
 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Manuscript version: Author’s Accepted Manuscript 
The version presented in WRAP is the author’s accepted manuscript and may differ from the 
published version or Version of Record. 
 
Persistent WRAP URL: 
http://wrap.warwick.ac.uk/173534          
 
How to cite:  
Please refer to published version for the most recent bibliographic citation information.  
If a published version is known of, the repository item page linked to above, will contain 
details on accessing it. 
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions. 
 
© 2023, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/. 
 

 
 
Publisher’s statement: 
Please refer to the repository item page, publisher’s statement section, for further 
information. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk. 
 

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/173534
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:wrap@warwick.ac.uk


Calculation of dislocation binding to helium-vacancy defects in tungsten using
hybrid ab initio-machine learning methods

Petr Grigoreva, Alexandra M. Goryaevab, Mihai-Cosmin Marinicab, James R. Kermodec, Thomas D Swinburnea
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Abstract

Calculations of dislocation-defect interactions are essential to model metallic strength, but the required system sizes are
at or beyond ab initio limits. Current estimates thus have extrapolation or finite size errors that are very challenging to
quantify. Hybrid methods offer a solution, embedding small ab initio simulations in an empirical medium. However,
current implementations can only match mild elastic deformations at the ab initio boundary. We describe a robust
method to employ linear-in-descriptor machine learning potentials as a highly flexible embedding medium, precisely
matching dislocation migration pathways whilst keeping at least the elastic properties constant. This advanced coupling
allows dislocations to cross the ab initio boundary in fully three dimensional defect geometries. Investigating helium
and vacancy segregation to edge and screw dislocations in tungsten, we find long-range relaxations qualitatively change
impurity-induced core reconstructions compared to those in short periodic supercells, even when multiple helium atoms are
present. We also show that helium-vacancy complexes, considered to be the dominant configuration at low temperatures,
have only a very weak binding to screw dislocations. These results are discussed in the context of recent experimental
and theoretical studies. More generally, our approach opens a vast range of mechanisms to ab initio investigation and
provides new reference data to both validate and improve interatomic potentials.

1. Introduction

Dislocations are extended line defects which carry plas-
tic deformation in crystalline materials [1]. Dislocation
motion is impeded by point defects such as vacancies or
impurity atoms; these can either be static obstacles or
diffusing defects attracted by the dislocation’s long range
elastic field [2–8].

A quantitative and mechanistic understanding of point-
defect dislocation interactions is therefore of primary im-
portance to build accurate models for rational alloy de-
sign strategies [7], or to predict and mitigate the risk of
catastrophic brittle failure during service under hostile
conditions [9]. For this task, ab initio calculations, specifi-
cally density functional theory (DFT) [10], are essential to
capture dislocation core structures and complex bonding
to impurity elements. However, the computational cost
of DFT typically scales as O(N3) for metallic systems,
which severely limits its direct applicability to the study
of extended defects (section 2.1). As a result, dislocation-
impurity studies remain challenging or approximate, requir-
ing resources at or beyond the limits of many practitioners,
essentially ruling out the systematic studies required for
rational design approaches.
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In this paper, we present and apply a new hybrid simula-
tion method (section 2) that embeds ab initio simulations in
much more general simulation geometries than previously
possible, using custom-fit machine learning interatomic
potentials [11] (section 2.2). An open source implementa-
tion employing the popular atomic simulation environment
(ASE) package [12] is freely available online [13].

The presented method is applied to study the interac-
tion between dislocations and helium-vacancy defects in
tungsten (Section 3), a problem of critical importance to
the operational stability of future fusion reactors, which
are expected to attain helium concentrations of 20 appm
after 5 years of operation [14]. Experiment with much
higher concentrations, up to 20 atomic %, demonstrate
key role of TEM invisible He and He-vacancy clusters in
the resulting hardening [15]. Recent large scale MD simu-
lations [16] of edge and mixed dislocations also reported
these obstacles offer strong strengthening. Experiments
with helium implanted tungsten show that He concentra-
tion of 20 appm is sufficient to suppress recrystallization
and influence intergranular fracture [17]. However, the role
of defect-dislocation interactions at much lower helium con-
centrations, where bubble formation is limited and helium
is assumed to reside primarily in single, immobile disloca-
tions, is limited by the accuracy of available interatomic
potentials [18], and remains a largely open question.

The present work provides first ab initio data for the
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intrinsic properties of 〈100〉 edge dislocations and the bind-
ing of vacancy and helium defects to both edge and screw
dislocations.

Our central results are a) ab initio Peierls barriers
for 〈100〉 edge dislocations have much less variation with
slip plane compared to current interatomic potentials (sec-
tion 3.1) b) Non-periodic simulations reveal He induces a
reconstruction of the screw dislocation core to the ’split’
configuration, unlike the ’hard’ configuration found for
other impurities [19] (section 3.4), which suggests a weaker
strengthening effect of helium alone. c) helium-vacancy
defects have a much weaker binding to screw dislocations
(0.3 eV) than vacancies alone (1.2 eV), whilst highly mobile
helium interstitials are predicted to have a mild segrega-
tion to screw dislocations at fusion-relevant temperatures
(section 3.5), meaning they can only provide an obstacle,
rather than pinning, dislocation motion. More generally,
we demonstrate our embedding approach can systemati-
cally improve Linear Machine Learning (LML) potentials
for dislocation simulation, as demonstrated for dislocation-
vacancy interactions (section 3.2). Future directions are
discussed in section 4.

