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Abstract

Majority illusion occurs in a social network when the major-
ity of the network vertices belong to a certain type but the ma-
jority of each vertex’s neighbours belong to a different type,
therefore creating the wrong perception, i.e., the illusion, that
the majority type is different from the actual one. From a sys-
tem engineering point of view, this motivates the search for
algorithms to detect and, where possible, correct this undesir-
able phenomenon. In this paper we initiate the computational
study of majority illusion in social networks, providing NP-
hardness and parametrised complexity results for its occur-
rence and elimination.

1 Introduction
Social networks shape the way people think. Individuals’
private opinions can change as a result of social influence
and a well-placed minority view can become what most
people come to believe (Stewart et al. 2019). The COVID-
19 vaccination debate has brought to the fore the dramatic
effects that misperception can have (Johnson et al. 2020),
highlighting the importance of social networks where par-
ticipants receive the most unbiased information possible.

When individuals use their social network as a source
of information, it may be the case that minority groups are
more “visible” as a result of being better placed. This makes
them over-represented, and even appear to be majorities in
many friendships’ groups – a phenomenon known as major-
ity illusion. Majority illusion was originally introduced by
Lerman, Yan, and Wu (2016), who studied the existence of
social networks in which most agents belong to a certain bi-
nary type, but most of their peers belong to a different one.
Thus, they acquire the wrong perception, i.e., the illusion,
that the majority type is different from the actual one. Fig-
ure 1 shows an example of this.

Figure 1: An instance of majority illusion. The well-placed
red (shaded) minority is perceived as majority by everyone.

Majority illusion has important consequences when
paired with opinion formation. If, for example, individuals
change their mind based on what their friends say, e.g., they
follow a threshold model (Granovetter 1978), then majority
illusion means that strategically placed minorities may well
become stable majorities. As such it is important to predict
its occurrence in a network and, crucially, to see to it that
this undesirable phenomenon is eliminated.

The graph structure of majority illusion was analysed by
Lerman, Yan, and Wu (2016), who studied network features
that correlate with having many individuals under illusion.
They demonstrated how disassortative networks, i.e. those in
which highly connected agents tend to link with lowly con-
nected ones, increase the chances of majority illusion. How-
ever, no algorithms have yet been provided to check whether
majority illusion can occur in a social network.

Likewise, the approach of eliminating undesirable prop-
erties by network transformation is not new, and extensively
pursued in the context of election manipulation (see, e.g.,
Castiglioni et al. (2021)), influence maximisation (Zhou and
Zhang 2021), anonymisation (see, e.g., Kapron, Srivastava,
and Venkatesh (2011)) and of k-core maximisation (see,
e.g., Chitnis and Talmon (2018) and Zhou et al. (2019)).
However, such natural operations have yet to be studied in
the context of eliminating majority illusion.

All in all, the computational questions of checking
whether a network admits majority illusion and how this can
be eliminated, are still unexplored.

Our Contribution. In this paper we initiate the algorith-
mic analysis of majority illusion in social networks, focus-
ing on two computational questions. We first consider the
problem of verifying the possibility of illusion, i.e., deciding
whether there is a labelling of the vertices such that a set ma-
joritarian fraction of agents are under illusion, and we prove
it to be NP-complete. Our NP-hardness proof techniques
also imply NP-hardness on bipartite networks, planar net-
works, networks of constant maximum degree and networks
of constant c-closure. In light of these negative results, we
aim to identify tractable restrictions of the problem by car-
rying out a parametrised complexity analysis involving well-
established graph width measures and their variants. In par-
ticular, we obtain a fixed-parameter algorithm (FPT algo-
rithm) for this problem parametrised by the maximum de-



gree of the network plus its tree width, as well as by the
size of the minimum vertex cover. Along the way, we show
that for every constant value of the network’s tree width, the
problem can be solved in polynomial time (i.e., an XP algo-
rithm parametrised by the tree width). These two results are
of specific interest to sparse networks. We then also consider
dense networks by parameterising by the neighborhood di-
versity of the input network and obtain an FPT algorithm. Fi-
nally we move to the problem of eliminating illusion, which
we model as edge transformation by bounded Hamming dis-
tance. We show this problem to be NP-complete in general
and W[1]-hard when parametrised by arguably the most nat-
ural parameter, i.e., the number of modified edges.

Related Work. Our results are grounded in a number of
research lines in artificial intelligence, notably those deal-
ing with the computational analysis of agent interaction and
collective decision-making.

Opinion Manipulation. Our work is directly related to
computational models of social influence. The closest work
is that of Auletta, Ferraioli, and Greco (2020), who iden-
tify networks and initial distributions of opinions such that
an opinion can become a consensus following local major-
ity updates. Observe in this respect that when all vertices are
under majority illusion, a synchronous majoritarian update
causes an initial minority to evolve into a consensus in just
one step. However, checking for the possibility of majority
illusion does not correspond to checking whether a minority
colour can be adopted by the majority of agents, as studied
by Auletta et al. (2015, 2017). Note also that the minority
colour can be adopted by the majority in one step even if
only a small fraction of agents is under majority illusion.

