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ABSTRACT

Monte Carlo statistical ray-tracing methods are commonly employed to simulate carrier transport in nanostructured materials. In the case
of a large degree of nanostructuring and under linear response (small driving fields), these simulations tend to be computationally overly
expensive due to the difficulty in gathering the required flux statistics. Here, we present a novel Monte Carlo ray-tracing algorithm with
computational efficiency of at least an order of magnitude compared to existing algorithms. Our new method, which is a hybrid of the ana-
lytical Boltzmann transport equation and Monte Carlo used a reduced number of ray-tracing particles, avoids current statistical challenges,
such as the subtraction of two opposite going fluxes, the application of a driving force altogether, and the large simulation time required for
low-energy carriers. We demonstrate the algorithm’s efficiency and power in accurate simulations in large domain nanostructures with mul-
tiple defects. We believe that the new method we present is indeed more robust and user friendly compared to common methods and can
enable the efficient study of transport in nanostructured materials under low-field steady-state conditions.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0134466

I. INTRODUCTION

A plethora of new materials and their alloys have recently
been synthesized for a variety of applications, and typically most of
them are poly- or nano-crystalline with embedded defects and
often a large degree of non-uniformities, as, for example, in ther-
moelectric (TE) materials.1 Specifically for TEs, these materials are
nanostructured, and they are so on purpose. In order to evaluate
their transport properties, we typically employ the semi-classical
Boltzmann transport equation (BTE). The solution of the BTE can
be evaluated either analytically or numerically.2–6 Since it is a
seven-dimensional integrodifferential equation (six dimensions in
the phase space and one in time), its analytical solution is cumber-
some and can be solved under very restrictive assumptions.7–9 A
grid-based deterministic numerical method, such as the renewed
spherical harmonics approach, is sometimes used, but it requires
very powerful computational platforms.10–15 Another way to solve
the BTE is based on stochastic solution methods using Monte

Carlo (MC) computational algorithms, which use statistical sam-
pling to solve the BTE numerically and are frequently used for elec-
tronic device applications.16–22 Over the last several years, MC
techniques also found extensive use in the fields of charge and
energy transport in semiconductor materials.23–28 MC simulation
methods are particularly useful for nanostructured materials, where
the carriers encounter a plethora of defects along their transport
direction and interact with them, while analytical solutions in these
cases are not as accurate. The simplest way to consider theoretically
the influence of nanostructuring on carrier transport is to use
Matthiessen’s rule to add an additional geometry dependent scat-
tering rate on top of the internal bulk material scattering processes
in the analytical BTE.29,30 However, it is never clear how to deter-
mine this geometrical length scale in complex nanostructured
materials with multiple and irregularly placed defect types. Using
stochastic MC simulations, the transport in nanostructured config-
urations can be modeled in a real space domain, and proper insight
can be gained.24,31–35
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One category of materials, which has benefited from nano-
structuring over the last two decades, is thermoelectric materials,
which convert the heat energy from a temperature gradient to elec-
trical energy and vice versa.1,36,37 Their conversion efficiency is
controlled by both their charge and heat/energy transport.
New-generation TE materials are typically highly nanostructured,
with nano-features spanning from macro- to nano-scale (including
boundaries, potential barriers, pores, nanoinclusions, atomic
defects, second-phasing, etc.).38–43 The recent improvement in the
performance of TE materials originates in most cases from reduced
thermal conductivity due to phonon scattering with the boundaries
of the nano-defects, and, thus, MC simulations are typically per-
formed for phonon transport in real space in such materi-
als.23,31,33,44,45 Nevertheless, studies on electronic transport using
MC are also emerging for nanostructured TE materials after it was
pointed out that specific designs can also improve the so-called
power factor, which directly determines the efficiency of a TE
material as well.46,47

Monte Carlo simulations involve the ray-tracing of particle
trajectories rather than the direct solution of partial differential
equations. These particles are allowed to move in the domain in
both left/right directions under the influence of a driving force [as
shown in Fig. 1(a)], and the net flux is computed in a statistical
manner. Although this method served well simulations in bulk
materials with success over many years, for nanostructured materi-
als large difficulties are encountered, which make simulations com-
putationally extremely expensive and logistically cumbersome. The
presence of multiple scattering sites from nanostructuring reduces
the flux in the domain at such a degree, which makes it very

difficult to gather enough statistics for converged flux results. This
is particularly difficult under linear response, where the two oppo-
site going fluxes vary only slightly. Typical simulations in the litera-
ture require tens of thousands to even millions of trajectories for
adequate results.33,48–52

In order to address the above issues and enable efficient and
accurate MC simulations for nanostructures, we have developed a
hybrid MC algorithm which: (i) merges information from analyti-
cal BTE solutions with the numerically extracted flux, (ii) considers
only a single flux initialized from the left only and injected into the
channel where it is ray-traced to either of the contacts, and (iii)
does not require the application of a driving force. The method we
present provides the same accuracy as common methods, but with
a significantly reduced computational cost.

This paper is organized as follows: in Sec. II, we describe the
challenges encountered in existing MC algorithms for nanostruc-
tures and our method, which provides improved behavior. A sto-
chastic error analysis and convergence is presented in Sec. III. How
this method is very efficient and effective for transport in nano-
structures is discussed in Sec. IV. Finally, in Sec. V, we conclude.