2. Methodology

2.1. Ab initio studies of dislocations

In certain special cases, when the dislocation core is suf-
ficiently compact and the elastic field sufficiently weak, it is
possible to contain specialised dislocation multipole config-
urations in small periodic DFT supercells [20–22]. Whilst
simulations of this kind have given significant insight into
the nature of intrinsic lattice resistance in a variety of
systems [23–25], extending the same methodology to dis-
locations with large prismatic components is extremely
challenging due to the system sizes required to mitigate
the resulting strong elastic interactions. The requirement
of periodicity along the line direction makes studies of im-
purity segregation similarly expensive, even with amenable
dislocations, due to long ranged core reconstructions as
we show below. Recent studies have simulated well over a
thousand DFT atoms to infer the converged structure [26].

An alternative to fully periodic supercells is a cluster
approach [20, 27–30], where periodicity is kept only along
the line of the dislocation (or other extended defects, such
as a crack [31]) with free boundary conditions used in other
directions. The ab initio region is then coupled to an elastic
medium via lattice Green’s functions [27] or in the hybrid
approach developed here, embedded in an atomistic simu-
lation governed by an interatomic potential [32]. Current
hybrid methods still require that deformations remain in
the elastic regime at the ab initio boundary [33], meaning
dislocations are limited to short, periodic line segments.
The methodological developments in this study use a flex-
ible class of interatomic potentials, discussed below, to
allow for much more general deformations at the ab initio
boundary.

2.2. Linear machine learning (LML) interatomic potentials

The development of interatomic potentials have been
revolutionised by the availability of high-dimensional regres-
sion algorithms from the machine learning (ML) commu-
nity [34–36]. We refer the reader to a number of excellent
recent reviews in this rapidly growing field [37–41], which
has attracted explosive interest [11, 42–53]. In the present
work we employ the linear machine learning (LML) poten-
tial approach [11, 45, 46, 48, 51], which has cohesive energy
and gradient forces

ULML(X) = D(X) ·Θ, FLML(X) = −∇D(X)Θ, (1)

where the vector Θ ∈ RND contains all potential parame-
ters that will be varied, whilst D(X) ∈ RND is a descriptor
vector of the atomic coordinates X ∈ R3N. We calculate
descriptors using the MILADY simulation package [54], cou-
pled to LAMMPS [55]; we also provide a standalone LAMMPS

implementation. Specific details on the descriptors em-
ployed are presented in Appendix C, though our method
is general to any LML implementation [47, 51].

2.3. Force coupled hybrid QM/ML simulations

Following previous work [32, 33, 56] we use an ‘abrupt
force mixing‘ scheme to couple the ab initio (QM) region
to the atomistic simulation, simply taking the ionic forces
from each region. The QM simulation has both the desired
atomic region of the main simulation and an additional
‘buffer‘ of surrounding atoms to provide the correct elec-
tronic environment for the region of interest. Whilst a total
energy cannot be rigorously defined in cluster approaches,
access to the ionic forces allows energy differences to be
calculated via the principle of virtual work, which have
been validated against total energy calculations in pre-
vious works [33, 56] (Appendix A). Total cluster energy
differences can be used to provide good approximations to
energy differences when surface charge states have limited
variation [30], which we validate in section 3.

Our starting point is thus a ‘disk‘ geometry perpendic-
ular to the simulation line, illustrated on the left part of
figure 1. Periodic boundary conditions are applied in the
directions along the dislocation line while free boundary
conditions are used in other two directions. This geometry
has been used in all previous works [32, 33, 56] as any
potential with matched elastic and lattice properties is an
admissible embedding medium. The thickness of the disk is
typically kept to be one translation length along the disloca-
tion line. Here, we use an appropriate linear-in-descriptor
ML (LML) potential with a vector of parameters Θ0; these
simulations allow us to obtain ab initio accurate glide bar-
riers and core structures, even for prismatic dislocations
that are extremely challenging to contain in periodic ab
initio supercells.

To study general dislocation-defect interactions we re-
quire a fully three dimensional simulation with significant
dislocation line length, to mitigate periodic image inter-
action along the line. The only geometry which avoids
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Elastic matching 

Constrained retraining
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 Dislocation core structure and glide barrier  Point defect segregation energies 
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 Periodic along straight dislocation line   Long range core reconstruction along the line

Figure 1: Left: Standard quasi-2D QM/ML simulations for ab initio accurate dislocation glide barriers, using initial LML parameters Θ0

with correct elastic properties. Right: Constrained retraining on QM/ML data gives new LML parameters Θ which additionally have precise
matching of target dislocation properties. This allows 3D QM/ML simulations with a spherical QM region at the site of the defect-dislocation
interaction.

an unfeasibly large QM region is some large simulation
cell with a spherical QM region centered on where the
defect meets the dislocation core, illustrated on the right
port of figure 1. Clearly, such ‘3D‘ simulations require an
embedding potential with precisely matched dislocation
core structures in addition to the correct elastic properties,
allowing the dislocation to cross the hybrid boundary. The
next section details how this is achieved by retraining a
given LML potential using DFT force data from the initial
disk simulation. Details of the DFT implementation used
for QM part of the method are given in Appendix B.