Other notable models include the work of Doucette et al.
(2019) who studied the propagation of possibly incorrect
opinions with an objective truth value in a social network,
and the stream of papers studying the computational as-
pects of exploiting (majoritarian) social influence via opin-
ion transformation (Kempe, Kleinberg, and Tardos 2015;
Bredereck and Elkind 2017; Auletta, Ferraioli, and Greco
2020; Castiglioni, Ferraioli, and Gatti 2020).

Network Manipulation. An important research line has
looked at how to transform a social network structure with
applications in the voting domain. Wilder and Vorobeychik
(2018), e.g., studied how an external manipulator having a
limited budget can select a set of agents to directly influ-
ence, to obtain a desired outcome of elections. In a similar
setting, Faliszewski et al. (2018) studied bribes of voters’
clusters. In Section 4 we take a similar approach, with the
specific objective of eliminating a majority illusion.

There are also various other accounts of paradoxical ef-
fects in social networks which are related to our work, such
as the friendship paradox, according to which, on aver-
age, individuals are less well-connected than their friends
(see, e.g. Hodas, Kooti, and Lerman (2013); Alipourfard
et al. (2020)). Exploiting a similar paradox, Santos, Levin,
and Vasconcelos (2021) recently showed how false con-
sensus leads to the lack of participation in team efforts.
Parametrised complexity of problems related to social net-
works is an established research direction (see, e.g., Bred-

ereck and Elkind (2017)).

Paper Structure. Section 2 provides the basic setup and
definitions. Section 3 focuses on checking if illusion can oc-
cur in a network while Section 4 studies illusion elimination.
Section 5 concludes the paper presenting potential future di-
rections. In the interest of space some proofs are omitted and
can be found in the extended version of this paper1.

2 Preliminaries
Our model features a set N of agents, connected in a graph
(N,E), with E ⊆ N2. For convenience, we also denote
|N | as n. Throughout the paper we will consider undirected
graphs, requiring E to be symmetric. Furthermore, we as-
sume that E is irreflexive, i.e., that E does not include self-
loops. We call such a graph a social network. For i ∈ N we
denote as N(i) = {j ∈ N : (i, j) ∈ E} the set of agents
that i is following We assume that each of the agents on
the network has an opinion, which we model as a labelling.
Throughout the paper we assume a binary set of colours
{b, r} (blue and red, respectively).

Definition 1 (Labelled Social Network). A labelled social
network is a tuple (N,E, f), where (N,E) is a social net-
work and f : N → {b, r} is a labelling which assigns an
alternative to each agent.

In a graph where every vertex is labeled blue or red, the
blue surplus of a vertex is the number of its blue neighbours
minus the number of its red neighbours. For a vertex set X
and a labelling f : X → {b, r}, we define the red neigh-
bourhood of a vertex i under f as the set of neighbours of
i in X that are assigned the label r by f , and this set is de-
noted by NX

f,r(i). The analogue of this definition for blue
neighbourhood is symmetric. Moreover, for a set S ⊆ N ,
RS

f is the set of red vertices in S, while BS
f is the set of blue

vertices in S. We drop the explicit reference to X or f in
this notation if clear from the context.

Majority Illusion. A colour k ∈ {b, r} is a strict majority
winner in a labelled social network (N,E, f) if there are
strictly more vertices coloured with k than with k′ such that
k′ = {b, r} \ k. We use W(N,E,f) to denote such a winner if
it exists. Similarly, a colour k is a strict majority winner in
i’s neighbourhood if i’s k surplus is strictly positive. We use
W i

(N,E,f) to denote such a winner if it exists. We say that an
agent i ∈ N is under illusion if they have a wrong perception
of the majority winner. So, for agent i to be under illusion
in a (N,E, f), we must have that: W(N,E,f) and W i

(N,E,f)

exist, and that W i
(N,E,f) ̸= W(N,E,f).

In this paper we are concerned with the proportion of
agents in a network that are under illusion. For that we define
the concept of q-majority illusion.

Definition 2 (q-majority illusion). For a given social net-
work (N,E), fraction q and labelling f : N → {b, r}, we
say that f induces a q-majority illusion, if at least q·|N |
agents are under illusion in (N,E, f).
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If there is a labelling of a network (N,E) which induces
a q-majority illusion, then we say that (N,E) admits a q-
majority illusion. Henceforth, we assume that the majority
colour is blue, whenever one exists.