II. COMPUTATIONAL FORMALISM

Many books and literature references describe the MC
process;5,16,18,19,48,53 thus, in this work, we provide only the essen-
tial details that help with the discussion of the method we present.
In general, to evaluate the transport behavior of a system, a syn-
chronous ensemble of particles [shown in Fig. 1(a)] are randomly
initialized in the domain according to the material’s density of

FIG. 1. (a) Schematic of typical ensemble Monte Carlo particle distribution, with left and right going particles as depicted by blue and red arrows, respectively, in a bulk
material, and (b) in a nanostructured material with potential barriers. (c) Grain boundary and nanoporous populated nanostructured domain. (d) Simulation time as a func-
tion of the channel length of various nano-featured 2D domains (pristine material, grain boundaries—GB in the material, pores in the material, and pores plus GB in the
material). The inset plot shows the relative (or ratio of tsim ) time of MC simulation in the nanostructured feature domain with respect to the pristine domain. (e) The energy
derivative of the Fermi distribution (in red), which is mimicked by a small applied potential δV in low-field transport conditions, typically in a micrometer length channel
domain. (f ) Significantly large ΔV that splits the contact Fermi levels μ1 and μ2, imposing high field transport conditions.
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states and carrier statistics. Their trajectories are simulated by alter-
nating between free-flight and scattering events according to the
intrinsic material scattering rules. The simulation is performed
under a driving force, which could be an electric field, or a temper-
ature gradient. Typically, after initialization, a time step Δt is
selected, during which a few free-flights followed by scattering
events (including self-scattering2) occur. All particles’ trajectories
are traced in the channel material. Both left-to-right and
right-to-left going particles are simulated, and the transport proper-
ties are evaluated from the difference in the fluxes of the opposite-
going particles. Customarily, there are two MC methods employed
in the literature—the “ensemble” and the “incident-flux” MC
methods.2,35 In the ensemble MC, a synchronous ensemble of par-
ticles is simulated and traced simultaneously with periodic boun-
dary conditions for particles that reach the edges of the domain

[see Fig. 1(a)]. In the incident-flux (or single-particle) approach, an
adequate amount of particles are initialized at the contacts and
injected and traced one by one in the domain until they exit from a
contact [see Fig. 2(a) further below]. In both cases, the simulation
stops when adequate statistics have been collected to have conver-
gence in the conductivity. These techniques have been successfully
employed in many different settings, e.g., electronic devices,
thermal materials, even nanostructured materials.24,50,54,55 In this
work, we focus on electronic transport under linear response when
discussing the MC specifics, however, with appropriate modifica-
tions the method we describe could apply to phonon transport as
well. The method will specifically be applied here for nanostruc-
tured TE materials.

MC challenges encountered in nanostructures: The main diffi-
culty that arises for MC methods for nanostructures is that the pres-
ence of nanostructuring features, such as built-in potential barriers,
multiple backscattering events due to embedded features of grain
boundaries, pores, nanoinclusions, etc. [see Figs. 1(b) and 1(c)], to
name a few, reduce the particle flux and our ability to gather adequate
statistics. Furthermore, classically, potential barriers limit the number
of carriers that participate in transport to the ones that can actually
flow over them [see Fig. 1(b)]. Figure 1(d) compares the time taken
for simulating 104 electrons per energy point (injecting them from
the left, and ray-tracing them until they exit the domain) vs the mate-
rial’s channel length. We simulate 100 energy points in total; thus,
the overall trajectories simulated are 106. Four cases are shown: (i)
pristine material, (ii) material with grain boundaries forcing reflection
of carriers with 50% probability, (iii) a porous material with 40%
porosity, and (iv) hierarchical nanostructuring with pores added in
addition to grain boundaries, as in a typical situation for thermoelec-
tric materials.41 As nanostructuring is added in the channel, especially
pores in this case, the simulation time required for the same number
of particles injected in the channel increases by several orders of mag-
nitude. In Fig. 1(d), the barchart shows the relative time tsim with
respect to the pristine material, again indicating orders of magnitude
increase in simulation time, promoting the need for more efficient
MC algorithms for nanostructures.

In addition, typically TE materials operate under low-field
transport conditions, where the driving force is a small potential
[see Fig. 1(e)] or small temperature difference at the two ends of
the material56–62 (see Appendix C for details). This results in only a
small variation between the right- and left-going fluxes around the
Fermi level, which presents additional difficulties in gathering sta-
tistics for the net flux. A larger applied voltage to allow for better
statistics [see Fig. 1(f)] can lead to deviation from low-field trans-
port, and other numerical difficulties, such as the need to include
inelastic, in addition to elastic scattering processes, as well. In a dif-
ferent case, any carrier energetically positioned below the highest
potential energy level (left side) will be reflected back to the right
side eventually and only carriers above the source (left side) poten-
tial energy will contribute to the flux—this can also lead to difficul-
ties in the treatment of the periodic boundary conditions. This
situation becomes increasingly worse for larger applied fields. The
electron–phonon scattering processes in TE materials are typically
strongly influenced by elastic acoustic phonon scattering processes,
and this is what we focus on in this work, although optical/inelastic
processes can offer significant design opportunities.46,47,63,64

FIG. 2. (a) A pristine domain having electrons injected from the left, which trav-
erse across the domain with scattering intermediate events after every
mean-free-path (mfp). Few electrons are transmitted and reached to the right
end (as depicted by the red line), but many of them are reflected back to the
left end (in yellow color) after multiple mfp steps. The top and bottom ends are
spatially firmed so that electrons are only allowed to specularly reflect from the
boundaries. (b) The parameters that characterize an electron in the Monte Carlo
algorithm, dictated by the assumed band dispersion and the propagation direc-
tion, i.e., energy E, momentum k, conductive effective mass m�, and velocity v.
A free-flight distance between two consecutive collisions, i.e., the
mean-free-path mfp, is calculated from the product of the velocity v and
assumed scattering rates τ(E), as indicated for acoustic phonon scattering,
resulting in constant mfp(E).
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Another numerical peculiarity that is encountered in MC sim-
ulations for low-energy electrons even in pristine materials, makes
the computational difficulty even larger. Noticeably, the low-energy
carriers near the band edge have small velocities. Thus, there exists
a population of slow moving electrons that end up dominating the
computational time (even so in certain cases where the Fermi level
is placed higher into the bands).35 To make things worse, in the
presence of potential barriers [as shown in Fig. 1(b)], the contribu-
tion of those low-energy electrons to transport is insignificant. In
addition, at these low energies, the scattering rate of ionized impu-
rity scattering (IIS), an important mechanism especially for TEs,
diverges (under low carrier densities).2,35,65 Thus, this slow moving
population of carriers could scatter very strongly and contributes to
flux even less and, thus, ultimately requires unnecessarily even
more computational resources.

