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Data-Driven Wind Farm Control via Multi-Player
Deep Reinforcement Learning

Hongyang Dong and Xiaowei Zhao

Abstract—This brief paper proposes a novel data-driven con-
trol scheme to maximize the total power output of wind farms
subject to strong aerodynamic interactions among wind turbines.
The proposed method is model-free and has strong robustness,
adaptability and applicability. Particularly, distinct from state-of-
the-art data-driven wind farm control methods that commonly
employ the steady-state or time-averaged data (such as turbines’
power outputs under steady wind conditions or from steady-
state models) to carry out learning, the proposed method directly
mines in-depth the time-series data measured at turbine rotors
under time-varying wind conditions to achieve farm-level power
maximization. The control scheme is built on a novel multi-
player deep reinforcement learning method (MPDRL), in which
a special critic-actor-distractor structure, along with deep neural
networks (DNNs), is designed to handle the stochastic feature
of wind speeds and learn optimal control policies subject to a
user-defined performance metric. The effectiveness, robustness
and scalability of the proposed MPDRL-based wind farm control
method are tested by prototypical case studies with a dynamic
wind farm simulator. Compared with the commonly employed
greedy strategy, the proposed method leads to clear increases in
farm-level power generation in case studies.

Index Terms—Wind energy; wind farm control; wind turbine
control; reinforcement learning; machine learning.

I. INTRODUCTION

As one of the most efficient forms of green energy, wind
power plays a key role in the global effort towards net-
zero emissions. Particularly, 15 large offshore wind farms
were put into operation in 2020, with an average capacity of
347MW [1]. Though single turbine’s control strategies have
been widely studied, directly employing these methods to
control every turbine in a wind farm via a non-cooperative
way can lead to significantly degraded operating efficiency. A
lot of studies [2], [3], [4] have demonstrated that the greedy
strategy (i.e. every turbine in the farm aims to maximize its
own power outputs) is not the optimal control strategy for
farm-level power generation maximization. This phenomenon
is caused by the aerodynamic couplings among turbines – the
wakes induced by upstream turbines can severely influence the
power generation of downstream turbines, which is commonly
mentioned as the wake effect in the literature. Therefore, farm-
level control strategies should be considered to operate all
turbines cooperatively in order to mitigate wake effects and
increase the whole farm’s power generation.
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Compared with single turbine cases, the main challenges of
farm-level control tasks come from the complex aerodynamics
and stochastic properties of wakes. On the one hand, wakes are
hard to be accurately modelled, bringing barriers to controller
design. On the other hand, control-induced wake change has
time-delayed features – it typically requires tens/hundreds of
seconds to propagate from upstream turbines to downstream
turbines, resulting in difficulties in evaluating control per-
formance, especially from a relatively long-term standpoint.
Many studies employed simplified wake models [2], [5], [6] to
evaluate steady-state wake locations and estimate the effective
flow velocities and power outputs at each turbine. Then these
estimations were utilized to decide optimal control actions.
For example, a famous steady-state parametric model, referred
to as FLORIS, was proposed in [2] to achieve yaw setting
optimization. Though such designs are easy to implement,
their performance can be severely influenced by the model
accuracy, and they have difficulties in achieving closed-loop
wind farm control under uncertain environments [3]. Some
studies employed dynamic models that typically have higher
fidelity than steady-state models to develop wind farm control
methods and achieve better control performance. For example,
a model predictive control (MPC) method was proposed in
[7] based on a control-oriented dynamic wind farm model
developed in [8]. This meaningful method was shown to be
effective in increasing the whole farm’s power generation. A
small limitation is that it employed a relatively large number
of states (tens of thousands or even hundreds of thousands)
in receding-horizon control. As an extension study, Ref. [9]
reduced the number of system states via deep auto-encoder
and carried out MPC based on the reduced-order model.
However, those elegant MPC methods still rely on the accuracy
of underlying wind flow & wind farm models, and their
performance could be degraded due to modelling errors and
unmodelled dynamics.

