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Abstract

In the thirty years since the discovery of the first exoplanet, over 5000 verified
exoplanets have been discovered, unveiling a rich array of different exoplanetary
architectures. However, there are still many unanswered questions regarding the
formation and evolution pathways which have led to the observed population. To
understand these processes it is imperative to trace exoplanets across time, both
over galactic and human timescales. This thesis presents work in both of these
areas, using data from the Transiting Exoplanet Survey Satellite (TESS ).

The bulk of this thesis focuses on the challenge of discovering new young
exoplanets (age ă1 Gyr) and understanding the variability of their potential host
stars. This begins with building an extended population of young stars around which
to search for exoplanets, illustrating the kinematic power of the recently launched
Gaia satellite and resulting in a target list of over three million young stars.

A dedicated new young star detrending pipeline is then presented, which is
in turn used to search for new young exoplanets in stellar associations within TESS
sectors 1-5. Although no new exoplanets were found, the pipeline’s effectiveness is
demonstrated by recovering the previously known young exoplanets DS Tuc Ab and
AU Mic b, alongside all other 2 min Targets of Interest (TOIs) from the 30 min
cadence data alone.

The completed young exoplanet search highlighted the challenging diversity
of young stellar variability. To understand this variability, Kohonen Self-Organising
Maps are used for the first time on a dedicated sample of young stars observed in
the first year of TESS ’s primary mission, in order to sort light-curves by topology
and look for distinct variability classes. This analysis forms the first step in the
YOUNGSTER programme, aiming to use knowledge of young star variability to
inform more targeted detrending in future young exoplanet searches.

Finally, this thesis presents work on tracing exoplanets through time on
human timescales, updating and improving the ephemerides for all previously known
Kepler planets (22) and candidates (4) which were observed with sufficient signal to
noise in TESS. It also explores any transit-timing variations seen for these objects,
including intriguing results for HAT-P-7b, Kepler-411d, K00075.01 and K00076.01.
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Chapter 1

Introduction

“Everything starts somewhere,

though many physicists disagree”

— Terry Pratchett, Hogfather

The concept of other planets has fascinated humanity for millennia, with

Epicurus (341-270 BC) stating that “there are infinite worlds both like and unlike

this world of ours” over 2000 years ago. By the 20th century the idea had become

so ubiquitous that it routinely featured in some of the most famous popular culture

(especially in Science Fiction), from the desert planet Arrakis in Frank Herbert’s

Dune (1965), to the many worlds across the Galaxy in the original Star Wars Tril-

ogy (1977-1983). Curiously however, the first definitive evidence that these worlds

existed was only found at the very end of the 20th Century, with the discovery

of the first ‘exoplanets’, or planets around stars other than the Sun, found in the

1990s. Since then exoplanets have become a key tool to explore our place in the

Universe, including our physical place and our philosophical place: “Are we alone in

the Universe?” At its widest, exoplanetary science aims to provide more clarity to

both aspects of this question; while the discovery and characterisation of new exo-

planets allows us to make sense of our physical place in the Universe, the continuing

search on these planets for extraterrestrial life poses profound philosophical ques-

tions whether we find life or not. This introduction gives the background necessary

to understand the methods, analysis and discussion underlying this research, from

the history and current state of exoplanets to the challenge of ‘young’ exoplanet

discovery. Background is also given for the main two sources of data used in this

research (Section 1.5) and the field of machine learning in the context of stellar

variability analyses (Section 1.6).
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1.1 Exoplanet History

The first confirmed exoplanets to be discovered were PSR B1257+12 b & c, two

super-Earth sized planets discovered via unusual timing of their host pulsar [Wol-

szczan and Frail, 1992]. This discovery was swiftly followed by the discovery of

51 Pegasi b [Mayor and Queloz, 1995], the first planet around a sun-like star. Al-

though initially controversial, 51 Pegasi b’s eventual confirmation represented the

culmination of a steady increase in the instrumental capability of the radial velocity

technique (measuring the reflex motion of its host star) which had been developing

in the previous decades (e.g. Baranne et al. [1979]; Campbell et al. [1988]). For

this discovery Mayor & Queloz were awarded a share of the Nobel Prize in Physics

in 2019. The discovery of 51 Pegasi b changed the field of exoplanets forever, not

only because it revealed an exoplanet so unlike those in our own solar system (a

‘Hot-Jupiter’; a Jupiter-sized planet within the orbit of Mercury), but also because

it showed that that exoplanet science was within reach with current technology.

The first transiting planet was found around the star HD 209458 in 1999 by

two independent teams [Charbonneau et al., 2000; Henry et al., 1999], after radial

velocity measurements suggested the presence of a planet. This same planet later

became the first known to have its own atmosphere, using measurements from the

Hubble Space Telescope [Charbonneau et al., 2002]. The discovery and abundance

of these first hot Jupiters paved the way for more extensive studies of exoplanet

statistics, as these types of planets are easier and cheaper to detect via the transit

method than the more traditional radial velocity method [Haswell, 2010]. However,

the faintness of many planet candidates detected via the transit method challenges

spectroscopic confirmation and follow-up.

Following these earliest discoveries, additional discovery methods were found

to be sensitive to other important exoplanets. The first microlensing planet OGLE

2003BLG235/MOA 2003BLG53 b was observed on July 2003 and later published by

Bond et al. [2004]. Shortly thereafter the first directly imaged exoplanet 2M1207 b

was found around a brown dwarf [Chauvin et al., 2004]. The first (and so far only)

sub-stellar astrometric companion was found in 2013 around DENIS-P J082303.1-

491201 [Sahlmann et al., 2013]. Because these different techniques are all sensitive

to slightly different regions of exoplanetary parameter space, using them in parallel

allows the community to explore the huge diversity of exoplanets.

A key step forward in the field of exoplanetary science was the beginning

of large, wide-coverage (or ‘all-sky’) transit surveys, which surveyed far more stars

than previous more directed searches. Particularly prolific ground-based photo-
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metric surveys have included WASP [Pollacco et al., 2006], the Next Generation

Transit Survey (NGTS) [Wheatley et al., 2018] and HAT/HATNet [Bakos et al.,

2004, 2008]. These ground-based surveys discovered hundreds of exoplanets (and

continue to discover more), paving the way for more extensive analysis of exoplane-

tary demographics and providing the proof of concept for larger space-based transit

searches. Such detections were/are backed up by precision spectrographs such as

ELODIE [Baranne et al., 1996], CORALIE [Queloz et al., 2000] and HARPS [Mayor

et al., 2003], allowing indirect mass-measurements and confirmation of thousands

of fascinating new exoplanetary systems. It should be noted however that given

the discrepancy between data availability (and required brightness) for photometric

and spectroscopic studies, many ‘confirmed’ transiting exoplanets do not yet have

measured masses, and have instead had to be validated through statistical means

[Morton et al., 2016].1 Indeed, only 896 of the known 3759 transiting planets cur-

rently have measured planetary masses.2

The move to Space Telescopes proved to be revolutionary for exoplanet sci-

ence. The CoRoT satellite [Barge et al., 2008; Auvergne et al., 2009], flown between

2007 and 2012, was the first space mission dedicated to exoplanet science, resulting

in 30 confirmed exoplanet discoveries2. However, the true revolution began with

the Kepler Space Telescope [Borucki et al., 2010; Koch et al., 2010], which surveyed

an 100 square degree region of the sky in the vicinity of the Cygnus and Lyra con-

stellations from 2009 to 2013. This was followed by the ecliptic-based K2 mission

between 2013-2018 after the failure of two of the spacecraft’s reaction wheels [How-

ell et al., 2014]. The Kepler Space Telescope verified almost 3000 exoplanets over

the course of the main Kepler and secondary K2 missions, with thousands more

still undergoing follow-up. The extensive exoplanet population revealed by Kepler

completely changed our view of exoplanetary science, revealing that exoplanets were

far more common and in far more unusual configurations than originally thought

(e.g. Borucki et al. [2010]; Howell et al. [2014]; Batalha et al. [2013]; Buchhave et al.

[2012]; Lee [2018]; Thompson et al. [2018]). Unfortunately, with the Kepler satellite

running out of fuel at the end of 2018, NASA officially retired the Kepler space

telescope on 30 October 2018.3 The next chapter of transiting exoplanet science is

1n.b. statistical validation typically consists of ruling out all other ‘false-positive’ signals: as-
trophysical/systematic signals which could mimic an exoplanet transit. Tests include visual or
machine-learning based inspection to rule out obvious stellar activity, telescope systematics or
eclipsing binary stars, high contrast imaging of the surrounding area and spectroscopic follow-up to
rule out background/spectroscopic binaries. Typical automatic validation pipelines require a false
positive probability of ă1% before candidates can be validated as planets [Morton, 2012].

2NASA Exoplanet Archive - https://exoplanetarchive.ipac.caltech.edu; 15 Feb 2022
3https://www.nasa.gov/press-release/nasa-retires-kepler-space-telescope-passes-planet-hunting-

torch
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now beginning, following the launch of the Transiting Exoplanet Survey Satellite

(TESS ) in 2018 [Ricker et al., 2014]. The TESS mission is already extending Ke-

pler’s vision as it performs a nearly all-sky survey looking for transiting exoplanets

around nearby bright stars. Given the importance of TESS as one of the primary

data sources in this research it will be examined in more detail below.

Now, 30 years after the initial exoplanet discovery, over 5000 exoplanets

have been validated, a dramatic increase largely driven by radial velocity searches

until 2013 and dominated by transit surveys ever since. These two main discovery

techniques will be discussed in detail next (alongside brief introductions to the other

main discovery methods), before an overview of current exoplanet knowledge in

Section 1.3.

1.2 Exoplanet Discovery Methods

A wide variety of methods have been used to detect exoplanets, typically based on

variations in the brightness, frequency or timing of light arriving from planetary

hosts. Here the two most important methods used and referred to in this thesis are

discussed in depth (the Transit and Radial Velocity Methods), with brief overviews

given for additional methods in Section 1.2.3. Both the transit and radial velocity

methods are indirect methods of exoplanet detection, relying on measuring the effect

potential exoplanets have on their host stars.

1.2.1 Transit Method

The most successful method of detecting exoplanets thus far is the transit method,

which relies on measuring the characteristic dip in brightness of a star when an

orbiting planet passes in front of it. This is the only method that allows for direct

determination of a planet’s radius, a crucial parameter for the characterisation of

exoplanets.

As shown in Figure 1.1, when a planet passes in front of a star it causes some

of the star’s light to be blocked. This results in a characteristic transit shape from

which important planetary parameters can be determined. At its simplest (assuming

no excess flux from the planet itself and a stellar disk of uniform brightness) this

change in flux (F ) can be interpreted to uncover the planetary radius (RP) as a

function of stellar radius (R˚) using the relation

∆F

F
“
R2

P

R2
˚

(1.1)
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Figure 1.1: Schematic of the transit method for discovering exoplanets. As
a planet passes in front of its host star is causes a characteristic drop
in brightness which can tell us information about the planet’s radius, pe-
riod and inclination. Reproduced with permission from NASA - Source:
https://heasarc.gsfc.nasa.gov/docs/tess/primary-science.html

Note however that determining the true radius of the planet relies on knowledge

of the stellar radius, which must be derived from stellar models. This means that

while the derivation of the flux ratio is model independent, the planet radius is not.

By observing the star over an extended period and analysing the constructed

light-curve for this star, one can also determine such parameters as the period (P ),

semi-major axis (a) and inclination (i) of the planetary orbit. The period is typically

obtained through constructing a Box-Least Squared periodogram [Kovács et al.,

2002] generated from the original (unfolded) transit light-curve, but is simply the

average time between the mid points of two adjacent transits. It is important

to use such a box-shaped period search compared to a generalised Lomb-Scargle

periodogram [Lomb, 1976; Scargle, 1982] typically used for finding stellar variability

periods, as the signal of a transiting planet looks far more like a repeated dip (or

‘box’) in the light-curve instead of a sinusoidal signal which is fitted in a Lomb-

Scargle search. Once the planetary period is known, the semi-major axis of the
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orbit, a, can easily be obtained from Kepler’s third law:

a3

P 2
“
GpM˚ `MPq

4π2
(1.2)

Given that typically M˚ `MP « M˚ and an estimate of the stellar mass can be

gained from its spectral type, the semi-major axis is thus:

a «

ˆ

GM˚

´ P

2π

¯2
˙1{3

(1.3)

Similar to the planetary radius, this is reliant on a single model dependent quantity

- the stellar mass, M˚.

Figure 1.2: Geometry of the Transit Method. Here a denotes the planet’s semi-
major axis, i denotes the planet’s inclination, b the impact parameter, L half the
distance traversed by the planet across the disc of the star, and R˚ and RP the radii
of the star and planet respectively.

Another key observation from the transit light-curve is the transit duration,

Tdur. The length of the transit duration is heavily dependent on the impact param-

eter, b, defined as:

b “
a cos i

R˚
(1.4)

This impact parameter is theoretically directly observable for a planet around a

close enough star, but is often derived from the transit duration itself. Noting that

the length of the transit duration is the total time the planet is even slightly in

front of its star, the distance travelled in front of the star, 2L, can be defined with

reference to Figure 1.2 as:

2L “ 2
a

pR˚ `RPq
2 ´ pbR˚q2 (1.5)
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Finally, assuming that the planet is in a circular orbit (a similar analysis holds for

eccentric planets, just with slightly more complex equations), and defining the angle

traversed while transiting as α “ 2 arcsin L
a , the transit duration is:

Tdur “ P
α

2π
“
P

π
arcsin

L

a
“
P

π
arcsin

a

pR˚ `RPq
2 ´ pbR˚q2

a
(1.6)

With knowledge of the planetary and stellar radii, period, and semi-major axis, one

can easily obtain the impact parameter, and hence the orbital inclination. This

parameter is crucial to determining an exoplanet’s mass when coupled with radial

velocity measurements, as discussed below.

The above equations show the power of the transit method for character-

isation of exoplanets. What is particularly valuable about the transit method is

that both radius and inclination are determined independent of any models of the

exoplanet (only requiring knowledge of the stellar mass and radius), giving key mea-

surements for these fundamental parameters. Nonetheless, the transit method is not

without its caveats. Notably, using the transit method alone cannot give a mass

for the exoplanet (unless notable transit timing variations are present - see below),

so confirming that a signal is planetary in nature also requires follow-up radial ve-

locity measurements [Lovis and Fischer, 2010]. Furthermore, the transit shape is

typically distorted by limb-darkening of the star, since stars are not in fact of uni-

form brightness across their surfaces, and instead become increasingly darker and

redder towards their edges [Haswell, 2010]. Additional care is needed to differentiate

true planetary signals from astrophysical mimics such as blended eclipsing binaries,

grazing eclipsing binaries and transits of planet-sized stars (such as brown or white

dwarfs).

The probability of a planet transiting in the first place is also very dependent

on the geometry of the system. It can be shown (e.g. Haswell [2010]) that assuming

random orbit orientation the probability of a planet on a circular orbit transiting is

Ptrans “
R˚ `RP

a
«
R˚
a

(1.7)

This anti-correlation between transit probability and orbital semi-major axis, cou-

pled with the fact that short-period planets will orbit more times over a given

observation period (which is especially important for short-term observation win-

dows such as the month-long observations of TESS ) leads to the transit method

being highly biased towards finding planets with close-in orbits. However, recent

improvements to the transit method have included detecting longer-period planets
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through individual ‘monotransits’ [Osborn et al., 2016] and unseen planets using

transit timing variations [e.g. Leleu et al., 2021].

Key transiting exoplanet discovery instruments can be broken into two cate-

gories: ground-based and space-based. Ground-based observatories were crucial to

confirming the effectiveness of the transit technique in early exoplanet discoveries,

and continue to provide new exoplanet discoveries alongside important follow-up

of candidates from larger space-based missions. First generation instruments in-

clude TReS [Alonso et al., 2004], HAT [Bakos et al., 2002], XO [McCullough et al.,

2005], WASP [Pollacco et al., 2006], HAT-S [Bakos et al., 2008], KELT [Pepper

et al., 2007] and MASCARA [Talens et al., 2017]. Of these, WASP (the Wide-Angle

Search for Planets) was most prolific, detecting over 150 planets and paving the

way for modern all-sky planet searches. More recent ground-based surveys such as

MEarth [Nutzman and Charbonneau, 2008; Berta et al., 2012], TRAPPIST [Jehin

et al., 2011] and NGTS [Wheatley et al., 2013] have built on these successes by

implementing key improvements such as better removal of systematic noise, faster

cadence observations, improved tracking and multi-telescope observations in order

to chase smaller planets.

However, given the challenges presented by the atmosphere and limited time-

window of observing transiting planets from the ground, in the 21st Century most

transiting planet discovery has shifted to space. CoRoT, or the Convection Rotation

et Transits mission [Baglin et al., 2006] was the first space-based mission designed

to detect transiting planets, eventually finding 30 confirmed exoplanets over its six

year mission, including the first transiting Super Earth CoRoT-7b [Léger et al.,

2009]. This was followed by the paradigm-shifting Kepler satellite, harbouring both

the initial Kepler [Borucki et al., 2010] and backup K2 missions [Howell et al.,

2014]. These missions resulted in over 3000 confirmed exoplanets between them4,

with further confirmation of candidates still ongoing. Further discussion of the

Kepler mission and satellite can be found in 6.2.1. However, because many of the

Kepler/K2 candidates found were around stars from a relatively small area of sky

and too dim for significant follow-up, the following TESS mission [Ricker et al.,

2014] was designed to target brighter stars across almost the entire night sky (and is

discussed further in Section 1.5.2). Several new and near-future exoplanet surveys

will expand the discovery and characterisation of transiting exoplanets even further,

including the James Webb Space Telescope (JWST - Gardner et al. [2006]) which

will aid in-depth analysis of exoplanet atmospheres, CHEOPS [Broeg et al., 2013]

which aims to precisely characterise the bulk composition of exoplanets and PLATO

4https://exoplanetarchive.ipac.caltech.edu/docs/counts detail.html
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[Rauer et al., 2014] which will discover crucial new exoplanets, pushing down in size

towards Earth twins. These missions will ensure that the transit method stays at

the forefront of exoplanetary detection for many years to come.

Ephemerides and Transit Timing Variations

Exoplanet ephemerides are equations for calculating the expected transit time of

each exoplanet in an exoplanetary system. Knowing the future transit times of an

exoplanet is crucial to in-depth characterisation of such objects, as to fully constrain

the mass, orbit, composition and atmosphere for an individual exoplanet one typ-

ically requires multiple follow-up measurements from several different instruments.

Under normal circumstances, exoplanets should obey linear ephemerides, with the

time of the next transit, TN , following the simple equation

TN “ T0 `NP (1.8)

where T0 is the initial transit time (typically the first recorded time of transit for a

given transiting exoplanet, recorded from the centre of the transit5), N the number

of orbits since the initial transit and P is the planet’s orbital period. Hence knowing

the time of an arbitrary transit is theoretically as simple as precisely knowing one

transit time and the period of the exoplanet’s orbit. However, because of the im-

perfect precision of these parameters and the multiplicative term in the ephemeris

equation, the more time that passes since the last observed transit, the more im-

precise the time of future transits becomes. For example, if the orbital period for

a P “ 10 day transiting exoplanet is only known to a precision of 0.001 days (see

for example K2-167 from Mayo et al. [2018]), the 3σ error in its expected transit

time will be over a day within just 10 years’ time. This poses a serious problem for

future characterisation, where instruments must juggle multiple important measure-

ments in a single night, or make the most of their limited observing time. Indeed

high-profile observatories such as JWST prefer timing precision of less than 30 min

in order to maximise efficient follow-up. However because of the lead-time in the

discovery and publication of new planets (and the vast array of previously know

planets), it is often years between initial discovery and more in-depth follow-up.

Hence to maintain up-to-date ephemerides for important exoplanets it is imperative

to revisit known planets years after their discovery, ideally prioritising those most

amenable to future follow-up.

5Note that in the case of asymmetric transits the true centre of the transit can be shifted, so
obtaining T0 needs to be completed more carefully, such as by fitting a well-defined transit model
or by fitting the transit ephemeris equation to multiple transits and evaluating T0 from there.
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However, some planets have been found which do not appear to obey linear

ephemerides. Instead, transits occur before and after the expected transit time,

often evolving in time in a sinusoidal manner. This phenomenon is called Transit

Timing Variations (TTVs), which are typically caused by changes in a planet’s

apparent period due to the gravitational pull of one or more other planets in the

system [Holman and Murray, 2005; Lithwick et al., 2012]. The amplitude and period

of these timing variations depend on the masses, periods, semi-major axes and

eccentricities of the planetary orbits. For example, the presence of an inner planet

in a multi-planet system effectively shifts the barycentre of the outer planet’s orbit

to the barycentre of inner-planet/star barycentre, which results in a new alignment

where the outer planet transits slightly earlier or later than expected. For circular

orbits, this results in TTV amplitudes of the outer planet (TTV2) equal to

TTV2 «
P2a1µ1 sinr2πpt´ Tcq{P1s

2πa2
(1.9)

where subscripts 1 and 2 refer to the inner and outer planets respectively and µ1 “

M1{MTotal « M1{M˚, the reduced mass of the inner planet. If the internal planet

instead has an eccentric orbit, this effect can be bigger still. In either case, the

magnitude of this effect scales with the mass of the perturbing (inner) planet, with

more massive planets generating larger TTVs.

Meanwhile, if the inner planet is on a short circular orbit and the outer

planet is on a wider, eccentric orbit, the gravitational perturbation of the outer

planet causes a slight increase in the period of the orbit, with a magnitude that

varies according to the instantaneous distance of the two planets from each other.

The maximum amplitude of this TTV is given by the equation

TTV1 « µ2e2

ˆ

a1
r2

˙2

P2 (1.10)

where µ2 «M2{M˚ and r2 is the distance of the outer planet from the star. A full

derivation of all of equations 1.9 and 1.10 are given in Haswell [2010]. Both of these

above effects typically result in TTVs on the order of seconds.

If however the planets are in mean motion orbital resonance (where plane-

tary periods are integer multiples of each other), much larger TTV amplitudes can

be observed, on the order of minutes for orbital periods of a few days [Agol et al.,

2005]. This occurs because when the resonant planets have successive conjuctions

at the same section (or ‘longitude’) of the orbit, the strong gravitational interac-

tions in these alignments increase the eccentricity of the lighter planet and change
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its semi-major axis and period. This change in period also changes its longitude of

conjunction, up to about 180o from its initial longitude, at which point the eccen-

tricity begins to decrease again, setting up a ‘libration cycle’. Numerical simulations

performed by Agol et al. [2005] show that a good fit for the maximum amplitude of

this effect is

TTV2 «
P2

4.5j

M1

M1 `M2
(1.11)

where j is the resonance order (where j+1 gives the resonance number; i.e. j =

1 implies a resonance of 2:1) and subscripts 1 and 2 represent the perturbing and

transiting planets respectively. The corresponding period of this libration cycle is

given by

Plib « 0.5j´4{3µ
´2{3
2 P2 (1.12)

Fitting these TTVs allows for the masses of planets in multi-planet system

to be found independently, giving confirmation of exoplanets without having to rely

on typical radial velocity observations. This was first achieved in high-precision

photometric data from the Kepler mission [Mazeh et al., 2013]. Careful modelling

of such high precision TTVs can also reveal the presence of previously unseen or

non-transiting exoplanets in the same system as known exoplanets, as was first

discovered in the Kepler-19 system [Ballard et al., 2011]. Extended monitoring of

known exoplanet systems can thus not only aid future characterisation methods,

but also may lead to additional planetary discoveries. Furthermore, the increased

precision of new and future instruments may allow the community t probe smaller

TTV signals set up by other astrophysical bodies such as Exomoons [Kipping, 2009]

or Exotrojans [Ford and Holman, 2007].

1.2.2 Radial Velocity

The radial velocity method is the second most prolific method of planetary detection

and the best way to determine the mass of exoplanets to date. This method relies

on detecting the Doppler shift of the spectral lines of a planet’s host star as it moves

towards and away from the observer due to its orbit around the barycentre of the

star-planet system. This ‘wobble’ signature gives information about the masses and

periods of any planets that exist around the host star.

In order to convert Doppler shifts of the star’s spectral lines into a radial

velocity (VRV ), one can simply use the Doppler equation

VRV “ c
λobs ´ λrest

λrest
(1.13)
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with the variation in this radial velocity over time for a star executing reflex motion

due to a single planet following the form

VRV “ VRV,0 `Krcospvptq ` ωOP q ` e cosωOP s (1.14)

where VRV,0 is the average radial velocity of the star with respect to Earth, K is the

the radial velocity semi-amplitude, the ‘true anomaly’, vptq, is the angular distance

of the planet from its pericentre at any given time, ωOP measures the orientation

of the pericentre with respect to the intersection of the orbit with the plane of the

observer and e denotes the planet’s eccentricity. The true anomaly, vptq, can be

better understood by considering that the orbital path is described as an ellipse of

the form

rptq “
ap1´ e2q

1` e cos vptq
(1.15)

where a is the semi-major amplitude of the star from its barycentre and e is the

planet’s eccentricity. As the planet traverses this ellipse, the angle of the planet

from its pericentre traces a path accroding to

tan
vptq

2
“

ˆ

1` e

1´ e

˙1{2

tan
Eptq

2
(1.16)

as shown by [Perryman, 2018], where Eptq is the eccentric anomaly, which can be

found by numerically solving Kepler’s equation:

Eptq ´ e sinEptq “ 2πpt´ T0q{P (1.17)

Meanwhile the radial velocity semi-amplitude K is given by

K “

ˆ

2πG

P

˙1{3 MP sin i

pMP `M˚q
2{3
?

1´ e2
(1.18)

where P the planetary period, i is the planets’ orbital inclination, e the orbital

eccentricity, and MP and M˚ denote the planetary and stellar masses respectively.

Given that P , e and a can be determined from the shape of the radial velocity curve

itself, fitting the observed radial velocity measurements to the radial velocity equa-

tion and thus measuring the radial velocity amplitude can give a measurement for

the planetary mass as a function of inclination and the stellar mass, i.e. MP sin i
pMP`M˚q2{3

.

If this is coupled with the inclination determined from the transit method and mod-

elled stellar masses, one can in turn gain the true mass of the system. Typical

magnitudes of these radial velocity amplitudes are on the order of 10s of m/s for

12



giant planets, ă1m/s for super-Earths and Neptunes, and «10cm/s for Earth-like

planets [Haswell, 2010].

The first exoplanet discovered via the radial velocity method was also the

first exoplanet discovered around an sun-like star: 51 Pegasi b [Mayor and Queloz,

1995]. Since then over 900 exoplanets have been discovered via the radial velocity

method,6 and the method remains a crucial part of the confirmation of transiting

exoplanet discoveries [Lovis and Fischer, 2010]

Key radial velocity instruments include CORAVEL [Baranne et al., 1979],

ELODIE [Baranne et al., 1996], SOPHIE [Bouchy et al., 2009], CORALIE [Queloz

et al., 2000] and HARPS [Mayor et al., 2003]. HARPS has achieved precision as

low as 0.2-0.5m/s [Lovis and Fischer, 2010], putting the detection of super-Earths

and Neptunes within reach. Recently built and future instruments intend to push

this precision limit even further, with ESPRESSO capable of ă10cm/s precision,

and CODEX aiming as low as 1cm/s precision [Lovis and Fischer, 2010]. It is thus

clear that like the transit method, the radial velocity method has planned technolo-

gies in place to probe increasingly small exoplanets as time progresses. However,

measurements at such precision are also challenged by the inherent stellar activity

of exoplanetary host stars, as discussed further in section 1.8.

1.2.3 Other methods

Astrometry

Similar to the radial velocity technique, the astrometric method of exoplanet discov-

ery relies upon measuring the perturbation or ‘wobble’ of a host star caused by the

presence of an orbiting planet [Perryman, 2018]. In the case of astrometry however,

this is measured across the plane of the sky, rather than in the line of sight for radial

velocity measurements. The path of the star across the sky follows an ellipse with

a semi-major axis, as, of

as “
MP

M˚ `MP
a «

MP

M˚

a (1.19)

where a is the semi-major axis of the planetary orbit. It is this semi-major axis

which is the observable astrometric signature of the planet in astrometric detection,

defined as

α “

ˆ

MP

M˚

˙

´ a

1au

¯

ˆ

d

1pc

˙´1

arcsec, (1.20)

where d is the distance to the star in parsecs. As is clear from the equation, this

technique is most sensitive to nearby, large mass planets in long-period orbits. How-

6https://exoplanetarchive.ipac.caltech.edu/index.html
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ever, because of the distance term in this equation, astrometric detection is highly

dependent on gaining high-precision distance measurements in order to discern the

planetary signature. Indeed even for a star 50 pc from the Earth (e.g. in the rela-

tively close-by Hyades star cluster), a Jupiter-analogue would have an astrometric

signature of only α = 100 µas, and an Earth-analogue only α = 0.06 µas. Hence

the detection of planets with this method requires an astrometric precision of less

than a mas.

Because of these challenges, at the time of writing only one sub-stellar com-

panion has been found using astrometry: a 28MJup object orbiting an L1.5 dwarf

star [Sahlmann et al., 2013]. However, the extreme precision of the recently launched

Gaia satellite (Gaia Collaboration et al. [2016b]; see Section 1.5.1) has the poten-

tial to revolutionise this detection method, with Perryman et al. [2014] estimating

a yield of up to 70,000 1-15MJup planets will be found during the ten year Gaia

mission. While the most recent data releases (e.g. [Gaia Collaboration et al., 2016a,

2018a]) have not yet been quite precise enough to chip away at this yield estimate,

the upcoming Data Release 3 is expected to allow astrometric detection to begin in

earnest.

Direct Imaging

Rather than relying on indirect signatures of a planet from observing the host star

like the other detection methods discussed so far, Direct Imaging aims to image the

planet itself, relying on either the reflected light from the planet or the planet’s own

thermal emission. Seeing the light from a planet itself is a considerable challenge,

given the close angular separation of the planet from its star and the significant

difference between the brightness of the star and planet. However, the discovery of

planets through this method is crucial for discovering planets in very wide orbits

(with periods too long to be reasonably detected via other methods) and for studying

very young exoplanets as they are still forming.

The majority of the light from most directly imaged planets comes from

reflected light. The ratio of planet to star brightness of a planet with semi-major

axis α in reflected light of wavelength λ can be described as

fppα, λq

f˚pλq
“ ppλq

ˆ

RP

a

˙2

gpαq (1.21)

where ppλq is the geometric albedo of the planet and gpαq is a phase-dependent

function [Perryman, 2018]. This ratio is typically exceedingly small, ranging from

approximately 10´9 for a Jupiter-analogue to about 10´10 for an Earth analogue
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when observed from as close as 10pc away. However, the contrast can be optimised

by moving towards near- and mid-infrared wavelengths („0.75-25µm), simultane-

ously reducing the observes brightness of the host star and increasing the brightness

of thermal emission from the planet of interest. This allows contrast ratios to be

improved to on the order of 10´4. Further improvements can be gained by adding

coronagraphs to block the main light from the star and by applying adaptive optics

(AO) technology to contend with the Earth’s atmosphere when observing from the

ground.

Such improvements, linked to the development of key new observatories such

as VLT/SPHERE [Beuzit et al., 2019] and the Gemini Planetary Imager [GPI; Mac-

intosh et al., 2014] have now led to the discovery of 58 directly imaged exoplanets7,

including such key discoveries as a planet around the young debris disk β pic [La-

grange et al., 2009] and the four-planet system around HR 8799 [Marois et al., 2008].

These instruments both operate in the near-infrared region of the electromagnetic

spectrum, with wavelengths on the order of 1µm. The recent launch of the James

Webb Space Telescope (JWST, Gardner et al. [2006]) in December 2021 promises

to expand these discoveries further, with its main instruments most sensitive to

infrared light.

Microlensing

Microlensing is unusual as a detection method in that each discovered planet can

only be observed once, compared to other techniques which benefit from repeated ob-

servations. Microlensing makes use of one of the effects of Einstein’s theory of Gen-

eral Relativity, where massive objects distort space-time and cause electro-magnetic

radiation (or light) to bend around the foreground massive object [Einstein, 1936].

Under the right circumstances this can result in multiple images of a distant object

which are significantly amplified [Perryman, 2018]. As was originally shown by Mao

and Paczyñski [1991], if the foreground object is a star with a planet around it (and

that planet is also in the primary lensing plane), one can resolve a distinct sharp

peak in the resulting light-curve when monitored over the course of the time-varying

alignment change of the background object, lens and observer. Such a light-curve

in shown here in Figure 1.3, showing the discovery of the first planet found via

microlensing, OGLE 2003BLG235/MOA 2003BLG53 b [Bond et al., 2004].

Following Bond et al. [2004]’s initial planetary microlensing discovery, there

have now been over 120 microlensing discoveries,6 mostly from the MOA [Bond

et al., 2001], OGLE [Udalski, 2003] and KMTNet [Kim et al., 2016] observatories.

7https://exoplanetarchive.ipac.caltech.edu/docs/counts detail.html
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Figure 1.3: Example of microlensing light-curve, showing the discovery of OGLE
2003BLG235/MOA 2003BLG53 b. Data from the OGLE instrument is shown in
red and data from MOA is shown in blue. Best-fitting microlensing model is plotted
as a black line, with the unperturbed single-lens model (without the presence of a
planet) over-plotted in cyan. Reproduced from Bond et al. [2004]

Microlensing has proved most sensitive to long-period, low-mass planets, meaning

that it fills a crucial niche in the planetary discovery parameter space which more

prolific methods such as the transit and radial velocity methods fail to populate.

This means that the method is also able to probe planets more similar to those in

our own solar system.
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1.3 Current exoplanet knowledge

1.3.1 Overview of Exoplanet Demographics

Thanks to the wide variety of exoplanet discovery methods discussed above, almost

5000 validated exoplanets have now been discovered, with radii, masses and envi-

ronments far more diverse than those planets in the Solar System. The current

number of planets found via each method (alongside a number of less-common dis-

covery methods) are included shown in Table 1.1, as well as their average sizes and

periods. This vast population of exoplanets is now allowing the exoplanet field to

move towards in-depth characterisation of exoplanetary systems alongside further

discoveries.

Table 1.1: Overview of all Exoplanets discovered as of 23 Feb 2022. All values
retrieved from the Exoplanet Archive. Note that because masses for many transiting
planets are not yet known, the more representative radius measurement is used in the
average size column instead of mass. Of the 4933 validated exoplanets known when
this table was compiled, 3814 exoplanets had measured radii, 2053 had measured
mass, and only 949 had both. The one astrometric “planet” from the Exoplanet
archive is retained here for completeness, but may be a brown dwarf given its large
mass.

Discovery Method Number of Planets Median Size Median Period

Astrometry 1 28.5MJup 0.675 yrs
Direct Imaging 58 11.3MJup 327 yrs
Radial Velocity 915 1.05MJup 0.893 yrs
Transit Method 3778 0.210RJup 8.69 days

Microlensing 124 0.640MJup 7.30 yrs
Transit timing variations 22 0.178MJup 20.3 days
Eclipse timing variations 16 6.18MJup 10.0 yrs
Pulsar timing variations 7 0.0135MJup 45.9 days

Pulsation timing variations 2 7.50MJup 2.75 yrs
Orbital brightness modulations 9 1.25MJup 0.812 days

Disc Kinematics 1 2.50MJup Unknown

From the earliest exoplanet discoveries like 51 Pegasi b, a Jupiter-sized planet

orbiting within the equivalent orbit of Mercury, it quickly became clear that many

exoplanetary systems are quite unlike those planets in our own system. Indeed

because of the difficulty of detecting Earth-sized and/or long-period exoplanets, the

vast majority of currently known exoplanets have no Solar-system analogue when

both size and period are considered. However, many of the discovered exoplanets

do have masses and radii similar to those in the Solar system, so in order to keep

track of different types of new exoplanets, the exoplanet community has defined
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Table 1.2: Approximate exoplanet size categories. Based on radius and mass defini-
tions proposed by Borucki et al. [2011] and Stevens and Gaudi [2013] respectively.
For reference, Jupiter itself is 11.2RC and 318MC.

Planet Size Radius Mass

Earth-sized ă 1.25RC 0.1´ 2MC

Super-Earths 1.25´ 2RC 2´ 10MC

Neptune-sized 2´ 6RC 10´ 100MC

Jupiter-sized 6´ 15RC 100´ 1000MC

approximate radius and mass bins, as presented in Table 1.2. For the purpose of

this research the radius limits are taken from those from Borucki et al. [2011] and

the mass limits are based on those proposed by Stevens and Gaudi [2013].

The overall distribution of exoplanets bears some interesting features, as ex-

plored in Figures 1.4 and 1.5. The mass-period distribution period shown in Figure

1.4 gives the best overview of which areas of the exoplanetary distribution differ-

ent discovery methods are sensitive to, and shows how combining these discovery

methods is crucial to understanding the full extent of exoplanetary demographics.

When coupled with discovery likelihoods the current distribution of planets suggests

that super-Earths and sub-Neptunes account for the majority of all exoplanets [e.g.

Mayor et al., 2011; Howard et al., 2012], especially as large exoplanets around the

most common types of stars (M-dwarfs) appear to be rare [Dressing and Charbon-

neau, 2015].

Meanwhile, plotting radius against period instead (e.g. Figure 1.5) reveals

an interesting paucity of planets in two regions: the first (and larger) for close-in

giant planets (christened the ‘evaporation desert’) and the second for small planets

with periods ă 100 days and radii between 1.5-2.0RC. The secondary region of de-

creased planetary occurrence for small planets was originally christened the ‘Fulton

Gap’, after the original discoverer [Fulton et al., 2017], however has more recently

been renamed the ‘radius/photoevaporation valley’ as more planets have been found

in this comparatively uncommon region of exoplanetary discovery space. Both of

these regions are currently thought to be caused by atmospheric mass loss, with the

presence of two different regions explained by there being two different mechanisms

to achieve unstable mass-loss. These mechanisms are discussed in detail in Owen

[2019], but in brief the evaporation desert is thought to be caused by rapid atmo-

spheric loss of large exoplanets when their atmospheric radius dominates over the

planet’s radius (meaning that excess high-energy flux overcomes the gravitational

force holding the atmosphere to the planet), with the photoevaporation continuing

until these energies once again balance. Meanwhile, the evaporation valley sits be-
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Figure 1.4: Mass-Period distribution for confirmed exoplanets with known masses.
Mass, period and discovery method data retrieved from the Exoplanet Archive on
22nd Feb 2022.

tween those exoplanets with sufficient core mass to retain their atmospheres in the

presence of high-energy fluxes, and those with sufficiently light cores to allow their

atmospheres to be completely stripped (or at least reach a small enough atmospheric

mass that it is stable to mass-loss). In this way, this valley is currently thought to

represent the transition between rocky/terrestrial planets [e.g. Rogers, 2015] and

planets with extended atmospheres [e.g. Wolfgang and Lopez, 2015], with planets in

the valley still undergoing the loss of their atmosphere via photoevaporation [Owen,

2019].

Finally, although it is comparatively rare for exoplanets to have both pre-

cisely measured masses and radii, mass-radius diagrams for those rare systems (such

as those shown in Figure 1.6) give insight into the potential composition of exoplan-

ets, as discussed in section 1.3.3. Filling in this distribution further is one of the

key goals of modern exoplanetary science, as it will give much greater clarity to

the formation and evolution of exoplanets. Nonetheless, these general demograph-

ics are already allowing explanations for planetary evolution and composition to be

devised, as discussed next.
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Figure 1.5: Radius-Period distribution for small exoplanets, showing the planetary
occurrence rate corrected for observational bias in colour. The location of the Sub-
Neptune desert and radius/photoevaporation valley are shown in blue, with planets
studied in the California Kepler Survey [Petigura et al., 2017] shown as black points.
Reproduced from [Owen, 2019].

1.3.2 Formation and Evolution

Planets begin their lives in clouds of dust and gas surrounding newly formed stars.

Stars typically form within nebulae, in dense molecular clouds consisting of mostly

hydrogen. When a portion of this cloud becomes dense enough, it begins to col-

lapse under its own gravity, eventually ending up as a protostar fusing hydrogen to

helium and spinning with the solar nebula’s net angular momentum. This rotation,

coupled with the law of conservation of momentum, causes the remaining cloud of

dust and gas around the protostar to flatten out into the protoplanetary disk, typ-

ically containing a few percent of the system’s mass [Herbig, 1962]. It is in these

protoplanetary discs that planet formation can begin in earnest.

There are currently two competing theories for how planets form in these

discs: gravitational instability [Boss, 1997] and core accretion [Safronov, 1972; Lis-

sauer, 1993; Pollack et al., 1996; Matsuo et al., 2007]. The gravitational instability

theory proposes that planets form from the breakup of the protoplanetary disc due

to gravitational instabilities in the disc forming self-gravitating clumps of gas, which
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eventually evolve into planets. This model relies heavily on the thermodynamic state

of the disk allowing disk fragmentation to occur alongside a disc cooling timescale

comparable to the local disc orbital period [Boss, 1997]. Such a method is partic-

ularly good at explaining the formation of massive planets at wide orbits, such as

Jupiter and Saturn in our own solar system [Dodson-Robinson et al., 2009]. How-

ever, such exoplanets are rarely seen in current exoplanet discoveries (see Chauvin

et al. [2015]; Lannier et al. [2016]).

The more commonly accepted model of exoplanetary formation (and that

which is more effective at forming close-in exoplanets) is the core accretion method

[Safronov, 1972; Lissauer, 1993; Pollack et al., 1996; Matsuo et al., 2007]. Under

this method planets grow from the ground up, beginning as small particles about

1µm in size, and combining via adhesive collisions to mm-sized particles. The rate

of growth in this regime is governed by aerodynamic considerations and material

physics, with particles coalescing much more quickly outside the snow-line than

within it [Kennedy and Kenyon, 2008]. Beyond the mm regime, particles begin to

coalesce into larger m to km-sized planetesimals, which impact and eventually form

terrestrial planets or the rocky cores of gas giants [Lissauer, 1993]. For more massive

cores (over „10 MC), these cores are able to rapidly accrete remaining gas from the

gas disc, growing into gas giants [Pollack et al., 1996]. Such accretion stops when

all remaining gas and dust in the vicinity of the planet has been accreted or blown

away by radiation pressure and activity from the host star. The difference in rate in

grain growth in the early stages helps to explain the terrestrial planet formation in

our own solar system, as planets within the snowline took longer to form, so less gas

was left in the protoplanetary disc by the time they were large enough to accrete

excess gas for their atmospheres.

However, while the core accretion method aligns much more with the ob-

served population of exoplanets, the multitude of extremely close-in exoplanets like

Hot-Jupiters and very short-period terrestrial planets still poses problems to this

formation pathway, especially for smaller stars like M-dwarfs [e.g. Raymond et al.,

2007; Miguel et al., 2019]. Because of the lack of planet-forming materials at such

radii from the protostar, to form these planets significant planetary building blocks

(or indeed planets themselves) must have migrated inwards at some point during the

early system evolution [Rein, 2012]. Two main migration methods have been pro-

posed to explain this: disc migration or gravitational disruption from another body

in the system (typically another planet) after the disc has dissipated. In disc migra-

tion planets move inwards either because Linblad resonances excite spiral density

waves in the gas within the protoplanetary disk and create a torque-mismatch caus-
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ing planet to lose angular momentum (Type I migration; Ward [1986]), or because a

massive planet opens a gap in the gaseous disc and transfers angular momentum to

gas outside the planet, causing the planet to slowly spiral inwards following the ac-

cretion of gas onto the star (Type II migration; Lin and Papaloizou [1986]). Given

the required planetary mass to open a gap in the disc, Type II migration is the

dominant process for large mass planets [Lin and Papaloizou, 1986], while Type I

migration is particularly important for smaller planets (e.g. 0.1MC ăMP ă 10MC;

Ogihara and Ida [2009]; Ormel et al. [2017].

If however the disc has already dissipated (as tends to occur within 10 Myr

or so; Kennedy and Kenyon [2008]), migration can instead occur via exchanging

angular momentum with another body in the system. For example, in a mechanism

called the Kozai-Lidov effect [Kozai, 1962; Lidov, 1962], a massive outer perturber

such as a gas giant or nearby star can cause an inner low-mass planet to librate

between highly eccentric and highly inclined orbits. Should the disrupted planet’s

orbit take it close enough to the star during perihelion, it may exchange angular

momentum with the star via strong tidal forces and gradually circularise at a much

closer orbital radius [Rodŕıguez et al., 2011].

These migration pathways can be tested observationally, as disk migration

would tend to dampen orbits, resulting in circular, ‘well-behaved’, uninclined orbits,

while perturbation from interactions or exchange of angular momentum with another

body in the system would tend to result in highly inclined, eccentric orbits (unless it

was subsequently re-circularised). Common resonances of exoplanet chains around

low-mass stars like TRAPPIST-1 [Luger et al., 2017] and TOI-178 [Leleu et al.,

2021] strongly suggest that convergent migration via resonance capture may also

play a significant part, but observations of more such systems are required before it

can be determined how common this is.

Other important factors affecting the evolution of planets include thermo-

dynamical cooling, tidal interactions with their host stars and atmospheric loss.

Because exoplanets typically form through the collapse of gas and dust in planetary

nebulae, much of their initial energy comes from transformed gravitational energy,

which is particularly significant for gas-giant planets like Jupiter. Due to the ther-

mal expansion properties of gases, the gradual loss of this initial energy through

radiation leads to gradual cooling and contraction of exoplanetry atmospheres, in

turn reducing the radius and luminosity of these planets [Guillot et al., 2014]. The

rate at which exoplanets lose energy in this manner (and hence luminosity, L) can
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be shown (e.g. by Perryman [2018]) to follow a modified Kelvin-Helmholtz relation:

L « η
GM2

Rτ
(1.22)

where τ is the age of the exoplanet, and η is a coefficient that depends on anumber

of complicating factors such as the composition and compressibility of the atmo-

sphere. In isolation then, exoplanets (especially large, gaseous ones) typically cool

and contract as they age. Some extra care is required for planets in close orbits

however, as exoplanet cooling rates also depend on irradiation from their host stars,

and associated atmospheric loss (see below).

Meanwhile, for exoplanets which orbit particularly close to their host stars,

tidal forces can have a significant effect on the long-term evolution of the planet.

Indeed for planets within « 0.2 au tidal effects typically lead to ‘tidal locking’,

where a planet’s rotation period and orbital periods become synchronised, alongside

reducing the orbital eccentricity and semi-major axis, and subsequently heating the

planet through conversion of energy from orbital energy [Perryman, 2018]. These

processes, often referred to as ‘tidal circularisation’, typically occur up to the first

1Gyr of exoplanetary age [Beaugé and Nesvorný, 2012; Barnes, 2017].

As discussed in the previous section, the atmospheres of exoplanets also

evolve over their lifetimes, particularly in the first 100Myr [Owen, 2019]. This is

driven by a range of processes, such as photoevaporation or ‘Jeans escape’ where

high-energy photons increase the temperature of molecules in the atmosphere, and

may reach ‘escape-velocity’ from the atmosphere, hydrodynamic escape through

heating of the planet itself (which can be externally or internally driven), photolytic

dissociation where UV radiation breaks down individual molecules in the atmo-

sphere, or from planetesimal erosion, where giant impacts from large bodies leftover

in the planetary system (such as other planetesimals) can ablate significant portions

of the atmosphere at once [Perryman, 2018]. This atmospheric evolution is reviewed

in greater depth in Perryman [2018] and Owen [2019].

It should be noted however that planet formation and early evolution is

still a rapidly evolving field, with many open questions remaining. Knowledge in

this field is limited by a combination of factors such as a lack of bona-fide young

stars, optically thick protoplanetary discs inhibiting photometric evaluation of early

evolution and the fact that direct imaging is still only able to see structure with

resolution on the order of AU. Hence the more confirmed young exoplanets across

well-constrained ages the community gains, the more can be learnt about this early

evolution.
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1.3.3 Planetary Characterisation and Composition

A significant amount can be learnt about a planet just from a handful of measurable

quantities: the stellar and planetary radii (R˚;RP), planetary mass (MP), orbital

distance (a) and stellar temperature (T˚). For example, due simply to balancing the

incoming flux and outgoing radiation from a planet (assuming re-radiation from the

day-side only and a planetary albedo, A, equal to the fraction of incident light re-

flected by the planet), one can derive a simple estimation of the planet’s equilibrium

temperature:

Tp “

ˆ

πR2
˚T

4
˚ p1´Aq

a2

˙1{4

(1.23)

This temperature can then be used to characterise the planet (e.g. as a

Hot-Jupiter), or to place it in or out of the ‘Habitable Zone’ - defined as the region

around the host star where a planet would be capable of supporting liquid water

[Kasting et al., 1993; Kopparapu et al., 2013]

Meanwhile, the precise masses and radii (and hence densities) from combined

radial velocity and transit surveys can be used to give a first estimate of the com-

position or elemental make-up of such planets (though degeneracies can still exist

between different compositions - see for example Figure 3 of Delrez et al. [2021]).

Because of the great distances to most known exoplanets, most exoplanet interior

characterisation is based on synthetic computer models and equations of state for

typical planetary materials seen in the solar system [e.g. Guillot, 2005; SOTIN et al.,

2007; Fortney et al., 2007; Dressing et al., 2015]. For example, very light planets

such as Jupiter-density planets are thought to be dominated by hydrogen and helium

(with minimal cores), while denser, terrestrial planets are thought to harbour iron

cores and silicate-like mantles like Earth. These models (and associated mass-radius

diagrams) typically align well with observations of Earth-like and gas-giant planets,

except where planets are significantly inflated due to youth and/or XUV irradiation

[e.g. Benatti et al., 2019; Eigmüller et al., 2019]. However, the most common planets

so far found in exoplanet surveys (Super-Earths and sub-Neptunes) actually fall in

parameter spaces that simply do not exist in the solar system (e.g. see Figure 1.6).