Novel MC method with improved robustness: In this work,
we develop a MC method that is more suitable for nanostructured
materials, specifically addressing the difficulties described above.
We use the incident-flux (single-particle) approach, where the elec-
trons are initialized at the domain boundaries one-by-one and
propagate through the domain until they exit at either boundary
[propagated to the other side or back-scattered—see Fig. 2(a)].

The first issue we tackle is the large computational time asso-
ciated with the ray-tracing of low energy electrons. The simulated
electrons with their low group velocities end up taking a very large
number of free-flight steps intervened by most probably lots of
(unnecessary) self-scattering events where the electron does not
scatter at the end of the free-flight as is common practice.2,5 To
avoid these redundant occurrences, we consider a mean-free-path
(mfp) approach, rather than the picking of random free-flight time
and the self-scattering approach. We compute the total scattering
rate of the particle, and using its band structure velocity, we calcu-
late its mean-free-path. The particle propagates one mfp, and then
undergoes (enforced) scattering at all times, as depicted in Fig. 2(b).
In the case of acoustic phonon scattering in 3D, for example, the
mean-free-path is constant in energy [as shown in Fig. 2(b)], and,
therefore, electrons from all energies are treated in the same way,
with only different free-flight durations. Since in this work we focus
on introducing the new method, we only consider elastic, i.e., acous-
tic phonon scattering process and, thus, a constant mfp.

Following the incident-flux method, we use a single-injected
flux from the left end of the channel and neglect the injection of
flux from the right of the channel. Thus, we refer to this from here
on as the “single-flux” method, and we essentially consider only
one of the two separate injections of the otherwise “two-flux”
method, in which particles are injected from both left and right
ends and the flux difference is computed. For these simulations, we
consider a two-dimensional domain for numerical simplicity, with
two open boundaries at the left/right, whereas the top/bottom
boundaries are closed as shown in Fig. 2(a). The simulation proce-
dure is as follows: we initialize and inject electrons in the channel
domain only from the left side. We initialize those electrons uni-
formly in energy, rather than according to their density of states
(DOS), as in typical MC methods. We typically use 1000 electrons
per energy, with a uniform energy discretization steps of 5 meV.
We use these for convenience, since we only consider elastic trans-
port conditions. In the inelastic scattering case, this initialization

might need to be performed according to the DOS, but it is beyond
the scope of this work (such situations will be addressed in subse-
quent works). Then, one-by-one, the electrons are ray-traced, by
alternating between free-flight events of a mfp distance and inter-
mediate scattering events. Here, scattering only changes the parti-
cles’ directions because we consider only elastic processes; thus,
their energy stays the same. The upper/lower closed boundaries
simply specularly reflect back the electrons in the domain (surface
scattering details are not considered and they are out of scope).

To gather the flux statistics, we record the time spend in the
domain by those electrons, which propagate all the way from the
left to the right end of the domain and exit from there [red line in
Fig. 2(a)]. All electrons that are back-scattered to the left do not
contribute to the flux and are not considered [yellow line in
Fig. 2(a)]. The time an electron spends in the simulation domain
until it exits to the right end is referred to as its time-of-flight
(ToF). The average ToF per particle is then computed as

hToF(E)i ¼
P

tr(E)
Nr(E)

, (1)

where tr(E) is the time taken by a particular electron to exit from
the right end, and Nr(E) is the number of electrons that make it to
the right end. We chose to keep the energy dependence since we
only deal with elastic transport conditions. Then, the hToF(E)i is
used to calculate the flux per simulated electron at each energy as

F(E) ¼ 1
hToF(E)i : (2)

Using the flux per electron, we can form the overall flux in
energy by multiplying by the density of states (DOS), g(E), which
essentially is proportional to the transport distribution function
(TDF) of the analytical BTE as

Ξ(E) ¼ C � F(E)� g(E): (3)

This is simply because the product of flux with DOS provides
essentially the flow of charge, which is directly related to conductiv-
ity in the same way the TDF determines the conductivity.

The proportionality constant C in the equation of the TDF
accounts for the super-electron charge that is typically used in MC
(the fact that we only simulate a finite number of electrons), and
geometrical factors related to the simulation in a finite 2D domain
rather than an infinite 3D domain (and connects the conductance
to conductivity). Essentially, we use C to map the MC simulated
TDF to the TDF that can be derived and extracted from the analyt-
ical solution of the BTE, for the case of pristine material alone. We
discuss this mapping in detail further below. After having the trans-
port distribution function numerically from MC, and calibrated to
the analytical one, we can substitute it in the place of the analytical
function Ξ(E), which is given by τs(E)v(E)

2g(E), in the usual BTE
formulas below.
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The electron conductivity is calculated as

σ ¼ q2
ð
E
Ξ(E) � @f

@E

� �
dE, (4)

and the Seebeck coefficient as

S ¼ qkB
σ

ð
E
Ξ(E) � @f

@E

� �
E � Ef
kBT

� �
dE, (5)

where q, kB, and T are the electronic charge, Boltzmann constant,
and domain temperature (assumed constant at T ¼ 300K through-
out), respectively. Parameter Ef is the Fermi energy and f is the
Fermi–Dirac distribution function. Further, the TE power factor
and the electronic thermal conductivity are evaluated, respectively,
as

PF ¼ σS2 (6)

and

κel ¼ 1
T

ð
E
Ξ(E) � @f

@E

� �
(E � Ef )

2dE � σS2T: (7)

The above transport coefficients are computed using MC ini-
tially for the pristine material configuration, where the calibration
of the constant C takes place. The idea is that once this is cali-
brated, we can perform MC simulations for complex nanostruc-
tured domains without further calibration and benefit from the
robustness of the single-flux injection method.