In summary, model-based wind farm control methods have
shown good effectiveness and are usually easy to implement,
but they may suffer from high system complexity, inevitable
modelling inaccuracy and stochastic environment uncertainty.
In recent years, data-driven and model-free wind farm methods
have drawn extensive research interest and have been treated
as promising candidates to overcome the limitations of their
model-based counterparts. For wind farm power maximization
tasks, a game-theoretic method was proposed in [10] to decide
the optimal induction factors for every turbine in the farm. Ref.
[11] proposed a Bayesian-based searching method for yaw
settings optimization. A deep reinforcement learning (DRL)-
based wind farm control method was proposed in [12], in
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which an internal wake model was employed to guide the
learning process. However, all these important results are
based on steady wind conditions, and they can only provide
fixed yaw and/or induction factor settings subject to unchanged
wind speeds. A DRL-based yaw control method that aimed
to handle stepwise-varying inflow conditions was designed in
[13], but it was built upon a steady-state wind farm model.
Another two wind farm control approaches via DRL were
proposed in [14], [15]. They are model-free and can adapt
to time-varying wind speeds. But a limitation is that they
employed averaged power outputs over particular time spans
to construct rewards. In addition, they only considered yaw
control tasks. To sum up, though data-driven wind farm control
methods have aroused extensive attention, there are still many
essential issues that limit the applicability and feasibility
of current results, including the reliance on steady-state or
time-averaged data (such as turbines’ power outputs under
steady wind conditions or from steady-state models), lack of
robustness to time-varying wind conditions, and insufficiency
in data mining.

Aiming to address the aforementioned challenges in cur-
rent approaches, this paper proposes a new intelligent wind
farm control method via a novel DRL algorithm. DRL [16],
[17], [18] is a booming artificial intelligence technique that
is currently triggering the technological revolution of many
industrial sectors. It is capable of fulfilling high-performance
data-driven control for multiple tasks of a large class of
complex systems. In this paper, an application-oriented DRL
method is designed to maximize wind farm power generation
by yaw and induction control. Particularly, a multi-player DRL
(MPDRL) algorithm is designed to learn the optimal control
policy subject to a user-defined performance metric using the
available measurements at turbine rotors, and deep neural
networks (DNNs) are employed in it as information processors
and universal approximators. Its effectiveness is verified by a
dynamic wind farm simulator [8] for wind farms with different
specifications. Test results show that our method can achieve
clear farm-level power generation increases (over 30% in case
studies) compared with the benchmark. Further explanations
regarding the novelty of the proposed method in comparison
with relevant studies are discussed as follows.

• Unlike mainstream wind farm control approaches [2], [3],
[5], [6], [19], [7], our method relaxes the dependence on
wind farm models. By employing the merits of DNN and
DRL, it has the ability to capture the core system infor-
mation and maximize the farm-level power production
only by data. Our method has strong robustness against
unmodelled dynamics and stochastic environments.

• Compared with important data-driven wind farm control
methods (including some results based on DRL) [10],
[11], [20], [12], [13], no steady-state or time-averaged
data are required to carry out the learning process in
our design. Instead, by embedding DNNs that can han-
dle time-series data (such as long-short-term-memory
(LSTM) networks, gated recurrent units (GRU), trans-
fomer networks, and so on) into the main DRL structure,
our MPDRL can mine in-depth the data measured at tur-

bine rotors, handle wake propagation delay, and achieve
closed-loop wind farm control under time-varying wind
conditions. These essential features render our method to
have enhanced performance.

• Distinct from the most recent DRL-based wind farm con-
trol approaches [12], [13], [14], [15], a special distractor
network is employed in our method. This design not
only mitigates the non-Markovian feature induced by the
stochastic nature of wind conditions but also enhances
our method’s robustness.

It is noteworthy that the method proposed in this paper
is partially built upon [14], [15], [4], and substantial new
contributions have been made. Specifically, though Refs. [14],
[15] also designed DRL algorithms to optimize farm-level
power generation, they employed averaged power outputs
over particular time spans to construct rewards, leading to
potentially limited adaptability and robustness. In addition,
they only considered yaw control tasks. These limitations are
fully addressed in this work. The method proposed in this
paper does not rely on any averaged data. Instead, time-
series data that are easy to measure are employed to help
our RL agent mine system information and adapt to real-
time changes in environmental conditions. Moreover, not only
yaw control but also axial-induction-based control strategies
are considered in this paper. There are also several essential
differences between the work in this paper and Ref. [4].
Firstly, these two studies consider different tasks. Instead of
achieving power generation maximization, Ref. [4] focused
on providing ancillary services by adjusting induction factors.
The yaw control strategy was not designed in it, which is
vital for farm-level power generation maximization tasks. In
contrast, the present paper develops a DRL structure for both
yaw & induction control to maximize the whole farm’s power
generation. These two kinds of tasks have quite different
features and inherent control system design logic. It should be
emphasized that simultaneously achieving yaw and induction
control is challenging due to the distinctive and incompatible
features of yaw angles and induction-related states. We employ
the multi-player (MP) concept to address this issue. Our MP-
DRL algorithm has two actors to learn the optimal yaw control
and induction control policies simultaneously yet separately,
one distractor to evaluate the worst-case external disturbances
(i.e. wind speed changes) to the performance metric, and one
critic to learn the optimal long-term performance functional.
Such a special DRL structure allows us to not only handle
the incompatibility of yaw & induction control but also bring
robustness against external disturbances. Based on these facts,
the proposed MPDRL-based wind farm control method is
more general and flexible, and it renders enhanced adaptability
and robustness compared with the results in [14], [15], [4].

