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Abstract

We present an integrating decision support system designed to aid security analysts’ monitoring of terrorist
groups. The system comprises of (i) a dynamic network model of the level of bilateral communications
between individuals and (ii) dynamic graphical models of those individual’s latent threat states. These
component models are combined in a statistically coherent manner to provide measures of the imminence
of an attack by the terrorist group. Domain knowledge provides the structures of the models, values of
parameters and prior distributions over latent variables. Inference of the values is performed using time-
series of observed data and the statistical dependencies assumed between said data and model variables.
The work draws on social network and graphical models used in sociological, military, and medical fields.
Keywords: Bayesian hierarchical models, counterterrorism, dynamic weighted network models, graphical models,
integrating decision support systems, multiregression dynamic models

1 Introduction

The nature of terrorism in the UK has changed over the last two decades. Rather than the large-
scale, hierarchically organised terrorist attacks executed by the likes of the Irish Republican
Army (IRA) and Al Qaeda, recent years have increasingly seen attacks by independent individual
actors and small groups of individuals. In contrast to the established terrorist organisations that
prevailed in the twentieth to early twenty-first century, these groups of attackers do not receive
orders from terrorist leaders. Often, these groups decide to attack independently after having
being radicalised through social media or local inciters of violence. Their use of easily obtainable
weapons, such as knives, vehicles, or improvised explosive devices, and the soft nature of their tar-
gets, facilitates rapid progression from ideation to planning and execution. The authorities’ recent
focus has, consequently, been on small terrorist groups (Home Office, 2018; Pantucci, 2016). The
UK’s strategy for counterterrorism (Home Office, 2018) outlines its framework, built on the four
‘P’ work strands, Prevent, Pursue, Protect, and Prepare.
The objectives of the ‘Pursue’work strand are to detect, understand, investigate, and disrupt ter-

rorist attacks. Counterterrorism authorities can closelymonitor the activities of suspected terrorist
groups to prevent attacks. Whilst groups intent on performing an act of terrorism may attempt to
hide or disguise their intentions and activities to avoid detection and scrutiny, they still need to
perform certain preparatory tasks and to communicate in order to plan, organise, and execute a
joint terrorist attack. Security analysts monitoring suspects can capture fragmentary data of these
activities and communications. The combination of data and domain expertise facilitates inference
of the plans and threat state of potential attackers; and from such inference security, analysts make
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decisions on further investigation or interventions. Currently, this process of combining data and
expertise is predominantly qualitative, informal, and based on individual analysts’ experiences.
The objectives of this line of research are to (i) develop support tools targeted at the current na-

ture of domestic terrorism and (ii) systematically analyse the large and heterogeneous data avail-
able to the authorities. In this paper, we present one such tool: a Bayesian integrating decision
support system (IDSS) designed to aid monitoring of the threat presented by known or suspected
terrorist groups.

1.1 Related work
The statistical use of network data for intelligence use has a long history; going back to at least
World War II when Traffic Analysis was used by the allied forces. This was defined as ‘the study
of the external characteristics of signal communications’ used for ‘drawing deductions and infer-
ences of value as intelligence even in the absence of specific knowledge of the contents’
(Cunningham et al., 2015; Departments of the Army and the Air Force, 1948; van Meter,
2002). Since then the statistical aspects of terrorist networks have been researched extensively uti-
lising diverse methods.
Sparrow (1991) emphasised key issues such as ‘weak ties’ indicating that the most valuable and

urgent communication channels are likely to be those that are seldom used, ‘fuzzy boundaries’ in-
dicating that boundaries of such networks can be quite ambiguous, and ‘incompleteness’ indicat-
ing that data relating to these networks are likely to be incomplete with informative missingness.
Toth et al. (2013) used centrality measures to identify key individuals and heterogeneous roles,
Ranciati et al. (2020) use Bayesian bipartite graph methods to identify overlapping cells, and
multipartite graph methods were used by Campedelli et al. (2019) to cluster similar terrorist
groups. For a detailed review of social network analysis of activities of opposition and terrorist
forces, see Section 6.4 of Shenvi (2021) and references therein.
The closest research to our own is the adaptive safety analysis and monitoring (ASAM) tool

(Allanach et al., 2004; Singh et al., 2004). ASAM is a hierarchical system consisting of a collection
of hiddenMarkovmodels where each hiddenMarkovmodel monitors the probability of a specific
type of terrorist attack. ASAM extracts signals of suspicious activities from noisy and partial data
to evaluate the overall probability of a terrorist attack.
Our research complements and differs from the majority of terrorist network existing research

in four areas: (i) the objective is a real-time support system using incoming data, rather than ex
post analyses of data sets; (ii) our synthetic data are based on the actual types of data available
to and used by security operatives, (iii) the system is designed and structured to incorporate expert
judgement at every level; and (iv) the calculations are in closed form which facilitates speed and,
critically in this domain, transparency in how the measures were derived from data and
assumptions.
The paper is structured as follows: Section 2 describes the types of data the authorities typically

have access to. Section 3 introduces the IDSS: its network and graphical model representing the
communications and threat states within a terrorist group, respectively; the assumptions pertain-
ing; and the mode of inference from observable data to latent communication and threat state
processes. Section 3.4 demonstrates how indicators of group threat are derived from the IDSS.
Section 4 illustrates themodel workings using a hypothetical example with synthetic data.We con-
clude in Section 5 with a discussion of avenues of further research in this and related areas.

