and 7M particles, and (2) a
triple sector swirl combustion case with 84M cells and 21M
particles [38]. These were run for 10 timesteps, measuring the
run-time excluding the pre- and post-processing costs (which
are fixed). The hardware used was the 740k core HPE-Cray EX
supercomputer, ARCHER2 [39], which uses nodes of 2×64C
AMD EPYC 7742 2.25Ghz microprocessors, with 256GB
memory per node. All codes were compiled using CRAY
10.0.4 Fortran/C++ compilers and MPICH 8.0.16 MPI.

As seen in Figure 4b, parallel efficiency of the pressure
solver drops below 50% at 3000 cores. Despite the increased
size of the 84M test case compared to the 28M, the drop
in performance is similar. This is significant as the full-scale
test case for the pressure solver is large at ∼400M cells
(comparable to that of the CERFACS integrated model [5]),
indicating parallel efficiency will drop off at a similar point.

To predict the 28M and 84M pressure solver run-time with
SIMPIC, we hand picked the parameters seen in Figure 3.
Figure 4a and 4b shows the SIMPIC speedup and parallel
efficiency compared to the pressure solver. SIMPIC is able
to predict the run-time for the pressure solver across both test
cases with a mean error of less than 9% and a worst case error
of 22%. This error is a result of SIMPIC’s parallel efficiency
drop-off being marginally less steep than the pressure solver.

We can generate an indication of the pressure solver speedup
in the full-scale 380M cell test case from the parameters in
Figure 3. Figure 4c shows the results of this test, from 1,000
to 10,000 cores (8 to 80 ARCHER2 nodes). Parallel efficiency
approaches 50% at only 10,000 cores, suggesting a maximum
speedup of about 6x in this test case.

IV. PERFORMANCE ANALYSIS AND OPTIMIZATIONS

The pressure solver models motion of fluid, as a result of the
combustion of fuel, by solving the Navier-Stokes equations
using pressure correction methods. It employs a LES approach,
including a k-ϵ model for mdelling turbulence, a common
turbulence model used in industry. A Finite-Volume approach
is used for the geometry. Fuel spray droplets are handled using
a Lagrangian approach, where particles are moved every time-
step once the other fields have finished updating, as noted in
Figure 2. Combustion-turbulence interaction is implemented
with a variety of standard CFD-Combustion models (Eddy
break-up, PDFs) [9]. Modelling combustion and turbulence
is computationally expensive, but many assumptions can be
made to simplify transport equations using scalar and velocity
components [40]. However, solving the pressure equation
requires many iterations and remains an expensive opera-
tion [41].

To understand the parallel efficiency behavior of the pres-
sure solve, the code was profiled using ARM MAP [42] using
the small 28M mesh on 2048 cores or 16 ARCHER2 nodes.
Above 2048 cores the parallel efficiency drops below 50%, as
Figure 4c highlights, hence this configuration was specifically
profiled. Figure 5a presents the results from the profiling
where we plot the run-time of each of the main functions
in the production code relative to the total run-time. These are
further split into compute and communication time. 46% of
the run-time is spent updating the pressure field, with 21% of it
being spent in MPI communications and 25% in compute. The
pressure field routines use a Conjugate Gradient solver with
Aggregate Algebraic Multigrid (AMG), thus it is likely that the
bulk of communications time is being spent in near-neighbour
data exchange in SpGEMM and SpMV operations. Further
profiling has shown the bulk of compute time is spent iterating
through multigrid cycles and in the setup phase, including
calculating the Galerkin coarse grid operator.

The particle spray routine is the next most time-consuming
routine, spending 96% of its run-time in communications.
Other work profiling the pressure solver has shown that this is
the result of poor distribution of the particles across cores [32].

As the velocity fields and scalar calculations scale well, we
do not focus our efforts on these methods when attempting
to improve performance. Instead we focus exclusively on
the particle component and the pressure fields. Some of the
optimizations we will discuss can also be applied in other
methods, specifically those that accelerate SpMV operations,
however when estimating the performance of a theoretical
optimized pressure solver, we will use the parallel efficiency
of these other components from the base code.

5

Fig. 4: (a) Speedup and (b) parallel efficiency of the pressure solver and SIMPIC on ARCHER2. (c) speed-up of SIMPIC with the
representative large base test case on ARCHER2.

Fig. 5: Pressure solver performance (28M cells) - breakdown of the
most time-consuming functions: (a) runtime as a proportion of total
run-time at 2048 ARCHER2 cores, (b) parallel efficiency of each
function up to 2048 cores.

A. Spray methods

Figure 5b gives a further breakdown, detailing the parallel
efficiency of each of the methods from 128 to 2048 cores, as
well as the overall parallel efficiency curve. The same 28M
mesh is used. It is clear that the particle component, modelling
the fuel spray, is the biggest bottleneck in the pressure solver
application, dropping below 50% parallel efficiency at just 2
ARCHER2 nodes, or 256 cores.