Given the importance of these exoplanets and the degeneracies that exist between

structural parameters for such objects, Dorn et al. [2017] have produced a separate

generalised Bayesian inference method for constraining their interiors.

Very recently, a new method of directly probing the interior of exoplanets

has also been discovered, which involves analysing the spectra of old planet-hosting

stars at the end of their lives in the white dwarf phase [e.g. Gaensicke et al., 2019;
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Figure 1.6: Mass-radius diagram of all known exoplanets with mass measurements
more precise than 4σ from the NASA exoplanet archive, as of 22 Sept 2020. Compo-
sition lines from [SOTIN et al., 2007] are overplotted for iron (dark grey), Earth-like
(green), water (blue) and a 5% H/He; 95% water mix in brown. The TOI-431 sys-
tem is shown in orange (planet b) and blue (planet d) as examples of two planets in
a single system which fall either side of the radius-period valley [Fulton et al., 2017].
Solar System planets are shown as black stars, labelled as V, E, U and N for Venus,
Earth, Uranus and Neptune respectively. Reproduced from Osborn et al. [2021]

Cunningham et al., 2022]. Spectra of these white dwarfs have shown evidence of

constituents like H2O and H2S accreting from an orbiting circumstellar gas disk, re-

sembling predictions for the inner atmospheres of icy giant planets. Further observa-

tions of similar white dwarf systems thus may allow direct detection of exoplanetary

materials to support the wider interior composition modelling.
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Another crucial aspect of exoplanet composition is what their atmospheres

are made of. Measuring the composition of exoplanet atmospheres not only offers

clues to the formation and evolution of (especially larger) exoplanets, but also is

suggestive of geophysical and potentially biological processes taking place on the

exoplanet [Madhusudhan, 2019]. In this way the study of atmospheres offers a

way to probe the question of “Are we alone in the Universe?” by searching for

molecular species which could only be produced by life. Determining precisely which

molecules are most likely as biosignatures remains a rich ongoing area of research,

as summarised by Schwieterman et al. [2018].

The continued development of the highly successful transit technique over

the last decade has proved transformational to exploring and understanding these

atmospheres, particularly with the advent of transit spectroscopy [e.g. Charbonneau

et al., 2002]. A transiting exoplanet offers three opportunities to measure its spec-

trum: i) a transmission spectrum during the transit, when light from a host star

passes through the atmosphere of a transiting exoplanet; ii) an emission spectrum

when the planet travels behind the star; and iii) a phase curve as the planet trav-

els between its primary and secondary eclipse (and hence presents different sides

of its atmosphere to an observer). The observed spectra can then be compared

to known patterns of spectral lines (or ‘line lists’) for different chemical species in

order to determine which species are present in the atmosphere (as summarised by

Madhusudhan [2018]). Additional techniques of probing exoplanet atmospheres in-

clude high-resolution Doppler spectroscopy [Brogi et al., 2012; Birkby, 2018] and

direct imaging spectroscopy [e.g. Barman et al., 2011, 2015], which give further

information on the atmospheres of close-in giant exoplanets and young directly im-

aged exoplanets respectively. The combination of these three techniques have now

allowed multiple tens of exoplanets to have their atmospheres measured, providing

initial constraints on the presence of key molecular and atomic species such as H2O,

CO, CH4, CO2, HCN, TiO, VO, Na and K in exoplanetary atmospheres, as well as

shedding light on such features as exoplanetary clouds and atmospheric circulation

[Madhusudhan, 2019].

Measuring these atmospheres has also opened the window to understanding

how exoplanetary atmospheres evolve with time, which may help to explain im-

portant features such as the period-radius gap in exoplanetary demographics first

shown by Owen and Wu [2017]. Exoplanets are thought to lose their atmospheres

by two main mechanisms: ionic pick-up caused by high energy charged particles in

the stellar wind from their host stars [e.g. Khodachenko et al., 2015], or photoe-

vaporation, where thermal heating of the upper layers of the atmosphere caused by
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X-ray of extreme-UV causes hydrodynamic escape of atmospheric materials [Watson

et al., 1981]). The latter is currently thought to be the dominant mechanism, as it

can account for the radius gap by itself [Fujita et al., 2022], but this would be aided

significantly by further observations of exoplanets with known ages either side of

this gap.

Future prospects are bright for continued exoplanet characterisation in the

coming decades, with the recent launch of the James Webb Space Telescope (JWST;

Gardner et al. [2006]) and CHEOPS satellite [Broeg et al., 2013] extending both

the wavelength coverage and sensitivity for both spectroscopic and transit-based

measurements, alongside the upcoming launch of ESA’s PLATO mission which is

expected to dramatically increase the precision of known planetary radii for bright

targets excellent for transit spectroscopy [Rauer et al., 2014].

1.4 Young Exoplanets

1.4.1 Young Exoplanet Opportunities

Despite the wealth of almost 5000 verified exoplanets known today, there are still

many unanswered questions concerning the formation mechanisms and system evo-

lution that has led to the observed distribution of these objects. In particular,

planetary migration, dynamical interactions with nearby stars and atmospheric evo-

lution all can have major effects on the distribution and architecture of the final

exoplanetary population. This is especially important early in a planet’s life (e.g.

ă1Gyr), where phenomena such as accretion [Marley et al., 2007; Manara et al.,

2019], ionising radiation causing atmospheric loss [Baraffe et al., 2003; Owen, 2019]

and dynamical interactions with other forming planetary system bodies [Ida and

Lin, 2010; Schlichting et al., 2015] can significantly change the mass, radius and or-

bital parameters of early exoplanets. Thus while traditional exoplanet studies have

been biased towards older exoplanets due to their relatively quiet host stars, there

is a strong case to be made for the search for younger exoplanets, when planets are

undergoing the majority of their evolution [Adams and Laughlin, 2006; Ida and Lin,

2010; Spiegel and Burrows, 2012; Ida et al., 2013].

Young planets are particularly crucial for testing planetary migration, with

smooth planet migration through the planetary disk currently thought to operate

on very short lifetimes (ă10 Myrs/disk lifetime) [Baruteau et al., 2014] and long-

term high-eccentricity migration taking place up to about 1 Gyr [Chatterjee et al.,

2008]. However in dense environments the situation can be complicated further,

with Parker [2020] conducting simulations of Jupiter-size exoplanets and showing
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that dynamical interactions significantly disrupted the orbits of approximately 20%

of the initial planets even after just 10 Myr, as illustrated in Figure 1.7. In order to

observe these processes directly, it is crucial to build up an observational timeline

of young exoplanets within the ă1 Gyr age bracket. Early discoveries in this area

are already challenging traditional planet formation and migration theories, with

the discovery of the 11 Myr, P = 5.4 day planet K2-33b in Sco-Cen by Mann et al.

[2016b] showing that at least some short-period planets migrate within the first 10

Myr or form in situ.

Figure 1.7: Orbital disruption for Jupiter-sized planets (1MJup; e=0; a=30AU) after
10 Myr in a dense („1000 Mstarpc

´3) star forming region. Reproduced from Parker
(2020)

Another key opportunity offered by young planets is the ability to directly

probe atmospheric loss, either from UV/X-ray irradiation [Owen and Wu, 2017], or

through internal heating [Lopez and Fortney, 2013; Ginzburg et al., 2018; Gupta
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and Schlichting, 2019]. These processes are theorised to shape features in the ma-

ture population such as the sub-Neptune desert and radius valley [see Figure 1.5,

reproduced from Owen, 2019], but the timeline of this evolution is still not fully

constrained. Runaway evaporation may also occur for 2-4 REarth planets, leading

to stripped cores [Armstrong et al., 2020b]. This, coupled with high-eccentricity

migration may help to explain the dearth of close-in giant planets [Owen and Lai,

2018].

However, before these atmospheres are lost, the brightness, low density and

large scale height of many young planets theoretically should be superb for atmo-

spheric characterisation through transmission spectroscopy [Feinstein et al., 2022].

This has been tested already for such young planets as K2-25b, K2-100b and DS

Tuc Ab, but features such as clouds, hazes and dust grains increase atmospheric

opacity and have made these measurements far more challenging, leading to null

detections in the past [e.g. Gaidos et al., 2020b,a; Benatti et al., 2021].

Young exoplanets may also offer the key to one of the key formation mys-

teries in exoplanet science: the formation of super-Earths and sub-Neptunes. Owen

[2020b] showed that various planet formation models predict vastly different en-

tropies at the end of the protoplanetary disc stage, meaning that if formation en-

tropies can be measured, appropriate formation techniques can be assigned. In

order to gain these entropies, precise masses, radii and ages are needed for planets

of ages „20-60 Myr, with mass precision of ă20% [Owen, 2020a]. Such measure-

ments would allow the formation mechanisms for such important young irradiated

planets such as DS Tuc Ab and V1298 Tau b to be obtained. Precise masses will

also help the community to explore the dependency of the planetary mass-radius

relation with the age, which is well-constrained for the older population but largely

unexplored for sub-Gyr systems [Benatti et al., 2019]. Finding the precise masses

of young planets is hence just as important as the initial discovery of these planets.

Discovering exoplanets ă1 Gyr old is thus crucial to directly probe the main

causes of planetary evolution and help to fill a key gap in the community’s knowledge

of exoplanet history.

1.4.2 Groups of young stars

A particularly promising place to look for these young exoplanets is within young

clusters and stellar associations.8 These are groups of stars which formed together

and hence share a common history and similar composition. These commonalities

8Note that the definition of clusters and associations can be a little fluid in astrophysical litera-
ture, so occasionally are merged together or also named ‘moving groups’.
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mean that precise stellar properties can be determined for stars within the groups

[Torres et al., 2006], which in turn provides a significant advantage for precise de-

termination of exoplanet characteristics. Similarly the ages of stars within these

groups are typically very well constrained, which can allow a more detailed timeline

of planetary evolution to be assembled if planets are found within them.

Star clusters are large assemblies of gravitationally bound stars with similar

composition, held together by their own gravity [Carroll and Ostlie, 2017]. These

clusters can be broken down into two main groups: globular clusters and open

clusters. Globular clusters are dense, populous, nearly spherical collections of stars,

often containing some of the oldest stars in the galaxy. Open clusters are smaller,

more irregular assemblies of stars, which are typically much younger than globular

clusters. Open clusters are the most useful type of cluster for exoplanet searches, as

they are far more diffuse than globular clusters. At present, over 1200 open clusters

are known in the Milky Way, but many more are likely to exist [Cantat-Gaudin

et al., 2018].

Stellar associations on the other hand are groups of gravitationally unbound

stars which have a common origin, so still retain a common proper motion across the

sky. These stars typically have similar ages and compositions, and likely resulted

from star clusters which have steadily moved apart and become gravitationally un-

bound [de Zeeuw et al., 1999; Gagné et al., 2018b]. The first stellar associations were

discovered by Victor Ambartsumian (1947), who categorised them in two types –

OB and T – depending whether their most obvious stars were O/B stars or T-

Tauri stars respectively [Ambartsumian, 1947]. Now almost 30 stellar associations

are known, including the Ursa Major moving group and the separate parts of the

larger Upper-Scorpius OB association. [Gagné et al., 2018b]. The relatively diffuse

nature of stellar associations compared to similarly young star clusters makes them

far more suited to study with TESS given the relatively large pixels of the satellite

[angular resolution „21”, Vanderspek et al., 2018].

Traditionally stellar associations and open clusters have been discovered from

bright and more obvious stellar types, however by considering the Initial Mass Func-

tion for stars (Salpeter [1955] to Chabrier [2003]) it is expected that these massive

stars should be associated with large numbers of less-massive stars. Determina-

tion of these lower-mass members is however made considerably more difficult given

the lower-precision galactic position and velocity measurements for these naturally

dimmer stars. Recent missions such as Hipparcos and the all-sky Gaia Mission (de-

scribed in more detail below) have begun to combat this problem, collecting very

high precision measurements of stars down to magnitude 20. This should pave the
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way for both significantly expanding the membership lists of known stellar clus-

ters and associations, as well as potentially discovering new ones. New groups of

stars dominated by brighter F to M-type stars would be particularly beneficial for

exoplanetary science, especially given the prospects of follow-up from TESS.

The most extensive census of ‘bona-fide’ members of these stellar associations

was assembled by Gagné et al. [2018b] in the development of their BANYAN Σ

Bayesian membership tool, but has recently been further expanded by works such

as Gagné et al. [2018c] and Esplin and Luhman [2019] thanks to the release of Gaia

DR2 [Gaia Collaboration et al., 2018a]. The unprecedented astrometric precision

offered by the second data release from the Gaia satellite [Gaia Collaboration et al.,

2016b, 2018a] has also allowed extensive membership lists to be built for all known

open clusters [e.g. see Cantat-Gaudin et al., 2018], as well as revealing a wide

array of associated ‘stellar streams’ [Kounkel and Covey, 2019]. Bouma et al. [2019]

recently assembled many of these larger membership lists into the extensive CDIPS

catalogue of young stars in clusters and associations (of which the BANYAN sample

is a subset) by considering a wide array of sources in the literature. For the initial

design of the pipeline constructed in this work (and described in Section 2.6) the

homogeneous BANYAN selection criteria focused solely on stellar associations was

preferred, however the full CDIPS target list was used to choose stars from the first

year of the TESS mission in Chapter 5. The methods used to assemble such lists

are described in section 2.1.

1.4.3 Stellar Activity

Unfortunately the host stars of young exoplanets provide significant challenges for

discovery due to their typically increased activity, rotation rates and relative prox-

imity to neighbouring stars [e.g. Koeltzsch et al., 2009; Sergison, 2015; Rivilla et al.,

2015; Mascareño et al., 2016; Briceno et al., 2019]. Most stellar activity is set up

by the complex interplay between convection and magnetic fields of the stars [Cegla

et al., 2019]. The main stellar features that cause problems for exoplanetary sur-

veys are surface granulation, rotating star spots, convection-induced pulsations and

flares. Surface granulation arises from hot bright bubbles of gas rising to the sur-

face which then cool and fall back down into the inner regions of the star at the

cooler edges of each convection cell [Cegla et al., 2019]. This sets up a patchwork of

small lighter and darker regions on the majority of the star (e.g. see bottom right,

Figure 1.8), which vary in brightness and net red/blue shift when averaged across

the whole stellar surface. If however there is a concentration of magnetic flux in

a specific region of a star, this can act to inhibit convection at this point, setting
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up a large darker spot on the surface of the star [Biermann, 1941] (e.g. see top

right, Figure 1.8). This is what is referred to as a star spot. As a star rotates and

stellar spots move across the surface of the star, the observed average brightness

of the star varies, often with significant amplitude in young stars (e.g. see Figure

1.9). Similarly the observed radial velocity will change (see Figure 1.10) as light is

blocked from the blue-shifted side of a rotating star coming towards the observer and

then blocked from the red-shifted side moving away from the observer. Particularly

active stars such as young stars and/or fast rotators often harbour many star-spots,

which can set up very complex patterns in observed photometry and spectroscopy.

A closely related phenomenon to star spots are faculae and plages, which are bright

spots/regions on the solar photosphere that are produced by concentrations of mag-

netic field lines [Solanki et al., 2006], and have the opposite effect to the dark star

spots. These are pictured as the brighter regions of the star shown in Figure 1.8.

Regions of intense magnetic flux can also result in stellar flares (e.g. see left of

Figure 1.8), when the reconnection of magnetic field lines causes an intense release

of electromagnetic radiation [Benz and Güdel, 2010]. Typically these are short in

duration but can result in dramatic brightening of the observed star. Finally, con-

vection within the star also sets up pressure-mode oscillations, which can change the

shape of the star with time. This effect typically dominates over stellar granulation,

but is far less of an effect than star spots for young stars [Cegla, 2020].

The combination of all of these phenomena can result in periodic stellar

variability that can be similar in period but much larger in amplitude than planetary

signals around these stars [Armstrong et al., 2015; Cody et al., 2018]. Furthermore,

the increased rotation rates and corresponding increased magnetic activity of such

young stars can result in swiftly evolving stellar activity signals (especially from

the changing geometry of large star-spots), making predicting the exact effect of

stellar activity at a given time considerably harder. Such challenges are illustrated

in Figures 1.9 and 1.10 in real photometric and radial velocity time-series data

respectively.

In photometric transit searches, granulation can often be handled by bin-

ning/averaging over the 5-10min granulation evolution timescale, and the short-

duration intense brightening caused by stellar flares can often be easily found and

removed before transit searches. This being the case, the main stellar activity nui-

sance signals are caused by stellar pulsations and evolving star spots, alongside

additional non-activity types of young star variability (e.g. dust and gas in the way

of the planets and other variability modes). In order to discover new young exo-

planets, it is imperative to dissociate true transit signals from this stellar activity
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Figure 1.8: Overview of real stellar activity observed on the Sun, illustrating the
main stellar features which can mimic or obscure signals of exoplanets in photometric
and spectroscopic planet searches. Left: Example of stellar flare; Top right: Stellar
starspot; Bottom right: Granulation on the surface of the sun. Images reproduced
with permission from NASA, SDO and the Big Bear Solar Observatory.

and variability. While instrumental trends are commonly removed using techniques

like cotrending basis vectors [Thompson et al., 2016a], spacecraft pointing-based

decorrelation [Vanderburg and Johnson, 2014; Aigrain et al., 2016] or subtracting

trends shared by simultaneously observed nearby stars [Kovács et al., 2005; Kim

et al., 2009], the problem of dissociating stellar noise from transit signals remains

a challenging one. A large array of different methods have been developed in an

attempt to solve this problem, which are summarised in Section 2.5. New methods

developed in this work to disassociate transiting exoplanetary signals from stellar

activity are then introduced in section 2.6.

As an aside, it is also worth noting that while such stellar activity is chal-

lenging in photometric transit searches, the presence of this activity is perhaps even

more confusing in radial velocity surveys [Saar and Donahue, 1997; Korhonen et al.,

2015]. While stellar granulation and pulsations can result in net radial velocity

shifts on the order of 1 m/s [Dumusque, 2018], the increased star spot activity for

young stars can result in radial velocity shifts of multiple 10 m/s. Although spot

modelling codes such as SOAP [Dumusque et al., 2014] and starry [Luger et al.,

2019] are aiding the community to understand the effect of these spots on both

spectroscopic and photometric observations, the greatly increased stellar activity of

young stars severely hampers radial velocity searches and follow-up, meaning that
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Figure 1.9: Example of challenging stellar activity in photometric light-curves from
TESS. The upper panel, HD 57723, illustrates pulsation-like stellar variability, while
the lower panel, HIP 32235, shows an example of the photometric signal from evolv-
ing star spots.

the masses of most young exoplanets are very poorly constrained. Indeed the first

mass measurement of an exoplanet from a young open cluster (K2-100 b) was only

achieved in 2019 [Barragán et al., 2019b], using techniques similar to the PYANETI

code [Barragán et al., 2019a], where activity indicators are used to constrain the

variability of stars before modelling the spectroscopic data with a latent GP model.

Additional techniques to unravel exoplanet radial velocities from such active stars

are ongoing [e.g. Rajpaul et al., 2015; Dumusque, 2018; Cretignier et al., 2020]).

Given the great importance of mass measurements both to the confirmation and
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Figure 1.10: Example of challenging RV stellar activity for the young exoplanet-
harbouring K2-100 system. Reproduced from Barragan et al. (2019). Shown in the
top column of this figure is the Radial Velocity (RV) data (in blue), with the GP
+ planet fit shown in black and the planetary model shown as a red sinusoid. The
lower two columns show two well-known activity indicators, logR’HK (as green dots)
and the bisector inverse slope (BIS) of the radial velocity cross correlation function
(shown as red dots). GP models for all for these two indicators are shown as black
lines. Time is shown on the lower axis, in units of days.

evolutionary analysis of young exoplanets, it is crucial that these stellar activity

mitigation techniques in radial velocity observations develop alongside the photo-

metric detrending techniques.

1.4.4 Currently known young exoplanets

Despite these challenges, a small number of young exoplanets have been found. In

line with early exoplanet discoveries, the first exoplanets around young stars were

found using the radial velocity method, including four Hot Jupiters found in the

Hyades [Sato et al., 2007; Quinn et al., 2014] and Praesepe [Quinn et al., 2012] open

clusters. However, for planets less massive than Hot Jupiters, the radial velocity

method was found to be severely hampered by the inherent stellar variability and

radial velocity jitter of the young host stars [Saar and Donahue, 1997; Paulson et al.,

2004; Brems et al., 2019]. Recent methods such as those employed by Korhonen et al.

[2015]; Rajpaul et al. [2015] have pushed this limit down to approximately Neptune-
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sized planets for some solar-like stars, however Earth-sized planets are currently

still beyond the capabilities of these methods for young active stars. Because of the

intricacies of direct imaging detection (e.g. comparative brightness in the infra-red

of young dusty systems), the vast majority of direct imaging detections have also

been made around young stars, now totalling almost 60 planets. However, because

the youngest planets are typically the brightest in thermal emission, these planets

are typically only up to 50 Myr old, leaving 950 Myr of the first billion years of

exoplanet evolution largely unexplored. Furthermore, direct imaging targets just a

subset of the planetary population (focusing on super-bright nearby star), and finds

only those planets in very wide orbits.

The high photometric precision offered by the launch of the Kepler satellite

proved crucial in increasing this sample of young exoplanets, especially when delib-

erately pointed at young open clusters in the K2 extended mission. Most discoveries

in this era were made by the Zodiacal Exoplanets In Time (ZEIT) team, who have

so far found 18 planets since the beginning of their search in 2016 [e.g. Mann et al.,

2016a; Rizzuto et al., 2017, 2018]. Other interesting discoveries of young exoplanets

in K2 have included K2-33b - a Neptune-sized planet in the 5-10 Myr Upper Scorpius

stellar association [David et al., 2016a], K2-136A c in the „650 Myr Hyades - the

first Neptune-sized planet orbiting a binary system in an open-cluster [Ciardi et al.,

2018], and the closely-packed system of four planets around a „23 Myr pre-main

sequence star in the Taurus-Auriga star forming region [David et al., 2019b,c].

The launch of the TESS is now ushering in a new era of exoplanet discovery,

including the discovery of several new young exoplanets. The first young exoplanets

to be found using TESS were the Neptune sized planets DS Tuc Ab in the 45 Myr

Tucana-Horologium association [Benatti et al., 2019; Newton et al., 2019], and AU

Mic b in the 24 Myr Beta Pictoris Moving Group [Plavchan et al., 2020]. Further

TESS discoveries include the very young („17 Myr) hot Jupiter HIP 67522 [Rizzuto

et al., 2020], a two-planet system in the 400 Myr Ursa Major group [Mann et al.,

2020] and two young planets around field stars of ages 20 and 320 Myrs [Zhou et al.,

2021].

Largely driven by TESS, the pace of young exoplanet discovery has acceler-

ated greatly over the course of this research, especially for young exoplanets around

field stars. Given the importance of these young exoplanets, all those known at the

time of writing are summarised in Tables 1.3 and 1.4, split into those around stars

in clusters/associations and around field stars respectively. With the majority of

these planets having been found since the start of this research (indeed 57% of the

72 currently known young exoplanets were discovered after this research began, with
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Table 1.3: Overview of currently known young transiting exoplanets in clusters and
associations as of August 2022. Note that exoplanets were only included if their
quoted age plus maximum error fell below 1Gyr. All data was retrieved from the
NASA Exoplanet Archive (https://exoplanetarchive.ipac.caltech.edu; retrieved 14
August 2022), except for the most recently validated young exoplanet (TOI-2048),
which was received from its discovery paper [Newton et al., 2022]. At present, only
7 planets in clusters and associations have measured planetary masses, so these were
omitted in this instance.

Planet Name Cluster Stellar age Stellar Mass Planet Radius Period Discovery Ref.
Myr MSun RC Days

AU Mic b Beta-Pic 22`3´3 0.5 4.2 8.463 Plavchan et al. [2020]

AU Mic c Beta-Pic 22`3´3 0.5 2.79 18.859 Gilbert et al. [2022]

DS Tuc A b Tuc-Hor 40`5´5 0.96 5.63 8.139 Benatti et al. [2019]

EPIC 211822797 b Praesepe 790`30´30 0.61 2.2 21.170 Mann et al. [2017a]

HD 63433 b Ursa Major 414`23´23 0.99 2.15 7.108 Mann et al. [2020]

HD 63433 c Ursa Major 414`23´23 0.99 2.67 20.545 Mann et al. [2020]

HD 110082 b MELANGE-1 250`50´70 1.21 3.2 10.183 Tofflemire et al. [2021]

HIP 67522 b Sco-Cen 17`2´2 1.22 10.07 6.960 Rizzuto et al. [2020]

HIP 94235 b AB Dor 118`18´15 1.09 3 7.713 Zhou et al. [2022]

K2-25 b Hyades 730`50´52 0.26 3.44 3.484 Mann et al. [2016a]

K2-33 b Upper Sco 9`1´1 0.56 5.04 5.425 David et al. [2016b]

K2-95 b Praesepe 790`30´30 0.43 3.7 10.135 Mann et al. [2017a]

K2-100 b Praesepe 790`30´30 1.18 3.5 1.674 Mann et al. [2017a]

K2-101 b Praesepe 790`30´30 0.8 2 14.677 Mann et al. [2017a]

K2-102 b Praesepe 790`30´30 0.77 1.3 9.916 Mann et al. [2017a]

K2-103 b Praesepe 790`30´30 0.59 2.2 21.170 Mann et al. [2017a]

K2-104 b Praesepe 790`30´30 0.51 1.9 1.974 Mann et al. [2017a]

K2-136 b Hyades 688`63´63 0.71 0.99 7.975 Mann et al. [2017b]

K2-136 c Hyades 688`63´63 0.71 3.03 17.308 Ciardi et al. [2018]

K2-136 d Hyades 688`63´63 0.71 1.45 25.575 Mann et al. [2017b]

K2-264 b Praesepe 790`30´30 0.471 2.231 5.840 Rizzuto et al. [2018]

K2-264 c Praesepe 790`30´30 0.471 2.668 19.660 Rizzuto et al. [2018]

K2-1627 A b Delta Lyra 38`6´5 0.95 0.338 7.203 Bouma et al. [2022]
Kelt-25 b Theia 449 162 2.18 317.78 4.401 Mart́ınez et al. [2020]

Kepler-970 b MELANGE-3 105`10´10 0.67 2.609 16.737 Barber et al. [2022]

Kepler-1928 b MELANGE-3 105`10´10 1.01 1.992 19.578 Barber et al. [2022]
TOI-451 b Pisces-Eridanus 120 0.95 1.91 1.859 Newton et al. [2021]
TOI-451 c Pisces-Eridanus 120 0.95 3.1 9.193 Newton et al. [2021]
TOI-451 d Pisces-Eridanus 120 0.95 4.07 16.365 Newton et al. [2021]

TOI-837 b IC 2602 35`11´5 1.12 8.631 8.325 Bouma et al. [2020]

TOI-1227 b Lower Cen 11`2´2 0.17 9.572 27.364 Mann et al. [2022]

V1298 Tau b Taurus 23`4´4 1.1 10.22 24.139 David et al. [2019a]

V1298 Tau c Taurus 23`4´4 1.1 5.59 8.250 David et al. [2019c]

V1298 Tau d Taurus 23`4´4 1.1 6.41 12.403 David et al. [2019c]

V1298 Tau e Taurus 23`4´4 1.1 8.74 60 David et al. [2019c]
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Table 1.4: Overview of known young transiting exoplanets around field stars as of
August 2022. Once again, exoplanets were only included if their quoted age plus
maximum error reliably fell below 1Gyr. Note however that the ages of field stars are
generally considered less reliable as their ages are based on less-precise gyrochronol-
ogy and stellar models rather than clusters/associations with well-defined ages (as
can be seen from the larger errors in age compared to the cluster/association table).
Because of this, planets also required an independent age assessment in their liter-
ature to be included here. All data retrieved from the NASA Exoplanet Archive
(https://exoplanetarchive.ipac.caltech.edu; retrieved 14 August 2022).

Planet Name Stellar Age Stellar Mass Planet Radius Planet Mass Period Discovery Ref.
Myr MSun RC MC Days

CoRoT-18 b 600`0´600 0.95 14.684 1099.6918 1.900 Hébrard et al. [2011]

HAT-P-70 b 600`380´200 1.89 20.961 2154.8874 2.744 Zhou et al. [2019]

HATS-58 A b 310`330´200 1.46 12.274 327.3649 4.218 Espinoza et al. [2019]

HATS-67 b 510`240´240 1.44 18.887 460.8535 1.609 Hartman et al. [2019]

HD 73583 b 480`190´190 0.73 2.79 10.2 6.398 Barragán et al. [2022]

HD 73583 c 480`190´190 0.73 2.39 9.7 18.880 Barragán et al. [2022]

K2-233 b 360`490´140 0.80 1.398 - 2.467 David et al. [2018b]

K2-233 c 360`490´140 0.80 1.335 - 7.061 David et al. [2018b]

K2-233 d 360`490´140 0.80 2.64 - 24.366 David et al. [2018b]

K2-284 b 120`640´20 0.63 2.78 - 4.795 David et al. [2018a]

KELT-17 b 650`150´150 1.64 17.094 416.3573 3.080 Zhou et al. [2016]

Kepler-51 b 500`250´250 0.98 6.89 3.69 45.154 Steffen et al. [2013b]

Kepler-51 c 500`250´250 0.98 8.98 4.43 85.313 Steffen et al. [2013b]

Kepler-51 d 500`250´250 0.98 9.46 5.7 130.185 Masuda [2014]

Kepler-78 b 625`150´150 0.83 1.2 1.87 0.355 Sanchis-Ojeda et al. [2013b]

Kepler-411 b 212`31´31 0.87 2.401 25.6 3.005 Wang et al. [2014]

Kepler-411 c 212`31´31 0.87 4.421 26.4 7.834 Morton et al. [2016]

Kepler-411 d 212`31´31 0.87 3.319 15.2 58.020 Sun et al. [2019]

Kepler-462 b 500`460´460 1.59 3 53.9 84.687 Morton et al. [2016]

Kepler-462 c 500`460´460 1.59 4 6 207.620 Masuda and Tamayo [2020]

Qatar-3 b 310`1´1 1.15 12.285 1369.8473 2.508 Alsubai et al. [2017]

Qatar-4 b 170`10´10 0.90 12.720 1939 1.805 Alsubai et al. [2017]

Qatar-5 b 530`4´4 1.13 12.408 1373.0256 2.879 Alsubai et al. [2017]

TOI-251 b 180`140´140 1.04 2.74 317.83 4.938 Zhou et al. [2021]

TOI-942 b 50`30´20 0.88 4.242 16 4.326 Carleo et al. [2021]

TOI-942 c 50`30´20 0.88 4.793 37 10.161 Carleo et al. [2021]

TOI-1268 b 245`135´135 0.96 9.1 96.4 8.158 Dong et al. [2022]

TOI-1431 b 290`320´190 1.90 16.701 991.62463 2.650 Addison et al. [2021]

TOI-1807 b 300`80´80 0.76 1.37 2.57 0.549 Hedges et al. [2021]

TOI-1860 b 133`26´26 0.99 1.31 - 1.066 Giacalone et al. [2022]

TOI-2046 b 450`430´21 1.13 16.141 731.00534 1.497 Kabáth et al. [2022]

TOI-2076 b 204`53´50 0.85 2.5 - 10.356 Hedges et al. [2021]

TOI-2076 c 204`53´50 0.85 3.38 - - Hedges et al. [2021]

TOI-2076 d 204`53´50 0.85 3.16 - - Hedges et al. [2021]

TOI-2260 b 321`96´96 0.99 1.62 - 0.352 Giacalone et al. [2022]

WASP-178 b 430`310´250 1.93 21.745 448.1403 3.345 Hellier et al. [2019]

WASP-189 b 730`130´130 2.03 18.147 632.47853 2.724 Lendl et al. [2020]

38



10 found this year alone), it is clear that it is now possible to find planets across a

wide range of the early evolution of exoplanetary systems. However, considerably

more planets are needed at all ages less than 1 Gyr before reliable statistics can be

generated for each epoch and the full early evolution of exoplanets can be under-

stood. To find these planets the community is now turning to two new satellites

driving the all-sky space telescope revolution: Gaia and TESS.

1.5 The all-sky space telescope revolution

1.5.1 Gaia

The European Space Agency’s (ESA) Gaia Mission [Gaia Collaboration et al.,

2016b] aims at generating a 3D map of the Milky Way by measuring the posi-

tion, parallax and velocities of over a billion stars (and some other astrophysical

objects) within the galaxy. This represents approximately 1% of the entire galactic

stellar population, and promises to provide significantly increased understanding

about the structure, formation and evolution of our galaxy. For stars with mag-

nitudes of approximately 5.7-20, it is anticipated that full astro- and photometric

data will be measured, as well as radial velocities for objects up to 17th magnitude

[Gaia Collaboration et al., 2016a]. The Gaia Spacecraft launched on 19th Decem-

ber 2013, and began its nominal 5-year science operations phase on 25 July 2014.

Situated in a Lissajous-type orbit around L2, the spacecraft itself has two identi-

cal telescopes utilised by three primary instruments (one each for astrometry, high

resolution spectrography in the region 845-72nm and photometry) which share a

common focal plane on a 0.5 x 1.0m CCD array [Gaia Collaboration et al., 2016a].

Initial data from the mission has been made public already in two separate

data releases controlled by the Gaia Data Processing and Analysis Consortium

(DPAC) - DR1 (Gaia Collaboration et al., 2016a) and DR2 (Gaia Collaboration et

al., 2018). DR2 is particularly of note for this research, as it provided positions and

g-magnitudes for 1.7 billion stars, high precision proper motions, parallaxes and

BP-RP colours for over 1.3 billion stars, and even radial velocities for 7 million of

them. Such unprecedented precision over such a large part of our galaxy is already

resulting in more in-depth testing of stellar association membership and is greatly

increasing the number of known members, especially towards later classification

stars.

There are however some important considerations for the use of Gaia data.

First of all, Bailer-Jones et al. [2018] found that simply inverting the measured

parallaxes yielded unreliable distances in some cases, due mostly to the non-linearity
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in the parallax-to-distance transformation and the requirement that distance must

be positive. Furthermore, many Gaia parallaxes have relatively low signal to noise,

especially for dimmer stars or those in more crowded fields. Bailer-Jones instead

provides a Bayesian framework for determining more reliable distances and has

released a catalogue (Vizier catalogue number I/347 ) for these distances for every

star in DR2. It is these distances that are used in this work. On the other end of the

scale, brighter sources (G ă 12) require the removal of the Gaia DR2 proper motion

inertial spin, which is basically the precession set up in the Gaia satellite’s orbit

due to the interaction between its rotation and changing inertial tensor [Lindegren

et al., 2018]. Finally, recent work by groups like Damiani et al. [2019a] and Faherty

et al. [2017] recommend only using stars with signal to noise levels above 10 in

terms of parallax in order to remove stars with poor kinematics. Paying attention

to these considerations improves the quality of the Gaia data used, and improves

the accuracy of any conclusions drawn.

1.5.2 TESS

The Transiting Exoplanet Survey Satellite (TESS ), is a new space-based satellite

searching for transiting exoplanets around nearby bright stars, whose primary aim

is to identify hundreds of transiting planets smaller than Neptune around host stars

bright enough to allow effective characterisation of planetary masses and atmo-

spheres [Ricker et al., 2014]. TESS began science operations on 25 July 2018 [Huang

et al., 2018], and over the course of its 2 year primary mission (ending July 4th 2020)

surveyed ą75% of the sky, broken into 13 sectors in each of the Northern and South-

ern Hemispheres. These pointings are illustrated in Figure 1.11. The observing time

for each star varies by latitude, but ranges between 27.4 days to 1 year. TESS has

four cameras, each with 2048 x 2048 pixel imaging array and a field of view of 24o

yielding an angular resolution of 21 arcseconds [Ricker et al., 2014]. Following the

success of this primary mission, TESS began its extended mission, for which it is

currently in Year 4. In this mission TESS is aiming to cover almost the entire sky,

with Year 3 returning to the Southern Hemisphere and shifted somewhat to cover

gaps in the Year 1 observations, and Year 4 completing a mix of ecliptic latitudes

and half the Northern Hemisphere again. Year 5 will complete the second scan of

the Northern Hemisphere, before beginning another scan of the South.

Two main data products were produced by the TESS primary mission: 2min

cadence light-curves (detrended and raw) and 30min cadence Full-Frame-Images

(FFIs). 2min cadence light-curves are generated by Science Processing and Oper-

ations Center (SPOC) pipeline [Jenkins et al., 2016] for approximately 300,000 of
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Figure 1.11: TESS pointings during the primary mission, in ecliptic (left) and
celestial coordinates (right). Year 1 pointings and shown above and Years 2 pointings
below. Note that the shift of sectors 14-16 and 24-26 in the Northern Hemisphere
was enacted to avoid excessive scattered light contamination from the Earth and
the Moon. Reproduced from https://heasarc.gsfc.nasa.gov/docs/tess/primary.html

the most promising stars per cycle (prioritised by the smallest transiting planets

that can be detected) from the TESS Candidate Target List [CTL, Stassun et al.,

2018, 2019], and are then made accessible to the public via the Mikulski Archive for

Space Telescopes (MAST9). Different methods for extracting 30min-cadence light-

curves from the FFIs are discussed in detail in Section 2.2. In the extended mission

(beginning from Cycle 3 observations), Full Frame Images were updated to a 10min

cadence, with up to 1000 individual targets per sector additionally observed with

20s cadence. By the end of February 2022, TESS had produced 197 confirmed

exoplanets and over 5000 exoplanet candidates.

1.6 Machine Learning

One of the biggest challenges of these all-sky surveys is the large volume of data

which needs to be analysed. Such large volumes make human eyeballing and target-

by-target analysis unwieldy, lending themselves to more automated approaches like

Machine Learning instead. Here a brief introduction to the use of machine learning

in astronomy is given, before a more focused look at variability classification methods

and Self-Organising Maps which are particularly important for this work.

9https://mast.stsci.edu/portal/Mashup/Clients/Mast/Portal.html
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1.6.1 Machine Learning in Astronomy

Over the last two decades machine learning has become increasingly popular among

astronomers, driven by the rapid expansion in data availability from such surveys as

the Sloan Digital Sky Survey [SDSS; York et al., 2000], the Zwicky Transient Facility

[Bellm, 2014] and the current Gaia all-sky survey [Gaia Collaboration et al., 2016b].

Machine learning offers tools and techniques to complete a wide range of analyses

from classification or clustering to regression, dimensionality reduction and outlier

detection. There are two main types of machine learning: ‘supervised’ and ‘unsu-

pervised’. Supervised machine learning relies on pre-classified classes (with known

features) and training data, hence is very useful for classification of data into known

groups (e.g. galaxy classification), but introduces human bias into the analysis. On

the other hand, unsupervised machine learning methods look for patterns and re-

lationships within an unseen dataset, without providing pre-defined labels from a

human expert. Baron [2019] argues that unsupervised machine learning methods are

particularly useful for astronomy as they can uncover new information in existing

datasets and lead to new discoveries.

Supervised methods typically consist of three stages: training, validation and

testing. Under this framework a human user typically splits an input dataset into

a training set, validation set and testing set, each pre-sorted into known groups.

To begin with, model hyper-parameters are set (such as the number of features

used to sort data into different groups), before the model and model parameters

are learnt through application to the training dataset. During the validation stage

the model hyper-parameters are then tuned and optimised according to a set ‘cost-

function’, which defines how well the model is fitting the data. This stage is typically

carried out iteratively (for potentially thousands of iterations of parameters) until

the optimum model performance is reached for the validation dataset. Finally, the

chosen model is tested by applying it to the unseen training dataset in order to check

the final model’s performance compared to the known ground truth. Providing this

testing step is successful, the model can then be applied to completely new datasets,

for example for classifying new light-curves into known variability classes. Common

supervised methods used within astronomy include Support Vector Machines [e.g.

Qu et al., 2003; Pashchenko et al., 2018], Decision Trees/Random Forest methods

[e.g. Breiman, 2001; Ball et al., 2006] and Artificial Neural Networks [e.g. Storrie-

Lombardi et al., 1992; Cantat-Gaudin et al., 2020].

Meanwhile unsupervised machine learning methods are more varied in pro-

cess, encompassing a wide array of different algorithms. This means that they have

found use in applications as varied as studying spectra from asteroids [Rizos et al.,
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2021] to characterising instrumental trends in photometric transit studies [Jenkins

et al., 2010] within astronomy. However because unsupervised algorithms do not

start with pre-labelled groups and may be affected by chosen external parameters,

some caution is needed in analysing the final outputs of these algorithms [Baron,

2019]. Common types of unsupervised machine learning methods in astronomy in-

clude clustering algorithms (e.g. K-means [MacQueen, 1967] and Hierarchical clus-

tering [Ward, 1963]), dimensionality reduction algorithms (e.g. Principal Compo-

nent Analysis [e.g. Deeming, 1964; Bailer-Jones et al., 1998], t-Distributed Stochastic

Neighbour Embedding (tSNE; van der Maaten and Hinton [2008]), Autoencoders

[e.g. Gianniotis et al., 2015; Schawinski et al., 2018] and Self Organising Maps [Ko-

honen, 1982, 2001]) and Anomaly Detection algorithms [e.g. Meusinger et al., 2012;

Giles and Walkowicz, 2019]. A detailed overview of unsupervised methods used in

astronomy can be found in Baron [2019].

Given this wide range of machine learning techniques, a full review of machine

learning applications within astronomy is beyond the scope of this brief introduction.

Instead the reader is directed to recent wider reviews on the subject by Ivezic et al.

[2019] and Baron [2019] or the collection of machine learning tools offered within the

Python-based sci-kit learn package [Pedregosa et al., 2011].10 Of particular interest

to this work however is the challenge of using machine learning to analyse and classify

photometric variability, which is the focus of the remainder of this introduction.

1.6.2 Variability classification

Large-scale stellar variability classification has been a subject of interest since the

first large-scale surveys such as the Hipparcos mission11, Optical Gravitational Lens-

ing Experiment (OGLE12), and All-Sky Automated Survey (ASAS13) began making

traditional human eyeballing untenable. Most of the earliest variability classifiers

focused on supervised methods, labelling distinct variability groups and ‘features’

before applying versions of neural networks [Pojmanski, 2002] or decision trees [Ball

et al., 2006]. Similarly, Debosscher et al. [2007], Sarro et al. [2009] and Debosscher

et al. [2011] built a pipeline based on Gaussian Mixtures and Bayesian networks

to conduct global variability classification (and training) on data from CoRoT [Au-

vergne et al., 2009], OGLE and Kepler Quarter 1. Richards et al. [2011] returned

to the decision-tree (or Random Forest) method to classify stars from OGLE and

Hipparcos, eventually using these as a training set to construct the large Machine-

10https://scikit-learn.org/stable/index.html
11https://www.cosmos.esa.int/web/hipparcos
12http://ogle.astrouw.edu.pl/
13http://www.astrouw.edu.pl/asas/
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learned ASAS Classification Catalogue [MACC Richards et al., 2012]. The versatil-

ity of retraining supervised machine learning methods have also allowed them to be

applied to slightly more unusual types of variability, including for the discovery of

transients in synoptic survey imaging data [Brink et al., 2013], detecting anomalous

light curves in massive astronomical catalogues [Nun et al., 2014] and even on MA-

CHO (MAssive Compact Halo Objects) and LINEAR (LincoIn Near-Earth Asteroid

Research) data Kim and Bailer-Jones [2016].

Unsupervised methods on the other hand allow their algorithms to discover

information and clusters in the data without pre-decided labels or groups. This

can lead to new data groups emerging and is useful for situations in which not all

potential solutions are known. However, these methods are comparatively rare in

stellar classification analyses. One of the earliest applications of such a method was

completed by Eyer and Blake [2005], using an unsupervised Bayesian classifier on

features from Fourier-space to classify variable stars in ASAS data releases 1-2. In

another direction, Valenzuela and Pichara [2018] created a ‘Variability Tree’ which

allowed simultaneous feature generation and variability search to be completed con-

currently on OGLE, MACHO and Kepler data. Others such as Modak et al. [2020]

and Armstrong et al. [2016] have turned to clustering methods instead, allowing

similar variability shapes or light-curves to be placed in similar clusters. This work

introduces a new wider approach, applying Self-Organising Maps (discussed further

in section 1.6.3) for the first time to a dedicated sample of young star data.

More recently, there has been a drive to combine the different benefits pro-

vided by both unsupervised and supervised methods into a single classification. Naul

et al. [2018] for example combined an unsupervised autoencoded recurrent neural

network to find features within their dataset with a supervised random forest to

make the final classifications for optical variable star catalogues. Meanwhile the

large TESS Data for Asteroseismology (T’DA) collaboration is currently working

on a large stellar variability classification pipeline [Audenaert et al., 2021], or ‘meta-

classifier’, which combines the Multiclass Solar-like Oscillation Shape Hunter [mul-

tiSLOSH Hon et al., 2018] neural network, Random Forest General Classification

[RFGC, a hybrid unsupervised Self-Organising Map and Random Forest implemen-

tation developed by Armstrong et al., 2016], Supervised Random Forest Variability

Classifier Using High-resolution Photometry Attributes in TESS Data [SORTING-

HAT Audenaert et al., 2021] and Gradient Boosting General Classification [GBGC

Friedman, 2001] methods. Furthermore, the Gaia mission collaboration applies a

wide variety of classification pipelines depending on the type of variability, with clas-

sifications continuing to be improved with the ongoing mission [Gaia Collaboration
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et al., 2016b, 2018a; Eyer et al., 2019]

However, despite these widespread approaches to general stellar variability

analyses, machine-learning classification of variability in young stars remains in its

comparative infancy. Due to challenges like swiftly evolving and unusually shaped

activity, coupled with a traditional dearth of bona-fide young stars [Gagné et al.,

2018b], most classification of young star light-curves has been based on human eye-

balling [e.g. Cody and Hillenbrand, 2018]. However, as young stars exhibit a breadth

and depth of stellar variability often not seen in older populations, there is signifi-

cant value in completing variability classification independent of the older popula-

tion. Thankfully the improved performance and coverage of the new all-sky TESS

and Gaia missions is now beginning to supply the data necessary for young-star

specific analyses, making this a useful time to begin such analyses. Indeed Hedges

et al. [2018] have recently shown the power of young-star specific classification in a

search for for dippers/bursters found from supervised machine learning.

1.6.3 Self-Organising Maps

Self-Organising Maps (SOMs; aka Self-Organizing Maps) are an unsupervised machine-

learning technique originally developed by Kohonen [1982, 2001] which allows for

sorting of data based on topology, or similar shapes. A form of artificial neural-

network birthed from research into neural networks in the human brain [Kohonen,

1982], SOMs use comparisons between the shape of input data and the shape of

individual data-arrays across the SOM structure to group similar input data into

similar regions of a ‘map’. At each iteration the input data is moved towards the

‘pixel’ on the map which contains a data array most similar to its own shape, before

the data-array at that pixel is changed to be an average of all input arrays which

ended up there. As the iterations continue, the area which input data shapes are

compared to is decreased, reducing movement with time and collecting those most

similar together. The final map, usually 1-2 dimensions for clarity, can then be used

to explore groups of similar data or to more simply investigate the evolution of a

complex data-set in a form of dimensionality reduction [Armstrong et al., 2016].

One key advantage of Self-Organising Maps is their unsupervised nature, meaning

that underlying trends and groups in the input data can be explored without the

need for pre-allocated classes of variability or significant knowledge about the target

stars. This makes them particularly useful for young star studies, where new classes

of photometric variability are still being discovered and understood [e.g. Zieba et al.,

2019; Tajiri et al., 2020]. A useful extension to this behaviour is that not only are

those data which are most similar placed closest together in the final map, but those
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which are most different are placed furthest apart [Mostert et al., 2021]. However,

an important proviso with the use of the SOM is that far more importance should

be given to the relative position of the analysed data compared to its overall distri-

bution, since, as noted by Geach [2012], without a seed the randomness of the initial

SOM setup results in a different final distribution on each new run, even for precisely

the same input data-set. This means that while the same input data should always

end up closest to those data which are most similar, the overall shape of the SOM

may be different in each run depending on how the SOM was initialised.

SOMs are particularly popular in computer science, quantitative biology and

statistics [e.g. Rahmani et al., 2019; Burnap et al., 2018], however until recently

have been under-utilised in astronomy. Brett et al. [2004] were the first to use

this technique for astrophysical data, using self-organising maps to classify a set

of synthetic light-curves and 1026 real light-curves from the ROTSE experiment

[Akerlof et al., 2000]. As well as providing an overview of how the SOM evolves over

different numbers of iterations, Brett et al. [2004] illustrated that the performance

of the SOM was relatively insensitive to changes in the value and decay shape of the

two main SOM parameters: the learning rate α and effective neighbourhood size σ.

This makes it a versatile and easy approach to use for a wide range of data-sets.

More recently Armstrong et al. [2016] extended this work by using a SOM

alongside a supervised Random Forest implementation to classify the variability (or

lack thereof) of all stars in Campaigns 0-4 of the K2 mission. In this work Armstrong

et al. [2016] used a 2D 40x40 Kohonen layer with an initial learning rate of α0 = 0.1

σ0 = 40 (the width of the Kohonen layer) to clearly demonstrate the utility of the

SOM for splitting types of photometric variability by training the SOM on a set of

4047 known variables from campaigns 0-2 of the K2 mission. The trained SOM with

known variables placed on it is reproduced in Figure 1.12. An improved version of

this same SOM setup has recently been folded into the wider TESS Asteroseismic

Science Consortium (TASOC) stellar variability classifier, combined with a small

selection of other supervised and unsupervised classification methods [Audenaert

et al., 2021], however it has never previously been tested on the unique groups of

variability seen in young stars. In related works Armstrong et al. [2016, 2020a] have

also used SOMs to classify transit shapes in an effort to aid automated vetting of

planetary transits.