Considering 3D carriers and acoustic phonon scattering
limited processes alone (which are elastic), the transport distribu-
tion function Ξ(E) calculated analytically from BTE is linear in
energy as shown in Figs. 3(a) and 3(b) (left axes, blue lines). In
order to form the integrand in Eqs. (4) and (5) above, essentially to
account for linear response, we need to multiply the TDF with the
differential of the Fermi distribution function with respect to
energy (i.e., @Ef ¼ @f

@E) for the electrical conductivity and with
respect to temperature (i.e., @T f ¼ E�Ef

kBT
� @f

@E) for the Seebeck coeffi-
cient calculations. These products are shown by the red lines in

Figs. 3(a) and 3(b) for an arbitrarily chosen Fermi level of
Ef ¼ 100 meV. Using our developed single-flux MC method, we
simulate the transport distribution function as well, plotted in
Figs. 3(c) and 3(d). The linear trend of the analytical Ξ(E) is also
achieved in this case. However, it takes approximately 103 simu-
lated electrons per energy to gather enough statistics to match the
linear trend. 103 electrons per energy results in an adequate result
for the transport coefficients (as we will also show below), although
the TDF is still slightly noisy (green lines), while the more or less
“noise-less” 105 electrons case (not shown) does not provide a
noticeable conductivity accuracy advantage compared to 104 (blue
lines). For the case of 104 electrons per energy point, we plot the
Ξ� @fE and Ξ� @fT products in Figs. 3(c) and 3(d) (red lines) that
match the trends of the analytical results as well. In this way, by
obtaining the TDF from MC, and multiplying by the differential of
the Fermi distribution, we effectively eliminate: (i) the need for two
counter-propagating simulation fluxes (now this is captured by the
differential functions) and (ii) the need for an application of a
driving force, either a voltage difference or a temperature difference,
thus avoid the peculiar situation described in Figs. 1(e) and 1(f )
where a small enough potential difference window does not
provide enough statistics, while a large enough could make the sim-
ulation deviate from linear response or from the range of voltages
that TE materials utilize (see Appendix C). Note also that the
acquisition of adequate statistics is even more difficult in the case
of a temperature gradient for the Seebeck coefficient in common
bi-directional flux methods. We do not only need to differentiate
between the right- and left-going fluxes but also the ones which
flow above and below the Fermi level.

Mapping constant C: Here, we provide details on how we
obtain the mapping constant C between the simulated MC TDF
and the analytical BTE TDF for the pristine material. For this, we
calculate the electrical conductivity as a function of the Fermi
energy from both approaches (by integrating the TDF times the
Fermi derivative in energy) and then find the mapping factor CEf at
each Fermi energy, essentially the ratio of the two conductivities.
As we can see in the inset of Fig. 4(a), that value is almost constant
for all Ef , so we take the average of that, i.e., Cavg as the overall final
C, which gives only one constant factor altogether for the whole
range of Ef for mapping the MC conductivity to the analytical one.

FIG. 3. (a) Blue line (left axis): Transport distribution function Ξ(E), vs energy evaluated using the analytical Boltzmann transport equation under acoustic phonon scatter-
ing assumptions. Red line (right axis): The product of Ξ(E) and differential Fermi function with respect to energy @E f. (b) Same as in (a) but the right axis (red line)
depicts the product of Ξ(E) and differential Fermi function with respect to temperature @T f . (c) and (d) The same as (a) and (b) but here the transport distribution function
is calculated stochastically using the MC algorithm. The MC extracted Ξ(E) is plotted for the cases of 102, 103, and 104 simulated electrons per energy grid point. The red
line (right axes) are only shown for the case of 104 electrons. The right axes units of (a) and (b) are [1025 m�1s�1eV�2].
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Since C multiplies the flux, it will be used to obtain the rest of the
thermoelectric transport coefficients as a function of Ef as shown
in Fig. 4. Clearly, we obtain an excellent match for the electrical
conductivity, Seebeck coefficient, and power factor between the MC
and analytical BTE as a function of Fermi energy Ef , as plotted in
Figs. 4(a)–4(c), respectively. The electronic thermal conductivity
also matches similarly well (not shown).

We used the overall integrated conductivity to extract the
constant C, but it is interesting to compare how the transport dis-
tribution function extracted from the MC flux method and after-
ward multiplied by the computed C, compares to the analytical
TDF from BTE. Figure 4(d) shows this comparison, indicating
excellent agreement with the analytical TDF (essentially the black
line for the analytical curve resides directly below the blue line for
the MC flux TDF). Even the MC lines extracted using a rather
small number of simulated carriers, resulting in noisy Ξ(E), also
reside around the analytical line. Finally, notice the increasing vari-
ations in the flux with energy in MC, more noticeable for the low
numbers of simulated electrons per energy. The oscillations in Ξ(E)
are stronger at higher energies, but as a matter of fact these oscilla-
tions, which are just statistical variations, appear uniformly in
energy in the calculations of the ToF(E) and flux F(E). They are of
similar relative amplitude compared to the mean values of ToF(E)
[or F(E)] in energy. For the Ξ(E), however, at low energies: (i)
these oscillations have a smaller absolute amplitude since the flux is
lower there, (ii) but also they are scaled by the lower density of
states, compared to the high energy part of Ξ(E), which further
reduces their amplitude. We explain this in more detail in
Appendix A.