2.4. Constrained retraining procedure

Our starting point for retraining is some LML potential
(1) with parameters Θ0 that can closely match at least the
DFT lattice and elastic constants; we target an error of
less than 1 %. Whilst this is sufficient, in practice we start
from a state-of-the-art parametrization [11, 54]. Use of an
already optimized potential additionally allows us to inves-
tigate the effect of our retraining procedure in more detail.
As discussed above and shown in figure 2(c), using the orig-
inal potential Θ0 in QM/ML simulations will produce new
ionic forces FQM/ML in the cluster region, with associated
descriptor gradients ∇DQM/ML. Our goal is to find a new
parametrization Θ = Θ0 + δΘ, which minimizes the error
to FQM/ML whilst exactly preserving ‘hard’ properties such
as elastic properties and approximately maintaining ‘soft’
properties such as forces from high temperature MD that
are important to avoid overfitting issues [48].

To define suitable constraints, we note that under
weak, arbitrary homogeneous deformations, the total en-
ergy change of a lattice is uniquely determined by the

elastic constants. As illustrated in Figure 2(e), we there-
fore simply subject a perfect lattice (here, bcc) to mul-
tiple shear/expansion deformations, collating the energy
differences into a vector tH ∈ RNH , with corresponding
descriptor vectors collated into a rectangular ‘design ma-
trix’ AH ∈ RNH×ND . We are free to include additional
properties alongside the elastic deformations- for example,
in the next section, we also include the structures for va-
cancy migration. We provide a routine to generate these
constraints using the Atomic Simulation Environment [12]
(Code Availability). To exactly preserve the hard con-
straints we require the predicted values tH are unchanged,
i.e.

tH ≡ AHΘ0 = AH [Θ0 + δΘ] , ⇒ AHδΘ = 0. (2)

A solution for AHδΘ = 0 requires that the rank RH =
rank(AH) is less than the dimension ND of δΘ. This is
a central motivation for using the quadratically extended
descriptor formalism, which gives ND ∼ 1500 even when
calculating less than a hundred descriptor functions per
atom (Appendix C). For this descriptor choice, the elas-
tic constraints alone gave RH = 25, rising to 37 when
including vacancy migration. To find a general solution,
we apply singular value decomposition (SVD) [57] to AH,
obtaining RH singular values, along with a set of RH or-
thonormal right singular vectors v1, . . . ,vRH

. We note
this procedure naturally eliminates any duplication of
data when building AH, meaning it is simple to build
constraints for e.g. highly anisotropic elastic properties.
Any right vector w ∈ RND that has non-zero projection
AHw 6= 0 can thus be expressed as a linear combination
of the right singular vectors. Forming a projection ma-
trix PH =

∑
m vmv>m ∈ RND×ND , A general solution can
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Target QM/ML MEP Soft constraints 
(regularization) Hard constraints

(a) (b) (c) (d) (e)

Figure 2: Peierls barriers of edge (or junction) dislocations with b = 〈100〉 (a) gliding in {001} and (b) in {011} planes. The barriers are
obtained by our NEB method showing the total energy variation along the path for the potentials (dashed lines and dots) and virtual work
from force integration for QM/ML results (black solid lines and crosses). (c) An illustration of the QM/ML NEB pathway which the retraining
procedure targets. Schematic representations of (d) bulk molecular dynamics snapshots at finite temperatures used to generate ‘soft’ constraints
for regularization and (e) strained bulk configurations used to generate ‘hard’ constraints for elastic properties.

then be found by forming the null space projection matrix
QH = I−PH, such that AHQHv = 0 for any vector v. As
a result, δΘ = QHv will always satisfy Eq. 2. In principle,
one can then search for the vector δΘ that best matches
QM/ML forces, whilst also satisfying PHδΘ = 0. How-
ever, as RH � ND, in practice, this regression procedure is
vulnerable to overfitting. To correct for this, we addition-
ally require that the new refitted potential approximately
preserves a set of properties of the original potential, to
provide further ‘soft’ constraints. We have found that in-
cluding molecular dynamics trajectories of the bulk crystal
at a range of temperatures (Figure 2(d)) gives a ‘soft’ tar-
gets tS and design matrix AS gives RS → ND additional
constraints, which we include as a term λS‖ASQHδΘ‖2
alongside an additional ridge penalty, giving a final cost
function

L(δΘ) = ‖FQM/ML + ∇DQM/ML [Θ0 + QHδΘ] ‖2

+ λS‖ASQHδΘ‖2 + λ0‖δΘ‖2, (3)

where λS controls the weighting of soft constraints and λ0
the standard ridge regularization. The minimum criterion
δL = 0 becomes a linear equation CδΘ = y, where the
matrix C is always full-rank due to the presence of the
ridge term, permitting a direct solution. A Python imple-
mentation of this procedure is provided (Code Availability).
Via grid search we chose λS, λ0 to yield a mean error of less
than 0.015 eV/Å to the soft constraint forces and 0.025
eV/Å to the QM/ML forces, from an initial mean error of
nearly 0.2 eV/Å. A detailed presentation of the refitting re-
sults are presented in the supplementary materials [58]. We
found this balance of hyperparameters controlled against
overfitting whilst providing excellent reproduction of energy
profiles (via force integration) and relaxed dislocation core
structures. Further investigation of increasing potential

complexity to further improve the retraining will be the
subject of future work. We now apply this method to study
dislocation-defect interactions in tungsten.