High communication overhead is common with codes that
contain a particle-in-cell component, due to challenges han-
dling load balancing and information exchange with the solver
efficiently. One approach, spacial partitioning, partitions the
solver space, with each MPI rank handling the particles
that belong in its partition [43]. This approach, used by
the pressure solver, struggles when particles are not evenly
distributed across the partitions. An alternate approach, particle
sharing, distributes the particles across ranks regardless of their
location [44]. However, this approach requires collective op-
erations which can significantly degrade performance at high
core counts. As a result, spatial partitioning is most commonly
used, often with hybrid MPI+OpenMP to take advantage of
shared memory space and improve cache reuse [45].

Recently, an asynchronous task based approach was tested
on the pressure solver application, dividing the MPI space
into distinct spray and solver communicators [24]. With this
method, the two components run independently, synchronising
using one-sided MPI shared memory communicators intro-
duced in MPI-3 [46]. This approach was demonstrated to work

at scale [32], hence we include it as one of the optimizations
to apply and analyze in the pressure solver.

B. Pressure field

Figure 5b shows that the pressure field component also suffers
a drop in parallel efficiency, albeit not to the same extent as
the spray routines. Even with perfect scaling of the particles,
the code will still drop to ∼60% parallel efficiency at only
2048 ranks, as shown in Figure 6a. Thus, optimizing the spray
alone will likely not be enough to ensure the pressure solver
not being a bottleneck in the full-scale test case.

Due to the nature of the pressure equation being solved in
the pressure field method, the solver requires many more iter-
ations to converge than other calculations such as momentum
or scalar transport equations [41]. Thus, a multigrid method
must be used to improve the convergence rate. Multigrid
techniques work by gradually lowering the resolution of the
grid, solving the set of equations, and then interpolating the
grid back up to its original resolution [47]. As the pressure
solver being examined is unstructured [9], it uses Algebraic
Multigrid (AMG), which applies this technique to the system
of equations themselves, rather than the geometry [48]. Further
profiling of the pressure field methods indicate the majority of
time is spent in this process, thus we focus on accelerating the
AMG, with an emphasis on accelerating SpGEMM and SpMV
operations as these are also used in other methods such as
those solving transport equations [49]. There is a vast body of
research optimizing these routines [48] [50]. Here we focus
on the most significant optimizations:

1) AMG setup:
• For the smoother, Hybrid Gauss-Seidel should be used,

employing Gauss-Seidel within a task but Jacobi methods
across parallel tasks. This leads to better convergence
within each multigrid cycle provided the problem size
is sufficiently large [51].

• Within each MG cycle, the grid is restricted, solved, and
interpolated until the finest mesh is created. We propose
to use extended+i methods in the interpolation, which
considers not only neighbors of a gridpoint but also its
neighbors’ neighbors. While this is more computationally
expensive, it also accelerates convergence [52].

• In some AMG solvers, the MG cycle (V-Cycle) con-
vergence time can be reduced using Krylov subspace

6

Fig. 6: Predicted pressure solver parallel efficiency before and after particle and solver optimizations (a), along side the predicted speedup
of an optimized pressure solver and the actual speedup of the Optimized-STC on ARCHER2 (b,c).

acceleration, known as a K-cycle. However, this method
can result in poor scalability of the solver with large
numbers of cores [50]. We therefore recommend using
V-Cycles with smoothed parallel pattern matching [53].

2) Matrix and vector multiplication:
• In traditional SpGEMM operations, the input matrices

must be read twice: once to determine the size of the
output matrix, and again during the multiplication [54].
Instead, each thread can be allocated a large chunk of
memory and the disjoint results can be copied to a
contiguous memory space [48].

• To reduce the amount of branching in SpGEMM oper-
ations, a sparse accumulator (SPA) can be constructed
which allows access of any matrix element in constant
time [48] [55].

• During interpolation and restriction, which uses SpMV,
values at the same points are are mapped directly to
the mesh above or below. As a result, the matrix can
be rearranged such that the first rows are an identity
matrix, which reduces computation and saves memory
bandwidth [48].

• When AMG is used in a distributed system, matrix rows
are spread across cores, in a compressed sparse row
format. During a SpGEMM operation, a thread must
renumber its column mapping array as it is likely it
has received new values in the halo exchange. This is
an expensive process as efficient parallel reordering is
difficult to achieve. Instead, each thread can build a hash
map, which is then merged into a global array using a
parallel merge sort. Using a reverse mapping, the values
can be distributed back to the relevant threads [48].