Parametrised Complexity. We say that a problem with
an input I is fixed-parameter tractable (FPT), or that it is
in the class FPT, for a parameter k, if it is solvable in time
O(f(k) · |I|c) for some computable function f and constant
c independent of k. Moreover, a problem is in XP for a pa-
rameter k, if there exists an algorithm solving this problem
running in time |I|f(k) (called an XP-algorithm), where f is
some computable function. Note that FPT ⊆ XP. Further, the
W-hierachy defines a series of complexity classes extending
XP and showing that a problem is hard for any class in this
hierarchy is evidence that the problem is unlikely to be in
FPT. In the context of our paper, we say that a problem P
is W[1]-hard parametrised by r, if there is a many-one re-
duction to it from the classic k-CLIQUE problem (Cygan
et al. 2015) in time f(k) · |I|O(1) (where I is the instance of
k-CLIQUE), with r ≤ g(k) some computable function g.

Tree Decomposition. Tree width is a fundamental graph
parameter, useful for the design of parametrised algorithms,
which is crucial in our analysis. Intuitively, this measure-
ment indicates how “close” a graph is to a tree. Then, an
FPT (or even XP) algorithm for a problem parametrised by
the tree width implies a polynomial-time algorithm on “tree-
like” graphs. Given a graph G, let V (G) and E(G) denote
the vertex and edge set of G, respectively. For a rooted tree
T and a non-root vertex t ∈ V (T ), by parent(t) we denote
the parent of t in the tree T . For vertices u, t ∈ T , we say
that u is a descendant of t, denoted u ⪯ t, if t lies on the
unique path from u to the root. Note that every vertex is its
own descendant. If u ⪯ t and u ̸= t, then we write u ≺ t.
Definition 3. A tree decomposition of a graph G is a pair
(T, β) of a tree T (whose vertices are called nodes) and a
function β : V (T ) → 2V (G), such that: (i)

⋃
t∈V (T ) β(t) =

V (G), (ii) for every edge e ∈ E(G), there exists a node
t ∈ V (T ) such that both endpoints of e belong to β(t), and
(iii) for every vertex v ∈ V (G), the subgraph of T induced
by the set Tv = {t ∈ V (T ) : v ∈ β(t)} is a tree.

The width of (T, β) is maxv∈V (T ){|β(v)|} − 1. The tree
width of G, which we also refer to as tw(G), is the minimum
width of a tree decomposition of G.

Let (T, β) be a tree decomposition of a graph G. We al-
ways assume that T is a rooted tree and so, we have a natu-
ral parent-child and ancestor-descendant relationship among
vertices in T . The set β(t) is the bag at node t. For a node
t ∈ V (T ), by Vt, we denote the set

⋃
t′⪯t β(t

′), i.e., the set
of all the vertices in the bags in the subtree of T rooted at t.
When designing algorithms using tree decompositions, it is
helpful to work with a nice tree decomposition.
Definition 4. Let (T, β) be a tree decomposition of a graph
G, where r is the root of T . The tree decomposition (T, β) is
called a nice tree decomposition if the following conditions
are satisfied.

1. β(r) = ∅ and β(ℓ) = ∅ for every leaf node ℓ of T ;

2. Every non-leaf node (including the root node) t of T is
of one of the following types:

• Introduce node: The node t has exactly one child t′

in T and β(t) = β(t′) ∪ {v}, where v /∈ β(t′).
• Forget node: The node t has exactly one child t′ in T

and β(t) = β(t′) \ {v}, where v ∈ β(t′).
• Join node: The node t has exactly two children t1 and
t2 in T and β(t) = β(t1) = β(t2).

We note that, using a well-known, polynomial-time algo-
rithm, we can convert any given tree decomposition to a nice
tree decomposition of the same width (Cygan et al. 2015).

Further Graph Parameters. Another graph parameter
we consider is the neighbourhood diversity (Lampis 2012)
which captures the number of “twin classes” in the graph.
We say vertices u and v are twins if they have the same
neighbours, i.e. N(u) \ {v} = N(v) \ {u}.

Definition 5. The neighbourhood diversity (ND) of a graph
G (which we also denote as nd(G)), is the minimum w such
that V (G) can be partitioned into w sets of twin vertices.
Each set of twins, called a module, is either a clique or an
independent set. We call these clique modules and indepen-
dent modules respectively.

Note that graphs of bounded tree width are sparse. That is,
the number of edges in a graph of tree width k is O(kn). On
the other hand, graphs of bounded ND can be dense. For in-
stance, a complete graph has a ND of 1, but has Ω(n2) edges.
Moreover, note that ND is “incomparable” with tree width.
That is, there are graphs of constant ND with unbounded tree
width (e.g., a clique) and graphs of constant tree width with
unbounded ND (e.g., a path).

We will further consider a property of a social networks
that has gained importance in recent years, i.e., the c-
closure (Fox et al. 2018, 2020; Koana, Komusiewicz, and
Sommer 2022). For a natural number c, We say that a net-
work is c-closed, if every pair of vertices in this network that
have at least c neighbours in common are adjacent. This con-
cept was introduced to capture the spirit of “social-network-
like” graphs without relying on probabilistic models. Note
that c-closure generalises one of the most agreed-upon prop-
erties of social networks—triadic closure, the property that
when two agents in social network have a friend in common,
they are likely to be friends. Fox et al. (Fox et al. 2020, Ta-
ble A.1), and later Koana et al. (Koana, Komusiewicz, and
Sommer 2022, Table 1), showed that several social and bio-
logical networks are c-closed for small values of c.