In wider astronomy SOMs have been used for a wide array of analyses, from

Photometric Redshift calibration [Geach, 2012; Carrasco Kind and Brunner, 2014;

Wright et al., 2020b,a], Radio astronomy [Galvin et al., 2020; Mostert et al., 2021]

and spectroscopic image segmentation [Fustes et al., 2013; Schilliro and Romano,
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Figure 1.12: Self-Organised Map trained on known variables from Kepler and the
initial K2 variability catalogue of [Armstrong et al., 2015]. Green triangles = Algol-
type eclipsing binaries (EAs); red crosses = Beta-lyrae eclipsing binaries (EBs),
pink stars = ab-type RR Lyraes; blue circles = Delta-Scuti variables; black dots =
Gamma Doradus variables & yellow pulses = Other periodic/quasi-periodic objects.
Reproduced from Figure 2 of Armstrong et al. [2016].

2021] to classification of Galaxies [Naim et al., 1997; Johnston et al., 2021], AGNs

[Faisst et al., 2019] and unusual quasars [Meusinger et al., 2012]. Of particular

note were the discoveries of Johnston et al. [2021] who showed how effective SOMs

can be at identifying systematics alongside the main data-groups (in their case in

a study of galaxy clustering in the Kilo-Degree Survey), and Khacef et al. [2020]’s

suggestion that the efficiency of SOMs could be improved for very large data-sets by

applying the SOM to extracted features rather than the raw data. Although many

of these wider applications are less relevant to the current work, the wide range of

uses highlights the versatility of the SOM for complex data, alongside the ability to

classify a wide array of interesting behaviour into groups. This versatility, coupled

with the unsupervised clustering algorithm, intuitive results format, and promising
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track record for photometric variability classification, make the Self-Organising Map

an appealing technique for exploring and classifying young star variability.

1.7 Thesis Outline

The remainder of this thesis details work tracing exoplanets through time with

TESS, both through variability analyses and planet-searches within light-curves

of young stars (Chapters 3 to 5) and through examining how the ephemerides of

known exoplanets from the Kepler mission have evolved since they were last ob-

served (Chapter 6). This begins with an examination of the methods used when

conducting this research in Chapter 2, before moving on to the main science chapters

in Chapters 3 to 6. Chapter 3 details work completed to extend the known popula-

tion of young stars, both through new kinematic analyses and through assembly of

young star target lists from the community. Chapter 4 presents the application of

a new young star detrending pipeline (presented in Section 2.6) to stars in stellar

associations from the first five sectors of TESS data. Chapter 5 extends this work

by beginning the YOUNGSTER program, using Self-Organising Maps to analyse

the variability of young stars from the first full year of TESS data, with the view to

use this information to construct targeted young exoplanet detrending/searches in

the future. Finally, Chapter 6 presents a different tack, updating the ephemerides

for all Kepler planets reobserved by TESS during the second year of its primary

mission, including a small number of known young exoplanets. This thesis concludes

with a thesis summary, future outlook and closing statements in Chapter 7.
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Chapter 2

Methods

“Though this be madness,

yet there is method in’t”

— William Shakespeare, Hamlet,

Act 2, Scene 2

This chapter describes the main methods and data sources used to complete

this research. It also describes in detail the new young star detrending and exoplanet

search pipeline developed in ‘A search for young exoplanets in Sectors 1-5 of the

TESS Full-Frame-Images’ [Battley et al., 2020] in Section 2.6.

Declaration - The following chapter includes partial reproduction of the

methods sections within Battley et al. [2020], Battley et al. [2021] and [Battley

et al., 2022].

2.1 Assembling Young Star Target Lists

2.1.1 Kinematic analyses

As explained in Section 1.4.2, a key place to find galactic stars is in young clusters,

moving groups and stellar associations. In many cases the higher-mass membership

of these groups have been know for decades [e.g. de Zeeuw et al., 1999] due to

their comparative brightness, but the impressive astrometric precision of the Gaia

satellite is now allowing the population of the lower-mass members of these groups

to be explored as well. A number of different methods have been used to discover

and extend the membership of these groups/associations, considering factors ranging

from the proper motion of objects to approximate ages of members.

The most crucial parameter for membership tests is the common motion of
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stellar members, where stars appear to move across the sky with similar velocities.

Early extensions to known stellar associations such as the census of nearby OB

associations performed by de Zeeuw et al. [1999] focused on the 2D proper motions

in the galactic (l,b) coordinate system based on Hipparcos data, a technique still used

as part of modern membership tests [Damiani et al., 2019b; Gagné et al., 2018b].

An example of using this method to narrow down potential candidates is illustrated

in Figure 2.1, showing how limits on the 2D proper motions of stars can be used to

find new stars associated with the known members of the Sco OB2 association.

Figure 2.1: Example of imposing proper motion limits to narrow down membership
candidate selection for the Sco OB2 stellar association, reproduced from Damiani
et al. [2019b]. Density of stars in the region is represented by colour, in units of
sources/(mas/yr)2. Black dots represent known Hipparcos Sco OB2 members from
de Zeeuw et al. [1999]

However, such a method used in isolation can suffer from introducing in-

terlopers at quite different distances or radial velocities from the true association

members. It is thus also critically important to consider (where possible) the par-

allax and radial velocity of the candidate members, in order to test for stellar clus-

ter/association membership. One method of achieving this is through simple paral-

lax (or distance) limits applied to the raw data, as used by de Zeeuw et al. [1999]
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and Damiani et al. [2019b] for the Sco-OB2 association. Following the release of

Gaia DR2 [Gaia Collaboration et al., 2018a,b], Bailer-Jones et al. [2018] released a

robust catalogue of distances for all objects in the data release which is particularly

useful for imposing these limits.

Where radial velocity data is available for objects, an even more instructive

method can be converting the proper motions to velocities within the galaxy itself.

These velocities are denoted as U, V and W, representing velocities in the X, Y and

Z directions of the heliocentric galactic coordinate system. In this reference frame

young stellar associations have frequently been observed to have internal velocity

dispersions of less than 3km/s [Gagné et al., 2018b], which provides another useful

tool for testing true association membership. However, Kuhn et al. [2019] noted

that even within gravitationally bound star clusters there is still a surprising range

in kinematic properties for member stars (over 1-3km/s in places), so it is clear that

care is needed when determining the galactic motion limits. Indeed Gagné et al.

[2018c] choose to use a 5km/s velocity dispersion cut-off to ensure greater capture

of candidate members with more unusual velocities.

An alternative, geometric method for testing membership to an association

or cluster, called the ‘Convergent Point Method’, was originally developed by Brown

[1950]; Jones [1971]. This method allows for the determination of the convergent

point of a related group of stars and as an extension a probabilistic measure for how

likely each star is likely to belong to this group. Figure 2.2 shows the theory behind

this method - stars with common space motions (so likely belonging to the same

cluster/association) will in equatorial space appear to converge towards a common

‘convergent point’ when their proper motions are overlaid. By solving for the most

likely convergent point and calculating the sum of squares for each star’s tangential

component of their motion, one can gain a probabilistic value for the likelihood

that each of the stars belongs to the association. de Zeeuw et al. [1999] used this

method to complete a census of the stellar content of 14 nearby OB associations

based of Hipparcos data. In the pre-Gaia era this method was used quite commonly

for studies of clusters and associations, including by Mamajek [2005]; Torres et al.

[2006]; Rizzuto et al. [2011].

Positional limits can be another useful tool to narrow down candidate mem-

bers further, however require caution when used close associations, where sky cov-

erage in excess of 100 deg2 has been observed [Armstrong et al., 2018], as illustrated

in Figure 2.3. Interestingly, Armstrong et al. [2018] observed that the position of

OB stars within associations also does not appear to preferentially align with the

position of lower mass association members, and so these positions should not be
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Figure 2.2: Equatorial (RA,Dec) position and velocity plot for all members of the
Pleiades Cluster with membership probabilities ě99% from the census completed
by Bouy et al. [2015]. The overlaid equatorial velocities of members of the Pleiades
cluster appear to converge when reversed. The Convergent Point method allows
membership probability of individual stars within larger clusters to be calculated by
evaluating the true convergent point and testing how well individual cluster members
fit the pattern of this convergence.

given too much weight in initial candidate selection. Nonetheless, the sheer number

of stars surveyed by all-sky surveys such as Gaia necessitates the use of at least

wide positional limits in order to focus the candidate search and gain manageable

data sizes.

Another method of testing association membership is by examining the ages

of candidate members, either by internal means or by comparison to previously

known bona-fide association members. This can be achieved in a variety of ways.

One of the most widely-used methods is plotting candidate members on colour-

absolute magnitude diagrams (CAMDs) and thereby observing pre-main sequence

and early-type stars, which was recently used powerfully by Zari et al. [2018] to

separate young stars in Gaia DR2. Similar methods were used to define members

of open clusters in Gaia Collaboration et al. [2018b]. Other key methods include

observing the lithium depletion boundary in young clusters, using pulsations and
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Figure 2.3: Position of young associations used in the development of the BANYAN
Σ tool [Gagné et al., 2018b]. The Galactic plane (b ă 15o) is highlighted in grey.
Reproduced from [Gagné et al., 2018b].

seismology to measure stellar age, measuring stellar surface gravity, looking for

certain types of rotation and activity and observing lithium abundance [Soderblom

et al., 2014].

Additional less-widely used methods for narrowing down and testing candi-

date members include the weighted median method for parallax and proper motion

[Kuhn et al., 2019], parallax-proper motion diagrams [Damiani et al., 2019b], density

maps [Armstrong et al., 2018; de Zeeuw et al., 1999], the ‘Spaghetti’ method fea-

turing interconnecting Gaussian cylinders [de Zeeuw et al., 1999] and finder charts

[Gagné and Faherty, 2018].

In order to combine some of the above methods and define a standard-

ised method of determining the membership probability for candidate association

members, two different groups have developed Bayesian membership tools. Firstly,

Rizzuto et al. [2011] developed a Bayesian membership criterion based on proper

motions, parallax, radial velocity and galactic latitude in order to look for fur-

ther high-mass membership of the Sco OB2 association (though it was labelled a

‘moving group’ in this paper). Applying positional limits of 285o ď l ď 360o and

´10o ď b ď 60o and a colour limit of B-V ď 0.6 (which doubled as a mass limit),

they compared six physical parameters (UVW velocities, distance and Galactic lat-

itude/longitude) to the expected average value for this association, and obtained

a membership probability for each candidate. BANYAN, the Bayesian Analysis

for Nearby Young AssociatioNs tool first developed by Malo et al. [2013] presents
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an alternative approach, choosing to model stellar associations/moving groups as

single-dimensional Gaussian distributions in XYZ UVW space. This has since been

further developed into the BANYAN Σ tool,1 which models associations by six-

dimensional multivariate gaussians in XYZ UVW space, and includes 27 known

young associations (with ages 1 - 800Myr) within 150pc based on Gaia DR1 data.

Using a Bayesian inference method and built on a training set of bona-fide or high

likelihood stellar association members, BANYAN Σ requires only sky position and

proper motion to calculate membership probability for candidate members, but can

give more accurate probabilities with the inclusion of radial velocity and parallax

measurements. This tool has already been used to identify 32 new bona-fide F0-M3

members of associations within 150pc, and 219 additional high-likelihood members

[Gagné et al., 2018c]. Gagné et al. [2018c] consider stars to be bona fide members of

an association if they have full kinematic measurement allowing them to be placed

in XYZ UVW space, display a ą 90% membership probability to an existing associ-

ation (using the BANYAN Σ tool [Gagné et al., 2018b]), and if they display “signs

of youth” consistent with the approximate known age of the association. They used

a wide rage of signs of youth, including G-J vs GALEX NUV - G colours, X-ray

emission with HR1 ě -0.15, mid-infrared excess, lithium absorption above 100 mÅ,

a luminosity class or young isochronal age consistent with youth, or Ca II infrared

triplet age consistent with the proposed association.

Given the large number of young groups, clusters and stellar associations al-

ready known, current work with Gaia DR2 is focusing on populating the lower-mass

regions of these associations [Gagné et al., 2018b; Zuckerman, 2019; Faherty et al.,

2017; Gagné et al., 2018a], however the high precision of the Gaia DR2 data (and

upcoming further data releases) also offers the opportunity to discover additional

new associations. For example, Kounkel and Covey [2019] used an unsupervised

clustering algorithm to find hundreds of new filamentary ‘strings’ of stars with very

similar kinematics, which may be of similar ages. Similarly Cantat-Gaudin et al.

[2018] applied the unsupervised UPMASK classification scheme of Krone-Martins

and Moitinho [2014] to Gaia DR2 data to define membership probabilities for both

new and known open clusters. With continual improvement in astrometric precision

as the Gaia mission continues, it is considered highly likely that more groups of

young stars will be found.

In this work the primary methods used are the BANYAN-Σ method and

kinematic common proper motion/location cuts, however essentially all methods

are called upon in some manner in the assembly of the extensive young star target

1http://www.exoplanetes.umontreal.ca/banyan/banyansigma.php
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list in Section 3.3.

2.1.2 Catalogue matching

Given the significant interest in groups of young stars, considerable lists of known

young stars already exist in the literature. In order to make the most of these lists

(and to combine them together into an overall young star list - see Section 3.3) it is

useful to be able to cross-match these lists with large catalogues such as the Gaia

DR2 data [Gaia Collaboration et al., 2016b, 2018a] and the TESS Input catalogue

[TIC v8; Stassun et al., 2019]. To do so, the TOPCAT table handling software

[Taylor, 2005] was used, which is a very powerful piece of software which allows for

table manipulation and built-in sky-based cross-matching with large astronomical

catalogues. Before assembly into larger lists, all target lists of interest were cross-

matched with Gaia DR2 (by using a sky-crossmatch to find the best nearby object

within a radius of 5 arcseconds) to obtain precise astrometric data on each object,

before cross-matching each object with the TESS Input Catalog based on the Gaia

DR2 identifier. This was achieved using TOPCAT’s in-built interface with the

Centre de Données astronomiques de Strasbourg (CDS) crossmatch service. In

particularly crowded regions, the closest-matching star was chosen by TOPCAT

(using TOPCAT’s ’Best’ find mode), with a uniqueness cut performed at the end

to remove any targets which had inadvertently been assigned to the same source.

Finally the sector in which each object had been (or would be) observed in was

found using the tess-point software [Burke et al., 2020]. Similar methods were

used when preparing the BANYAN target list for use in Chapter 4 and the CDIPS

target list in Chapter 5.

2.2 TESS data extraction methods

While Gaia supplies the data necessary to expand the population of known young

stars, TESS supplies the photometric data with which to search for transits. During

TESS ’s primary mission it generated two primary sources of light-curve data: 2 min

cadence light-curves and 30 min cadence Full-Frame-Images (FFIs), each totalling

approximately 27 days of observations for each TESS sector. While 2 min light-

curves represent the highest-cadence and most reliable source of light-curves for a

pre-defined subset of targets observed by TESS, the 30 min Full Frame Images allow

light-curves to be generated for any target that fell on one of the TESS detectors,

greatly extending the number of targets for which data is available.

The main 2 min light-curve extraction is performed by the TESS Science
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Processing Operation Center (SPOC) pipeline [Jenkins et al., 2016] and based on

the highly successful Kepler Science Operations pipeline of Jenkins et al. [2010].

This pipeline includes the removal of systematic instrumental effects, computing the

optimal photometric aperture for each star, removing background flux, computing

the centroid for each object and using PSF-fitting for 200 nearby bright target stars

on each CCD to establish the camera pointing and focus. At this point the Simple

Aperture Photometry (SAP) light-curves are saved, before an additional Presearch

Data Conditioning (PDC) step performs a series of important corrections to find and

remove principal components related to time-correlated instrumental systematics,

combat changes in camera pointing and focus, and remove outliers. It also solves

problems regarding the photometric aperture capturing too much (or too little) flux

in the case of crowded regions or very bright stars. The final light-curve products

include both the SAP and PDC light-curves. 2 min targets are chosen from the

TESS Candidate Target List [CTL, Stassun et al., 2018], which prioritises stars by

the smallest transiting planets which could be found around them. Alongside this,

approximately 10,000 targets are included from the Guest Investigator program per

cycle, for a total of „200,000 light-curves per cycle. These light-curves are freely

available on MAST2 shortly after observation of each sector each month.

The main downside of the 2 min cadence data is that it is only available for

approximately 20,000 targets per sector. The 30 min cadence FFI data is therefore

crucial to extend the search for exoplanets further. In late 2020, SPOC began

releasing TESS-SPOC FFI light-curves [Caldwell et al., 2020a], applying the main

SPOC pipeline [Jenkins et al., 2016] to up to 160,000 targets per sector, pre-selected

from the TESS Input Catalog [Stassun et al., 2019]. Selection criteria include all

targets with 2 min data, targets bright in near-infrared (H mag ď 10) but with

minimal crowding, targets within 100 parsecs and targets with TESS magnitude

ď13.5, up to at most 10,000 targets per TESS CCD. While these light-curves took

longer to appear originally, they are now one of the most extensive sources of FFI

light-curves, with light-curves currently available for sectors 1-39.

However, because the TESS-SPOC FFI light-curves have only become avail-

able recently (and for a select sample of „160,000 targets per sector), several alter-

native methods have been created for extracting light-curves from the TESS FFIs

by the community. The simplest approach is to perform aperture photometry on

the raw FFIs by overlaying an aperture over a cut-out around the object of inter-

est, and summing up the flux under the target aperture for each cadence. This

2https://mast.stsci.edu/portal/Mashup/Clients/Mast/Portal.html
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can be performed easily using the prebuilt lightkurve3 Python package [Lightkurve

Collaboration et al., 2018], and observing the resulting target-pixel-file provides an

instructive look at the area around the star of interest. However, the simplistic

nature of this analysis yields relatively noisy light-curves uncorrected for issues such

as spacecraft pointing, jitter and localised scattered light. A greatly improved sim-

ple aperture photometry pipeline which accounts for these issues has been built in

Python by Feinstein et al. [2019]. Christened eleanor4, this package performs back-

ground subtraction, removal of spacecraft systematics such as jitter and pointing

drift, and aperture/psf photometry. In addition, it provides tools to complete fur-

ther systematics-removal via principal component analysis or psf-modelling. Light-

curves from eleanor are steadily being ingested into MAST (see Montet et al. [2020],

but at the time of writing was only reliably available as an open-source tool designed

to work for TESS Sectors 1 to 13.

An alternative difference imaging approach for 30 min light-curve generation

has been pursued by Oelkers and Stassun [2018], Bouma et al. [2019] and Huang

et al. [2020a]. Attempting to overcome the challenges posed to aperture photometry

by TESS ’s large pixel sizes, these approaches extract light-curves via difference

imaging. The first public difference-imaging 30 min cadence data was generated by

the Difference Imaging Analysis (DIA) pipeline of Oelkers and Stassun [2018, 2019].

In this method, a ’master frame’ is generated by combining all images from the

telescope for each sector, and then evaluating the difference in flux in each individual

image by subtracting the master frame from it. In this manner only the variation

in flux of stars between images is retained. Highlighting stars of interest within this

process aids removal of contaminating stars in crowded regions and hence improves

the light-curve extraction compared to standard aperture photometry methods. A

similar technique has been used in ground-based surveys such as the Kilodegree

Extremely Little Telescope [Pepper et al., 2007; Siverd et al., 2012], though with a

simpler Gaussian kernel than the Dirac δ-function kernel (where the function is equal

to zero except at exactly the wavelength of interest) used here. A full description

of the DIA technique as applied to TESS light-curves in sectors 1 and beyond can

be found in Oelkers and Stassun [2018, 2019]. Oelkers and Stassun [2019] use this

pipeline to extract light-curves for all stars in the TESS Input Catalog [Stassun

et al., 2018], but unfortunately only for sectors 1-5. Light-curves extracted via this

pathway are accessible from the Filtergraph data visualization service.5.

Meanwhile the CDIPS pipeline [Bouma et al., 2019] uses a slightly different

3https://github.com/KeplerGO/lightkurve
4https://github.com/afeinstein20/eleanor
5https://filtergraph.com/tess ffi
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difference-imaging approach to extract light-curves from the TESS FFIs. Based

largely on the fitsh package of Pál [2012], the pipeline begins with the calibrated

TESS SPOC FFIs, performs large-scale background subtraction and then builds an

astrometric reference frame based on a series of the brightest stars in each image,

verified with the World Coordinate system (WCS) and the Gaia DR2 catalogue

[Gaia Collaboration et al., 2016b, 2018a]. All calibrated images are then transformed

to this frame before a photometric reference frame is constructed from 50 images

with low background noise. In order to get the final light-curves, each target frame

is then subtracted from the photometric reference frame and aperture photometry

applied to each source. An in-depth description of the full CDIPS pipeline can

be found in Bouma et al. [2019]. The CDIPS target list is unusual in that its

selection criteria focuses explicitly on those stars which have evidence of youth in

the literature, making it particularly useful for this work. At present this accounts

for over 650,000 light-curves from the first half (S1-13) of TESS ’s primary mission.

More recently, the Quick-look Pipeline (QLP) of Huang et al. [2020a,b] has

been used to extract light-curves for all stars in the TESS input catalog with TESS

magnitudes brighter than 13.5 in the TESS Primary Mission (and a smaller sample

of stars of brightness between T mag 13.5-15 with proper motions ą200 mas/yr).

Totalling „14,770,000 light-curves from the Southern Hemisphere and „9,600,000

light-curves from the Northern Hemisphere, this represents the largest collection

of TESS photometry available to date. To extract these light-curves Huang et al.

[2020a,b] use the TICA software [Fausnaugh et al., 2020] to calibrate the Full-Frame

Images and the nebuliser software of Irwin [1985] to perform a global background

subtraction, before determining an astrometric solution for each image and con-

structing a reference image from a combination of 40 good quality images. Five

different circular apertures are used to measure the differential brightness, which

are then used for the second step of background subtraction. Finally the measured

difference fluxes are converted to absolute fluxes by adding the expected flux from

each source from the TIC and the time adjusted to the TESS Barycentric Julian

date. This results in what Huang et al. [2020a] deem the “raw light curve”, which

typically also includes low-frequency variability from instrumental effects or stellar

activity. In order to remove these signals before planetary searches, Huang et al.

[2020a] perform an additional post-processing step which includes cleaning of poor-

quality data points based on the engineering quaternion data6, flattening using a

basis spline [Vanderburg and Johnson, 2014], an additional bad data-quality check

and normalisation of the light-curves. The final light-curve files include detrended

6https://archive.stsci.edu/missions/tess/engineering/
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light-curves using three different apertures, alongside the original ‘raw’ light-curve.

This pipeline continues to be run on data from the extended mission, as described

by Kunimoto et al. [2021].

One further 30-min pipeline which will be particularly useful for young star

studies is the TASOC pipeline, under development by the TESS Asteroseismic Sci-

ence Consortium (TASC ). Heavily based on the K2P2 pipeline [Lund et al., 2015],

this pipeline aims to supply TESS photometry data for use in asteroseismology and

stellar variability analyses. Data from this source can be accessed online7 after join-

ing the consortium. So far raw light-curves extracted from the FFIs are available

for sectors 1 and 2 [Handberg and Lund, 2019], while the open-source code used to

extract these images from the FFIs can be found on github.8 Although this pipeline

is still currently under development, a useful overview of its design and aims has

been written by Handberg et al. [2020].

Additional public light-curve extraction methods for TESS have been built

by Nardiello et al. [2019] (PATHOS), which uses a PSF-based approach to extract

high-precision light-curves for members of stellar clusters, and by Montalto et al.

[2020] (DIAmante), which produces systematics-corrected multi-sector light-curves,

but these are not used as data-sources for this research, so not discussed in depth

in this work.

Given the young star focus of much of this research, the difference-imaging

approach of 30min-cadence light-curve extraction was preferred in this work, mean-

ing that the main data-extraction methods used were the DIA [Oelkers and Stassun,

2018], CDIPS [Bouma et al., 2019] and QLP [Huang et al., 2020a] pipelines. How-

ever, as available pipelines evolved considerably over the course of this research, the

specific pipeline used varied depending on what light-curves were available at the

time that analysis was completed. For clarity, the final data-source choices made

are discussed within each science chapter, along with a discussion of any intrica-

cies associated with the use of those specific data sources. The one exception to

this is Chapter 6, which uses data extracted from the main Kepler and TESS 2

min-cadence pipelines. These are explained further in Section 6.2.

2.3 Planetary transit detection

As discussed in 1.2.1, planetary signals present themselves in photometric data as

distinctive dips in the flux from their hosts stars as they transit between their star

7http://tasoc.dk
8https://github.com/tasoc
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and an observer. However, given the relatively low probability of transit per star

and the correspondingly large number of stars which require searching through,

an automated algorithm is necessary to speed up the search process. The most

common exoplanet detection algorithm is the Box Least Squared (BLS) method.

This method, originally developed by Kovács et al. [2002], fits a series of (strictly

periodic) box-shaped dips at a range of periods in order to generate a periodogram,

comparing the relative strengths of the different period hypotheses. Specifically, the

BLS algorithm minimises the chi-squared value for a five parameter fit of period P0;

epoch of transit, t0; fraction of time spent in transit, q, and depth in (L) and out

(H) of transit, reporting the most likely period as that which minimises the chi-

squared value. Some care must be taken when choosing the final period however,

as the BLS periodograms also contains peaks at integer multiples or fractions of P0

(period aliases, e.g. P0/3, P0/2, 2P0, 3P0). This method has been the archetypal

transit discovery algorithm in the community for decades now due to its speed and

signal detection power, so is the main algorithm implemented in transit searches

and pipeline development in this work.

A recent improvement made to the BLS algorithm (released partway through

this research) is the Transit Least Squares (TLS) algorithm designed by Hippke and

Heller [2019]. Similar in vein to BLS, TLS fits a periodic transit to search for

planetary transits. However, unlike the simple box-shape of BLS, TLS fits a much

more realistic transit shape to the data, based off an average of thousands of real

planetary transits from the Exoplanet Archive.9 Hippke and Heller [2019] show that

this new algorithm is of comparable speed to BLS but “substantially more efficient

and reliable in finding small planets than BLS.” In the future this algorithm will be

folded into the main young star transit-search pipeline designed in this work.

2.4 Variability period searching algorithms

Due to the increased activity and variability of young stars, determining the main

variability period of young star light-curves is often almost as important as searching

for periodic transits, especially where this source of ‘red noise’ needs to be removed

before the main planet search can take place. In this work the community-standard

Lomb-Scargle (L-S) method [Lomb, 1976; Scargle, 1982] was used in order to find the

main variability periods for all targets. The L-S method is a form of Discrete Fourier

Transform specifically designed to handle the unevenly space observations often seen

in astronomical data. It works by breaking a given time-series down into a linear

9https://exoplanetarchive.ipac.caltech.edu/index.html
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combination of sinusoidal functions, the basis of which effectively transforming the

data from the time domain to the frequency domain. Finding the strongest frequency

in the resulting power spectrum (or periodogram) thus gives the inverse of the

strongest period in the data-set, which is typically the chief variability period of the

light-curve. However, when using this technique it should be realised that it is most

sensitive to sinusoidal-like signals, so signals which cannot be easily decomposed

into sinusoids (such as the signals of transiting exoplanets) are better found using

other methods. Other methods of measuring stellar variability periods include the

autocorrelation function [ACF; e.g. McQuillan et al., 2014; Briegal et al., 2022],

which measures how correlated (or similar) different regions are of the same light-

curve, Wavelet analysis [e.g Torrence and Compo, 1998; Martins et al., 2020], which

fits a generalised basis function (or ‘mother wavelet’) which can be stretched in both

frequency and time, and Gaussian Processes [GPs; e.g Rasmussen and Williams,

2006; Angus et al., 2018], which models the covariance between data points and

improves the ability to find periods in light-curves which evolve in time. Nonetheless,

because of the algorithms’ speed, the ease of recovering multiple frequencies in the

same light-curve and the fact that the majority of stellar variability in young stars

is from approximately sinusoidal spot modulation and pulsations, the Lomb-Scargle

method was chosen as the primary method to obtain variability periods in this work.

2.5 Traditional light-curve detrending Methods

The main aim of light-curve detrending is to remove various aspects of red noise

from the light-curve (such as instrumental systematics, flux discontinuities and of-

ten stellar variability) while leaving behind the signal of interest. In searches for

exoplanets this often is likened to ‘flattening’ the light-curve, removing all non-

planetary signals to leave behind a flat light-curve with added transit dips. It is

important to note here the difference between two different aspects of detrending: i)

removal of instrumental systematics/trends, and ii) removal of astrophysical signals

for more targeted searches. The first aspect of this detrending is required for all

types of survey, as different instruments have different systematic noise profiles in

their data, from terrestrial nuisances - such as clouds or atmospheric absorption - to

spacecraft roll and scattered light signals on orbiting satellites. In order to search

for any astrophysical signals, these systematic trends need to be removed from the

data first (or sometimes, concurrently). Meanwhile, for searches which focus on one

type of signal (e.g. planet searches), other astrophysical signals could be considered

‘noise’ which needs detrending. For example, in a standard planet search, stellar

61



rotation of a spotty star or pulsation of a potential host both leave behind signals in

a photometric light-curve which can hide planetary transits. The detrending and re-

moval of both instrumental and astrophysical ‘noise‘ is thus crucial to exoplanetary

surveys, whether these are performed piece-wise (removing instrumental systematics

first and subsequently removing astrophysical signals), or concurrently, using more

aggressive detrending method. While instrumental noise is increasingly removed in

the main pipelines for these instruments, significant astrophysical noise typically

still remains, which is the main type of detrending focused on in the remainder of

this section.

Given its importance to the community, a huge variety of different detrend-

ing methods have been trialled to detrend light-curves, from the common Savitzky-

Golay filter [Savitzky and Golay, 1964] to more involved Gaussian processes [e.g.

Aigrain et al., 2015]. Following the formalism of Hippke et al. [2019], the most

common methods can be roughly split into three main types: sliding filters, splines

and polynomials, and Gaussian processes. Sliding filters [e.g. Savitzky and Golay,

1964; Wheatley et al., 2010] work by effectively moving a ‘window’ or ‘box’ across

the data, estimating (and removing) a trend within a given preset time-frame or

number of points (cadences). Changing the length of the window adjusts whether

the algorithm removes long-term or short-term trends, while changing the weighting

of the windows (e.g. using robust estimators such as Tukey’s biweight [Mosteller

and Tukey, 1977]) can give more or less value to those data-points closer to the one

currently being fit. On the other hand, polynomial or spline detrending methods

[e.g. Giles et al., 2018; Vanderburg et al., 2016] work by fitting smooth, piecewise

polynomial approximations to the data, usually with equally-spaced knots along the

function. Some methods such as LOWESS smoothing [Cleveland, 1979a] combine

these two methods, effectively fitting a locally-weighted polynomial regression to a

specific window of the data. Finally, Gaussian process methods [e.g. Aigrain et al.,

2015] are a non-parametric regression method, effectively setting up a probability

distribution over functions, which assumes that nearby observations are correlated.

This can allow complex unknown detrending functions to be found for individual

data-sets without having to guess the approximate form beforehand. A full expla-

nation of this family of methods can be found in Rasmussen and Williams [2006].

Gaussian processes are particularly powerful due to their ability to simultaneously

fit stellar activity and planetary transits within planetary searches, however can

struggle in larger surveys due to greatly increased computational costs compared to

simpler algorithms. An excellent recent review of all common detrending methods

can be found in [Hippke et al., 2019], where they conclude that the optimum simple
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detrending algorithm for normal transit searches is a time-windowed sliding filter

with a Tukey’s biweight location estimator [Mosteller and Tukey, 1977].

Automated detrending is especially important for large surveys, where the

sheer volume of data produced is simply too much for human eyeballing. The

earliest wide-field survey, HATNet [Bakos et al., 2004], used the Trend Fitting Al-

gorithm [Kovács et al., 2005] and External Parameter Decorrelation [Bakos et al.,

2010] to detrend its light-curves (both of which focused more on instrumental noise,

but also removed some astrophysical signals), while WASP [Pollacco et al., 2006]

shortly after preferred the sysrem algorithm of Tamuz et al. [2005] to remove in-

strumental effects – which removes common time- and position-dependent trends

by taking into consideration the weighted average magnitude residuals for all stars

– coupled with a boxcar-smoothing technique to handle some of the more variable

stars observed [Collier Cameron et al., 2006]. More recent ground-based surveys

such as KELT [Pepper et al., 2007] and NGTS [Wheatley et al., 2018] have de-

veloped these techniques further, and even introduced more advanced detrending

methods such as gaussian processes as they target more active stars [e.g. Costes

et al., 2020; Gillen et al., 2020]. However, the largest source of light-curves in

the search for exoplanets has been space-based surveys, the volume and variety of

which has required the development of more complex and robust detrending tech-

niques. The most prolific transiting exoplanet surveys thus far have been the Kepler

[Borucki et al., 2010] and K2 [Howell et al., 2014] missions and the ongoing TESS

mission [Ricker et al., 2014], all of which share broadly similar detrending tech-

niques which first remove known instrumental systematic errors before applying

data-smoothing in their pre-search data conditioning (PDC) steps. The Kepler and

TESS missions all use the wavelet-matched method originally developed by Jenk-

ins [2002] to simultaneously detrend intrinsic variability of potential host stars and

search for transiting planets. This method uses an overcomplete wavelet-transform

of the data, which is effectively a more complex version of a Fourier transform

where the basis functions are concentrated in time as well as frequency. This is

efficient for handling simple stellar variability, but is less-well optimised for partic-

ularly active stars, especially when their variability evolves with time. Overviews

of the full Kepler, K2 and TESS SPOC pipelines can be found in Jenkins et al.

[2010], at https://keplerscience.arc.nasa.gov/k2-pipeline-release-notes.html and in

Jenkins et al. [2016] respectively. Gaussian Process detrending is also an important

detrending method for space-based surveys, having been used to simultaneously

model instrumental systematics and astrophysical variability while extracting K2

light-curves in [Aigrain et al., 2016]’s K2SC pipeline.
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However, despite the success shown by these traditional detrending methods,

they fall short when it comes to young exoplanet discovery. Indeed, Hippke et al.

[2019] show that none of the methods tested recover more than 37.2% of injected

0.5RJup sized planets in young star light-curves, even when recovery rates of the

same planets are near 100% in older, less noisy stars. Interestingly all methods re-

turned similar performance of „35% recovery, despite large variations in detrending

method. The poor performance of these traditional methods is largely because the

typical window lengths chosen for typical ‘one size fits most’ detrending processes

are too long to remove much of the observed large-amplitude, short-period young

stellar activity, especially when it may evolve over the course of a single 27 day TESS

sector. Furthermore, the presence of stellar activity may often distort exoplanetary

transit signals, leaving non-transit like shapes after detrending. More specialised

pipelines designed by Rizzuto et al. [2017] have shown some more promise, with

the ‘notch-filter’ and LoCoR pipelines shown to be capable of reaching down to

Earth-sized planets in some older clusters and associations, as demonstrated with

continued discoveries in the ZEIT and THYME programs [e.g. Mann et al., 2017c;

Vanderburg et al., 2018; Rizzuto et al., 2018, 2020]. However, even these pipelines

struggle with very fast and/or evolving stellar variability of many young hosts, so

it is clear that more work is needed in order to push down to smaller exoplanets

around such active young stars.

2.6 LOWESS detrending pipeline

2.6.1 Choice of base-detrending method

Given the challenging range of activity-related and intrinsic stellar variability seen in

the light-curves of young stars (and the associated difficulty of modelling so many in-

dividual light-curves in an initial transit search), it was considered wise to approach

the astrophysical detrending problem from the ground up, rather than necessar-

ily relying on more traditional methods such as the Savitzky-Golay filter [Savitzky

and Golay, 1964]. A number of different detrending techniques were trialled early

in the process, including simple low-order polynomial fitting, sinusoidal modelling,

Savitky-Golay filtering and general smoothing over a range of window sizes. The

most successful of these are illustrated in the 2nd to 4th panel of Figure 2.4. Of

these, low-order polynomial fitting and the smoothing methods proved most suc-

cessful at recovering transit signals injected into young star light-curves, as shown

by the relative log likelihood of the periodogram on the left of Figure 2.4. Note that

the utilised methods for injecting and searching for transiting planets are outlined
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Figure 2.4: Comparison of detrending methods for an 8-day period, Hot-Jupiter
sized planet (0.1 RP{R˚) injected into the light-curve of the young star HIP 105338.
The top panel shows the original 30min light-curve for the star, including the injected
planet transits. This is followed by a periodogram from a BLS search (with the
strongest period highlighted in blue, and aliases of this as dotted blue lines), and the
detrended data on the right folded by this strongest period. All detrending methods
are labelled in the top right of the phase-fold box. For all methods requiring a
defined window, a 15hr window size was used. Peak cutting was applied for poly
and LOWESS-partial methods, as these are when these techniques are most useful.
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in section 2.6.5 and 2.6.4 respectively.

A search for a method to combine and improve both of these methods led

to LOWESS smoothing, or Locally Weighted Scatterplot Smoothing. This method,

developed originally by Cleveland [1979b], is a local polynomial regression method

which works by fitting a low-order polynomial to a subset of the data (the width of

which is set by a user-defined window) at each point along the x-axis using weighted

least-squares regression. Under the weighted least-squares regression method, points

nearer to the data-point being estimated are given more weight than those further

away in the window. This weighting is one of the key differences between this method

and the more commonly used Savitzky-Golay filter [Savitzky and Golay, 1964], and

is particularly important for this application given the often swift evolution of young

star light-curves. Indeed following the choice of this LOWESS-smoothing method, it

was independently highlighted to be one of the best-performing detrending methods

for the young-star sample tested by Hippke et al. [2019]. In exoplanet literature

however no other mention of LOWESS smoothing for exoplanet searches was found,

with even the related LOESS smoothing method appearing quite rarely, despite

having been used in detrending the TRAPPIST-1 system [Luger et al., 2017] and in

the Autoregressive Planet Search of Caceres et al. [2019].

More specifically, the LOWESS method works by fitting a simple polynomial,

gpxiq, to a window (or ‘fraction’) of the data-set, such that the ’i-th’ point, pxi, yiq,

in the window is represented by the equation

yi “ gpxiq ` εi, (2.1)

where εi is a random variable with a mean of zero and a constant scale. How-

ever, where LOWESS diverges from traditional smoothing/windowing methods is

that standard least-squares regression method of polynomial fitting is replaced by

a ‘locally weighted least-squares regression’ method, where points nearer the value

currently being evaluated are weighted as more important than though further away.

The specific weighting method employed in the LOWESS method is defined as

W pxq “

$

&

%

p1´ |x|3q3 within the window,

0 otherwise
(2.2)

as recommended by Cleveland [1979b]. This method also allows for multiple itera-

tions of residual-based re-weightings in order to remove any significant outliers; in

this case the number of residual-based re-weightings retained as the default value of

3. Through experimentation a window size of 30 FFI data points (15hrs) was found

66



Figure 2.5: Effect of changing the LOWESS ‘frac’ parameter for HIP 1113 and AB
Pic, two active young stars, including an injected Hot-Jupiter sized planet. Two
values of the frac parameter are compared: 48 bin and 20 bin, corresponding to
effective window lengths of one day and 10hrs respectively. It can be seen that
choosing this parameter is a fine balance between leaving behind too much of the
star’s variability/activity, and beginning to smooth out (or decrease in amplitude)
of the planetary signal.
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to yield a good compromise between preserving the shape of injected transits and

smoothing the stellar activity and variability of the host stars, except in more rapidly

evolving light-curves, where a window size of 20 data points (10hrs) was found to

be more appropriate. As such the ‘frac’ parameter (representing the fraction of the

full data to fit a polynomial to at each step) was set as frac = 30/length(data)

or frac = 20/length(data) respectively, which allowed for consistent window

sizes even when there were gaps in the dataset. For stars where 2min light-curve

data was available, these were proportionally increased to windows of 450 and 300

respectively. The effect of changing this ‘frac’ parameter is illustrated in Figure

2.5. Note that there are two slightly different ways in which LOWESS can be run

through the data: running over the entire light-curve at once, deemed ‘LOWESS-

full’, and restarting the detrending any time there is a significant gap in the data

(here treated as 0.1days), which is deemed ‘LOWESS-partial’. Both of these meth-

ods were used here, and are illustrated in the bottom two panels of Figure 2.4. One

final important parameter for the specific statsmodels.nonparametric.lowess im-

plementation used in this work is the delta parameter, which can be used in the case

of particularly large data-sets to speed up computation by using linear-interpolation

for a given distance (delta) from the point of interest. In this analysis this was re-

tained as delta “ 0.0 as the sector-by-sector data-sets were not overly large, but this

can be adjusted if further speed enhancements are desired. Furthermore, for very

high-cadence data-sets, the author recommends binning the original data in time to

save on computation load.

2.6.2 Removal of Peaks and Troughs

One of the other key challenges present in using a Box Least Squares (BLS) search

for light-curves from young active stars is that the troughs of regular stellar activity

(e.g. from the rotation of star-spots) are often picked up as the largest peaks in

the BLS periodograms, even after LOWESS detrending. This is particularly the

case for rapidly rotating stars, or those with short-period intrinsic variability. Such

sources typically exhibit sharp peaks and troughs in the extracted 30min light-

curve, which is often highlighted in the BLS search. In an attempt to combat

this problem for light-curves with particularly sharp stellar activity, the effect of

cutting the peaks and troughs of this stellar activity was tested. To begin with, the

peaks were located using the find peaks function from the scipy.signal library10

[Virtanen et al., 2019] using a required prominence of 0.001 and width of 15 data

points (7.5hrs). This helped to ensure that only wider peaks generally associated

10https://docs.scipy.org/doc/scipy/reference/signal.html
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Figure 2.6: Example of the peak cutting technique in use on the rapidly evolving
light-curve for HIP 32235. The applied 20-box partial LOWESS-smoothing model
used for detrending the light-curve is also over-plotted in colour. Note that the
change in colour between subsequent sections of the LOWESS-detrending shows
where the light-curve has been split after any 0.1d gap in the data. This typically
occurs after each peak or trough, or where significant detrimental scatter has been
removed.

with stellar activity/variability were flagged as peaks or troughs, but the settings

may need adjusting for some more complex light-curves. The activity/variability

troughs were located using a similar find peaks search on a negative version of the

light-curve flux. Data points within 0.1d either side of each peak and trough were

then cut from the light-curve before LOWESS-detrending was applied. An example

of this in practice is shown in Fig 2.6 for HIP 32235, a rotationally variable G6V

star in the Carina stellar association.

The power of this peak-cutting method is illustrated for the same source in

Fig 2.7. When a 0.04 RP{R˚ radius ratio planet is injected into the light-curve (using

the method described in Section 2.6.5) and the light-curve is detrended using the

LOWESS-based method described above (boxsize = 20), any signal of the planet is

clearly overwhelmed by the 3.84d period rotational variability of the star, as is shown

in the top of Fig 2.7. However, applying the described peak-cutting technique to the

data easily recovers the signal of the injected 8-day 0.04 RP{R˚ planet, as illustrated

in the lower half of Fig 2.7. This technique is thus another powerful tool for pushing

down to lower radii in the search for exoplanets around young active stars. In
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general, this peak-cutting method was found particularly effective for light-curves

with sharp oscillations/rotations, or ones which were strongly periodic. However, it

is important to note that this technique did not always offer improvements over the

non-peak-cut method. A further discussion of when this technique is most effective

can be found in section 4.3.5.

2.6.3 Transit masking and light-curve interpolation

Transit masking is a commonly used method in planetary and eclipsing binary sci-

ence to independently detrend long-term variability in stellar light-curves without

changing the shape of the transit curve, and is implemented into most common

light-curve manipulation tools (e.g. Luger et al. [2016]; Lightkurve Collaboration

et al. [2018]). However, due to the often rapid evolution of young star light-curves,

simply cutting out the data near a suspected transit before detrending can lead to

spurious variability signals over the duration of the transit. In order to combat

this issue in the developed detrending method a two-step transit masking approach

was used which accounts for the brightness variation of the host star during the

transit. Firstly, a mask is generated based on a period, epoch and duration for

the suspected transit (either user-defined or from a previous BLS search), and the

new light-curve generated by removing any points within the selected transit dura-

tion. Then, in order to account for the stellar flux variability over the course of the

transit, the new holes in this light-curve are refilled using a quadratic interpolation

(using scipy.interpolate.interp1d) between the cut points. It is this new flux

array featuring interpolated sections over the transit mask that is then used in the

LOWESS-detrending step, and in turn divided out to form the final detrended light-

curve. The importance of using such a method is illustrated using the source DS

Tuc A in Fig 2.8. It is immediately obvious that not taking into consideration the

variation in stellar flux around the epoch of the first cut transit (approx TJD 1132)

would lead to a considerably different transit shape after the main LOWESS-based

detrending was is undertaken. A full discussion of the full detrending of DS Tuc A

and the resulting recovery of the young exoplanet DS Tuc Ab can be found below in

Section 4.3.1. Note that a basic version of this detrending code can be found online

at https://github.com/mbattley/YSD.

2.6.4 Transit searching algorithm

The standard Box Least Squares method was used to search for periodic transit-like

signals in the detrended light-curves. The specific implementation used in this code
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Figure 2.7: BLS periodograms for HIP 32235 following 20-bin LOWESS detrending
without (top) and with (bottom) peak cutting implemented. In this case peak
cutting displays a clear benefit to the recovery of an injected 0.04RP{R˚ 8d planet
in the presence of rapidly evolving (3.84d period) stellar activity. The highest power
period is highlighted in blue, with aliases of the same period shown by dotted blue
lines.
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Figure 2.8: Example of interpolation over transit masked areas of the light-curve
for DS Tuc A in order to best preserve the stellar activity signature through these
segments. Original data points are shown in black, while interpolation over the
removed transits is shown in red. The red box on the right shows detail of the area
in the vicinity of the first transit.

is the BoxLeastSquares method within astropy11, which is a python implementa-

tion of the computational method described by Hartman and Bakos [2016]. In this

work the strongest BLS peak and the two next strongest non-harmonic peaks were

investigated. In the future, the intention is to swap out this method to the more

sophisticated Transit Least Squares method [TLS, Heller et al., 2019] to utilise its

improved performance for finding smaller exoplanetary signals.

2.6.5 Injected transits

In order to test the sensitivity of this new detrending method to finding planets

around young stars, a series of model planet transits were injected into the light-

curves before detrending. For this analysis eight different orbital periods were tested

(1.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0 and 14.0 days) for each star, with the epoch chosen

randomly for each injection. Note that unlike ground-based surveys, TESS does not

exhibit 1-day systematic errors due to the Earth’s rotation which could adversely

affect these period choices. Rather than injecting specific planet sizes, five planet

to star ratios RP{R˚ were tested for every star in this sensitivity analysis: 0.1,

0.075, 0.05, 0.04 and 0.03, beyond which recovery was observed to be quite rare.

11https://docs.astropy.org/en/stable/api/astropy.timeseries.BoxLeastSquares.html
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For reference, around a sun-like star a radius ratio of 0.1 corresponds to an approx-

imately Jupiter-sized planet and RP{R˚ = 0.03 corresponds to a sub-Neptune-sized

planet. Stellar parameters for each star were retrieved from TIC v8 [Stassun et al.,

2019]. Where possible, orbital separation for each planet was then derived from

Kepler’s Third Law. If information on a star’s mass or radius was not available,

the corresponding planet was assigned an orbital separation of 17.0R˚, represent-

ing the average orbital separation for planets with 8d periods (in the middle of the

period range) on the NASA Exoplanet Archive.12 Planet transits were generated us-

ing Kreidberg [2015]’s batman python implementation of Mandel and Agol [2002]’s

transit model, assuming non-linear limb-darkening with coefficients [0.5, 0.1, 0.1,

-0.1]. After injection, each light-curve was detrended using a standard 30-bin run

of the LOWESS-smoothing pipeline (without peak-cutting implemented). Injected

signals were considered to have been ‘recovered’ if they appeared as one of the three

highest peaks in the BLS periodogram, ignoring harmonics of the maximum peak.

2.7 Self-Organising Maps

As discussed in Section 1.6, analysing the large volumes of data from all-sky surveys

such as TESS lends itself towards automated Machine Learning methods. This

research made use of one particular unsupervised machine-learning method, Self

Organising Maps (SOMs), which were introduced in Section 1.6.3. The SOM im-

plementation used in this work is similar to the one used by Brett et al. [2004] and

Armstrong et al. [2016], but is briefly explained here for context.

The SOM groups input data based on topology, placing data which are most

similar in shape close together and separating those which are dissimilar. In this

work the input data are photometric phase-curves formed by folding young star

light-curves by their primary period. In order to balance computing efficiency with

the preservation of complex phase-shapes, these phase curves were binned into 64

bins and normalised between zero and one (as is discussed further in section 5.2.3).

