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Abstract

Active matter seeks to bring a physical understanding to bear on biological sys-
tems. These systems are rendered ‘active’ by self-driven constituents which break time-
reversal symmetry on the local scale and induce striking non-equilibrium effects such
as persistent currents. The particular focus of this thesis is active nematics, in which
this activity is paired with the orientational order that characterises the nematic liquid
crystalline phase. One of the signature features of passive nematics is their topological
defects and these also play a defining rôle in the dynamics of their active counterparts.
The equilibrium state of a nematic is provided by harmonic functions and this thesis is
a three-fold investigation of the insight these can provide into the behaviour of active
nematics.

This is initiated by introducing a novel multipole approach to characterise the
far-field active response to distortions of the nematic. We identify those distortions
which result in actively-driven phenomena forbidden in equilibrium, such as sponta-
neous propulsion or rotation and also how such distortions could result from colloids or
topological defect configurations.

Applying this approach to the solid angle function, appropriate to describe the
distortions originating from a defect loop, reveals the part played by the loop’s geometry
in its dynamics, in particular rotational effects due to non-planarity. These offer an
explanation for the recent experimental observation that activity results in an uneven
distribution of loop geometries.

Lastly, we use conformal mappings to investigate in two dimensions how the
multipole character of a nematic may be influenced by colloidal geometry. This fulfills the
initial motivation of showing how to controllably induce all the distortions we identified
as producing striking active phenomenology, but also provides methods for analytic
determination of the equilibrium director, applicable to a generic colloid, and shows how
colloids can be designed which generate arbitrarily intricate nematic multipoles.

The results of this thesis provide a framework for understanding the basic re-
sponses of active nematics, along with the dynamics of their fundamental, topological,
excitations as well as how geometry interacts with nematic order. They open up path-
ways to novel nematic metamaterials as well as the design of bio-inspired micromachines.

vii



By mathematics we shall come to heaven.

This page the door of God’s academy

for the geometer.

Rowan Williams, Bach for the Cello

1
Introduction

U
nderstanding the processes of life is surely one of the great challenges of sci-

ence. While we are used to the notion that inanimate matter should succumb

to a physical description, living creatures have an ineffable quality that seems

to set them apart. However, this distinction is eroding. Much as one of the crowning

achievements of 20th century science was quantum mechanics providing a physical basis

for the rules of chemistry, there is increasing effort to gain similar physical insight into

the behaviour of biological systems. Indeed, in the wake of the quantum revolution it was

Schrödinger’s hope that understanding the chemistry of organic molecules might lead

to a physical theory of life [1]. Nonetheless, the quest to understand life from physical

principles did not end with the discovery of the structure of DNA, contrary to Crick’s

supposed exclamation that he and Watson had ‘found the secret of life’ [2]. The difficul-

ties inherent in establishing the rules that govern the smallest scales notwithstanding,

they can still be insufficient to explain the collective phenomena that emerge at larger

ones. This is familiar in physics as the phrase ‘more is different’, introduced by Anderson

in his 1972 article of the same name [3] – the standard model does not render redundant

the study of large-scale condensed matter systems in their own right and their behaviour

is often best described by formulating theories in terms of macroscopic collective prop-

erties, rather than in the most basic constituents. This shortcoming of a bottom-up

1
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approach is eloquently encapsulated by Berry, who observes that the behaviour of liv-

ing organisms is not easily understood by ‘writing down the Schrödinger equation and

gazing at it’ [4].

Understanding the collective behaviour of biological systems from a condensed

matter viewpoint is the goal of the field known as active matter. It has its origins in the

work on fish schools by Aoki [5] and Partridge [6] and in Reynold’s 1986 agent-based

simulation of bird flocks known as Boids (this being ‘Birds’ in a Brooklyn accent [7]),

which was used to model flying bats for the 1992 film Batman Returns [8]. The field

garnered increased attention within the physics community when in 1995 Vicsek showed

that a phase transition from random motion to collective flocking could occur in a model

of ‘flying magnets’ – agents that moved in their direction of alignment and updated this

alignment in order to match that of their neighbours, subject to noise [9]. Shortly

afterwards Toner and Tu formulated Vicsek’s model as a continuum field theory with

the Toner-Tu flocking equations [10]. In the subsequent years unifying principles have

been revealed behind phenomena in disparate systems over a vast array of scales, from

the murmurations of starlings at dusk [11; 12] to the swarming of bacterial populations

[13; 14; 15].

The domain of active matter is any system which is composed of constituent

elements capable of converting energy into directed motion or stresses exerted on their

environment. Living organisms provide the prototypical example, but there are also

synthetic realisations in the form of agitated rods [16; 17] and colloidal particles driven

by chemical reactions [18; 19]. That they are driven out of equilibrium by the injection

of energy on the local level makes them fundamentally different from more traditional

forms of non-equilibrium systems in which the input of energy is global, for example

by applying a shear to the sides of a container. The local breaking of time-reversal

symmetry means that active matter is not subject to the law of detailed balance and

is able to display persistent currents in its steady state. The aim of the field then is to

determine how to formulate theories of active systems in light of the symmetries that

are both broken and maintained, to draw out the underlying principles that lead from

self-driven agents to emergent collective phenomena and understand how these principles

might be applied to control biological matter and design bio-inspired materials.

This thesis is concerned with a particular class of active matter known as active

nematics [20], comprised of an ambient fluid containing anisotropic rod-shaped agents

which exhibit orientational ordering. This ordering invites a description by means of

analogy with nematic liquid crystals [21], a quintessential example of an ordered fluid

phase. Before discussing this active nematic class further we present a striking example
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of the non-equilibrium phenomena that can occur in active systems that will motivate

much of the work of this thesis.