In the remainder of this paper, we introduce the farm-
level power maximization task in Sec. II. Following that, the
MPDRL wind farm control method is explained in Sec. III.
To verify its effectiveness, simulations with a dynamic wind
farm simulator for different wind farms are presented in Sec.
IV. After that, we conclude the whole work in Sec. V.
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II. PROBLEM FORMALIZATION

We consider a wind farm with n turbines that are denoted
by WT 1, WT 2, ..., WT n, respectively. It is well-understood
that the power captured by a turbine WT i is directly related to
its inflow wind speed Ui, the induction-related state αi (such
as the induction factor or some other states that are related to
the induction factor, e.g. the modified thrust coefficient), and
yaw offset βi [2], [10], [11], formalized by

Ei = h(Ui, αi, βi) (1)

For turbine-level control, the induction-related state αi decides
the blade pitch angle and rotor torque. It should be emphasized
that, in this paper, the specific expression of h is not required
in controller design. Based on (1), the whole farm’s power is

E =

n∑
i=1

Ei =

n∑
i=1

h(Ui, αi, βi) (2)

Before introducing the specific wind farm control objec-
tives considered in this paper, we first define control inputs,
states and exogenous inputs (i.e. disturbances) of the sys-
tem. The control inputs are the changes of induction-related
states and yaw angles of all turbines, denoted by δα =
[δα1, δα2, ..., δαn] and δβ = [δβ1, δβ2, ..., δβn], respectively.
Then we define a regularized state vector to be

x̄ = [ᾱ1, β̄1, Ē1, ᾱ2, β̄2, Ē2, ..., ᾱn, β̄n, Ēn] (3)

with ᾱi = (αi−αmax)+(αi−αmin)
αmax−αmin

, β̄i = (βi−βmax)+(βi−βmin)
βmax−βmin

,
and Ēi =

Ei

Er
. Here αmax and αmin are the upper and lower

bounds of induction-related states, respectively; βmax and βmin

are the upper and lower bounds of yaw angles, respectively;
and Er is the turbine’s rated power. Therefore, one has β̄i ∈
[−1, 1] and ᾱi ∈ [−1, 1]. We also define the following the
regularized exogenous input

w = [Ū1, Ū2, ..., Ūn]
T (4)

where Ūi = 2Ui/UN − 1 with UN is a user-defined constant
for normalization purposes.

The wind farm controller considered in this paper should
make a trade-off for the following two objectives subject to
wake effects: (a) maximizing the farm-level power generation
– this is the main objective; (b) avoiding large loads caused
by induction & yaw control.

Based on these objectives, we define the following reward
function for time step k:

r(k) =− c1

n∑
i=1

Ēi(k) +
c2
n

n∑
i=1

|Fi(k)− Fi(k − 1)|

+
c3
n

n∑
i=1

|βi(k)

bβ
|

(5)

and here c1, c2, and c3 are user-defined weighting constants.
We explain the terms in Eq. (5) in detail as follows.

(1) The first term in Eq. (5) is for Objective (a). The smaller
the value of it, the larger the farm’s power generation.

(2) The second term in Eq. (5) is for Objective (b). Partic-
ularly, Fi is the axial force that the wind flow exerts on
WTi, and it is defined as [21], [8]

Fi =
1

2
ρAiU

2
i cos2(βi)C

′
Ti

(6)

Here ρ denotes the air density, Ai denotes the swept area
of the rotor plane, and C ′

Ti
is called the modified thrust

coefficient. Following [21], the whole term is related
to dynamical turbine loading. Therefore, MPDRL can
balance power generation maximization with dynamical
load minimization by introducing this term into (5).

(3) The third term is employed to avoid unacceptable yaw
offsets and large yaw-induced structural loads, and here
bβ denotes the maximum acceptable yaw angle.