C. Extrapolating improvements

When applying the particle optimizations to our previous
results in Figure 5, we set the parallel efficiency of the
spray routines to 100%, as the research indicates there is
little difference in scaling between the pressure solver with
the optimized spray and the same code without any spray
routines [32]. For the pressure field, the AMG setup changes
are required such that the matrix and vector multiplication
optimizations work as effectively as possible, so these do
not directly affect run-time. With matrix and scalar vector
multiplication changes, the research [48] indicates a speedup
of ∼3.5x over the base solvers at 128 nodes, limited by

communication in halo exchanges. Since our cluster has ∼9x
the cores per node as in the research, we expect performance
to be more in line with the parts of the AMG solver which
are less affected by communication, which give an average
speedup of 5x. We therefore apply a 5x speedup to the pressure
field to approximate the benefits of the improvements with this
optimization. The results from the the estimated performance
gains of these optimizations are shown in Figure 6a. While
this is only an approximation, it is clear from the above related
work/research that there is potential for significantly improved
scalability compared to the base application.

A SIMPIC configuration can be generated to match the
parallel efficiency of the above estimated optimizations for the
pressure solver. This consists of 1.18M cells, 60,000 particles
per cell, and running for 450 time-steps. The configuration
predicts the estimated optimized pressure solver run-time with
an error of less than 7%. The speedup and parallel efficiency
of both can be seen in Figure 6b and 6c.

V. AN EMPIRICAL PERFORMANCE MODEL FOR RESOURCE
ALLOCATION AND PERFORMANCE ANALYSIS

We have shown how each mini-app (MG-CFD, SIMPIC and
CPX) can be configured to match the performance behavior of
the full applications (density-solve, pressure-solve, coupler).
The individual execution times of each mini-app can then
be used to reason about how best to allocate resources to
each full application to obtain best performance. We build
an empirical performance model to achieve this. A similar
model was created previously for the coupled production
density solver [13] to generate an optimized configuration of a
compressor test case. We follow the same development process
to tackle the larger problem at hand, that of modelling the
HPC-Combustor-HPT coupled execution.

As discussed before, a coupled simulation progresses by
exchanging information at some regular frequency between
the coupled applications through coupler units (see Figure 1).
The frequency of exchanges is determined by each application;
for example the density solver, after each iteration would
communicate with the pressure solver, awaits for the pressure
solver to complete some number of iterations, and return
results before progressing to the next iteration. This cascading
dependency down a sequence of application instances results
in the overall simulation progressing at the speed of the slowest

7

component. Therefore, a key criteria for improving run-time
of the full simulation is to allocate compute resources to the
slowest component to balance the load. The model aims to
solve this resource distribution problem, allocating MPI ranks
such that the combined run-time of mini-apps and coupler
units is the lowest possible. This is challenging as not only do
the mesh sizes differ between instances, so too does frequency
of the iterations; for each density solver time-step, there are
2 pressure solver time-steps. The size of the coupler unit
interfaces also vary, as well as their frequency; instances of
coupled density solvers must exchange data every iteration of
the solver, whereas the coupling between pressure and density
solvers only exchange every 20 iterations.

Algorithm 1: Distribute ranks to coupled mini-apps
Input: T [apps], Size[apps], Size[CUs], Iter[apps, CUs]
Result: Optimized core distribution and predicted run-time of

coupled simulation
for i = 1, Num. of mini-app instances do

T [appi] = T [appi] ∗ Size[appi]
Base size

∗ Iter[appi]
Base iter

end
for i = 1, Num. of coupler units do

T [CUi] = T [CUi] ∗ Size[CUi]
Base size

∗ Iter[CUi]
Base iter

end
ranks ← # cores
while ranks > 0

Appmax ← MAX(T [app1], T [app2], ..., T [appn])
CUmax ← MAX(T [CU1], T [CU2], ..., T [CUn])
Appdiff←T (cores[Appmax])− T (cores[Appmax] + 1)
CUdiff←T (cores[CUmax])− T (cores[CUmax] + 1)

if CUdiff > Appdiff then
cores[CUmax]←cores[CUmax] + 1

else
cores[Appmax]←cores[Appmax] + 1

end
ranks = ranks− 1

end
output ← MAX(app1, ..., appn) +MAX(CU1, ..., CUn)
output ← cores[apps], cores[CUs]

The model, Alg. 1, implemented as an iterative algorithm,
loops to allocate the total core budget, N to each of the
coupled components. For each iteration, the algorithm com-
pares the run-times of each mini-app instance, selecting the
instance with the longest run-time as well as the slowest
coupler unit. The program then compares the reduction in run-
time of allocating a core to both, choosing the option where
the reduction in run-time is the greatest. As the run-time of
the simulation is the sum of the slowest mini-app instance and
the slowest coupler unit, this results in the greatest reduction
of run-time for every core allocated.