An asymmetric cog placed in a population of bacteria can spontaneously and

consistently rotate [22; 23]. The incoherent run-and-tumble movement of the bacteria is

reminiscent of Brownian motion but the presence of the cog rectifies this motion causing

the bacteria to preferentially move along its edges and exert a sustained torque. This

ability to extract the energy inherent in active systems in the form of useful work is

of direct relevance for the design of biological micromachines. It also stands in stark

contrast to the inability to extract such work from equilibrium systems, as exemplified

by Feynman’s ratchet-and-pawl thought experiment [24]. The bacterial systems in which

these ratchet effects have been realised lack the orientational ordering which characterises

active nematics, and achieving similar rectification of the dynamics in these ordered

systems is an on-going challenge. In Chapter 3 we show how rotational flows may be

induced in active nematics and in Chapter 5 we demonstrate that suitably designed cogs

may allow for analogous ratchet behaviour to be achieved.

In considering active nematics we work within the framework of a phenomenolog-

ical hydrodynamical theory introduced by Simha and Ramaswamy in 2002 [25]. While

attempts have been made to derive theories of active hydrodynamics from the coarse-

graining of a microscopic description [26; 27] we do not engage with this here and instead

accept as our starting point Simha and Ramaswamy’s continuum theory derived from

pure thought on the basis of permitting in the equations all terms allowable by the sym-

metries of the system. The resulting equations have been used to describe the behaviour

of many systems, including eukaryotic cells [28; 29], certain bacterial colonies [13; 14]

and epithelial cells [30]. The spirit of our work will be to trade specificity for generality,

ignoring the details of particular biological systems in favour of approximations that

allow us to bring to bear the powerful machinery of algebraic topology and complex

analysis while still capturing the essential qualitative phenomena.

Condensed matter systems are often best described not in terms of their con-

stituent particles, but in terms of the ‘quasiparticle’ fundamental excitations of the col-

lective, and active matter is no exception. In ordered media these excitations often take

the form of topological defects, singular structures where the ordering breaks down that

encode some non-trivial winding. The study of topological defects can be traced back to

the 1830s with Whewell’s studies of amphidromic points [31; 32], places in the sea where

lines of high tide meet and at which no tide can be defined. Another example is given by

the winding of time zones around the poles of the Earth, making the specification of the

time at these points impossible. Topological defects have since found application across
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a wide array of ordered phases, including but not limited to cosmic strings [33], vortices

in superfluids [34], phase singularities of quantum wavefunctions [35; 36], ‘threads of

darkness’ in light fields [37] and in the molecular alignment of liquid crystals [21]. The

non-equilibrium stresses that define active matter elevate their topological defects to the

status of driving the system dynamics, leading to a quasiparticle description of their

behaviour in terms of that of their defects [38]. This formulation is well-advanced in

the case of two-dimensional active nematics [39; 40; 41; 42], but is still being developed

in three-dimensions due to the more complicated form that the topological defects take

[43; 44]. The fundamental role that these topological defects play in three-dimensional

active nematics will be the subject of Chapter 4.

A unifying theme running through this thesis stems from the theoretical descrip-

tion of active nematics that we employ. We consider the flows that result from an active

nematic in which the energy due to elastic deformations is minimised. These energy

minimisers are harmonic functions, that is solutions of Laplace’s equation, and this the-

sis may therefore be viewed as harmonics three ways. Chapter 3 rests on the fact that

the asymptotic distortions of a uniformly aligned nematic are described by the spheri-

cal harmonics. In Chapter 4 we apply this multipole analysis to defect loops, utilising

the fact that the unique harmonic function with winding around a singular loop is, up

to an additive constant, given by the solid angle function of Maxwell [45; 46]. Lastly,

our two-dimensional work in Chapter 5 relies on the one-to-one correspondence between

harmonic functions and meromorphic functions.

The near-ubiquitous nature of Laplace’s equation therefore lends the methods

used in this thesis applicability in a broader context than we consider here. The potential

of any conservative force bound by Gauss’s law will, in free space, obey the Laplace

equation, making it fundamental to the study of electrostatics and gravity. Additionally,

it appears as the time-independent form of the heat and wave equations, as well as the

free-space Schrödinger equation. Lastly, it is a foundational principle of physics that

the equilibrium states of systems can be described as minimising some functional. The

Dirichlet, squared-norm functional is among the simplest and its minimisers are again

solutions of the Laplacian. This is the source of its relevance to the study of nematics

but also applies to the description of minimal surfaces.

The remainder of this thesis is organised as follows. Chapter 2 contains a brief

survey of the theory of passive and active nematics, with a focus on those parts pertinent

to our later studies, in particular the role played by topological defects.

In Chapter 3 we employ a multipole analysis of nematic distortions to characterise

the generic response to deformations of an active nematic. A similar multipole approach
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has been successfully used to understand the behaviour of passive nematics, for example

in the context of interactions between colloidal inclusions, but their application to active

systems as what we term ‘active nematic multipoles’ is novel. It provides a hierarchical

framework for understanding the behaviour of active nematics in which a generic active

flow may be derived from a fundamental response. We identify those distortions for

which the active stresses produce a net active force or torque, as determined by the

nature of the dipole and quadrupole term respectively. These distortions are associated

with striking self-propulsive and rotational behaviour and their understanding opens up

avenues for the control of active nematics and the ability to extract useful work from

them. As a global description of the response of an active nematic to distortions, the

work of this chapter is applicable to those distortions that arise due to colloids or singular

structures such as defect loops. Much of the remainder of the thesis is an unpacking of

the ideas in this chapter with regard to these specific applications.

In Chapter 4 we apply this multipole expansion to the solid angle function to

develop a description of defect loops in three-dimensional active nematics. These defect

loops have been shown in a recent experiment to be the key driver of the dynamics in

these systems [43]. Our work provides a global description which complements a previous

local analysis [44] and also extends it to consider non-planar loops and loops with a

generic orientation. This leads to a self-dynamics dependent on the loop’s geometric

type. The dipole term leads to active stresses that generate a global self-propulsion for

splay and bend loops. The quadrupole moment is non-zero only for non-planar loops

and generates a net ‘active torque’, such that defect loops are both self-motile and self-

orienting. Our analysis identifies right- and left-handed twist loops as the only force- and

torque-free geometries, suggesting a mechanism for generating an excess of twist loops,

as observed experimentally [43]. Finally, we determine the Stokesian flows created by

defect loops and describe qualitatively their hydrodynamics.