2 The nature of data available to the authorities

The data that security analysts use in their investigations are multifarious. They arise from a var-
iety of sources and are heterogeneous, open-ended, and partial. Formats vary from oral reports,
handwritten text, physical sightings, to streaming electronic audio and visual data. A non-
exhaustive list includes historical police records; information from informants, friends, family;
public sighting at events and with other individuals; and public social media posts. The challenge
is to use such a wide variety of data in a principled, systematic, and intelligent manner to comple-
ment existing expertise. The ever increasing abundance of electronic data made available by new
technologies gives increased opportunities for information gathering. As manpower is limited,

2 Shenvi et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssa/advance-article/doi/10.1093/jrsssa/qnac019/6999023 by guest on 02 M
arch 2023



interest has grown in how to use new technologies to extract intelligence from such large and het-
erogeneous datasets.
Data on individuals include contents and meta-data from unstructured personal data such as

police records, contact with the UK prevent programme (Home Office, 2018), social media posts,
internet browsing history, physical or electronic observations, and/or reports of activities, move-
ments, and financial transactions. These types of data are typical of those available to the police
and security services (Brain, 2015; R v Ziamani, 2015; Radio4 BBC, 2019).
If the authorities have credible reasons to believe that an individual presents a potential threat,

then that individual may be actively investigated, up to and including surveillance. ‘Surveillance,
…, includes monitoring, observing or listening to persons, their movements, conversations or oth-
er activities and communications’ (Home Office, 2020). The Regulation of Investigatory Powers
Act 2000 governs themethods of information gathering. Awarrant to gather information requires
permission from the Secretary of State and an independent senior judge. They approve the warrant
only when they are convinced that it is necessary and proportionate (Chorley, 2021; UK Public
General Acts 2000 c. 23, 2000).
Surveillance under a warrant hence permits interception and continued observation of personal

data. These can include a person’s mobile phone and private social media communications, their
internet browsing activity, and observations of their physical movements and activities. For mul-
tiple reasons, including technical limitations, hiding, and disguising, any such observed data are
incomplete and the real intent and actions of observees must be inferred. The heterogeneous
and fragmentary nature of such data is an obstacle to traditional statistical or AI data processing.
Nevertheless, as MI5 director Ken McCallum stated (Chorley, 2021) ‘difficult decisions [have to
be made] based on fragmentary information’.
The first indication that distinct individuals, that are already under suspicion, may be connected

is any form of link between them. There are multiple types of data which may be used to infer ties
between suspected terrorists. Here we enumerate five that are known to be used by analysts.

(a) Existing kinship or social links.
(b) Work or other shared affiliations.
(c) Physical meetings (observed directly or through closed circuit television).
(d) Financial connections (e.g., shared accounts, shared asset ownership, bank transfers between

accounts).
(e) Bilateral electronic communications (e.g., telephone, email, Whatsapp. etc.).

None of these data necessarily indicate ties that are malign in nature, but in the given context of
reasonable suspicion, they may be driven by malicious intent. Moreover pre-existing ties, such as
items (a) and (b), facilitate collaboration once other factors have come into play. Concrete real ex-
amples of such ties include:

(a) The kinship tie between Saleem andHashem Abedi—the former being the suicide bomber of
the 22 May 2017 Manchester Arena bombing and the latter his brother who was found
guilty of aiding Saleem (Parveen & Walker, 2020).

(b) The London Bridge attackers Khuram Butt, Rachid Redouane, and Youssef Zaghba’s mem-
bership of the Ummah Fitness Centre which was also frequented by the son of Anjem
Choudary, a convicted pro-terrorist proselytiser with links to ISIL the Islamic State of Iraq
and the Levant (Gardham & Gibbons, 2019).

(c) The sightings of Brusthom Ziamani with members of the proscribed militant group
al-Muhajiroun. These occurred both at political demonstrations and at the members’ flat
into which Ziamani re-located and which was subsequently raided by the police for
non-terrorism-related reasons (Counter Extremism Project, 2022).

(d) The use of data from Society for Worldwide Interbank Financial Telecommunication
(SWIFT) by the United States Treasury Terrorist Financial Tracking Programme that ‘enhan-
ces [their] ability to map out terrorist networks, often filling in missing links in an investiga-
tive chain’ (United States Treasury Department, 2022);
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(e) Findings of case study A8/1 in the UK Bulk Powers Review (Anderson, 2016) that the use of
new phone numbers ‘used by individuals known to be involved in plotting terrorist acts in the
UK… [and] further analysis to identify contacts… [explained that] each phone would not ne-
cessarily have been identified as suspicious but, when taken as a network, the likely oper-
ational nature of the phones was clear to see’. Similarly, see also case study A8/2.

In dealing with communications data, it is important to differentiate between (i) the content of
such communications and (ii) ‘secondary data’, i.e., meta-data such as the identities of parties
and the timing, location, and duration of communications. Often secondary data are available
whilst content data are unavailable due to either encryption or limits prescribed by certain inter-
ception warrants. Secondary data without content data have nevertheless proven to be extremely
useful: ‘secondary data can enable the tracing of contacts, associations, habits and preferences’
(Anderson, 2016). Contents data, being in the most part, unstructured, feed into the model
through the analysts’ choice of priors and the ability to override intermediate model values based
on external information. In our model, both the existence of ties and the weight of the ties, repre-
senting the latent level of actual bilateral communication, are inferred in the first instance by an-
alysts’ a priori knowledge, and subsequently through surveillance data.

3 Model: two components, one decision support system

3.1 IDSSs
An IDSS is a Bayesian unifying and integrating framework that combines component IDSSs—each
supporting decision-making about a distinct aspect of a complex system—into a single entity (see
Barons et al., 2021; Leonelli & Smith, 2015; Smith et al., 2015 and references therein). The trans-
parent and statistically grounded framework of the IDSS enables a statistician to formally incorp-
orate the judgements and uncertainties of the domain experts and decision-makers. Available data
are then fed through the relevant components of the IDSS with full consideration of these judge-
ments and uncertainties. The outputs of all the components are then combined—in a manner that
is appropriate for the application—to enable the decision-makers to fully evaluate the effects of
any potential policies on their outcomes of interest.
In our IDSS below, we denote the open population of persons of interest (POIs) by P, individ-