3 Verifying the Possibility of Illusion
We are interested in the problem of checking, for a specific
q, if a given network admits q-majority illusion. Formally:

q-MAJORITY ILLUSION:
Input: Social network (N,E).
Question: Is there a labelling f : N → {b, r} such that
f induces a q-majority illusion?



3.1 Hardness
We now prove that q-MAJORITY ILLUSION is NP-hard for
every rational q ∈ ( 12 , 1], by reduction from the NP-hard
problem 2P2N-3-SAT for every such q. In 2P2N-3-SAT
we check the satisfiability of a given CNF formula in which
all clauses have exactly three literals, and in which every
variable appears exactly twice in the positive, and twice in
the negative form, i.e., it is in 2P2N-3-CNF (see (Berman,
Karpinski, and Scott 2004)). In our reduction, which can be
found in the extended version of this paper, we construct an
encoding of a formula φ in 2P2N-3-CNF, which is a social
network admitting 1-majority illusion iff φ is satisfiable.

To this end, we construct what we call a variable gadget,
for every variable pi in φ. Within these structures we distin-
guish two literal vertices, corresponding to pi and to ¬pi re-
spectively. Also, for every clause Cj in φ, we create what we
call a clause gadget. There, one of the vertices is adjacent to
all vertices corresponding to the literals in Cj . We also use
what we call a balance gadget, a structure whose vertices
are labelled r, if a labelling induces a 1-majority illusion in
the encoding of φ. We obtain that a labelling of the encod-
ing which we construct induces 1-majority illusion only if
exactly one of the literal vertices in each variable gadgets is
labelled r, and a vertex in every clause gadget is adjacent to
some literal vertex labelled r. It follows that the encoding of
φ admits 1-majority illusion if and only if φ is satisfiable.

We then obtain NP-hardness of q-MAJORITY ILLUSION
for every rational q ∈ ( 12 , 1] using the fact that, for every
such q, we can extend the encoding Eφ of φ by a number
of pairs of vertices such that a labelling of this extended net-
work induces q-majority illusion if and only if all of the ver-
tices in Eφ, and half of the vertices in the additional pairs,
are under illusion. We also obtain that the problem is NP-
hard for bipartite networks by ensuring that all of the com-
ponents of the construction are bipartite. We defer the full
proof to the extended version of this paper.
Theorem 1. q-MAJORITY ILLUSION is NP-complete for ev-
ery rational q in ( 12 , 1], even on bipartite graphs.

Moreover, by inspecting all pairs of vertices in the
construction in the proof of Theorem 1, we get that q-
MAJORITY ILLUSION is NP-complete also for networks in
which minimum c-closure is bounded by a constant.
Observation 1. q-MAJORITY ILLUSION is NP-complete for
every rational q in ( 12 , 1] even for networks with minimum c-
closure bounded by 3.

Furthermore, again by examining the reduction used in
the proof of Theorem 1, we get that q-MAJORITY ILLUSION
is NP-complete even if the maximum degree of a vertex in a
network is bounded by a constant.
Observation 2. q-MAJORITY ILLUSION is NP-complete for
every rational q in ( 12 , 1] even for networks with maximum
degree bounded by 6.

It is important to note that in order to obtain Observations
1 and 2, we crucially use the fact that the formulas we en-
code are 2P2N-3-CNF.

We further show that the q-MAJORITY ILLUSION prob-
lem is NP-complete also for planar networks. This result

rules out using the genus of the graph or other generalisa-
tions of planarity as possible structural restrictions to get
polynomial-time algorithms. We show it by reduction from
PLANAR 3-SAT where one is given a formula φ in 3-CNF
such that the incidence graph of φ is planar, and the goal is
to decide whether φ is satisfiable. The reduction that we use
to prove this result is similar to the one used in the proof of
Theorem 1. However, it is non-trivial to design appropriate
planar gadgets to ensure that the reduced instance is planar.
The proof can be found in the extended version of this paper.
Theorem 2. q-MAJORITY ILLUSION is NP-complete for ev-
ery rational q in ( 12 , 1] even for planar networks.

Then, from the fact that networks with clique size greater
than 4 are not planar, we get the following observation.
Observation 3. q-MAJORITY ILLUSION is NP-complete
even for networks with maximum clique-size bounded by
some constant greater than 4, for every rational q ∈ ( 12 , 1].