In Chapter 5 we use conformal methods to construct the harmonic functions

appropriate for a given polygonal colloid in a two-dimensional nematic and understand

the connection between the geometry the colloid and the distortion it induces, paying

particular attention to the form of the dominant multipole. This is motivated by the work

of Chapter 3 which identified certain multipoles as generating non-equilibrium effects

in active nematics, but also by multipole-based description of colloidal interactions in

passive nematics. In this context it is a goal to achieve high-order distortions which

lead to intricate interactions and, in the sense of the colloidal atom paradigm, exceed

the complexity of the periodic table. We begin by using our construction to provide a

quantitative description of experimental observations of the diversity of distortions that
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can be induced by regular polygons. We then investigate the effects of concavity and

chirality through classes of star- and asymmetric cog-shaped polygons. This identifies

subtle orientation-dependency in both cases. In the latter case this would seem to

confound the ability of a cog to produce a sustained active rotation, since the coefficient

of the chiral quadrupole which is associated with a net active torque varies as the cog

rotates. However, we show how suitably designed cogs can avoid this issue and produce

ratchet effects of the same kind as observed in bacterial systems, with the same potential

for work extraction and micromachine design. Lastly, we demonstrate how the techniques

we have developed may be used to design colloids which induce a distortion with a leading

multipole of arbitrarily high order.

Finally, in Chapter 6 we reflect on the work of this thesis, draw a few conclusions

based on its main findings and offer some promising avenues for future investigations.



My heart is in a world of water and crystal

Du Fu, In Abbot Zan’s Room at Dayun Temple

2
Overview of Passive and Active Nematics

T
o reiterate, the defining, unifying property of active matter is that the individual

constituent entities are able to convert energy into motion or the exertion of

stresses, constituting a breaking on time-reversal symmetry on the local level.

However, within this umbrella term many distinctions can be made. The focus of this

thesis is the class of wet active nematics. To unpack what is meant by this we now

briefly lay out some of the features which characterise and differentiate active systems.

The distinction between living and synthetic active systems notwithstanding, let

us begin with the particles that comprise the active system. These may be spherical,

lacking any orientational order and described by a scalar order parameter: the density.

This has applicability for example as a simplified model of the run-and-tumble motion

of certain bacteria such as E. coli [47] and predicts a liquid-gas ‘motility induced phase

separation’ [48]. The description can be in terms of self-propelled agents or continuum

fields, through an adaptation of the Cahn-Hilliard model [48]. The description of chiral

fluids composed of self-spinning fluids, such as colloidal suspension of spinning magnets

[49], requires a second scalar field, the rotation frequency. The combined breaking of

both parity and time-reversal symmetry leads to topologically-protected edge currents

[50; 51; 52], analogous to those that appear in the quantum Hall effect [53].

Alternatively, the particles may be anisotropic and hence capable of displaying

7
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orientational order. In polar systems the particle’s anisotropy leads to self-propulsion

in a particular direction, described by a vector order parameter. This is the class of

flocking models such as the Toner-Tu equations [10; 54] in which the coupling of broken

spatial symmetry with the breaking of time-reversal symmetry results in net currents and

is applicable to the description the collective behaviour on scales ranging from animal

herds [55] to migrating cells [56]. Other systems possess what is known as nematic

symmetry; the orientational ordering is not in a given direction but rather along a given

line, with no preference for aligning parallel or antiparallel. This apolarity can originate

from the particles themselves if they have nothing to distinguish a ‘head’ from a ‘tail’

or from the interactions, for example if they are purely steric [57]. This more subtle

form of orientational order is familiar from nematic liquid crystal and is described by

a tensorial order parameter [21]. The head-tail symmetry of active nematics precludes

the generation of net currents, but complex dynamics can emerge nonetheless [20] and

topological defects with polar orientation can exhibit active motility [40].

A second partition can be made according to the role played by friction. Dry

systems are those in which the collection of active particles can be viewed as following

an overdamped dynamics, with no momentum transfer through the fluid, while in wet

systems there is momentum conservation through the fluid and hydrodynamic interac-

tions play a key role [57]. It should be noted that this is less a distinction of the system

than it is of the model used to describe it, as ultimately whether a system behaves as

wet or dry will depend on the length scales being considered [57]. The flocking examples

given in the previous paragraph belong to the class of dry polar active matter; systems

that may be described by wet polar models include cytoskeletal suspensions [58], swim-

ming bacteria [59] and platinum-coated colloids driven by catalytic reactions [19]. Dry

nematic models can be applied to collections of melanocytes [60] and agitated granular

rods [16].

This returns us to the primary focus of this thesis: wet active nematics; nemati-

cally ordered systems driven from equilibrium by the motility of their individual elements

which experience long-range hydrodynamic interactions mediated by an ambient fluid.

We discuss the biological relevance of active nematics to the behaviour of bacteria and

cells in Section 2.4.1. Their quintessential experimental realisation is a two-dimensional

in vitro assembly of microtubules and kinesin motors lying at an oil-water interface, in-

troduced by the Dogic lab in 2012 [61]. The typical length of the microtubules is 1.5µm

and so this suspension provides a synthetic testing ground for models of micro-scale

active nematics. Many of the developments in the theory of active nematics have been

fueled by this system and the ability to both synthesise and measure with light-sheet
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microscopy three-dimensional analogues, only achieved in 2019 [43], is driving interest

in the theoretical description of three-dimensional active nematics [62; 44; 63].

Although understanding the dynamics of active nematics provides the principle

motivation for the work of this thesis, this leads us in Chapter 5 to results which are

applicable to traditional, passive nematic liquid crystals. In the remainder of this chapter

we therefore present an overview of the theory of both passive and active nematics,

proceeding in concert as much as possible. Even with focusing our attention on a subclass

of liquid crystal physics and active matter respectively this still constitutes a very broad

area and what follows is not intended to provide a complete review, only to lay the

groundwork for the results that follow.