uals within that population as pi ∈ P, and the latent threat state of the individuals pi as Xi. The
latent level of communication between pi and pj is the variable φij and the observed data inform-
ing φij are denoted by sij.Yi is the observed data on pi and ϑi are the activities of pi. These form the
main variables of interest of the IDSS, along with parameters and intermediate variables to be
introduced in subsequent sections. The flow of inference is from the data sij, Yi to the latent var-
iables φij, Xi for each pi and pair pi, pj. The inference from Yi to Xi is through the intermediate
variables ϑi. The flow of causality is the reverse. From the inferred probability distributions of φij,
Xi indicators of the imminence of an attack are derived. These indicators are denoted by {Λi},
i ∈ {0, . . . , 3}.
The primary assumptions of the IDSS are that (i) the two components can be decoupled

through the technique of multiregression dynamic models (Queen & Smith, 1993) which is de-
tailed in Online Supplementary Material, Appendix A; (ii) φijt, the latent variable φij through
time, is a Markov process; (iii) the threat state Xit through time is a semi-Markov process,
and (iv) data on individuals Yi are conditionally independent ofXi given the activities performed
by pi; i.e., observed data are only of use in inferring the activities ϑi of pi which in turn are used
for inference ofXi. The mathematical formulations of these assumptions are provided in the ex-
positions in the remainder of this section and in Online Supplementary Material, Appendices A
and B.

3.2 IDSS for activities of terrorist groups
Our IDSS models a terrorist group being monitored by security analysts. The IDSS contains two
components: a network model of the level of communications between individuals of the group
and a hierarchical graphical model of the threat state of those individuals. The structure of the
IDSS is given in Figures 1 and 3.
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Component 1: the terrorist network model
The terrorist network is an undirected, dynamic, and weighted networkmodel. At each time t ≥ 0,
the network vertices consist of the POIs Pt whom the counterterrorism authorities choose to ob-
serve at time t; and the network edges indicate known or potential ties between these POIs.
Ties between the suspects are informed by observable data as described in Section 2. During

each time period, new leads are discovered. From among these leads, new investigative cases
are opened for those that pass a triage process (see, for example, details in Radio4 BBC, 2019).
The triage process thus gives rise to a set of newly identified individuals P+

t at each time interval
t. Over the same interval, a setP−

t are lost fromPt for a variety of reasons such as arrest or evidence
of innocence. For simplicity, assume that P+

t joins the set Pt at the start of the time period t and
existing individuals P−

t are lost at the end of t. We then have that

Pt = {Pt−1\P−
t−1} ∪ P+

t (1)

An undirected network N t = (V(N t), E(N t)) is then created at each time t where V(N t) = Pt are
the vertices and E(N t) are the edges of the network. An edge eij ∈ E(N t) exists between two indi-
viduals pi and pj if there is a tie between them. Once an edge is created in N t between some
pi, pj ∈ Pt, this edge endures for allN t’where t′ ≥ t as long as pi, pj ∈ Pt’. Denote by φijt the latent
random variable measuring the pairwise communications shared between pi and pj at time t. Thus,
φijt acts as a quantitative measure of the information directly exchanged between pi and pj and
models the edge weight on the edge eij in N t. Denote by Φt a |Pt| × |Pt| symmetric matrix with
its (i, j)th entry given by φijt. By convention, we set φijt = 0 if i = j or eij ∉ E(N t) for i ≠ j. The ob-
servable pairwise communications data are used to estimate φijt. Note that the granularity of the
time steps (e.g., hourly, daily, weekly) is chosen to suit the observation process. Online
Supplementary Material, Appendix C, gives an illustration of network creation for a simple hy-
pothesised terrorist group.
The counterterrorism authorities are likely to receive data and information from multiple sour-

ces. Suppose that there are K such information channels. The data from each channel are con-
densed into a summary measure in the terrorist network. The summary measure used for each

Figure 1. The graph of the overall system: the network of individuals p, edge weights φ, communications data s,
threat state X , task vector ϑ, and data on individuals Y . The directed edges indicate the flow of causation, e.g., a
particular threat state, say preparing, causes certain activities to be done, which in turn give rise to certain
observable data. Inference can be performed in the reverse direction: from data to activities to threat state.
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channel depends on factors such as the type of data, the data source, the frequency of the obser-
vations, and the required granularity of that specific type of data. For instance, for an information
channel informing the duration of phone calls or number of text messages exchanged between a
pair of suspects, the summary measure may simply be the sum of the observations, whereas for
bank transfers between the suspects, the amount of money exchanged might be a suitable sum-
marymeasure. However, note that these summarymeasures for the different information channels
may be on very different scales of measurement, e.g., x hours of a phone call and £x of money ex-
changed, and hence, might have a disproportionate effect on the edge weight variable φijt. To bal-
ance the effect of data relating to different channels on φijt, the data obtained through the different
channels must be on a comparable scale. This can be achieved through any of the standard meth-
ods of scaling or standardisation (see, e.g., Jahan & Edwards, 2015).
Denote by sijkt the scaled or standardised summarymeasure of the data observed between the pair

pi, pj ∈ Pt from channel k at time t. We assume that the following independence relationship holds:

⫫k∈{1,...,K} sijkt (2)

which implies that the data and information obtained from the different information channels for a
given pair {pi, pj} ∈ Pt × Pt at time t are mutually independent. This simplifying assumption is con-
servative and guided by the supporting role in counterterrorism intended for our models: it enables
us to ensure that the inference is tractable and can be performed in real time. To account for any
correlation in data from the information channels, a multivariate Gamma–Poisson mixture setting
can be considered (Andreassen, 2013;Choo&Walker, 2008) instead of theGamma–Poisson setting
introduced below; although inference will be analytically intractable. Denote by St the |Pt| × |Pt|
observations array at time t whose elements are the vectors sijt such that sijt = {sij1t, . . . , sijKt}.
Notice that St is symmetric with sijt = sjit due to the nature of the pairwise communications data.
We use the convention that sijt is a K-dimensional zero vector whenever (i) i = j, (ii) eij ∉ E(N t),
or (iii) whenever no information is observed between two individuals. To indicate the difference
in the quality or reliability of data obtained from the different channels, we define a parameter ξk ∈
(0, 2] which denotes the efficiency of the intelligence obtained from channel k, for k = 1, . . . , K.
This efficiency parameter indicates the loss of information expected from a specific information
channel. A value closer to 2 represents minimal loss of information (e.g., bank transactions data),
whereas a value closer to 0 indicates that the actual observations are likely to be much higher
than what has been conveyed to the authorities (e.g., patchy or poor source of secondary data).
See Online SupplementaryMaterial, Appendix E, for an illustration of how to scale the observation
data and how to set the efficiency parameters.
In order to maintain transparency in the model, interpretability of its parameters, and to enable