III. ERROR ANALYSIS AND CONVERGENCE

The method we present requires only a single-flux injection
from one contact into the channel, does not require the application
of a driving force, and bypasses the time consumed by the low
energy electron ray-tracing process, all of which make it computa-
tionally very efficient. It is tested at this point for elastic scattering
processes alone and further work will be required to make it com-
patible with inelastic processes as well. To further stress the error
suppression and computational effectiveness of this single-flux

method we present, in Figs. 5(a), 5(c), and 5(e), we plot the con-
ductivity, Seebeck coefficient, and power factor with error bars vs
the number of simulated electrons. We show results for 10 inde-
pendent simulation runs for each data point, and the error bars are

FIG. 4. (a) Electrical conductivity vs the Fermi energy from the analytical BTE (blue line) and the stochastic MC approach (red line). Inset: Depicts the multiplication cons-
tant that maps the MC results to the BTE results. The MC result is mapped to the BTE after multiplication by the constant C. (b) and (c) The Seebeck coefficient and
power factor for the cases in (a). (d) Transport distribution function calculated stochastically using the MC algorithm for three different electron populations per energy grid
point (as indicated in the subscript of MC in the legend). The TDF maps well to the analytical one (blue line) after being multiplied by the mapping constant C.

FIG. 5. (a), (c), and (e) The electrical conductivity, Seebeck coefficient, and
power factor, respectively, for a pristine material vs the number of simulated
electrons per energy grid point. (The total number of electrons is 100� larger
as we use 100 energy grid points). The stochastic variation in these quantities
(error bars) after 10 repetitions of each simulation is indicated. (b), (d), and (f )
The percentage (%) error with respect to the mean value of respective quantity
for the cases in (a), (c), and (e), respectively.
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a measure of the variation within these ten runs. In each simulation
run we use ten up to 105 electrons per energy point in increments
of an order of magnitude. As mentioned earlier, we use 100 energy
points in total. A single Fermi energy (Ef ¼ 100 meV) is used in
the calculations. In Figs. 5(b), 5(d), and 5(f), we plot the percentage
standard deviation (% error) of the corresponding transport coeffi-
cients vs the simulated electrons per energy point (error bar sizes).
However, we normalize these values to the average value of their
corresponding simulation run and present the percentage error.
For both the conductivity and the Seebeck coefficient, it appears
that 103 electrons per energy point (i.e., 105 in total) already signif-
icantly reduce the simulation variation to a few percentage points
while the transport coefficients converge to their final value. The
power factor, since it composes of quantities which are inversely
proportional (conductivity and Seebeck), is, in general, a less-
fluctuating quantity and requires only 102 electrons per energy to
reach very close to its convergent value. Note that these simulations
are executed within minutes (�2–3 min). This makes this method
much more computationally efficient compared to common MC
works.24,30,33 For further comparison details, see Appendix B.

IV. METHOD EFFECTIVENESS FOR NANOSTRUCTURES

We now demonstrate the effectiveness of the proposed single-
flux method for nanostructured materials. We simulate the geome-
tries shown in Fig. 6. First, we populate the two-dimensional
domain with noncrystalline grain boundaries, as shown in
Fig. 6(a), using the Voronoi algorithm,66,67 as implemented in
Matlab. The algorithm takes seeding points and the domain dimen-
sion as inputs to create the grain boundaries. The average size of
the grain is calculated by taking the mean of the length of all lines
joining all nearest neighboring grain seeds by the Delaunay trian-
gulation algorithm.66 During transport, when an electron encoun-
ters these grain boundaries, a random decision is made whether the
electron will reflect or transmit through, as depicted in Fig. 6(d).
Many detailed models exist to describe the transmission and reflec-
tion probabilities, which can be momentum, energy, and angle of
incidence dependent as well.25,33,45,68 However, since here our
focus is to demonstrate our new algorithm and not the details of
boundary scattering, we allow for 50% transmission and 50%

reflection probability, independent of the carriers’ energy and
direction.

For the second class of nanostructures, we create randomly dis-
tributed nanopores in the domain (with pore sizes 5 , d , 20 nm)
as shown in Fig. 6(b). The average porosity in the domain depends
on the number of pores and their sizes. The shape of the pores can
be circular, elliptical (oval), with the assumption of specular or diffu-
sive scattering, i.e., with sharp or irregular rough edges in a realistic
scenario, respectively [as shown in Fig. 6(d)]. Upon scattering of a
particle on a pore, the angle of incidence is computed, and the direc-
tion of reflection is determined according to the nature of the pore
boundary (diffusive or specular). In this case, for simplifying the
scattering process, we use specular reflection at the pores, which
means that the angle of incidence is equal to the angle of reflection.
We then combine these two features and make the domain hierar-
chically more complex as shown in Fig. 6(c).

In Fig. 7, we show the electrical conductivity for these struc-
tures as a function of Fermi energy Ef . The uncertainly related to
the error bars shown is a result of the MC statistical variation of
simulating the same structure five times. The conductivity decreases

FIG. 6. Schematic of complex nanostructured materials in a two-dimensional domain populated with (a) grain boundaries, (b) pores, and (c) combination of grain boundar-
ies and pores. (d) Schematic of reflection and transmission processes (chosen randomly with probability 0.5) across a grain boundary in the domain, with the incident and
reflected angles θi and θr indicated, respectively. The lower panels show reflections from a pore boundary, either under specular (used in this work) or diffusive
conditions.