2.1 An introduction to liquid crystals

Liquid crystals, with a name that seems a discordant contradiction, are a mesophase

of matter intermediate between crystals and liquids and combining properties of both.

The translational order that typifies crystals is lost but long-ranged orientational order

remains, meaning they can both flow and respond elastically; supporting shears and

torques [21]. Of course, for orientational order to be a meaningful concept the molecules

that exhibit liquid crystalline phases must be anisotropic, a classic example being MBBA,

shown in Figure 2.1, which at atmospheric pressure transitions from the crystalline to

liquid crystalline state at 20◦C before entering the isotropic phase at 47◦C, in which there

is no preferred molecular alignment. The transition is first-order, allowing co-existence

between the ordered and isotropic phases and in general may be either thermotropic,

governed by temperature, or lyotropic, brought on by changes in concentration. There is

also not a single liquid crystalline phase. What we have described is known as a nematic;

when there is a degree of positional ordering such that the molecules are organised

into layers the material is termed a smectic and in a cholesteric the molecules have a

preference to twist about an axis. Schematics of these liquid crystalline phases are shown

in Figure 2.1. The chemistry of what phases are exhibited by a given molecule can be

subtle; 5CB forms a nematic while the similar 8CB displays a smectic phase.

Such molecular details are not our concern. The key feature for us is the orienta-

tional ordering of nematics, which makes them a fruitful basis for modelling certain forms

of active matter, and this may be captured through a continuum director field n whose

direction corresponds to a coarse-grained average of the local molecular orientation. The

director n should not be thought of as a vector but rather a line field, having head-tail

symmetry such that the system is invariant under the transformation n → −n. As is
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N

O

n

MBBA

Nematic Smectic Cholesteric

Figure 2.1: Liquid crystalline phases. Above: the molecular structure for N-4-
Methoxybenzylidene-4-butylaniline (MBBA), which forms a nematic phase at room tem-
perature. Below: schematic representations of the nematic, smectic and cholesteric
phases. The director n corresponding to the average local molecular orientation in the
nematic is also shown.

clear from Figure 2.1, this symmetry need not be present in the nematogens themselves

(that it, the molecules which exhibit nematic ordering), rather we should think that as

many molecules point ‘up’ as ‘down’, the nematic symmetry of n emerging as a conse-

quence of our ‘zoomed out’ description. It will however be constructive at times to treat

n as though it were a vector by choosing a consistent orientation, but any conclusions

we draw should be independent of this choice. As n simply encodes a line of preferential

alignment its magnitude carries no information and it will always be taken to be unit

length.

In light of this symmetry n is ill-equipped to act as an order parameter, but a

suitable choice is provided by the Q-tensor [64]

Qij = s

[
ninj −

1

d
δij

]
, (2.1)

a traceless tensorial order parameter of rank 2, with d the number of spatial dimensions.

This tensor corresponds to the anisotropic part of the dielectric tensor and is non-zero
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in the nematic phase while vanishing in the isotropic phase, allowing the isotropic to

nematic transition to be described by Landau-de Gennes theory [21]. The direction of

nematic ordering corresponds to the non-degenerate eigenvalue of Q and the scalar s

quantifies the degree of this ordering. While Q is well-suited to numerical simulations,

n is typically more useful in revealing the rôle of geometry in analytic calculations and

we use it throughout this thesis.

2.2 Nematic elasticity

The fundamental elastic distortion energy governing the equilibrium behaviour of ne-

matics, along with its geometric interpretation, was put forward by Frank in his seminal

paper of 1958 [65], building on earlier work by Oseen [66]. In what is largely the standard

presentation the free energy takes the form

F =

∫
d3r

K1

2
(n(∇ · n))2 + K2

2
(n · ∇ × n)2 +

K3

2
((n · ∇)n)2

−K24 [n(∇ · n)− (n · ∇)n] ,

(2.2)

where the Ki are elastic constants.

Each term in (2.2) represents a distinct mode of deformation for the nematic,

with its own geometric significance. Taking them in turn, n(∇ · n) is the splay vector.

The reasons for our departure from the standard representation of splay as the scalar

∇ · n are twofold. Unlike the scalar, the splay vector is invariant under n → −n and

since n2 = 1 the contribution to the energy in (2.2) is unchanged. As we shall see in

Section 2.3 it also captures part of the force that arises due to the presence of active

stresses in nematically aligned systems. The twist n · ∇ × n is a pseudoscalar; it has

a handedness and its sign is reversed by inversion of the spatial coordinates. Via the

Frobenius integrability condition [67] it determines whether the director field provides a

foliation, meaning it may be viewed as the normal vector field to a family of continuous

system-spanning surfaces. This is only possible when n ·∇×n = 0 and so this vanishing

of twist is a requirement for the layer structure of smectics. The failure to form a foliation

caused by the twist inherent in the cholesteric ground state is naturally described by

contact topology [68]. The third term of (2.2) is sometimes written as (n × (∇ × n))2

[69], but the form given above makes its geometric origin clearer. In measuring the

gradients of n in the direction of n, (n · ∇)n is equivalent to the normal curvature of

the integral curves of n. The final term is known as the saddle-splay. If the director

field does constitute a foliation then this measures the Gaussian curvature [70] of the
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corresponding surfaces [71], although this description can be applied more generally by

viewing the director as sitting in a curved space [72]. As a total derivative it will not

play a role in the work of this thesis but can be important in systems with complex

anchoring conditions [73] or with a proliferation of defects [71; 74].