The initial mini-app and coupler run-times are calculated by
comparing the number of timesteps and the problem size of
each instance to a base case, and scaling the initial run-time up
or down for the required core count. For example, with MG-
CFD, the base case is run on an 8M mesh for 25 timesteps.
If a simulation contains an instance of MG-CFD, with a mesh
of 24M cells and a simulation length of 250 timesteps, the
initial run-time will be 30x the base case. To estimate the run-
time for each mini-app and coupler unit, we benchmark each

Fig. 7: A breakdown of how the empirical model is used to
generate the resource allocation and predict the run-time of a coupled
simulation.

mini-app standalone across problem sizes and core counts,
generate a parallel efficiency graph for each problem size, and
then fit a curve to the graph. From this, the script contains
functions take in the number of cores and the mesh size,
and output the parallel efficiency of the mini-app at that core
count / configuration. Figure 7 provides an overview of this
benchmarking and modelling process to estimate run-time in
a coupled simulation leading to their use in Alg. 1.

This work presents several significant improvements over
prior work. In the original implementation [13], all instances
of the solvers must have the same mesh and interface size.
We have extended the model so each mini-app instance can
have a different mesh size and interface size. As a result,
run-time comparisons and core allocation is done on a per-
instance basis, rather than crudely allocating resources to either
all solver instances or all coupler instances. Additionally, the
model now supports instances of both pressure-solver and
density solver mini-apps, whereas before it could only generate
resource allocation and run-time predictions of coupled den-
sity solver mini-simulations. The extended model, therefore
enables rapid resource distribution decision making for a full
HPC-Combustor-HPT simulations, facilitating load-balancing
for more complete workloads and real-world scenarios.

A. Model Validation: Small Test - 150M/28M

Figure 8a compares a run-time prediction in the extended
predictive model with the mini-app runs in a typical medium-
size High-Pressure Turbine test case. This scenario consists
of 1 SIMPIC unit and 2 MG-CFD units, with 5,000 cores
allocated to the total simulation. The MG-CFD meshes are
instances solving the NASA Rotor37 [56] meshes (150M
nodes), which represent the geometry of a transonic axial
compressor rotor, widely used for validation in CFD. The
SIMPIC test case represents a pressure solver over 28M cells.
331 ranks are allocated per MG-CFD unit, with 4,253 allocated
to SIMPIC. For this validation, SIMPIC is configured in its
Base-STC setup. 63 CU are used between the MG-CFD units,
with 22 CU being allocated between the SIMPIC and MG-
CFD units. As can be seen from Figure 8a, the performance

8

Fig. 8: Left (a) presents a comparison between predicted and actual
run-times of MG-CFD and SIMPIC in a small test case, and (b)
details the mesh size of each component in the small mini-app
simulation.

model is able to load balance the applications and predict the
run-time with a maximum error of 18%.

B. Model Validation : Large full-scale equivalent test

The second validation case attempts to replicate the HPC-
Combustor-HPT setup from Figure 1. The mesh sizes for each
component simulation is detailed in Figure 8b. Note that the
listed SIMPIC mesh size is the equivalent cell size in the full
application; the actual input size that represent performance
of a 1.2M cells problem. However, we choose to quote 380M
since the size of the interfaces passed to the coupler units are
made to match the full-scale simulation. In total, the effective
size of this mini-app simulation is 1.25Bn cells, equivalent to
our main motivating problem from industry.

Research suggests that beyond ∼30,000 cores, the setup cost
of the AMG in the pressure solver becomes significant [50].
As a result, we enter these parameters into the model with
a core allocation budget of 40,000 cores; ∼30,000 cores for
SIMPIC and ∼10,000 cores to the rest of the simulation. We
ran the simulation for the equivalent of 20 time-steps of the
pressure solver, comparing the model’s predicted run-time of
the simulation with the standalone run-time of each mini-app
instance. The number of cores allocated to each instance by
the model is shown in Figure 9b. This was done such that in
the full, longer mini-app simulation, we have confidence that
the resource allocation algorithm will work correctly. Figure
9a shows the percentage error of each instance size for mini-
app simulations using the Base-STC and the Optimized-STC.
It demonstrates the model can predict the run-time of all
instances used in both mini-apps and by extension full-scale
simulations with a worst case error of 25% and a mean error
of 12%.

The same setup was then ran for the equivalent of 1,000
time-steps of the density solver, which is the time taken for
half a revolution of a gas-turbine engine. The length was

Fig. 9: (a) percentage error between the mini-apps and predictive
model for individual mini-app simulations using the Base-STC and
the Optimized-STC. (b) rank allocation to each instance of mini-
app, (c) predicted and actual speedups for 1 revolution of the mini-
app simulation using the Optimized-STC compared to a mini-app
simulation using the Base-STC.

chosen as it is large enough to give representative data without
wasting HPC resources. With the large mini-app simulation
using the Base-STC example, the bottleneck was SIMPIC,
which reached 50% parallel efficiency at 13,428 ranks, shown
in Figure 9b. The difference between the overall predicted run-
time and the SIMPIC component was 5%.

