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Abstract

Accurate assessment of soil water erosion (SWE) susceptibility is critical for reducing land 

degradation and soil loss, and for mitigating the negative impacts of erosion on ecosystem 

services, water quality, flooding and infrastructure. Deep learning algorithms have been 

gaining attention in geoscience due to their high performance and flexibility. However, an 

understanding of the potential for these algorithms to provide fast, cheap, and accurate 

predictions of soil erosion susceptibility is lacking. This study provides the first quantification 

of this potential. Spatial predictions of susceptibility are made using three deep learning 

algorithms - Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and 

Long-Short Term Memory (LSTM) - for an Iranian catchment that has historically experienced 

severe water erosion. Through a comparison of their predictive performance and an analysis of 

the driving geo-environmental factors, the results reveal: (1) elevation was the most effective 
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variable on SWE susceptibility; (2) all three developed models had good prediction 

performance, with RNN being marginally the most superior; (3) maps of SWE susceptibility 

revealed that almost 40 % of the catchment was highly or very highly susceptible to SWE and 

20 % moderately susceptible, indicating the critical need for soil erosion control in this 

catchment. Through these algorithms, the soil erosion susceptibility of catchments can 

potentially be predicted accurately and with ease using readily available data. Thus, the results 

reveal that these models have great potential for use in data poor catchments, such as the one 

studied here, especially in developing nations where technical modeling skills and 

understanding of the erosion processes occurring in the catchment may be lacking.

Keywords: Soil erosion, deep learning, land degradation, CNN, RNN, LSTM. 

1. Introduction 

Soil water erosion (SWE) is a major cause of global land degradation and soil loss (Tang et al., 

2015) through its negative impact on the organic, physical and chemical characteristics of soils 

(Aslam et al., 2021). Various parts of the world are under the hazard of SWE, and these areas 

are growing in extent as a result of climate and land use change, with areas extending beyond 

those of arid and semi-arid regions into humid regions (Boudjemline and Semar, 2018; 

Wijitkosum, 2021).

Soil is eroded by water through processes which vary in temporal and spatial scales. These 

processes are splash, interrill, rill and gully erosion, in which particles are detached by raindrop 

impact, unconcentrated flow or concentrated flow, and transported via rainsplash, interrill flow 

or concentrated flow (Cooper et al., 2012). These processes cause direct and indirect damage 

to ecosystems services through soil nutrient loss, decreasing soil productivity and reducing 

food production. Thus SWE is often the main driver for a number of global social and economic 

issues such as food insecurity, higher food prices and loss of biodiversity (Phinzi et al., 2021). 
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Furthermore, SWE can have considerable off-site impacts, including decreasing water quality 

through increasing water turbidity, leading to irreparable damage to the aquatic system, 

reducing dam reservoir capacity, changing river morphology and increasing flood risk. 

One country in which these negative impacts of SWE are being felt severely is Iran, the focus 

for this paper. Iran is a semi-arid country, covering a land area of 165 million hectares. The 

country experiences a mean annual soil erosion rate of 25 to 30 ton/ha/year, over 20 times 

higher than the mean global rate and four times higher than any other country (Afshar et al., 

2010; Khalili Moghadam et al., 2015; Sadeghi, 2017). On average, 1 to 5 million tons of erosion 

takes places annually over the country’s land mass (Mohammadi et al., 2021). Thus, although 

50 million hectates of land is available for agriculture, only 1.3 million hectares is classed as 

being suitable for growing crops (Laylin, 2018). SWE is causing 400 million m3 of 

sedimentation each year in reservoirs, resulting in an annual volume reduction of 0.5 % in 

reservoir capacity (Emadodin et al., 2012; Sadeghi, 2017) at an annual cost of US $0.6 billion 

(World Bank, 2005). This sedimentation reduces power generation and land irrigation capacity, 

further reducing the availability of arable lands. As a consequence, these combined impacts of 

SWE are costing the country US $56 to US $112 billion every year, higher than the revenue 

generated by oil production (Sadeghi, 2017).

Enhanced rates of SWE in Iran are due to the combined effects of over-exploitation by 

communities and industry, and changes in climate patterns (Sadeghi, 2017). This expliotation 

includes improper and unnecessary infrastructure development, land use changes and unlawful 

exploitation of resources (Sadeghi, 2009). An intensification in agricultural activities over the 

past five decades has took place in tandeem with this unsustainable land use change. From the 

1950s until 2008, around 5 million hectares of forest was converted to farmland, pasture, and 

urban areas (Emadodin and Bork, 2012). There are also a number of indirect causes for these 

high SWE rates, including an inattention to soil value, a small number of hydrometry stations, 
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limited short-term studies of erosion, unreliable monitoring data, a misunderstanding of the 

SWE processes and apathy (Sadeghi, 2017). All of these indirect causes have combined to 

mask the severity and intensity of the problem. The consequence is that soil is lost due to 

erosion approximately 19 times faster than it forms (Emadodin et al., 2012). Nearly $75 million 

is thought to be needed annually in soil improvement projects to reduce SWE (Akbari, 2017). 

Thus, in Iran, like many other countries experiencing the impacts of SWE, there is a critical 

need to target soil erosion control to those areas most susceptible, as well to identify areas most 

suitable for sustainable agricultural development. 