Although this formulation of the Frank free energy is sufficient for our purposes,

we give here a brief overview of a treatment of the nematic distortions that is more

firmly rooted in the geometry of vector fields [75; 76]. The gradients of n at any point

are a section of T ∗(R3) × T (R3). The director acts as a preferred direction at each

point and provides a canonical splitting of the tangent bundle into a line bundle L and

a bundle of orthogonal 2-planes ξ [77]. Correspondingly, the gradients of n may be

decomposed into those parallel and perpendicular to n. Due to the uniaxial nature of

the director the perpendicular gradients can be further decomposed according to the

action of a rotation group, isomorphic to SO(2), which generates rotations around the

local director orientation, giving [77]

∂inj = ni(nk∂k)nj +
∇ · n
2

(δij − ninj) +
n · ∇ × n

2
ϵijknk +∆ij , (2.3)

∆ij =
1

2
(δik − nink)∂knj +

1

2
(δjk − njnk)∂kni −

∇ · n
2

(δij − ninj), (2.4)

with the resulting four distinct modes of deformation shown in Figure 2.2. The first

term of ∂inj is the bend. As it is always normal to n it is a section of ξ [77], affording

it unusual geometric and topological properties for a vector field [78]. The remaining

three terms, taken as an operator, comprise the shape operator [70]. The first of these

is the isotropic part, with its magnitude given by the splay. The next, with magnitude

equal to the twist, is the antisymmetric part. It acts on the planes of ξ as a complex

structure, providing rotations of π/2 about n. Lastly, ∆ij is a spin-2 object which,

owing to its structure, has been termed the anisotropic orthogonal gradients [79] and

the biaxial splay [76]. Its eigenvectors correspond to the directions of principal curvature

of the director; the geometry of the umbilic lines where it is degenerate is considered in

[79]. This decomposition of gradients according to a preferred direction and associated

rotation group is mirrored in our treatment of nematic multipoles in Chapter 3, only

there the splitting is not local but global, provided by the far-field alignment.

One feature that distinguishes the free energy of nematics from that for magnetic

systems [80], in which the same distortions contribute to the energy, is that each distinct

deformation mode has a separate elastic constant Ki. Despite this elastic anisotropy and

the variation of these parameters with temperature we can estimate their value through
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Bend (n · ∇)n Uniaxial Splay (∇ · n)n

Twist n · ∇ × n Biaxial Splay ∆

Figure 2.2: The modes of nematic deformation. Bend and uniaxial splay are vectors, the
twist a scalar and the biaxial splay ∆ a spin-2 tensor. The red tetrahedron represents
the tensor ∆ijnk. Figures reproduced from [76].
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the following argument [21]. As n is dimensionless each of the Ki must have dimensions

of energy per length. The only relevant length is that of the nematogen molecules,

approximately 1nm. For the energy we use the interaction energy of the molecules,

taken to be kBT with T ∼ 300K, after all it is the very property of not being tightly

bound at room temperature that makes liquid crystals, and all of soft matter, soft. This

gives Ki ∼ 4× 10−12J, in remarkably good comparison with the measured values [21].

We do not retain this elastic anisotropy in our treatment of nematics, instead

adopting a one-elastic-constant approximation, Ki = K for all i, under which the Frank

free energy takes the form

F =
K

2

∫
d3r|∇n|2. (2.5)

One reason for this is practicality. The minimisers of (2.5) are harmonic functions and

so exact solutions can be provided in many contexts. By contrast, with distinct elastic

constants the only analytic solution is that provided by Dzyaloshinskii for a scale-free

two-dimensional system with at most one disclination [81; 69], for which the director

angle is given by an elliptic integral of the third kind [82]. We cannot claim that this

approximation captures all aspects of the nematic system. There are elastic torques

that only arise due to a discrepancy in the elastic constants [83; 84] and active nematics

can display morphologies indicative of strong elastic anisotropy [85; 86; 87], perhaps due

to a hydrodynamic coupling between flows and director alignment producing modified

effective elastic constants. At the same time, it is not a spurious simplification. It

has been used to describe the salient features of defect dynamics in active nematics in

both two and three dimensions [40; 88; 89] and it underpins both the simulation and

theoretical description of colloidal inclusions in nematics [90].

As already mentioned, each chapter of this thesis revolves around a distinct form

of the minimisers of (2.5). Chapter 3 utilises that in the far-field limit the director

distortions can be linearised as n = ez+δnxex+δnyey and applying the Euler-Lagrange

equations to (2.5) shows that both δnx and δny are harmonic and may be given as a

multipole expansion

ni =

∞∑
l=0

l∑
m=−l

qilm

(a
r

)l+1
Y m
l (θ, ϕ). (2.6)

Chapter 4 rests on the status of the solid angle function [45; 46]

ω(x) =

∫
K

p∞ × p

1 + p∞ · p
· dp mod 4π, (2.7)

as the unique minimiser of (2.5) with winding around a singular loop K. Here p labels
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the points of K and the vector p∞ is arbitrary. Lastly, our two-dimensional work in

Chapter 3 and Chapter 5 uses the fact that solutions of (2.5) have a director angle that

may be expressed as the imaginary part of a meromorphic function

ϕ = I lnΦ = I ln
∏
j

(z − zj)
sj , (2.8)

such that the sj characterise the winding of the director at the locations zj .

2.3 Active nematic hydrodynamics

From the equilibrium states of nematics, we now turn to the hydrodynamical theory

that governs their dynamics, and by extension the dynamics of active nematic systems.

Such theories are constructed in terms of a discrete set of fields, termed hydrodynamic

or slow variables, whose relaxation time grows unboundedly with wavelength [80]. These

are typically provided by conserved quantities and the Goldstone modes [91] arising from

the breaking of continuous symmetries. Of the former type we have the density ρ(r, t)

and momentum ρ(r, t)u(r, t), with u(r, t) the fluid velocity, while the deformations of n

belong to the latter case. The equations that result were first formulated for a suspension

of self-propelled particles by Simha and Ramaswamy [25] and are a modification of those

for passive nematics [92; 21]. Their derivation can also be found along with a discussion

of other aspects of active hydrodynamics in several reviews of the subject [57; 93]. In

our presentation we restrict attention to a single-component active material and take

the concentration to be constant, rather than including it as an additional slow variable

as in [25].