Meanwhile the SOM is initialised as a square of ‘pixels’ comprised of vectors of the

same length as the phase-curves (64 bins), but with elements with random values

between zero and one. The collection of these vectors is referred to as the ‘Kohonen

layer’. To group the data, the input phase-curves are compared to the data at each

pixel in the Kohonen layer and the pixel which contains the vector most similar

to the input phase curve (named the ‘Best Matching Unit’, or BMU) is found by

minimising the Euclidean distance between each input phase curve and the vector at

12https://exoplanetarchive.ipac.caltech.edu/
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this pixel. Once the BMU has been located for each phase-curve, the phase-curves

are effectively moved to this pixel, and the vector at each pixel is updated according

to the equation

mxy,k,new “ mxy,k,old ` αe
´d2xy{2σ

2
psk ´mxy,k,oldq (2.3)

following the formalism of Armstrong et al. [2016], where mxy,k is the value m of the

element at pixel coordinates x, y, element k in the phase curve, dxy is the Euclidean

distance of that pixel from the BMU in the layer, α and σ are coefficients called

the ’learning rate’ and ’learning radius’ respectively, and sk is the kth element of

the input phase curve currently being compared. This process is repeated for each

iteration, with learning rate and learning radius evolving as follows

α “ α0p1´
i

niter
q (2.4)

σ “ σ0e
p
´ilogprq
niter

q
(2.5)

where i is the iteration number, r is the radius of the SOM (equivalent to the length

of one dimension of the SOM) and niter is the total number of iterations (chosen as

1000 in this work). Note however that the SOM performance is relatively insensitive

to the precise functional form of how α and σ evolve, as explored by Brett et al.

[2004].

As the iterations continue, similar phase-curves steadily move closer together

as the vectors at each pixel gradually become better representations of the main

data shape at that point. The final result of the algorithm is the Kohonen map,

a representation of the overall variation in the data-set. In this case each pixel

effectively represents an average of those phase arrays which ended up at it after

the final iteration. Querying individual pixels in the Kohonen map thus gives an

approximation of each phase-curve at that pixel.

Three main parameters are important for the setup of the SOM: the initial

learning rate, α0, initial learning radius, σ0 and the SOM shape. The learning rate

controls how quickly pixels in the Kohonen layer are changed, while the learning

radius controls how large the neighbourhood of comparison is during each iteration.

Brett et al. [2004] recommended learning rate values of α0 ď 0.2 in order to prevent

undesirable movement and constant restructuring with further iterations, however

the specific value of the learning radius was not found to have a significant effect

on SOM performance. Similar to Armstrong et al. [2016], these parameters were
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eventually chosen as α0 “ 0.1 and σ0 “ r, where r is the SOM radius. Note that a

‘radius’ is defined here instead of a length, because the boundaries of the SOM are

cyclic, wrapping around at each edge. An interesting feature of the SOM is that it

can be arranged in any number of N dimensions, however following Armstrong et al.

[2016], the nominal SOM shape was set to a 2D square of 40x40 pixels for a good

balance of detail and required human eyeballing time. Variations on this shape are

also explored in Section 5.5.2.

The specific software implementation used in this work was adapted from

the TransitSOM code of Armstrong et al. [2017]13, which in turn was based on

the SOM code from the PyMVPA Python package (Hanke et al., 2009).14

2.8 Exoplanet ephemeris maintenance

Discovery of exoplanets is merely the start of the process in exoplanet science. In

order to fully understand the properties and evolution of exoplanetary systems, it

is crucial to characterise and model individual exoplanets and observe if/how their

properties change with time. As discussed in section 1.2.1, one of the most impor-

tant pieces of information for the ongoing characterisation of a transiting planet is

its ephemeris, which tracks the timing of a future transits of a known exoplanet.

This is particularly important for future characterisation as many time-sensitive

characterisation observations (such as atmospheric characterisation, orbital obliq-

uity measurements and transit timing analyses) rely on precisely knowing the time

of next transit. However, as discussed, the more time since the planet was last ob-

served, the more the error in the expected time of transit grows, reducing the preci-

sion of this ephemeris. This timing challenge is occasionally complicated further by

additional planets in the system which interact with the planet of interest, causing

‘transit timing variations’, where a planet transits earlier or later than expected

from the linear ephemeris. Here the methods used to update exoplanet ephemerides

and calculate transit timing variations (TTVs) are explained, forming the base of

the ephemeris updates of all Kepler planets reobserved by TESS in Chapter 6.

2.8.1 Ephemeris updates and construction of O-C diagrams

The techniques used to determine individual transit times and update linear ephemerides

in this work are based on those used by Gajdos et al. [2019] and Holczer et al. [2016]

to analyse the full Kepler Q1-17 data. As a first step, transit epochs for plan-

13https://github.com/DJArmstrong/TransitSOM
14http://www.pymvpa.org
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ets/candidates other than the one being currently analysed were masked from the

light-curve. In some cases with large TTVs (such as Kepler-396 b - Xie [2014]), the

masking window was widened to 3-6 hrs either side of the expected transit time to

catch all of the transits. Because of the differing dilution characteristics and data

cadence of the Kepler and TESS instruments, the Kepler transits were found first

and then the results from this analysis were used to inform the initial TESS model.

To achieve consistent times for the two satellites, the time data for both

datasets was converted to Barycentric Julian Date using the following conversions:

• KeplerBJD “ BKJD ` 2454833 days

• TESSBJD “ BTJD ` 2457000 days

where BKJD is the Barycentric Kepler Julian Date (the native time for the

Kepler satellite) and the BTJD is the similar Barycentric TESS Julian Date.

For the first step in the Kepler analysis, a Mandel and Agol [2002] transit

model was constructed for the object of interest using Kreidberg [2015]’s batman

software, based off the archival parameters assembled in Section 6.3. These models

were used to search for the observed transit time by minimising the chi-squared

statistic in a grid of 1 min resolution around the expected transit. This method,

similar to that used by Holczer et al. [2016], ensured that the approximate initial

transit times could be obtained automatically even when there were significant TTVs

present. These 1 min resolution transit times were used to construct a ‘stacked’ light-

curve for each planet/candidate by aligning the obtained transit centres, similar to

the method used by Gajdoš et al. [2017]; Gajdos et al. [2019] (see Figure 2.9). This

stacked transit was compared to the transit curve obtained simply by folding the

Kepler data by the known planetary period, with the cleanest transit curve taken

forward for further analysis. The dual approach ensured that accurate transit curves

could be obtained for targets both with and without transit timing variations. The

chosen transit curve was fitted with a new batman model using three iterations

of the in-built optimize routine within exoplanet [Foreman-Mackey et al., 2020].

Because the individual transit times here are considered more important than the

overall system parameters, the planetary radius and inclination were allowed to vary

slightly in order to fit the phase-folded transit most effectively. Note that the priors

for both parameters were modelled as normal distributions with means equal to

value reported in literature (or 90o for systems without published inclinations). The

mean value outside each transit was also allowed to vary in case it was skewed by

outliers or detrending artefacts. An example of the final transit model can be seen

for Kepler-68 b [Gilliland et al., 2013] in Figure 2.9.
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Figure 2.9: Stacked transit curve for Kepler-68 b overplotted with final batman

model in orange.

The generated transit model was used to find precise transit times for indi-

vidual transits in the Kepler data. This was achieved by cutting out short-duration

windows around each expected transit (2 days either side of the transit, unless the

planet period was ď2 days) and finding the best-fit of the transit model within that

interval. For consistency only the transit time and mean flux were allowed to vary

in this step, the priors for both of which were set as wide Normal distributions cen-

tred on the values found from the chi-squared fit. To begin with, three iterations

of exoplanet’s inbuilt optimize routine were used to hone in on the true transit

times, before PyMC3 [Salvatier et al., 2016] was used to fit the final planet model to

each individual Kepler transit. This was achieved using a two-chain Markov-Chain

Monte Carlo (MCMC) analysis with 1000 tuning steps and 5000 draws for each

object. Longer chains were tested briefly, but increasing the length further for these

relatively simple fits was not found to change the results significantly. Convergence

was assessed using the Gelman-Rubin statistic and a visual examination of the trace.

Statistically significant values for the final time and error for each individual transit

were then found from the mean and standard deviation of the MCMC trace.

Because of the comparative dearth of transits observed by TESS, broadly the

same model built from the Kepler data was used to find the times of the individual

TESS transits, however the depth of the transit was adjusted according to the local

dilution characteristics of the TESS environments. Once again the model was fit

to each transit in turn (in a 4-day data interval centred on the expected transit

time) using three iterations of exoplanet’s optimize function and a pyMC3 MCMC
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Figure 2.10: Example O-C plot for Kepler-13/KOI-13 b. K0I-13 b received TESS
2 min data in Sectors 14, 15 and 26, so represents one of the targets which received
the most new data from TESS ’s primary mission.

analysis with 10000 tuning steps and 10000 draws in order to gain statistically

significant values and errors for each mid-transit time.

After the time of each individual TESS and Kepler transit was determined,

the linear ephemeris based on the combined datasets was calculated. An uncertainty-

based requirement of σtransit ă 0.2hrs was found to remove the majority of the

questionable transits prior to further analysis (typically those which fell in data

gaps or were incomplete), however the remainder were viewed by eye to catch any

other transits which clearly had been fitted incorrectly. The remaining data points

were fit using three iterations of a weighted linear least-squares fit while varying

the initial transit time, T0, and period P . The resulting ephemerides were used

to generate an Observed-Calculated (O-C) plot for each object, providing a visual

check for odd behaviour, significant TTV signals or significant outliers. An example

O-C plot is shown in Figure 2.10 for KOI-13 b.

Because of the long data gap between the Kepler and TESS observation

windows, one slight concern was the introduction of cycle count errors, i.e. miscal-

culating the number of transits between the Kepler and TESS transits. To check

whether this was significant, the archival error in period derived from the Kepler

data alone was multiplied by the number of missing transit cycles between the final

Kepler transit and first TESS transit. In all cases this was found to result in a value

at least two orders of magnitude smaller than a whole transit cycle. As a result, the

ephemerides derived in this work are considered free of cycle count errors.

For any objects which did not display significant TTVs in their O-C diagrams

(labelled with ‘0’ in the TTV flag column of Table 6.1), an additional simultaneous
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Kepler/TESS MCMC fit was carried out on the entire light-curve in order to narrow

down the precision for these planets/candidates further. This was achieved by fitting

the model based on the stacked transit parameters to the entire dataset and allowing

t0, the mean out-of-transit value and the planetary period to vary. Once again,

1000 tuning steps and 5000 draws were used in this MCMC analysis, using pyMC3

[Salvatier et al., 2016] within exoplanet [Foreman-Mackey et al., 2020], following

three optimize iterations.

2.8.2 TTV modelling

The updated systems in this work included a number of Kepler multi-planet systems

known to exhibit significant TTVs, namely Kepler-18, Kepler-25, Kepler-51, Kepler-

89, and Kepler-396 [Cochran et al., 2011; Steffen et al., 2012, 2013a; Masuda, 2014;

Weiss et al., 2013; Xie, 2014]. Most of these systems were independently highlighted

as worthwhile systems for further TTV analysis by Goldberg et al. [2018] and/or

Jontof-Hutter et al. [2021]. In an attempt to update the TTV masses for planets

in these systems, additional TTV fitting was carried out. Midtransit times for

each planet in a system were simulated using TTVFast, a numerical integrator for

computing transit times given a set of planet masses and orbital parameters [Deck

et al., 2014]. With these simulations, an MCMC analysis explored the parameter

space to find the best-fit masses and orbits describing the observed transit times,

both before and after the addition of TESS datapoints.

Each transiting planet in a system was fit for mass, µi (in units of solar

masses), orbital period, Pi, orbital eccentricity and argument of pericenter (via ec-

centricity vectors hi “
?
ei cosωi and ki “

?
ei sinωi), and time of first transit, Ti,

where i “ 1, 2, ..., N and N is the number of planets. Coplanar orbits were assumed.

Guess parameters were estimated using a Levenberg-Marquardt least-squares algo-

rithm, and datapoints more than 4σ from this initial best-fit solution were marked

as outliers and removed from the data. MCMC analysis was then performed using

the affine invariant ensemble sampler emcee [Foreman-Mackey et al., 2012], with

100 walkers initialised in a tight ball around the guess parameters. Each walker was

run for 200,000 steps, and the first 50,000 steps were discarded as burn-in.

Following the procedure of Hadden and Lithwick [2016, 2017], both “default”

and “highmass” priors were considered, recognising that TTV fits are often chal-

lenged by mass-eccentricity degeneracies. Under the default run, mass was assigned

a logarithmic prior
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ppµq9

$

&

%

pµ` µ0q µ ě 0,

0 otherwise
(2.6)

with µ0 “ 3ˆ 10´7 to prevent divergence at µÑ 0, while eccentricity was assigned

a uniform prior

pph, kq9

$

&

%

ph2 ` k2q´1{2 ph2 ` k2q1{2 ă 0.9,

0 otherwise
(2.7)

with an upper cutoff at 0.9 to avoid the need for extremely small time steps in the

TTVFast integrations. For the high-mass run, mass was assigned a uniform prior

ppµq9

$

&

%

constant, µ ě 0,

0 otherwise
(2.8)

while eccentricity was assigned a logarithmic prior

pph, kq9

$

&

%

ph2 ` k2q´1{2p
?
h2 ` k2 ` e0q

´1 ph2 ` k2q1{2 ă 0.9,

0 otherwise
(2.9)

with e0 “ 10´3 to prevent divergence at e Ñ 0. In both runs, period and initial

transit time were assigned uniform priors.
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Chapter 3

Expanding the population of

young stars with Gaia

“The [stars] hung in the sky in much

the same way that bricks don’t”

— Douglas Adams, Adapted from

The Hitchhiker’s Guide to the

Galaxy

In order to search for new young transiting exoplanets, it is critically impor-

tant to have sufficient young stars to search around. Until very recently this has

been challenged by the lack of precise kinematic data for all but the brightest stars.

However, the launch of the Gaia satellite in 2018 has now allowed the community

to determine high precision positions and velocities for over a billion stars in the

Milky Way. This new kinematic data has revealed hundreds of thousands of addi-

tional stars which are associated with young stellar groups. This chapter presents

two related pieces of work focused on expanding the known population of young

stars, both through interacting directly with Gaia data to extend the lower-mass

population of several young stellar associations and through the assembly of a large

catalogue of known young stars from the literature.

Declaration - This chapter includes a partial reproduction of work reported

in the PhD 6-month report, submitted for examination in April 2019. However, none

of it has previously been published in the public domain. The analysis in section

3.2 was completed solely by the author, however the construction of young star list

discussed in section 3.3 was built in collaboration with Dr Ed Gillen at Queen Mary

University of London. In this case both Dr Gillen and the author were responsible
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for adding approximately half of the catalogues to the full list of young stars.

3.1 Motivation

A key challenge in the search for a significant population of young exoplanets is

the historical lack of a large enough sample of ‘bona-fide’ young stars around which

to search. Basic transit statistics suggest that only „0.47% of sun-like stars are

expected to host Hot Jupiters [Haswell, 2010], so considering for example that only

3076 stars exist in the extended BANYAN sample of stellar association members

(some of which were not even observed in TESS ’s primary mission), at most 15

such planets could be expected to be found around these young stars. Coupling this

with the increased stellar activity of host stars at such young ages, finding even sin-

gle planets within these associations becomes a significant challenge. Bouma et al.

[2019] recently attempted to remedy this situation by concatenating 13 different

catalogues of young stars and cluster members from literature, yielding 1,061,447

individual target stars. However, because of the mix of catalogues used and the

non-homogeneous membership criterion applied, this may include some stars that

are not truly young. Another promising method for expanding these target lists is

expanding cluster and association membership through proper- and galactic-motion

relationships. This has recently become much more reliable with the release of a

significant amount of high precision astrometric data from the Gaia satellite [Gaia

Collaboration et al., 2016b, 2018a]. Groups such as Damiani et al. [2019b] and

Lodieu et al. [2019] have led the way in such analyses, using astrometric measure-

ments from Gaia’s second data release (DR2; Gaia Collaboration et al. [2018a]) to

expand the Sco-OB2 and Hyades associations. These successes motivated the work

described here to expand the population of young stars around which to look for

young exoplanets, both through new kinematic analyses and through assembling

previous catalogues of young stars from literature.

3.2 Gaia Kinematic analyses

As stars in stellar associations and moving groups are typically closer, brighter and in

less dense environments than those in open clusters, they are particularly valuable

stars to search for planets around with TESS. While previous stellar association

analyses have been restricted to the brightest members observed to move across the

sky together, the high precision astrometry of the Gaia mission allows for studying

the potential membership of lower mass members too.
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Gaia data was accessed using the Gaia Archive1, using a series of Astronomy

Data Query Language [ADQL] searches to obtain data for all stars within certain

rectangular sky areas of interest. In order to only obtain stars with reliable three-

dimensional position, an additional condition that the ratio of parallax to its error

was >10 was imposed (thus ensuring that the relative error in distance was less

than 10%). In total, four stellar associations were analysed in this work, beginning

with the 10-15 Myr Sco-OB2 association to validate the astrometric methods, before

moving on to the β Pictoris Moving Group (BPMG; 20-26 Myr) and the Hyades

(„650 Myr) and Octans (30-40 Myr) stellar associations.

3.2.1 Method validation using Sco-OB2

The initial sky area surveyed was that around the Scorpius OB2 (Sco-OB2) stel-

lar association, chosen to allow direct comparison to the work of Damiani et al.

[2019b] and validate the expansion methods. Following the exact spatial selections

of Damiani et al. [2019b], three overlapping (RA,Dec) boxes were selected with

diagonal vertices of ([144.8o,221.1o],[-70.8o,-38.8o]),([203.2o,259.9o],[-61.6o,-20.9o]) &

([229.6o,257.1o],[-36.3o,-11.0o]), with an imposed coarse parallax (π) limit of π ą 5

mas (nominal distance d ă 200pc) to weed out stars further than any known mem-

bers of the Sco-OB2 association. This resulted in 271,395 unique Gaia DR2 sources.

Plotting a density plot for these sources in the proper motion plane (using a Gaus-

sian kernel density estimator with 100 boxes in each axis) yielded the interesting

result shown in Figure 3.1. Note that because most stellar associations are very

close to Earth and hence cover a large range of the sky, proper motion in galac-

tic coordinates (pm l cosb and pm b, measured from the sun as the origin)2 was

found to be be more reliable than Gaia’s natural equatorial coordinates (pm ra and

pm dec), which is a geocentric coordinate system with positions and velocities ef-

fectively based on the how the stars fall on the night sky. Hence because stellar

associations cover much smaller ranges of galactic space than they do of equatorial

space, the heliocentric galactic coordinate system allows different stellar associations

to be separated more clearly into different groups of proper motion space compared

to the equatorial coordinate system.

Two distinct regions of increased proper-motion density are immediately ob-

vious in Figure 3.1, as well as some underlying structure in these regions. While the

clustering centred around [pm l cosb,pm b] = [0,0] can be explained by the motion of

field stars, the second region centred around [-25, -10] is suggestive of a stellar asso-

1http://gea.esac.esa.int/archive/
2n.b. ‘l’ and ‘b’ here denote galactic longitude and latitude respectively
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Figure 3.1: Density plot of Gaia DR2 sources in the vicinity of the Sco-OB2 as-
sociation, presented in the galactic proper motion plane. Overplotted black dots
represent accepted Sco-OB2 members from de Zeeuw et al. [1999]’s Hipparcos ex-
amination of this association. The red selection polygon shows the region of proper
motion space selected for further narrowing of the sample. Note that for clarity the
top of the colour-map is capped at 250, but the true density at the centre of the
field star sample at [0,0] is over 400 (mas/yr)2.

ciation: a set of stars with common proper motion across the sky. Over-plotting the

proper motion plot with previously accepted Sco-OB2 members from the de Zeeuw

et al. [1999] survey suggests that this association may be the source of the second

over-density. In order to investigate this further, the sources within the red polygon

in Figure 3.1 (enclosing the likely Sco-OB2 members) were selected and a colour-

absolute magnitude diagram (CAMD) was constructed in density form, as shown in

Figure 3.2. Note that the vertices of the red polygon were chosen to encompass all

previously known members of the Sco-OB2 association (from de Zeeuw et al. [1999]),

following the method of Damiani et al. [2019b]. In order to retain data consistency,

the CAMD plotted in Figure 3.2 was based on Gaia G-band magnitudes and Gaia

BP - RP colours from Gaia DR2.
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Figure 3.2: Colour absolute magnitude diagram for the area around Sco-OB2. Of
particular interest is the significant bulge to the top right of the main sequence,
suggestive of stars on the pre-main sequence. The red polygon shows those stars
selected as the pre-main sequence sample for further analysis, tracing the area above
the main sequence at its base and extending far out above this to catch even the
youngest stars. Note that the colour-scale represents stellar density in units of
number of stars per mag2.

Colour-magnitude diagrams are useful probes of stellar evolution. Stars be-

gin their life as young protostars to the upper right of the main sequence, before

dropping onto the main sequence at the ‘zero-age main-sequence’ around the bright

yellow region of Figure 3.2. These stars evolve along the main sequence (up and

to the left along the CAMD) until they reach what is known as the ‘main-sequence

turn-off’ after having burnt the majority of their hydrogen. Observing the shape

of the overall CAMD can thus be a useful first-look at the age of a group of stars.

What is particularly interesting about this CAMD is the significant over-density (or

bulbous section) to the top right of the lower main sequence. This is suggestive of

a significant number of young, pre-main-sequence stars which are yet to begin their

lives on the main sequence. One can select the youngest stars by applying a sec-
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ond polygon selection, this time selecting the stars falling in this younger region to

the upper right of the main sequence. Because lower-mass stars evolve more slowly

than high-mass stars, most of these stars consist of smaller, lower-mass stars. Such

stars are much easier to find planets around than the large O and B-type stars of

the original stellar association members, largely because of the increased planet to

star mass/radius ratios and narrower, more common spectral lines. The result of

applying the applied additional cut is shown in Figure 3.3, in the form of a final

density plot in proper motion space. Following this cut, a total of 10,989 sources re-

mained, highlighting the wealth of potential lower-mass members within this stellar

association.

Figure 3.3: Final proper-motion diagram for Sco-OB2 candidate members, with
likely Sco-OB2 members from the de Zeeuw et al. [1999] survey overplotted as black
dots. Notable sub-structure is present in the lower-mass members, suggestive of a
denser region around [-24,-10] and a more diffuse cloud towards the bottom left.

There are several important observations that can be drawn from Figure

3.3. Firstly, there appears to be a finer structure to the distribution of stars in this

association in proper-motion space, suggesting that there may be denser regions

of star formation within the association. Damiani et al. [2019b] observed similar
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structures in their analysis and suggested the presence of a compact core with a

diffuse halo towards the bottom left of the association. Interestingly, a second

observation is that the previously accepted ‘bona-fide’ members of Sco-OB2 from

de Zeeuw et al. [1999] (overplotted as black points) do not appear to directly align

with the over-densities in the overall population, instead demonstrating a relatively

even distribution. Finally, and most importantly for this work, there appear to be

considerably more Gaia DR2 sources with similar proper motions than are accounted

for by the previously accepted de Zeeuw et al. [1999] members in this association

(10,989 stars in this sample, compared to 400 members in the de Zeeuw et al. [1999]

paper). These observations suggest that there is a lot to be learnt from further

analysis of stellar associations in the era of Gaia DR2, and that this dataset is likely

to allow the community to find considerable numbers of additional stars associated

with these groups (especially lower-mass stars). This has the potential to result

in much larger target lists for studies of young stars and their associated planets.

Meanwhile, the sample of 10,989 pre-main-sequence stars found in this work aligns

well with the „11,000 pre-main-sequence stars found by [Damiani et al., 2019b],

validating this method as an efficient and effective method of expanding the low-

mass population of stellar associations with Gaia.

Additional checks can be applied for membership of some stars by moving

from 2D proper-motion space to 3D Galactic velocity space. While the above proper-

motion cuts ensure that all selected stars have similar positions and motions across

the sky in two dimensions, it does not say anything about the respective distances

and radial velocities of these objects. As a simple first check distances were observed

for all Gaia DR2 sources using the Bailer-Jones et al. [2018] catalogue of Gaia

DR2 distances in order to cut out any particularly obvious outliers. However, for

objects with radial velocity measurements (and thus full 6D kinematics) it was

found more instructive to convert all spatial and velocity measurements into the

galactic coordinate system, thus gaining a homogeneous system of XYZ galactic

positions and corresponding UVW galactic velocities. It was then easy to plot

the objects in positional space with overlain galactic velocities as arrows in order

to immediately see any spurious signals. An example for this in galactic (Y,Z)

coordinates is shown in Figure 3.4 for Sco-OB2 members from the compiled list

with known radial velocities. As a first cut those members with positions or galactic

velocities greatly different to those around them can be removed as candidates,

while if more confidence is desired one can construct gaussian distributions for each

of the XYZUVW parameters and remove those over 3σ from the mean (similar to

the analysis completed by Gagné et al. [2018b]). However, this full method required
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Figure 3.4: Galactic position plot (YZ plane) of potential Sco-OB2 members with
overlaid VW galactic velocities. This diagram can be used to visually inspect how
well individual members fit within the kinematics of the wider population of the
Sco-OB2 association.

high-precision radial velocities to be known for all objects, which are simply not

known for many dimmer Gaia sources at present. Hence the simpler method of 2D

proper motion cuts is currently preferred for constructing wider target lists, at least

until more radial velocities become available in future data releases from the Gaia

Mission.

3.2.2 Application to Hyades, BPMG and Octans

Three further stellar groups were examined using the techniques described above

in this work: the Hyades open cluster, Beta Pictoris Moving Group (BPMG) and

Octans stellar association. All of these systems have cores with previously known

proper motions, distances and approximate positions, and hence in theory should

be able to be analysed like Sco-OB2 above.
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Figure 3.5: Proper motion density plots for the area around the Hyades open cluster
without distance limits imposed (left) and with distance limits of 37-57 pc (right).
Accepted Hyades members from the Röser et al. [2011] deep sky census of the Hyades
are overplotted in black, with the selection for the final Hyades sample shown with
the red polygon.

Hyades

Initial data for the Hyades was drawn from the Gaia archive by selecting stars with

right ascensions (RAs) between 40o and 80o and declinations (Decs) between -5o and

35o. The resulting galactic proper motion plot is shown in the left of Figure 3.5.

Unfortunately given that the Hyades is much more diffuse than younger associations

like Sco-OB2, the field star population in this region greatly outweighs the strength

of the over-densities near the Hyades cluster. In order to remove the bulk of the

surrounding field star population and focus on those members closest to (and most

likely to be associated with) the Hyades, distance limits were applied to the dataset

at ˘5, 10, and 20 pc either side of the literature distance between the Earth and the

Hyades („47 ˘ 4 pc) [Perryman et al., 1997; Gagné et al., 2018b]. Testing different

distance increments from this mean distance revealed that a distance cut of 10 pc

(i.e. d = 37-57 pc or 47 pc ˘ 2.5σ) either side of this value made the population

around the Hyades association clearest whilst reducing the effect of nearby field stars.

Applying these cuts and plotting the proper-motion diagram in galactic coordinates

as before revealed the distribution of proper motions shown in the right side of Figure

3.5. In this figure a defined offset region of increased density is clearly evident at

about [pm l cos b,pm b] = [100, 70] (clearly associated with the known Hyades

members from Röser et al. [2011] which are overplotted as black dots), alongside

the usual field star sample at [0,0]. Applying the proper-motion cuts shown by the

red polygon (essentially encompassing all previously known members and the over-
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density seen around [100,0]) resulted in the final sample of stars shown in proper

motion space in Figure 3.6. Alike to Sco-OB2, this final distribution clearly shows

additional substructure in the overall distribution of stars, not all of which is directly

related to the previously known population of the Hyades.

Figure 3.6: Proper-motion plot for final selection for Hyades members in galactic
coordinates. As before, the density of candidate members is represented in colour,
with the previously known Hyades members from [Röser et al., 2011] plotted as
black dots. Similar to Sco-OB2, a slight substructure can be seen in the lower-mass
members of the Hyades, not directly related to the distribution of previously con-
firmed members. Note however the decreased density overall (and correspondingly
large spread in proper motion) compared to the other younger associations studied
here.

Unfortunately, unlike the young („10-15 Myr) Sco-OB2 association, the com-

paratively old age („650 Myr) of the Hyades association means that the shape of

the association’s colour-magnitude diagram (see Figure 3.7) is no longer useful to

siphon off the youngest stars, as almost all stars in the association now exist on

the main sequence of their evolution. This means that other methods are required

to determine which of the stars in the association are youngest and smallest, and

that more care may be needed to weed out additional old interlopers with similar
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Figure 3.7: Final colour-absolute magnitude diagram for Hyades cluster. As in
Figure 3.2, the colour-bar has units of sources per mag2.

kinematics. Note that since the completion of this work a more in-depth census of

the Hyades association has been completed by Lodieu et al. [2019], so a full target

list from the present analysis is not included here.

BPMG and 3D structure of stellar associations

In the case of the Beta-Pic Moving Group (BPMG) the results were less promising.

The particularly young age of this association initially made this group a promising

candidate for further analysis. However, because of the proximity of this moving

group and its correspondingly large spatial extent on the sky, it was not possible

to constrain it to a small enough area of the sky (or indeed area of proper motion

space) to allow significant cuts to be made through the above graphical membership

method. This challenge is well illustrated by Figure 3.8, showing the spread in

galactic proper motion for the BPMG association. Particularly challenging is the

fact that the current members of this association actually encircle the field star

population, making it implausible to remove them without further information. For

this cluster a membership method based on the full galactic XYZ positions and

UVW velocities is recommended instead.
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Figure 3.8: Proper-motion plot for area around Beta-Pic Moving Group (BPMG).
Previously accepted members of BPMG from Gagné et al. [2018b] are plotted as
black dots, with the number of sources per pmas{yrq2 represented in colour. In this
case the spread of the group is so large and diffuse (and situated either side of the
main field star population at [0,0]) that the graphical methods used elsewhere are
no longer appropriate for use.

Nonetheless, the challenge of BPMG spurred an interesting look into the 3D

galactic structure of known associations, at least for those members with measured

radial velocity data. Beginning with target lists from the BANYAN sample of stellar

associations [Gagné et al., 2018b], all bona-fide members were cross-matched with

their Gaia counterparts in order to find locations, proper motions, distances (from

the Bailer-Jones et al. [2018] catalogue) and, where possible, radial velocities for

these targets. All those with full information were then converted to 6-dimensional

galactic XYZ UVW space in order to investigate the comparative positions and ve-

locities of these stellar associations. An example plot of the distribution of galactic

velocities (UVW) is shown in Figure 3.9. This analysis suggested that particu-

larly well-separated associations to expand would be the Ursa Major Cluster, Coma

Berenices, Octans and Taurus-Auriga associations (labelled respectively as UMA,

CBER, OCT and TAU in Figure 3.9), as well as the Hyades which has already been

examined.
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Figure 3.9: 3D velocity overview (in galactic UVW coordinates) of all ‘bona-fide’
stellar association members from Gagné et al. [2018b] with radial velocities mea-
sured by Gaia. Individual clusters are represented by different colours and shapes,
according to the legend on the right. The abbreviated names for each cluster are
taken directly from Gagné et al. [2018b] and explained in Table 4.1.

Octans

Of these associations, Octans is considered the most interesting for planet searches,

being 35˘5 Myr in age [Gagné et al., 2018b], right in the middle of a highly dynamic

period of exoplanet evolution (0-100 Myr). In order to capture stars in the region of

Octans, initial sky position boxes with diagonal vertices of ([50o,-56o] to [111.25o,-

20o]) and ([0o,-900],[360o,-56o]) were queried from the Gaia Archive, selecting all

stars with parallaxes greater than π ą 4. These stars were then further restricted

to those nearest in proper-motion by imposing cuts of -40 ď pmra ă 40 and -30 ď

pmdec ď 50. The remaining stars were plotted on a galactic proper-motion diagram,

yielding the distribution of stars shown in Figure 3.10.

Similar to Sco-OB2 and the Hyades, the known Octans members displayed a

distinct offset from the field star population at [0,0], centred around approximately

[pm l cosb, pm b] = [-20,-10] mas/yr. Performing the selection cut shown by the red

polygon on Figure 3.10 resulted in the overall proper motion distribution pictured
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Figure 3.10: Galactic proper-motion plot for stars in the region of the Octans stellar
association. Previously accepted members of the association from Gagné et al.
[2018b] are plotted as black dots, with the density of stars illustrated in colour. The
red polygon illustrates the region of proper motion space taken forward for further
analysis, situated around the previously known members.

in Figure 3.11. However, this distribution appeared to have a suspiciously large

number of distinct populations within it. This peculiarity was explored further by

converting the data to Galactic (XYZ) coordinates for position, and overplotting

the galactic position for not only the Octans association, but also other nearby

stellar associations from the BANYAN catalogue [Gagné et al., 2018b], as pictured

in Figure 3.12.

As can clearly be seen in Figures 3.9 and 3.12, the nearby IC239, IC2602,

EPSC and LCC associations all have members near Octans both in galactic po-

sition and velocity, providing explanation for some of the densest regions in this

vicinity. Nonetheless, there still appears to be a significant region of the galactic

positional space filled primarily with known Octans members. Selecting these mem-

bers explicitly by capturing all stars within the area of the red polygon in Figure

3.12 resulted in 14,050 individual stars, with the proper-motion distribution shown
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Figure 3.11: Proper motion plot for the region within the selection polygon. Colours
and black dots have the same meaning as in Figure 3.10. Multiple over-densities
appear to be present in proper-motion space, warranting further investigation.

in Figure 3.13. Once again, previously known members of the Octans association

(from Gagné et al. [2018b] and [Murphy and Lawson, 2015]) are overplotted as black

dots. Similar to the case of the Hyades and Sco-OB2, the new Gaia data shows in-

creased substructure within the prospective association members which is not seen

nearly as significantly in the previously known population. The colour-absolute

magnitude diagram for the remaining Octans candidates is pictured in Figure 3.14.

Unfortunately because Octans is older than Sco-OB2, clear pre-main sequence stars

cannot easily be seen in this case, so other independent signs of youth will be re-

quired to confirm the youth of these members. Additional statistical cuts with limits

of mean ˘ 3σ from the average galactic (XYZ) position and (UVW) velocities of

the association were briefly trialled as an additional method to cut down this list

further, but given the odd substructure and potential extended filamentary strings

of the association, the graphical method is considered more reliable than arbitrary

mean/standard deviation cuts in this instance.

The construction of this target list thus increases the number of stars asso-
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Figure 3.12: Galactic YZ position plot for stars within selection polygon. Stellar
density is represented as the background colour, with previously known members of
Lower-Centaurs Crux (LCC), ε Chamaeleontis (EPSC), IC2602, IC239 and Octans
(OCT) overplotted as blue, black, green, white and red dots respectively. The final
positional selection for Octans members is shown by the red polygon, chosen to
encompass all previously known members of Octans from Gagné et al. [2018b].

ciated with the Octans association by a hundred-fold (from 138 to 14,050), which

evidences the power of Gaia data for significantly expanding the lower-mass popu-

lation of stars associated with stellar associations. Such an expansion of members

represents a very important step forward in the search for young exoplanets. As

can be seen in Figure 3.15, the luminosity distribution of the final sample of 14,050

targets is more uniform than the original distribution and much more closely resem-

bles that expected from the known luminosity and initial mass functions of stars

[Salpeter, 1955; Chabrier, 2003]. The full catalogue of these candidate members of

the Octans association is available online.3

The effectiveness of these relatively simple graphical methods is promising

for expanding the population of young exoplanets in coming years. However, each of

these young star candidates still needs an independent sign of youth before it can be

accepted as a ‘bona-fide’ member of a stellar association. While the position of stars

on the colour-absolute magnitude diagram can give this in the youngest clusters (as

was seen for Sco-OB2), for most stars between 50-1000 Myr, this independent sign of

youth is currently the biggest bottle-neck in expanding the known sample of young

stars (especially since many confirmation methods require individual spectroscopic

follow-up). Given this bottle-neck it is currently considered wise to retain all high-

3https://warwick.ac.uk/fac/sci/physics/research/astro/people/matthewbattley/Final Octans
Data.csv
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Figure 3.13: Final distribution of new candidate members of the Octans association
in galactic proper-motion space. Black dots and background colours are as explained
in Figure 3.10. Clear substructure is seen in the density of stars over the region of
the association.

likelihood young candidates for initial exoplanet searches, as confirming the youth

of any potential exoplanet signals on a case-by-case basis is significantly faster than

waiting on independent signs of youth for every individual candidate member of a

stellar association. Should any of these members host exoplanets but be proven old

in follow-up analyses, they are still considered interesting given their co-location

(and co-moving velocities) with young birth environments like stellar associations.

One particularly promising avenue would be if the community can find new signs of

youth in large surveys such as all-sky photometric or astrometric space-missions, as

this has the potential to rapidly increase the number of bona-fide young stars. Such

signs of youth will also be useful to determine the true membership of individual

cluster members which reside near to multiple stellar associations like those at the

upper edge of the Octans selection polygon in Figure 3.12.
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Figure 3.14: Final colour-absolute magnitude diagram for candidate members of the
Octans association found in this analysis. Colour represents the density of stars, in
units of number of sources per mag2.

Figure 3.15: Distribution of Gaia absolute G-band magnitudes for the previously
known members of the Octans association from de Zeeuw et al. [1999] (left) and the
final members assembled in this work (right).
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3.3 Construction of Young Star Target List

Of course, stellar associations are only one possible environment where young stars

can be found. Large populations of young stars have also been found in young

open clusters, dense star-forming regions and newly discovered stellar streams. The

importance of these young stars to exoplanet formation and system evolution has

prompted a significant drive by the community to extend the known population of

young stars in recent years. Indeed shortly after the above exploratory research was

undertaken, the CDIPS catalogue of Bouma et al. [2019] was released, collecting

a wide assembly of past studies of clusters and associations in order to search for

exoplanets around them. Based on a combination of large homogeneous catalogues

of co-moving stars and smaller catalogues detailing individual cluster and association

membership, this list highlighted the benefit of compiling existing catalogues of

young stars in order to search for new young exoplanets. However, given the rate

at which new cluster analyses are expanding, this list was already out of date by

the time it was published, prompting the author alongside Dr Ed Gillen at Queen

Mary University of London (formerly of the University of Cambridge), to begin the

construction of a new, constantly updating, young star list.

3.3.1 Included catalogues

This list used the CDIPS target list compiled by Bouma et al. [2019] at its base, col-

lecting four large catalogues [Cantat-Gaudin et al., 2018; Gaia Collaboration et al.,

2018b; Kharchenko et al., 2013; Dias et al., 2014] and nine smaller catalogues of

moving groups and stellar associations [Gagné et al., 2018b,c; Gagné and Faherty,

2018; Kraus et al., 2014; Röser et al., 2011; Bell et al., 2017; Rizzuto et al., 2011;

Oh et al., 2017; Zari et al., 2019]. These catalogues included stars found through

the Gaia DR2 data via an unsupervised membership assignment algorithm [Cantat-

Gaudin et al., 2018], membership of well-studied open clusters [Gaia Collaboration

et al., 2018b] and the full BANYAN catalogue of stellar associations [Gagné et al.,

2018b,c; Gagné and Faherty, 2018] which was used to test the performance of the

main light-curve detrending pipeline created in this work (see Section 2.6 and Chap-

ter 4). An in-depth overview of these catalogues is given in Bouma et al. [2019]. In

total, the CDIPS catalogue consists of 1,061,447 unique stars (with the sky distri-

bution pictured in Figure 3.16), representing a significant population upon which to

build a wider target list.

A further 19 catalogues were added to the young star catalogue by Dr Gillen

and the author, yielding a total of 32 catalogues in the young stars list’s current form.
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Figure 3.16: CDIPS catalogue sky distribution with overplotted pointing for the
TESS primary mission. Note that the eventual pointings for sectors 14-16 and
24-26 in the Northern Hemisphere were eventually shifted further north to avoid
scattered light effects from the Earth and Moon. Updated TESS pointings for the
primary mission can be seen in Figure 1.11. Figure reproduced from Bouma et al.
[2019].

These catalogues represent a wide range of analyses from new and updated large

stellar cluster surveys [e.g. Cantat-Gaudin et al., 2020] to updated membership lists

for individual clusters/associations [e.g. Damiani et al., 2019b; Dickson-Vandervelde

et al., 2021], so a brief description of each is given here.

Six new catalogues of wider cluster surveys were added during this update.

The largest of these was completed by Cantat-Gaudin et al. [2020], who used a set

of objects with well-defined parameters to train an artificial neural network and

‘paint a portrait’ of the structure of the galactic disk out to „4 kpc. This resulted

in reliable parameters and fully updated membership lists for 1867 clusters. Mean-

while Kounkel and Covey [2019] used an alternative convolutional neural network

trained on the cluster populations from Cantat-Gaudin et al. [2018] to reveal new

stellar streams and small clusters to a much wider extent in the Milky Way, rep-

resenting 288,370 sources in total. Meingast et al. [2021] found similar ‘coronae’

of coeval stars linked to ten nearby open clusters (α Per, Blanco 1, IC 2602, IC

2391, Messier 39, NGC 2451A, NGC 2516, NGC 2547, Platais 9 and the Pleiades)

by considering bulk cluster velocities and deconvolving the spatial distribution of

each cluster with a Gaussian mixture model. The final list from this source con-

sists of 7925 associated young stars („30-300 Myr) which extend over 100pc from

the cores of the clusters. On the other hand, Kuhn et al. [2021] presented „120,000

candidate young stellar objects in their Spitzer/IRAC Candidate YSO (SPICY) cat-
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alogue, using a random forest implementation with careful removal of background

contaminants based mostly on IRAC photometry. The two final larger lists consist of

TESS-specific catalogues, one assembled by Andrew Mann of Columbia University

entitled “Searching For Infant Exoplanets In Young Moving Groups” in the first

TESS investigator program4, and the other composed of all TESS short-cadence

targets from TESS ’s primary mission (S1-26) which have ą50% likelihood of being

young cluster/association members according to the BANYAN Σ tool [Gagné et al.,

2018b], as accessed through the tess-infos tool5 created by Dr Max Guenther and

Adina Feinstein.

The remaining catalogues all focus on single clusters, associations or regions

of the sky. The largest of these was constructed by Cantat-Gaudin et al. [2019a]

and Cantat-Gaudin et al. [2019b], which together provide membership lists for 48

new open clusters and distinct kinematic groups in the direction of Vela Puppis

and Perseus respectively. In order to build these lists they used a “coarse to fine”

selection method, beginning with density-based partitioning of the sky in these re-

gions and then moving on to a gaussian mixture model in proper motion space to

separate individual open clusters. Finally they applied an unsupervised assignment

method to select new candidates, which are validated using colour-absolute magni-

tude diagrams to probe the youth of stars. The new open clusters found in these

works challenge previous claims by groups like Kharchenko et al. [2013] that the

community already had a complete census of clusters out to 1.8 kpc, and further

demonstrate how powerful the new astrometric data from Gaia is for mapping the

galaxy.

Meanwhile Damiani et al. [2019b] completed an extensive reanalysis of the

Sco-OB2 stellar association, using a combination of similar proper motions, paral-

laxes and colour absolute magnitude diagrams, as discussed in chapter 2 and sec-

tion 3.2. This resulted in them finding extended membership lists of nearly 11,000

pre-main sequence and „3600 main sequence stars with minimal field-star contam-

ination, with the sky distribution illustrated in Figure 3.17.

Three further catalogues related to the BANYAN tool of Gagné et al. [2018c]

were also added at this stage. In the first of these Gagné et al. [2018a] built a

model within the BANYAN tool for the 90Myr Volans Carina association originally

identified by Oh et al. [2017] and used this to add 46 candidate members to the

association. Gagné et al. [2020] then used similar techniques to identify 500 new

members in the new µ Tau association, allowing them to define the age as 62˘7

4https://heasarc.gsfc.nasa.gov/docs/tess/data/approved-programs/cycle1/G011175.txt
5https://github.com/MNGuenther/tess infos
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Figure 3.17: Spatial density overview of Sco-OB2 from Damiani 2019. The colour-
bar across the top axis represents the number of stars per square degree. Similar
to Figure 3.3, black dots represent ‘bona-fide’ members of the association from
de Zeeuw et al. [1999]. The large red dashed rectangles represent the boundaries of
the Upper Sco-Cen (USC), Upper Centaurus-Lupus (UCL) and Lower Centaurus-
Crux (LCC) regions.

Myr. Meanwhile Zuckerman [2019] compiled members for the 40-50 Myr Argus

association from literature and made final membership cuts made by considering

UVW velocities and youth indicators such as lithium abundance and the position

of stars on a colour-magnitude diagram. The Volans Carina and Argus associations

are now included within the official BANYAN tool.6

The final set of catalogues represent recent updates to very young star form-

ing regions, with the release of Gaia DR2 allowing significant updates to the popula-

tion of known stars with ages ă„10 Myr. Specifically, Galli et al. [2020] and Luhman

[2020] independently completed new censuses of the 1-3 Myr Lupus Clouds, finding

137 and 178 high-probability members respectively, based on a combination of Gaia

kinematic and photometric classifications. Luhman [2020] claims that this catalogue

is complete for all stars with spectral types earlier than M7. Meanwhile Dickson-

Vandervelde et al. [2021] and Luhman [2018] used similar kinematic techniques and

colour-magnitude diagram cuts to update and extend the membership of the 3-5 Myr

η Cha (36 members; 20 candidates) and 3-4 Myr Taurus star forming regions (438

members) respectively. Luhman and Esplin [2020] went one step further in their

updated census of Upper Scorpius (part of the larger Sco-OB2 association with an

6http://www.exoplanetes.umontreal.ca/banyan/banyansigma.php
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age of „10 Myr), gaining spectra of stars and brown dwarfs within this region to in-

dependently confirm the youth and membership of 1761 members. Finally, Kounkel

et al. [2018] presented two catalogues (one using APOGEE-2 data and one using

Gaia DR2 data) formed from using a hierarchical clustering algorithm to look for

6D structure in Orion and found several kinematically distinct groups within Orion.

This further illustrates the fact that Gaia DR2 is not only giving the opportunity

to add more members to these associations, but also define the internal structure of

star forming regions and associations.

All of the catalogues discussed above have now been added to the young

stars list compiled by Dr Gillen and the author. In order to combine all of the

above catalogues into a single catalogue, each catalogue was cross-matched with

Gaia DR2 and version 8 of the TESS Input catalogue (using the methods described

in section 2.1.2) and then concatenated into a uniform list. Where stars were present

in multiple catalogues, only one unique entry was retained, but information on all

catalogues it is present in was retained for later analysis.

3.3.2 Overview of current young star list

Figure 3.18: Overview of ages and sky distribution for assembled young stars list.
Ages can be seen to vary from very young (ă10 Myr) to over 1 Gyr for some of
the older clusters in the largest catalogues. Stars without well-defined ages (but
associated with young regions) are plotted in grey. Image Credit: Dr Ed Gillen.

The catalogue in its current form consists of 3,036,992 unique objects,

representing an unprecedented population of young stars around which to search

for planets. Information included in the catalogue includes TIC and Gaia DR2 IDs
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for all stars (except in rare cases when one or other of these are not known), full

kinematic measurements, TESS and Gaia magnitudes and membership probabilities

for each cluster/association. An overview of the sky and age distribution of the

current catalogue can be seen in Figure 3.18, with the magnitudes plotted in Figure

3.19. While the skew towards relatively dim stars (naturally common for such young

stars) makes it most useful for photometric searches and statistical validation, there

still remain 400,753 stars with luminosities of Gmag ď 13.5 which would be ideal

candidates for radial velocity searches/confirmation. Meanwhile the stellar radii and

mass distributions for young stars in this sample are shown in Figure 3.20. Based

on the population of previous exoplanetary discoveries and typical exoplanet sizes,7

the most useful stars will be those with radii less than five stellar radii (R˚ ă 5R@)

and/or masses less than approximately 3 stellar masses (M˚ ă 3M@), which forms

the bulk of this young star list.
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Figure 3.19: Overview of Gaia G magnitudes in all 3,036,992 stars in the assembled
young star list.

This catalogue is already serving as the base for ongoing photometric searches

for young exoplanets by academic and citizen scientists, as well as forming the base

of TESS Cycle 4 & 5 proposals led by Dr Ed Gillen. Note that because of these

ongoing searches the full catalogue is not reproduced in full here, but can be made

available in small collaborations by contacting the author.

7According to data from the NASA Exoplanet Archive;
https://exoplanetarchive.ipac.caltech.edu/
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Figure 3.20: Overview of stellar radii and masses for all 3,036,992 stars in the
assembled young star list.

3.4 Summary

One significant challenge in the search for new young exoplanet has been the tradi-

tional lack of significant numbers of bona-fide young stars. In an attempt to address

this challenge, in this chapter two independent methods have been used to assemble

new large lists of young stars around which to search for young exoplanets. Both

of these methods draw upon the excellent kinematic precision of the Gaia satellite

in order to determine which stars are associated with known groups of young stars,

whether they are stellar associations, young open clusters or diffuse stellar streams.

The first of these methods involved interacting with Gaia data directly in

order to search for smaller stars which are associated with the previously known

massive star populations in stellar associations. The utilised graphical kinematic

methods were validated in an analysis of the Sco-OB2 association by comparison to

similar work completed by Damiani et al. [2019b] before being used to expand the

population of candidate young stars in the Hyades and Octans associations. In the

case of Octans this increased the number of candidate members of this association

by ten-fold (to 14,050), greatly improving the likelihood that planets could be found

in this association. A similar analysis was attempted for the Beta-Pic moving group,

but found to be implausible due to the large spatial extent of the nearby association.

The second method focused on using catalogue-matching techniques to make

use of the wide array of young star analyses recently completed by the community,

collecting a total of 32 catalogues of young stars in stellar associations, clusters, stel-

lar streams and star forming regions into one homogeneous catalogue. The current

catalogue consists of 3,036,992 stars and is forming the base of significant young

exoplanet searches in TESS data and beyond. Continuing kinematic analyses being
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undertaken by the community will allow this list to continue to grow in the future.