FIG. 7. Electrical conductivity calculated from the MC algorithm in nanostruc-
tured material domains populated with grain boundaries (yellow line), pores
(purple line), and the combination of both (red line) vs the Fermi energy. The
red-dotted line shows the calculated conductivity using Matthiessen’s rule. The
blue line indicates the pristine material conductivity.
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when we nanostructure the domain as compared to the pristine
material (blue line). There is an average drop of (i) 30% in the con-
ductivity of the channel which includes the grain boundary features,
(ii) �40% in the case of nanoporous features, and (iii) a drastic
decrease of �80% when both features are combined. These reduction
levels are expected, considering that we have set a 15 nm
mean-free-path for the pristine matrix, and the average grain size
and distance between pores is of the order of 30 nm. We also find a
good agreement in the MC results as compared to Matthiessen’s rule
(depicted by the red-dotted line) and computed by adding the resis-
tivity obtained at each step (as a measure of the scattering rates) as

1
σMatthiessens

¼ 1
σ phþGB

þ 1
σ phþpores

, (8)

where σ phþGB is the conductivity due to phonon and grain boundary
scattering and σ phþpores is due to phonons and pore scattering.

We now examine the error in the stochastic calculation of trans-
port coefficients vs the required number of simulated electrons for

convergent results, as well as the variability due to different simula-
tion runs (here, we have executed five MC runs per data point). As
shown in Figs. 8(a), 8(c), and 8(e), the calculated quantities are well
converged for 103 electrons per energy grid point and with almost
negligible errors [shown in Figs. 8(b), 8(d), and 8(f)] in the variabil-
ity of different simulation runs. This is an observation very similar to
the pristine channel, indicating that the accuracy of the method does
not degrade with nanostructuring geometry complexity. Beyond 103

electrons per energy grid point the variation per MC run is almost
stagnant, so we used the 103 carrier case for the data in Fig. 7 earlier.
However, more carriers can reduce the error more at the expense of
more computational resources. A total of 105 ray-racing trajectories
is significantly smaller compared to typical works using standard
MC algorithms for such structures, which require millions of trajec-
tories. Note that these simulations with 105 total trajectories take
approximately 20 h on a single CPU to be executed.

Experimental transport studies in nanoporous materials over-
whelmingly consider mostly heat transport. We were able to identify
a study with measured electronic transport data in nanoporous Si.69

The paper compared the mobility of pristine Si with 60% porosity
and reported �4 times mobility reduction for n-type samples and
between �3–7.5 reduction for p-type samples. Despite the many
uncertainties of the experiment, we have simulated a channel with
60% porosity (same as in the experiment) and computed the reduc-
tion in electrical conduction compared to the pristine channel to be
�3:5, which is similar to what was measured in the experiment.

Finally, we would like to mention a couple of things that were
omitted in our implementation, which are typically present in
transport codes. We have considered only acoustic phonon scatter-
ing, but including more scattering mechanisms, such as by optical
phonons, ionized impurities, and defect scattering, would be
treated in the same way as in any existing Monte Carlo
method,2,5,48 but a mean-free-path will be derived rather than a
time-of-flight. This does not alter the performance advantage of
our method, which is based on eliminating the subtraction of two
very similar fluxes. We also note that in all of our simulations we
used a flat conduction band profile at 0 eV. In reality, nanostruc-
tured materials have a varying conduction band profile in the
channel, as a result of a varying electrostatic potential due to charg-
ing effects caused by the nanoinclusions and the grain boundaries.
This is typically captured in most transport simulators by self-
consistent coupling of carrier statistics (for the local charge
density) with the Poisson equation (for the potential). We have not
considered a varying potential in the simulation domain, but this is
a separate calculation that can be performed independently prior to
the MC ray-tracing part. In that case, as the particles move in the
channel, their different attributes, e.g., their velocity, scattering
rates, mean-free-paths, etc., would change as dictated by their
energy relative to the underlying band profile. With regard to time-
dependent simulations, this incident-flux method might not be the
most relevant one, to the best of our knowledge.

V. CONCLUSIONS

In summary, we have presented a novel Monte Carlo ray-
tracing algorithm with computational efficiency of at least an order
of magnitude compared to existing algorithms.24,25,33 Our new

FIG. 8. (a), (c), and (f ) The electrical conductivity, Seebeck coefficient, and
power factor, respectively, for the channel domains as shown in Figs. 6(a)–6(c)
vs the number of simulated electrons per energy grid point. (The total number
of electrons is 100� larger as we use 100 energy grid points.) The stochastic
variation in these quantities (error bars) after five repetitions of each simulation
are indicated. (b), (d), and (f ) The percentage (%) error with respect to the
mean value of respective quantity for the cases in (a), (c), and (e), respectively.
The plots are extracted at Ef ¼ 100 eV. The legend in (f ) refers to all subplots.
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method is a hybrid between the analytical Boltzmann transport
and stochastic Monte Carlo and considers many deviations from
the common Monte Carlo transport algorithms, which make it spe-
cifically efficient for low-field transport in nanostructured materi-
als. For example, in our algorithm, we do not consider the timing
griding as it involves several self-scattering events, which especially
for the low-energy electrons, it is a computationally expensive
process with little influence on the results. Instead, we employ a
mean-free-path approach. The method uses significantly less
number of ray-tracing electrons compared to standard Monte Carlo
algorithms for similar problems, avoids the statistically challenging
subtraction of two opposite going fluxes, and avoids the application
of driving external forces all together. We demonstrated the algo-
rithm’s efficiency and strength for accurate simulations in large
nanostructured domains with multiple defects. The method is con-
venient for studying electronic transport in highly complex nano-
structured materials, especially in the field of thermoelectrics. It is
tested for elastic transport and scattering conditions but can be
extended to include inelastic processes, as well as go beyond elec-
tronic, to phonon transport (see Appendix D for a summary of
how this can be implemented). We believe the new method pro-
vides an efficient and user friendly algorithm, which will enable the
proper study of highly nanostructured materials under low-field
steady-state conditions.
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APPENDIX A: MORE NOISE IN Ξ(E) AT HIGHER
ENERGIES