Remark 1: To test the performance of the MPDRL algorithm
proposed in this paper, we utilize the dynamic wind farm
simulator (WFSim) proposed in [8] to carry out case studies
(see Sec. IV). As explained in [8] and adopted in many studies
(e.g., [21], [9], [7]), WFSim employs the modified thrust
coefficient C ′

Ti
and the yaw angle βi or their changes as the

control variables. It is noteworthy that C ′
Ti

is directly related to
the turbine set point in terms of blade pitch angle and rotational
speed (see Appendix in [8] for details). Moreover, it should be
emphasized that the proposed MPDRL method is data-driven,
and its learning process does not rely on underlying models of
any specific wind farm simulators. WFSim is employed in this
paper because it is a control-oriented simulator that can keep
the key features of dynamic flow fields and wind farms while
balancing simulation fidelity and computational complexity.
Therefore, to indicate that other proper induction-related states
can also be employed as control variables in our MPDRL, we
still denote the induction-related state as αi instead of directly
denoting it as C ′

Ti
in MPDRL design to keep generality.

The main control goal is finding the best control policies for
δα and δβ to minimize the following long-term performance
metric, where γ ∈ (0, 1] is a constant discount factor.

V =

∞∑
k=0

γkr(k) (7)

We note that solving this task is challenging, and it is
intractable for conventional control methods. The main dif-
ficulties are from the following aspects:
(1) As mentioned in the introduction, wind-farm control tasks

are commonly subject to complicated aerodynamic cou-
plings among turbines. Particularly, due to the existence
of wake effects, the power generation of downstream
turbines are not only decided by the control actions of
themselves but also influenced by that of other turbines.
Particularly, w in (4) is related to x̄ in (3) and the time-
varying inflow wind speed (denoted by U∞). Such a
complicated relationship is challenging to be accurately
modelled given the stochastic nature of wake effects and
U∞. It also renders no analytical solution for V in (7)
and hinders the feasibility of conventional optimal control
methods. This paper addresses this complex task via
DRL, which allows us to approximate V and learn the op-
timal control policies by deep neural networks, achieving
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data-driven farm-level power maximization under time-
varying wind speeds without requiring any analytical
models.

(2) Wake effects have time-delayed features. The wake
changes induced by control actions typically require
tens/hundreds of seconds to propagate from upstream
turbines to downstream turbines, leading to difficulties in
evaluating control performance from a long-term perspec-
tive. Moreover, this issue also renders the whole task to be
a partially observable Markov decision process, blocking
the direct application of mainstream DRL algorithms,
such as DDPG [18]. To handle this issue in this paper,
we employ a multi-player DRL structure to encode look-
back data and evaluate the long-term reward V while
considering the stochastic nature of wind speeds.

III. DESIGN OF A MULTI-PLAYER DRL ALGORITHM FOR
WIND FARM CONTROL

In order to handle the time-delayed feature of wake effects
and alleviate the non-Markovian feature of the whole control
task, we feed not only the instantaneous measurements of
x but also its past data into the wind farm control method.
Particularly, we define

x(k) = [x̄(k − l), x̄(k − l + 1), ..., x̄(k)]T (8)

where l >= 0 denotes a user-defined look-back step to
mitigate the non-Markovian feature. Then we can describe the
whole wind farm control system as follow.

x(k + 1) = f(x(k), δα, δβ, w) (9)

However, due to the wake effect’s inherent complexity and
stochastic nature, f is unknown for controller design. Based
on the principle of H∞ control technique, the control objective
is to learn the optimal control policies δα∗ and δβ∗ under the
influence of the potentially worst-case w (denoted by w∗),
formalized by

δα∗(k), δβ∗(k) = arg min
δα,δβ

V ∗(k) (10)

Here V ∗(k) is based on the following definition for any k ∈ N

V ∗(k) = min
δα,δβ

max
w

{V (x(k), δα(k), δβ(k), w(k)} (11)

Given all these preliminaries, we can summarize the wind
farm control task as follows.

Solving δα∗, δβ∗, and w∗ for

V ∗(k) = min
δα,δβ

max
w

{V (x(k), δα(k), δβ(k), w(k)} (12)

Subject to

x(k + 1) = f(x(k), δα, δβ, w) (13)
δαmin ≤ δαi ≤ δαmax, i = 1, 2, ..., n (14)
δβmin ≤ δβi ≤ δβmax, i = 1, 2, ..., n (15)

−1 ≤ ᾱi ≤ 1, i = 1, 2, ..., n (16)
−1 ≤ β̄i ≤ 1, i = 1, 2, ..., n (17)
Ūi ∈ L∞, i = 1, 2, ..., n (18)

Here δαmin, δαmax, δβmin, and δβmax are the bounds for
one-step control actions.