The model starts rank allocation at 100 for this problem size
as mini-app base cases run in a sufficiently short time, yet have
a higher parallel efficiency at 100 ranks. As a consequence,
the MG-CFD 8M instance gets allocated more ranks than
necessary to match the run-time of the overall simulation.
However, in this base test case, the only place to re-allocate
additional ranks to improve run-time would be to SIMPIC, and
as the parallel efficiency of the SIMPIC instance is already
at 50%, the impact on overall run-time would be negligible.
Thus, in the full-scale simulation, we predict the pressure
solver application would be the bottleneck in the simulation.

9

In the mini-app simulation using the Optimized-STC, the
model predicts that both the density and pressure solvers will
scale well at 40,000 cores. The model predicts that with 32,201
cores allocated, or ∼262 ARCHER2 nodes, parallel efficiency
of the pressure solver will be 87%, this being the worst out
of all the application instances.

The model predicts coupling overhead to be <0.5% of over-
all run-time. This is in contrast to the significant bottleneck
predicted by the model in [13]. We attribute the reduction in
overhead due to the improved search algorithm, with a tree-
based search routine and by pre-fetching the cells required
for the next iteration, for sliding-planes interaction which was
subsequently implemented into the industrial coupler [31].

Comparing the two test cases, Figure 9c presents the pre-
dicted speedup in a 1 revolution simulation if an optimized
pressure solver was used in place the original. The model
predicts that by optimizing the pressure solver with the im-
provements discussed in Section III, the simulation can be
sped up significantly by a factor of 6x.

C. Final Results and Analysis

Figure 9c compares the predicted speedup with the measured
speedup on ARCHER2 for both the Base-STC and Optimized-
STC mini-app setups. To save time on the HPC system,
the measured run-time is taken from a 0.5 revolution run
and then doubled to match the 1 revolution prediction. The
model is able to predict the run-time of both scenarios with a
maximum error of less than 25%, and demonstrates a speed-
up of approximately ∼4x when comparing the Optimized-
STC simulation to the coupled mini-app simulation using
the Base-STC. The difference between the predicted and
actual mini-app simulation run-time appears mostly a result
of SIMPIC’s base test case running faster than expected. The
input parameters required to match the base pressure solver
scaling, which are not typical of a real world electrostatic
problem, cause run-time per time-step to improve when the
number of time-steps are significantly increased. This behavior
is not seen in the production pressure solver, and highlights a
limitation with using a mini-app that was not derived from the
production application. Despite this, the predictive model and
large mini-app run suggest that a speedup of between 4x-6x
is possible.

It is important to be aware of the other limitations with
the ‘performance proxy’ approach presented here. The opti-
mizations presented may deliver different parallel efficiency
improvements, and the performance characteristics may not
resemble those that were predicted. In the ideal case, where
the speedup matches the best cases from the quoted research,
we predict overall speedup to be ∼7.5x over the base case.
In a worst case scenario, where the particle optimizations are
applied, pressure field run-time is reduced only by 30% and
pressure field parallel efficiency doesn’t improve from the base
case, we predict speedup to be only 2.3x. The results support-
ing these optimization improvements are available only in the
mini-app domain, as work running the full-scale simulation is
still in progress. However, it is clear from profiling the pressure

solver and existing research on the application itself that there
is clear scope for efficiency gains.

VI. CONCLUSIONS
In this paper, we have demonstrated the use of mini-apps,
the CPX mini-coupler, and a performance model to investi-
gate, model and predict the run-time for a gas-turbine en-
gine simulation. Extending previous work on coupled CFD
instances [13], we profiled a production combustion appli-
cation and reasoned about the theoretical efficiency gains
using a variety of existing solver and particle optimizations.
Combining this with an improved performance model and a
representative ‘performance proxy’, we were able to optimally
load balance and accurately predict the run-time of a large
mini-app simulation using 40,000 cores. Finally, the bottle-
necks of this simulation were examined, highlighting that due
to increased accuracy and smaller time-step size of a LES,
even an optimized version of the pressure solver code would
likely remain the bottleneck in the simulation. The techniques
presented can be applied to a variety of mini-applications and
kernels, allowing researchers to optimize load balancing and
investigate performance bottlenecks of a coupled system in a
relatively short space of time. In addition, work is ongoing to
include FEM solvers for thermal coupling of the engine casing,
allowing us to run coupled CFD, Combustion and Structural
simulations.