3.2 Parametrised Complexity
The NP-completeness results for q-MAJORITY ILLUSION
motivate the study of this problem from the perspective of
parametrised complexity, aiming at identifying restrictions
on the input that allow for tractability. Note that our result
that q-MAJORITY ILLUSION is NP-hard on networks of con-
stant max-degree implies that, unless P=NP, q-MAJORITY
ILLUSION does not even have an algorithm with running
time nf(∆) for any computable function f , where ∆ is the
max-degree. So, q-MAJORITY ILLUSION is Para-NP-hard
parametrised by ∆. Hence, we must extend this parameter-
isation using other structural properties of the graph. Our
first FPT result (Theorem 3) states that there exists a FPT
algorithm for q-MAJORITY ILLUSION parametrised by the
max-degree and tree width of the input network.

We next sketch this algorithm. Suppose that the input
network has tree width k and we have a nice tree decom-
position (T, β) for it of width at most w = O(k). This
can be computed using known results in time 2O(k)nO(1).
We define a boolean function H whose domain is the
set of all tuples where each tuple comprises a node t ∈
V (T ), a labelling col : β(t) → {red, blue} of vertices
in the bag β(t), a function esurp : Vt → {−∆, . . . ,∆}
where esurp(v) = 0 for all v ̸∈ β(t), a function isurp :
β(t) → {−∆, . . . ,∆}, some α ∈ [n], and some ℓr ∈
[n]. If β(t) = ∅, then col, esurp, isurp = ∅. We define
H(t, col, esurp, isurp, α, ℓr) = 1 if and only if there is a la-
belling ρ : Vt → {red, blue} such that the following hold:
1. for every i ∈ β(t), ρ(i) = col(i),
2. the size of the set RVt

ρ = {i ∈ Vt : ρ(i) = r} is ℓr,

3. α is the size of the set {i ∈ Vt : |NVt
ρ,r(v)| > |NVt

ρ,b(i)|+
esurp(i)},

4. for every i ∈ β(t), isurp(i) = |NVt

ρ,b(i)| − |NVt
ρ,r(i)| is the

internal blue surplus of every vertex in β(t) under ρ.
The intuition behind the description of the function is the

following. Take a hypothetical labelling γ for the (N,E)
that witnesses that (N,E) admits q-majority illusion, fix a
bag β(t) and let δ be the restriction of γ to the set Vt. Then,



• col is the restriction of δ to the vertices of the bag β(t).
• The function esurp (read external surplus) describes the

blue surplus for the vertices in Vt that is provided by the
vertices outside the set Vt. Note that only vertices of the
bag β(t) get non-zero blue surplus from outside Vt (since
only these vertices have any neighbours at all outside Vt

by the definition of a tree decomposition) hence, we may
assume a value of 0 “external” blue surplus for all ver-
tices not in β(t). On the other hand, since the max-degree
of the graph is ∆, the “external” blue surplus of any ver-
tex in β(t) is at least −∆ and at most ∆.

• The value of ℓr is simply the number of vertices of Vt

that are assigned red by γ, and hence also by δ.
• The number α is the number of vertices of Vt that are

under illusion under γ. This includes all vertices in Vt \
β(t) that have more red neighbours than blue neighbours
under δ and all vertices in β(t) for which, if we add up
the blue surplus given by vertices in Vt (which can be
deduced from col) and the blue surplus from outside Vt

(which is given by the function esurp), we get at most -1.
• The function isurp (i.e., internal surplus) describes the

blue surplus for the vertices in β(t) provided by the ver-
tices within Vt. As for esurp, since the max-degree is ∆,
the range of the function lies in {−∆, . . . ,∆}.

The crux of our correctness is that, if we could find a la-
belling ρ for Vt that is not necessarily δ, but has the same
“signature” of δ in terms of col, ℓr, α, isurp given the same
esurp, then we can “cut” δ from γ and replace it with ρ to get
another labelling of G with exactly the same number of ver-
tices under illusion as γ. This gives us the so-called optimal
substructure property, crucial for dynamic programming.

Note that there are 2w+1 · (2∆ + 1)2(w+1)nO(1) =
∆O(w)nO(1) possible tuples. This is because each bag con-
tains at most w + 1 vertices, implying at most 2w+1 possi-
bilities for col at any bag. Since, for any bag, esurp can only
have at most 2∆+ 1 possible values for any vertex in a bag,
we get that there are at most (2∆ + 1)w+1 possibilities for
esurp at any bag. The same bound extends to isurp. The re-
maining elements of the tuple, α and ℓr, are bounded by n.
So, there are at most n2 possibilities for them at any bag.

Now, suppose that we have computed
H(t, col, esurp, isurp, α, ℓr) for all possible valid val-
ues of the arguments. Notice that if this is achieved, then
we can answer whether G admits q-majority illusion by
examining the table entries corresponding to the root bag
β(t⋆), which by the definition of a nice tree decomposition,
is empty. Then, we have that (N,E) admits q-majority illu-
sion if and only if there exists values ℓr ∈ [n] and α ∈ [n]
such that α ≥ ⌈qn⌉, lr < n

2 , and H(∅, ∅, ∅, α, ℓr) = 1.
Our algorithm relies on the fact that we can compute the

table entries at each bag assuming that all the table entries at
all descendant bags have been computed correctly (the base
case is leaf bags, which are by definition empty). The details
of this procedure can be found in the extended version of
this paper. We note that time taken to fill the entries for any
one bag is bounded by ∆O(w)nO(1) and we have already
argued that there is a total of ∆O(w)nO(1) possible tuples
corresponding to each bag. The stated running time follows.