The equations of active nematohydrodynamics are the conservation of mass den-

sity

∂tρ+ ∂i(ρui) = 0 (2.9)

and the force-balance equation

ρ(∂t + uj∂j)ui = ∂jσij , (2.10)

where σij is the stress tensor

σij = −pδij + 2µDij +
ν

2
(nihj + hinj) +

1

2
(nihj − hinj) + σE

ij − ζninj (2.11)
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along with the relaxational equation governing the director dynamics

∂tni + uj∂jni +Ωijnj =
1

γ
hi − ν [Dijnj − ni (njDjknk)] . (2.12)

Here p is the pressure, µ the viscosity, γ a rotational viscosity and Dij = 1/2(∂iuj+∂jui)

and Ωij = 1/2(∂iuj − ∂jui) the symmetric and antisymmetric parts of the velocity

gradients. The flow alignment parameter ν determines the behaviour of anisotropic

particles in flow according to their shape; flow-tumbling for −1 < ν < 1 and flow-

aligning otherwise. The molecular field hi = −δF/δni acts to relax n to a minimiser

of the Frank free energy (2.2). In a one-elastic-constant approximation with the Frank

energy given by (2.5) the molecular field is hi = K(∇2ni − ninj∇2nj) and the Ericksen

stress is σE
ij = −K∂ink∂jnk. In addition to equations (2.9)-(2.12) we have the conditions

that u vanishes on all boundaries with Dirichlet boundary conditions imposed on n. At

infinity u vanishes while n, p and ρ tend to constants, although we shall shortly take

the fluid to be incompressible such that ρ is constant everywhere. The only departure

from the hydrodynamics of passive nematics comes in the final term of (2.12), −ζninj ,

introduced in [25]. Such a term is precluded in equilibrium systems as it does not derive

from a free energy but it must be included here as there is no symmetry to rule it out

[25]. We defer a discussion of this term and its consequences for a moment.

The above equations represent a generalisation of the Navier-Stokes equations

[94; 95], required to capture the two-way coupling between flows and particle orienta-

tion brought about by the nematogen’s anisotropy. Owing to their shape the particles

are responsive to flow gradients and also induce flows when they reorient. A welcome

simplification is that the foreboding nonlinearities in (2.10) need not be retained. To

see this we introduce characteristic length and velocity scales l0 and u0 such that (2.10)

may be expressed in terms of dimensionless variables. The relative significance of the

inertial and viscous terms is then given by a dimensionless number, the Reynolds num-

ber Re = ρl0u0

µ [94]. The material properties may be approximated by those for water,

for which ρ/µ ∼ 106 [94] and the microscale applications that we have in mind result in

Re ∼ 10−6 [96; 61]. We are therefore able to neglect the inertial terms in (2.10) and,

taking the density to be constant such that the continuity equation (2.9) reduces to the

condition of fluid incompressibility, are left with the linear Stokes equations

∇ · u = 0,

∇ · σ = 0.
(2.13)
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Given our experience of inertia-dominated flows, the behaviour that results from these

equations is counter-intuitive and deserves some discussion. They are time-reversible, as

can be dramatically demonstrated by the mixing together of ink drops, followed by their

‘unmixing’ back into separate drops [97]. It also has a profound impact on the swimming

of microorganisms as any time-reversible stroke cannot result in a net displacement, as

encapsulated in Purcell’s scallop theorem [98]. The response to a point force is given by

the Stokeslet [99; 100]

ui = Gijfj =
fj
8πµ

(
1

r
δij +

rirj
r3

)
, (2.14)

with Gij the Green’s function, known as the Oseen tensor, several derivations of which

are given in [101]. By Newton’s third law any self-propelled particle must be net force-

and torque-free. The flows induced by microswimmers are therefore typically dominated

by the flow response to a force dipole, the stresslet, given by the traceless symmetric

part of (2.14). Microswimmers may be classified according to the sign of the stresslet

term as either a pusher if fluid is drawn in from the sides and expelled at the ends or a

puller if the reverse holds.

Returning to the active contribution to the stress tensor, we can now see that its

form can be justified as resulting from a coarse-graining of a dense distribution of force

dipoles. The activity ζ is a phenomenological parameter whose magnitude captures the

strength of these stresses and whose sign denotes the nature as extensile when ζ > 0

and contractile when ζ < 0, corresponding to pusher and puller dipoles respectively.

A striking consequence of these active stresses, identified in the paper of Simha and

Ramaswamy [25], is that the orientationally-ordered flow-free bulk system is unstable

to long-wavelength splay or bend deformations of the director, according to the sign

of ζ. This instability can be established through a linear stability analysis [25] but an

intuition for it is provided by the pictorial argument of Figure 2.3(a) and (b) [93]. When

the stresses are contractile splay deformations induce shear flows that exacerbate the

original distortion, with the same applying to bend deformations in extensile systems.

This mechanism also gives rise to novel instabilities in thin active films [102], where

perturbations of the free surface couple to splay modes of the director.

A linear analysis can only tell us that the ordered state is unstable, not what

results from this instability, but numerical simulations predict a state of active turbulence

[103; 104; 105; 106], which has also been seen experimentally, for example in suspensions

of bacteria [107], as shown in Figure 2.3(c). It is characterised by regions of vortical

flow, born out of the instability of nematic order to vorticity illustrated in Figure 2.3(a)
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and b), and is so named because these cause a resemblance to turbulent flows 1. The

dynamics is complicated but can be understood as stemming from a four-stage cycle

[108], in which the nematic order succumbs to the hydrodynamic instability, leading to

the formation of ‘walls’ of high director distortion. These walls release elastic energy

by focusing the distortion into singular structures called topological defects 2, which

annihilate in pairs, restoring nematic order and starting the cycle anew. The vorticity

correlations decay over a characteristic length scale defined by the competition between

the elastic forces seeking to maintain order and the active stresses as lA ∼
√
K/|ζ|.