The combination of these two methods has resulted in a sufficiently large

population of young stars to make dedicated searches for new young exoplanets

worthwhile, which forms the focus of the majority of the rest of this thesis.
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Chapter 4

A search for young exoplanets

in sectors 1-5 of the TESS

Full-Frame Images

“Once confined to fantasy and

science fiction, time travel is now

simply an engineering problem”

— Michio Kaku

Despite the wealth of knowledge humanity has gained about planets in the

solar system and beyond, there are still serious questions to be answered about how

they formed in the first place. As human time travel is unfortunately constrained to

the forwards direction, learning more about the past is best achieved by observing

other planetary systems still in their infancy. With the Gaia satellite providing

a dramatic increase in the number of known young stars (as discussed in Chapter

3) the time is now ripe for wider searches for new young exoplanets. However,

finding such young exoplanets is significantly complicated by the fast rotation and

complex activity of their young host stars, which are often not well handled by

state-of-the-art automatic pipelines. In order to circumvent this problem, a new

young-star specific detrending method has been developed by the author, which

was described in detail in Section 2.6. This chapter presents the application of this

pipeline to young stars in the first five sectors of young star data from the TESS

mission. While no new exoplanet candidate signals were found in this initial search,

interesting results included the recovery of all 2min TOIs known around young stars

in sectors 1-5 (based solely on the 30min data), the recovery of the young exoplanets
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DS Tuc A b and AU Mic b, a number of young eclipsing binaries and a wide array

of interesting rotation. A sensitivity analysis is also presented for the entire sample,

showing how recovery of injected planets varied with both depth and period for

each individual target. This work represents a pilot study for wider young planet

searches still being undertaken by the author.

A brief motivation for this work is given in Section 4.1, placing the work in

context of the wider search for young exoplanets. Section 4.2 discusses the young

star target selection, observations and the choice of a FFI pipeline, before describing

the methods used to clean additional systematics from the TESS data, detrend stel-

lar variability, search for transits and inject model transits for a sensitivity analysis.

Section 4.3 then discusses important results seen as a result of the developed de-

trending techniques, including the recovery of known young exoplanets, TOIs, and

eclipsing binaries, followed by an overview of the sorts of rotation and activity seen

in this sample and the results of the conducted sensitivity analysis. The implications

of these results for the future of exoplanetary searches around young stars are then

discussed in detail in Section 4.4, before a summary and conclusion in Section 4.5.

Declaration - The following chapter is a partial reproduction of the paper ‘A

search for young exoplanets in Sectors 1-5 of the TESS Full-Frame-Images’ [Battley

et al., 2020], published in the Monthly Notices of the Royal Astronomical Society in

August 2020. All work in this chapter was carried out by the author, with co-authors

to the paper providing high level guidance and simple proof-reading.

4.1 Motivation

As discussed in section 1.4, discovering young exoplanets with well-defined ages is

crucial to answer key questions about the formation and early evolution of exoplan-

etary systems. Increasing the population of young exoplanets not only improves our

knowledge of their demographics, but also gives important new systems to probe

such evolutionary processes as atmospheric loss [Owen, 2019], disk migration [Nel-

son, 2018] and dynamical interactions [Ida and Lin, 2010]. However, while state-

of-the-art detrending methods such as those discussed in section 2.5 have been ex-

tremely effective at discovering new exoplanets around older stars, they still struggle

to disassociate true transiting signals from the complex activity of young host stars.

This was particularly well illustrated by Hippke et al. [2019] in the construction of

their WOTAN tool, where only 35% of 0.5RJup exoplanet signals injected into a

sample of 316 young stars were recovered (irrespective of the detrending method

chosen), compared to an almost 100% recovery rate for similar planets around less
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noisy stars. Interestingly however, each of the methods tested recovered slightly

different populations of the injected signals, so combining all of the tested meth-

ods increased the percentage of recovered planets to 43.8%. This discrepancy was

further highlighted by Rodenbeck et al. [2018], who showed that different detrend-

ing methods resulted in quite different conclusions when considering the potential

super-moon around Kepler-1625 b. It is thus clear that not only is there a need

for new detrending methods specifically focused on young stars, but also that there

is a distinct benefit of using multiple detrending methods on the same data-set,

thus providing dual motivations for the construction of an alternative detrending

method in this work. The development and current design of such a detrending

pipeline is described in detail in section 2.6, with its first application to the TESS

data discussed for the remainder of this chapter.

4.2 Data Preparation

4.2.1 Target Selection

While stellar association membership is now being expanded on a cluster by cluster

basis thanks to the increased astrometric precision of the Gaia satellite [Gaia Col-

laboration et al., 2016b, 2018a] (see for example Kuhn et al. [2019]; Damiani et al.

[2019b]; Zari et al. [2019] alongside the wider literature review in section 1.4.2), a

key list of ‘bona-fide’ stellar association members were assembled by Gagné et al.

[2018b] during preparation of the BANYAN Σ Bayesian cluster membership tool.

Gagné et al. [2018b] consider a star to be a ‘bona-fide’ member if it has galactic XYZ

UVW values consistent with those known for a given stellar association and exhibits

an independent sign of youth. Such signs can include mid-infrared excess, G-J vs

GALEX NUV-G colours consistent with youth, X-ray emission with HR1 ě -0.15,

lithium absorption above 100 mArmstrongs or a compatible luminosity class [Gagné

et al., 2018c]. Combining Gagné et al. [2018b]’s initial census of bona-fide/high

probability stellar association members with new high-probability members added

in the two following BANYAN Σ papers [Gagné et al., 2018c; Gagné and Faherty,

2018] yielded a total of 2977 objects spread over the 27 nearest known young stel-

lar associations. Gagné et al. [2018a] later expanded the BANYAN Σ tool to also

include the two new Argus [Zuckerman, 2019] and Volans-Carina associations using

the same membership criteria, so these were also added to the initial target list, to

give the final distribution of 3076 young stars in stellar associations illustrated in

Figure 4.1. For clarity an association by association breakdown of targets in the

original BANYAN sample and the final sample of the sector 1-5 targets analysed in
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Figure 4.1: Equatorial sky distribution of initial young star sample, based on the
bona-fide and high probability members of the 29 nearest stellar associations built
into the BANYAN Σ tool. The entire sample is shown in the background with the
256 sector 1-5 targets analysed in this work presented in solid colour. Abbreviations
after those chosen in Gagné et al. [2018b], which are also explained in Table 4.1.

this work is presented in Table 4.1. This census is the most extensive assemblage

of bona-fide and high probability stellar association members with a common mem-

bership criterion at the time of this study, and hence represents a valuable starting

place for the search for exoplanets around young stars in this work.

The various BANYAN survey results were combined into a single tabular

target list using the TOPCAT table handling software [Taylor, 2005]. This list was

then cross-matched with version 8 of the TESS input catalogue (TIC) [Stassun et al.,

2019] using a 3 arcsecond radius. The Web TESS Viewing Tool1 on the NASA TESS

website was used to determine which sector each target would be observed in and

in turn compile target lists for each individual sector. Of the original 3076 objects,

1832 of them were forecast to be observed in TESS ’s first year of observations, with

the breakdown of sources to be viewed in each Southern Hemisphere sector outlined

in Table 4.2. For this work, only those viewed in Sectors 1 to 5 were considered.

1https://heasarc.gsfc.nasa.gov/cgi-bin/tess/webtess/wtv.py

110



Table 4.1: Breakdown of association distribution for the complete BANYAN sample
(column 3) and final set of targets analysed in this work (column 4). The final targets
consist those targets in Sectors 1-5 with available 30min-cadence light-curves from
the Oelkers and Stassun [2018] pipeline. Association abbreviations are based on
those presented in Gagné et al. [2018b] with the addition of ARGUS for the Argus
association and VCA for the Volans-Carina Association.

Association Abbreviation BANYAN Targets S1-S5 Analysed Targets

118 Tau 118TAU 12 0
AB Doradus ABDMG 298 55

Argus ARGUS 40 0
β Pictoris BPMG 135 13

Carina CAR 85 19
Carina-Near CARN 110 18

Coma Berenices CBER 76 0
Columba COL 107 43

Corona Australis CRA 14 0
ε Chamaeleontis EPSC 42 0
η Chamaeleontis ETAC 16 0

Hyades HYA 241 7
IC2391 IC2391 14 0
IC2602 IC2602 16 0

Lower Centaurus Crux LCC 310 0
Octans OCT 101 40

Platais 8 PL8 32 0
Pleiades PLE 204 0
ρ Ophiuchi ROPH 182 0

Taurus-Auriga TAU 178 1
Tucana-Horologium THA 92 49

32 Orionis THOR 46 0
TW Hya TWA 50 0

Upper Centaurus Lupus UCL 410 0
Upper Corona Australis UCRA 16 0

Ursa major UMA 13 0
Upper Scorpius USCO 161 0
Volans-Carina VCA 59 0
χ Fornacis XFOR 16 11

Total 3076 256
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Table 4.2: Overview of BANYAN bona-fide members of stellar associations viewed
in the first year of TESS observations. Note that sources in the overlapping regions
of the TESS sectors, such as those in the continuous viewing zone, are counted
multiple times.

Sector Number of Sources observed

1 118
2 130
3 124
4 186
5 336
6 258
7 163
8 166
9 272
10 399
11 750
12 396
13 200

4.2.2 Observations

Sectors 1-5 studied in this work were observed between 25 July and 11 December

2018. For these sectors, two main data products are available: 2min-cadence pri-

mary light-curves and 30min cadence light-curves extracted from the TESS Full

Frame Image data. While the primary 2min data products are very powerful for

the main TESS mission, because of the limited data transfer rates of the TESS

primary mission far from all of the stars in TESS ’s field of view will have 2min

light-curves generated. In addition, because of the increased activity and rotation

rate of young stars discussed above, the standard detrending methods built for the

2min light-curves have difficulty flattening the light-curves for transit searches, and

may even introduce confusing additional artefacts as a result of detrending [Hippke

et al., 2019]. Because of the greater coverage offered by the 30min cadence data

and concerns about detrending artefacts, the 30min cadence data were thus chosen

for the initial transit search, with the simple aperture photometery (SAP) 2min

cadence light-curves (where available) used as a secondary check. As discussed in

Section 2.2, a number of different sources of 30min cadence data extraction currently

exist, however given the increased availability and comparatively clean light-curves

provided by the DIA pipeline of Oelkers and Stassun [Oelkers and Stassun, 2018,

2019] at the time of writing, this pipeline was chosen to extract light-curves from

the TESS FFIs in this work, resulting in light-curves for 256 individual objects.

112



An additional challenge common to both the 2min and 30min cadence data is

the reasonably large pixels of the TESS focal plane [Vanderspek et al., 2018], which

leads to significant blending of stars in crowded regions. This precludes the use of

TESS photometry alone for confirming transits in the dense centres of young clusters

without confirmation from higher resolution instruments such as the Spitzer Space

Telescope [Werner et al., 2004] or the cameras of the Next Generation Transit Survey

- NGTS [Wheatley et al., 2013]. The power of NGTS ’s comparative resolution

for identifying the true photometric source for TESS objects is well-illustrated by

Jackman et al. [2019] in the discovery of NGTS-7Ab. However, for initial searches,

the volume, consistent sky coverage and quality the TESS light-curves make them

the optimum solution for this work.

4.2.3 Removal of additional systematics from 30min light-curves

Unlike the 2min PDCSAP light-curves retrieved from MAST, the 30min light-curves

supplied by Oelkers and Stassun [2019] have not undergone the in-depth quality anal-

ysis completed by the SPOC pipeline, and as such still include some less trustworthy

epochs of increased pointing jitter, regular spacecraft momentum dumps and known

data anomalies. It was thus necessary to remove these systematics before activity

detrending and transit searches could begin.

The first step undertaken was to cut any epochs where fine pointing was

known to have been lost, or other spacecraft anomalies affected the data. This was

achieved by consulting the TESS data release notes2 for each sector and primarily

affected sectors 1, 3 and 4. In Sector 1 a period of anomalously high pointing

jitter was seen between approximately TJD 1347-1349 due to problems with the

fine-pointing calibration. This was observed to be particularly bad between TJD

1348-1349.29, so all epochs between these times were masked from the analysis.

Similarly in sector 3 a few experiments on the attitude control system (ACS) were

undertaken by the TESS team, dramatically increasing the scatter at these times.

As a result, only data between TJD 1385.90-1395.48 in orbit 13 and TJD 1396.61-

1406.29 in orbit 14 are scientifically useful, and all data at other epochs in this

sector was cut. Sector 4 on the other hand was plagued by an instrument anomaly

between TJD 1418.54 and TJD 1421.21, where communication was lost between

the instrument and satellite. As a result, no data or telemetry was collected for

this period, and some systematic trends were introduced following activation of the

on-board heaters. Additional strong glints between TJD 1422.23 - 1423.50 (orbit

15) and TJD 1436.10 - 1436.83 (orbit 16) also plague some of the light-curves in

2Available at https://archive.stsci.edu/tess/tess drn.html
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sector 4 (particularly those on camera 4), however the amplitude and duration of

these appear to vary between different targets, so may be better examined on a case

by case basis.

Following the removal of these sections of unreliable data, a more automated

method was required to identify and remove additional epochs of increased space-

craft scatter on an epoch-by-epoch time-frame, such as those around the regular

spacecraft momentum dumps. This was completed by generating scattering quality

masks based on the engineering “quaternion” data, using a similar method to that

described by Vanderburg et al. [2019] to prepare Sector 3 30min cadence data in the

discovery of multiple super-Earths around HR 858. The TESS quaternion data3

consists of 2s-cadence time-series data for each sector, describing attitude changes

in three primary vectors (Q1, Q2, Q3) based on deviations from a selection of local

guide stars. This provides a sector-specific overview of the spacecraft attitude and

thus allows the generation of scatter-based quality masks for all targets in the TESS

aperture. An example of this data (both raw and binned into 30min bins) can be

seen in Fig 4.2. To identify epochs with excessive scatter, the standard deviation

for each vector was calculated, and any epoch with pointing scatter ě5 standard

deviations from the mean was flagged for removal. By combining the results from

all three vectors into a single mask, all epochs within 0.01d of these points were re-

moved from the data-set. This step efficiently removed all spurious signals relating

to momentum dumps, as well as any remaining short periods of overly large scatter

that were not picked up in the initial wider cuts.

For sources of particular interest which also possess TESS 2min quality flags,

it may also be advisable to implement the quality flags from the SPOC pipeline to

the 30min data (perhaps in a similar manner to the conservative approach taken

by Bouma et al. [2019] in building their difference-imaging extraction pipeline for

sectors 6 and 7) in order to remove the effects of additional systematics such as

cosmic rays. However, given the lack of 2min light-curve availability for many of

the objects in this sample, this feature was not implemented in the development of

the initial pipeline.

Following the removal of such sector-specific effects, the data was split into

separate sections wherever there was a data gap of more than 0.1 days (to reduce

the effect of flux jumps often seen after data gaps), except where doing so would

result in fewer data points than the prescribed detrending window length discussed

below.

3Available at https://archive.stsci.edu/missions/tess/engineering/
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Figure 4.2: Q1 Engineering quaternion data for Sector 1, Camera 1 showing a clear
increase in scatter around the 2.5d momentum dumps and the loss of fine point-
ing between TJD 1347-1349. Top: Raw 2s Engineering Quaternion data. Middle:
Quaternion data binned into 30min bins to show typical number of affected data
points. Bottom: Final quaternions after the removal of known periods of increased
scatter and quaternion-based cleaning.
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4.2.4 Detrending and search pipeline overview

The full detrending pipeline developed by the author is discussed in depth in Section

2.6, but is briefly reviewed here in context. The base detrending method is Locally-

Weighted Scatterplot Smoothing [LOWESS; Cleveland, 1979a], a local polynomial

regression method which fits a low-order polynomial to a pre-defined ‘window’ of

the data (typically 10-15hrs, depending on light-curve evolution). This allows it

to handle local variations in the data more effectively than the commonly adopted

Savitzky-Golay smoothing method [Savitzky and Golay, 1964]. Smoothing can ei-

ther be applied to a light-curve as a whole or automatically broken into sections

every time there is a gap of 0.1days. This smoothing is backed up by the optional

removal of peaks and troughs in the light-curve, given that the sharpest troughs can

often be mistaken for transits after detrending. If a signal of interest is highlighted,

additional transit-masking is available to be implemented into the pipeline in order

to best preserve the shape of the candidate transit signals.

Following detrending, each light-curve was searched using the Box-Least

Squares (BLS) method [Kovács et al., 2002] and the three strongest unrelated BLS

peaks from the resulting periodogram investigated for evidence of planetary transits

using hand-built eyeballing plots. This full pipeline was applied to all targets in

TESS Sectors 1-5 with 30min cadence data. To gauge its performance on the com-

plicated young star light-curves, an additional injection and recovery test was also

conducted, testing planetary periods between 1 and 14 days and planet radius ratios

of RP{R˚ “ 0.1 to 0.03, roughly corresponding to Jupiter and sub-Neptune-sized

planets around a sun-like star.

4.3 Results from Sectors 1-5

Despite 30min DIA light-curves only being available for 256 of the BANYAN objects

within the first five sectors of TESS data, a wide range of interesting activity was

observed, from the recovery of known young exoplanets and TESS objects of interest

(TOIs) to an eccentric eclipsing binary system and a large variety of unusual rotation

and activity profiles. Even this relatively small sample clearly demonstrates the

unusually large variation in light-curves of young stars compared to their older

counterparts, and consequently helps to explain why far fewer planets have thus far

been found around stars of these ages. The conducted sensitivity analysis goes one

step further, investigating the comparative recovery rates for different combinations

of injected period and planetary radius. The most interesting results from this

search are summarised below in this section.
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4.3.1 Recovery of confirmed young exoplanets

One of the most promising initial results from the application of this pipeline on

the 30min data was the recovery of both of the known transiting exoplanets found

around young stars in sectors 1-5: DS Tuc A b [Benatti et al., 2019; Newton et al.,

2019] and AU Mic b [Plavchan et al., 2020]. The recovery of DS Tuc A b is described

in detail here as an example of the full pipeline in use.

DS Tuc A (TIC 410214986/TOI 200.01/HIP 116748 A) was observed in

Sector 1 of the TESS observations, carried out between 25th July - 22nd August

2018. It is a G6V type star known to be associated with the 45 Myr Tucana-

Horologium association [Zuckerman and Webb, 2000]. DS Tuc A fell on camera 3

of the instrument, and yielded approximately 27 days of photometry. Interestingly,

Newton et al. [2019] admit in their work that the candidate signal was initially found

by human eyeballing around a spurious activity-induced periodicity peak flagged by

a run of the SPOC Transiting Planet Search (TPS) module on the 2min PDC-SAP

data. However, a later archival TPS run of the SPOC pipeline (after the planet

candidate was announced to the community as TOI 200.01) was seen to detect a

periodic transit crossing event which passed all of Newton et al. [2019]’s false positive

tests. The planetary candidate was later confirmed using additional photometry,

spectroscopic methods and high contrast imaging.

Benatti et al. [2019] independently reprocessed the TESS data for this object

using improved stellar parameters (including crucially accounting for dilution from

DS Tuc B) and fitted two different models to determine planetary parameters. The

first model involved modelling only the first two transits (on account of the large

pointing jitter around the 3rd transit) using PyOrbit [Malavolta et al., 2016] to

complete a simultaneous fit for modulation and a transit signal, along with emcee

[Foreman-Mackey et al., 2012] and PyDE [Storn and Price, 1997] to establish the

most likely planetary parameters. Alongside this they tested modelling all three

transits with the batman package [Kreidberg, 2015] after applying a 0.55d 3rd or-

der running polynomial to flatten the light-curve and analysed the posterior with

emcee. While both methods yielded consistent results, they eventually adopted the

planetary parameters from the first method and found a best-fit solution of a 0.50 ˘

0.02 RJup planet. Benatti et al. [2019] confirmed the planetary nature of this object

using radial velocities from the HARPS spectrograph.

In this work, the planetary signal was highlighted as the highest peak of

the BLS periodogram in a 20-bin LOWESS-partial run of the standard detrend-

ing pipeline, however the transits were also clearly visible by eye after the 30-bin

LOWESS-partial run. Noting that the third transit fell in the period of height-
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Figure 4.3: Example of the developed detrending pipeline in use, showing the re-
covery of the 45Myr exoplanet DS Tuc A b. Top: The original sector 1 light-curve
for DS Tuc A with overplotted 20-bin LOWESS detrending in blue, including inter-
polation over suspected transits. Middle: BLS Periodogram for the the light-curve
after detrending, with the peak period of 8.138d highlighted in blue (n.b. aliases of
this period are shown by the blue dotted lines). Bottom: the resulting light-curve
after the detrending pipeline has been applied, folded by the maximum peak of the
BLS Periodogram
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ened pointing jitter between TJD 1347-1349, this section of the data was unmasked

for this target. The recovered period was 8.14d, in agreement with the accepted

value from Newton et al. [2019]. Using the period and epoch derived from the BLS

search, the transit masking and light-curve interpolation technique described in sec-

tion 2.6.3 was applied, completing the clear detrending and transit recovery of DS

Tuc A b presented in Fig 4.3. Note that in the bottom panel the light-curve has

been folded by 8.138d, the accepted planet period from Newton et al. [2019]. Inter-

estingly, the use of the peak-cutting technique for this object was found to increase

the significance of the true transit period in the 30-bin case (changing the 8.14d

period-peak in the BLS periodogram from insignificant to the 6th strongest after

peak-cutting), but decreased its significance for the 20-bin LOWESS-detrend. The

clear recovery of this Neptune to Saturn-sized planet using the 30min data alone

bodes well for future exoplanet candidate discoveries from the Full Frame Images,

thus demonstrating the wealth of knowledge to be gained from these images.

Unfortunately data for AU Mic was not extracted by Oelkers and Stassun

[2018]’s 30min pipeline, however application of this pipeline to the 2min data for

AU Mic easily recovered the signal of the 8.46d planet proposed by Plavchan et al.

[2020], as shown in Fig 4.4. In this case a 20bin-LOWESS smoothing run revealed

the 8.46d period as the third highest peak in the periodogram. In this particular

case the peak-cutting option did not aid recovery of the planet substantially since

the improvements of cutting the sharp troughs were balanced by the inadvertent

cutting of the first transit. Nonetheless, the 8.5d signal remained the third highest

peak after 20bin-LOWESS smoothing was applied to the peak-cut light-curve.

4.3.2 Retrieval of other TESS objects of interest

A number of other interesting signals were independently found using this pipeline,

including a pair of additional TESS Objects of Interest (TOIs). In the interest of

independence these signals were found with no prior knowledge of the TOIs in these

sectors, but instead candidate signals highlighted in the BLS search in this work

were cross-matched with the TOI list at a later date. This resulted in the recovery

of two known TOIs: TOI 447.01 and TOI 450.01.

For TOI 447.01, a repeated dip of approximately 15 mmag was highlighted

by the BLS search in sector 5 with a period of 5.528 days around the F5/6V star HD

33512/TIC 14091633 (see Fig 4.5). This signal was uncovered using the a standard

30-bin LOWESS run of the pipeline, without peak-cutting. HD 33512 is a relatively

bright (T=8.8) F5/6V star in the Octans association, giving it an approximate age

of 35˘5 Myr [Gagné et al., 2018b], which would make this an interesting target
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Figure 4.4: A 20bin-LOWESS smoothing run on the TESS 2min cadence data
for AU Mic, showing the recovery of the 8.46d planetary signal first identified by
Plavchan et al. [2020]. Format similar to that explained for Figure 4.3, except that
the final light-curve is folded by the third highest period, as highlighted in blue in
the BLS periodogram.
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Figure 4.5: Recovery of TOI 447.01/HD 33512, a likely long-period binary in the
35Myr Octans Association. In this case the maximum period was found to be 5.528d.
Format after that explained in Fig 4.3.
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for follow-up of young evolving systems if the planetary hypothesis was correct. As

a TOI this target underwent follow-up by the TFOP team, and though initially

seemed positive from the TESS data alone, it was eventually flagged as a False

Positive (FP) by the TFOP working group due to the observed linear drift in RV

measurements, relatively large radius, and changing width of FWHM.4 Nonetheless,

this object is a likely long-period binary, so may still be an interesting system for

the study of young binary systems.

It should also be noted that the recovery of this signal was originally compli-

cated by the fact that the DIA 30min light-curve for HD 33512 and TYC 7053-832-1

appeared near-identical due to their close proximity. Indeed, as these sources are

only 30.43” apart they fall onto very similar regions of the TESS CCD array, and

thus suffer from blending on the spacecraft’s relatively large 21” pixels. As such

these sources cannot easily be distinguished using the TESS data alone and require

higher resolution photometry to unravel the true origin of this signal. Fortuitously

both of these objects were observed by the Next Generation Transit Survey, which

has much greater resolution of approximately 5” per pixel [Wheatley et al., 2013].

By folding the NGTS light-curves for these two stars by the recovered 5.528d pe-

riod, the candidate signal was clearly determined to have come from the source HD

33512.

The second TOI independently recovered was TOI 450.01, around the source

2MASS J05160118-3124457/TIC 77951245. This source was observed in sectors 5

and 6 of TESS observations, however alike to TOI 447.01 only sector 5 light-curves

were available for it from the DIA 30min pipeline. In this work the candidate sig-

nal was initially revealed by a 30-bin LOWESS-partial run of the main detrending

pipeline on sector 5. Two approximately 40mmag transits were observed in the

flattened light-curve, with a recovered period of 10.74 days and initial epoch of

1443.2d, as shown in Fig 4.6. The parameters derived from this 30min data are

slightly different to those derived from the 2min data by the SPOC TOI analysis

(P = 10.7148˘0.0001, depth = 63.6˘0.8, epoch = 2458443.1686 ˘ 0.0003), how-

ever this is not surprising given the much lower density of points in each transit

signal (15 times fewer). TIC 77951245 is an M4 star of T = 12.375 in the 42 Myr

Columba association. Based on the depth of the observed signals and the radius

of the star, this signal would correspond to an approximately Jupiter-sized planet

if the planetary hypothesis was correct. However, follow-up of this object by the

TFOP working group eventually revealed it to be a near-equal mass spectroscopic

binary, based on HRS measurements on the 10m SALT telescope on 10th August

4https://exofop.ipac.caltech.edu/tess/target.php?id=14091633
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Figure 4.6: Recovery of TOI 450.01/J0516-3124, a spectroscopic binary in the 42
Myr Columba Association. In this case the maximum period was found to be
10.7d. Format after that explained in Fig 4.3, except that over-plotted LOWESS-
detrending in the top panel has bins of 30 rather than 20.
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2019.5

These two TOIs along with the new confirmed exoplanet DS Tuc A b dis-

cussed in Section 4.3.1 represent all three of the TOIs highlighted by the main 2min

SPOC pipeline for this selection of young stars. This illustrates the fact that this

pipeline is working at least as effectively as the main SPOC 2min pipeline for these

young objects, further emphasising its potential for finding candidate signals around

stars present only in the 30min cadence data.

4.3.3 Eclipsing Binaries

A number of clear young eclipsing binaries were also revealed by this survey, the

most interesting of which being HD 28982. This highly eccentric eclipsing binary

system was revealed in this work by a 30-bin run of the LOWESS-based detrending

(without peak cutting) applied to sector 5 of the TESS 30min DIA data (see Fig

4.7, panel a). A period of 5.97 days was clearly highlighted as the maximum power

period in the BLS periodogram, and two distinctly different duration and depth

transit signals were visible. HD 28982 is associated with the AB Doradus Moving

Group (ABDMG), which is approximately 150Myr old [Gagné et al., 2018b].

Because it has long been known to be a ‘bona-fide’ member of this moving

group it was included in the initial TESS CTL [Stassun et al., 2019] and received

2min coverage in the main TESS survey. This provides an interesting opportunity

to compare the 2min and 30min data for this young object. After retrieval from

MAST, the 2min data was subjected to the same detrending as the 30min data by

expanding the number of bins for each LOWESS-based detrending step to 450, 15

times as many as in the 30min analysis. This revealed the detrended light-curve

shown in panel b of Fig 4.7. Aside from the obvious increase in signal to noise

and visually more obvious signal provided by the 2min data, the 30min data clearly

provides sufficient information to constrain the EB period and durations. However

alike to the TOIs, the 30min data suffers in terms of depth accuracy, likely due

to exposure smearing from the longer 30min cadence data. In addition, the 30min

cadence data from the DIA pipeline is more affected by scatter than the 2min data,

likely due to a combination of pointing scatter and improperly corrected scattered

light. Care must therefore be taken when evaluating planetary radii for planet

candidates based on 30min data alone, and may be better left to higher-cadence

photometry in follow-up observations.

5https://exofop.ipac.caltech.edu/tess/target.php?id=77951245
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Figure 4.7: Sector 1-5 light-curve zoo. Column 1: original light-curve for each
star with a 20-bin LOWESS-smoothed fit over-plotted in blue. Column 2: BLS
periodogram after LOWESS-detrending, with the highest power period highlighted
in blue (except for J0635-5737 where a shorter alias is chosen for clarity), and aliases
shown with dotted blue lines. Column 3: flux after 30-bin LOWESS-detrending,
folded by the highest power period. Individual sources from top to bottom: Panel
a: HD 28982, an eccentric EB in ABDMG (approx 150Myr) in 30min data, Sector
5; Panel b: HD 28982 in TESS 2min data; Panel c: J0529-2852/TIC 31281820 in
COL (approx 42 Myr), Sector 5; Panel d: J0635-5737/TIC 348839788 in ABDMG
(approx 150 Myr), demonstrating ‘double variation’ in its rotation data, Sector 1;
Panel e: J0552-5929/TIC 350712873 in THA (approx 45 Myr), Sector 1.
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4.3.4 Rotation and activity

Rotation and spurious stellar activity were the cause of the strongest peaks in many

of the stars viewed in this sample, which helps to explain why searching for plan-

ets around young stars is so much harder than around many older stellar hosts.

As a first step in characterisation of this rotation and activity, the period of each

star’s main stellar variability/activity was also recorded using the generalised Lomb-

Scargle method [Lomb, 1976] implemented into python as the LombScargle function

in the python astropy library6 [The Astropy Collaboration et al., 2013; Astropy

Collaboration et al., 2018]. Furthermore, the main amplitude of the primary variabil-

ity was determined in the peak-cutting step discussed in Section 2.6.2, by measuring

half the difference between the first peak and first trough identified for removal. This

avoids measuring the amplitude from flares or noisy data, but will be unreliable for

light-curves which evolve in amplitude over the course of a sector. A wide variety of

rotation and activity curves were observed in this work, broadly separated into four

categories: near-uniform periodic, periodic but evolving, aperiodic and fast rotators.

Amplitudes of oscillation varied from 0.02% to 9%, while primary periods of flux

variation varied from 0.122d (e.g. J0552-5929 - panel e of Fig 4.7) to non-variable

over the 27-day time-period.

The first of these categories, those light-curves which exhibit near-uniform

variation in amplitude over a set period, are well illustrated by the sinusoidal curve

of sources such as HIP 1993 and HIP 1113 (Fig 4.8), alongside strongly periodic

drops in sources like 2MASS 05292529-2852274 (see panel c of Fig 4.7). These types

of sources are theoretically ideal for detrending, as they can be easily modelled by

quasi-periodic smoothing functions, especially when the period of flux variation is

over periods of two or more days. Furthermore, the peak-cutting method discussed

in Section 2.6.2 was often observed to aid the retrieval of injected transits for these

periodic sources. However, very fast rotation of this type still provides difficulties,

as discussed below.

Another very important category of variation seen are those light-curves with

strong periods but obvious variation in flux amplitude. This type of light-curve is

well illustrated by sources such as HIP 105388 (observed in TESS sector 1) and

AB Pic (observed in all southern hemisphere sectors - 1-13) - see Fig 4.9. The

oscillation amplitudes of these sources are both observed to considerably change

over the course of a single sector. Indeed, in the case of AB Pic, the amplitude of

the primary oscillations changes from 0.01% to ą0.03% over the course of the five

6https://docs.astropy.org/en/stable/api/astropy.timeseries.LombScargle.html
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Figure 4.8: Examples of rotation/activity type 1: Near-uniform sinusoidal variation
- HIP 1993 (top) and HIP 1113 (bottom) in Sector 1

sectors of data for which the 30min DIA data exists. Other sources such as HIP

1481 appear to exhibit ‘beating’-like behaviour in their light-curves, going through

periods of more and less intense oscillations yet with similar periods throughout.

Thus for these objects, while the strong periodic nature of their oscillations makes

the periods easy to identify, blind removal of these varying oscillations is difficult

on a wide-scale basis. Nonetheless, the peak-cutting technique discussed in Section

2.6.2 is particularly beneficial for sources of this type, such as HIP 32235 (Fig 2.6)

and HIP 105388 (top, Fig 4.9).

Alongside these periodic light-curves, a smaller number of aperiodic varia-

tions (or perhaps those with rotation or variation periods much longer than the

27 day observation time) were observed. Most of these variations were sufficiently

long-period to be easily removed by the base 30-bin LOWESS-smoothing method

(as was the case for J0449-5741 and HD 35289 (Fig 4.10)), or are sufficiently ape-

riodic that any activity would not overcome true periodic transit signals on the

BLS periodogram. However, some more complex aperiodic cases exist, such as TIC

348839788 (Panel d, Fig 4.7), where two separate rotation and activity profiles seem

to be apparent - one aperiodic larger amplitude evolution clearly evident in the

127



0.95

1.00

HIP 105388

1330 1340 1350
Time - 2457000 [BTJD days]

1.00

1.02 AB Pic

No
rm

al
ize

d 
Fl

ux

Figure 4.9: Examples of rotation/activity type 2: Periodic with rapidly evolving
amplitudes - HIP 105388 (top) and AB Pictoris (bottom) in Sector 1

original light-curve, and one much faster rotation-based signal with a period of ap-

proximately 0.27 days (see panel d, Fig 4.7. This ‘double variation’ is present in

a small number of other sources too, so should be considered carefully in future

detrending efforts. For such sources this will likely require at least two detrending

steps (a wider smoothing to remove the large-scale activity, followed by smaller-scale

smoothing/modelling of the rapid rotation) in order to yield a flat pre-BLS search

light-curve.

Perhaps the greatest challenge in the search for young exoplanets is the case of

rapidly rotating stars such as HIP 22295 (Panel e, Fig 4.7) and CD-46 287 (bottom

panel, Fig 4.13. These fast rotators are unfortunately quite common in stars of

such young ages (indeed at 52 stars (20.3%) in this sample had rotation periods

of less than 1 day), likely due to leftover angular momentum from their formation

[Prialnik, 2009]. For the fastest rotators, 30min data alone struggles to untangle

rotation from any potential transit signals, especially when rotation periods of less

than 1 day are coupled with significant changes in amplitude. In order to more

effectively dissociate such rapid rotation from transit signals, using more sensitive

2min cadence data is preferred, likely coupled with more intelligent modelling than
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Figure 4.10: Examples of rotation/activity type 3: Aperiodic variations. DIA
30min-cadence light-curves for J0449-5741 (TIC 220425740, top) and HD 35289
(bottom) in TESS Sector 5

simple smoothing methods. The planned TESS 20s cadence data would also aid

this effort, as rotation profiles will become more carefully defined and more detail of

transit ingresses/egresses may become apparent. However, techniques to overcome

this fast rotation challenge still need to be developed.

4.3.5 Sensitivity analysis results

Overall results

The conducted sensitivity analysis (discussed in section 2.6.5) revealed a number

of interesting results, for which an overall summary is presented in Table 4.3 and

Figure 4.11. What is immediately apparent is the steep drop-off in recovery as the

RP{R˚ radius ratio decreases, falling from 77.6% at a radius ratio of 0.1 down to

20.4% at 0.03. This is to be expected as the inherent scatter and leftover variability

amplitude of the light-curves steadily overcomes the signal of the smaller injected

planets.

Interestingly the recovery of injected signals was not entirely consistent across
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Figure 4.11: Overall sensitivity analysis results (Sectors 1-5) by injected planetary
period and radius ratio. The numerical contents of each box corresponds to the
overall percentage recovery of injected planets for each particular combination, with
colour-gradient of the same added for clarity.
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Table 4.3: Results from complete Sector 1-5 sensitivity analysis for the 256 stars
in the BANYAN young star sample with DIA FFI data. Percentage recovery is
presented both overall and in each individual sector. Note that results from the 14d
injections were excluded from the percentage recoveries due single transits frequently
being present at this period. Total number of individual sources for each sector are:
Sector 1: 74; Sector 2: 77; Sector 3: 75; Sector 4: 120; Sector 5: 138.

RP{R˚ Overall (%) S1 (%) S2 (%) S3 (%) S4 (%) S5 (%)

0.1 77.6 79.7 80.3 73.1 69.8 84.3
0.075 61.7 61.6 64.0 56.8 51.4 72.2
0.05 40.9 43.8 36.9 39.6 31.6 50.31
0.04 30.2 31.3 30.4 31.1 20.0 38.0
0.03 20.4 24.3 18.4 22.1 11.1 26.6

the different sectors viewed in this analysis. This discrepancy appears to result from

two major factors: comparative sector systematics and evolving light-curve ampli-

tudes for a small subset of stars. Regarding the first factor, Sector 4 was the worst

affected, with recovery rates for all radius ratios consistently far below the average.

This is likely due to the strong reflected light glints seen at the end of each orbit

for some sources (particularly those on camera 4), which are harder to systemati-

cally remove without also removing useful data from other light-curves. Conversely,

recovery was significantly better in Sector 5 compared to the other sectors, with

26.6% of injected planets still retrieved down to radius ratios of 0.03. This inter-

sector variation is well illustrated by the light-curves for J0455-6051/TIC 55651278

(an M5 star in the AB Doradus Moving Group), where injected planetary signals

were recovered down to radius ratios of 0.075, 0.05, 0.075, 0.1 and 0.03 in sectors

1, 2, 3, 4 and 5 respectively (for planetary periods of 2-6 days). In this case such

variation was caused by a combination of evolving flaring-type stellar variability

coupled with extra noise in Sector 4. On the other hand, AB Pictoris demonstrates

the second source of sector-dependent sensitivity, with injected planetary signals

recovered down to steadily larger radius ratios of 0.04, 0.04, 0.075, 0.075 and 0.1 in

sectors 1-5 due to the evolving stellar variability increasing in amplitude over time.

While differences in the systematics of each sector can reasonably be expected to

reduce over time as the TESS satellite pointing is refined, the evolution of individ-

ually active sources will remain a challenge not only for TESS but also for future

missions such as PLATO.

A slightly more complex trend was observed when varying the injected plan-

etary periods, as is highlighted by the overall heat-map in Figure 4.11, and the

sector-by-sector heat-maps in the Appendix. For all sectors except Sector 2 (where
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Table 4.4: Full sensitivity analysis table for each of the 256 stars with DIA light-
curves. Includes information on the highest likelihood period recovered for each star
in every sector it appears, with injected 1-14 day period planets and RP{R˚ radius
ratios from 0.1 to 0.03. Full table available online.

Target ID RA (deg) Dec (deg) Sector Injected Period (d) Radius Ratio ... Log likelihood Max Period (d) Recovered? Notes

2M0123-6921 20.79 -69.36 1 1.0 0.1 ... 0.00121 2.65 TRUE Alias
2M0123-6921 20.79 -69.36 1 1.0 0.075 ... 0.00125 3.98 TRUE Alias

... ... ... ... ... ... ... ... ... ... ...
WX Col B 84.30 -42.72 5 14.0 0.04 ... 2.57e-5 12.52 FALSE -
WX Col B 84.30 -42.72 5 14.0 0.03 ... 1.95e-5 11.22 FALSE -

a 2-day period was preferred), the recovery peaked around a 4-day injected period

for the deepest (0.1RP{R˚) transits, unlike the shortest 1.0 day period that may

be initially expected. However as the injected planet radii decreased a more stan-

dard drop in recovery from 1-14d was observed. Such behaviour suggests that this

form of analysis is most sensitive to larger planets in the 2-6 day period regime,

and most sensitive to closer-orbiting planets as radii decrease further. In case the

observed drop for 1-day planets was due to 1-day Earth-related systematics such as

Earth-shine, the injection/recovery analysis was repeated with a 1.1d period planet,

however similar recovery rates were observed to the 1-day case. Instead this dis-

crepancy may be related to a combination of the increased activity of young stars

coupled with the small number of data points per transit for such short-period plan-

ets. The primary reason for the much lower recovery of planets with injected periods

of 14-days was that data gaps and randomly injected epochs frequently led to sin-

gle transits appearing in the data-set. This same effect was also observed for some

12-day injections. Some interesting sector-to-sector variations are also clear in the

sector-specific heat-maps (see Figures A.1-A.5), with Sector 4 exhibiting the lowest

recovery rates (especially for the smallest radius planets), and Sector 5 the highest.

Another useful product of this sensitivity analysis is the individual sensitivity

to planet detection for each star. An overview of this table is presented in Table

4.4, with a full version available online.

Rotation period vs recovery

As has been seen in Section 4.3.4, a wide range of rotation periods was observed for

stars in this sample. This provides an interesting opportunity to test the relationship

between rotation rate and recovery, which is especially important given concerns

about finding planets around swiftly rotating stars and those with rotation periods

near the injected planetary period. In order to investigate this relationship, an

injection/recovery analysis of rotation rate vs depth recovered for each target was

conducted for each injected period. A typical example of one of these plots is shown
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Figure 4.12: Stellar rotation period vs recovery depth for a 4-day injected period
planet across all targets and sectors. Design similar to Figure 4.11. The number of
stars in each rotation bin tested is given in grey below the main sensitivity analysis.

in Figure 4.12 with an injected period of 4.0 days. Somewhat counter-intuitively,

while there is a slight skew towards larger radius ratios below rotation periods of

5 days, there is no significant evidence that the overall recovery depth of injected

transits is a function of rotation period, with recoveries down to radius ratios of 0.03

(and complete non-recoveries) across the entire period range. In addition, recovery

depth does not seem to be detrimentally affected by being close to the injected period

(4 days in this case), as similar recovery was observed for every injected period.

Note that many variations between individual period ranges can be explained by

the relatively small number of targets in this sample, especially in the 10-11d period

case where only eight targets were present with periods in this range. However, it

should be noted that 60% of all unrecovered signals were from targets with rotation

periods of less than 1 day. This constituted 40% of all injected signals into targets

with these rotation periods. Furthermore the vast majority (79%) of the recovered

light-curves with rotation periods ă1 day were only found down to radius ratios of

0.075RP{R˚). This suggests that searching for small planets (ă0.075RP{R˚) around

stars with rotation periods less than 1 day is likely futile until better techniques are

developed to detrend this fast rotation. However, since failures for all other rotation

periods were consistent at 0-3 light-curves per 1-day period interval (e.g. 4-5d),

searching for planets around stars with rotation periods longer than 1 day shows

promise, even down to planets with radius ratios of 0.03RP{R˚.
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Table 4.5: Comparison between percentage recovery of injected planets in Sector 1
for both in the original and peak-cut light-curves.

Radius Ratio Number of lcs Original (%) Peak-Cut (%)

0.1 61 90.2 82.0
0.075 59 62.7 64.4
0.05 59 39.0 40.7
0.04 60 31.7 35.0
0.03 60 25.0 25.0

Effectiveness of the peak-cutting technique

Since the peak-cutting technique exhibited variable effectiveness according to the

shape of the light-curves in building the pipeline, much of the prior analysis was

undertaken without the peak-cutting option applied. However, to test the wider

effectiveness of this option and evaluate where its application was most useful, a

comparison study was undertaken for all targets in Sector 1, both with and with-

out peak-cutting. For this comparison test planets with a set period of 8.0d and

radius ratios of RP{R˚ “ 0.1 to 0.03 were injected into each of the light-curves in

Sector 1. Light-curves were then detrended using the standard 30-bin LOWESS-

detrending method described in section 2.6 and searched through using the standard

BLS method.

Of the 74 Sector 1 targets in the sample with light-curves available from Oelk-

ers and Stassun [2018]’s DIA FFI pipeline, the basic peak-cutting technique failed

for 13-15 of the objects (depending on the injected radius ratio). In all cases this was

due to peaks and/or troughs not being located by the automatic find peaks func-

tion, typically because the light-curves were simply too flat to exhibit any significant

peaks or troughs. Of the remaining 59-61 light-curves, recovery with peak-cutting

was in general comparable, or slightly better than, the recovery of planets when

peak-cutting wasn’t applied (as is summarised in Table 4.5). The one exception to

this was the 0.1RP{R˚ case, which was caused by the peak-cut analysis failing for

three of the original 0.1 radius ratio light-curves.

However, it is when looking at individual targets that the power of the peak-

cutting technique is most evident. For seven of the targets in Sector 1, the use

of the peak-cutting technique yielded significant improvements in the recovery of

smaller injected radius ratios. The most significant improvements were seen for the

object J0247-6808, where injected planets were recovered down to a radius ratio

of 0.03RP{R˚, despite not being recovered for any radius ratio in the non-peak-

cutting case. Similarly in the case of HIP 32235 the depth recovered dropped to
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0.03 from 0.075 in the non-peak-cut analysis. Similar improvements (though with

less significant drops in recovered depth) were observed for RBS 38, TYC 8895-112-

1, J0346-6246, J0414-7025 and J2231-5709.

There were two different reasons why recovery was improved for these ob-

jects - one showing the technique working as designed and the other a fortuitous

side-effect. The former can be seen in HIP 32235, RBS 38, TYC 8895-112-1 and

J2231-5709 where each light-curve exhibits sharp variability peaks with periods of

order 3-8 days and amplitudes greater than 2.5%. In this case the technique aids

recovery of the planets by successfully cutting the sharp turning points of these light-

curves which were previously leftover as false-transits after the LOWESS-smoothing

step. It is these types of light-curve variability (approximately 3 ă Prot ă 8 days;

Amplitude ą 2.5%) which are best-handled by using the peak-cutting technique.

All light-curves with rotation periods of 3-8 days which weren’t improved by peak-

cutting were later found to have had at least one of their transits cut, however their

depths reached were not affected. The other three light-curves improved by the use

of this technique (J0247-6808, J0346-6246 and J0414-7025) were aided accidentally,

having sections of increased scatter masked as a result of the applied cuts. This is a

convenient side-effect of searching for planets among light-curves with intrinsically

higher scatter, but less scientifically interesting.

The limitations of this technique were identified by investigating the small

selection of stars detrimentally affected by the peak-cutting. The three main failure

modes were:

1. Effectively flat light-curves dominated by scatter

2. Light-curves with activity/variability periods of „ 2 days

3. HIP 33737 - a star with a flat-bottomed rotation activity

In the first case, all peak-cut does is remove useful data, since no signifi-

cant activity-based peaks and troughs were present. Meanwhile in the 2-day activ-

ity/variability period case, a significant portion of the data is cut, with the remaining

intervals between each cut too short to be effectively flattened by the 20-30bin (10-

15hr) LOWESS-smoothing. These two failure modes effectively represent the two

limits of usefulness for this technique in a single TESS sector, of order 15 days and 2

days respectively. The final case (HIP 33737) was a unique one, where the light-curve

exhibited unusually flat-bottomed troughs well-handled by the LOWESS-smoothing

technique, and thus the peak-cutting only removed useful data, alike to the first fail-

ure mode.
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Crucially however, for all light-curves which did not fall into one of the

three failure modes identified above, the use of the peak-cutting technique was

not found to affect the shallowest depth of transit recovered. This alleviates the

chief concern about the use of the peak-cutting technique: that the recovery depth

may be reduced if transits near peaks and troughs are inadvertently cut. Overall

then, this peak-cutting technique shows the greatest effectiveness for stars exhibiting

activity/variability of periods 3-8 days, but may be applied to all stars with periods

of approximately 3-15 days without significant detriment, unless those light-curves

are particularly flat.

4.4 Discussion

As this work has shown, young host stars present many extra challenges in compari-

son to the generally older, less active stars previous exoplanetary searches have been

biased towards. Quicker rotation, increased amplitude activity and other strong

stellar-based periodicities wash out candidate planetary signals in BLS searches and

make finding transiting signals harder using the traditional automated exoplanet-

searching tools. Furthermore, by eye the large amplitude variation of many sources

such as HIP 105388 effectively hide real transit signals unless careful detrending is

applied first.

Nonetheless, the methods presented in this work have shown promise at

pushing down to lower-radius planets around young stars. The base LOWESS-

detrending method provides a useful combination of smoothing and polynomial

fitting and generally outperforms more traditional exoplanet smoothing methods

such as Savitzky-Golay filters for younger stars due to its weighted approach to

smoothing. Furthermore, for sharp but evolving oscillations such as those seen for

HIP 33235, cutting the peaks and troughs of these oscillations yields a significant

improvement in the recovery of injected planets, especially for periods of 3-8 days.

After initial recovery, the shape and depth of the retrieved transit is then greatly

improved by incorporating the developed activity interpolation over transit gaps.

Overall, two young exoplanets were recovered in this work (DS Tuc A b and

AU Mic b), both of which were previously known from searches in the short-cadence

(2min) TESS data. If the planet occurrence rate of young exoplanets is assumed

similar to that for older exoplanets, it is possible to compare this number to the

expected exoplanet yield from this sample of 256 young stars. For planets with

periods between 0.8-17 days (or approximately those which would result in two or

more transits in a single sector of TESS ), Fressin et al. [2013] calculated that the
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average cumulative number of planets per star was 25.3 ˘ 1.6%, or roughly one

planet per every 4 stars. Combining this with the geometric transit probability

(Ptrans «
R˚
a ; taking the average a{R˚ of transiting planets from the exoplanet

archive), this suggests an overall yield of 3.81 ˘ 0.24 planets from the searched

sample of 256 young stars. However, the conducted sensitivity analysis revealed

that only 46.2% of planets injected into these young stars were recovered by this

pipeline, largely due to the increased stellar activity of these hosts. Taking this

into consideration, the final expected planetary yield from this search is 1.76 ˘ 0.11

planets. This agrees within 3σ with the two young planets recovered here.