3. Results

3.1. Dislocation glide in bcc tungsten

In bcc materials screw dislocations with Burgers vector
b = 1

2 〈111〉 along closed packed 〈111〉 directions are the
most ubiquitous. Movement of these dislocation is possible
in few slip planes [59] with {110} planes being dominant
at low temperatures [19, 24]. Formation of junction dislo-
cations with Burgers vector along 〈100〉 direction occurs
as a result reactions of type 1

2 [11̄1] + 1
2 [111̄] = [100] during

strain hardening [60] or plasma exposure [61]. Resulting
〈100〉 dislocation can glide in few planes including {001}
and {011} depending on the geometry of the reaction [62].

In this section we use an Embedded Atom Method
(EAM) potential marked as “EAM2” from [63], in addition
to a recent LML potential from [11] for our application
material, tungsten. The LML potential, whose general
form is given in Eq. 1, has state-of-the-art accuracy on a
wide range of lattice, point defect and screw dislocation
properties. These two potentials are employed to calculate
the Peierls barriers for junction 〈100〉 dislocation in {001}
and {011} glide planes. We analyse the performance of
the potentials by comparing the results to QM/ML cal-
culations using the LML potential for the embedding ML
region, chosen as the LML has perfect matching of the QM
elastic constants. Total number of atoms in the cells were
4574 atoms for [100](001̄) model dislocation and 6396 for
[100](011) dislocation. While QM/ML mapping consisted
of 24 QM and 123 buffer atoms (147 atoms in DFT cluster)
for [100](001̄) dislocation and 14 QM and 96 buffer atoms
(110 atoms in DFT cluster) for [100](011) dislocation.
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Figures 2(a, b) show Minimum Energy Paths (MEP)
for Peierls barriers calculated with our modified force-only
NEB routine (Appendix A). For the {001} glide plane (Fig-
ure 2(a)) the EAM and LML potentials differ significantly
both in terms of amplitude and shape of the barrier while
for {011} glide plane (Figure 2(b)) the barriers are practi-
cally indistinguishable. Identical results were found using
force integration and total energy differences for the NEB
routine, again confirming the accuracy of this approach [33].
Both EAM and LML potentials predict the barrier for glide
in {001} plane at least three times higher than in {011}.
At the same time QM/ML results provide similar values for
both glide planes around 0.4 eV. The glide barrier in {001}
is overestimated by the potentials while the barrier in {011}
is underestimated leading to qualitative disagreement with
QM/ML reference data and overall poor performance of the
potentials. It is important to note that this work QM/ML
barriers are the only available QM reference data for this
type of dislocations due to the large size of the simulation
cell. Previous work [33, 56] has validated and performed
extensive convergence checks for the virtual work NEB
procedure detailed here.

Access to the QM/ML forces allow us to produce a
new LML parametrization using our constrained refitting
procedure. The results are shown with green dots and
dashed lines in Figures 2(a,b). The residual force errors
of the retrained potential have very little influence on the
resulting energy barriers, where an excellent agreement can
be seen. We emphasize that the refitting only targeted
QM/ML forces, though the resulting LML energetic barri-
ers can be calculated equivalently by force integration or
total energy difference.

As the retrained LML potentials closely reproduce dislo-
cation core properties and have essentially perfect matching
of elastic constants, they can be used as a highly adaptable
embedding medium. We performed QM/ML calculations
with a spherical QM region, where the dislocation line
crosses the QM/ML boundary (see Figures 3 and 4(b)),
the first time such calculations have been performed to our
knowledge. We confirmed that a relaxing a long, straight
dislocation in this manner, with a spherical QM region
around a small section of the dislocation core, gave no
appreciable change in structure, with maximum atomic
displacement of less than 0.004 Å between the ML and QM
regions. In the following sections we exploit this refitting
procedure to investigate vacancy segregation to prismatic
dislocations, then helium-induced core reconstruction of
screw dislocations.

3.2. Dislocation-vacancy segregation energy

The biased diffusion of vacancies to dislocations is the
primary source of non-conservative plastic deformation,
a critically important process in creep deformation and
post-irradiation annealing [2]. Here we look at vacancy
segregation at junction 〈100〉{011} dislocation as the case
study for cross validation of 3D QM/ML coupling procedure
against the original LML and a retrained parametrization.

QM ML

Figure 3: Energy profile for vacancy segregation to [100](011) edge
(also known as junction [64]) dislocation in tungsten calculated with
multiple LML potentials and QM/ML force integration [33, 56]. The
full simulation contained over 70000 atoms, with the vacancy migrat-
ing to a spherical QM region. The original LML (Θ0) potential [11]
results demonstrates the force integration procedure exactly agrees
with total energy calculations. The QM/ML simulations (for which a
total energy does not exist) employed a retrained ML Θ potential
from the NEB path shown in figure 2, giving excellent reproduction
of the core structure with hard constraints of elastic properties and
the vacancy migration. We then further retrained this potential
to additionally minimize the error to QM forces from the QM/ML
segregation calculation. This final ML Θ′ potential gives excellent
prediction of the segregation energy.

We retrained with hard constraints on elastic properties
as described above and the vacancy migration pathway,
both of which remain in essentially perfect agreement with
reference DFT calculations. We confirmed that inclusion
of the vacancy migration path in AH during the retraining
left resulting core structure and Peierls barrier unchanged
(Supplementary Materials [58]).

In order to estimate vacancy segregation energy three
configurations containing 70355 atoms each with vacancy at
increasing distances from the dislocation core were relaxed.
After that eleven intermediate configurations between each
pair of relaxed configurations were obtained by linear inter-
polation of atomic positions. A spherical QM region was
kept the same for the all the configurations and consisted
of the union of spheres centered on the relaxed vacancy
positions leading to 27 QM atoms and 351 Buffer atoms
(378 atoms in final DFT cell). This large Buffer/QM ratio
was chosen to ensure a highly converged solution; however,
as we only employ a single k-point the total computational
effort is much less than a comparably sized periodic calcu-
lation.