quick and efficient inference, we use a Gamma–Poisson conjugate setting for updating the distri-
butions of the φijt—the random variables modelling the edge weights, for pi, pj ∈ Pt and t ≥ 0.
Note that unlike the Poisson distribution, Gamma–Poisson compound distributions—which are
equivalent to negative binomial distribution—can handle overdispersed data (Schein et al.,
2016). We adopt the approach of using discount factors to transform the posterior at time t
into the prior at time t + 1 as described in West and Harrison (1997) and Smith (1979). The dis-
count factor δt is a value in (0, 1] that represents the decay of information from time t − 1 to time t.
We take φijt to be aMarkov process and assume that sijt, the observed communications between pi
and pj at time t, depends only on φijt, the latent edge weight which represents the actual (unob-
served) level of communication between pi and pj at time t. This is formally stated as

φijt ⫫ F t ∣ φij,t−1 (3)

sijt ⫫ (Φt, St, F t) ∣ φijt (4)

whereF t denotes all past data and edgeweight random variables up to but not including time t, i.e., St’
and Φt’ for t′ < t. This formalisation enables us to update the edge weight variables φijt using observa-
tional data sijt for each pair pi and pj independently, see Online SupplementaryMaterial, Appendix D.
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In practice, the efficiency parameters ξk for the k = 1, . . . , K information channels would be de-
termined a priori by the authorities in collaboration with channel-specific experts. The discount
factors δijt would be set by the authorities based on empirical evidence or estimated from the data-
set. One method of estimation of discount factors is the grid search approach used in Barons et al.
(2021). Furthermore, both the efficiency parameters and the discount factors can be adjusted at
any time to reflect changes in the quality of the incoming data and the rate of decay of past infor-
mation, respectively.
We now describe the forward filtering equations for each pair {pi, pj} ∈ Pt × Pt in the terrorist

network:

Initialisation. Set the prior φijt0 as follows:

φijt0 ∼ Gamma(αijt0 , βijt0 ) (5)

where t0 is the first time step of the time-series. The parameters αijt0 and βijt0 are determined by ex-
isting case knowledge. For example, if eij ∈ E(N t0 ) exists only due to a social relation, then αijt0 and
βijt0 may be set such that themean and variance of φijt0 are both relatively low.On the other hand, if
Pi andPj have a previous joint conviction, then these parameters can be set such that the φijt0 has a
high mean and lower variance.

Posterior at time t − 1. Let the posterior of φij,t−1 after observing sij,t−1 and F t−1 be given by

φij,t−1 ∣ sij,t−1, F t−1 ∼ Gamma(αij,t−1, βij,t−1) (6)

Prior at time t.Using the discount factor δijt ∈ (0, 1], the posterior at time t − 1 evolves to the prior
at time t as

φijt ∣ F t ∼ Gamma(δijtαij,t−1, δijtβij,t−1) (7)

Under this posterior-to-prior evolution, the mean of the distribution remains unaffected while the
variance either remains the same (when δijt = 1) or increases (when 0 < δijt < 1). Thus, a lower val-
ue of δijt indicates a reduced confidence in the posterior at the previous time step as the variance
increases. This is also associated with a decay of information from the previous time step depend-
ing on how much the situation is likely to have evolved since then.

Data generation at time t. The observations from the different information channels are modelled
independently as

sijkt ∣ φijt, F t ∼ Poisson(ξkφijt), k = 1, . . . , K (8)

Posterior at time t.The posterior when the observation vector sijt has at least one non-zero element
is given by

p(φijt ∣ sijt, F t) ∝
∏K
k=1

p(sijkt ∣ φijt, F t)p(φijt ∣ F t)

= φ
∑

k
sijkt+δijtαij,t−1−1

ijt exp −
∑
k

ξk + δijtβij,t−1

( )
φijt

( )

φijt ∣ sijt, F t ∼ Gamma(αijt, βijt)

(9)

where αijt = δijtαij,t−1 +
∑

k sijkt and βijt = δijtβij,t−1 +
∑

k ξk. For the same value of
∑

k sijkt, a lower
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overall efficiency of the observations given by
∑

k ξk results in a higher mean and larger variance—
indicating the associated increase in uncertainty—of φijt compared to when the overall efficiency is
higher.
The distribution of φijt for a pair {pi, pj} can hence be periodically updated over the evolution of

time t in closed form using the above recurrences across the terrorist network given sequential in-
coming observational data. See Online Supplementary Material, Appendices D and F, for more
details and an illustration. The dynamic nature of the open population is easily incorporated in
our model by introducing vertices, edges, and priors for immigrants (new entrants) and removing
them for emigrants (leavers) at the appropriate time. Finally, we note here that in a policing and
counterterrorism setting, it is essential to differentiate between the following cases:

1.
∑

k sijkt = 0 because pi and pj were monitored but did not communicate in any way during
time t;

2.
∑

k sijkt = 0 because pi and pj were not closely monitored during time t.