ACKNOWLEDGEMENTS
This research is supported by Rolls-Royce plc., and by the UK
EPSRC (EP/S005072/1 – Strategic Partnership in Computational
Science for Advanced Simulation and Modelling of Engineering
Systems – ASiMoV). Gihan Mudalige was supported by the Royal
Society Industry Fellowship Scheme (INF/R1/1800 12). We would
also like to thank Chris Goddard at Rolls-Royce for their guidance
for this work.

REFERENCES

[1] K. Kannan and G. Page, “Coupling of compressible turbomachinery
and incompressible combustor flow solvers for aerothermal applica-
tions,” in Turbo Expo: Power for Land, Sea, and Air, vol. 45608,
p. V02AT40A004, American Society of Mechanical Engineers, 2014.

[2] J. Fröhlich and D. Von Terzi, “Hybrid les/rans methods for the simulation
of turbulent flows,” Progress in Aerospace Sciences, vol. 44, no. 5,
pp. 349–377, 2008.

[3] J. U. Schlüter, X. Wu, S. Kim, S. Shankaran, J. Alonso, and H. Pitsch, “A
framework for coupling reynolds-averaged with large-eddy simulations
for gas turbine applications,” 2005.

[4] “Joliot-curie supercomputer used to build first full, high-fidelity aircraft
engine simulation,” Accessed May 2022. https://cerfacs.fr/en/actualite/
first-360-degrees-large-eddy-simulation-of-a-full-engine/.

[5] C. P. Arroyo, J. Dombard, F. Duchaine, L. Gicquel, B. Martin, N. Odier,
and G. Staffelbach, “Towards the large-eddy simulation of a full engine:
Integration of a 360 azimuthal degrees fan, compressor and combustion
chamber. part i: Methodology and initialisation,” Journal of the Global
Power and Propulsion Society, vol. 2021, no. May, pp. 1–16, 2021.

[6] “Strategic partnership in computational science for advanced simula-
tion and modelling of engineering systems - asimov,” Accessed May
2022. https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/
S005072/1.

[7] Flightpath 2050 : Europe’s vision for aviation : maintaining global lead-
ership and serving society’s needs. Publications Office, 2011. European
Commission and Directorate-General for Mobility and Transport and
Directorate-General for Research and Innovation.

[8] “World’s most efficient large aero-engine - trent xwb,” Ac-
cessed May 2022. https://www.rolls-royce.com/products-and-services/
civil-aerospace/airlines/trent-xwb.aspx#section-technology.

10

[9] M. Anand, R. Eggels, M. Staufer, M. Zedda, and J. Zhu, “An ad-
vanced unstructured-grid finite-volume design system for gas turbine
combustion analysis,” in Gas Turbine India Conference, vol. 35161,
p. V001T03A003, American Society of Mechanical Engineers, 2013.

[10] D. Amirante, V. Ganine, N. J. Hills, and P. Adami, “A coupling
framework for multi-domain modelling and multi-physics simulations,”
Entropy, vol. 23, no. 6, p. 758, 2021.

[11] L. Lapworth, “Hydra-cfd: a framework for collaborative cfd devel-
opment,” in International conference on scientific and engineering
computation (IC-SEC), vol. 30, 2004.

[12] D. Amirante, V. Ganine, N. J. Hills, and P. Adami, “A coupling
framework for multi-domain modelling and multi-physics simulations,”
Entropy, vol. 23, no. 6, p. 758, 2021.

[13] A. Powell, K. Choudry, A. Prabhakar, I. Reguly, D. Amirante, S. Jarvis,
and G. R. Mudalige, “Predictive analysis of large-scale coupled cfd
simulations with the cpx mini-app,” in 2021 IEEE 28th International
Conference on High Performance Computing, Data, and Analytics
(HiPC), pp. 141–151, IEEE, 2021.

[14] S. J. Pennycook, C. J. Hughes, M. Smelyanskiy, and S. A. Jarvis,
“Exploring simd for molecular dynamics, using intel® xeon® processors
and intel® xeon phi coprocessors,” in 2013 IEEE 27th International
Symposium on Parallel and Distributed Processing, pp. 1085–1097,
IEEE, 2013.

[15] I. Z. Reguly, G. R. Mudalige, and M. B. Giles, “Design and development
of domain specific active libraries with proxy applications,” in 2015
IEEE International Conference on Cluster Computing, pp. 738–745,
IEEE, 2015.

[16] A. Owenson, S. A. Wright, R. A. Bunt, Y. Ho, M. J. Street, and
S. A. Jarvis, “An unstructured cfd mini-application for the performance
prediction of a production cfd code,” Concurrency and Computation:
Practice and Experience, vol. 32, no. 10, p. e5443, 2020.