Modeling plays a key role in identifying these areas, understanding the factors that lead to high 

erosion susceptibility and in testing the efficacy of soil erosion control strategies. Thus far, 

three main types of approaches have been used: empirical, physically-based and data-

driven/machine learning models (Raza et al., 2021). Empirical models, such as the Universal 

Soil Loss Equation (Wischmeier and Smith, 1965), and its associated family of derivative 

models (e.g. Revised USLE (RUSLE; Renard et al., 1997), Modified USLE (MUSLE; 

Williams, 1975), and the modified Mediterranean Desertification and Land Use (MEDALUS; 

Abuzaid et al., 2021) estimate SWE using a prefixed set of physical parameters representing 

the main factors thought to affect erosion (Conoscenti et al., 2008). These models have a linear 

and simple structure and do not aim to simulate the physical processes of SWE. Instead, they 

are based on producing a mathematical algorithm that best describes the relationship between 

these parameters and measured erosion rates. These empirical models can perform well for the 

conditions upon which they are calibrated, but typically perform poorly for conditions outside 

those used in calibration (e.g. Cerdan et al., 2010; Kinnell, 2010; Rapp, 1963; Tan et al., 2018; 

Zhang et al., 1996).
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Furthermore, they do not simulate soil deposition (e.g., sedimentation) and, in most cases, 

insufficient measured data exist to rigorously determine the single factors for all needed 

situations and scenarios (Auerswald et al., 2006; Wischmeier and Smith, 1978, 1965). 

Physically-based models, such as Watershed Erosion Prediction Project (WEPP; Nearing et al., 

1989) and KINematic runoff and EROSion (KINEROS; Woolhiser et al., 1990), attempt to 

mathematically represent the physics behind the processes of detachment, transportation and 

deposition. These models usually require many variables and detailed spatial and temporal 

catchment data for the model build, calibration and validation. Such information is rarely 

available in developing countries because the monitoring required, especially for large 

catchments, is costly and time consuming (Conoscenti et al., 2008). For example, in Iran, many 

of the hydrometric stations only measure sediment concentration for a few days during some 

severe storms, and the temporal pattern of sediment yield is rarely provided (Darvishan et al., 

2010). Furthermore, physically-based simulations are complex, time-consuming and require 

highly-skilled end users that do not always reside in these countries. This issue has limited their 

use and success in Iran (Akhavan et al., 2010; Amiri, 2010). Moreover, concerns have been 

raised about their tendency to overestimate small runoff events and underestimate large runoff 

amounts, even when calibrated (Kinnell, 2017), and the physical basis of many commonly used 

modes has been questioned (Wainwright et al., 2008).

Recently, development of machine learning (ML) approaches have opened up new and exciting 

ways to predict environmental behavior, including soil erosion susceptibility modeling (e.g., 

Mosavi et al., 2020; Vu et al., 2020). These approaches have a non-linear structure and seek to 

find a robust relationship between input and output readily available parameters. ML 

techniques do not seek to explain the physical processes and mathematical reasoning for 

changes in environmental behavior but to recognize patterns, both expected and unexpected, 

within data. These patterns can highlight environmental relationships in space and time that 
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may unveil critical details about behavior, reveal previously unsuspected relationships, or 

mitigate uncertainty in estimates. Furthermore, ML models are insensitive to missing data. 

Thus, these types of techniques are at their most beneficial in situations when physically-based 

models cannot be applied (e.g. lack of understanding of the underlying physics of the process) 

or that suffer from inadequacies due to the limitation of data. Therefore, the key advantage of 

ML approaches is that some parameters which are difficult or expensive to measure, such as 

soil erosion, could be easily predicted using other readily available factors, such as rainfall and 

those gained from satellite data.

Artificial Neural Network (ANN) is the oldest and most widely used ML technique in 

geoscience due to its computational efficiency (Abrahart et al., 2012). For example, Ebtehaj 

and Bonakdari (2013) applied ANN algorithms to predict sediment transport in sewers, 

revealing that ANN had a higher prediction power than existing empirical transport formulas. 

Similar results have also been found within other areas of hydrology, such as river suspended 

load prediction and evaporation modeling (Kisi et al., 2016; Melesse et al., 2011). However, 

these algorithms have slow coverage speed during the training procedure, high errors in the 

modeling phase, and a low convergence and generalization power (Kisi et al., 2012). Thus, 

ANN algorithms have poor prediction power when the range of the testing dataset is outside of 

the range of the training data (Kisi et al., 2016; Melesse et al., 2011), and they require a long-

term dataset to achieve a reasonable result. Thus, to solve this weakness, ANN algorithms have 

been ensembled with fuzzy logic algorithms to create Adaptive Neural Fuzzy Inference System 

(ANFIS) models. ANFIS models take the advantages from both ANN and fuzzy logic methods 

to generally produce a better predictive capability (Ebtehaj and Bonakdari, 2014) but they are 

poor at finding the best weight parameters which heavily influence prediction accuracy (Tien 

Bui et al., 2016). Furthermore, ANFIS algorithm suffer from the need for a large number of 

model operators, each of which need to be set accurately, especially the weights of membership 
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function. Also ANFIS algorithms lack a systematic approach in the design of fuzzy rules and 

in the choice of membership functions variables (Khosravi et al., 2018; Tien Bui et al., 2016).

Another powerful ML technique commonly used is support vector machine (SVM). This 

algorithm has been used in a range of applications in hydrology, such as rainfall-runoff 

forecasting (e.g. Dibike et al., 2001) and suspended sediment load prediction (Çimen, 2008). 

The developed models have a high prediction power (Ganguli and Reddy, 2014; Goyal et al., 

2014), but suffer from having a lot of hyper-parameters making model implementation difficult 

(Ahmad et al., 2018).