The segregation energy was calculated via the virtual
work principle, integrating forces along a composite path
formed by linearly interpolating minima separated by 〈111〉
jumps, as shown in Figure 3. Whilst it would be possible
to perform NEB relaxations between these minima to ad-
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ditionally obtain migration barriers, this was omitted for
computational expediency. The smoothness of the inter-
action energy across the QM/ML boundary confirms the
exceptional matching of dislocation and elastic properties
between retrained LML and QM region.

The resulting value of segregation energy estimated
by QM/ML approach is 3.1 eV, whilst the original LML
potential gives 3.5 eV, demonstrating the reasonable accu-
racy of this potential even for previously unseen structures.
We calculated the segregation energy using both the total
energy difference (blue crosses) and virtual work (blue hol-
low circles). The values for both techniques are identical,
serving as a validation for energy difference estimation by
virtual work principle.

3.3. Further exploration of the retraining procedure

We further explored the capabilities of the retraining
procedure by extending the dislocation glide barrier targets
with forces from spherical QM region for three QM/ML
relaxed configurations. The resulting segregation retrained
potential Θ′ (orange x marks in Figure 3) is in excellent
agreement to the QM/ML reference result. This demon-
strates that the QM/ML retraining procedure detailed
here is suitable not only for providing advanced boundary
matching but can also be used to qualitatively expand the
range of useful training structures for machine learning
interatomic potentials, giving systematic improvement.

In order to verify that the constrained retraining en-
sures that retrained potentials inherit good description
of the desired properties we looked at vacancy formation
energy, vacancy migration energies and dislocation glide
barriers. The results are presented in supplementary mate-
rials [58]. It can be seen that both dislocation retrained (Θ)
as well as segregation retrained (Θ′) potentials maintain
perfect description of elastic properties as well as vacancy
behaviour in the bulk. Thus we see no signs of overfitting
in the constrained domain.

We note that similar functionality should be achievable
with highly flexible (large capacity) approaches employ-
ing e.g. neural networks [44, 49] or kernels [66] such as
GAP [43]. Kernel methods can have theoretically infinite
capacity, which is controlled during the refitting procedure
by sparsification and providing the relevant information
from the database [67]. However, this procedure requires
special design of the database, some prior knowledge of
relevant atomic configurations for a specific physical prob-
lems pointed up with the appropriate theoretical tools
[11, 68, 69]. The present procedure is general and simply
requires a linear ML potential with capacity larger than the
minimum required for the assimilation of elastic properties.
Here, we use a quadratic non-linear ML in descriptors,
that can be seen as linear ML potential in an extended
descriptor space [11, 45]. Moreover, recently, it was shown
that this formalism has enough learning capacity in order
to assimilate complex features of defects energy landscape
in Fe and W [11], thus being appropriate for the present
investigation.

3.4. Impurity-induced core reconstruction
In pure tungsten screw 1

2 〈111〉 dislocations are char-
acterised by so called ‘easy’ core [65, 70, 71] shown by
means of differential displacement map in the top and the
bottom parts of Figure 4(b). The glide of screw disloca-
tions is essentially the movement between two equivalent
‘easy’ core configurations [72]. Point defects segregated on
a dislocation line can affect the relative stability of different
core types thus changing the glide mechanism locally. In
this section we consider the effect of single helium atom
on the core stability of screw dislocation as a challenging
application of 3D QM/ML coupling involving foreign atoms
in the QM region. The original LML potential has an ex-
cellent agreement with DFT for the screw dislocation glide
barrier and core structure [11]. The retraining procedure
in this case only gave very small adjustments to the origi-
nal parametrization, which primarily gave small changes
in dislocation core structure, with negligible changes in
the Peierls barrier. Nevertheless, the retraining procedure
was employed to ensure perfect matching for 3D spherical
QM region. Importantly, in all cases the DFT region is
sufficiently large that no tungsten atoms in the ML re-
gion interact directly with the He impurity, only indirectly
through induced relaxations. In the general case, where
the direct interaction range is larger than the QM region,
the ML potential would have to account for the impurity
interaction at this range. Whilst we do not anticipate this
to arise in most application settings, this will be further
investigated in future work.

Figure 4(a) shows the stabilisation of the ‘hard’ core
by He impurity atom while in pure material this type of
core is unstable [24]. These results are obtained using a
computational cell containing a one |b| thick disk of atoms
oriented perpendicular to the dislocation line. The cell
consists of 1927 atoms with 79 QM atoms shown with blue
spheres and 168 buffer atoms shown with orange spheres
resulting in a DFT cell containing 247 atoms. Periodic
boundary conditions along z direction corresponding to the
dislocation line yields in a model quasi infinite dislocation.
However, when an impurity atom is added to this cell,
it effectively models a dislocation fully decorated with
He atoms shown in the bottom of Figure 4(a). ‘Hard’
core stabilisation was also seen for the case of carbon
in tungsten [26]. Carbon atom occupied a central 1

2 |b|
position between {111} planes of tungsten atoms forming
the hard core. In contrast, stable He position is shifted
towards one of the planes with final distance of 1

3 |b| to the
nearest plane.