In the first case, the posterior update is carried out as described above as we have observed zero
communications. Whereas in the second case, we do not update the posterior. Thus, the posterior
mean at time t is the same as the posterior mean at time t − 1 and the posterior variance is further
diffused from time t − 1 to t. Notice that if no new information is observed through sijs, s ≥ t then
the variance of φijs, s ≥ t will keep increasing. To prevent this and to reflect that we expect a base-
line amount of information flow to continue between a pair of suspects pi and pj who share an edge
between them—until we observe information indicating otherwise—we can set the discount factor
as δijt = dij + (1 − dij) exp (−

∑
k sijk,t−1ξk) as detailed in Chen et al. (2018). Here dij is the baseline

discount factor for pair {pi, pj}. This is particularly useful if we expect to have large consecutive
gaps of time when we do not expect to observe good quality data on the pairs. When we observe
very low levels of quality information in the previous time, the discount factor is closer to 1 and
when good quality information is observed, the discount factor will be closer to dij. This setting
allows us to set pair-specific discount factors if required.

Component 2: the individual terrorist model
The individual terrorist model is a hierarchical Bayesian graphical model of an individual pi ∈ P
introduced in Bunnin and Smith (2021). A concise bottom-up description of the three levels of the
individual terrorist model for a suspect p ∈ Pt is given below.

Latent level. This level consists of a discrete time graphical model (more precisely, a reduced dy-
namic chain event graph, see Bunnin & Smith, 2021; Shenvi, 2021).
The vertices of the graph are threat states. These represent an individual POI’s current stage of

progress towards a potential terrorist attack. Smith and Shenvi (2018) provide several types of
categorisations for a wide range of criminal behaviours which can be used to inform the threat
states of the graphical model. Alternatively, these states can be more generically defined (e.g.,
‘Mobilised’, ‘Preparing’, ‘Training’, and ‘Active/Threatening’). In both cases, the model also in-
cludes a ‘Neutral’ state. This is an absorbing state representing that the suspect no longer
presents a threat to the general public. Denote by Xt the latent random variable indicating the
threat state occupied by a suspect p at time t ≥ 0. The sample space of Xt is given by the vertices
{x0, x1, . . . , xn} of the graph. Let πt = {πt0, πt1, . . . , πtn} where πti indicates the probability of the
suspects being in threat state xi at time t for i ∈ {0, 1, . . . , n}. We assume Xt follows a
semi-Markov process over the graph whose dynamics are determined by its semi-Markov tran-
sition matrix which defines the transition probabilities and the holding time distributions
(Çinlar, 1975). See Online Supplementary Material, Appendix B.1, Equation (3) for more
details.
At any time t,Xt occupies exactly one of the vertices of the graph. The probability vector πt over

the vertices represents the security analysts’ level of uncertainty over the actual position ofXt; that
is, it represents their imperfect knowledge: the actual position can only be known with perfect
knowledge.

8 Shenvi et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssa/advance-article/doi/10.1093/jrsssa/qnac019/6999023 by guest on 02 M
arch 2023

http://academic.oup.com/JRSSSA/article-lookup/doi/10.1093/jrsssa/qnac019#supplementary-data
http://academic.oup.com/JRSSSA/article-lookup/doi/10.1093/jrsssa/qnac019#supplementary-data


Intermediate level.At this level, we define a collection ofR tasks associatedwith the threat states of
the graphical model. Each task is an activity that enables progression along the vertices of the
graph. At any time t ≥ 0, denote the task vector by ϑt = {ϑt1, ϑt2, . . . , ϑtR} where each ϑtj is an in-
dicator variable such that ϑtj = 1 if p is enacting task j at time t, for j ∈ {1, 2, . . . , R}. Each task can
be associated with one or more threat states of the graphical model. The purpose of the task vector
is to enable the counterterrorism authorities to estimate how far along the suspect is in their pro-
gression towards a specified or unspecified terrorist attack.

Surface level.This level consists of the observable data {Yt}t≥0 relating to task activities of the sus-
pect p. For each task ϑtj in the intermediate level, we can associate a subset Ytj ⊆ Yt of the data
stream observed which informs whether p is engaged in task ϑtj, for j ∈ {1, 2, . . . , R} at time t.
If the data are noisy, a filter function (i.e., any suitable function τj(·) of the data Ytj; see Bunnin
& Smith, 2021) may be used to obtain some viable scalar signal Ztj from the noisy data subset
Ytj. Denote the vector of signals (Zt1, Zt2, . . . , ZtR) at time t by Zt.

Inference. The inferential recurrences associated with the progressions in the individual terrorist
model are described in Online Supplementary Material, Appendix B.1, Equations 3–5. At each
time t ≥ 0, the model takes observed data on the individual to infer which tasks said individual
is doing or has completed. The probabilities over tasks are used to infer probabilities over threat
states: i.e., the output is the posterior probability vector πt associated with the suspect occupying
one of threat states in the underlying model. Concrete examples of the joint and conditional dis-
tributions of the data, tasks, and threat states are given in Bunnin and Smith (2021). A general tem-
plate for a individual terrorist attack can be represented by the graph in Figure 2. The threat states
of this model are represented by the vertices of this graph and the edges represent the possible tran-
sitions between the threat states. An example of the threat states, tasks and observable data for a
gun attack are shown in Table 1.