As depicted in the main text, the transport distribution func-
tion Ξ(E) calculated using the developed Monte Carlo ray-tracing
algorithm has more fluctuations at higher energies. In order to
understand this, we plot in Figs. 9(a) and 9(b) the energy resolved
time-of-flight ToF(E) and its inverse, the flux F(E) for the cases of
103 (blue lines) and 104 (red lines) simulated electrons per energy
grid point. The ToF(E) follows a decreasing trend due to the higher
velocities of electrons at higher energies, while F(E) increases. Note
that we find that the average number of electrons exited to the
right is almost constant with energy in our elastic simulations. We
observe statistical fluctuations around the local mean value of the
ToF(E)—note that we plot this in the logarithmic scale. The inset
plot in Fig. 9(a) shows the percentage variation of the simulated
values with respect to the mean value (i.e., percentage variation of
the ratio of local standard deviation to the local ToF mean value).
That percentage is low, but importantly is also rather constant in
energy (as expected). The flux F(E) in Fig. 9(b) is plotted in linear
scale, as it will enter the Ξ(E) evaluation. The inverse of high
ToF(E) fluctuations at low energies appears now reduced compared
to those at higher energies, although as we showed above, they are
relatively of the same magnitude compared to their local mean
value in energy. When it comes to form the Ξ(E), and we multiply

FIG. 9. (a) Time of flight ToF(E); (b) electron flux; and (c) transport distribution function Ξ(E), vs energy, calculated from the Monte Carlo algorithm for two different elec-
tron simulation numbers. For the larger number of electrons, smaller fluctuations are observed (red lines). Inset of (a): the percentage deviation with respect to the mean
value of the ToF(E), indicating that this is overall constant in energy. The legend in (a) corresponds to all subplots in this figure.
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by the DOS, g(E), the low-energy fluctuations are further scaled due
to the lower DOS at lower energies, but magnified at higher energies
due to the larger DOS, as depicted in Fig. 9(c). For an increased
number of electrons, the fluctuations become smaller compared to
their average local value in energy as shown by the red lines. Thus, it
appears that at higher energies, we have the presence of more noise.

APPENDIX B: REDUCED NUMBER OF RAY-TRACING
PARTICLES

In our Monte Carlo method, for a 1000� 500 nm2 two-
dimensional channel size, under extreme nanostructuring, the
transport results converge when using approximately 103 ray-
tracing particles per energy. In the case of pristine material, conver-
gent results with reduced error can be achieved for even less parti-
cles (see Fig. 8). By using 100 energy points, adequate results are,
thus, obtained with 105 trajectories in total in the nanostructured
channels. The simulations we present in the paper, the length of
channel and the excessive nanostructuring, are reasons why only a
small percentage of particles make it from the left to the right and
contribute in building the transport distribution function. In fact,
only 2%–3% make it from the left to the right, while the majority is
back-scattered to the left contact; thus, a large portion of the parti-
cles do not trace the full length of the channel either, with a
reduced computational cost.

To estimate the computational benefits of this single-flux
method compared to other similar Monte Carlo works, we provide
below some information about the number of ray-tracing trajecto-
ries typically employed. We are not aware of Monte Carlo elec-
tronic transport works in the nanostructures we consider and the
domain sizes we consider, thus, we compare first with our own
prior “two-flux” method in phonon transport Monte Carlo works
(the ray-tracing part of the codes can still be compared). In Ref. 33,
on 2D phonon transport in similar nanostructured domains, 2:5�
106 particles were required under the “two-flux” incident flux
method. Our work by Wolf et al.,24,25 used more than 106 ray-
tracing particles for a 3D 1000 nm channel length again using the
“two-flux MC” incident-flux method. These are typical numbers
for many MC (phonon transport) works on micrometer length
scale domains, which are more than an order of magnitude larger
compared to the single-flux method we present here.

The situation is different if the channel is shorter, where more
particles cross the channel and, thus, less overall need to be eventu-
ally simulated. In Fig. 10(a), we show the transport distribution
function and conductivity from simulations of a pristine material
of a �200 nm size channel length. Although the TDF still has some
noise when we use only 102 particles per energy, the error in the
conductivity [see blue line in Fig. 10(b)] is small compared to the
103 particle case (red line), while the 5� 102 case (orange line)
shows only minimal error. Indicatively, these simulations for the
pristine channel either for the 200 or the 1000 nm channel cases
are concluded within seconds to minutes.