Group Method of Data Handling (GMDH) is another powerful and flexible neuron-based 

algorithm. The GMDH algorithm relates to the deterministic self-organizing method group, 

where the principle of a black box, connectionism and induction is used (Anastasakis and Mort, 

2001). Applications include land subsidence susceptibility mapping (Panahi et al., 2022) and 

flood modeling (Dodangeh et al., 2020). However the weakness of the GMDH algorithm lies 

in its fixed configuration, using a deterministic approach to find the optimal partition of datasets 

and parameters (Robinson, 1998).

Although these ML models have been applied to model behaviors in a wide range of 

environmental settings, they all suffer from the need to determine accurate weights in the 

membership function and the optimal values for hyper-parameters. Since trial and error is not 

possible to determine the exact weights, bio-inspired algorithms have been applied to optimize 

these ML techniques. For example, Angileri et al. (2016) applied the stochastic gradient tree 

boost (SGT) for SWE modeling in Italy, revealing excellent reliability accuracy. Sajedi-

Hosseini et al. (2018) applied the Fuzzy Decision-Making Trial and Evaluation Laboratory 

(Fuzzy DEMATEL) approach for SWE modeling and mapping at Noor-Rood catchment in 

Iran and found this approach had a reasonable prediction power. In the same catchment, Mosavi 

et al. (2020) utilized several machine learning models - weighted subspace random forest 
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(WSRF), Gaussian process with a radial basis function kernel (Gaussprradial) and Naive Bayes 

(NB) - for SWE susceptibility mapping. Their results showed the WSRF model outperformed 

the other models, followed by Gaussprradial, and NB. Yousefi et al. (2021) applied three ML 

models of Random Forest (RF), classification and regression tree (CART), and SVM to model 

land degradation in Alborz Mountains, Iran; RF outperformed the CART and SVM models. 

Although tree-based models have higher performance than ANN, ANFIS and SVM models, 

trees are sensitive to noisy data (Tien Bui et al., 2012) making them less suitable to catchments 

that lack continuous erosion monitoring or where this monitoring is sparse in spatial extent.  

Since these studies were conducted, a new type of ML model has been developed, namely deep 

learning algorithms. These algorithms have a greater flexibility than traditional ML models and 

thus a higher predictive performance (Ghorbanzadeh et al., 2019). Convolutional Neural 

Network (CNN), Recurrent Neural Network (RNN) and Long-Short Term Memory (LSTM) 

are amongst the popular deep learning algorithms. Examples of application of the CNN 

algorithm include flood modeling (Khosravi et al., 2020) and landslide susceptibility 

assessment (Thi Ngo et al., 2021). The RNN algorithm has been applied for landslide 

susceptibility assessment (Li et al., 2021), and LSTM for flood modeling (Fang et al., 2021). 

A significant gap exists in understanding the potential of these deep learning algorithms, and 

in the identification of the most flexible and accurate algorithm for SWE susceptibility 

prediction.

The present paper, therefore, aims to fill this gap in understanding by achieving the following 

objectives, using the heavily eroded Noor-Rood catchment in Iran as a case study: (1) Delineate 

SWE susceptibility areas using three deep learning algorithms techniques, namely CNN, RNN 

and LSTM; (2) compare the predictive power of these data-driven models; and (3) perform an 

analysis of effectiveness of the geo-environmental driving variables through Information Gain 

Attribute Evaluator (IGAE) feature selection. The performance of these particular algorithms 
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is tested for the following reasons: (1) a CNN model automatically detects the important 

features without any human supervision. (2) RNN can process inputs of any length; and (3) 

LSTM that enables a model to “remember” past information. The research offers new insight 

into which deep learning algorithms offer the potential to provide relatively cheap and fast 

predictions of SWE susceptibility in situations when understanding of the physical processes 

at play may not be well understood, such as the catchment studied here.

2. Study area

Noor-Rood catchment is one of the main sub-catchments of the Haraz watershed, located 

southwest of Amol city, Mazandaran province, Northern Iran (Figure 1; Eastern longitudes 51° 

26" 13" to 52° 18" 21" and Northern latitudes 36° 00" 58" to 36° 16" 18"). The catchment is 

fully mountainous (elevation between 721 and 4333 m), has an area of 1298 km2 and 

experiences a mean annual precipitation of 504 mm (Solaimani and Hadian Amr, 2008). The 

study area is mostly covered by the central Elborz and Shemshak (shale, marl and sandstone) 

and Karaj (tuff and shale) formations. Historically the catchment has suffered intense SWE 

area due to flooding, and human-induced processes (e.g., land use change, over-grazing, 

intensive agriculture and etc.) causing high turbidity in Haraz River, high sedimentation and a 

decrease in water capacity in the Haraz dam, located downstream of the catchment. Since the 

building of large dams in the Haraz watershed are costly and of critical importance to irrigation 

and energy generation, delineating SWE prone-areas in the study area is necessary for aiding 

the location of new dams and mitigating the impacts of SWE on existing dam capacity. 

3. Methodology

The conceptual framework for modeling SWE susceptibility is shown in Figure 2. Four main 

steps are used:

1. Data collection of SWE historical data; 
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2. Extraction of SWE geo-environmental variables;

3. Generating SWE susceptibility maps using deep learning CNN, LSTM and RNN algorithms;

4. Model evaluation and comparing the results across algorithms using the area under the 

receiver operating characteristic curve (AUC). 