3.3 Decoupling and coupling of component models
The decoupling methodology of multiregression dynamic models described in Online
Supplementary Material, Appendix A, enables us to formally decouple the terrorist network
and the individual terrorist models of each p ∈ Pt for each time t ≥ 0 and then recombine them
within a modular IDSS. The properties of this methodology rely only on the initial independencies

Figure 2. The graph of the state space of Xt latent level of the hierarchical individual terrorist model. Threat states
and transition probabilities are shown; state probabilities and holding time distributions are omitted to avoid visual
clutter. The relations between this level and the intermediate task ϑt and observable surface Yt levels of the
hierarchical model are shown in Figure 1.
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set through the prior parameters and on the directed acyclic graph (DAG) structure linking the
components of the time-series.
We first briefly review the required notation. Yt refers to the data relating to the activities of a

suspect p at time t ≥ 0 in their individual terrorist model. To generalise this notation to a popula-
tion of suspects Pt, let Yit denote the data relating to the activities of suspect pi ∈ Pt at time t ≥ 0.
Furthermore, sijt is the K-dimensional vector containing summary measures of the information
shared between individuals pi and pj through theK information channels at time t ≥ 0. The terror-
ist networkmodelN t for populationPt can now be coupledwith the |Pt| individual terrorist mod-
els—one for each p ∈ Pt—through a DAG which contains edges from Yit and Y jt to sijt for each
pair {pi, pj} ∈ Pt × Pt, and no other edges. For instance, consider Pt = {pi, pj, pk}. The DAG com-
bining the individual individual terrorist models for pi, pj, and pk, and the terrorist networkmodel
N t at time t ≥ 0, is given in Figure 3.
Since sijt contains all the observed information about the pairwise communications needed to

estimate the edge weight modelled by random variable φijt in the terrorist network, and typically

Figure 3. The directed acyclic graph (DAG) of the integrating decision support system (IDSS) after combining the
individual terrorist and terrorist network models.

Table 1. Examples of the threat states, tasks, and observable data for a gun attack

X: threat states ϑ tasks Y observable data

Active Engagement with radicalisers Physical meets with radicals

Training Make personal threats Personal threats made

Preparing Learn to drive Obtained driving license

Mobilised Obtain vehicle Rented car

Neutral Engage in public threats Public threats made on social media

Obtain financial resources Sold assets

Learn how to use a gun Visited shooting ranges

Acquire a gun Been seen with a gun

Acquire ammunition Met with gun and ammunition dealer

Reconnoitre targets Visits to target location made

Financial transactions

Contacts with family

Meetings with trained radicals

Note. The threat states define the sample space {x1, x2, . . . , xn} (with associated probabilities πt = {πt0, πt1, . . . , πtn}) of
the suspect’s state at time t given byXt. The tasks have associated indicator task vector ϑt = {ϑt1, ϑt2, . . . , ϑtR}. Subset Ytj
of observable data {Yt}t≥0 and its associated signal Ztj inform the suspect’s engagement in task ϑtj.
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sijt ⊂ Yit and sijt ⊂ Y jt, the estimation of φijt can be performed independently of Yit and Y jt when
sijt is given. Stated formally, we have φijt ⫫ Yit, Y jt ∣ sijt.

3.4 Indicators of a terrorist attack
The above described network component uses prior knowledge and partial data on bilateral com-
munications sijt to infer (i) the existence of connections and (ii) the levels of communications φijt
along such connections. Likewise the individual terrorist component uses partial data Yit arising
from activities ϑ jt to infer threat states Xit of individuals. The combination of these two compo-
nents’ outputs, namely, φijt for each eijt ∈ E(N t) and Xit for each pi ∈ V(N t) = Pt, facilitates ana-
lysis on group entities. These correspond to investigative cases on subjects that may be groups of
POIs as well as individual POIs.
The manner of integration of these two components is achieved via the construction of early

warning indicators. These give quantitative measures of the imminence of threat posed by groups
within Pt. They are designed to facilitate pre-emptive action to frustrate potential attacks through
flagging the activities of a group of connected individuals for increased monitoring and possible
interventions. We describe below how such indicators might be constructed and how they could
be utilised to forewarn the authorities. We shall, hereafter, refer to suspected or known terrorist
groups as cells.
In ourmodel, we define a cellC ⊂ Pt as a group of individuals who induce a connected subgraph

in the terrorist network N t at time t ≥ 0.
Thus for any cell C we have C = {pi ∈ Pt : eij ∈ E(N t), pj ∈ C}. We define unconnected

individuals in P as trivial cells, so the set of all cells forms a partition of N t which corresponds
with the totality of cases being observed by the analysts. Denote the size of a particular cell as
Nc = |C|.

Collective progress.We construct aTerrorist Cellmodel for modelling the progress of a cellC, as a
separate entity, towards a terrorist attack. Let XC

t and πCt be defined analogous to Xt and πt in
Section 3.2. That is XC

t ∈ {xc0, xc1 . . .xcn} is the threat state of the cell C and πCt be the probability
function over the cell threat states. Within a collaborative unit such as a cell, there will be some
tasks that need only be done by a subset of the members of the cell; for example figuring out the
logistics or developing certain skills. Thus, the filtered dataZct obtained from the collective data on
the cell Yct must be set against these requirements to indicate whether the tasks are being suffi-
ciently completed. Let TC be the subset of the state space of XC

t that indicates the set of states
considered to bemost indicative of an imminent attack by the authorities. One possible measure of
collective progress m1 of the cell C can then be obtained as

m1 =
∑

xCi ∈T
C

πCti (10)

Individual threat.As discussed above, within a cell, not all tasks need to be performed by each and
every member of the cell. Ideally we would like to be able to identify, for each member of a cell C,
the role that they play within the cell. However, this is not always possible as it requires detailed
understanding of the cell’s dynamics—intelligence which is extremely sensitive and difficult to
gather (Duijn et al., 2014). An alternative is to evaluate the threat status of the individuals in C
based on their progress on the tasks ϑ∗t ⊂ ϑct that most of the members of C are expected to have
the skills to do. The states for each individual’s terrorist model can be adapted in line with this to
obtain the product of measures of individual threat m2 for each member of C as

m2 =
∏
p∈C

∑
xi∈T

π p
ti

{ }
(11)

where T denotes the set of most dangerous threat states in the individual terrorist models.
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Latent collaboration. In any cell, wemay not expect each pair to be communicatingwith each other.
However, for any successful collaboration, a certain amount of connectivity is expected between
each communicating pair and overall in the cell. Hence we set up two different measures of latent
collaboration. For each communicating pair {pi, pj} in C, we measure pairwise cohesion m∗