Theorem 3. q-MAJORITY ILLUSION can be solved in time
∆O(k)nO(1) on networks of tree width k and max-degree ∆.

We next discuss some immediate implications of the
above result. First of all, notice that ∆ ≤ n. Hence, our FPT
algorithm parametrised by ∆ and the tree width is in fact an
XP algorithm parametrised by the tree width alone.
Corollary 1. q-MAJORITY ILLUSION can be solved in time
nO(k) on networks of tree width k.

Then, consider the following relation between tree width
and the parameter cliquewidth (Gurski and Wanke 2000)
(denoted by cw(G)) on bounded-degree graphs.
Proposition 1. (Gurski and Wanke 2000) Let G be a graph
that does not contain the complete bipartite graph Kd,d as
a subgraph. If cw(G) ≤ k, then tw(G) ≤ 3k(d− 1)− 1.

Since graphs with max-degree ∆ exclude K∆+1,∆+1 as a
subgraph, Proposition 1 along with Theorem 3 implies that
q-MAJORITY ILLUSION is FPT parametrised by the maxi-
mum degree and cliquewidth of the input graph.
Corollary 2. q-MAJORITY ILLUSION can be solved in
time ∆O(∆·k)nO(1) on networks of max-degree ∆ and
cliquewidth k.

Neighbourhood Diversity. Here, we show that q-
MAJORITY ILLUSION is FPT parametrised by ND. We will
use as a subroutine the well-known FPT algorithm for ILP-
FEASIBILITY. The ILP-FEASIBILITY problem is defined
as follows. The input is a matrix A ∈ Zm×p and a vector
b ∈ Zm×1 and the objective is to find a vector x̄ ∈ Zp×1

satisfying the m inequalities given by A, that is, A · x̄ ≤ b,
or decide that x̄ does not exist.
Proposition 2. [(Lenstra and Jr. 1983; Kannan 1987; Frank
and Tardos 1987)]ILP-FEASIBILITY can be solved using
O(p2.5p+o(p) · L) arithmetic operations and space polyno-
mial in L, where L is the number of bits in the input and p is
the number of variables.

We further rely on the following facts capturing the rela-
tion between vertices of the same module in a labelled social
network (proof in the extended version of this paper).
Lemma 1. Let (N,E) be a social network, and let T =
{T1, . . . , Tk} denote a partition of N into k modules. Fur-
ther, let f : N → {r, b} be a labelling, where b is the major-
ity colour. Then, the following hold.
1. If a vertex of an independent module is under illusion un-

der f , then every vertex of this module is under illusion.
2. If a blue vertex (i.e, vertex labelled b) of a clique module

is under illusion under f , then all blue vertices in this
module are also under illusion.

3. If a red vertex of a clique module is under illusion under
f , then every vertex in this module is also under illusion.

Let (N,E) be the given input social network and let
T = {T1, . . . , Tk} be the partition of N into k modules (k is
the neighborhood diversity), each of which is a clique or an
independent set. The set T can be computed in polynomial
time (Lampis 2012). For every i ∈ [k], let adj(i) be the set
{j ∈ [k] : j ̸= i and ∃u ∈ Ti, v ∈ Tj : (u, v) ∈ E}. That is,
adj(i) comprises the indices of all modules Tj in which least



one vertex (and hence all vertices) is adjacent to a vertex of
Ti (and hence to all vertices of Ti). Let χ = ⌈qn⌉ denote
the required number of vertices to be under illusion to have
a q-majority illusion. The main idea is to construct 2O(k) in-
stances of ILP-FEASIBILITY each with O(k) variables such
that if there is a q-majority illusion, then the solution to one
of these ILP-FEASIBILITY instances can be used to get a
solution to the given instance of q-MAJORITY ILLUSION.

Let C denote the set of all clique modules in T and let I
denote the set of all independent modules in T .

ILP Instance. We are now ready to start describing the
design of the ILP-FEASIBILITY instances. For every,
• Clique-col: C → {red, blue, both},
• Clique-maj: C → {blue, all, none}, and
• Ind-maj: I → {all, none},