Figure 1. The location of Noor-Rood catchment and the SWE sites used to train and test the deep learning 
models
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Figure 2. Conceptual model development framework

3.1. SWE inventory map

Spatial modeling through the machine learning approach has a binary classification system 

(i.e., SWE occurrence/non-occurrence). The first and vital step in this binary modeling was 

determining the spatial relationship between SWE historical data and geo-environmental 

factors in order to determine the effectiveness of each  on SWE susceptibility. The historical 

data was derived from a survey of soil erosion in 2017 by Sajedi-Hosseini et al. (2018), in 

which recordings of sheet, rill, interrill, gully erosion, and mass movements were made at 116 

locations, (Figure 1); and equally occurrences of no erosion were recorded at 116 locations.

3.2. Construction of the training and testing datasets

In the next step, values of 0 and 1 were allocated to locations that have experienced no SWE 

and SWE, respectively. Then, all data was split into two parts (Chung and Fabbri, 2003) in a 
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ratio of 70:30 for training and testing, respectively, based on the most commonly used ratio. 

The first 70 % was used for model development, and the remaining 30% for model evaluation. 

In the final step, the training dataset was overlaid with all the SWE geo-environment 

conditioning factors to extract their attribute values for modeling. 

3.3. SWE geo-environmental factor 

Based on a body of previous work on SWE susceptibility modeling (Sajedi-Hosseini et al. 

2018; Aslam et al., 2021; Conoscenti et al., 2008; Mosavi et al., 2020; Rosskopf et al., 2020), 

the characteristics of the study area and data availability, 14 SWE geo-environmental 

conditioning factors were considered (Figure 3a-n). After initial selection of these input factors, 

their effectiveness was investigated. Parameters with a low or null value can cause lower model 

performance. To identify if this was the case within the training dataset, an Information Gain 

Attribute Evaluator (IGAE) feature selection technique was applied to determine input variable 

importance. The IGAE technique evaluates the worth of an attribute by measuring the 

information gain with respect to the class, as follows:

IGAE (Class, Attribute) = H(Class) - H(Class | Attribute)                                                      (1)

where H is the information entropy. More information about this technique can be found in 

Novakovic (2009) and Trabelsi et al. (2017). 

Through the use of this technique, all 14 geo-environmental factors were considered effective 

and all considered in the next step of model development. These factors were elevation, ground 

slope, slope aspect, plan curvature, topographic wetness index (TWI), stream power index 

(SPI), distance from river, slope length and steepness factor (LS factor), rainfall erosivity (RE), 

hydrologic soil group (HSG), Normalized Difference Vegetation Index (NDVI), land use, soil 

texture and geology. Ground slope, elevation, slope aspect, LS, plan curvature, TWI, and SPI 

were gained directly from ASTER Global Digital Elevation Model (DEM) of the study area 
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with a 30 m ×30 m resolution (https://earthexplorer.usgs.gov/). The distance from river factor 

was determined in ArcGIS 10.2 using a digital river network. The RE factor was calculated 

from recorded rainfall in the study area using a rainfall gradient approach, due to the lack of 

rainfall intensity data, according to the following equation ( Yu and Rosewell, 1996):

                                                                                                                  (2)1.610.0483( )RE P

where P is the mean annual precipitation (mm). The mean annual precipitation was estimated 

based on data recorded from 1976 to 2016  by six rain gauges in the catchment. Further 

information about the rainfall records can be found in Mousavi et al. (2019). HSG (Table A in 

supplementary material) and soil texture data was acquired in a shape-file format from 

Mazandaran Regional Water Authority. NDVI and land use factors were measured using 

Landsat 8 OLI/TIRS (Operational Land Imager/Thermal Infrared Sensor) imagery from June 

2016 (Sajedi-Hosseini et al., 2018). The geology dataset was obtained from the national 

geology map of Iran at a scale of 1:100,000 (Table B in supplementary material). 

https://earthexplorer.usgs.gov/
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Figure 3. Spatial variation in SWE geo-environmental factors used for model development, a) elevation, b) 
aspect, c) slope degree, d) plan curvature, e) NDVI, f) RE, g) landuse, h) SPI, i) TWI, j) LS, k) distance from 

river, l) hydrologic soil group, m) soil texture, and n) geology
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Figure 3. Continued

3.4. Model description

3.4.1. Convolutional Neural Network (CNN)

The CNN method has the structure of ordinary feed-forward neural networks, with each hidden 

layer made of neurons fully connected to all neurons in the previous and next layer. Neurons 

in a single layer operate completely independently and do not share any connections. Weight 

sharing and local connection are two special characteristics of the CNN model, enhancing the 

network training efficiency and improving its capability to effectively decrease the network’s 

free parameters (Du et al., 2022).

The generalized architecture of the CNN model consists of three main types of layers: 

convolutional, pooling, and fully-connected layers. In the convolution layer, a linear operator, 

such as convolution, or a nonlinear activation function, such as rectified linear unit (ReLU; 

defined as ; Yamashita et al., 2018) separates and identifies the various 𝑓 (𝑥) = max (0,𝑥)

features of the dataset for analysis. These functions are able to capture the spatial and temporal 

dependencies between data. The primary aim of the pooling layer is to decrease the size of the 

convolved feature map to reduce the computational costs, and to handle overfitting issues. This 
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step is performed by decreasing the connections between layers, independently operating on 

each feature map. Max, Min and average pooling are the most common form of pooling layer 

used to reduce data size, whilst still preserving the most important features within them (Pally 

and Samadi, 2022). For example, max pooling, a nonlinear downsampling operation, computes 

the largest value in each patch of a feature map (Venkatappareddy et al., 2021). Thus, the 

pooling layer generalizes the features extracted by the convolution layer, and helps the 

networks to recognize the features independently. The fully-connected layer is the final part of 

CNN model which maps the extracted features into final output using a softmax activation 

function to convert the vector of numbers into the vector of probabilities. The output of the 

function reveals the probability of each class (Li et al., 2021). 