3 as

m∗
3 = p(φijt > ℓ) (12)

where ℓ is the lower limit of how much we expect each pair to be communicating for the terrorist
attack to be enacted. A cell-level measure of pairwise cohesion m3 can be obtained as

m3 =
∏

{pi,pj}∈Pt×Pt

p(φijt > ℓ) (13)

Size of the cell.Although collaborative efforts benefit from sharing resources and skills, a large cell
can be unwieldy and increases the risk of the exposure of that cell. As a proxy measure for the size
of the cell, we can devise a measure of the level of cohesion with the cell. One such measure would
be through the subnetwork density m4 of C given as

m4 =
k

Nc2( ) (14)

where k = |E(Ct)| represents the number of ties shared by the members of cell C in the network
modelN t at time t ≥ 0, and, as before,Nc = |Ct| is the size of the cell C and thus Nc2( ) is the num-
ber of possible ties in C.
The above measures are illustrative but as shown in Section 4, can still be powerful. Each of the

above measures takes values in [0, 1] with a higher value signalling a greater level of threat based
on that measure. In practice, these measures and the way in which they are combined together to
create early warning indicators would need to be customised by the authorities, see, e.g., Xu et al.
(2004) and Yang et al. (2006).We describe below one possible way in which these measuresmi for
i = {1, 2, . . . , 4} could be combined. A cell is most threatening whenm1 =m2 =m3 =m4 = 1. We
can obtain an ordered set of indicators {ΛC(i)}, i ∈ {0, . . . , 3}, as

ΛC(i) =
∏4−i
j=1

m′
j

{m′
j} j=1,...,4 = σ({mi}i=1,...4)

(15)

where σ is a permutation of elements such that for i = 1, . . .4, we have 0 ≤ m′
i+1 ≤ m′

i ≤ 1 and
hence for i = 0, . . .3, we have 0 ≤ ΛC(i) ≤ ΛC(i + 1) ≤ 1. This ordered set is used to check whether
the values of one or more measures are overly affecting the base ΛC(0) score. Each of these indi-
cators has the property that a higher value ofΛC(i) indicates a greater imminence and danger of the
threat posed by the cell C. Thus, several key factors may be combined to obtain transparent indi-
cators of threat which can guide the counterterrorism authorities to prioritise and de-prioritise
cases. These indicators can be plotted against time to analyse how the threat posed by the cell de-
velops dynamically.

4 Analysis of a hypothetical terrorist group

Context
We present a hypothetical case to illustrate the functionality, inference, and potential output of the
IDSS. Four individuals in close proximity, p1, p2, p3, and p4, have been observed to have posted
pro-terrorist material on social media and have been triaged into Pt1 , the observed subpopulation
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at time t1. A time step here corresponds to one week. A preliminary investigation revealed that p1
and p2 attended the same secondary school and are the same age, and that p2 and p3 attend the
same gym and are frequently seen together.

Synthetic dataset
As in Section 2, the data that are fed to the model consist of variables on individuals and variables
on connections between the individuals; the vertices and edges of the network respectively. Section
2 covered the types of data that can be obtained to inform the existence and strength of connec-
tions between the individuals. In this example, we take the weekly total duration of mobile phone
calls as a proxy for all bilateral communications.Mobile phone data are typical of that used by the
police and security analysts in identifying criminal networks as described in the cases in Anderson
(2016) and Kennedy (2021). Figure 4 charts electronic data on the group observed over a period of
ten weeks and Online Supplementary Material, Appendix F, tables the values of these data.

(a)

(b) (c)

(d) (e)

Figure 4. Observed data on the four suspects over the observed time period of ten weeks.
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As in Section 3.2, the space of threat states is {‘Active’, ‘Training’, ‘Preparing’, ‘Mobilised’,
‘Neutral’}. Using the criminal profiles of these suspects and based on their past and current activ-
ities, the prior probabilities of the state Xi,t1 occupied by these individuals at time t1 are shown in
Figure 5. Suspect p4 is believed to have received training by pro-terrorist groups and hence has
probability weighted toward the ‘Training’ state, whereas the others have only stated their views
and intentions but there is no indication otherwise of them training or preparing, hence they are
weighted toward the ‘Active’ state.
Over the following weeks, it is observed that suspect p1’s internet activities include repeated vis-

its to websites of car dealers and car rentals, as well as knife retailers. Their bank account also
shows a large influx of funds from an overseas bank account. The internet activity of suspect p2
includes visits to illegal bomb making websites, and repeated visits to and comments on extremist
radical forums. Suspect p4’s internet activity includes searches for online maps and blueprints of
government buildings and densely populated commercial areas of the town. Suspect p4 is also ob-
served to have physically visited potential bomb testing sites.

Inference
Using the data on individuals in Figure 4, the posterior probabilities ofXi,tk are updated in the in-
dividual terrorist model over the ten weeks for each pi as shown in Figure 6 for i = 1, 2, 3, 4 and
time 1 ≤ k ≤ 10.
The phone call data, which inform the connections between the suspects, are summarised as the

sum of the phone calls in hours between the pair observed over the week. Based on this, ties are
revealed represented as edge e1,4 at time t3, edges e1,3 and e2,4 at time t5, and edge e3,4 in the net-
work at time t6. Hence at time t6, the network becomes a complete graph. The total time of calls
increase from weeks t7 to t10.
The edge weight distributions φij,tk for i, j = 1, 2, 3, 4, i ≠ j and 1 ≤ k ≤ 10, for the terrorist net-

work model can be estimated as follows. The prior distributions for φij,tk are set by specifying the α
and β parameters of the prior Gamma distributions. For instance, based on the prior knowledge
the policing authority has on the suspects, they believe that the extent of information shared be-
tween p1 and p2 and between p2 and p3 is relatively low, with some uncertainty at time t0.
Hence, the α and β parameters are set as 1 and 2, respectively, for φ1,2,t0 and φ2,3,t0 . The setting
of the α and β parameters for φij,tk for all pairs over the ten week period are given in Online
Supplementary Material. Online Supplementary Material, Appendix F, Figure 3, show the evolu-
tion of φij,tk through the posterior densities from time t3 to t6. The discount factor δij,tk is set to
0.9512 = exp−0.05 across all pairs and for the entire ten week duration. With this setting, infor-
mation has a half-life of approximately 14 weeks.