With Eqs. (12) - (18), the wind farm control task is
transformed to a game problem with two minimizing players
(i.e. δα and δβ) and one maximizing player (i.e. w). However,
since f is an unknown function with high nonlinearity and
complexity, it is impossible to analytically solve the Nash
equilibrium {δα∗, δβ∗, w∗} for this game. Instead, we propose
a multi-player DRL algorithm to approximate V ∗ and the
corresponding optimal control policies δα∗ and δβ∗.

An important property of the game problem considered
here is that V ∗ satisfies the so-called discrete-time Hamilton-
Jacobi-Isaacs (HJI) equation [22], which is in line with the
Principle of Optimality:

V ∗(k) = min
δα,δβ

max
w

{r(k) + ρV ∗(k + 1)}, ∀k ∈ N (19)

After that, we define the Q-function [23], [24], [16], [17]:

Qδα,δβ,w(x(k), aα, aβ , d)

=

∞∑
i=k+1

γi−kr(x(k + 1), δα(k + 1), δβ(k + 1), w(k + 1))

+ r(x(k), aα, aβ , d)

= γQδα,δβ,w(x(k + 1), δα(k + 1), δβ(k + 1), w(k + 1))

+ r(x(k), aα, aβ , d)
(20)

Here Qδα,δβ,w is commonly referred to as an action-state
value function [23], [24], [16], [17]. It represents the value
of the performance metric obtained when the inputs aα aβ , d
are applied at time step k, and the policies δα, δβ and w are
pursued thereafter [24]. It should be emphasized that Eq. (20)
also applies to the Nash equilibrium {δα∗, δβ∗, w∗}, i.e.,

Qδα∗,δβ∗,w∗(x(k), aα, aβ , d)

= γQδα∗,δβ∗,w∗(x(k + 1), δα(k + 1), δβ(k + 1), w(k + 1))

+ r(x(k), aα, aβ , d)
(21)

The Q-function defined above plays a key role in the learning
of control policies and in the update of DNN parameters.

A specially designed critic-actor-distractor structure is em-
ployed in our MPDRL algorithm. An illustration that shows
the main modules and frameworks of MPDRL is given in
Fig.1. Particularly, the critic aims to approximate V ∗; the two
actors are employed to learn the optimal control policies for δα
and δβ (i.e. δα∗ and δβ∗), respectively; and the function of the
distractor is to evaluate the worst-case disturbance, i.e. w∗. All
these modules are built by DNNs. We denote the parameters
of the critic, the two actors, and the distractor DNNs as θQ,
θα, θβ and θw, respectively, and their outputs are Q, δα, δβ,
and w, respectively.

Furthermore, an additional set of DNNs is also employed,
which is the “soft copy” of the main critic-actor-distractor
structure. Particularly, these DNNs have exactly the same neu-
ron types & numbers and network layers as their counterparts
in the main critic-actor-distractor structure. These additional
DNNs form a target critic-actor-distractor structure. We denote
their parameters as θQ

′
, θα

′
, θβ

′
, and θw

′
, respectively, and
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Actor 1 (min player 1)
updated by (28) 

Distractor (max player)
updated by (30)
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+
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Q,Q'

Q,Q'

δα, δβ
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w, w'

+
i i i αi βi ix , x , r , a , a d，









Figure 1: Main structure of MPDRL.

their outputs are denoted by Q′, δα′, δβ′, and w′, respec-
tively. These parameters slowly track their counterparts with
a small positive rate τ . It should be emphasized that the idea
of employing such an additional set of DNNs is originally
from [17]. This design can significantly improve the learning
stability, which has been proven by many relevant studies [4],
[14], [17], [18], [25].

Moreover, we also employ the experience replay strategy
[17], [18] in our MPDRL to mitigate the correlation issue of
sequential learning data. Specifically, as shown in Fig. 1, a
memory buffer M (with a size of m) is employed to store the
system data {x(k), x(k+1), r(k), δα(k), δβ(k), d(k)} (which
is commonly referred to as a transition) at every time step k. It
is noteworthy that here d(k) is the actual disturbance observed
at time step k instead of the policy w(k) generated by the
distractor. For each learning iteration, a small batch (with a
size of b) of transitions (denoted by {xi, x

+
i , ri, δαi, δβi, di},

i = 1, 2, ..., b) are randomly selected from M to update DNNs.
Then we are ready to introduce the updating laws for the

main critic-actor-distractor structure. Based on the Q-function
in Eq. (20), we define the following temporal difference error
(TD-error) for any transition {xi, x