3.4.2. Recurrent Neural Network (RNN)

RNN is a class of ANN model, derived from feed-forward networks (FFN), where connections 

between nodes form a directed or undirected graph along a temporal sequence. RNN algorithms 

are powerful and robust because they use their internal state (memory) to process variable 

length sequences of inputs. RNNs are best applied to sequential or time-series data, but by 

extracting the contextual information from the data, RNN models can be efficaciously applied 

to data classification. The RNN structure is composed of several successive recurrent layers. 

A FFN allocates a weight to the input parameters, similar to other deep learning models, but 

the key difference is that RNN algorithms, using the internal memory, assign this weight to 

both current and previous inputs. 

RNN models benefit from having loops in hidden layers, and these loops have a significant 

effect on the training capability of the model. Feedback loops from the output layer (X1(t), ..., 

Xnj) are evaluated using the networks input (Y(t)). For each new input, the output values are 

calculated and then sent back to the modeling process as an adjusted/modified input. This 

https://en.wikipedia.org/wiki/Directed_graph
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
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approach continues until a fixed and steady output is obtained. The mathematical approaches 

are as follows:

                                                                          (3)( ) ( ) ( 1), 1,...,i ji i ji i Ha t Y t h t j n     

                                                                                                     (4)( ) ( ( )), 1,...,i i Hh t F a t j n 

                                                                                                    (5)( ) ( ), 1,...,i ji i jb t a h t j n 

                                                                                                     (6)( ) ( ( )), 1,...,i j jX t G b t j n 

where  and are weights, F is defined as the non-linear transformation parameter, and  ,ji ji  jia

 is the hidden number of neurons. Generally, hidden layers through networks input [i.e., Hn

Y(t)] calculate the adjusted network weights. 

3.4.3. Long-Short Term Memory (LSTM)

LSTM is another type of RNN, capable of learning order dependence in sequence prediction 

problems. This algorithm extends the internal memory and helps the model to recall events 

from a long period of time. Standard RNN models, due to the issue of gradient vanishing, are 

unable to prepare long memories. In contrast, LSTM models are able to train and learn from 

important events with lags of unknown duration between important events in a time series. 

LSTM uses three ways to allocate the weights: forget the information, let in new information 

and hold the information that affects the output. The model also has three main layers or gates: 

input (control the input information in a memory cell), output (maintain control over the 

outgoing information throughout the remainder of the networks) and forget (control the input 

from the previous memory and determine if it should be deleted based on the preceding cell 

condition). This information is calculated through the following equations:

                                                                                                  (7)1( )t xf t hf t fF W X W H B   
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                                                                                                    (8)1( )t xi t hi t iI W X W H B   

                                                                                                  (9)1( )t xc t hc t cC W X W H B   

                                                                                                              (10)1* *t t t t tC F C I C 

                                                                                                (11)1( )t xo t ho t oO W X W H B   

                                                                                                                     (12)tanh( )t t tH o C

                                                                                                                (13)( )t hy t yY W H B 

                                                                                                                    (14)1( )
1 exp xx 



where Xt, Yt, It, Ft, Ot, Ct,  and  are input vector, output vector, input gate, forget gate, tC 

output gate, finishing state in memory block, temporary and sigmoid function respectively. 

 and  are input weight matrices, and are recurrent weights , , ,xf xi xcW W W xoW , , ,hf hi hcW W W hoW

matrices, Why is the output weight and Bf, Bi, Bc, Bo and By are related bias vectors.

3.5. SWE susceptibility map generation

After developing the three models using the training data, they were used to calculate SWE 

indices (SWEI) for all pixels in the study area. These SWEI values were classified based on 

the quantile classification scheme to very low, low, moderate, high, and very high to produce 

a SWE susceptibility map. 

3.6. Model performance evaluation 

The prediction power of each of the developed models was evaluated quantitatively using the 

powerful and reliable receiver operating characteristic (ROC) curve method, using Statistical 

Package for the Social Sciences (SPSS) software. Model evaluation was assessed during both 

model development (success-rate ROC curve) using the training dataset, and during model 
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evaluation using the testing dataset (prediction-rate ROC curve). Success-rate ROC curves only 

reveal the efficiency of the built model, whereas prediction-rate ROC curves, using data not 

used in model development, reveals how good the model is at prediction and thus shows the 

model generalization power. Area Under the ROC curve (AUC) measures the entire two-

dimensional area underneath the ROC curve, providing an aggregate measure of performance 

across all possible classification thresholds. AUC varies between 0 (the lowest model 

prediction power) and 1 (ideal model with the highest performance). Table 1, based on 

Yesilnacar (2005), shows how ranges of AUC values can be interpreted for classifying model 

quality. 