(a) (b)

Figure 5. In both figures, the vertex labels include the prior state probability, and edge labels denote the conditional
transition probability at time t1.
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Indicators of an attack
The connectivity and subsequent completion of the graph at times t5 and t6 indicates that the four
suspects are working together within a cell. Themeasuresmi for i = 2, 3, 4 described in Section 3.4
are calculated. Note that for the terrorist cell model for measurem1, the task set and observation
data are given by the union of the task sets and observation data for the individual terrorist models
of the cell’s members. The prior threat state probabilities for the terrorist cell model are taken as
the corresponding prior probabilities of the suspect within the cell with the highest prior threat,
i.e., p4. Figure 7a shows the evolution of the threat state probabilities in the terrorist cell model.
The posterior probability of the cell being in the ‘Preparing’ state increases from time t5 as the com-
munications within the cell and the overall activities of the cell increase. Thereafter around time t9,
the posterior probability of the cell being in the ‘Mobilised’ state increases sharply. Thesemeasures
are combined to obtain the indicators of a terrorist attack ΛC as shown in Figure 7b. If we were to
signal a warningwhenΛC(·) reaches a certain threshold, say 0.2, thenwe can see that forΛC(0) this
is not reached till time t7 whereas for ΛC(2) this is reached by time t3. In practise, the measures
informing these indicators and the chosen thresholds would need to be calibrated using domain
experience and judgement.
This simple worked example demonstrates how observed activity data and communications

data obtained on monitored suspects, when combined with prior distributions calibrated to the
investigator’s knowledge, can give real-time indicators of the evolving threat posed by individuals
acting in collaboration. In the scenario investigated here, driven by the increase in specific activity
data and phone call duration, probability of the suspects forming the cell being in either the
‘Preparing’ or ‘Mobilised’ states by week t10 increased, and correspondingly, the cell as a whole

(a) (b)

(c) (d)

Figure 6. Posterior threat state probabilities from the individual terrorist models of the suspects over the tenweeks.
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appeared to move from state ‘Preparing’ occupied since week t5 to ‘Mobilised’ by week t10. The
indicators of an attack reflected a similar trend. ΛC(2) increases from 0.21 at week t3 to 0.48 at
week t5 and then saturates at 1 for weeks t7 to t10. ΛC(1) increases from 0.01 at week t3 to
0.04 at week t5 and reaches 0.66–0.67 for weeks t7 to t10.
Sensitivity analyses for the individual terrorist model were presented in Online Supplementary

Material in Bunnin and Smith (2021); the results therein apply also to the cell-level extension of the
individual model created to arrive at them1 measure. For the networkmodel, results for sensitivity
analyses to the Gamma distribution priors αijt0 , βijt0 and the discount factor and efficiency param-
eters δijt, ξk are presented inOnline SupplementaryMaterial, Appendix G. Overall the results from

(a)

(b)

Figure 7. Dashboard threat monitor. In practise we envisage each case being investigated to have such charts
giving visualisations of each case’s recent and current levels of threat according to the model.
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these analyses confirm the intuitivemeaning of the parameters. The sensitivities can be used to cali-
brate the priors and parameters to case data.

5 Discussion

In this paper, we proposed a two-part IDSS to support security analysts monitor potential terrorist
cells. The IDSS combines the outputs of a terrorist network model and a collection of hierarchical
individual terrorist models. It outputs real-time indicators of threat levels. These aim to facilitate
pre-emptive action to frustrate attacks.When combined with utility or loss functions elicited from
the authorities, the IDSS can be used in a decision-theoretic framework for optimal resource allo-
cation. See Online Supplementary Material, Appendix H, for ideas in this direction that will be
presented elsewhere.
There are several avenues of research that can follow from the work presented in this paper.

Recall that the edge weight φijt along an edge in the terrorist networkN t is a measure of the pair-
wise communications shared directly between the suspects pi and pj at time t connected by the
edge. This definition of the edge weight then leads to the following conditional independence as-
sumption:

⫫{pi,pj}∈Pt×Ptφijt ∣ F t (16)

Thus, pairwise communications data can be used to estimate the edge weight φijt. For an alterna-
tive interpretation of the edge weights as measures of the extent of collaboration between the in-
dividuals connected by the edge, the above conditional independence statement does not hold. For
instance, the extent of collaboration φijt between pi and pj is also affected by the communications
and interactions they both share with a common neighbour, say pk. This would additionally lead
to the violation of the output independence assumption stated in Equation (4) in Section 3.2.
Under this independence structure, we would no longer be able to estimate φijt for each pair pi
and pj independently. In this case, the decouple/recouple strategy introduced by Gruber and
West (2016) and Zhao et al. (2016) for financial and economic multivariate time-series applica-
tions could be explored, although the recoupling is unlikely to be closed form and would need
to be numerically estimated. Here, any gains achieved by refining the interpretation of φijt to in-
clude collaboration in a broader sense would need to be weighed against the loss in transparency
and interpretability due to the numerical estimation.
Another avenue of research would be to incorporate link detection within the terrorist network

using existing link detection methods (see Section 1.1) to identify potentially hidden ties. This
work can further be extended by developing a bespoke clustering algorithm using domain-specific
stochastic set functions (as have been used in the criminology literature, see, e.g., Wang et al.,
2013) to identify previously unknown cells or monitor the evolution of new cells within the
network.
Finally, the generic architecture of an IDSS using the decoupling methodology might be applic-

able to other domains where there is a requirement to integrate individual time-series with dynam-
ic interactions among individuals, modelled by a network, who collaborate to realise a shared
objective. Examples of this include social processes within politics, governments or communities
where complex interacting individuals have shared objectives.
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