Figure 4(b) shows the results obtained with a cylinder
cell composed of 59707 atoms with a spherical QM region
centered around the He atom. The resulting DFT cluster
contained 396 atoms with 24 atoms in QM region (blue
atoms) and 373 atoms in Buffer (orange atoms). The left
part of the figure demonstrates the extracted dislocation
core position by fitting theoretical displacement field to the
atomic displacements extracted from the relaxed atomic
positions with 1

3 |b| discretisation step [24, 26]. It can be
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Figure 4: He-induced reconstruction of screw dislocation core obtained with two simulation geometries. Dislocation core structures are shown
using differential displacement maps [65]. (a) An atomic ‘disk’ of primitive thickness (i.e. a single lattice plane) oriented perpendicular to the
dislocation line with a circular QM region centered on the line. This geometry was used for the NEB calculations in Figure 2. Introduction of
He stabilizes the ‘hard’ core over the ‘easy’ core, changing the dislocation migration trajectory [24]. (b) A large cylindrical cell orientated
along the line direction, with a spherical QM region centered on the He impurity. The He induces a qualitatively different reconstruction to
the ‘split’ core, which slowly relaxes back to the ‘easy’ core far from the He center. We emphasise that for all the cases the ‘Buffer’ region is
shown purely for descriptive purposes; all atoms in this region are governed by the same LML potential as those in the ML region.

seen that the in contrast to ‘disk’ cell results, He stabilises
the ‘split’ core locally. The dislocation goes back to ’easy’
core configuration at distance of ≈ 10 |b| from the impurity.
Similar relaxation lengths were obtained with fully periodic
cells for carbon stabilised hard core in tungsten [26]. In
this study cells up to 10 |b| length along dislocation line
containing 1350 atoms were considered. The extracted
dislocation core position indicated the dislocation does not
completely recover the easy core far from the carbon atom
even for 10 |b| cell. This clearly demonstrates that it is
essential to have a large cylinder configuration in order to
capture effects of point defects on dislocations correctly.
It is important to note that carbon atom remained in the
same position with increasing the length of the cell while
the stabilised core position moved to the middle point
on the straight path between hard and easy cores. We
obtained significant difference of He atom position between
‘disk’ and ‘cylinder’ cells as well as the stabilised split core
position largely deviates from the straight easy-hard core
path. The absence of jumps of the core position as the
dislocation core exits the QM region confirms that we have
achieved excellent matching of core properties between QM
region and retrained LML potential resulting in a unique
simulation tool.

3.5. Helium segregation and hardening

As discussed in the introduction, experiments with
helium implanted tungsten show that He concentration
as low as 20 appm is sufficient to influence intergranu-
lar fracture [17], whilst experiments with much higher

concentrations up to 2×105 appm also demonstrate that
TEM-invisible He and He-vacancy clusters can contribute
significantly to the resultant hardening [15]. This conclu-
sion is supported by large scale MD simulations of edge
and mixed dislocation propagation through these defects
[16]. However, the interaction of dislocations with even the
most primitive vacancy-helium defects is limited by the
accuracy of available interatomic potentials [18], which we
address here using our QM/ML methodology.

A number of recent ab initio studies with periodic su-
percells have parameterized thermodynamic model for im-
purity segregation to screw dislocations, using segregation
models such as ([73], equation 23)

CHe
SD

1− CHe
SD

=
CHe

bulk

1− CHe
bulk

exp(−β∆EbHe−SD), (4)

Segregation of H [74, 75] and C [26] in W and in Fe [76, 77]
were investigated. In the case of W nominal concentrations
were in the range of 10 - 1000 appm and the models are
valid only for saturated limit where the dislocation is fully
reconstructed to a hard core configuration are considered.

Helium production in transmutation reactions during
neutron irradiation is expected to reach levels of 20 appm
after 5 years of operation of the DEMO fusion reactor [14].
We use this estimation define the range of nominal concen-
tration of mobile He in the bulk, and study He segregation
to screw dislocations. As multiple trapping sites for He
will exist, in practice all nominal appm values should be
considered an upper bound for the segregation problem,
as all He in the material is assumed mobile and available
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Figure 5: Reconstruction of screw dislocation core induced by single He atom (a, b), single vacancy (c), He2 cluster (d), He3 cluster (e) and
helium-vacancy cluster (f). Green solid lines show the extracted dislocation lines, while green dashed lines show the position of next Peierls
valley for a straight dislocation in a perfect material.

for trapping at screw dislocations. We also neglect He-He
interaction, meaning our model is only self-consistent at
dilute He concentrations.

To calculate the He binding energy, we first employ
the force integration method to give the energy difference
between the fully segregated He at the dislocation core (Fig-
ure 5(a)) and a position away from the core (Figure 5(b))
where the dislocation returns to an almost perfect straight
line. This gives an energy difference of ∆EFHe−SD=1.12 eV.

To obtain a final binding energy we then take the total
energy difference ∆EEHe−SD = ESD−EHe−SD+EHe−bulk−
Ebulk, where ESD is the energy of QM cluster with empty
screw dislocation, EbHe−SD - energy of QM cluster configu-
ration with He and screw dislocation, Ebulk and EHe−bulk
- energy of a box with bulk tungsten and same box with
He in tetrahedral position. The use of a total energy dif-
ference to calculate ∆EEHe−SD is justified as the He atom
in the position shown in Figure 5(b) induces only minimal
dislocation core reconstruction. As a result, the surface of
the spherical corresponding QM cluster is very close to the
case of empty screw dislocation used as a reference, and
thus, the total energy is expected to be a good approxi-
mation, as found in other studies [30]. The accuracy of
this final approximation will be be verified by further force
integration in future work.