Table 1. Interpreting AUC values

AUC quantitative values Quality interpretation

0.5 – 0.6 Unsatisfactory

0.6 – 0.7 Satisfactory

0.7 – 0.8 Good 

0.8 – 0.9 Very good

0.9 - 1 Excellent 

4. Result and analysis

4.1. Effectiveness of input variables on SWE susceptibility

The effectiveness of the 14 input variables on SWE susceptibility, assessed using the IGAE 

feature selection technique, is presented in a Radar-chart (Figure 4). This chart shows that 

elevation was the parameter with the highest effectiveness on SWE (0.30), followed by RE 

(0.16), NDVI (0.143), TWI (0.142), plan curvature (0.141), ground slope (0.12), geology 

(0.099), aspect (0.091), SPI (0.073), distance from river (0.070), land use (0.067), soil texture 

(0.030), LS (0.020), and HSG (0.016). 
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Figure 4. Radar-chart showing variable effectiveness on SWE

4.2. SWE susceptibility maps 

The delineated SWE susceptibility maps showed the middle and eastern part of the catchment 

had a high and very high susceptibility to SWE, while the rest of the study area, which 

surrounded the susceptible areas, had a lower susceptibility (Figure 5a-c). 
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Figure 5. SWE susceptibility maps based on the different deep learning models: a) CNN, b) LSTM and c) RNN

According to the ROC model evaluation technique, all models, in terms of success rate and 

prediction rate, had a very good prediction power (0.8 < AUC < 0.9) (Figure 6). All models 

had the same performance in the training phase (AUC = 0.85), but RNN was marginally 

superior in the testing phase (AUC = 0.83). Thus, the RNN model had the highest 

generalization power, albeit only slightly.



22

Figure 6. ROC curves for (a) success rate and (b) prediction rate 

Differences in the three maps are subtle. The maps produced by the LSTM and RNN models 

were most alike, producing similar predictions for the percentage of catchment occupied by 

very low, high, very high susceptibility. The CNN model predicted a higher percentage of very 

high susceptibility areas than the other two models, but a slightly lower proportion of very low 

susceptibility (Figure 7). The CNN model overestimated the very high susceptibility classes, 

while underestimated the moderate classes. The LSTM model overestimated the very low 

susceptibility classes while underestimated low and moderate susceptibility classes (Figures 5 

and 7). According to the predictions made by the RNN model, 19.8 % of the study area had a 

very high SWE susceptibility, 19.7 %, 20.8 %, 20.8 %, and 18.9 % had a high, moderate, low 

and very low susceptibility (Figure 7). Overall, 39.5 % of the catchment had a high and very 

high susceptibility to SWE. 
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Figure 6. A histogram showing the percentage of SWE classes that fall into the susceptibility class for each deep 
learning model

5. Discussion

5.1. Effectiveness of geo-environmental factors

To examine the effectiveness of each of the geo-environmental factors, a Frequency Ratio (FR) 

approach was used. FR is a bivariate statistical approach that calculates the probabilistic 

relationship between SWE susceptibility and each of the factors. The FR is the ratio of the area 

where SWE occurs to the total study area for a given attribute. For each range or type of factor, 

FR was calculated as follows:

𝐹𝑅 =

𝐷𝑖 ∑𝑁
𝑖 = 1𝐷𝑖

𝐴𝑖 ∑𝑁
𝑖 = 1𝐴𝑖

where Di  is the area of SWE of the i-th category (very low, low, medium, high, very high), Ai 

is the area of the i-th category for a certain factor and N is the category number of the factor. 

A derived FR value of more than 1 indicates a strong and positive relationship between the 

concerned class of the selected factor data layer and high SWE susceptibility; on the other 
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hand, a frequency ratio value of less than 1 suggests a poor and negative correlation between 

SWE susceptibility and the concerned class of the factor data layer, and low susceptibility.

The FR values and the elevation map (Figure 3a) show that areas with lower and mid-elevations 

(727 – 2404 m) had a strong correlation with the highest SWE susceptibility, particularly due 

to mass movement. Areas with higher elevations may usually be thought to more susceptible, 

due to higher rainfall and steeper slope, thinner soils and bedrock outcrops. However 

precipitation falls as snow in these higher elevations. Since snow has less erosivity than rainfall 

and can acts as an armor to protect soil from erosion, these higher elevation areas therefore 

experience less erosion than the lower and mid-elevations. Thus RE had a poor correlation with 

SWE (Figure 3f). Furthermore livestock farming is denser in low elevations, resulting in 

overgrazing, a reduction in vegetation cover (especially during early spring when immature is 

damaged), soil compaction, lower infiltration rates, lower soil retention and higher runoff, 

combining to make soil more susceptible to rainsplash, sheet, rill and gully erosion (Sternberg 

et al., 2000; Orgill et al., 2018); Narantsetseg et al., 2018; Donovan and Monaghan; 2021) and 

). 

Areas with low NDVI, representing soil with little or no vegetation, were strongly positively 

correlated with SWE corresponding with higher susceptibility (Figure 8). Whereas areas with 

high NVDI were negatively correlated because vegetation cover reduced the volume and 

intensity of rainfall reaching the soil surface (e.g. Vaezi et al., 2016) and the detachment of 

sediment in overland flow (Liu et al., 2017). In the long term, vegetation also increases soil 

organic matter, and improves soil physical properties (e.g. Puigdefabregas et al., 1999), further 

reducing soil erosivity (Zhang et al., 2015). 