APPENDIX C: LINEAR RESPONSE AND THE TWO-FLUX
MC

In common MC methods, a driving force is applied across the
contacts of the simulation domain, either a voltage ΔV or tempera-
ture difference ΔT . In the case of TE materials, these driving forces
are small, dictating linear response within Boltzmann transport. In
a typical single TE leg simulation analysis,58,59 an n-type leg of
length 10 mm develops roughly a 10 mV open circuit voltage which
corresponds to 1 μV per μm voltage drop for the channels we simu-
late. We also mention here a work on a Bi2Te3 TE device,60 for
which the typical open circuit voltage is measured to be around
2.0 mV.61,62 Such small voltages are very hard to be simulated
numerically using two-flux incident-flux or ensemble MC methods,
in which the bi-directional flux difference needs to be statistically
accurately resolved. For an indication of the level of this difficulty,
we simulate fluxes from the left and the right of a 1000 nm channel
independently. For this, we place the Fermi level of the right
contact lower compared to that of the left contact by ΔV, essentially
reducing the inflow from the right. We then obtain the conductiv-
ity by subtracting the left/right-going fluxes that were injected from
the two contacts. Note that this is just an indicative scenario, since
we do not apply the potential drop in the channel. For example, as
ΔV increases, we should resume to the single-flux method. We
compare the results with our developed single-flux method. We
plot in Fig. 11(a), the conductivity as a function of the number of

FIG. 11. (a) Electrical conductivity with error bars for the single-flux (red line,
noted single-flux) and two-flux MC methods vs the number of electrons simu-
lated per energy grid point. ΔV is the biasing voltage for the two-flux method.
The calculations are performed at Ef ¼ 100meV for all cases. (b) The percent-
age error in the conductivities of (a) considering the stochastic nature of the
single-flux and two-flux MC methods. The legend in (a) corresponds to both
subplots in this figure.

FIG. 10. (a) Transport distribution function Ξ(E) for a 200 nm channel length
pristine domain with different numbers of simulated electrons per energy grid
point. (b) The conductivity for this channel vs Fermi energy. The legend in (b)
corresponds to both subplots in this figure.
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simulated electrons for the single-flux method (red line) and for
the two-flux method under different ΔV . We also include the sto-
chastic error bar after executing 10 simulations per data point. In
Fig. 11(b), we plot the actual error for the different cases with ΔV
as indicated in the legend of the figure. The single-flux method
(red line) indicates the lowest error, which gets reduced linearly as
the number of simulated particles increases. The case that uses
ΔV ¼ 5mV has the largest error, more than an order of magnitude
compared to the single-flux line at the same number of simulated
particles. Another way to see this (horizontally in the figure) is that
2 orders of magnitude more particles need to be simulated to reach
a similar convergence error compared to the single-flux method.
We need to apply a larger potential difference, e.g., ΔV ¼ 100mV
as it can be seen from Fig. 11(b) to reduce the error at a certain
electron count number, which takes us closer to the single-flux
method. However, any of these values used here are much larger
compared to what thermoelectrics experience in reality.

APPENDIX D: PHONON TRANSPORT
IMPLEMENTATION IN THE PROPOSED MC ALGORITHM

Here, we provide some details on how the algorithm we
present can be materialized to treat phonon transport.7,8 We start
from the expression of the temperature derivative of the Bose–
Einstein (BE) distribution (instead of the Fermi–Dirac distribution),
which will provide the driving force,

@fBE
@T

¼ @

@T
1

exp �hω
kBT

� �
� 1

2
4

3
5

¼ �hω
kBT2

� � exp �hω
kBT

� �

exp �hω
kBT

� �
� 1

h i2 : (D1)

By expressing the specific heat in terms of the BE distribution
derivative as well, we reach

Cph ¼ �h2ω2

kBT2

exp �hω
kBT

� �

exp �hω
kBT

� �
� 1

h i2

¼ (�hω)
@fBE
@T

: (D2)

A general expression for the thermal conductivity under
Boltzmann transport assumptions is given by

κ ¼ 1
2π2

ð
ω
τ(ω)v2s (ω)g(ω)Cphdω: (D3)

Thus, by substituting for the specific heat, we get

κ ¼ 1
2π2

ð
ω
τ(ω)v2s (ω)g(ω)(�hω)

@fBE
@T

� �
dω: (D4)

Note that this expression is very similar to the one we have for
the electronic conductivity, with the addition of the phonon energy
term �hω and the temperature derivative of the BE distribution,

rather than the energy derivative of the Fermi–Dirac distribution.
Also, note that the common Callaway model can be derived from
Eq. (D3) as well, following:

κ ¼ 1
2π2

ð
ω
τ(ω)v2s (ω)g(ω)Cphdω

¼ 1
2π2

ð
ω
τ(ω)v2s

ω2

v3s

� �
(�hω)

@fBE
@T

� �
dω

¼ 1
2π2vs

1
kBT2

ð
ω
τ(ω)(�hω)2ω2 e�hω=kBT

e�hω=kBT � 1ð Þ2
dω: (D5)

Above we use the phonon (acoustic) density of states as
g(ω) ¼ ω2

v2s
. Now, we consider that the scattering rate for the most

severe intrinsic phonon–phonon scattering event, the three-phonon
Umklapp scattering, typically follows τ�1 � ω2. We also consider
that the phonon velocity (for acoustic phonons) is constant with ω.
So, the frequency dependence of the phonon TDF then becomes
constant with ω as Ξ ph(ω) ¼ τ(ω)v2s (ω)g(ω) � C. The flux from a
typical ray-tracing for a given group of particles reflects the product
of mean-free-path (mfp) and the velocity � [τ(ω)vs(ω)]vs(ω) �
C=ω2 (note the mfp is not constant in this case with ω). This is the
flux simulated in the case of phonons, having a different energy
dependence compared to the electronic case (� ffiffiffi

E
p

). Multiplying
this by g(ω)(�hω) this time, since the thermal conductivity is the
flow of energy, rather than by only g(:) as in the case of electrons,
we end up with again a linear dependence, � ω, for the argument
of thermal conductivity integral. Then, the constant C is used to
map the analytical BTE model to the ray-tracing algorithm, in the
same way as described for electrons in the main text. As in the case
of electrons, all intrinsic material transport behavior is lumped into
the simulated flux and C. From there on, we can focus on the effect
of geometrical scattering on phonons. Thus, the formalism is very
similar to the case of electrons.
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