This estimation gives the value of ∆EEHe−SD=0.4 eV
resulting in the total He - screw dislocation binding energy
of ∆EbHe−SD = ∆EFHe−SD + ∆EEHe−SD=1.52 eV. As can
be seen from figure 5(d) the applicability of the total energy
approximation is also expected to hold for the case of He-

vacancy cluster due to the minimal core reconstruction.
However, the long range relaxations induced by a vacancy,
shown in figure 5(c), imply that a total energy difference
will not be reliable. In this case, we employ force integration
as described in section 3.2.

The resulting binding energy of He to screw dislocation
of 1.52 eV is used in equation (4) to provide estimations
of the amount of He trapped at dislocations at a range of
temperatures (Figure 6). For ITER divertor operation
conditions tungsten monoblocks are expected to heat up to
∼2200 K during plasma pulses and cool down to ∼900 K
between the pulses [78]. Our prediction shown in figure 6
indicates that He is segregated on dislocations in the dilute
regime during pulses with the transition to the saturated
regime between the pulses. To investigate the mechanism
of the dilute to saturated transition we performed QM/ML
relaxations of He2 (Figure 5(d)) and He3 (Figure 5(e))
clusters in the same geometry. As can be seen, these
clusters did not show stabilisation of hard core even when
the saturation is achieved locally. This contrasts with
estimation of H [75] and C [26] segregation, which can be
expected due to the much higher bulk content and lower
temperatures of interest as well as higher binding energies
of 2.1 eV for C vs 1.5 eV for He. Total binding energy
estimation of the He interaction energy once trapped at
dislocations shows slight repulsion of -0.12 eV for He2 and
-0.16 eV for He3 clusters. This is to be contrasted with
the strong attraction (1 eV) of He in bulk tungsten [79],
demonstrating the importance of ab initio calculation of
dislocation-defect interactions.
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A key element of a recently proposed He hardening
mechanism [15] in tungsten is the pinning of screw dis-
locations by He-vacancy complexes which then bow out
into mixed dislocations. To investigate this mechanism
we performed a QM/ML relaxation of a single vacancy
(Figure 5(c)) and helium-vacancy complex (He in substi-
tutional position) Figure 5(f)). The He-vacancy complex
shows only a very weak binding energy of 0.3 eV, while
vacancy shows signs of core reconstruction with a binding
energy of 1.2 eV. As helium clusters can create vacancies
by self-trapping mechanism [18, 80, 81], and vacancies are
known to be strong sinks for highly mobile He [82], we
can expect the He-vacancy complex to be the dominant
point defect [15]. However, our studies show that this gives
only a very weak binding energy for screw dislocations,
meaning the only plausible hardening mechanism would
be a high energetic barrier for bypass. A study of this
mechanisms using our QM/ML simulation methodology
will be the subject of future work.

4. Conclusions

In this paper, we have shown how state-of-the-art linear
machine learning (LML) potentials [11, 54] can be used
a highly adaptable embedding medium for QM/ML simu-
lations of extended lattice defects, and provided an open
source code to allow easy adoption of the method (4). Ap-
plying this approach to the calculation of Peierls barriers
of 〈100〉 edge dislocations revealed much less variation with
slip plane compared to current interatomic potentials, with
the barrier of 〈100〉{010} edge dislocations significantly
overestimated, in agreement with previous work [33].

Our new method allows for fully three-dimensional sim-
ulation geometries for dislocation-defect interactions, which
qualitatively change relaxed geometries, as shown in figure

4 for He-induced core reconstruction of screw dislocation
core in tungsten (section 3.4).

We emphasize that the largest DFT simulations used in
the present work contained less than four hundred atoms,
with a single k-point due to the open boundaries. This
is approximately equivalent in computational effort to a
128 atom system with a sparse 3 × 3 × 3 k-point grid,
a routine calculation in modern theoretical materials sci-
ence. Due to the general form of retraining procedure and
demonstrated applicability of QM/MM method to grain
boundaries [30] and cracks [31], the presented method is
generally applicable for any extended defect. Future work
will investigate the many opportunities this method offers
for the systematic improvement of machine learning poten-
tials, as demonstrated for vacancy-dislocation interactions
in section 3.2.

The method was then applied to the interaction of a
range of vacancy-helium defects with dislocations in tung-
sten and were compared to recent experiments. We found
the helium-vacancy defects have a much weaker binding to
screw dislocations (0.3 eV) than vacancies alone (1.2 eV)
and mobile helium interstitials are predicted to have a
mild segregation to screw dislocations at fusion-relevant
temperatures. To fully investigate the hardening effects
of these defects on 〈111〉 screw dislocations, the primary
plasticity carriers in bcc metals, will require simulations of
possible bypass mechanisms to ab initio accuracy, which is
only possible using the method presented here. This will
be subject of a future investigation.
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Appendix A. QM/ML coupling and energy

Force based QM/ML coupling scheme used here practi-
cally requires running two simulations in parallel. In our
case we use LAMMPS [55] for ML part and VASP [84] for DFT
cell while the coupling is implemented with python ASE

interface [12]. The QM/ML forcs FQM/ML is obtained by
mixing ML force FLAMMPS with ab initio force FVASP with
simple relation:

FQM/ML =

{
FVASP, X ∈ QM

FLAMMPS, otherwise
, (A.1)

where X is atomic coordinates vector and QM denotes
QM region shown with blue color in figure 1. The position of
the atoms are then updated according to the QM/ML force
FQM/ML during ionic minimisation. An important aspect of
hybrid QM/ML simulations (and open boundary methods
more generally) is the need to have a ‘buffer’ of sacrificial

DFT atoms (shown with orange color in Figure 1), suitably
large to protect the target cluster from electronic free
surface effects, determined through convergence tests [33].
Here, the positions of buffer atoms are controlled by the ML
force FLAMMPS, as illustrated in Figure 1. In this way the
coupling medium acts as an advanced boundary condition
for the VASP cell. The size of the QM region depends on the
application. For the dislocation glide barrier calculations
QM region was centered on the dislocation core and the
size was obtained after a series of convergence tests on
the glide barrier made in previous works [33, 56]. For the
spherical QM region centered on a point defect the size
was chosen so that the region contains at least two layers
of nearest neighbour bulk W atoms.

One well known consequence of this procedure is that as
the electronic total energy cannot be partitioned between
cluster and buffer, a total energy cannot be defined [32].
However, the ionic (Hellman-Feynmann) forces can be un-
ambiguously assigned, giving a total force vector F for
the system, which has been used to perform structural
minimization and dynamics for some time [32]. In re-
cent work [33, 56], we have partially lifted this limitation,
rigorously extracting energetic differences between two
configurations through the principle of virtual work. This
technique has been implemented in ASE as part of the NEB
routine, to compute energies along minimum energy paths.
The computational cost of NEB relaxation can be avoided
if only end-to-end differences are desired, as demonstrated
below when calculating the dislocation-vacancy binding en-
ergy, following a linear interpolation between minima. For
initial and final atomic configurations Xi,f , we construct
some smooth pathway X(λ), where λ ∈ [0, 1] is an affine
parameter such that X(0) = Xi and X(1) = Xf , with
corresponding ionic forces F(λ′). The virtual work energy
difference along the pathway then reads [33, 56]

E(λ)− E(0) =

∫ λ

0

F(λ′)
d

dλ′
X(λ′)dλ′, (A.2)

where (d/dλ′)X(λ′) is the pathway tangent. If performing a
NEB relaxation, E(λ)−E(0) will give the minimum energy
profile. If the path is an unrelaxed interpolation between
two minima, then only the total difference E(1)− E(0) is
typically of practical use. Whilst not encountered in the
present work, it is possible that a partial relaxation may
be beneficial in some settings, to avoid very large forces
along the pathway that could cause quadrature issues in
Eq. A.2.
The NEB calculations presented in Figure 2 evaluated
energy barriers from Eq. A.2, interpolating the eleven in-
termediate images using a spline interpolation of forces
and positions, as detailed in previous work [33, 56]. The
stopping force tolerance for NEB path optimisation using
FIRE algorithm [85] was 0.05 eV/Å. An implementation
of our method is provided in the ASE simulation package
(Code Availability). Starting positions for the NEB re-
laxation were a obtained by linear interpolation between
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initial and final configurations relaxed with preconditioned
minimisation with adaptive step size selection [86–88] with
a maximum force tolerance of 0.01 eV/Å.

Appendix B. DFT Parameters

Density functional simulations were performed using
VASP [84]. The PBE generalised gradient approximation [89]
was used to describe effects of electron exchange and corre-
lation together with a projector augmented wave (PAW)
basis set with a cut-off energy of 550 eV. Occupancies were
smeared with a Methfessel-Paxton scheme of order one
with a 0.1 eV smearing width. The Brillouin zone was
sampled with a 1× 1× 12 Monkhorst-Pack k -point grid for
the 2D cluster simulations periodic along the dislocation
line and single k -point was used for the calculations with
3D spherical QM regions. The values of these parameters
were chosen after a series of convergence tests on forces
with a tolerance of few meV/Å.

Appendix C. Linear machine learning potential

We employ a quadratic extension of the bispectral de-
scriptor as implemented in the MILADY potential package,
first introduced as part of the SNAP family of LML poten-
tials [45]. The initial quadratic parametrization used a
novel preconditioning procedure as presented in detail in
a recent publication [11], to which we refer the reader for
further information.

Briefly, let Bji(X), j ∈ [0,NB] be the NB bispectral
components for an atom i, along with a constant compo-
nent B0i ≡ 1. Only neighboring atoms within the cutoff
distance (here 4.7 Å) are included in the descriptor function
calculation. The quadratically extended descriptor vector
for the system then reads

D(X) =
∑
i

⊕
j≥k

Bji(X)Bki(X) ∈ R1+2NB+NB
2/2,

(C.1)
where ⊕ indicates concatenation, giving (NB + 1)(NB +
2)/2 = 1 + 2NB + NB

2/2 components. The quadratically
extended form Eq. C.1 includes all terms linear in B (terms
when k = 0). The number of bispectrum components NB

is determined by an angular moment parameter jmax =
4, giving NB = 55. The original parametrization Θ0 is
determined in a two stage regression procedure, named
‘quadratic noise’ [11], where a fit is first found using only
the 55+1=56 linear combination of bispectrum components,
which is then used to precondition a solution employing
the above quadratic extension.
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[67] N. Bernstein, G. Csányi, V. L. Deringer, De novo exploration and

self-guided learning of potential-energy surfaces, npj Comput.
Mater. 5 (1) (2019) 99. doi:10.1038/s41524-019-0236-6.
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