+
i , ri, δαi, δβi, di}:

ei =ri + γQ′(x+
i , δα

′(x+
i |θ

α′
), δβ′(x+

i |θ
β′
), w′(x+

i |θ
w′
)|θQ

′
)

−Q(xi, δαi, δβi, di|θQ)
(22)

The critic aims to minimize the amplitude of ei for all the
transition i in a sampled batch at every learning iteration. To
this end, we define the following loss function for the transition
batch, which directly drives the updating of the main critic’s
parameters (i.e. θQ):

L =

b∑
i=1

∥ei∥2 (23)

As discussed before, the actors δα and δβ are minimiz-
ing players that aim to minimize the value of the long-
term performance metric (which is estimted by Q), while
the purpose of the distractor w is the opposite. Based on
that, their parameters’ updating process can be driven by the
corresponding gradients of Q, which are defined as follows.

∇θα =
1

b

b∑
i=1

[∇δαQ(xi, δα, δβ, w) · ∇θαδα(xi|θα)] (24)

∇θβ =
1

b

b∑
i=1

[∇δβQ(xi, δα, δβ, w) · ∇θβδβ(xi|θβ)] (25)

∇θw =
1

b

b∑
i=1

[∇wQ(xi, δα, δβ, w) · ∇θww(xi|θw)] (26)

In every learning iteration, the updating process of θα and
θβ are driven by −∇θα and −∇θβ , respectively, while θw is
updated by ∇θw .

Based on all these designs, we summarize our MPDRL
algorithm for wind farm control in Algorithm 1.

Algorithm 1 Multi-Player Deep Reinforcement Learning
(MPDRL) Algorithm for Wind Farm Control.
- Aggregate and normalize the system states, control inputs
and disturbances to transform the wind farm control problem
into a multi-player game as described in Eqs. (12)-(18).
- Decide hyperparameters for the critic-actor-distractor DRL
structure, including networks’ layer numbers and neuron num-
bers & types for each layer.
- Initialize θQ, θα, θβ , θw, θQ

′
, θα

′
, θβ

′
, θw

′
and all the other

user-defined parameters.
1: for each learning episode do
2: for k = 0 to the maximum steps per episode do
3: Based on the current system state x(k), generate con-

trol actions aα and aβ via aα = δα(x(k)|θα)+ϵα(k)
and aβ = δβ(x(k)|θβ) + ϵβ(k), respectively, where
ϵα(k) and ϵβ(k) are noises for exploration purposes.

4: Apply the control actions aα and aβ to the wind farm
control system, and observe x(k + 1), d, and r.

5: Organize the transition {x(k), x(k + 1), r, aα, aβ , d}
and store it in the memory buffer M.

6: Sample a batch of transitions from M, denoted by
{xi, x

+
i , ri, aαi, aβi, di}, i = 1, 2, ..., n.

7: Update the critic’s parameter θQ via the loss function
L defined by Eqs. (22) and (23).

8: Update θα, θβ and θw via Eqs. (24) - (26).
9: Update θQ

′
, θα

′
, θβ

′
and θw

′
via ‘soft replacement’.

10: end for
11: end for

Remark 2: The proposed MPDRL algorithm is built upon
the Q-learning theory [16], [23], [24]. One can refer to [23]
for the key idea behind a standard Q-learning algorithm and
its general convergence analysis. Distinct from mainstream
DRL algorithms that also employ Q-learning or its variants
such as Deep Q-Network [17] and Deep Deterministic Policy
Gradient [18], we propose a special multi-player structure
consisting of two actors (i.e. δα and δβ) that aim to minimize
the reward function and a distractor (i.e. w) that has the
opposite objective. On the one hand, this design can evaluate
the potential worst-case disturbances, guiding control policies
and enhancing the whole system’s robustness. On the other
hand, employing two separated actors (instead of aggregating
the yaw and induction control signals together) can adapt to the
distinctive features (e.g. different changing rates) of different
control inputs and enhance the learning effectiveness and the
algorithm’s overall performance.