As demonstrated by the sensitivity analysis, the large range in activity type,

period and amplitude coupled with the variation in scatter for each source results

in significantly different recovery rates for injected planets overall, ranging from

sources like CD-46 287 (a K6Ve star in the 35 Myr Octans association, viewed in

sector 2) where no planet was recovered even for the largest radius ratio, to HD

202969 (an F8/G0V star also from Octans, viewed in sector 1), where the injected

planet was easily recovered across the whole radius ratio range. Comparing these

two light-curves (shown in Fig 4.13), the reason for this discrepancy is immediately

clear; while the period of the rotational variation in the flux from HD 202969 is

much longer than that of the transit duration (and easy to smooth with the 30-

bin LOWESS-detrending technique), the rotation period of CD-46 287 is 0.37d,

well within the realm of the duration of a planetary transit. Since this pipeline is

designed to only remove variation with periods longer than a transit it struggles to

remove such short period variations, and as such cannot recover injected planets

from such light-curves.

Observing other sources for which no injected planet sizes were ever recov-

ered, the major challenges appear to be rotation with periods ă1 day, excess scatter,

large amplitude flares or other spurious outlying points in the light-curve. These

latter two problems present a problem to automatic detrending due to their unique

light-curve by light-curve behaviour. Nonetheless these could conceivably be flagged

by shape or sigma-clipping and handled on a case-by-case basis. On the other hand,

scatter falls into two categories: time-localised scatter such as the scattered light

glints seen at the end of some sector 4 light-curves, and non-localised scatter which

affects the entirety of the light-curve. The first of these problems is soluble, and

is likely best handled in a similar way to flares and instrumental scatter, by flag-

ging and removing specific time periods which are affected. However, excess scatter

which extends to the full extent of the light-curve (which can be in excess of 2%,

as in the case of J0122-2566) likely precludes the use of these light-curves for planet
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Figure 4.13: Light-curve comparison for HD 202969 (above) and CD-46 287 (be-
low) with an 8.0d, 0.03 RP{R˚ radius ratio injected planet. While the LOWESS-
detrending pipeline has no trouble modelling HD 202969 due to its longer duration
variation, it struggles to detrend the sharp 0.37d period variability of CD-46 287.

searches. This latter type of scatter was most common for very dim stars in the

sample, largely with TESS T magnitudes in excess of 13.

The problem of fast rotation is a more systematic issue and is arguably the

most important detrending-related challenge presented by young stars. In this work

the detrending pipeline struggled to recover injected planetary signals in light-curves

with large amplitude flux changes coupled with rotation periods of less than 1 day,

largely due to the width of the LOWESS-smoothing being at least 20-bins, or 10hrs

wide. Since any variability with a period of 1 day or less will involve at the very least

one turning point, such widely-spaced windows can not reasonably be expected to

accurately trace and smooth such activity/rotation. Indeed, as discussed in section
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4.3.4, some of the fastest rotation observed had periods of less than 0.4 days, or less

than 10hrs. However, it is not unheard of for verified planets such as Kepler-1283

b [Morton et al., 2016] to have transit durations as long as 0.4 days, so dropping

the LOWESS-smoothing window to any shorter than this could result in significant

distortion of potential transit shapes along with removal of stellar activity signals.

It is thus clear that a more targeted method is required for such fast rotators, likely

with more intelligent modelling-based methods such as Gaussian Processes [e.g.

Gillen et al., 2020]. Unfortunately however GP methods are much more intensive

than a simple smoothing or polynomial based methods, and require a more informed

knowledge of a star’s characteristics. This makes GP-based techniques very well

suited to in-depth followup of candidates, but perhaps applying such methods to

the entire stellar sample would be less efficient than simply flagging them in an

initial BLS periodogram and analysing them separately. At these early stages it is

still worth considering other modelling methods as well (such as fitting a sum of

sinusuoids as in Gillen et al. [2020]), especially since Hippke et al. [2019] found such

a range in effectiveness in young star detrending methods. If a simpler algorithmic

method can be found to model or detrend these very fast rotators then it could help

to speed up wide-field transit searches around young, rapidly rotating stars.

Another interesting challenge highlighted by the sensitivity analysis is the

rapid evolution of some young star light-curves. This evolution makes modelling

the light-curves more difficult and also means that detrending is more effective in

some regions of the light-curve than others. As demonstrated for AB Pictoris,

this changes how easy it is to recover injected (or no doubt real) exoplanet signals

depending on when in the activity cycle one views the star. If however one gains

a better understanding of a star’s activity cycle through long-term monitoring and

asteroseismology, this evolving activity can become an opportunity for increasing

the effectiveness of planet searches by targeting quiet sections of the stellar activity

cycle. This knowledge would also be crucial for radial velocity follow-up of young

host stars, since as Oshagh et al. [2017] have shown, for very active stars radial-

velocity jitter is correlated with photometric variation in stellar light-curves. Hence

being able to predict epochs of low stellar activity based on knowledge gained from

photometric monitoring of these young stars will prove crucial for characterising any

discovered planets through radial-velocity followup.

One thing that was made increasingly clear from this initial survey of young

star light-curves is that the ‘one size fits most’ approach of large-scale photometric

surveys such as Kepler, K2 and the main TESS SPOC pipeline is often not ap-

propriate for young stars given the large range in shape, amplitudes and periods
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of light-curve variability observed. Indeed, as discussed in section 4.3.4, even in

this relatively small number of young stars surveyed periods were observed to vary

between 0.27d to non-variable over the 27d observation window. Meanwhile activity

and rotation behaviour varied from near-uniform to constantly evolving, and vari-

ability shape changed from beating sinusoids to almost flat aside from significant

flaring activity. In order to more comprehensively search for planets around such

active stars, future detrending pipelines need to focus on more effectively match-

ing detrending techniques to the primary type of light-curve variability observed.

This could be achieved through an initial automated variability-type assignment,

similar to - but more advanced than - the current ‘variable’ vs ‘non-variable’ assign-

ment implemented into the Kepler/K2/TESS pipelines. By creating defined groups

of similarly shaped light-curves and types of variability/activity, machine-learning

techniques could then be used to assign light-curves the most effective detrending

technique based on their perceived ‘group’ of variability. Particularly important will

be separating known types of intrinsic variability, quick rotators and rapidly evolv-

ing light-curves, however many other important groups may become obvious with

time. A more in-depth look into different types of variability in young stars over all

sectors would thus be very beneficial, and may inform future detrending methods

in missions like PLATO [Rauer et al., 2014]. This provided the primary motivation

for beginning the YOUNGSTER programme discussed in chapetr 5.

Attempting to understand these stars in more detail raises the important

question of whether 30min data is enough to characterise any discovered variability

or exoplanet candidate signals, or whether 2min cadence data is required. In this

work 30min cadence light-curves were shown to effectively find the period of pri-

mary variability (and often second and third variability periods), and to recover all

of the currently known TOIs identified through the 2min data, so it is undeniably

a very powerful data source for the general stellar sample. However, for those TOIs

recovered, exposure smearing resulted in smaller transit depths and thus less accu-

rate transit parameters compared to the 2min data. This highlights the importance

of the 2min data (or alternative follow-up photometry) for accurate characterisa-

tion of any discovered signals. Furthermore, while the 30min data was sufficient for

characterisation of longer-period variability and activity in the light-curves, as the

community pushes towards shorter period rotation (especially that with periods of

less than 1 day), dissociating transit signals from stellar activity and rotation signals

becomes increasingly difficult. This is the realm where 2min data may be crucial

in the search for young exoplanets. Furthermore, as the community attempts to

understand the causes and evolution of activity in young stars, 2min cadence data
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would significantly aid asteroseismic efforts for these young stars. However, a full

comparison between 2min and 30min data-sets still needs to be undertaken before

significant conclusions can be made.

4.5 Summary

In this work, techniques have been developed to aid the search for transiting exo-

planets around young, active stars in the 30min cadence TESS FFI data. Young

exoplanets (ă1Gyr in age) inhabit a very important part of the exoplanet evolu-

tionary timescale, where formation mechanisms, accretion, migration and dynamical

interactions can significantly change the shape of observed planetary systems. How-

ever, they are also typically situated around young, active and often rapidly rotating

host stars, severely hampering the discovery of new planets using the transit method.

The developed method attempts to detrend these spurious stellar activity signatures

using a 20-30 bin LOWESS method of Cleveland [1979a] at its base, combined with

automated peak-cutting and activity interpolation over transit gaps to more effec-

tively differentiate activity from transit signals and preserve the transit shape. A

basic version of this pipeline is made available online.7 It is hoped that using this

method in tandem with other detrending/transit-search pipelines such as the main

TESS SPOC pipeline [Jenkins et al., 2016] and Gaussian-Process based methods

[e.g. Gillen et al., 2020] will expand the number of young planets that can be found.

These techniques were applied to young stars in stellar associations from the

extended BANYAN sample [Gagné et al., 2018b,c; Gagné and Faherty, 2018], using

the TESS Sector 1-5 light-curves derived from the Difference Imaging Approach

(DIA) pipeline of Oelkers and Stassun [2018]. Lacking the data quality-flags of the

TESS 2min cadence data, periods of excess pointing scatter were instead removed

by considering the TESS data release notes and the engineering quaternion data.

While no new exoplanet candidates were revealed in this work, results from

this initial survey revealed a variety of interesting objects, including the retrieval of

the new young exoplanet DS Tuc Ab, TOI 447.01, TOI 450.01, a number of eclipsing

binaries and a large array of interesting rotation and activity. In order to test the

sensitivity of the developed detrending techniques to different planetary sizes, model

batman transits [Kreidberg, 2015] were injected into each of the young star light-

curves at a range of RP{R˚ radius ratios from 0.1 to 0.03 and periods from 1-14 days.

The percentage of recovered transit signals from the injected planets dropped from

77.6% at a radius ratio of 0.1RP{R˚ to 20.4% at a ratio of 0.03, however was seen to

7https://github.com/mbattley/YSD
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vary considerably between different targets and sectors. Meanwhile while increasing

the injected planet period was seen to result in a decreasing recovery rate for smaller

planets, the recovery rate was actually observed to peak around periods of 2-6 days

for larger planets. An investigation into the relationship between rotation period

and recovery depth did not suggest that the two were significantly correlated, aside

from a slight skew towards larger planets at short rotation periods and the known

difficulty of very short-period (ă1day) rotation.

These results alongside deeper examination of light-curves in this sample

lead to a number of interesting conclusions. The sensitivity of specific young star

light-curves to transit searches appears to be most limited by fast rotation (ă1 day

rotation periods), excess scatter, scattered light glints and significant flaring activ-

ity. Meanwhile the rapid evolution of many young star light-curves offers both a

detrending challenge and a potential opportunity to search more efficiently for ex-

oplanets at less active times. Given the vast array of different types of young star

light-curves seen in this initial survey, in the future a multi-faceted detrending ap-

proach which first classifies light-curves according to their broad activity/variability

is perceived as beneficial. It is clear that the 30min cadence data shows particular

promise for additional detections to the main SPOC 2min pipeline, as it is capable

of retrieving all of the TOIs highlighted in the sectors analysed. However, planet

parameters derived from the 30min light-curves can be less reliable due to phe-

nomena such as exposure smearing. Thus the acquisition of 2min light-curves for

young stars remains desirable, especially since this will also aid in-depth astroseismic

characterisation of these sources.

Hence overall, although searching for planets around young, active stars un-

deniably presents several extra challenges compared to searching around older host

stars, the techniques developed in this work are beginning to delve more effectively

into this age range. However, significant challenges such as very fast rotation and

rapidly evolving activity remain, standing in the way more extensive young exo-

planet discoveries. In order to extend the search to these more challenging cases,

it is imperative to both develop techniques to automatically classify and under-

stand such types of young star variability and also to develop targeted detrending

techniques to handle these in future planet searches.
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Chapter 5

The YOUNGSTER Program

“People assume that time [like flux]

is a strict progression of cause to

effect, but *actually* from a linear,

non-subjective viewpoint - it’s more

like a big ball of wibbly wobbly...

timey-wimey... stuff”

— The Tenth Doctor, Blink, Doctor

Who.

Square brackets are the author’s.

As discussed in Chapter 4, the increased activity and variability of young

stars results in complex photometric light-curves which are significantly harder to

search for transiting exoplanets in. Although young-star specific methods such as

those developed in the previous chapter are extending the search further compared

to traditional planet searches, in order to target planets around more challenging

stars, it is important to understand the variability of the young stellar hosts along-

side the detrending and planetary search. With that in mind, this chapter presents

the beginning of the YOUNGSTER program, or “YOUNG Star detrending for Tran-

siting Exoplanet Recovery”, which aims to classify young stellar variability prior to

planetary searches and then use these classifications to inform targeted detrending

methods. This chapter presents the first step in this process, using Kohonen Self

Organising Maps (SOMs) to explore young star variability present in the first year

of observations from the Transiting Exoplanet Survey Satellite (TESS), with such

knowledge valuable to understand how these may be split into different groups in

future searches for young exoplanets. This technique was found to be particularly

effective at separating the signals of young eclipsing binaries and potential transit-
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ing objects from stellar variability, a list of which are provided in Table 5.2. The

effect of pre-training the Self-Organising Maps on known variability classes was also

tested, but found to be challenging for dimmer objects without a significant training

set from TESS. SOMs are also found to be useful as an intuitive and informative

overview of leftover systematics in the TESS data, providing an important new

way to characterise troublesome systematics in photometric data-sets. The results

from this analysis provide a crucial building-block towards more targeted detrending

of young stars and will extend the search for young exoplanets to smaller planets

around more active hosts.

This chapter begins with an introduction to the YOUNGSTER programme

in Section 5.1 before Section 5.2 discusses the data preparation ahead of the main

Self-Organising Map analysis. A review of setting up, training and interpreting

Self-Organising Maps in the context of this work is presented in Section 5.3, which

is followed by an examination in Section 5.4 of how the SOM technique can aid

systematics detection and removal in TESS data. The results of the overall Sector

1-13 SOM analysis are presented in Section 5.5, followed by a wider discussion of

the results in Section 5.6. This chapter concludes with a summary in Section 5.7.

Declaration - The following chapter is a partial reproduction of the paper

‘YOUNG Star detrending for Transiting Exoplanet Recovery (YOUNGSTER) I:

Using Self-Organising Maps to explore young star variability in Sectors 1-13 of

TESS data’ [Battley et al., 2022]. All work in this chapter was carried out by the

author, with co-authors to the paper it is based on providing high level guidance

and simple proof-reading.

5.1 Overview of YOUNGSTER Program

The aim of the “YOUNG Star detrending for Transiting Exoplanet Recovery”

(YOUNGSTER) programme is to develop a targeted detrending approach in young

exoplanet searches by using information about the stellar variability of potential

young host stars to inform detrending of different categories of variability. Unlike

a traditional ‘one size-fits-most’ detrending approach, this program relies on first

classifying different types of young star variability which can then be treated inde-

pendently. By considering the variability of potential host stars during the analysis

(rather than simply eliminating it), this approach helps to reduce the prevalence

of leftover signals induced by improper detrending and should aid the search for

shallower exoplanets around young stars considerably. Furthermore, it provides ad-

ditional information about the individual systems, thus aiding further analysis of
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Figure 5.1: Overview of YOUNGSTER program

the system as a whole.

The YOUNGSTER programme was instigated by the results and analy-

sis presented in [Battley et al., 2020, hereafter YOUNGSTER I] and discussed

in Chapter 4. This chapter presents the results from the use of an unsupervised

Self-Organising Map [SOM, Kohonen, 1982, 2001] as a tool to explore young star

variability further, and acts as a first step into more targeted characterisation and

sorting of young star variability for exoplanet searches. It also provides a useful

additional method of recognising and removing leftover systematics in young star

light-curves and gives an efficient method to recover example light-curves of unusual

variability types on which to train future classification methods. Future work in this

program will extend this classification using a supervised random-forest implementa-

tion which combines additional light-curve statistics with the results from the SOM

in order to give final classifications for each star. Specifically, it will combine the

SOM position and Euclidean distance of each light-curve from its closest SOM pixel

with noise statistics and (a)periodic information about the light-curves in order to

give a final classification for each light-curve. These classifications will then be used

as test-beds to develop new targeted detrending methods and apply these to each

variability group in order to search for smaller transiting exoplanets. A pictorial

overview of the full YOUNGSTER program is shown in Figure 5.1.

5.2 Data Preparation

5.2.1 Light-curve extraction

For machine-learning approaches like Self-Organising Maps, two factors are crucial:

consistency and data volume. Now, in the era of TESS [Ricker et al., 2014], the

community has access to a uniform source of millions of light-curves from an ever-
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increasing proportion of the sky, including hundreds of thousands of young star

light-curves extracted from the Full-Frame-Image (FFI) data. Numerous different

sources of FFI light-curves are now available, including a number of very large data-

sources like the TESS SPOC [Caldwell et al., 2020a], MIT Quick-Look [QLP, Huang

et al., 2020a] and eleanor pipelines [Feinstein et al., 2019]. Crucially for this analysis,

there are now also a selection of dedicated young star light-curve extraction programs

such as the CDIPS [Bouma et al., 2019], PATHOS [Nardiello, 2020], and Oelkers

and Stassun [2018]’s Difference Imaging Analysis light-curves. These specialised

extraction pipelines are particularly useful for dense regions where young stars are

commonly found due to their difference imaging (n.b. also used to extract Huang

et al. [2020a]’s QLP light-curves) or PSF-based approaches.

In this work, light-curves extracted from the Cluster Difference Imaging Pho-

tometric Survey (CDIPS) pipeline [Bouma et al., 2019; Bhatti et al., 2019]1 were

chosen as the primary data source due to their dedicated young-star extraction ap-

proach and the availability of a large number of light-curves for the entire first year

of TESS ’s Primary Mission (Sectors 1-13). They also provide a ‘lightly detrended’

PCA form of light-curve particularly useful for the SOM technique, as discussed

below. Through comparison to different year-1 light-curve sources currently avail-

able to the community, this form of light-curve was found to best preserve signals

of stellar activity whilst removing additional spacecraft systematics. Note how-

ever that because no light-curves from the second year of TESS ’s observations were

available from the CDIPS pipeline at the time of writing, the more widely-available

QLP light-curves of Huang et al. [2020a] were chosen as a backup data source for

exploring scattered light systematics in section 5.4.

It should be noted that while times of known momentum dumps and coarse

pointing were removed using the TESS data release notes2 early in the CDIPS

pipeline, a number of additional systematics from the spacecraft motion and scat-

tered light still exist in the data after the main difference-imaging extraction. In

order to combat this, Bouma et al. [2019] present two partial-detrending approaches:

Principal Component Analysis (PCA) and the Trend-Filtering Algorithm (TFA).

Both approaches rely on ensemble-detrending of the light-curve of interest using

up to 200 nearby ‘template’ stars without significant periodicity. Principal Com-

ponent Analysis works by deriving 10-15 principal components which comprise the

systematic trends in each individual CCD and then building a model for each light-

curve using a subset of these components, weighted by consideration of linear least

1http://doi.org/10.5281/zenodo.3370324
2https:archive.stsci.edutesstess drn.html
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squares. This removes the largest systematics on each CCD while avoiding over-

fitting of most stellar variability. The specific implementation used here was that

included in the scikit-learn package [Pedregosa et al., 2011]. Meanwhile TFA

works by deriving a filter function to remove long-period trends and thus is well-

suited to transit studies, but too severe for analysis of stellar signals, as it often

removes/distorts interesting stellar variability alongside true systematics.

Due to its ability to remove spacecraft systematics whilst maintaining most

stellar variability, the PCA detrended light-curves were eventually chosen as the

primary brightness data-source for this analysis. For consistency, aperture 2 (1.5

pixels in radius) was used for all light-curves, chosen as a balance of noise and

the relative crowding of many young stars. The final data vectors used for each

object were thus time = ‘TMID BJD’, magnitude = ‘PCA2’ and mag err = ‘IRE2’.

Finally, these magnitudes were converted to normalised flux to prepare them for

further analysis, based on the median flux for each source.

5.2.2 Target Selection

An additional benefit of using the CDIPS light-curves is that all light-curves ex-

tracted by the pipeline show evidence of youth, either through candidate member-

ship of young clusters/associations/moving groups or due to external photometric

indications. The CDIPS target list was constructed from four large archival cat-

alogues of open clusters [Cantat-Gaudin et al., 2018; Gaia Collaboration et al.,

2018a,b; Kharchenko et al., 2013; Dias et al., 2014] as well as nine smaller catalogs

of moving groups and stellar associations [Gagné et al., 2018b,c; Gagné and Faherty,

2018; Kraus et al., 2014; Röser et al., 2011; Bell et al., 2017; Rizzuto et al., 2011;

Oh et al., 2017; Zari et al., 2019]. This resulted in an overall target list of 1,061,447

stars, for which 671,894 light-curves are available over the first year of TESS obser-

vations.3 All of these light-curves were included in the present analysis. For a full

description of the target list and its construction see Bouma et al. [2019]. However,

some additional care is needed when using this list, as Bouma et al. [2019] admit

that the it was compiled for “completeness, not accuracy”, so the true youth of

some of the included objects should be treated with caution. Nonetheless, since the

overall aim of the YOUNGSTER program is to understand and detrend different

types of variability in the wider sample of young stars, the inclusion of some older,

likely less-active sources is of little concern.

3https://archive.stsci.edu/hlsp/cdips
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5.2.3 Period-finding and SOM array preparation

The first step in characterising the variability of the young star sample is deriving

the variability period of each source. Although most instrumental systematic effects

were removed in the CDIPS extraction and PCA steps, in order to combat the

common systematic period of 13.5 days (half the length of a typical TESS sector),

a 13.5 day period (f “ 1{14) sinusoid of the form

y “ a sin 2πft` b cos 2πft` c (5.1)

was fitted to the data and removed by division from the flux data before the main

period search. Primary, secondary and tertiary periods for each light-curve were

then found using the common Lomb-Scargle method [Lomb, 1976; Scargle, 1982], as

implemented into python as the LombScargle function in the python astropy

library4 [The Astropy Collaboration et al., 2013; Astropy Collaboration et al., 2018].

These periods were found iteratively, with the primary period in each iteration

obtained using the Lomb-Scargle method and then removed by fitting a sinusoid of

the same form used for the systematic 13.5d period. As the present work is most

interested in the overall shape of the variability rather than the absolute period for

each target, the periods were allowed to vary from 0.25 days (4 d´1) to 25 days (0.04

d´1), allowing the non-variable or aperiodic light-curves to remain largely unfolded

whilst not risking the introduction of more noise-related frequencies at much longer

frequencies. Given that most periods found were on the order of multiple days,

extending the upper frequency to the Nyquist frequency („1h period) is not expected

to change this analysis significantly. Furthermore, attempting to remove stellar

activity with periods shorter than a quarter of a day would be exceedingly difficult

in the 30min data.

To prepare for the SOM analysis, the extracted CDIPS PCA light-curves

were folded by their strongest period and normalised between 0 and 1 to allow

direct comparisons of different shapes of variability. Similar to Armstrong et al.

[2016], these phase-curves were binned into 64 bins in order to save computational

time whilst maintaining the overall shape of the variability. The phased arrays were

then aligned such that the minimum point always occurred as the first element in

the array, before all phase-curves were arranged into per-sector lists as the main

input to the SOM analysis. Where gaps existed in the light-curves of over 0.5 days,

these were filled in with linear interpolation (after the Lomb-Scargle period search)

in order to avoid processing issues. In most sectors this was only required across the

4https://docs.astropy.org/en/stable/api/astropy.timeseries.LombScargle.html
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1.1 day inter-orbital gap, and thus was not found to significantly affect the shape

of the binned and folded phase curve. An additional test confirming this more

systematically can be found in the discussion. The final phase arrays were then

arranged into a full input array for each sector, which could be input directly into

the SOM algorithm.

5.3 SOM setup, training and interpretation

As discussed in depth in Sections 1.6.3 and 2.7, Self-Organising Maps (SOMs) are an

unsupervised machine-learning technique (originally developed by Kohonen [1982])

which work by clustering data with similar shapes close to each other. This is

based on minimising the Euclidean distance between data arrays at each point in

a constantly updating ‘map’. In order to complete the SOM analysis, phase arrays

for each sector were used to train individual maps using methods adapted from the

TransitSOM code of Armstrong et al. [2017]. In this work a 2-dimensional SOM was

chosen for ease of visualisation, but the SOM could conceivably be used in as many

(or as few) dimensions as desired. A deeper discussion of the specific algorithm upon

which the SOM training is based can be found in Section 2.7.

The are two primary ways to train the SOM, both of which have different

benefits to understanding the variability in the young star population. These meth-

ods are here defined as ‘Self-trained’, where the SOM is trained directly on the young

star light-curves analysed in this work, and ‘Pre-trained’, where light-curves from

known variability groups are used to train the SOM. In the latter case the young

star light-curves are then mapped onto the trained SOM in order to see where they

fall in regards to the known classes of variability. The former training method is

used for the majority of this analysis, as it is useful to explore the intrinsic variabil-

ity in the young star light-curves specifically. However, the ‘pre-trained’ SOM may

be useful for future machine-learning classification of these light-curves, so is also

explored here.

Self-training the SOM is the easiest option for training the SOM, and is

particularly useful as it does not require any prior knowledge about the expected

shape of the light-curves, or indeed any extra data-set. In this method the SOM is

trained by inputting the young star SOM arrays prepared in Section 5.2.3 directly

into the SOM algorithm. The algorithm then moves these light-curves into similar

regions when they share similar shapes, as explained in Section 5.2. The final

Kohonen map in this instance is thus trained on the shapes present only in the

young star light-curves, so can be useful to explore the overall variability trends
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and any clusters of interesting young star variability. Results from this training

method are explored through most of Section 5.5, and in the systematics discussion

in Section 5.4. Using this method SOMs were built for each sector individually

(aside from Sectors 1-5 which were combined due to a comparative lack of young

stars), as well as for the entire first year of TESS light-curves (Sectors 1-13) at once.

The alternative approach of pre-training the SOM is most useful for classi-

fication/grouping of light-curves into pre-known classes of variability, but can also

be used as a valuable way to compare different data-sets on a common and repeat-

able structure. This method involves training the SOM on a pre-selected set of

light-curves (often pre-classified into variability classes) and then mapping all new

light-curves onto the same pre-trained Kohonen layer. This is helpful because it

breaks the randomness of each newly trained SOM, and means that the Kohonen

shape at each pixel of the SOM will remain unchanged, even when new light-curves

are mapped onto it. Such behaviour makes it very useful for comparing data-sets

(e.g. different TESS sectors), as each region of the final SOM map will correspond

to the same shape, so only the number of light-curves at each spot will vary between

runs. Note that Kohonen [1982] discussed an alternative approach to compare data-

sets whereby a known ‘seed’ is used in the SOM initialisation to ensure that the

distribution of shapes on the SOM is repeatable between SOM runs, but this was

not attempted in this work.

In this case light-curves from the pre-classified K2 Variability Catalog [Arm-

strong et al., 2016] were chosen to pre-train the SOM, as these would allow specific

SOM regions to correspond to known variability classes after training. Stars in the

K2 Variability Catalog were classified using a combination of a Self-Organising Map

and a Random Forest classifier, making them well-suited to use in further SOM

analysis. In total the catalog consists of 68910 classified light-curves, including 154

ab-type RR (RRab) Lyraes, 377 δ Scuti stars (DSCUT), 133 γ Doradus variables

(GDOR), 183 Algol-type eclipsing binaries (EA), 290 contact eclipsing binaries (EB)

and 9399 other periodic variables (OTHERPER) of high-probability (Probą0.7) in

campaigns 0-4 of the K2 mission. Ideally TESS light-curves would be used for

each of these stars to maximise similarity to the young star data-set, however at

the time of writing only 8903 of these stars had been observed by TESS, as the

K2 mission took place primarily on the ecliptic plane, where TESS observations

are still ongoing. Instead the Warwick detrended K2 light-curves from Armstrong

et al. [2016] were chosen as the primary data-source, allowing the primary rotation

periods derived in this source to be used directly. SOM arrays were then built in

the same manner as outlined in Section 5.2.3, using the periods presented in Table
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5 of Armstrong et al. [2016]. Two separate approaches were then used to train the

SOM: firstly the SOM was trained using all light-curves except those classified as

‘Noise’ (24,947 light-curves) and secondly using all 68,910 light-curves at once. The

resulting SOMs are shown in Figures 5.23 and 5.24 respectively and are discussed

in detail in Section 5.5.4.

However, building these SOMs is only half of the challenge, as it is the

interpretation of the final SOM (e.g. Figure 5.2) that makes this technique so

powerful. As discussed in Section 5.2, in this work the main data-input is young

star light-curves, folded by their primary variability period. After the SOM has

been trained, each Kohonen ‘pixel’ on the map thus corresponds to the average

shape of the phase-curves which settled on the same pixel during training, which

should all be very similar shapes. After training either the same or new phase-curves

can be applied to the map, with all phase-curves ending up by the shape which is

most similar to their own. Plotting individual pixels from the map thus shows the

approximate shape of all phase-curves at that point. For deeper analysis, individual

phase-curves and light-curves assigned to these points can also be queried.

In all figures in this work, the final SOMs have all been plotted with colour

and size of the plotted pixel corresponding to the number of phase-curves which

ended up at that point, with a colour-bar shown to the right of the plot giving

explicit numbers to these colours. Those pixels where the most light-curves ended

up thus appear brightest and largest. Individual pixels are referred to using the

format [x, y], which also correspond to x and y in equation 2.3. For example, the

most common pixel in Figure 5.2 is pixel [x,y] = [16,11], appearing bright yellow

and large on the map. Furthermore, in larger regions, most popular areas can also

be recognised by the densest clusters, as can be seen around [30,27] in Figure 5.6.

5.4 Identification and removal of systematics

One of the key benefits of the unsupervised clustering method used by the SOM is the

easy identification of leftover systematics in the TESS light-curves. Indeed Geach

[2012] refer to the SOM as a form of “non-linear principal component analysis” due

to its ability to find patterns and common features in data. The intuitive and visual

results interface offered by the SOM makes understanding these systematics simple

and efficient. To explore this aspect of SOM performance, SOMs generated for the

raw flux (‘IFL2’) and PCA (‘PCA2’) CDIPS light-curves for Sectors 1-5 (shown in

Figures 5.2 and 5.3 respectively) are compared here.

While the SOM based on PCA flux (Figure 5.3) exhibited a relatively even
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Figure 5.2: Original S1-5 SOM, constructed from CDIPS ‘IFL2’ flux light-curves.
The Kohonen x and y pixels correspond to x and y in Equation 2.3, with individual
pixels referred to in the form [x, y]. Both colour (low = purple; high = yellow) and
pixel radius are a function of the number of phase-curves situated at that pixel in
the final SOM map. The larger, brighter pixels thus represent the pixels which the
greatest number of phase-arrays ended up at, corresponding to the most common
shapes in the input light-curve data.

distribution of phase-curves aside from some ‘hot-spots’ of large numbers of eclipsing-

binary-like light-curves near pixels [3,5] and [5,8] (as is common for all sectors in

the final SOM - see main discussion in Section 5.5), the SOM based on ‘IFL2’ fluxes

(Figure 5.2) extracted straight from the difference images exhibited considerably

more hot-spots, spread over much of the 40x40 grid. The most common pixels for

phase curves to end up at in the ‘IFL2’ SOM were pixels [11,9] and [16,11]. When

these pixels were queried in the Kohonen layer, all of the phase curves clustered

at these points were found to be from Sector 4, with a very distinctive SOM array

shown in Figure 5.4. At first glance this phase-array appears to represent interest-

ing outburst-like activity, however investigating this feature further by checking the

raw light-curves upon which the phase-curves were based (e.g. for object Gaia DR2

152



Figure 5.3: Final S1-5 SOM using PCA flux. Colours and pixel size share same
meaning as in Figure 5.2. In this case a more even distribution is present than in
Figure 1, but clear hot-spots can be seen at pixels [x,y] = [3,5] and [5,8], representing
Algol and Beta-Lyrae type eclipsing binary signals.

5275841004963097728 shown in Figure 5.5) revealed that the cause of this unusual

shape was simply a common flux-jump present in the first part of many dimmer Sec-

tor 4 light-curves. Variations in the phase of this flux-jump in the final phase-curves

accounted for a large number of the other ‘hot-pixels’, especially in the regions im-

mediately adjacent to [11,9] and [16,11]. Closer inspection of the wider IFL2-based

SOM revealed that other individual hot-pixels could be explained by additional sys-

tematics, such as flux ramps (e.g. [10,29], [20,2] and [25,39]) and sudden flux dips,

mimicking Algol-type eclipsing binaries (e.g. [31,30] and [31,27]).

While the significance of the leftover systematics in the raw IFL2 flux light-

curves varies from sector to sector,5 the presence of such effects even in a single sector

make it concerning for variability analyses, as telling the difference between true

variability and leftover systematics shared with adjacent stars is made considerably

5Similar to in Chapter 4, Sector 4 was found to most commonly include such systematics, with
Sectors 1 and 2 relatively clear.
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Figure 5.4: The most common Kohonen pixel [11,9] in the CDIPS S1-5 ’IFL2’ flux
run, showing clear flux-jump around bin 20 in the phase-curve. Note that ’Bin’ here
is synonymous with phase, with bin 0 at phase = 0 and bin 63 at phase = 1.

Figure 5.5: IFL2 light-curve for young star Gaia DR2 5275841004963097728, repre-
sentative of all those light-curves with SOM arrays ending up at pixel [11,9] in the
IFL2 SOM for CDIPS S1-5. The clear systematic seen in Figure 5.4 is explained
by a flux jump present in the first part of the first orbit, a common systematic in
Sector 4.
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more difficult. This suggested that some ensemble post-processing of the light-

curves was wise, such as that performed for the ‘lightly-detrended’ PCA light-curves.

Indeed, when the PCA light-curves were used instead of the IFL2 fluxes, the final

result (Figure 5.3) was no longer systematics-dominated, with the hottest pixels

corresponding to eclipsing binaries [5,8] and ‘noisy’ sinusoids ([6,22]; sinusoids with

significant scatter), alongside the typical evolution of activity discussed in Sector

5.5. This suggests that these light-curves are far more suited to analyses of overall

variability compared to the raw ‘IFL2’ ones, backing up their choice as the primary

light-curve in the full year SOM analysis.

Another challenging systematic known in TESS data is scattered light, which

is particularly prevalent in early Year II of the TESS data. Because CDIPS light-

curves were only available for Year I at the time of writing, this systematic effect was

explored using QLP light-curves instead [Huang et al., 2020a]. In this case young

star targets were chosen from the catalogues upon which the CDIPS target list is

based, by performing a cross-match between them and the QLP light-curves. This

resulted in 24,495 light-curves at the time of writing. Light-curves were extracted

from the QLP light-curves using the ‘SAP FLUX’ keyword, before being cleaned by

removing any data points with QLP ‘QUALITY’ values ą4095 from the light-curve.

Moments of known poor telescope pointing (as detailed in the TESS data release

notes6) were also removed where these were not caught by the quality cut. This

cleaning method resulted in removing similar sections of the data removed in the

initial steps of the CDIPS pipeline.

A SOM was then built using all 24,495 light-curves using the same setup

outlined in Section 5.2, resulting in the final SOM map shown in Figure 5.6. What

is immediately obvious is the unusually-shaped clusters around [16,12] and [30,27].

These structures display a much wider spatial extent on the final map compared to

those clusters in the raw IFL2 CDIPS SOM shown in Figure 5.2, appearing as large

collections of light-curves spread over many pixels, instead of single ‘hot-pixels’ at

defined points on the SOM. This implies that they are variations on a shape theme,

rather than exactly the same shape each time, hence spread out further on the SOM.

Closer inspection of these regions reveal SOM pixels with shapes like that presented

in Figure 5.7, featuring a steep climb and a slow descent in a triangular pattern.

Querying typical light-curves at this pixel makes it clear that this is caused by steep

flux-ramps at the end of each orbit. According to the TESS data release notes for

S17, this was typically caused by scattered light from the Earth and Moon glinting

across the detector at these epochs, and can be clearly seen in the background flux

6https://archive.stsci.edu/tess/tess drn.html
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Figure 5.6: Original S17 QLP SOM (after cleaning with the quality flag only) show-
ing scattered light systematics, particularly in the vicinity of [16,12] and [30,27].

(e.g. panel 2 of Figure 5.10).

Removing the effect of this scattered light is complicated, as it varies in signif-

icance depending on a wide range of factors, including position on the ccd/detectors,

brightness and crowding on the source star and the angle of the space-craft. These

scattered-light systematics were still retained (though slightly reduced in severity)

when the most affected detector (Camera 3, Detector 1) was removed from the anal-

ysis. Background-based and initial ensemble detrending methods based on nearby

stars were also trialled, but found to have variable success. The reason for this is

best explained by Figure 5.9, showing the raw light-curves for TIC 64940788 and

the 9 closest sources with QLP light-curves from TESS. It is immediately clear that

removing an average of the activity will not entirely remove the scattered light sig-

nal of the original light-curve, and may actually distort it further in some cases.

This is a product of the scattered light effect evolving in a complex manner, affected

by such factors as the detector position and magnitude of each source. A simple

epoch-cut was also found to be challenging, as the epoch where scattered light sys-
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Figure 5.7: Typical scattered light pixel in QLP quality clean light-curves.

Figure 5.8: Example of scattered light systematics leftover in ‘cleaned’ QLP light-
curve.
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Figure 5.9: Scattered Light variation on 10 adjacent QLP light-curves, illustrating
the challenge of removing this systematic effect through simple co-trending tech-
niques.

tematics began to dominate varied between source to source and, in some brighter

cases, never to occur at all.

Eventually however, a hybrid approach was found to have some success by

considering the background error data row ‘SAP BKG ERR’. Through comparison

of the SAP flux (‘SAP FLUX’), SAP background flux (‘SAP BKG’) and SAP back-

ground error (‘SAP BKG ERR’), the SAP flux was found to become scattered-light

dominated beyond the point in each orbit when the background error exceeded

twice the median background err. This relationship is demonstrated visually in Fig-

ure 5.10. Cutting the light-curve at this point was found to remove the majority

of the scattered light systematic whilst minimising loss of useful data at the same

epochs in objects less affected by scattered light. After cleaning all light-curves

based on this background error cut approach, a new SOM was built for the S17

QLP light-curves, which is shown in Figure 5.11. This SOM no longer displays

the clear systematic scattered light effects seen in the original S17 QLP SOM (Fig-

ure 5.6) and instead results in a SOM similar to the final CDIPS SOM for Sectors
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Figure 5.10: Example of the background error cut being applied. Flux data is cut
in regions where the background error exceeded two times the median background
error, as highlighted in red.

1-13 (Figure 5.12), with steadily evolving stellar variability over the whole 40x40

SOM and hot-spots of eclipsing-binary-like activity around [8,4] and [12,1]. The

use of such a cleaning technique thus extends the potential of SOM analysis to the

prevalent QLP light-curves as well.

Hence by clustering similar shapes of phase-curve close together, the SOM

effectively gives a visual overview of any common systematics in the data-set which

may otherwise be missed. It also gives the user a useful set of trial light-curves to

test techniques of removing these troublesome systematics, without having to check

each by eye. Furthermore, the clustering gives an overview of which systematics

appear to be related in shape, and can more easily allow the user to view what

is being removed in any related principal component analysis. Identifying and re-

moving these systematics one by one can significantly aid searches for planetary

transits, whether the stars are young or otherwise. The SOM’s ability to identify

these automatically and visually thus make it attractive as an additional tool for

narrowing down troublesome systematics. This analysis also illustrates the necessity

of carefully checking individual light-curves when applying wider machine-learning

techniques to the TESS data, as some phase arrays can be suggestive of real activity
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Figure 5.11: S17 QLP SOM after applying background error clean. This displays a
much cleaner distribution across the SOM map and traditional EA/EB hot-pixels,
compared to the systematics-dominated original S17 SOM in Figure 5.6.

when the extra information given in the original light-curves is simplified.

5.5 Results

5.5.1 Overall results

The overall SOM built and trained on all young star CDIPS light-curves from the

first year of TESS data is shown in Figure 5.12, with an overview of the main

features presented in Table 5.1. The raw result from the SOM is somewhat subtle,

as the most important information is hidden in the pixels themselves (a sample of

which are shown alongside). However, there are still some important features to

note in the overall SOM shape. To reiterate, pixels have been colour-coded and

given radii in the overall SOM plot based on the number of light-curves (or their

respective phase arrays) which ended up at that pixel after training on the CDIPS

young star data-set. This aids the eye to see clusters of larger numbers of light-
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Figure 5.12: S1-13 Final CDIPS SOM. Top: Final SOM for all CDIPS light-curves.
The number of individual light-curve arrays at each point is represented both by
colour and by pixel radius. The most common pixels are lighter in colour and in
regions of the map with less white space. Bottom: Plots of individual SOM pixels
from the trained SOM, at 5-pixel intervals over the SOM, to show the approximate
evolution of light-curve phase arrays over the SOM map.
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Table 5.1: Overview Table of full S1-13 Self-Organising Map
Variability Type Main Position

Algol type eclipsing binaries (EAs) [8,6]
Beta Lyrae type eclipsing binaries (EBs) [6,2]

Flares [22,24]
Dipper-like behaviour Regions around [10,30], [25,16], [35,1] and [35,29]

Main sinusoidal modulation Distinct diagonal band North-East from [34,7] to [13,24]
Asymmetric sinusoids Region around [2,32]

Other periodic signals/shapes Large region around [30,30]
Flat/Noise-dominated Large region around [18,10]

curves in lighter, denser regions. It is also important to remember that the SOM

boundaries are cyclic, such that pixel [0,0] is diagonally adjacent to [39,39]. This

can clearly be observed in the continued ‘ridge’ from [0,13] to [39,13] and in the

specific phase-curves at the edges of Figure 5.12.

The most striking features in this SOM are the hot spots at [6,2] and [8,6],

represented as the yellow spots on the SOM, alongside the slower evolution of light-

curve shape across the remainder of the map. The SOM pixels for these two ‘hot-

pixels’ at [6,2] and [8,6] are plotted in Figures 5.13 and 5.14 respectively, and appear

to represent two very well-known classes of photometric variability: Beta Lyrae type

contact eclipsing binaries (EB; [6,2]) and Algol-type detached eclipsing binaries (EA;

[8,6]). Querying specific light-curves at these pixels confirms this classification, with

clear examples of both types of binary evident. This suggests that this clustering

method is very effective at finding eclipsing binaries, and further gives an efficient

and intuitive view of those present in the data-set. A closer examination of the

EA-like signals is also useful given that transiting planets could give very similar

eclipse shapes, especially for those pixels where secondary eclipses are not obvious

in the phase-folded light-curves.

The regions immediately around these ‘hot-pixels’ are also interesting to

examine, representing shapes similar to the most distinct EA and EB eclipsing

binaries. The region surrounding pixel [6,2] is comparatively sparse, suggesting

that it is a very distinctive shape, with few variations from the shape present. On

the other hand, there are a number of ‘warm pixels’ to the left of [8,6], which when

queried show evidence of a second eclipse, for which a hint can be seen on the bottom

of Figure 5.12, at pixel [5,5]. This comparison suggests that there is considerably

more shape variation in EA light-curves viewed in these young stars compared to

the variation observed in EB light-curves, much of which may be down to the period

of the detached EAs. To the right of both of these hot pixels is a steep drop-off,

which makes sense given the distinct change in shape to noisy sinusoids which occurs

towards pixel [15,5] (also pictured in the bottom panel of Figure 5.12).
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Figure 5.13: Phase curve and example light-curve for Kohonen pixel [6,2] in the
final S1-13 SOM, representing the position of most EB signals.

Figure 5.14: Phase curve and example light-curve for Kohonen pixel [8,6] in the
final S1-13 SOM, representing the position of most EA signals.
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A first glance at the full SOM distribution through individual pixels reveals

the rich array of variability present in young star light-curves. While sinusoidal

pixels are certainly common (as is expected given the common spot modulation

in young stars), it is not hard to find alternative pixels where simple sinusoidal

detrending would be completely inappropriate (e.g. [0,30], [10,30] and [30,20]). It

is also obvious that in some regions of the SOM the shape trend varies slowly (e.g.

the diagonal from [0,10] to [20,30]), but in others the changes in shape are rapid

(e.g. the swift change between pixels [10,30] and [15,35]). When analysing the wider

SOM distribution further, two key things to look out for are light clusters of the

most common light-curves (e.g. [2,32] and [15,5]) and dark regions (e.g. [21,26]

and adjacent to [6,2]) separating quite distinct shapes of variability. As discussed

previously, it is these individual clusters and not the overall SOM distribution that

is of greatest importance, especially as the specific locations of clusters will change

with every run without pre-training. The most common phase-curve shapes aside

from the EA/EBs discussed previously appear to be variations on the asymmetric

sinusoids at [2,32] (similar to [5,30] in Figure 5.12) and negative sines/cosines (e.g.

the distinct diagonal cluster from [34,7] to [13,24] in Figure 5.12). However one

particularly unusual one is [22,24], falling in the middle of another less-dense region,

like the EA and EB pixels. Querying the individual phase-curves and corresponding

light-curves at this point (e.g. Figure 5.15) curiously reveals most to contain flares,

suggesting that this extended peak in Figure 5.15 is caused by averaging the different

phases of maximum flare brightness.

One variability shape that proved harder to find than originally expected

was the Dipper/burster class. As these light-curve shapes are thought to be caused

by occultations by wraps of accretion columns in circumstellar disks [Hedges et al.,

2018], they could theoretically take quite unique and unusual shapes, meaning that

they may not all fall on one defined region of the final map. However, through

examination of individual light-curves at pixels with unusual Kohonen phase ar-

rays, some dipper and burster-like light-curves were found in the vicinity of [10,30],

[25,16], [35,1] and [35,29]. Lists and specific examples of these will be discussed

in YOUNGSTER III (Battley et al, in prep) after additional supervised machine-

learning methods are combined with the SOM to more automatically weed out the

large number of noisy light-curves also present at these pixels. The co-location of

the noisy and dipper-like light-curves at these pixels is an unfortunate side-effect of

swiftly-evolving dippers and some heavily noise-dominated light-curves appearing

similar when condensed down to 64 flux bins. Considering non-periodic statistics

alongside the SOM shapes in the future should help to separate these signals much
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Figure 5.15: Phase curve and example light-curve for Kohonen pixel [22,24] in the
final S1-13 SOM, another site of unusually distinct variability.

more effectively.

The remainder of the final map is mostly split into two main large regions,

centred on [30,30] and [18,10] respectively. The region around [30, 30] typically

contains phase-/light-curves with other periodic variability (similar in vein to the

‘OTHERPER’ class defined by Armstrong et al. [2016]), appearing as repeated

signals with shapes unlike typical sinusoids. Such profiles may be caused by such

processes as stellar oscillations or rotating star spots. Some of these also harbour

significant evolution even along the duration of a single TESS sector. Meanwhile

the region around [18,10] consists primarily of flat or noise-dominated light-curves,

with no obvious variability. This would be the bulk of a SOM completed for an

older population, yet is comparatively rare for such young active light-curves.

A final interesting feature of some of the phase-curves pictured in Figure 5.12

is that there is some variation in the range of flux, from 0 to 1 for the strongest

signals (e.g. [8,6]), down to as low as 0.15 to 0.3 for some of the noisier light-curves

(see [22,24], Figure 5.15). This is somewhat surprising given that all phase-arrays

were normalised between zero and one in their construction. Such a discrepancy

is explained through examining individual phase-curves at this pixel, showing that

many of the light-curves grouped at these pixels are less similar in shape to each

other, hence average out to smaller ranges.
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Figure 5.16: SOM built using all young star CDIPS light-curves from S1-13 but
with only 20 pixels in each direction. Colours and pixel size share the same meaning
as in Figure 5.2. Here the large-scale variation over the full map is clearer, but at
the expense of merging some similar pixels together. In particular the EA and EB
pixels have now been merged into one region by pixel [0,13].

5.5.2 Variation in SOM size

Two additional sizes of SOM were trialled to yield more information from the SOM:

20x20 and 60x60 pixels, both of which highlight different aspects of the young star

data.

The 20x20 pixel SOM (Figure 5.16) provides an easier way to see overall

trends in the data-set, including the main evolution from sinusoids (e.g. [3,9]) to

more complex shapes (e.g. [10,0]) and the ‘hot-pixels’ at [0,13] and [19,11] for the

EAs and EBs respectively. This makes it a useful first overview to the data-set, and

can capture any significant systematics present. However, given the much smaller

mapping space to spread things out, it is prone to combining slightly different types

of variability into a single pixel. Such a combination typically makes the individual

SOM pixels less representative of all those light-curves within it, which was seen to
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Figure 5.17: SOM built using all young star CDIPS light-curves from S1-13 but
with 60 pixels in each direction. Colours and pixel size share the same meaning as
in Figure 5.2. In this case the 60x60 SOM is better at highlighting individual small
clusters of unusual variability but makes the overall trends in variability harder to
recognise.

distort the main EB pixel shape compared to the 40x40 run. This size of SOM is

thus most useful for getting an idea of the overall larger variability classes present

in the model by eye, but is considered slightly too simple for representing the wide

variation in light-curves shapes present in young star light-curves.