A major challenge is to tame active turbulence to produce oriented and control-

lable dynamics. The active length scale suggests that one route to this is via confinement.

Indeed, confinement to a channel is able to suppress the active nematic instability, pro-

vided the channel width h is less than
√
K/|ζ|. For channels wider than this or, for fixed

channel geometry, when |ζ| > K/h2 a spontaneous flow transition occurs [109], with a

defined profile for both the director angle and the flow velocity. This is similar in form

to the Fredericks transition [21], except now the director is being reoriented not by an

external field but by internal stresses and the transition is associated with a dynamic,

flowing state. Many methods of controlling the dynamics of active nematics hinge on

the behaviour of their topological defects and so we shall delay their discussion until

2.4.1, after first describing the defects of two-dimensional nematics.

We conclude this section by stating the approach to analysing the dynamics of

active nematics that is employed in this thesis. The full equations as laid out in (2.9)-

(2.12) are only solvable analytically in a one-dimensional geometry [109]. We instead

employ a minimal description in which only the active contribution to the stress tensor

(2.11) is retained and consider the active flow induced by an equilibrium director field.

This approach has been utilised previously [40; 110; 44; 89; 111] and will be discussed

further at the start of Chapter 3. This amounts to solving the Stokes equation

−∇p+ µ∇2u = ζ∇ · (nn) = ζ [n∇ · n+ (n · ∇)n] , (2.15)

where we see that the active force is comprised of the splay and bend vectors introduced

in Section 2.2. We will discuss the associated boundary conditions in Chapter 3.

1It should be noted though that turbulence is associated with high Reynolds number and we are
dealing with the opposite regime here.

2These are the subject of the following section.
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a) b)

c)

ζ > 0

ζ < 0

Figure 2.3: Hydrodynamics of bulk active nematics. (a) and (b) The bulk ordered state
is unstable to long wavelength bend deformations in extensile systems (ζ > 0) and splay
deformations in contractile ones (ζ < 0). Figures from [93]. (c) These instabilities lead
to a bulk state of active turbulence, shown in a quasi-two-dimensional suspension of the
bacteria B. subtilis. The black streamlines of the flow velocity are superposed on the
vorticity field. Figure from [107].
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2.4 Topological defects in passive and active nematics

2.4.1 Two dimensions

As already mentioned, nematic liquid crystals display dielectric anisotropy described

by the tensor Qij . Consequently when light is shined through a thin sample viewed

between crossed polarisers none emerges whenever the director is aligned with either

polariser direction, which for concreteness we take to be the vertical and horizontal.

This leads to a network of dark brushes called a Schlieren texture, shown in Figure 2.4.

If we consider a point where four brushes meet we see that in its neighbourhood the

director is twice vertical and twice horizontal, such that it winds through a full turn as

we circle this point. Taking the director to be confined in the plane of the sample we

write n = (cos θ, sin θ) and with γ a path enclosing the point we have
∮
γ ∇θ · dl = 2π.

Applying Stokes’ theorem we see that at the place where the brushes meet ∇θ must

be singular. It is the points where only two brushes meet, around which the director

winds by π, that demonstrate the aforementioned nematic symmetry that n and −n are

equivalent. In general one of these singular points may be associated with a half-integer

winding number q =
∮
γ ∇θ ·dl ∈ 1

2Z, such that n winds by qπ on a small path around the

singularity and in its neighbourhood has the form n = (cos qθ, sin qθ), in a one-elastic-

constant approximation. This winding is a topological property of the system in that

any smooth deformation of the director cannot change the number of singularities or

their windings, only shift their locations. Consequently these singularities are known as

topological defects and the winding numbers as their topological strength or charge. The

term defect refers to the fact that at these places the nematic orientation is undefined

and so the system melts into the isotropic phase. The picture of this occurring at points

is an idealisation, in reality each singularity is associated with a defect core, characterised

by the correlation length of the nematic order, over which the ordering falls to zero.

The geometric description of the continuous deformations of a nematic is therefore

complemented by a topological description of the locations where the nematic ordering

breaks down. The two are not fully distinct of course, as topological defects naturally

induce large deformations in the surrounding nematic, indeed it was by considering

gradients of n that we established their existence. We shall see in 2.4.1 that this role as

foci of distortions lends them a leading part in the dynamics of active nematics.

It is natural to seek to reduce one’s description of a physical system down to

one in terms of a discrete set of quasi-particle excitations. In a nematic these are the

topological defects described above, in terms of which the theory of nematic elasticity
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q = −1 q = −1/2 q = 1/2

q = 1

Figure 2.4: Nematic topological point defects in two dimensions. Above: a Schlieren
texture formed by viewing an illuminated thin sample of nematic through cross polaris-
ers. The dark ‘brushes’ arise whenever the director is aligned with either polariser. From
[112]. Below: two-dimensional nematic point defects of various indexes with profiles that
minimise the one-elastic-constant free energy and the brushes that would be observed in
a Schlieren texture overlaid. Note that the pattern of brushes only distinguishes |q|, but
cannot be used to infer its sign. Note also the two distinct q = 1 defects, which result
from these defects being spin 0.
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may be reformulated as a Coulomb gas of defects [113] interacting via an energy [21]

E = q1q2K ln
(r
a

)
, (2.16)

where r is the defect separation, a is the size of the defect core and we are working in

a one-elastic-constant approximation. There are two points to draw from this. Firstly,

defects of opposite sign experience an elastic attraction, rendering them meta-stable.

Though defects may arise through rapid quenching to the nematic phase, those not

maintained through boundary conditions or external fields are expected to pair-wise

annihilate as the system equilibrates. Secondly, there is an energetic cost associated with

high-index defects. Setting q1 = q2 = q in (2.16) and redefining r as a characteristic

next-defect distance we see that defects have a self-energy that grows as q2. In particular,

the energy of a single +1 defect is double that for two +1/2 defects and in general only

the lowest-index topological defects are observed, although higher-charge defects can be

stabilised under certain conditions [114]. The nematic to isotropic transition is then seen

as originating from the unbinding of pairs of ±1/2 defects [115] in a manner akin to the

Berezinskii-Kosterlitz-Thouless transition [116; 80].