6

IV. CASE STUDIES

In this section, we utilize WFSim [8] to test the performance
of MPDRL. As mentioned in Remark 1, WFSim utilizes the
modified thrust coefficient (i.e. C ′

Ti
) and yaw angles or their

changes as control variables. Therefore, we replace all terms
related to αi in MPDRL with the corresponding terms in C ′

Ti

to adapt to the requirement in WFSim.
In addition to the MPDRL method proposed in this paper,

we also employ three other wind farm control methods in
simulations to compare their performance with our MPDRL:

(1) The greedy control strategy. This strategy is the bench-
mark for wind farm control tasks, and it is currently the
most commonly-employed wind farm control strategy in the
industry. In the greedy strategy, every turbine in the farm aims
to maximize its own power generation without considering the
influence of other turbines. Following that and [8], one can set
C ′

Ti ≡ 2, βi ≡ 0◦, i = 1, 2, ..., n, for all the turbines in the
farm to conduct the greedy strategy.

(2) A model-based wind farm control method (MB-WFC) in
[3]. This important method carries out receding-horizon opti-
mization based on the FLORIS model. It can achieve closed-
loop wind farm control under time-varying wind conditions -
a very suitable candidate to compare with MPDRL.

(3) A DRL-based method. This method has the same main
structure and settings as MPDRL, but it does not have the
distractor. We mention it as DRL-W/D in simulations. It can
help us test the robustness of MPDRL further and show the
advantage of the multi-player structure.

Two simulation scenarios are considered in case studies.
Specifically, we employ a prototypical wind farm with nine
NREL 5MW wind turbines in the first scenario. Then a large-
scale wind farm from the European CL-Windcon1 project that
contains 80 DTU 10MW wind turbines is employed to test the
scalability of MPDRL.

Table I: Simulation Settings.

Parameters Values

C′
Tmin, C

′
Tmax, βmin, βmax, bβ 0.1, 2,−30◦, 30◦, 30◦

δC′
Tmin, δC

′
Tmax, δβmin, δβmax −0.1, 0.1, −1◦, 1◦

c1, c2, c3 1, 0.05, 0.1

l, γ, τ, b,m 100, 0.99, 0.05, 128, 10000

Figure 2: Cumulative reward in DRL learning.

1http://www.clwindcon.eu/

Figure 3: Wind speed (u: longitudinal; v: lateral).

A. Case Study with a Prototypical Nine-Turbine Wind Farm.

In this case study, we simulate a 2518.8m×1558.4m flow
field with a wind farm that consists of nine NREL 5MW
turbines in WFSim. A bird’s-eye view of the flow field and
the wind farm is in Fig. 4. Our method needs to employ
DNNs that can handle time-series data, such as long-short-
term-memory (LSTM) networks, gated recurrent units (GRU),
transfomer networks, etc. Without loss of generality, here we
employ LSTM DNNs in our case studies. We carry out DNN
training based on the settings in Table I. It is noteworthy that
time-varying wind conditions are employed in the training and
testing of MPDRL. A 700-second example for a time-varying
wind profile is given in Fig. 3, with u being the longitudinal
wind speed and v being the lateral wind speed. It should
be emphasized that the wind profile differs in each learning
episode, and our MPDRL can only employ current & past
measured wind conditions (no preview information for the
future). In addition, measurement errors and process noises
are also taken into account. Specifically, zero-mean Gaussian
noises with standard deviations 0.5 and 0.05 are set to be the
measurement errors of βi and C ′

Ti
, respectively; the control

signals δβi and δC ′
Ti

are also polluted by such noises but the
standard deviations are 0.1 and 0.01, respectively.

Given all these settings, the learning curves (i.e. the curve of
the cumulative reward r per learning episode with 200 steps)
of the two DRL-based wind farm control methods are shown in
Fig. 2. Though both methods have the essential learning ability
to improve control policy (we aim to minimize rewards in this
paper), MPDRL leads to clearly superior learning performance
compared to the case without the distractor module. It has an
averagely lower episode-reward level under the influence of
the same exogenous inputs, measurement errors and process
noises (though these disturbances differ in each episode).

Based on the training results, we test MPDRL by a 700-
second run with the wind profile in Fig. 3 and initial conditions
as C ′

Ti(0) = 2, βi(0) = 0◦, i = 1, 2, ..., n . Simulations with
the other three strategies are also conducted for performance
validation and comparison purposes. The flow field at t = 700s
under MPDRL is shown in Fig. 4. One can see that MPDRL
successfully achieves wake steering. The normalized power
outputs (w.r.t the greedy power output at t = 0s) under
different controllers are illustrated in Fig. 5. It can be observed
that MPDRL, DRL-W/D and MB-WFC all lead to power
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Figure 4: Flow field under MPDRL (at t = 700s).

increases w.r.t the greedy strategy, and MPDRL has the best
performance among all these methods - MPDRL achieves a
34.23% power increase on average compared to the greedy
strategy during the 700-second period while that of DRL-W/D
and MB-WFC are 26.27% and 21.78%, respectively.