On the other hand, the 60x60 SOM (Figure 5.17) exacerbates individual

variability types while sacrificing the ease of understanding overall trends by human

eyeballing. Examining all 3600 pixels by eye is unwieldy, and unlikely to give much

of an understanding of the large-scale variations in the data-set. It is the hot-pixels

where this larger SOM really excels however, showing considerably more small-scale

minima and maxima than the 40x40 SOM. As in the 40x40 case, the key features

to look for are bright pixels surrounded by darker pixels, as these are comprised

of arrays very different to the surrounding data. The clearest example of this is
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Figure 5.18: Example 1 of interesting Kohonen-pixel shape and corresponding ex-
ample light-curve from 60x60 SOM run - pixel [37,0]

around the pixel [20,9] in Figure 5.17, which once again represents the distinctive

group of Beta-Lyrae type Eclipsing Binaries. Slightly subtler interesting groups

can be found at pixels such as [37,0] and [40,30], pictured in Figures 5.18 and 5.19

respectively. While some phase-curves ending up at these pixels are simply due

to noise scatter, many others are worth investigating further for behaviour such as

dippers and bursters.

5.5.3 Sector by sector analysis

As well as generating an overall SOM for the complete Year 1 CDIPS light-curves,

SOMs were generated for each TESS Sector individually. Because the constructed

phase arrays are of a constant size and normalised between zero and one, direct

comparisons between sectors are easy, despite variations in data gaps and periods

of extra scatter. Note however that as most young stars are concentrated along

the galactic equator, the number of targets per TESS sector was found to vary

considerably, ranging from as few as 3120 in Sector 3 to 146,557 in Sector 11. Because

of this, building a SOM out of Sectors 1-5 individually was not found to be very

instructive, so instead these were combined into a single S1-5 run totalling 26,153

targets.
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Figure 5.19: Example 2 of interesting Kohonen-pixel shape and corresponding ex-
ample light-curve in 60x60 SOM run - pixel [40,30]

Alike to the full Year-1 SOM run, the self-training method of building the

SOM was used for each sector, with the results for Sectors 1-5 shown in Figure

5.3 and the remaining sectors presented in Figures B.1 to B.8. Although specific

positions vary because of the random initialisation of the SOM, the major charac-

teristics of the final maps for each sector are very similar, with hot-pixels for the

EA/EB eclipsing binaries surrounded by the lowest density regions, alongside more

steady evolution over the rest of the map. Some discrepancies do however exist with

regards to additional hot pixels, such as pixels [6,22] in the S1-5 SOM and [7,14] in

Sector 9. In the case of pixel [6,22] of the Sector 1-5 SOM, this pixel represents a

noisy sinusoid (plotted in Figure 5.20). This is thought to be caused by the extra

pointing noise present in the early TESS sectors, which were corrected in Sector

6 onward. Because these light-curves represent a reasonably small number in the

overall Year 1 data, these light-curves do not form a large enough group to be a

significant hot pixel in the full Year 1 run.

Meanwhile, the additional two hot pixels in the Sector 9 plot at [7,14] and

[35,10] have the geometry plotted in Figures 5.21 and 5.22 respectively. These are

less easy to characterise using the SOM pixels alone, and hence are better understood

by checking some of the individual light-curves at these points. Closer inspection of
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Figure 5.20: Phase-curve and example light-curve for additional ‘Hot-Pixel’ [6,22]
in S1-5 SOM, showing noisy sinusoidal geometry.

these light-curves revealed that the targets at both pixels were dominated by excess

noise, coupled with a distinctive background signal consisting of V-shaped dips at

the beginning of both orbits. An additional flux ramp before these V-shaped dips

in the light-curves at [7,14] changed the overall shape at this pixel further. All of

the light-curves grouped to these pixels came from suspiciously similar light-curve

numbers (45,000-50,000 for pixel [7,14] and around 1400-4000 for pixel [35,10]),

suggesting that they come from similar regions of the CCDs originally. Sector 9

also contains some very crowded regions of sky near the ecliptic plane, which may

explain why so many light-curves were adversely affected.

Despite these minor discrepancies, the similarity in SOM clustering and over-

all trends present between sectors show that the SOM remains effective across all

sectors, with the one proviso that enough light-curves are available to allow signifi-

cant clustering to occur. This bodes well for using SOM positions as a useful metric

for further machine learning classification of young stars, as useful results can be

obtained even when only running a single month of data.

170



Figure 5.21: Phase-curve and example light-curve for additional ‘Hot-Pixel’ [7,14]
in S9 SOM. Inspection of individual light-curves revealed this to be caused by the
distinctive background signal at the start of each orbit in the light-curve.

Figure 5.22: Phase-curve and example light-curve for additional ‘Hot-Pixel’ [35,10]
in S9 SOM. Similar to [7,14] this was caused by additional noise and a distinctive
background signal.
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Figure 5.23: SOM trained on the 24,442 light-curves from the K2 Variability Cata-
logue which had classifications indicating that they were not noise. As usual, axis
numbers correspond to Kohonen x and y pixel numbers, similar to Figure 1. Note
that only targets with ą90% class probability in the catalogue are plotted for clarity.
Left: The 24,442 non-‘noise’ light-curves mapped onto the SOM, showing distribu-
tion of known variability types. Right: All young star CDIPS light-curves from the
first year of the TESS mission (Sectors 1-13) mapped onto the same K2 Variability
Catalogue-trained SOM. The bulk of the CDIPS light-curves can be observed to fall
into gaps in the K2 Variability Catalogue map.

5.5.4 Pre-trained SOM

Results from pre-training the SOM on the K2 Variable Catalogue data [Armstrong

et al., 2016] are shown in Figures 5.23 and 5.24, excluding and including those light-

curves classified as ‘noise’ respectively. The same trained SOM underlies both the

left and right hand side of each figure, with the K2 Variability Catalogue light-curves

mapped onto the SOM on the left and the full TESS S1-13 young star light-curves

mapped onto the SOM on the right. This means that the shape of each pixel in

the K2 Variability Catalogue map on the left corresponds to the same shape at

the corresponding pixel on the right, allowing direct comparisons between expected

variability classes and the position of young star phase-curves.

In the case of the ‘no-noise’ SOM (Figure 5.23), the plotted variability classes

were observed to cover most of the 40 x 40 grid, with a wide diagonal band of primar-

ily other periodic (OTHERPER), delta-scuti (DSCUT) and Gamma-Dor (GDOR)

variables. Meanwhile eclipsing binaries of both types (EA/EB) congregated around

[39, 30] (remembering that the SOM wraps around each edge), distinctly off-set

from the other types of variability. In this case the white space left on the plot is

mostly full of targets with class probabilities of ă90%, representing those with less
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Figure 5.24: Same as Figure 5.23, but considering all 68,910 in the K2 variability
Catalogue, including those classified as ‘noise’. Axis numbers represent Kohonen x
and y pixels, alike to Figure 1. While overall classification performance is improved
(see for example the clear EA/EB over-densities at [19,25] and [26,33]), many light-
curves still fall in gaps in the K2 Variability Catalogue trained SOM, likely due to
excess noise in the TESS light-curves and additional types of young variability not
present in the K2 Variability Catalog.

clean-cut classifications from the K2 Variability Catalogue. Interestingly, when the

TESS S1-13 CDIPS light-curves analysed in this work were applied to this same

map, the vast majority of them fell on regions of the map with low densities of K2

variability catalogue targets. This suggests most of the shapes seen in the young

TESS light-curves (likely from alternative types of variability or noise) are different

to the specific variability classes defined in the K2 variability catalogue. Such poor

classification performance stresses the importance of conducting young-star specific

classification rather than simply relying on previously known variability classes. It

should be noted however that some of the young star light-curves do still fall on, or

nearby, known variability classes on the ‘no-noise’ SOM, particularly over the centre

of the main OTHERPER block of targets and adjacent to the main group of eclips-

ing binary light-curves. Querying CDIPS young star light-curves which appeared in

this EB-adjacent region does reveal them to be eclipsing-binary-like signals in the

TESS data as well, suggesting that these types of signals are the ones which are

best handled by (and most similar to) the K2 Variability Catalogue trained SOM.

Examining the SOM trained on the full K2 Variability Catalogue (Figure

5.24) provides more promising results. Because training of the SOM spreads vari-

ability across the entire map, there is considerably more white space in this latter

case, where most of the ‘Noise’ light-curves fell. However, the OTHERPER sources

are still spread out over a large proportion of the SOM, suggesting that there is a lot
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of variation in their specific light-curves, compared to the much more localised EA

and EB light-curves. In this particular run the eclipsing binary signals were split

into two main groups rather than a single region, but while there is some difference

in the shape of the phase-curves between these groups (with the top right group

having wider dips), this is considered more to do with the random initialisation of

the SOM than significant differences in shape, as a previous run with the same K2

Variable Catalogue data placed all EAs/EBs in a single joined group. The inclu-

sion of the ‘noise’ class appears to aid the SOM performance considerably, both

by grouping light-curves similar to known variability classes more obviously and by

allowing internal structure and specific groups of the light-curves which fall onto

quieter regions of the plot to be viewed. Of particular interest is the main EA/EB

group at [19,25] on the K2 Variability Catalogue map, which is clearly reproduced as

an area of high density in the young star map on the right. As is expected, querying

individual phase- and light-curves ending up at this point reveals true EA/EB-like

signals, showing that the SOM is working effectively at finding these. A similar

region of high density can be seen at [26,33] in the young star map on the right, just

slightly below and to the left of the expected position ([28,35]) in the K2 Variability

Catalogue map.

Meanwhile there are a handful of clear over-densities in the quieter regions of

the original K2 Variability Catalogue map, specifically around [5,20], [10,28], [16,10],

[21,36] and [35,1]. While the shape of the average phase curve at each of these pixels

varies somewhat, all of these phase-curves have y-ranges of about 0.3-0.7 rather than

0-1 as they were initialised with, suggesting that they contain more variation between

each phase curve at these pixels. This is common where initial light-curves are noisy,

causing large variation between each corresponding phase-curve. Indeed querying

individual TESS phase- and light-curves which congregated at these pixels (e.g. see

Figure 5.25) reveals them to be noise-dominated, significantly more noisy than is

usually seen in light-curves extracted from the K2 mission. This was not entirely

unexpected given TESS ’s reduced photometric precision compared to the Kepler

spacecraft, as indeed similarly large noise differences were also seen by Battley et al.

[2021] when comparing a number of Kepler planets reobserved by TESS (see also

section 6.2.3). Such a problem is particularly challenging for dimmer TESS targets,

where the instrumental white noise far outweighs any potential variability signals.

In order to explore this aspect further, a brighter subset of the CDIPS targets

were selected by choosing those stars brighter than Tmag = 12 in the TESS Input

Catalogue [TIC v8; Stassun et al., 2019]. Applying the SOM trained on the full

K2 Variability Catalogue (including the ‘Noise’ class) to the phase-curves for these
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Figure 5.25: Example of one of the noise-dominated TESS phase-curves (top) and
light-curves (bottom) placed into gaps in the SOM pre-trained on the full K2 Vari-
ability Catalogue.

targets resulted in the final map pictured in Figure 5.26. Through comparison to

Figure 5.24, it is clear that these brighter TESS targets align much better with

the previously known variability groups from the K2 Variability Catalogue (plotted

on the left of Figure 5.24) than the full CDIPS light-curves did, with the bulk of

the targets falling on the main band of OTHERPER/DSCUT variables or EA/EB

clusters. Furthermore, the distinct over-densities observed around [5,20], [10,28],

[16,10], [21,36] and [35,1] have all reduced significantly in relative strength compared

to the main clusters of known variability type.

Nonetheless, some of the light-curves falling in the gaps cannot be explained

by the excess noise in TESS. Alongside these phase-curves exist a number of unusual

variability types, including dipper-like behaviour and unusual rotation-like signals.

The reason for these falling in gaps could perhaps be partially explained by the

included young stars having a much wider sample of young ages compared to the

often older K2 stars. This would mean that some K2 light-curves may have types

of variability not seen in young stars, and some particularly young stars may have

types of variability not present in bulk in the K2 Variability Catalogue. Additional

differences in shapes could also be explained by the differences in TESS sector

lengths (roughly 27d), compared to K2 campaign length („80d for the analysed
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Figure 5.26: Bright (Tmagă12) CDIPS targets from Sectors 1-13 mapped onto
the full K2 Variability Catalogue trained SOM shown in Figure 23. Although a
few smaller areas of higher density still exist in gaps in the original K2 Variability
Catalogue SOM (e.g. on the lower right of the plot, around pixel [30,3]), the majority
of the data now falls into regions of previously known variability classes.

0-4th campaigns), meaning that K2 targets may evolve more in phase over the time

period. However, such interesting types of variability will be much more easily

explored and explained when not overwhelmed by the large number of noisier TESS

light-curves also constrained to these pixels.

These challenges show that although pre-training the SOM shows some promise

in classifying new targets into previously known variability groups, the performance

of this classification would benefit significantly from using light-curves from the same

survey/instrument compared to archival data. In future analyses in the YOUNG-

STER program, TESS light-curves will be used instead, based on objects with

previously classified variability classes. Unfortunately at the time of writing not

enough of these existed to test such an analysis, however with TESS now observ-

ing the ecliptic plane, many of these pre-classified targets from the K2 Variability

Cataloguer should soon receive TESS data.
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5.5.5 Catalog of Eclipsing binaries in TESS Year 1

As discussed in Section 5.5.1, the SOM method appears to be very effective at

highlighting and separating the distinctive shapes of eclipsing binaries from other

variability present in the young star light-curves, appearing as distinctive hot-pixels

in all the self-trained SOMs generated in this work. As young eclipsing binaries are

very important to understanding the early evolution of star systems, those iden-

tified in this work are presented here in the hope that they will be useful for the

wider young star community. Although the bulk of these light-curves ended up at

the hot-pixels at [6,2] and [8,6] in the complete Year 1 SOM (Figure 5.12), there

are additional binary-like signals in pixels adjacent to these, especially to the left

of the main detached eclipsing binary (EA) pixel at [8,6]. Because of this, a more

conservative method of selecting light-curves was used, selecting phase-curves by

using a cut based on the Euclidean distance from the archetypal phase-curve at the

strongest pixels. The specific cuts used were dxy ă 1.56 from pixel [8,6] for the EA

candidates and dxy ă 1.37 from pixel [6,2] for the EB candidates. This allowed the

most similar light-curves from the surrounding area to be selected whilst reducing

the number of false-positives that would be selected by simply choosing all pixels

which harbour some eclipsing binary-like signals. These cuts resulted in a total of

13,366 candidate EA signals and 2448 candidate eclipsing binary signals, including

many systems which were picked up in multiple sectors. All selected light-curves

were then checked by eye in order to catch any remaining obvious false positives.

Such false positives typically consisted of excess noise, sharp stellar activity or ob-

vious blends with other nearby targets. Following this step and a uniqueness cut

on TIC ID, 8103 EA and 1297 EB candidate systems remained, all of which are

presented in Table 5.2, with a full version of the table online.7 This significant drop

is largely not due to mis-classifications by the algorithm, but instead light-curves

with the EA/EB shape which were subsequently found to be blends during human

eyeballing, or those which appear in multiple sectors. As such, some care is advised

when interacting with this catalogue, as further less obvious blends may still exist

due to the large TESS pixels. This catalogue is not exhaustive, but represents the

cleanest sample of young eclipsing binaries identified by the SOM analysis of these

young stars. The catalogue will be updated with less distinctive cases using future

supervised machine learning methods in the continuing YOUNGSTER program.

7https://warwick.ac.uk/fac/sci/physics/research/astro/people/matthewbattley/ea and eb
table youngster2.csv
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Table 5.2: Candidate eclipsing binary signals found in Year 1 of the CDIPS TESS
light-curves. Light-curves with only single eclipses are labelled as ‘Single’ in the Pe-
riod column. A machine-readable version of the full table (9400 targets) is included
alongside the thesis online.8 Periods shown are the primary period found in section
5.2.3.

Gaia DR2 ID TIC ID Period [Days] Type

6585253422567909760 197601231 Single EA
6619768913628810624 32197062 0.331 EA

... ... ... ...
6630166342263764992 365770318 0.289 EB
5777534485542148608 310104320 1.17 EB

5.6 Discussion

With these promising results, it is clear how powerful the Self-Organising Map tech-

nique is for exploring the variability of young stars, both in terms of viewing the

broad distribution in variability and for isolating individual groups of distinct vari-

ability such as EAs and EBs. The final Kohonen map provides an intuitive and

useful overview of the entire first year of young star data in TESS (especially when

individual pixels are queried) and can even speed up identification and characteri-

sation of systematic errors in the data. This is the first time that such a technique

has been applied to a dedicated sample of young stars, as well as the first time such

a technique has been applied in bulk to TESS data. Applying this technique to

young stars specifically allows for a deeper view of unusual variability types which

would easily be drowned out by some of the distinctive variability classes presented

in older samples of stars (e.g. Cepheids, RR Lyraes). This is especially important as

their spot modulation and comparatively short-period variability can result in sig-

nificantly different shapes to the standard accepted variability classes. Indeed one

particularly interesting feature of the full S1-13 SOM (Figure 5.12) is how uncom-

mon basic sinusoidal shapes are, suggesting that simple spot modulation with single

large spots dominating the photosphere are not the dominant variability type. This

wide array of different shapes helps to explain why transit surveys struggle to find

planets around young stars with traditional ‘one-size-fits-most’ detrending methods.

However, despite the useful results offered by the SOM analysis, some key

provisos remain. Most importantly, as the SOM technique works by folding light-

curves and binning phase-curves by the strongest periodic signal, it effectively ob-

scures or reduces any short-term or aperiodic activity, including important features

such as flares and aperiodic dipping activity. Similarly, because all phase-curves are

normalised, some noisy light-curves can have their slight variability greatly exagger-
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ated. These two factors show the need for extra factors like period, peak-to-peak

scatter statistics and amplitude measurements when attempting wider classification

of light-curves. This is corroborated by Brett et al. [2004] who point out that be-

cause real-world examples will have a lot of similar shapes at the edges of each class,

additional diagnostic attributes are required for safer, more accurate classification.

In order to combat this in the continuing YOUNGSTER program, information from

the generated SOMs (in particular the final SOM position and Euclidean distance

from final pixel) will be combined with known stellar information, light-curve statis-

tics and known variability classes in a wider random-forest-based machine-learning

method in future (see YOUNGSTER III, Battley et al., in prep). While biases and

varying membership likelihoods in the CDIPS target-list mean that reliable statistics

are not easily obtained from this current sample, using these SOM-based techniques

with more accurate target-lists (such as in individual moving groups/associations)

have the potential to provide statistical overviews of the shapes present in a specific

sample.

One additional concern was that interpolating over the data gaps in the

analysis was changing the phase curves sufficiently to affect the final position of the

light-curve on the overall map. As a test to confirm this was not the case, phase

arrays for all light-curves from Sector 2 (except those with periods resulting in gaps

in the phase-curve) were reconstructed with the gap retained instead of interpolation

and mapped onto the final SOMs trained on Sectors 1-5 (Figure 5.3 and 1-13 (Figure

5.12 respectively. All light-curves in well-defined variability clusters (such as EA/EB

eclipsing binaries) were found to fall precisely on their original positions in both test

cases, with 85% of all light-curves falling within 10 pixels of their original position

(and 70% overall within 2 pixels). As the shape associated with each Kohonen pixel

in the more amorphous region of the SOM was not observed to evolve quickly over

the course of 10 pixels, the imposed linear interpolation does not appear to result

in significant mis-classifications of shape.

Because of TESS ’s observing strategy, most targets analysed in this study

only had a single sector of TESS photometry, totalling approximately 27days of

observations. This means that young stars in this sample with dominant activity

periods of longer than this window will not be folded by their correct period, instead

likely appearing as aperiodic. One way to solve this challenge would be to focus on

stars in the TESS continuous viewing zone (CVZ), however because the majority of

young stars fall near the galactic plane, only on the order of 500 stars in the CDIPS

sample analysed here fell in this area of the sky, far fewer than necessary to generate

a reliable and informative Self-Organising Map. Using new data for these targets
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from TESS ’s extended mission will help to extend the observational baseline for

these objects, however at the time of writing no light-curves beyond Year 1 of the

TESS mission were available from the utilised CDIPS pipeline. None the less, it is

clear that even using a single sector of data allows a wide distribution of variability

shapes to be observed. Indeed, one of the key benefits of using binned phase-curves

instead of light-curves as the primary SOM data-input is that light-curves from

different sectors and data-lengths can be easily compared. Theoretically this should

allow data from different instruments to be compared also, however this was shown

to be more challenging than originally expected when comparing to the K2 Variable

catalogue [Armstrong et al., 2016] in Section 5.5.4 above. In the future this pre-

training will be improved by using TESS light-curves for objects pre-classified into

known variability classes, alongside potential new groups found through deeper SOM

analysis.

One additional aspect of the SOM that was made clear by the sector by

sector analysis was the required number of light-curves before notable patterns and

groups could be seen on the map. In this case, primarily using a 40x40 SOM, 10,000

light-curves were found to be the point at which clustering became significant, which

is why the first five sectors were eventually run as one (Sectors 1-5 had 4772, 3535,

3059, 5435 and 9353 young star light-curves respectively). Naturally smaller SOMs

could be used to aid clustering in the case of fewer light-curves, but the 40x40 SOM

was found to be a good balance of allowing understanding of the global pattern

while not merging too many interesting types of individual variability. Thus here

it is recommended that at least 10,000 light-curves are utilised for optimum SOM

performance.

A challenge of completing this analysis with TESS light-curves compared

to previous Kepler/K2 analyses is the increased blending from neighbouring stars

due to TESS ’s larger pixels. This challenge fundamentally means that some objects

nearby to targets with strong variability may be miss-classified due picking up some

of this adjacent signal. This effect is made even worse for young stars compared to

the general stellar population due to many young stars existing in relatively dense

birth environments. Such a challenge is well illustrated by the number of supposed

EA/EB light-curves which had to be removed in the eyeballing stage of section

5.5.5, so classifications from TESS data alone should be taken with a grain of salt.

However, since one of the primary goals of YOUNGSTER program is to detrend

the variability of these young stars to search for new young exoplanets, knowing the

dominant variability shape of each target is still very important, regardless if this is

the true variability class of that target.
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One final consideration of using SOMs is their computational cost. While

applying data to a previously trained SOM is simple and efficient (requiring only a

few minutes provided that it is presented in the same ‘SOM array’ format), the initial

preparation of phase-folded SOM arrays and the training of the SOM from these

arrays can take on the order of hours to one day for a single sector, depending on the

size of a sector. Indeed when carried out on a 2012 Macbook Pro (2.5GHz Intel Core

i5 processor; 8GB memory), the SOM array preparation step was found to take 44

hrs for Sector 7 (89,221 light-curves), or 1.80 seconds per light-curve, while training

the SOM using the ‘CreateSOM’ routine was found to take 75 hrs (3.1 days) to train

the full S1-13 SOM (based on 635,107 light-curves), or 0.43 seconds per light-curve.8

However, applying new data to this trained SOM and plotting the final distribution

was typically complete in just a few minutes, so if all data is compared to the same

SOM for classification, the main computational consideration is simply the time take

to create SOM arrays for each lightcurve. Further time enhancements can be made

by parallelising the process (e.g. completing different sets of light-curves on parallel

cores), or analysing only one sector at a time, especially as individual sectors were

shown to be very effective at sorting types of variability by themselves (see section

5.5.3).

In Summary, Self-Organising Maps are a powerful technique to explore and

characterise young star variability in large surveys such as TESS, allowing both an

intuitive understanding of the overall variability evolution across the entire sam-

ple and highlighting groups of distinct variability. For this reason it will be folded

into the wider supervised machine learning methods of the continuing YOUNG-

STER program, combined with knowledge of the light-curve statistics and stellar

parameters. The final variability classifications from this program can then be used

to inform future detrending during searches for new young exoplanets, for exam-

ple by building variability models or using the knowledge of the light-curve shapes

to tune smoothing parameters. Although this analysis primarily focused on the

CDIPS light-curves, the methods discussed in this paper are well-suited to other,

often more extensive, light-curve sources such as those generated by TESS-SPOC

pipeline [Caldwell et al., 2020b], the Quick Loop Pipeline [QLP Huang et al., 2020a]

and eleanor pipeline [Feinstein et al., 2019], provided that typical systematics are

well characterised for these sources. Furthermore, because the SOM analysis is

based on binned phase-curves, it can easily be extended to the main 2min TESS

data and planned 10min and 300s FFI observations.

8Note that this averages out at 24hrs for the SO array generation and 5.8hrs for the CreateSOM
step per sector, which is more manageable
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5.7 Summary

Here Kohonen Self-Organising Maps [Kohonen, 1982, 2001] have been used for the

first time on a dedicated selection of young stars from the TESS survey, in order

to explore the wide-scale variability of these interesting objects. This unsupervised

machine learning technique allows light-curves to be grouped according to their

dominant shapes, without needing prior knowledge of expected groups and clusters.

This is particularly important for young stars, where the community it still dis-

covering new types of stellar activity. All currently available light-curves from the

Cluster Difference Imaging Photometric Survey [CDIPS, Bouma et al., 2019] are

analysed here, representing over 600,000 young star light-curves from the first year

of TESS ’s observations.

Overall Self-Organising Maps reveal young star activity shape distribution

to be more varied than expected, with a significant spread over the whole param-

eter space of shapes, from archetypal sinusoidal signals to more varied ‘dipper’ or

pulsation-like activity. The SOMs are also very proficient at separating eclipsing

binary and potential transiting signals from the data, typically appearing as signifi-

cant hot-spots in the final Kohonen maps. Given the importance of these objects, a

target list of those identified in this work is supplied in this work and online. SOMs

generated for individual sectors retained similar distributions to the overall Year 1

version, provided that at least 10,000 light-curves were present in that sector (i.e.

for all but sectors 1-5, which were combined into a single SOM). This illustrates the

SOM’s effectiveness in characterising the variability of young stars in a single sector

alone, without having to run a full year of light-curve data. While most analysis

was completed using a 40x40 SOM, 20x20 and 60x60 versions were also tested for

the full sample of light-curves, revealing the strongest groups of variability in the

first case and a deeper sub-structure of variability in the latter. However, the 20x20

SOM was found to merge too many dissimilar light-curves, while the 60x60 SOM is

somewhat unwieldy for in-depth analyses, so the 40x40 version is recommended for

future analyses.

Pre-training the SOM was attempted using light-curves with pre-defined vari-

ability classes from the K2 Variability Catalog of Armstrong et al. [2016], however

this was found to be challenging due to differences between the characteristics of

light-curves from TESS and the K2 mission. Nonetheless, such a method shows

sufficient promise to be worth repeating when sufficient TESS data is available for

these objects from the TESS extended mission.

The self-organising map method was also revealed to give valuable and intu-
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itive insight into leftover systematics in the TESS data (regardless of which pipeline

is used), especially where there is variation in the severity of the effects. This will be

particularly useful for diagnosing and understanding the significant scattered light

systematic present in TESS light-curves for dimmer stars.

The increased understanding garnered about young star variability from this

analysis will be used to guide future light-curve classification and targeted detrend-

ing methods in order to search for new young exoplanets in the continuing YOUNG-

STER program.
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Chapter 6

Tracking known exoplanets

though time: Revisiting the

Kepler Field with TESS

“A straight line may be the shortest

distance between two points, but it

is by no means the most interesting”

— The Third Doctor, The Time

Warrior, Doctor Who

As exoplanet science moves from detecting exoplanets to characterising their

architectures and atmospheres in depth, up to date planet ephemerides are becom-

ing increasingly important. However, with the Kepler mission finishing in 2013,

many of the important planets and candidates discovered during this mission went

essentially unobserved until the second year of the TESS mission, meaning that

the ephemerides for these objects became increasingly stale. This chapter presents

work combining new observations from the TESS mission with observations from

the Kepler Space Telescope in order to update the ephemerides for 22 Kepler plan-

ets and 4 Kepler planet candidates, constituting all Kepler planets and candidates

with sufficient signal to noise in the TESS 2min dataset. This includes a num-

ber of young exoplanetary systems such as Kepler-63 („ 210Myr), Kepler-289 („

650Myr) and Kepler-411 („ 210Myr). A purely photometric method is utilised

here to allow ephemeris updates for planets even when they do not posses signif-

icant radial velocity data. The obtained ephemerides are of very high precision

and at least seven years ‘fresher’ than archival ephemerides. In particular, signifi-
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cantly reduced period uncertainties for Kepler-411d, Kepler-538b and the candidates

K00075.01/K00076.01 are reported. O-C diagrams were generated for all objects,

with the most interesting ones discussed here. This analysis represents another im-

portant method of tracing exoplanets through time, giving evolution of individual

planetary systems instead of analysing snapshots of planets at different ages.

This chapter begins with a wider motivation for this research in Section 6.1,

before reporting the observations for each object and instrument in Section 6.2.

This is followed by a brief reminder of the methods used to update ephemerides

(essentially a quick summary of Section 2.8.1), before the main results are presented

in Section 6.4. The chapter ends with a discussion and conclusion in sections 6.5

and 6.6.

Declaration - The following chapter is a partial reproduction of the paper

‘Revisiting the Kepler field with TESS: Improved ephemerides using TESS 2min

data’ [Battley et al., 2021], published the Monthly Notices of the Royal Astronomical

Society in May 2021. The vast majority of the work presented in this chapter was

carried out by the author, with co-authors to the paper mostly providing high level

guidance and simple proof-reading. The one exception is the transit timing analysis

presented in section 5.4.3, which was carried out by Dr Michelle Kunimoto.

6.1 Motivation

Maintenance of planet ephemerides is crucial to further characterisation of known

planets. This is especially true for follow-up with high-profile observatories such as

the upcoming James Webb Space Telescope [JWST, Gardner et al., 2006], where

timing uncertainties of less than 30 minutes are desirable [Dragomir et al., 2020].

Furthermore, ensuring that ephemerides of known planets and planet candidates

remain fresh secures the legacy of large-scale planet-finding missions such as those

performed by the Kepler satellite [Borucki et al., 2010] and the Transiting Exoplanet

Survey Satellite [TESS, Ricker et al., 2014].

The Kepler satellite dramatically changed the field of exoplanet science, dis-

covering almost 3000 validated exoplanets and thousands more planet candidates

over the course of its main mission and following K2 mission [Howell et al., 2014].

However, the original Kepler mission came to a close on May 11 2013 after the fail-

ure of two of the satellite’s reaction wheels1, meaning that it has now been almost

ten years since most of these planets have been observed. This observational gap,

1https://archive.stsci.edu/missions/kepler/docs/drn/release notes25/KSCI-19065-
002DRN25.pdf

185



coupled with uncertainties in the periods and epochs of the Kepler transits, has led

to many of the planet/candidate ephemerides becoming imprecise or ‘stale’.

A number of different surveys have attempted to solve this problem, both for

Kepler and K2 planets [e.g. Livingston et al., 2019; Ikwut-Ukwa et al., 2020; Ed-

wards et al., 2020], however the sheer number of planets and candidates discovered

by the satellite makes this a significant challenge. Promising follow-up solutions

include re-observing the entire Kepler field or using large-scale citizen-science ap-

proaches [e.g. Zellem et al., 2020; Kokori et al., 2020]. The launch of TESS in 2018

provided a new opportunity to address this challenge, surveying ˜75% of the night

sky over the course of its two-year primary mission. During this mission, TESS re-

turned to the original Kepler field, providing new data for the Kepler field in Sector

14 (and to a lesser extent, Sectors 15 and 26) of its observations.

Ikwut-Ukwa et al. [2020] have previously demonstrated the significant impact

re-observing data from the Kepler satellite with TESS can have, completing full

ephemeris and wider system parameter updates for K2-114, K2-167, K2-237 and

K2-261 from the K2 mission by utilising a combined photometric (TESS and Kepler

data) and spectroscopic (using archival radial velocities) measurements. In the case

of K2-114 these new measurements were shown to reduce the uncertainty in the

planet’s period by a factor of 66 compared to its discovery period. This promising

result heralds the way for a wider treatment of the entire TESS/Kepler crossover

sample in order to have ephemerides ready for the launch of JWST.

Furthermore, Christ et al. [2018] point out that re-observing the Kepler field

with TESS provides a host of additional benefits, providing a window into long-

term trends such as tidal decay of Hot Jupiters. In particular, Christ et al. [2018]

suggest that the Hot Jupiters Kepler-2b/HAT-P-7 and KOI-13b will be particularly

interesting objects to follow up with TESS data. They also suggest that TESS

may be very powerful for investigating longer-term transit timing variations. These

thoughts are echoed by the modelling of Goldberg et al. [2018] where they conclude

that mass uncertainties could be improved for 6-14 planets with the new TESS 2min

data, depending on the eventual measurement uncertainties.

While the combined photometric/spectroscopic approach of Ikwut-Ukwa et al.

[2020] allowed for new global models of the systems to be created, many of the

lower-mass Kepler planets and candidates do not currently possess significant radial-

velocity data. This motivated the construction of a homogeneous method of updat-

ing new ephemerides based on TESS/Kepler photometry alone, as was presented

in Section 2.8. Here the developed method is used to update the ephemerides for

every Kepler planet and candidate which was re-observed in the TESS 2min data.
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6.2 Observations

6.2.1 Kepler

Kepler ’s primary mission ran for approximately four years, or 17 ‘quarters’, from

first light on May 2nd 2009 until the loss of the satellite’s second reaction wheel in

May 2013. Observing the same rich patch of sky in the vicinity of the Cygnus and

Lyra constellations for its entire primary mission, the Kepler satellite yielded an

unprecedented volume of high quality, long-duration photometry, and was the first

telescope capable of finding Earth-size planets around Sun-like stars in year-long

orbits [Borucki et al., 2010]. The majority of the targets in the Kepler mission’s

primary field were observed in Kepler’s 29.4min (30min) long-cadence mode, how-

ever approximately 512 objects per quarter received 1min short-cadence light-curves

covering a month in time [Thompson et al., 2016a].

In this work, Kepler long-cadence PDCSAP light-curves were retrieved from

the public Mikulski Archive for Space Telescopes (MAST) using the Lightkurve

python package [Lightkurve Collaboration et al., 2018]. These light-curves were

prepared by the standard Kepler science processing pipeline [Jenkins et al., 2010],

which involves pixel-level calibration, smear and background removal, optimal aper-

ture selection and modelling of systematic errors introduced by the spacecraft. Due

to the stellar variability of most sources over the long Kepler observation timeline, an

additional detrending step was necessary before planetary transits could be used to

update ephemerides. This was achieved by applying a simple 24hr window LOWESS

filter [Cleveland, 1979a; Battley et al., 2020] to the out-of-transit light-curve, except

in the cases such as Kepler-9 [Holman et al., 2010], where shorter 12-15hr windows

were required to handle the shorter-period activity cycles. In order to preserve

the form of each individual transit, the transit epochs were masked from the light-

curves during this detrending step and replaced with linear interpolations until the

detrending was complete.

6.2.2 TESS

TESS re-observed the Kepler field in the second year of its primary mission. The

majority of the Kepler field was observed in Sector 14 (between 18 July to 15 August

2019), but due to overlap in adjacent TESS observations, some of these stars were

also re-observed in Sectors 15 (15 August - 11th September 2019) and 26 (8 June

- 4th July 2020). However, although the entire Kepler field was re-observed in

Sector 14 of the TESS primary mission, only 962 Kepler stars were pre-selected to

receive 2min data in TESS ’s primary mission. These stars are plotted in Figure 6.1,
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Figure 6.1: Overview of Kepler stars reobserved by TESS with 2min cadence. Indi-
vidual stars are colour-coded according to which TESS sectors they were observed
in: Black: Sector 14 only; Green: Sectors 14 and 15; Blue: Sectors 14 and 26; Red:
Sectors 14, 15 and 26.

colour-coded by which sectors they were re-observed in.

All TESS light-curves used in this work were generated by NASA’s Science

Processing Operations Centre (SPOC) and, similarly to the Kepler data, accessed

using the Lightkurve python package [Lightkurve Collaboration et al., 2018]. This

data was extracted from the raw images using the standard SPOC pipeline [Jenk-

ins et al., 2016], which includes pixel-level decorrelation, centroiding and aperture

optimisation. For all light-curves the PDCSAP flux data was analysed, which had

previously had systematic errors such as times of poor pointing or excessive scattered

light removed [Jenkins et al., 2016]. Similar to the Kepler data, after extraction via

the Lightkurve package, long-term stellar variability outside the transit was removed

from the TESS 2min light-curves using a 24hr window LOWESS filter.
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Figure 6.2: Photometric data comparison between Kepler (left) and TESS (right).
Top: HAT-P-7 b/Kepler -2 b, a 1.51 MJup Hot Jupiter is clearly recovered by both
Kepler and TESS. Bottom: Kepler-21 b, a 1.6MÀ super-Earth is clear in the folded
Kepler data but lost in scatter in the TESS data.

6.2.3 Photometry Comparison

The Kepler and TESS missions were designed with two very different survey strate-

gies in mind, and hence differ in their photometric performance. While the Kepler

mission focused on a relatively small (100 deg2, or 0.25% of the sky) northern hemi-

sphere section of the sky near the Cygnus, Lyra and Draco constellations [Borucki

et al., 2010], the TESS primary mission focused on maximising the amount of sky

viewed, achieving almost 75% coverage of the sky2 in its two year primary mission,

updated from the originally planned 85% due to issues with scattered light [Ricker

et al., 2014]. To achieve this coverage with TESS, a slight sacrifice in sensitivity was

required, with combined differential photometric precision (CDPP) dropping from

an average of 30ppm for the Kepler mission [Gilliland et al., 2011] to approximately

100ppm for Sector 14 of the TESS mission.3 This reduced sensitivity comes from

a variety of sources, but most importantly the reduced effective lens size in TESS

due to reducing from a single large mirror (effective lens diameter of 95cm) on the

Kepler satellite to smaller 10.5cm lens-based telescopes in TESS. This reduction in

effective lens diameter results in the resolution of the TESS instrument decreasing

to 21 arcseconds per pixel compared to Kepler’s 4 arcseconds per pixel and yields

increased blending from nearby stars compared to the Kepler satellite. The com-

2https://www.nasa.gov/feature/goddard2020/nasa-s-planet-hunter-completes-its-primary-
mission

3https://archive.stsci.edu/missions/tess/doc/tess drn/tess sector 14 drn19 v02.pdf
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bination of these effects, coupled with the shorter observational timescale in TESS

(27 days to 1 year in TESS ; 4 years in Kepler), means that TESS is less sensitive

to small planets than Kepler was, with Christ et al. [2018] predicting that only 277

Kepler planets have a ě 50% likelihood of being recovered by TESS to a 3σ level

in the wider-extent 30-min cadence data.

This issue is well illustrated in Figure 6.2, showing the comparison between

Kepler and TESS data for a large Jupiter-sized planet (HAT-P-7 b; Pál et al. [2008])

and a small Super-Earth sized planet (Kepler-21 b; Howell et al. [2012]). While the

planetary signal for both systems is clear in the Kepler data, the smaller planet is

entirely indiscernible in the 2min TESS light-curve. This perhaps helps to explain

why only seven known Kepler planets reobserved with TESS 2min cadence were

identified as TESS Objects of Interest (TOIs).4

For the purpose of this study we focus on all Kepler confirmed planets and

candidates with transits visible in the TESS 2min data, including many that were

missed as TESS TOIs.

6.2.4 Overall Target Selection

In order to find all Kepler planets and candidates which received 2min TESS data,

the 962 Kepler stars with short-cadence data were cross-matched with all transiting

planets and Kepler planet candidates from the NASA Exoplanet Archive.5 This

revealed a population of 49 Kepler planetary host stars (harbouring 93 transiting

planets) and 28 planet candidate systems which were re-observed by TESS in its

short-cadence mode. However, due to the comparatively short (28-day) TESS obser-

vation window compared to some long-period Kepler planets, the expected transit

times were missed for 19 planets and 8 planet candidates, making them unusable

for ephemeris updates. The planetary system of Kepler-34 (TIC 164457525) was

also removed at this stage, as its planet is not expected to transit again until Nov

18 2066 due to its complex circumbinary orbit [Welsh et al., 2015; Martin, 2017].

The TESS 2min light-curves for the remaining 73 transiting planets and 20

planet candidates were searched for new transits both by eye and systematically

with a box-least-squares search [Kovács et al., 2002; Hartman and Bakos, 2016],

as implemented as the BoxLeastSquares function in the astropy python package

[Astropy Collaboration et al., 2013, 2018]. Because of the reduced sensitivity of the

TESS instrument, many of the smallest Kepler planets were indiscernible from noise

in the TESS data alone, so these systems were also cut from the analysis. Overall

4https://exofop.ipac.caltech.edu/tess/view toi.php
5https:exoplanetarchive.ipac.caltech.edu [Accessed 12 August 2020]
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there remained 22 planets (in 18 planetary systems) and 4 planet candidates where

the ephemerides could be reasonably improved using the TESS 2min data. It is

worth noting however that for many of these only a single transit was observed.

Table 6.1 gives an overview of the final systems which have been updated in this

study, while a system by system summary of this target selection is included for

each planet host in Table C.1.

6.3 Overview of Methods

The full description of the methods used to update planet ephemerides was presented

in Section 2.8, however for context an overview is given here, along with specifics

of how planetary and stellar parameters were sourced for the 22 planets and 4

candidates updated in this work.

Based on the methods of Gajdos et al. [2019] and Holczer et al. [2016] to

analyse the full Kepler Q1-17 data, the first step consisted of building a transit

model for the planet of interest based on archival system parameters, and then

using this model to estimate the transit times of individual transits by minimising

the chi-squared statistic in a grid of 1min resolution around the expected transit.

As a starting point for the models, planetary and stellar parameters were

retrieved from the NASA Exoplanet Archive for all objects. In cases where the

data highlighted on the exoplanet archive was out of date, these parameters were

updated to reflect the most recent literature. In order to collect the most recent

radii information, the entire sample was cross-matched with Berger et al. [2018]’s

revised radii of Kepler stars and planets based on Gaia DR2 data [Lindegren et al.,

2018; Gaia Collaboration et al., 2018a]. This list was then cross-matched with the

updated linear ephemerides found by Gajdos et al. [2019], who used the entire length

of Kepler data (Q1-17) to update ephemerides for 1977 exoplanets. As a first check

for significant transit timing variations, the TTV flag was checked on the Exoplanet

Archive, and all systems cross-matched with TTV data from surveys completed by

Holczer et al. [2016] and Gajdos et al. [2019].

Similar to the Kepler planets, original data for the Kepler planet candi-

dates was collected from the Kepler Objects of Interest (KOI) list on the Exoplanet

Archive, taking care to disregard any KOIs previously downgraded to false posi-

tives. These data were then cross-matched with data from the most recent TESS

Input Catalog [TICv8, Stassun et al., 2019] and Berger et al. [2018]’s revised radii

of Kepler stars and planets to obtain up to date information for the stellar hosts.
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Table 6.1: Overview of final Kepler planetary and candidate systems for which
ephemerides were updated in this study. A TTV flag of ‘1’ denotes any systems
where unusual/non-linear behaviour was observed in the O-C diagrams constructed
in this work.

Planets
System Name Planets updated TTV flag Discovery Paper

Kepler-2/HAT-P-7 b 1 Pál et al. [2008]
Kepler-10 c 1 Fressin et al. [2011]

Kepler-13/KOI-13 b 0 Borucki et al. [2011]
Kepler-14 b 0 Buchhave et al. [2011]
Kepler-18 d 1 Cochran et al. [2011]
Kepler-25 b, c 1 Steffen et al. [2012]
Kepler-51 b 1 Steffen et al. [2013a]
Kepler-51 d 1 Masuda [2014]
Kepler-63 b 0 Sanchis-Ojeda et al. [2013a]
Kepler-68 b 0 Gilliland et al. [2013]

Kepler-89/KOI-94 d 1 Weiss et al. [2013]
Kepler-96 b 0 Marcy et al. [2014]
Kepler-289 c 1 Rowe et al. [2014]
Kepler-396 b, c 1 Xie [2014]
Kepler-411 c 1 Morton et al. [2016]
Kepler-411 d 1 Sun et al. [2019]
Kepler-412 b 1 Deleuil et al. [2014]

Kepler-448/KOI-12 b 1 Bourrier et al. [2015]
Kepler-538 b 0 Morton et al. [2016]
Kepler-1517 b 0 Morton et al. [2016]

Candidates
System Name Candidates updated TTV flag

KIC 7199397 K00075.01 1
KIC 8554498 K00005.01 0
KIC 9955262 K00076.01 1
KIC 9418619 K06068.01 0
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Once estimated transit times have been found based on the theoretical mod-

els, individual transits were aligned and stacked into an overall transit from the

Kepler or TESS data individually, in order to gain a ‘master’ transit from the data

alone. This master transit was then compared to the one found by simply folding by

the light-curve by its primary period, with the cleanest phase curve taken forward

in the analysis. This dual approach meant that accurate transit curves could be

obtained for all systems, regardless of whether the individual systems had transit

timing variations. A new batman [Kreidberg, 2015] transit model was built from

this clean phase curve and then in turn used to refine the time of individual tran-

sits further, using a combination of the optimize function within Foreman-Mackey

et al. [2020]’s exoplanet package, and a pyMC3 MCMC analysis [Salvatier et al.,

2016]. These final transit times were fit with a linear ephemeris using three itera-

tions of a weight-linear least-squares fit, which in turn enabled Observed-Calculated

(O-C) diagrams to be generated for each planet. The resulting ephemerides and

most interesting O-C diagrams drawn from this analysis are discussed next.

6.4 Results

6.4.1 Known Planets

The final updated ephemerides are presented in Table 6.2, with known planets in the

top section of the table and the four planet candidates presented underneath. Overall

good agreement was found for all updated planet ephemerides when compared to

those from Kepler alone. With one exception (Kepler-51 d - Masuda [2014]), all new

periods were within 3σ of their archival values, despite the very precise measurement

errors. Any differences between new and archival T0s can easily be explained by

different individual transits being chosen as the zero point. The difference in period

for Kepler-51 d is perhaps not surprising given the known transit timing variations of

this planet coupled with its long period (130.2 days). Indeed, only nine reasonable

transits were captured in the Kepler data, and only a single transit in the data

from TESS ’s primary mission. Because of the ą8 year gap between Kepler and

TESS observations and the inclusion of the new TESS data increasing the available

number of data-points by 11%, the new ephemeris found in this study is favoured.

The transit timing variations for this planet are plotted in Figure 6.3 and explored

further in Section 6.4.3 below.

The overall precision for each ephemeris was found similar to those derived

by Gajdos et al. [2019], likely because both their study and this one used the entirety

of the Kepler data to define the planet ephemerides. The new TESS data was thus
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Figure 6.3: O-C plot for Kepler-51 d, showing evidence of transit timing variations
after a linear ephemeris fit.

Figure 6.4: O-C plot for HAT-P-7b, showing offset between Kepler (BJD ă

24565000) and TESS (BJD ą 2458500) datasets.
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most useful for improving the precision for planets whose most recent ephemerides

came from different sources to Gajdos et al. [2019], namely Kepler-2/HAT-P-7 b,

Kepler-13 b, Kepler-18 d, Kepler-289 c, Kepler-396 b & c, Kepler-411 c & d and

Kepler-538 b [Pál et al., 2008; Borucki et al., 2011; Cochran et al., 2011; Rowe et al.,

2014; Xie, 2014; Morton et al., 2016; Sun et al., 2019, see Table 6.2 for most recent

ephemeris references]. It should be noted that due to the typically shallower transits

recovered in the TESS data, the uncertainties in each TESS transit are considerably

higher than those of each Kepler transit, which helps to explain why the new TESS

data is less constraining than initially expected.

Of the Kepler planets studied in this work, only KOI-13/Kepler-13 b (Borucki

et al. [2010], Figure 2.10) has previously been updated with the newly available TESS

data. This is presented by Szabó et al. [2020], who find a period of 1.76358760 ˘

0.00000003 days, and a T0 of 2455101.707254 ˘ 0.000012 BJD, in clear agreement

with the values obtained in this work (see Table 6.2). Similar to Szabó et al. [2020],

no evidence of TTVs or tidal decay of this Hot Jupiter was seen in this analysis. It

should be noted that though the eventual ephemeris reported for Kepler-13b in this

work was drawn from a simultaneous TESS/Kepler fit of the entire light-curve, the

ephemeris obtained using the initial TTV-focussed (transit-by-transit) fit was also in

clear agreement, with a value of T0 = 2454955.32946735 ˘ 0.000006153 and Period

= 1.76358760059 ˘ 0.00000001281. This system thus provides a useful test-case for

the overall methods used in the wider analysis carried out in this work.

One planetary O-C diagram of particular note in this work is that for Kepler-

2b/HAT-P-7b, a bright (Gmag = 10.365), well-studied Hot Jupiter (2.0 RJ) origi-

nally discovered by Pál et al. [2008]. This was previously identified as being a prime

target for testing orbital decay by Christ et al. [2018]. As can be clearly seen in

Figure 6.4, a slight (2.5min) offset was found to exist between the original Kepler

data zero-point and new TESS data. While extending the errors of the TESS data

points to two or three standard deviations would put them in agreement with the

general Kepler trend, the observed shift is still considered odd given that the excel-

lent timing agreement for similar Hot Jupiter systems such as KOI-13/Kepler-13b

and Kepler-412b. In an attempt to solve this discrepancy, additional transits for

HAT-P-7 b were sought from the Exoplanet Transit Database6 [Poddaný et al.,

2010], but given the even larger timing uncertainties from the ground based data,

no trend was evident. However, the original discovery T0 [Pál et al., 2008] also

aligns with a slight timing offset of 2.5min above this Kepler zero-point, which fur-

ther supports the hypothesis that the Kepler data represents the flat turning point

6http://var2.astro.cz/ETD/etd.php?STARNAME=HAT-P-7&PLANET=b
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Figure 6.5: O-C plot for Kepler-411d, illustrating interesting Transit Timing Vari-
ations with semi-amplitudes of almost an hour.

of longer-period transit timing variations. It is hoped that further data from space

telescopes (such as when TESS returns to the Kepler field in year four of its mission)

will help to test whether this trend is real.