[17] “Simpic - simple 1d pic prototype,” Accessed May 2022. https:
//lecad-peg.bitbucket.io/simpic/simpic.html.

[18] S. Jacobi, C. Mazzoni, B. Rosic, and K. Chana, “Investigation of
unsteady flow phenomena in first vane caused by combustor flow with
swirl,” Journal of Turbomachinery, vol. 139, no. 4, p. 041006, 2017.

[19] S. Salvadori, G. Riccio, M. Insinna, and F. Martelli, “Analysis of com-
bustor/vane interaction with decoupled and loosely coupled approaches,”
in Turbo Expo: Power for Land, Sea, and Air, vol. 44748, pp. 2641–
2652, American Society of Mechanical Engineers, 2012.

[20] J. Schlüter, S. Apte, G. Kalitzin, E. vd Weide, J. Alonso, and H. Pitsch,
“Large-scale integrated les-rans simulations of a gas turbine engine,”
Annual Research Briefs, pp. 111–120, 2005.

[21] L. Romagnosi, Y. Li, M. Mezine, M. Teixeira, S. Vilmin, J. E. Anker,
K. Claramunt, Y. Baux, and C. Hirsch, “A methodology for steady and
unsteady full-engine simulations,” in Turbo Expo: Power for Land, Sea,
and Air, vol. 58578, p. V02CT41A002, American Society of Mechanical
Engineers, 2019.

[22] E. Saab Gripen, “Rolls-royce trent xwb awarded easa type certification,”
[23] G. Houzeaux, M. Garcia, J. C. Cajas, A. Artigues, E. Olivares, J. Labarta,

and M. Vázquez, “Dynamic load balance applied to particle transport in
fluids,” International Journal of Computational Fluid Dynamics, vol. 30,
no. 6, pp. 408–418, 2016.

[24] A. Thari, N. C. Treleaven, M. Staufer, and G. J. Page, “Parallel load-
balancing for combustion with spray for large-scale simulation,” Journal
of Computational Physics, vol. 434, p. 110187, 2021.

[25] V. Ganine, D. Amirante, and N. Hills, “Enhancing performance and
scalability of data transfer across sliding grid interfaces for time-accurate
unsteady simulations of multistage turbomachinery flows,” Computers &
Fluids, vol. 115, pp. 140–153, 2015.

[26] T. Cleenewerck and I. Kurtev, “Separation of concerns in translational
semantics for dsls in model engineering,” in Proceedings of the 2007
ACM symposium on applied computing, pp. 985–992, 2007.

[27] A. Skillen, S. Longshaw, G. Cartland-Glover, C. Moulinec, and D. Emer-
son, “Profiling and application of the multi-scale universal interface
(mui),”

[28] H.-J. Bungartz, F. Lindner, B. Gatzhammer, M. Mehl, K. Scheufele,
A. Shukaev, and B. Uekermann, “precice–a fully parallel library for
multi-physics surface coupling,” Computers & Fluids, vol. 141, pp. 250–
258, 2016.

[29] J. Larson, R. Jacob, and E. Ong, “The model coupling toolkit: a new
fortran90 toolkit for building multiphysics parallel coupled models,”
The International Journal of High Performance Computing Applications,
vol. 19, no. 3, pp. 277–292, 2005.

[30] F. Duchaine, S. Jauré, D. Poitou, E. Quémerais, G. Staffelbach, T. Morel,
and L. Gicquel, “Analysis of high performance conjugate heat transfer
with the openpalm coupler,” Computational Science & Discovery, vol. 8,
no. 1, p. 015003, 2015.

[31] G. R. Mudalige, I. Z. Reguly, A. Prabhakar, D. Amirante, L. Lapworth,
and S. A. Jarvis, “Towards virtual certification of gas turbine engines
with performance-portable simulations,” in 2022 IEEE International
Conference on Cluster Computing (CLUSTER), pp. 206–217, 2022.

[32] A. Thari, M. Staufer, and G. Page, “Asynchronous task based eulerian-
lagrangian parallel solver for combustion applications,” Journal of
Computational Physics, vol. 458, p. 111103, 2022.

[33] M. Young and A. Ooi, “Comparative assessment of les and urans for
flow over a cylinder at a reynolds number of 3900,” 2007.

[34] A. Sadiki, A. Maltsev, B. Wegner, F. Flemming, A. Kempf, and J. Jan-
icka, “Unsteady methods (urans and les) for simulation of combustion
systems,” International Journal of Thermal Sciences, vol. 45, no. 8,
pp. 760–773, 2006.

[35] B. T. Yee and M. M. Hopkins, “Particle methods for revealing kinetic
plasma behavior.,” tech. rep., Sandia National Lab.(SNL-NM), Albu-
querque, NM (United States), 2020.