These results demonstrate the robustness of MPDRL from
two aspects: (1) Compared to the important model-based
method in [3], MPDRL is data-driven and model-free, showing
robustness to potential uncertainties and modelling errors and
leading to higher power generation in simulations. (2) MPDRL
also leads to better learning & testing performance than
DRL-W/D in the case study. As we mentioned before, the
key difference between them is the distractor module in our
multi-player structure. As verified by simulations, that brings
MPDRL the robustness against the exogenous disturbance w.

Figure 5: Normalized farm-level power generation.

Figure 6: Responses of load-related terms.

As discussed in Sec. II, MPDRL should balance two com-
peting objectives (a) maximizing the farm-level power gener-
ation (core objective); and (b) avoiding large loads induced
by induction & yaw control (secondary objective). The trade-
off between these two objectives can be achieved by adjusting
the parameters c1, c2 and c3 in the definition of r in Eq. (5).
To illustrate that, we conduct two additional simulations for
MPDRL under different parameters: (1) Adjust c2 from 0.05 to
0.2 and keep all the other parameters unchanged. That enlarges
the weight of the term c2

n

∑n
i=1 |Fi(k)−Fi(k− 1)| in (5). As

mentioned in Sec. II, this term is related to the dynamical
turbine loading. (2) Adjust c3 from 0.1 to 0.3 and keep all
the other parameters unchanged. That enlarges the weight
of the term c3

n

∑n
i=1 |

βi(k)
bβ

|, aiming to avoid unacceptable
yaw offsets and large yaw-induced structural loads. Simulation
results of MPDRL under these changes are given in Fig.
6. Compared to the results with the original settings, the
averaged dynamical turbine load and the averaged yaw offset
are reduced by 19.49% and 45.34%, respectively.

Figure 7: Flow field of the 80-turbine farm under MPDRL.

Figure 8: Normalized power of the 80-turbine wind farm.

B. Case Study with a Large-Scale Wind Farm.

In order to test the scalability of MPDRL, we consider a
large wind farm with 80 DTU wind turbines (layout illustrated
in Fig. 7) in this case study. Notably, the flow field in this case
study is 40 times larger than the one in Sec. IV.A. Therefore, a
6000-second run under stochastic wind speeds is employed to
comprehensively test the performance of MPDRL from a long-
term standpoint. The flow field at t = 6000s under MPDRL
is given in Fig. 7. One can see that the wake effect in this
case study is much more complicated than in Sec. IV.A. The
normalized power outputs (with respect to the greedy power
generation at t = 0s) under different control strategies are
illustrated in Fig. 8. It indicates that MPDRL can still lead to
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a significant farm-level power generation increase compared
with the benchmark – an over 34.3% increase in average is
achieved. Moreover, its performance is better than DRL-W/D,
showing its strong robustness.

V. CONCLUSIONS

A deep reinforcement learning (DRL)-based wind farm
control method was proposed in this paper to maximize
the farm-level power generation under strong wake effects
and stochastic wind speeds. Distinct from conventional wind
farm control methods, the proposed method is data-driven
and model-free – it does not require any analytical models
(e.g. wake model) to carry out wind farm control. Benefiting
from the multi-player concept, the robust control technique,
and a specially designed critic-actor-distractor structure, our
DRL-based method has good robustness, adaptability and
applicability. Simulation results verified the proposed method’s
effectiveness. It increased farm-level power generation by over
30% compared with the greedy strategy and showed better per-
formance than relevant approaches. It should be emphasized
that the rate of farm-level power generation improvement can
be influenced by many factors, including the operating condi-
tions (e.g. the main wind direction), the wind farm layouts (e.g.
the longitudinal and lateral distances between turbines), and
also wind turbine types. The simulation results demonstrated
were for the wind farms with the operating conditions and
specifications in case studies. Particularly, the dominant wind
direction was along the rows of wind turbines. Though this is
a commonly-used and most adopted setting in relevant studies,
it could not represent the entire lifetime operating conditions
of wind farms. Therefore, the magnitudes of benefit in case
studies could not be achieved when considering the full-
lifetime operations of real wind farms. It is noteworthy that,
though different operation conditions and specifications vary
the magnitude of benefit, our DRL algorithm always aims to
learn the optimal wind farm control strategies, and it can adapt
to different scenarios. As future work, hybrid reinforcement
learning and grouping strategies will be explored in the future
to enhance the learning efficiency and reduce computational
complexity of the proposed method.
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