High values of TWI were correlated strongly with SWE, since areas with high TWI can indicate 

areas where there is an accumulation of water, possibly due to the routing of overland flow, 

resulting in a higher likelihood of particle detachment through rilling and gullying. Flat slopes 



25

were also associated with areas with high SWE susceptibility, since, with all things constant 

(such as soil thickness and vegetation cover), lower angle slopes are most often associated with 

lower infiltration capacities, and thus higher rates of runoff (e.g. Chen and Young, 2006). Two 

lithological units, Pldv (Rhyolitic to rhyodacitic volcanic rocks) and K2l2 (Thick-bedded to 

massive limestone (Maastrichtian)) were highly correlated with areas of high SWE, with all 

other units displaying a weak association (Figure 8). Slopes with different aspect receive 

differing amounts of solar radiation; southerly aspects correspond strongly with areas of high 

SWE, since these areas receive more solar radiation, reducing soil wetness, aggregate stability 

and vegetation cover, and more crusting of the soil surface, reducing infiltration capacities and 

increasing runoff (e.g. Marque and Mora, 1992; Fang and Gou, 2015).  All other factors had a 

poor correlation with SWE susceptibility.
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Figure 8. Effectiveness of each of the classes of the most important factors geo-environmental factors on SWE 
susceptibility, based on FR method.
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5.2. Comparison in model performance

Since inputs were the same for each of the models, the difference in performance between 

algorithms is attributable to their different computational structures. RNN and LSTM models 

outperformed the CNN model because they both have an internal memory that allows them to 

‘remember’ important information about the input they receive, enhancing their precision in 

predicting what’s coming next. Although the generalization ability of CNN is enhanced due to 

the use of a pooling layer, their fitting ability is reduced when the inputs are low-dimensional 

vectors, leading to information loss (Liu et al., 2019). 

CNN and RNN algorithms operate similarly by introducing sparsity and reusing the same 

neurons and weights. However in the CNN model latent patterns in data are detected using 

convolution operations, whereas in the RNN model the specific sequences in input data are 

found by considering the relationship between the current and the previous state, allowing 

RNNs to feed results back into the network.  Also, in CNN models, the input size and resulting 

output are fixed but in RNN models they vary. Further, the RNN algorithm benefits from a 

parameter sharing technique, allowing RNN models to share parameters across different time 

steps. In addition, the incorporation of convolutional layers can stretch its efficiency to nearby 

pixels. 

The CNN and LSTM algorithms are feed forward neural networks, but a backpropagation 

training algorithm is used in the RNN model providing the ability to more effectively interpret 

temporal information and capture long-term dependencies in data, as well as obtain a minimum 

error function value (Ajitha et al., 2022). When these differences are taken together, this greater 

complexity in the RNN computational structure accounts for the enhanced predictive power of 

RNN models over CNN models (Mutlu et al., 2019).
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A direct comparison between our findings with those of previous studies is not possible as deep 

learning algorithms have not yet to be applied for SWE modeling and mapping. Several studies 

have applied different ML models for SWE mapping however. Yousefi et al. (2021) applied 

three models of RF, CART and SVM model for SWE susceptibility mapping in a different 

catchment in Iran and reported these models have accuracies of between 0.89 to 0.96 based on 

the ROC-AUC method. These values are higher than reported in this study, despite the use of 

more powerful algorithms, resulting from the greater complexity in the relationships between 

the geo-environmental factors and erosion processes in the catchment studied in the present 

paper. In particular, snow in mountainous areas, high livestock density and deforestation in 

lowland areas, and little variation in soil grain size, resulted in some factors, such as RE, land 

use and soil texture, that would normally be well correlated with SWE to be not well correlated, 

and there was an unexpected relation with slope elevation. In the same catchment, Sajedi-

Hosseini et al. (2018) applied a Fuzzy DEMATEL approach to SWE mapping with an accuracy 

of 0.83. Although their method has higher performance, the generated map had higher 

uncertainty, because the weights were calculated based on the expert opinion. In contrast, 

Mosavi et al. (2020) applied WSRF, Gaussprradial, and NB methods for SWE in the same 

study area and found predictive accuracy was lower; WSRF with Kappa index of 0.81 had a 

higher performance than Gaussprradial (0.76) and NB with Kappa (0.71). Also Abolhasani et 

al. (2022) implemented RF, boosted regression tree (BRT), SVM, and classification and 

regression tree (CART) algorithms, with AUC values of 0.81, 0.76, 0.71 and 0.63 for SWE 

mapping at Qazvin Plain, Iran. The three models developed in the current study performed 

more strongly. 

5.3. Applying deep learning models to map SWE susceptibility

The choice of the ‘best’ predictive model is most often a compromise between model prediction 

accuracy and model complexity, with the later, in deep learning models, most closely related 
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to the data input requirements. The major advantages of the deep learning models developed 

in this paper are their simplicity, and their ease and in expense to build and run, unlike 

physically-based models, whilst providing little compromise on model performance. In other 

words, the deep learning models provided good prediction performance based on inputs that 

are readily available from satellite imagery and national rainfall monitoring without the need 

for catchment or hillslope-scale monitoring. Thus, the results reveal that these models have 

great potential for use in SWE susceptibility assessment in data poor catchments, especially in 

developing nations where technical modeling skills and understanding of the hydrologic and 

erosion processes occurring in the catchment may be lacking.

The major disadvantages of these types of models however are two-fold. First, like all statistical 

methods, the developed models only relate directly to the catchments being considered, and 

thus their application to other catchments may prove inappropriate. Future studies should apply 

the developed models to catchments with differing rainfall, soils, land use, land cover, geology 

and morphology to discover whether this is the case. Second, due to their ‘black-box’ structure, 

they provide poor explanatory power, and thus are unable to extract understanding of the 

processes that cause changes in SWE susceptibility. With these considerations in mind, the use 

of deep learning models may not simply lie in predicting erosion, but integrating these 

techniques into process-based models to help identify and optimize model parameters and 

mitigate uncertainty in model estimates (e.g., Vojinovic et al., 2013), help recognize patterns 

within satellite data to unveil critical details about behavior, and possibly reveal new 

environmental relationships. Future studies should seek to explore this potential.