[36] G. R. Mudalige, M. K. Vernon, and S. A. Jarvis, “A plug-and-play model
for evaluating wavefront computations on parallel architectures,” in 2008
IEEE International Symposium on Parallel and Distributed Processing,
pp. 1–14, IEEE, 2008.

[37] R. A. Bunt, S. A. Wright, S. A. Jarvis, Y. Ho, and M. J. Street, “Predic-
tive evaluation of partitioning algorithms through runtime modelling,”
in 2016 IEEE 23rd International Conference on High Performance
Computing (HiPC), pp. 351–361, IEEE, 2016.

[38] J. Sidey, A. Giusti, P. Benie, and E. Mastorakos, “The swirl flames data
repository,” 2017.

[39] “Archer2,” Accessed May 2022. https://www.archer2.ac.uk.
[40] H. K. Versteeg and W. Malalasekera, An introduction to computational

fluid dynamics: the finite volume method. Pearson education, 2007.
[41] W. Shyy, M.-H. Chen, and C.-S. Sun, “Pressure-based multigrid algo-

rithm for flow at all speeds,” AIAA journal, vol. 30, no. 11, pp. 2660–
2669, 1992.

[42] “Arm map - arm forge,” Accessed May 2022. https://www.arm.com/
products/development-tools/server-and-hpc/forge/map.

[43] R. Pankajakshan, B. J. Mitchell, and L. K. Taylor, “Simulation of un-
steady two-phase flows using a parallel eulerian–lagrangian approach,”
Computers & fluids, vol. 41, no. 1, pp. 20–26, 2011.

[44] Y. Shigeto and M. Sakai, “Parallel computing of discrete element method
on multi-core processors,” Particuology, vol. 9, no. 4, pp. 398–405, 2011.

[45] M. T. Bettencourt, D. Brown, K. L. Cartwright, E. C. Cyr, C. A. Glusa,
P. T. Lin, S. G. Moore, D. McGregor, R. P. Pawlowski, E. G. Phillips,
et al., “Empire-pic: a performance portable unstructured particle-in-cell
code,” Communications in Computational Physics, vol. 30, no. SAND-
2021-2806J, 2021.

[46] W. Gropp, “Mpi 3 and beyond: why mpi is successful and what
challenges it faces,” in European MPI Users’ Group Meeting, pp. 1–
9, Springer, 2012.

[47] S. Thakur, J. Wright, W. Shyy, J. Liu, H. Ouyang, and T. Vu, “Develop-
ment of pressure-based composite multigrid methods for complex fluid
flows,” Progress in Aerospace Sciences, vol. 32, no. 4, pp. 313–375,
1996.

[48] J. Park, M. Smelyanskiy, U. M. Yang, D. Mudigere, and P. Dubey,
“High-performance algebraic multigrid solver optimized for multi-core
based distributed parallel systems,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 1–12, 2015.

[49] F. Trias, X. Alvarez-Farré, A. Alsalti-Baldellou, A. Gorobets, and
A. Oliva, “Dns/les using a minimal set of algebraic kernels: Challenges
and opportunities,”

[50] P. D’Ambra, F. Durastante, and S. Filippone, “Amg preconditioners
for linear solvers towards extreme scale,” SIAM Journal on Scientific
Computing, vol. 43, no. 5, pp. S679–S703, 2021.

[51] A. H. Baker, R. D. Falgout, T. V. Kolev, and U. M. Yang, “Multigrid
smoothers for ultraparallel computing,” SIAM Journal on Scientific
Computing, vol. 33, no. 5, pp. 2864–2887, 2011.

[52] H. De Sterck, R. D. Falgout, J. W. Nolting, and U. M. Yang, “Distance-
two interpolation for parallel algebraic multigrid,” Numerical Linear
Algebra with Applications, vol. 15, no. 2-3, pp. 115–139, 2008.

11

[53] P. D’Ambra and P. S. Vassilevski, “Adaptive amg with coarsening based
on compatible weighted matching,” Computing and Visualization in
Science, vol. 16, no. 2, pp. 59–76, 2013.

[54] M. Patwary, M. Ali, N. R. Satish, N. Sundaram, J. Park, M. J. Anderson,
S. G. Vadlamudi, D. Das, S. G. Pudov, V. O. Pirogov, et al., “Parallel
efficient sparse matrix-matrix multiplication on multicore platforms,” in
International Conference on High Performance Computing, pp. 48–57,
Springer, 2015.

[55] F. G. Gustavson, “Two fast algorithms for sparse matrices: Multiplica-
tion and permuted transposition,” ACM Transactions on Mathematical
Software (TOMS), vol. 4, no. 3, pp. 250–269, 1978.

[56] J. D. Denton, “Lessons from rotor 37,” Journal of Thermal Science,
vol. 6, pp. 1–13, Mar. 1997.

12