we construct one ILP-feasibility instance for which the
set of variables and constraints will be discussed shortly.
We first sketch the intuition behind these functions. Let ρ :
V (G) → {red, blue} be a labelling that places at least χ ver-
tices under illusion (if one exists). Then, the function Clique-
col expresses, for every clique module, whether it contains
both red and blue vertices according to ρ (in which case this
module is mapped to both) or it contains only red vertices (in
which case this module is mapped to red) or it contains only
blue vertices (then this module is mapped to blue). The func-
tion Clique-maj expresses, for every clique module, whether
no vertices are under illusion (mapped to none) or only blue
vertices are under illusion (mapped to blue) or all vertices
are under illusion (mapped to all) under ρ. Recall from the
second and third statements of Lemma 1 that these are the
only three possibilities. The function Ind-maj expresses, for
every independent module, whether all vertices in the mod-
ule are under illusion (mapped to all) in the optimal labelling
or none of them are under illusion (mapped to none). Recall
from the first statement of Lemma 1 that these are the only
two possibilities. If ρ exists, then a “correct” triple of these
functions exist. Notice that there are at most 3k possibilities
for Clique-col and Clique-maj and at most 2k possibilities
for Ind-maj. Hence, we may iterate over all possible at most
18k triples of functions and we know that at least one of
these triples is the “correct” one if ρ exists.

Now, let us fix the functions Clique-col, Clique-maj, Ind-
maj and describe the ILP-FEASIBILITY instance corre-
sponding to it. In order to better understand the constraints
we will design, we encourage the reader to consider the three
selected functions to be the “correct” ones that correspond
to ρ. We will also assume that these functions are consistent
with each other. That is, if Clique-col (Ti) is red (respec-
tively, blue), then it cannot be the case that Clique-maj (Ti)
is blue (respectively, red). In other words, if we guess that
every vertex of Ti is labelled red, then we will not guess that
all the blue vertices of Ti will be under illusion. Moreover,
we have a convention that in Clique-maj, all takes “prior-
ity” over red or blue. That is, if Clique-col (Ti) is blue, then
Clique-maj (Ti) is either none or all and never blue. This is
because setting it to all achieves the same effect as setting it
to blue since all vertices in Ti are blue. Any triple of func-
tions where these conditions are not satisfied is discarded.

Constraints in the Instance. We now describe the ILP-
FEASIBILITY instance. For every i ∈ [k], let si denote the
size of V (Ti). We know the value of each si since we know
T . The set of variables in this instance is

⋃
i∈[k]{ri, bi, pi}.

The intuitive meaning of these variables is the following.
Recall that ρ is a hypothetical optimal labelling that places
at least χ vertices under illusion. Then, for every module Ti,
ri represents the number of vertices of Ti labelled red by ρ.
Also, bi is the number of vertices in Ti labelled blue by ρ and
pi is used to represent the number of vertices of Ti that are
under illusion under ρ. Notice that we have 3k variables in
total. This lets us formulate a number of constraints such that
if we solve the ILP-FEASIBILITY instance corresponding
to some triple, then we can recover a labelling admitting q-
majority illusion (which may not be the same as ρ). Among
others, we encode constraints saying that the number of blue
and red vertices is in each module is equal to the size of that
module, and that blue is the strict majority colour. We also
ensure that the number of vertices under illusion from each
Ti is at least pi and the total number of vertices under illu-
sion is at least χ. Also, for clique and independent modules,
we add constraints ensuring that the number of vertices un-
der illusion in these modules is consistent with Ind-maj and
Clique-maj. The formal description of the constraints can be
found in the extended version of this paper.

The running time is bounded by the time required to com-
pute T (polynomial) plus 18k multiplied by the time re-
quired to construct an ILP-FEASIBILITY instance and ex-
ecute Proposition 2 (which is bounded by 2O(k log k)nO(1)).
This gives an overall bound of 2O(k log k)nO(1) on our algo-
rithm, giving us the following result.
Theorem 4. q-MAJORITY ILLUSION can be solved in time
2O(k log k)nO(1) on networks of neighbourhood diversity k.

Since graphs with vertex cover number (VC) at most k
have ND at most k+2k (Lampis 2012), Theorem 4 gives us
an FPT algorithm parametrised by VC as a corollary.
Corollary 3. q-MAJORITY ILLUSION can be solved in time
22

O(k)

nO(1) on networks with VC equal to k.
Table 1 shows an overview of the parametrised complex-

ity results obtained in this section.

Parameters

FPT ∆ + tw, ∆ + cw, ND, VC

XP tw

Para-NP-Hard ∆, c-closure, max-clique-size

Table 1: Main parametrised complexity results in Section 3.

4 Eliminating Illusion
We now turn to the problem of reducing the number of ver-
tices under illusion in a given labelled network, by modi-
fying the connections between them. Namely, we consider
the problem of checking if it is possible to ensure that a
q-majority illusion does not hold in a labelled network by
altering only a bounded number of edges.



q-ILLUSION ELIMINATION:
Input: (N,E, f) such that f induces q-majority illusion

in (N,E, f), k ∈ N such that k ≤ |E|.
Question: Is there a (N,E′, f) such that |{(e ∈ N2 :
e ∈ E iff e /∈ E′}| ≤ k and f does not induce q-
majority illusion in (N,E′, f)?

We also consider two refinements of this problem, AD-
DITION q-ILLUSION ELIMINATION in which we restrict
the possible actions to adding edges and REMOVAL q-
ILLUSION ELIMINATION for removing edges.