Another interesting system updated here is Kepler-411 d (Figure 6.5). While

only one transit was caught in the TESS data (due to the relatively long 58d period),

there is clear variation in the O-C diagram with a semi-amplitude of almost one hour.

These variations are not explained by the inner planets in the system (Kepler-411

b & c), with Sun et al. [2019] analysing these same TTVs (see Figure 8 from Sun

et al. [2019]) and deducing that they were best modelled by considering an extra

non-transiting planet (31.5 day period) in the Kepler-411 system, Kepler-411 e.

More new TESS data will be valuable in exploring these interesting TTVs further

and hopefully constrain the parameters of this planetary system. Similarly large

amplitude O-C variations were seen for Kepler-396c, so it is imperative that transit

timing variations are taken into account when forecasting future observations in the

Kepler-396 system (Figure 6.9).

Other than those systems discussed above, the confirmed planetary systems

which received updated linear ephemerides in this work had transits that aligned

well with the previous Kepler observations and thus should be trustworthy for future

observations. However, some care should be taken when forecasting individual tran-

sits within these systems, as approximately half of the updated systems exhibited
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non-linear behaviour in their O-C diagrams.

6.4.2 Planet Candidates

While issues such as transit epochs falling outside the TESS observation window

and the increased scatter of TESS data precluded updating the ephemerides for

the majority of the 28 Kepler candidates, the TESS data provided sufficient sen-

sitivity to update four systems: KOI-5, KOI-75, KOI-76 and KOI-6068. The new

ephemerides for the candidates in these systems can be found in the second part of

Table 6.2. The inclusion of the TESS data significantly decreased the uncertainty in

both the initial transit time (T0) and the period for these candidates. This new data

was most helpful for the two longer-period candidates, K00075.01 (105.9d period)

and K00076.01 (77.5d period), reducing their uncertainties by almost an order of

magnitude despite only single transits being present in the TESS observations. Care

must be taken when using these new linear ephemerides however, as some evidence

of transit timing variations can be seen in the O-C diagrams for both candidates

(K00075.01 - Figure 6.6; K00076.01 - Figure 6.7).

In the case of K00075.01, the O-C plot resulting from the weighted linear

fit is clearly not linear, suggesting that it would be better fit with a non-linear

ephemeris. Van Eylen et al. [2019] previously fit a sinusoidal model to the O-C

plot for K00075.01, which suggested a period of 1892 days and a TTV amplitude of

22min. However, the new TESS data point suggests a considerably larger amplitude

is more appropriate. It is hoped that further transits of this candidate system from

the extended TESS mission will help to constrain the long-term TTV behaviour

further.

Meanwhile, although the long-term trend of the K00076.01 system’s ephemeris

appears linear, there is evidence of shorter-term transit timing variations, with an

amplitude of approximately 0.2hrs. This may be partially due to the stellar vari-

ability clear in the Kepler light-curve, which has peak and trough-like features on

a similar time-scale to the transit duration. Perhaps because of this variability,

K00076.01 has been variously labelled both a candidate and false positive by dif-

ferent Kepler KOI data releases, though most recently a candidate. More in-depth

analysis of this individual system is recommended in future to test its planetary

nature.

It should also be noted that while the O-C diagram for K06068.01 is flat

and well-constrained, it has been labelled as a false positive in some past cata-

logues (e.g. q1 q16 koi [Mullally et al., 2015], q1 q17 dr25 koi [Thompson et al.,

2018]). Nonetheless, since the TESS transit appears planet-like and the system
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Figure 6.6: O-C plot for Kepler candidate K00075.01 after fitting the linear
ephemeris derived in this work. A non-linear ephemeris is considered more ap-
propriate for this object, however is left for the future when more TESS datapoints
are available.

Figure 6.7: O-C plot for Kepler candidate K00076.01. Some evidence of short-term
transit-timing variations are apparent.
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Table 6.2: Overview of all ephemerides updated in this work. Planet ephemerides are
presented first, followed by the four planet candidates. Presented uncertainties are
the 1σ uncertainty for each value. n.b. ‘Ref’ refers to the reference each component
of the archival ephemerides are drawn from, typically the most recent for each
system: 1. Bonomo et al. [2017]; 2. Gajdos et al. [2019]; 3. Szabó et al. [2020]
4. Holczer et al. [2016]; 5. Su et al. [2020]; 6. Mayo et al. [2019]. All archival
information for the four candidates was retrieved from the q1 q17 dr25 koi KOI
data release [Thompson et al., 2018]. A machine-readable copy of this table can be
found in the online supplementary material.

Planets
Planet Name Archival T0 [BJD] Archival Period [days] Ref. Updated T0 [BJD] Updated Period [days]

Kepler-2b 2454954.357462 ˘ 0.000005 2.204737 ˘ 0.000017 1 2454954.3585572 ˘ 0.0000063 2.20473539167 ˘ 0.00000001654
Kepler-10c 2455062.2665100 ˘ 0.0004297 45.29430079 ˘ 0.00003051 2 2454971.6772661 ˘ 0.0006847 45.29426146 ˘ 0.00003783
Kepler-13b 2455101.707254 ˘ 0.000012 1.76358760 ˘ 0.00000003 3 2454953.56595833 ˘ 0.00003827 1.76358750002 ˘ 0.00000002147
Kepler-14b 2454971.08821000˘ 0.00006808 6.7901211029 ˘ 0.0000005613 2 2454957.50815829 ˘ 0.00008051 6.7901236131 ˘ 0.0000003985
Kepler-18d 2454961.155156 ˘ 0.000661 14.85891873 ˘ 0.00000074 4 2454961.1542075 ˘ 0.0002423 14.858908757 ˘ 0.0000004364
Kepler-25b 2455004.7108100 ˘ 0.0001007 6.2385326915 ˘ 0.0000007349 2 2454954.7979391 ˘ 0.0002168 6.2385347882 ˘ 0.0000001619
Kepler-25c 2455011.52792000 ˘ 0.00007383 12.720374906 ˘ 0.000001158 2 2454960.6467450 ˘ 0.0001144 12.720370495 ˘ 0.000001703
Kepler-51b 2455714.5917200 ˘ 0.0001741 45.15530956 ˘ 0.00001897 2 2454992.10682769 ˘ 0.0003851 45.15529233 ˘ 0.00002211
Kepler-51d 2455695.9210000 ˘ 0.0002442 130.17662541 ˘ 0.00007274 2 2455045.0339014 ˘ 0.0004519 130.17784455 ˘ 0.00008134
Kepler-63b 2455010.84340000 ˘ 0.00002768 9.4341503479 ˘ 0.0000003339 2 2454954.23899519 ˘ 0.00003794 9.4341522797 ˘ 0.0000004323
Kepler-68b 2455006.85878000 ˘ 0.00007639 5.3987525913 ˘ 0.0000005231 2 2454958.2700925 ˘ 0.0009446 5.398752420 ˘ 0.000003113
Kepler-89d 2454965.7417600 ˘ 0.0001014 22.342971172 ˘ 0.000002603 2 2454965.7413033 ˘ 0.0001169 22.342982351 ˘ 0.000002982
Kepler-96b 2455004.02020000 ˘ 0.00008997 16.238459306 ˘ 0.000001893 2 2454955.3013031 ˘ 0.0001767 16.238459945 ˘ 0.000005665
Kepler-289c 2455069.661672 ˘ 0.002848 125.86526539 ˘ 0.00000325 4 2455069.6605154 ˘ 0.0002487 125.86521071 ˘ 0.00004151
Kepler-396b 2454995.495267 ˘ 0.005940 42.99292187 ˘ 0.00000635 4 2454995.4942951 ˘ 0.0004076 42.99292140 ˘ 0.00002072
Kepler-396c 2455015.677038 ˘ 0.019460 88.51067812 ˘ 0.00002174 4 2455104.1858280 ˘ 0.0002890 88.51097554 ˘ 0.00003917
Kepler-411c 2454968.2224 ˘ 0.0002 7.834435 ˘ 0.000002 5 2454960.3876333 ˘ 0.0001131 7.834436247 ˘ 0.000001137
Kepler-411d 2454984.8484 ˘ 0.0061 58.02035 ˘ 0.00056 5 2454984.8478013 ˘ 0.0005473 58.02023116 ˘ 0.00004203
Kepler-412b 2454966.02102000 ˘ 0.00002357 1.7208612825 ˘ 0.0000000491 2 2454966.02101665 ˘ 0.00002771 1.72086125797 ˘ 0.00000005710
Kepler-448b 2454979.59635000 ˘ 0.00002880 17.8552258437 ˘ 0.0000006438 2 2454961.74166158 ˘ 0.00002718 17.8552273080 ˘ 0.0000005863
Kepler-538b 2455044.6789 ˘ 0.0010 81.73778 ˘ 0.00013 6 2454962.9402449 ˘ 0.0007438 81.73797957 ˘ 0.00007330
Kepler-1517b 2454966.50342000 ˘ 0.00006786 5.5460843094 ˘ 0.0000004568 2 2454955.4112371 ˘ 0.0000758 5.5460845139 ˘ 0.0000005019

Planet Candidates
Candidate Name Archival T0 [BJD] Archival Period [days] Updated T0 [BJD] Updated Period [days]

K00005.01 2454965.974086 ˘ 0.000148 4.780327581 ˘ 0.000000852 2454956.4131442 ˘ 0.0003056 4.7803297849 ˘ 0.0000006835
K00075.01 2454989.97935 ˘ 0.00101 105.8817667 ˘ 0.0001312 2454989.9831552 ˘ 0.0003309 105.88145696 ˘ 0.00004402
K00076.01 2454987.70734 ˘ 0.00230 77.4794704 ˘ 0.0002456 2454987.7051992 ˘ 0.0001855 77.47983018 ˘ 0.00001939
K06068.01 2454967.4228253 ˘ 0.0000879 6.15025138 ˘ 0.00000070 2454955.12232977 ˘ 0.00003749 6.1502525063 ˘ 0.0000003761

was considered a candidate in the most recent cumulative and q1 q17 dr25 sup koi

KOI deliveries, it is still retained here. In contrast, candidate transits were also

plausibly recovered for K00971.01, however eyeballing of this object in the higher-

cadence TESS data suggested that host star variability is a more likely hypothesis

(see Figure 6.8).

Thus while follow-up of Kepler candidates with data from TESS is somewhat

hampered by the short observation windows and decreased sensitivity, this new

source of data provides significant opportunities for improved characterisation of

Kepler candidates, both in transit timing and shape. This is particularly true for

long-period Kepler candidates, where relatively few data points exist in the Kepler

data alone. Furthermore, the shorter-cadence TESS data is already revealing further

details in the photometry to help to separate true planets/candidates from alternate

false-positive scenarios.
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Figure 6.8: Kepler 30min (above) and TESS 2min data (below) for Kepler candi-
date K00971.01, phase folded by KOI period. The faster cadence TESS 2min data
reveals significant evidence of stellar activity instead of a true planetary signal, also
evidenced by the slight change of phase when folded by the same epoch.
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Figure 6.9: O-C diagrams for the Kepler-396 system (b: top; c: bottom) showing
clear evidence of transit timing variations for each planet. The best-fit TTV results
assuming a default prior, using only Kepler data (red) and using the additional
TESS data for Kepler-396b (blue), are plotted. The solutions lie almost directly on
top of one another.

6.4.3 TTV analysis

TTV fits were attempted for Kepler multi-planet systems known to exhibit signif-

icant TTVs that were re-observed by TESS. Five of the systems analysed had at

least one planet with ephemerides recoverable from TESS data: Kepler-18, Kepler-

25, Kepler-51, Kepler-89, and Kepler-396. Inferred masses for the planets in these

systems are shown in Table 6.3, giving the median and 68.3% credible region of the

MCMC posteriors for both default and high mass runs. Figure 6.9 demonstrates

the TTV results for the two-planet Kepler-396 system using the default prior as an

example.

While continued transit timing variations were clear in most systems, any

differences between the mass results before and after the TESS data-points are well

within error, and uncertainties on masses did not consistently decrease with the

additional data. Hence the TTV fits did not improve with the TESS data-points,
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which is attributed to the large uncertainties associated with each new transit time,

often larger than the TTV amplitudes themselves. Overall, the analysis is challenged

by the faintness of the Kepler targets, and the difficulty to see individual transits

in the TESS data.

6.5 Discussion

Precise and accurate ephemerides are crucial to the success and efficiency of future

planet characterisation missions such as JWST. Without regular updates to their

ephemerides, increasing timing uncertainties in known planets and planet candi-

dates lead to increased observation costs and lost time, especially for longer-period

systems.

In this chapter the ephemerides of 22 Kepler planets and 4 planet candidates

have been updated by analysing new transits in the 2min-cadence data from TESS ’s

primary mission. However, the extent to which ephemeris updates were possible was

less than was originally anticipated. The analysis carried out by Christ et al. [2018]

prior to the observations of the Kepler field by TESS was found to be excellent for

determining recovery, however was perhaps a little optimistic for individual transit

fitting. This was particularly the case for targets such as Kepler-10 b, Kepler-

93 b, Kepler-138 c and Kepler-411 b [Batalha et al., 2011; Marcy et al., 2014;

Kipping et al., 2014; Wang et al., 2014], which were recovered when all transits were

considered, but too shallow to allow individual transits to be fit reliably. For these

objects (and other objects of similarly low signal to noise), an alternative method

of ephemeris update is advised, perhaps by averaging all TESS observations by

sector/year.

On a similar note, the null-result of the updated TTV analysis is an im-

portant, yet slightly disheartening one, as it suggests that updating inferred planet

masses from TTVs with TESS may be more challenging than the community hoped.

Both the Kepler-396 and Kepler-51 systems were highlighted as high priority systems

for improvement with TESS by Goldberg et al. [2018], yet neither was significantly

improved by the data from the TESS primary mission. The biggest challenge faced

in updating these TTV masses is the faintness of most Kepler systems with sig-

nificant transit timing variations in the TESS photometry, leading to very large

uncertainties in individual transit times. When coupled with the fact that the sys-

tems analysed typically only had 1-3 transits in the TESS data, the new data is

not yet very constraining. It is hoped that this situation will improve as the TESS

extended mission continues.
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Table 6.3: Overview of all TTV masses inferred in this work. Central values are the
median of the MCMC posteriors, while lower and upper uncertainties are calculated
from the 15.9th and 84.1th percentiles, representing the 68.3% credible region.

Default prior
Planet Name Period [days] Mass [M‘] Mass [M‘]

(Kepler) (Kepler + TESS )

Kepler-18c 7.64 8.6`5.4´3.5 8.4`5.6´3.3

Kepler-18d 14.86 8.5`2.5´2.5 8.4`2.6´2.3

Kepler-25b 6.24 1.0`1.1´0.5 1.2`1.5´0.5

Kepler-25c 12.72 4.5`3.2´1.9 5.0`3.7´1.9

Kepler-51b 45.16 0.9`1.3´0.8 1.1`1.2´0.9

Kepler-51c 85.32 2.8`0.5´0.4 2.8`0.5´0.4

Kepler-51d 130.18 4.4`1.1´0.9 4.4`1.0´0.9

Kepler-89c 10.42 5.3`2.0´1.5 5.2`2.1´1.5

Kepler-89d 22.34 39.4`9.0´8.1 39.3`8.9´9.0

Kepler-396b 42.99 1.4`0.1´0.1 1.4`0.1´0.1

Kepler-396c 88.51 1.1`0.1´0.1 1.1`0.1´0.1

High-mass prior
Planet Name Period [days] Mass [M‘] Mass [M‘]

(Kepler) (Kepler + TESS )

Kepler-18c 7.64 14.9`3.8´3.9 15.1`3.8´3.7

Kepler-18d 14.86 11.3`1.3´1.6 11.4`1.3´1.5

Kepler-25b 6.24 4.8`3.8´2.2 5.0`3.9´2.2

Kepler-25c 12.72 11.7`2.8´3.2 11.9`2.7´3.0

Kepler-51b 45.16 2.2`1.3´1.1 2.3`1.3´1.1

Kepler-51c 85.32 3.3`0.4´0.4 3.4`0.4´0.4

Kepler-51d 130.18 5.2`1.0´1.0 5.2`1.0´1.0

Kepler-89c 10.42 7.6`2.5´1.9 7.5`2.4´1.9

Kepler-89d 22.34 42.6`7.7´7.3 42.1`7.8´7.4

Kepler-396b 42.99 1.4`0.1´0.1 1.4`0.2´0.1

Kepler-396c 88.51 1.1`0.1´0.1 1.2`0.2´0.1
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These results provide an interesting comparison of Kepler and TESS pho-

tometry in practice and illustrate the differences between optimisation of TESS and

Kepler instruments. One thing that is immediately clear is how impressive the

Kepler satellite was for analysis of ephemerides and TTVs for fainter stars. These

differences are particularly striking in Figure 6.2, clearly illustrating the difference in

noise in the Kepler and TESS observations. The fact that the new TESS data did

not significantly change the uncertainties in the periods for those analysed by Gajdos

et al. [2019] is testament both to their analysis and the very high quality of Kepler

data. For short-period Kepler planets with many transits in the Kepler data, it is

perhaps unsurprising that only 1-3 sectors of TESS data would change the already

very precise ephemerides. This is especially the case for such dim stars as make up

the bulk of the Kepler field, since TESS is deliberately designed to search for planets

around brighter stars [Ricker et al., 2014]. Nonetheless, for those planets without

Gajdos et al. [2019] ephemerides, TESS has once again proven itself a very powerful

tool for improving the precision of planet and candidate ephemerides, decreasing

period uncertainty by orders of magnitude in cases such as HAT-P-7/Kepler-2b,

Kepler-411d, Kepler-538b and the candidates K00075.01/K00076.01.

One limitation of this work is that it focused only on Kepler targets which

received 2min data from the TESS mission. While this data-set represents the

shortest-cadence data so far released by the TESS mission, it suffers from the choices

made for which systems were put forward for 2min data collection. Given that the

TESS 2min catalogue prioritises bright dwarf stars in its search for smaller planets

[Stassun et al., 2019], many of the dim stars in the Kepler field did not receive 2min

data. The analysis completed by Christ et al. [2018] demonstrates the significant

promise of extending this analysis to the TESS Full Frame Images (FFIs), especially

when the Kepler field is revisited in extended mission. Such an analysis has the

potential to increase the number of updated ephemerides from the approximately

25 systems updated here to hundreds of systems. This analysis is made significantly

easier with the recent release of the TESS SPOC [Jenkins et al., 2016; Caldwell et al.,

2020a] and Quick Look Pipeline [Huang et al., 2020a] FFI light-curves on MAST.

The planned 10min cadence data will also help considerably with this effort.

However, given the challenges faced in this study due to the dimness of

many Kepler planets and candidates, it is imperative that we also find alternative

methods/data-sources to maintain the ephemerides of dim or small Kepler plan-

ets/candidates. Failing to do so risks letting many interesting systems fade into

timing uncertainty oblivion.
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6.6 Summary

In this chapter ephemerides have been updated for 22 Kepler planets and 4 planet

candidates using short-cadence data from the Transiting Exoplanet Survey Satel-

lite. This represents all Kepler planets and candidates which so far have received

TESS 2min data with sufficient signal-to-noise to allow ephemeris updates to be

carried out. The primary challenges to updating more systems were long period

planets/candidates falling outside the TESS observation window, and systems be-

ing too dim in the TESS data.

Because of the dimness of these objects, a purely photometric method was

used to update these ephemerides, using transits from Kepler and TESS data only.

Transit times for individual transits were recovered by using an MCMC fit of a

transit model based on stacked Kepler transits. These transit times were then fit

a weighted-linear fit in order to obtain the final ephemerides for each object. Any

systems which did not appear to have significant transit timing variations were

additionally fit with a simultaneous TESS/Kepler fit to improve the ephemerides

further.

The resulting ephemerides were in good agreement with archival ephemerides

and drastically reduced the uncertainty in period for Kepler-411d, Kepler-538b and

the candidates K00075.01/K00076.01. Residuals to the linear ephemeris fits gave

an important window into transit timing variations for these objects. TTV fits

were attempted for five multi-planet systems known to exhibit significant TTVs

(Kepler-18, Kepler-25, Kepler-51, Kepler-89, and Kepler-396), however these were

challenged by the relative scarcity of reasonable TESS transits and the dimness

of these systems in TESS. In the end there were no significant differences between

the TTV masses before and after the inclusion of the TESS data. More data is

required (preferably of higher signal to noise) in order to constrain the TTV masses

more effectively. Interesting TTV behaviour was observed also in the O-C diagrams

for HAT-P-7b/Kepler-2b, Kepler-411d, K00075.01 and K00076.01, which warrants

further analysis when new data becomes available.

Thus while ephemeris updates and TTV analysis of Kepler systems reob-

served by TESS proved less constraining than originally anticipated, TESS has

once again proved itself as an important follow-up instrument in addition to its pri-

mary planet-finding and asteroseismic aims. Overall, the ephemerides improved and

updated in this study extend the life of these Kepler systems, and improve prospects

for future characterisation. Significant additional benefits are likely if the methods

outlined in this paper are extended to the much larger sample of planets and can-
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didates reobserved in the TESS 30min cadence data, especially as TESS returns to

the Kepler field in its extended mission. Care must be taken however to ensure that

the community develops equipment and methods to maintain the ephemerides of

dimmer Kepler systems, as many of these are simply too dim to be followed up by

TESS. The challenges faced in this study provide a window into the wider challenge

of exoplanet characterisation in the era of all-sky surveys. Carefully deciding how

to prioritise targets and maximise scientific return using limited follow-up resources

is going to be one of the key challenges in exoplanet science going forward.
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Chapter 7

Conclusions

“It’s not enough to know what the

future is. You have to know what it

means.”

— Terry Pratchett & Neil Gaiman,

Good Omens

7.1 Thesis Summary

Since 1992, the exoplanet community has discovered over 5000 verified exoplanets,

with a diversity which far outstrips that seen for planets within the Solar System.

This diverse population has revealed that planets are far more dynamic in their

lifetimes than was originally anticipated, and may change dramatically between

their formation and their final location and composition. This is particularly true

in the first billion years of planetary evolution, where some planets have been seen

to be rapidly losing their atmospheres or migrating to significantly different orbits.

In order to fully explore such evolution, it is critically important to both gain new

young exoplanets with well-defined ages to act as snap-shots of exoplanet evolution,

and to track known exoplanets in real-time to keep their ephemerides fresh enough

for future characterisation. This thesis presented new work on both aspects of this

puzzle, based on new observations from the Transiting Exoplanet Survey Satellite

(TESS ).

Following an introduction to previous work in this area (chapter 1) and an

overview of the methods used throughout (chapter 2), chapters 3-5 presented work

towards finding new young exoplanets. Such a task is made significantly more

challenging than finding older exoplanets by a comparative lack of known young stars
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and the dramatically increased stellar activity of these hosts. Chapter 3 tackled the

first part of this problem, using two independent methods to overcome the historical

lack of known young stars around which to search for planets, made possible by

the high astrometric precision of the Gaia satellite launched in 2013. The first

method was based on new kinematic analyses of young stellar associations, using

Gaia data directly to expand the lower mass populations around each association’s

previously known larger, brighter members. The utilised kinematic methods were

validated using the Scorpius OB2 association through comparison to the work of

Damiani et al. [2019b], before being used to explore the lower mass membership of

the Hyades and Octans associations. A particularly valuable result of this analysis

was the selection of 14,050 candidate members of the Octans association, a 100-fold

increase in candidate members compared to the bona-fide Octans membership lists

compiled previously by Murphy and Lawson [2015] and Gagné et al. [2018b]. A

target list detailing these candidates is presented online alongside this thesis. The

success of this relatively simple method evidences the transformational power of

the Gaia satellite for the young star population analyses. However, such graphical

kinematic analyses were found to be untenable where the spatial or kinematic extent

of the association was too large, such as in the case of the nearby Beta-Pictoris

moving group.

Of course, graphical kinematic methods are but one technique used to study

the membership of young star-forming regions. The second approach used here made

use of the extensive array of young star analyses in literature, using a catalogue-

match of recent analyses of open clusters, stellar associations, galactic streams,

moving groups and other star forming regions (most of which were similarly based

on data from Gaia DR2). This resulted in a homogeneous catalogue of 3,036,992

stars from 32 individual catalogues, which continues to expand as new catalogues

become available. This list forms the base of present large young exoplanet searches,

including several TESS data cycle proposals. While continued data releases from

the extended Gaia mission are likely to extend the lower-mass membership of these

groups of young stars further, the large extent of the current catalogue means that a

lack of young stars is no longer the significant bottleneck that it was before the Gaia

era. Consequently the young exoplanet community can now redirect its focus to

the larger challenge of disassociating young exoplanetary signals from the increased

stellar activity of such young host stars.

Due to rapid leftover rotation from formation and the increased magnetic

activity of young stars, photometric time-series of young stars can exhibit stel-

lar activity signals greater in amplitude but similar in period to most transiting
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exoplanets, which has significantly challenged traditional transit surveys. In order

address this challenge, a new photometric detrending pipeline explicitly designed for

young star searches has been assembled in this work and presented in detail in sec-

tion 2.6. The new pipeline uses locally-weighted scatterplot smoothing (LOWESS)

at its base, combined with peak-cutting and interpolation over masked transits to

efficiently search for new young exoplanets in the 30 min cadence TESS Full-Frame

Image (FFI) light-curves. Application of the pipeline to the first 5 sectors of TESS

data was presented in chapter 4, illustrating the pipeline’s excellent performance

by detecting all 2 min cadence TESS objects of interest at the time of writing

from the 30 min data alone, as well as automatically detecting the two previously

known young exoplanets DS Tuc Ab and AU Mic b which were previously identified

through more targeted eyeballing. A full sensitivity analysis was also undertaken

for all young members of BANYAN young associations within these sectors, reveal-

ing how recovery of injected planets varied with depth, planetary period and stellar

rotation period. Overall the biggest challenges were found to be types of stellar

activity with rotation periods of ă1 day, exoplanet sizes resulting in radius ratios of

RP {R˚ ď0.04, and stellar targets which suffered from significant scattered light on

the TESS detectors. This pipeline is now being used for extensive searches for new

young exoplanet candidates in the continuing TESS mission.

In order to detect smaller planets around such young active stars (or those

embedded in activity with periods of ă 1 day), it is imperative to know more about

the stellar activity of each host star. This was the focus of chapter 5, which in-

troduced the wider YOUNGSTER program (“Young Star detrending for Transiting

Exoplanet Recovery”) and used a Kohonen Self Organising Map (SOM; Kohonen

[1982]) to explore the stellar activity and variability of young stars in the in the first

year of the TESS mission. The Self Organising Map is an unsupervised machine

learning method which clusters data based on topology. This algorithm was applied

to all young stars from the CDIPS catalogue [Bouma et al., 2019] which received

30 min cadence FFI data in the first year of TESS ’s primary mission, representing

the first time such a technique has been used on a dedicated sample of young stars.

This method was found to be particularly effective at separating the signals of young

eclipsing binaries and potential transiting objects from other forms of photometric

variability. Given the importance of young eclipsing binaries to stellar evolution,

a list of those discovered in this work are presented in machine readable format

online.1 Beyond these most obvious points (which appeared as bright yellow dots in

1https://warwick.ac.uk/fac/sci/physics/research/astro/people/matthewbattley/
ea and eb table youngster2.csv

209



the overall SOM), the overall distribution of young star activity topology was found

to be much more complex than expected, varying from strictly periodic sinusoids

to completely aperiodic dipper and burster-like activity. ‘Pre-training’ the SOM

based on light-curves with known variability classes from the K2 Variability Cata-

logue of [Armstrong et al., 2016] was also attempted, proving reasonably effective

for bright TESS targets. However classification of dimmer targets was challenged

by the difference in noise properties between TESS and Kepler light-curves, so re-

peating this pre-training step with TESS light-curves for each of the pre-classified

objects is recommended in the future. An unexpected benefit of the SOM analy-

sis was the effectiveness of the SOM in finding and diagnosing systematic issues in

photometric analyses. As explored in section 5.4, because the SOM groups similar

shapes together, it provides a fast visual overview of significant leftover systematics

and provides a key selection of light-curves with which to test removal methods.

The author highly recommends this as a time-saving method in cleaning up data

from large-scale planet searches. Overall, the SOM analysis completed here forms

the first stage of a wider young star activity/variability classification pipeline, with

the view to use this information in the continuing YOUNGSTER programme to

perform targeted detrending in exoplanet searches in the future. Such knowledge is

anticipated to allow the signals of smaller exoplanets to be detected around noisier

young star light-curves.

Detection of exoplanets is only the first part of understanding exoplanetary

systems however. The launch of TESS also offers the opportunity to trace the evolu-

tion of exoplanets many years after their discovery. This is particularly important for

planets which are of interest for atmospheric follow-up, or those which display tran-

sit timing variations suggestive of additional dynamically interacting planets. The

final science chapter of this thesis, chapter 6, revisited the productive Kepler field,

updating ephemerides for all Kepler planets and candidates which were re-observed

with 2min cadence in TESS ’s primary mission. Because of the reduced resolution of

the TESS cameras compared to those on the Kepler telescope, TESS observations

were plagued with increased scatter compared to the Kepler data, which slightly

reduced its ability to follow-up the shallowest planets. Nonetheless, 22 Kepler plan-

ets and 4 candidates were re-observed with sufficient signal to noise in TESS to

allow their ephemerides to be updated in this work. The resulting ephemerides

are at least seven years ‘fresher’ than those from Kepler, with significantly re-

duced period uncertainties reported for Kepler-411d, Kepler-538b and candidates

K00075.01/K00076.01 in particular. Potential Transit Timing Variations (TTVs)

were explored for all targets by building observed minus calculated (O-C) diagrams,
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with new TTV fits attempted for five multi-planet systems (Kepler-18, Kepler-25,

Kepler-51, Kepler-89 and Kepler-396), however mass updates were hampered by the

comparative scarcity and noise of these systems within TESS. Meanwhile HAT-P-

7b, Kepler-411d, K00075.01 and K00076.01 were all found to exhibit particularly

interesting TTV behaviour, suggesting the need for further analysis of these sys-

tems as the TESS mission continues. The ephemerides updated here thus provide

valuable insights into how these systems have evolved (or not) in the past decade,

and also improve the prospects of future follow-up by reducing the uncertainty in

future transit timing. Now that data is available from TESS ’s extended mission for

much of the ecliptic plane, it would be beneficial to extend the techniques presented

in this chapter to all exoplanets found in the K2 mission, as well as those which are

present only in the 30 min cadence data.

All of these chapters taken together give the community valuable tools and

results to help trace exoplanets through time, as well as providing new glimpses

into the environments in which young exoplanets exist. It is anticipated that they

will especially aid the discovery and characterisation of young exoplanets. However,

much work still remains to elucidate how planets form and evolve through time,

which is discussed in the next section.

7.2 Future Outlook

Building a precise timeline of planetary evolution remains one of the biggest chal-

lenges in modern exoplanet science. To fully understand the processes causing this

evolution, the community needs a population of well characterised planets across

precise ages, with a particular focus on the first billion years of planetary evolution.

The key first step in this is the discovery of new young exoplanets, which

chapters 3-5 focused on in this thesis. Photometric planet searches have so far

proven most prolific at discovering these planets, largely due to the extensive data

supplied by the Kepler and TESS space missions. The photometric detrending

pipeline developed here is now being used to search for new transiting young plan-

ets, alongside other searches being completed by groups like the THYME team (e.g.

Newton et al. [2019]; Rizzuto et al. [2020]; Tofflemire et al. [2021]), NGTS Clusters

Survey [Gillen et al., 2020], TESS young field stars survey [Zhou et al., 2021] and

PATHOS programme [Nardiello et al., 2019, 2021]. The range of different data ex-

traction and detrending methods now employed by the community greatly increases

the likelihood of finding young exoplanets compared to at the beginning of this re-

search when only one or two groups had dedicated young star detrending pipelines.
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This is particularly important given Hippke et al. [2019]’s analysis which demon-

strated that different detrending pipelines were sensitive to slightly different „ 30%

shares of planetary signals injected into young star light-curves. For this reason new

detrending pipelines are always welcome to ensure that any exciting young planets

are not missed. It is anticipated that these searches will uncover hundreds of new

young planets in the coming decades, especially larger planets.

However, while these pipelines have already shown some success in discov-

ering new young exoplanets, it would be remiss to assume that the photometric

detrending and discovery problem has completely been solved. Modern detrending

pipelines (including that introduced here) still fail where stellar activity is par-

ticularly short-period, swiftly-evolving or hampered by stochastic signals such as

granulation. For this reason it is crucial to gain a better understanding of stellar

activity and other sources of photometric variability, and use this to work towards

more informed removal of red noise in planet searches. This is expected to be the

only way most Earth and Super-Earth sized planets will be recoverable in young

star light-curves (or indeed in any systems with significant stellar activity signals).

The YOUNGSTER programme introduced in chapter 6 represents a step towards

this more targeted approach, by first classifying the zoo of young stellar activity

and variability into classes with similar topology, noise statistics and evolutionary

state. The intention with the continuing programme is to tailor targeted detrending

approaches most effective for each individual class of light-curve (ideally based on

physical phenomena), such that smaller deviations caused by Earth to Super-Earth

sized planets can be recovered. This replaces the traditional ‘one size fits most’

approach of traditional photometric detrending pipelines, which simply fail for the

most challenging cases. In order to build the most effective detrending methods, it

will be crucial to understand the physical reasons which cause the observed variabil-

ity (e.g. star-spots, leftover orbiting debris or granulation). It is thus imperative

to foster growing communication and collaboration between solar/stellar physicists,

theoretical modellers and exoplanet observers in order to understand the physics

behind stellar noise, rather than simply removing it as a nuisance signal. Promising

avenues currently being explored include packages such as SOAP [Dumusque et al.,

2014] and starry [Luger et al., 2019] which allow the user to evaluate the effect of

star spots on their observations, multi-colour observations of exoplanets/host stars

[Günther et al., 2022] and observing the transit of solar system planets across the

solar disc (Doyle, in prep). Crucially, because exoplanetary evolution is tied to the

activity of their stellar hosts (especially at early ages), considerably more knowledge

could be gained by focusing on exoplanets in difficult, active environments, instead
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of the traditional focus on those in less active systems. The knowledge gained from

finding these most challenging planets will in turn allow the community to recover

smaller planets around less active stars.

Of course the photometric transit method is only one of the methods used

to find exoplanets. Both Direct Imaging and the Radial Velocity (RV) method are

also key to discovering and characterising young exoplanets. While direct imaging

discoveries have mostly been constrained to the earliest „50 Myr of stellar evolu-

tion due to brightness constraints, RV measurements have the potential to fill in

crucial rungs of the exoplanet evolution ladder, alongside providing vital mass mea-

surements for previously discovered transiting exoplanets. However, just as stellar

activity plagues the discovery of young exoplanets in photometric data, considerable

further work is needed to disassociate young planetary signals from stellar activity

in spectroscopic measurements. Indeed due to this activity the first RV mass mea-

surement for a transiting planet in an open cluster (K2-100b) was only managed

in 2019 [Barragán et al., 2019b]. Similar to the photometric detrending problem,

reliable removal of stellar activity signals from spectroscopic data requires greater

knowledge of the physics behind the stellar activity, as highlighted in the final report

of the NASA/NSF Extreme Precision Radial Velocity Working Group [Crass, 2021].

The most important physical phenomena suggested by this work were “understand-

ing the Sun in connection to EPRV”, “Spectral line formation and behaviour in the

stellar atmosphere” and the effect of “faculae/plage[s]”. Evaluating the full effect

of these phenomena alongside some of the more widely known phenomena such as

rotating spots, (super-)granulation and flares will not only allow smaller planets to

be found around active young stars, but likely also allow the community to progress

past the current challenge of the 1 m/s sensitivity barrier in radial velocity measure-

ments. Indeed, given the recent advances in stability of radial velocity instruments

such as ESPRESSO [Pepe et al., 2021] the community is now in the unusual posi-

tion where the dominant noise for even the quietest stars is now stellar rather than

instrumental. Breaking this 1 m/s barrier is fundamental to characterising Earth-

like exoplanets, with an Earth analogue imparting a radial velocity amplitude of

only 9 cm/s on its host star [Crass, 2021]. Particularly promising methods under

development include using spectroscopic activity indicators to model the activity

(e.g. Rajpaul et al. [2015]; Barragán et al. [2021]) and mitigating the stellar signal

during RV extraction by modelling the CCF and/or selecting individual lines (e.g.

Dumusque [2018]; Rajpaul et al. [2020]; Collier Cameron et al. [2021]; Cretignier

et al. [2021]). This is supported by ‘sun as a star’ observations by groups such as

Haywood et al. [2016]; Thompson et al. [2020] and Cegla et al. [2016, 2019].
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With the ever-expanding population of known exoplanets in the 21st cen-

tury, the community is steadily shifting towards deeper characterisation of these

planets, analysing aspects of their composition, atmospheres and dynamics. To do

so requires accurate measurements of their expected transit times and phases, once

again highlighting the importance of ephemeris updates such as that completed in

chapter 6. As more young exoplanets are discovered, the focus for these planets is

also anticipated to shift from discovery-dominated to characterisation-dominated.

Overcoming stellar activity in photometric and spectroscopic measurements is ab-

solutely crucial to this effort, as these methods are the best way to obtain precise

radii and masses for individual exoplanets. As discussed in section 1.3.3, these two

fundamental parameters give a first look at the density, temperature, mass-radius

relation and approximate composition of exoplanets, as well as paving the way for

key measurements of their atmospheres. Furthermore, these parameters provide

key observables on which to base formation and evolution models. As it stands, the

in-depth characterisation of young exoplanets is very much in its fledgling stages,

largely due to the increased stellar activity of their host stars. While XUV obser-

vations and measurements of the Rossiter-McLaughlin effect are starting to give

better ideas of the environments and orbits of young exoplanets (e.g. Poppenhaeger

et al. [2020]; Zhou et al. [2020]), measurements of their atmospheres have so far

proved comparatively fruitless. For example, recent analyses completed by Thao

et al. [2020] and Benatti et al. [2021] failed to detect any individual chemical species

in the atmospheres of the young planets K2-25b and DS Tuc Ab, despite high qual-

ity data from Spitzer and ESPRESSO. There is thus clearly still much work to be

done in understanding how stellar activity affects the observed spectra of young

exoplanets, and long-term monitoring of interesting planetary systems. One of the

key bottle-necks in this extended characterisation is the comparative lack of high

precision radial velocity instruments with which to confirm, measure masses for and

follow up all discovered planets, with observing time on high-precision instruments

like HARPS typically over-subscribed by 5-10 times. In order to make the most of

the plethora of ongoing discoveries it is crucial that the community develop addi-

tional new radial velocity instruments. Such instruments, combined with ongoing

photometric follow-up, will also allow planetary system evolution to be tracked over

the course of human timescales like in chapter 6, filling in another important part

of the exoplanet timeline.

Another discovery method expected to rapidly come to the forefront in the

coming decade is astrometric detection. As has been discussed earlier in this thesis,

the extreme-precision astrometric measurements from the first few data releases of
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the Gaia mission have already transformed the community’s knowledge of stellar

parameters, positions and kinematics, and has led to the discovery of countless

previously unseen groups of stars. However, future data releases (in particular the

anticipated Data Releases 3 and 4) are forecast to give astrometric displacement

measurements with sufficient precision to detect 21,000 (˘6000) new planets over

its nominal 5 year mission [Perryman et al., 2014]. Such a vast number of new

planets will allow the community to gain important new insights into planetary

formation, exoplanet demographics and dynamic interactions. Particularly powerful

will be coupling the astrometric planetary detections with the new groups of stars

found in stellar clusters and associations, as this will allow close examination of how

planetary dynamics evolves in denser young environments. To prepare for this, it

is important that the community as a whole becomes used to interacting with Gaia

data and more familiar with the potential signals and false-positives of astrometric

planetary signals.

One comparatively under-researched aspect of the building the exoplanet

timeline is accurately ageing each star system, which is part of what has led to the

previous dearth of known young exoplanets discussed in chapter 3. While this thesis

followed the approach of most previous young exoplanet discoveries by primarily

focusing searches and analyses of known young star forming regions such as stellar

clusters and associations (which are easier to age due to the ability to perform full

cluster analyses and obtain expansion ages), there is highly likely to be a significant

population of young field stars which are also young. Because traditional isochronal

ageing methods are unreliable at early ages [Soderblom et al., 2014], the community

must instead turn to alternate ageing methods such as a measurement of the lithium

depletion boundary, surface gravity or rotation rates. An excellent overview of all

promising ageing methods for young stars is presented in Soderblom et al. [2014].

Of these, gyrochronolgy is slowly taking the lead in young exoplanet studies because

it uses readily available information from transit surveys (the main activity period)

and is more constraining than other methods like lithium depletion and Ca II HK

emission. Indeed Zhou et al. [2019] recently used the rotation rates of their stars to

give the most constraining ages on two new exoplanetary systems around young field

stars. However, even this method presents a range of likely ages of several hundreds

of Myrs, so more modelling and calibration of stellar ageing methods is needed to

build a reliable exoplanet evolution timeline which also includes field stars.

Despite these challenges, the future of exoplanet evolution is bright, with a

large number of recently launched and upcoming missions to discover and charac-

terise exoplanets. In particular, the new space satellites CHEOPS [Benz et al., 2021]
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and JWST [Gardner et al., 2006] provide much-needed high-precision photometric

and spectroscopic follow-up for the most interesting exoplanets, allowing a closer

examination of everything from planetary phase-curves to atmospheres. Meanwhile

PLATO [Rauer et al., 2014] will couple exoplanetary and stellar analyses to mea-

sure planetary radii, stellar age and planet mass to a precision of 3%, 10% and 10%

respectively (when combined with spectroscopic follow-up). These are supported

by ground-based photometric instruments such as MEarth [Berta et al., 2012] and

NGTS [Wheatley et al., 2013], alongside new and upcoming extreme-precision ra-

dial velocity instruments like ESPRESSO [Pepe et al., 2010, 2021] and HARPS3

[Thompson et al., 2016b]. Meanwhile direct imaging surveys such as GPI [Graham

et al., 2007] and SPHERE [Beuzit et al., 2019] will continue to fill in the youngest

end of exoplanetary evolution and future data releases from the Gaia mission will

soon allow planets to be discovered from their astrometric wobbles alone. The com-

bination of all of these instruments will push down the precision of planetary radii,

masses and orbital parameters, alongside providing valuable new data with which to

understand and handle stellar activity, both key parts of building a more complete

picture of exoplanet evolution.

7.3 Closing Statements

Thirty years ago, exoplanets were merely a concept, with no confirmed signals of

planets outside the Solar System. This year the community passed the signifi-

cant milestone of 5000 verified exoplanets. This paradigm shift has been accom-

panied by many surprising discoveries, from Jupiter-sized planets orbiting within

the equivalent orbit of Mercury, to dense cores of planets with completely stripped

atmospheres. Such a plethora of exoplanets coupled with a steady increase in in-

strumental precision is now allowing the community to explore key questions about

how planets form, what they are made of and how they may evolve over their life-

times. In order to answer these questions, it is imperative to observe exoplanets

both through galactic time (through observations of exoplanets at different stages

of their evolution) and over human timescales (through repeat observations of known

exoplanets). This thesis has presented new work on both of these fronts, including

techniques to aid the search for young exoplanets in their period of swiftest evo-

lution, an exploration of the activity of potential young exoplanet hosts for future

detrending, and ephemeris updates for known planets to ensure that key discoveries

from the Kepler space mission are prepared for follow-up characterisation. The two

most important next steps towards a more complete picture of exoplanet evolution
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are increasing the community’s understanding of stellar activity and extending the

number of instruments available for spectroscopic follow-up. Overcoming these two

challenges promises not only allow the community to build a timeline of how exo-

planets evolve through time, but also offer key new insights into our place in the

universe.
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Appendix A

Sensitivity Analysis for TESS

Sectors 1-5

A sector by sector breakdown for the conducted sensitivity analysis is given below

in Figures A.1-A.5. Figure format after that explained in Figure 4.11.
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Figure A.1: Sensitivity Analysis for Sector 1. Total number of sources = 74
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Figure A.2: Sensitivity Analysis for Sector 2. Total number of sources = 77
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Figure A.3: Sensitivity Analysis for Sector 3. Total number of sources = 75
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Figure A.4: Sensitivity Analysis for Sector 4. Total number of sources = 120
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Figure A.5: Sensitivity Analysis for Sector 5. Total number of sources = 138
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Appendix B

SOM plots for Sectors 6-13 of

the CDIPS light-curves

Self-Organising Maps for sectors 6-13 follow for reference. Notes that the SOM

created for Sectors 1-5 (which had too few light-curves to be analysed independently)

is shown in Figure 5.3.
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Figure B.1: Sector 6 SOM

Figure B.2: Sector 7 SOM
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Figure B.3: Sector 8 SOM

Figure B.4: Sector 9 SOM
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Figure B.5: Sector 10 SOM

Figure B.6: Sector 11 SOM

225



Figure B.7: Sector 12 SOM

Figure B.8: Sector 13 SOM
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Appendix C

Overview of all Kepler systems

with TESS 2min data.

Table C.1 summarises all Kepler systems with known transiting planets which re-

ceived short-cadence (2min) data in TESS ’s Primary Mission. For each system all

known planets are listed, along with whether their ephemerides were updated. For

planets which were theoretically reobserved but not updated in this work, a brief

explanation is supplied for their exclusion. Most commonly this is because their

expected transits fell outside the eventual TESS observation window, or they were

shallow enough that any potential transits were lost in the increased noise of the

TESS data.
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Table C.1: Overview of all Kepler planetary systems which received TESS short
cadence data during TESS ’s Primary Mission. N.b. ‘outside’ = any planets whose
expected transit epochs fell outside times of TESS observations; ‘shallow’ = planets
with transits which were sufficiently shallow for individual transits to be indiscernible
from noise in the TESS data.

Kepler Name TIC ID Ephemeris Updated? Reason for exclusion

Kepler-2 b TIC 424865156 Yes -
Kepler-9 b,c,d TIC 120571842 No c outside; b,d shallow
Kepler-10 b,c TIC 377780790 Yes - c, No - b b shallow

Kepler-11 b,c,d,e,f,g TIC 169175503 No All shallow
Kepler-13 b TIC 158324245 Yes -
Kepler-14 b TIC 158561566 Yes -
Kepler-16 b TIC 299096355 No Outside

Kepler-18 b,c,d TIC 273690178 Yes - d, No b,c b,c shallow
Kepler-21 b TIC 121214185 No Shallow

Kepler-25 b,c,d TIC 120960812 Yes - b,c; No - d d outside
Kepler-30 b,c,d TIC 399794329 No b shallow; c,d outside

Kepler-34 b TIC 272369124 No Outside
Kepler-35 b TIC 271040768 No Outside

Kepler-36 b,c TIC 350810590 No Shallow
Kepler-38 b TIC 158316612 No Outside

Kepler-47 b,c,d TIC 271548206 No b shallow; c,d outside
Kepler-51 b,c,d TIC 27846348 Yes - b,d; No - c c shallow

Kepler-63 b TIC 299158887 Yes -
Kepler-65 b,c,d,e TIC 121731834 No b,c,d shallow; e outside

Kepler-68 b,c TIC 417676622 Yes -b; No c c shallow
Kepler-78 b TIC 270701667 No Shallow

Kepler-79 b,c,d,e TIC 239306681 No All shallow
Kepler-83 b,c,d TIC 123416515 No All shallow

Kepler-89 b,c,d,e TIC 273231214 Yes - d; No - b,c,e b,c shallow; e outside
Kepler-91 b TIC 352011875 No Shallow

Kepler-93 b,c TIC 137151335 No b shallow; c outside
Kepler-96 b TIC 169081296 Yes -

Kepler-122 b,c,d,e TIC 122714267 No b,c,d shallow; e outside
Kepler-138 b,c,d TIC 159376971 No b,c shallow; d outside
Kepler-289 b,c,d TIC 273234825 Yes - d; No - b,c b shallow; c outside
Kepler-297 b,c TIC 48304302 No Both shallow
Kepler-381 b,c TIC 164884235 No Both shallow
Kepler-396 b,c TIC 27769688 Yes -
Kepler-408 b TIC 48450369 No Shallow
Kepler-409 b TIC 270619260 No Shallow

Kepler-411 b,c,d TIC 399954349 Yes - c,d; No b b shallow
Kepler-412 b TIC 158170594 Yes -
Kepler-413 b TIC 298969838 No Outside

Kepler-448 b,c TIC 169461816 Yes - b; No - c c outside
Kepler-453 b TIC 164457525 No No longer transiting
Kepler-462 b TIC 269263577 No Shallow
Kepler-508 b TIC 271671025 No Shallow
Kepler-538 b TIC 28227113 Yes -
Kepler-1084 b TIC 267749737 No Shallow
Kepler-1244 b TIC 123447592 No Shallow
Kepler-1517 b TIC 158555987 Yes -
Kepler-1647 b TIC 170344769 No Outside
Kepler-1661 b TIC 164886585 No Outside

PH1 b TIC 170348142 No Outside
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Gagné J. et al., 2020. The Astrophysical Journal, 903(2):96. ISSN 0004-637X.

Gaia Collaboration et al., 2016a. A&A, 595(A2):A2.

Gaia Collaboration et al., 2016b. Astronomy & Astrophysics, 595:A1.

Gaia Collaboration et al., 2018a. Astronomy and Astrophysics, 616(A1):A1.

Gaia Collaboration et al., 2018b. Astronomy and Astrophysics, 616:A10. ISSN

14320746.

Gaidos E. et al., 2020a. Monthly Notices of the Royal Astronomical Society,

495(1):650–662.

Gaidos E. et al., 2020b. Monthly Notices of the Royal Astronomical Society,

498(1):L119–L124.
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