This study has considered geo-environmental factors that affect erosion. Where data is 

available, future studies should consider human-related factors in deep learning models, such 

as livestock density (e.g., Evans, 1997), arable yields (e.g., Gliessman, 2004) the location of 

road-networks (e.g., Deng et al., 2011; Keshkamat et al., 2013) and distance from water 
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resources (e.g., Mirzabaev et al., 2016). For example, Yousefi et al. (2016) reported that the 

rate of soil degradation around water resources was higher than in other parts more distant from 

water supplies. Deng et al. (2011) demonstrated that when areas are composed of relatively 

high quality grassland, roads lead to soil erosion and degradation, whereas when grassland 

resources are sparse, access to a road results in soil restoration. In addition, due to a lack of 

rainfall intensity data, the current study had to take a simplified approach to account for rainfall 

as a factor, using mean annual rainfall data to generate the RE factor. This approach does not 

account for the role of individual storm events, and their magnitude and duration, on soil 

erosion. Nor does it consider how preceding events affect susceptibility in proceeding events. 

Thus a focus for future studies should be on applying deep-learning models to more data-rich 

catchments, using observations of  rainfall intensity to generate the RE factor with higher 

accuracy (Capolongo et al. 2008; Panagos et al. 2015; Petroselli et al. 2021). Since deep 

learning models are data-driven, one can postulate that with hourly rainfall data incorporated 

with the kind of satellite data used in this current study, it should be possible to build more 

powerful, more accurate models of soil erosion susceptibility over large spatial extents, 

providing an important tool for targeting soil erosion control to those areas most susceptible, 

and for identifying areas most suitable for sustainable agricultural development.

 

6. Conclusion

Soil erosion by water is a major cause of global land degradation and soil loss. Accurate 

predictions of erosion susceptibility are critical for protecting soils and targeting efforts to 

mitigate the impacts of erosion on ecosystem services, water quality, flooding and 

infrastructure. Using satellite data, rainfall, soil and other several readily available data, this 

paper has quantified for the first time, the potential of deep learning models to provide accurate 

predictions of soil water erosion (SWE) susceptibility. Three state-of-the-art deep learning 

https://sciprofiles.com/profile/224386
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algorithms - Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and 

Long-Short Term Memory (LSTM) - were applied to assess susceptibility in an Iranian 

catchment that has historically experienced severe erosion. The main findings were as follows:

1. Elevation was the most effective geo-environmental variable on SWE susceptibility, 

followed by rainfall erosivity, normalized difference vegetation index, topographic 

wetness index, plan curvature, ground slope, geology, aspect, stream power index, distance 

from river, land use, soil texture, slope length and steepness factor, and hydrologic soil 

groups

2. Model evaluation revealed that all three developed models had good prediction 

performance, with RNN being marginally the most superior.

3. Maps of SWE susceptibility revealed that almost 40 % of the catchment was considered 

to be highly or very highly susceptible to SWE and 20 % moderately susceptible, 

indicating the critical need for soil erosion control in this catchment to reduce 

susceptibility.

4. SWE mainly occurs in areas with elevations lower than 2700 m, bare soils, high TWI, flat 

curvature, a southerly aspect, and rhyolitic to rhyodacitic volcanic rocks

The strength of these algorithms lies in their ease to implement, use of readily available satellite 

and rainfall data, and being inexpensive to build and run in comparison to physically-based 

models, whilst providing little compromise on model performance. Together, these findings 

reveal that deep learning models have great potential for use in SWE susceptibility assessment, 

especially in situations when understanding of the physical processes at play may not be well 

understood or field monitoring data is lacking. Thus, understanding more about this potential 

for different catchments and input variables represents a vital research avenue for hydrologists.
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Table A. Hydrologic soil group description

No HSG Description

1 B Moderately low runoff potential (50-90% sand and 10-20% clay)

2 C Moderately high runoff potential (<50% sand and 20-40% clay)

3 D High runoff potential (<50% sand and >40% clay)
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Table B. Geological units and their description

Geological 
label

Description

Ebv Basaltic volcanic rocks

Ek Well bedded green tuff and tuffaceous shale

Eksh Greenish-black shale, partly tuffaceous with intercalations of tuff 

Jk Conglomerate, sandstone and shale with plantremains and coal seams

Jl Light grey, thin - bedded to massive limestone

K2a.bv Basaltic volcanic tuff

K2l2 Thick - bedded to massive limestone (maastrichtian)

Ktzl Thick bedded to massive, white to pinkish orbitolina bearing limestone

Mm,s,l Marl, calcareous sandstone, sandy limestone and minor conglomerate

Pbv Diorite

Pd Red sandstone and shale with subordinate sandy limestone 

Pldv Rhyolitic to rhyodacitic volcanics

Pr Dark grey medium - bedded to massive limestone

Qssd Unconsolidated wind-blown sand deposite including sand dunes

TRa.bv Triassic, andesitic and basaltic volcanics

TRe1 Thin bedded, yellow to pinkish argillaceous limestone with worm tracks

TRJs Dark grey shale and sandstone 

TRsh.e Thick bedded grey o'olitic limestone; thin - platy, yellow to pinkish shaly 
limestone with worm tracks and well to thick - bedded dolomite and dolomitic 
limestone 
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Highlights

 Soil water erosion (SWE) is predicted though three kinds of deep learning algorithms
 Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and Long-Short 

Term Memory (LSTM) are investigated
 All three models had good prediction performance, with RNN being marginally the most 

superior
 Elevation was the most effective variable on soil water erosion susceptibility 
 Maps of SWE susceptibility revealed that almost 40% of the catchment was highly or very 

highly susceptible to SWE 
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