4.1 Hardness
In this section we show that q-ILLUSION ELIMINATION
is NP-complete. In fact, our construction implies that this
problem is also W[1]-hard parametrised by the number of
changed edges in a social network, which we denote as m.
We obtain that by providing the required reduction from k-
CLIQUE. There, given a graph G, the it is checked whether
G includes a clique of size k as a subgraph.

Let us present the high-level description of this proof,
which can be found in the extended version of this paper.
First, for a given graph G = (NG, EG), we construct an in-
stance ENG of q-ILLUSION ELIMINATION, i.e., a labelled
social network (N,E, f), and a natural number k′, such that
G contains a k-clique if and only if it is necessary and suffi-
cient to eliminate edges between the vertices in a k-clique in
the structure which we call a G-gadget to ensure that there
are at most |NG − k| vertices under illusion in the modi-
fied network. To define the G-gadget, we take G, with all
vertices in G labelled r, as a subnetwork of ENG. Then, for
every vertex i in this gadget we construct a number of red
and blue vertices adjacent to i such that red has the majority
of k − 1 in i’s neighbourhood. We also ensure that the only
vertices under illusion are the vertices in the G-gadget by
constructing additional vertices in ENG. Setting k′ to k2−k,
i.e., the number of edges in a k-clique, we get that if there
exists a k-clique in G, then it is sufficient to eliminate edges
within this clique to ensure that k of its members are not
under illusion anymore. Then, if there is no k-clique in the
G-gadget, we demonstrate that eliminating illusion from k
vertices in this encoding requires the modification of at least
k2 − k + 2 edges. This concludes the proof of the claim.

We further extend the previously discussed construction
to show that the NP-hardness of q-ILLUSION ELIMINATION
holds for every rational q ∈ (0, 1). So, for every graph
G, and for every such q, we provide an instance I of q-
ILLUSION ELIMINATION, for which the answer is positive
if and only if G contains a k-clique. Towards this end, take
a graph G and consider the encoding ENG. To ensure that
the claim holds, we extend ENG with a what we call an m-
pump-up, or with what we call an m-pump-down gadget.
The m-pump-up gadget is a structure such that, if an m-
pump-up gadget is embedded in a network in which b is the
majority winner, then m + 4 vertices are under illusion in
the gadget, while 4 are not. Also, for every vertex i in the
m-pump-up gadget which is labelled b, r has the majority
of 4 in i’s neighbourhood. In addition, if the m-pump-down
gadget is embedded in a network in which blue is the ma-

jority winner, then all m members of the structure are not
under illusion. Moreover, if a vertex labelled b in the gadget
would be adjacent to an additional vertex labelled r, then
it would be under illusion. The properties of these gadgets
help us to ensure that the illusion needs to be eliminated
from exactly k vertices for q-majority illusion not to hold,
while it is only possible by ensuring that vertices in a k-
clique are not under illusion. So, by extending ENG with
one of these gadget, which depends on the number of ver-
tices under illusion in ENG, we ensure that the answer to I ,
with k′ = k2 − k, is positive if and only if illusion can be
eliminated from members of a k-clique in the G-gadget by
removing all of the edges between its members. Thus the
claim holds. Finally, we notice that the number of changed
edges in the constructed instance of q-ILLUSION ELIMINA-
TION is a quadratic function of k. So, the reduction from
k-clique implies W[1]-hardness of this problem.

Theorem 5. For all q ∈ (0, 1) q-ILLUSION ELIMINATION
is W[1]-hard parametrised by the solution size k.

Using similar reductions we get W[1]-hardness of ADDI-
TION and REMOVAL q-ILLUSION ELIMINATION.

Theorem 6. For all q ∈ (0, 1), ADDITION and REMOVAL
q-ILLUSION ELIMINATION are W[1]-hard.

5 Conclusion
We showed the algorithmic hardness of checking (Theorems
1 and 2) and eliminating (Theorems 5 and 6) majority il-
lusion, together with a number of parametrised algorithms
for the verification problem (Table 1) and W[1]-hardness for
elimination (Theorems 5 and 6).

The central take away message is that even if illusion
identification is a hard problem in general, there are vari-
ous natural constraints that make it feasible. For elimination,
the hardness persists for some natural restriction, and find-
ing good parametrisations is still an interesting challenge.
Another open challenge is to lift the assumption of binary
labelling. Surprisingly there are social networks that do not
admit a majority illusion but do admit a “plurality” illu-
sion, i.e., agents have a wrong perception of the plurality
winner, when more than two colours are allowed (see ex-
tended version of this paper). This is particularly relevant for
voting contexts such as elections with multiple candidates.
Furthermore, the problem of establishing the complexity of
checking if a network admits q-majority illusion for frac-
tions smaller than or equal to 1

2 remains open (cf. Theo-
rem 1). Finally, exploring the connections between major-
ity illusion and opinion diffusion is a natural and important
follow up.
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