Defects may also be maintained through curvature of the substrate. The inter-

action between defects and curvature is two-fold. On the global, topological, level the

integrated Gaussian curvature G of a manifold is related to its genus g via the Gauss-

Bonnet theorem [71] ∫
M

GdA = χ, (2.17)

with χ = 2(1− g) the Euler characteristic. The Poincaré-Hopf theorem [117] then states

that for a tangential vector field the sum of indices of its singularities must be equal to

the Euler characteristic. On the local, geometrical, level defects in elastic systems have a

proclivity to reside at points where the sign of their topological index matches that of the

underlying Gaussian curvature in order to alleviate geometrical frustration [118; 8; 119].

This has consequences for the morphology of vesicles with orientational order [120] and

nematic textures in spherical geometries [121] where defects are required, but can also

lead to a meta-stable many-defect state on the torus, for which χ = 0, due to defects of

opposing sign being separated into regions of positive and negative Gaussian curvature

[122].
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Homotopy theory of defects

We now briefly recapitulate the above description of director winding in the more formal

language of algebraic topology [123] that will aid us when we come to generalising to

three dimensions. This treatment of defects was developed in the 1970s [124] and serves

as an extension of Landau’s theory of phase transitions, in which the symmetry group G

of a high-temperature isotropic phase is reduced to a subgroup H in the low-temperature

ordered phase. The order parameter that characterises the ordered phase resides in a

topological space called the ground state manifold (GSM), given by the coset space G/H.

Defects may be classified via the behaviour of the order parameter in the neighbourhood

of the defect, that is by maps Sn → GSM, where the sphere Sn is a measuring surface that

encloses the defect and the dimension n is one less than the codimension of the singular

structure. The set of equivalence classes of these maps up to homotopy (continuous

deformation), with a common base point x ∈ GSM fixed, form a group, the homotopy

group πn(GSM). Returning to the case of a two-dimensional nematic the GSM is,

owing to the nematic symmetry, a circle with antipodal points identified, that is the real

projective line RP 1. Calculating the homotopy group π1(RP 1) ∼= Z ∼= 1
2Z we recover

our previous identification of an infinite set of distinct point defects.

In anticipation of our upcoming discussion of the topological defects of three-

dimensional nematics we now present the relevant homotopy groups. To find the GSM

we take G as SO(3), the rotation group of Euclidean space, and H as the group D∞

of symmetries of the nematic director. Hence the GSM is SO(3)/D∞ ∼= RP 2 [124; 77]

and the homotopy groups π1(RP 2) and π2(RP 2) classify the local structures of line and

point defects respectively. For the first of these we find π1(RP 2) ∼= Z2, as illustrated in

Figure 2.5, which shows RP 2 as a hemisphere with antipodal points on the boundary

identified. In the latter case the fact that Sn is the covering space of RPn with fiber S0

can be used to show that π2(RP 2) ∼= π2(S
2) ∼= Z [123].

The power of this approach is that it determines the nature of the possible defects

purely from the topology of the order parameter space, divorced from any specifics of the

physical system3, although the defect morphology may be affected by instance-dependent

properties such as an energy functional. This gives the construction a universality and

the same defects that arise in two-dimensional nematics can be found in any line field,

such as the polarisation patterns of light [127], the singularities in the principal curvature

of surfaces, known as umbilic points [128] and fingerprints [129]. The last of these

3Cautionary examples exist where a näıve application of homotopy theory leads to an erroneous
prediction for the defects of a system such as in the classification of defects in a two-dimensional smectic
[125] and the combination laws for C points in polarisation fields [126].
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Figure 2.5: Illustration of the fundamental homotopy group of RP 2. The real projective
plane is depicted as a hemisphere with antipodal points identified. There are two distinct
classes of loops, those that are contractable (blue) and those than span to the antipode.
The latter corresponds to the only non-trivial element which squares to the identity such
that π1(RP 2) ∼= Z2.

examples leads us in the direction of considering the impact of these defects in biological

contexts.

Topological defects in two-dimensional active nematics

Insight into the impact that topological defects have on the dynamics of active ne-

matics can be attained by following the approach laid out in Section 2.3 and solving

Stokes’ equations for a single disclination with the director minimising (2.5), that is

n = (cos qθ, sin qθ) with q the charge of the defect [39; 40]. The flow solutions were cal-

culated in [40] by integrating the active force against the two-dimensional Oseen tensor

[100] and are illustrated in Figure 2.6 for ±1/2 defects. The key distinction between the

flows is that the flow is non-zero at the location of the +1/2 defect while at the −1/2

defect it vanishes. This is readily understood by noting that the +1/2 defect breaks

fore-aft symmetry, allowing a choice of propulsion direction which is not possible for the

−1/2 defect as it possesses three-fold symmetry. This difference in the motility of these

defects in active nematics due to their symmetry predates the calculation of their active

flows, being contained in the supplementary material of [16]. This means that +1/2 de-

fects behave as self-propelled polar particles, with the defect being advected by the flows

it induces and moving along its orientation vector [130; 131] at a speed proportional to

the activity. The direction of propulsion therefore serves as an indicator of the nature

of activity present in the system, with the defect moving head first in extensile systems

and tail first in contractile ones.
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q = −1/2 q = 1/2

Figure 2.6: Active Flows of two-dimensional nematic point defects. The streamlines of
the flow are shown in white with the background colour indicating its magnitude and
the red lines are integral curves of the director field. A no-slip boundary condition is
applied on the black circle. After [40].

The Coulomb gas picture of passive nematics is therefore replaced by one of

a gas of self-motile +1/2 defects accompanied by passive −1/2 defects [41; 113]. In

addition to the elastic forces the +1/2 defects experience active torques [42], with defect

interactions generically being non-reciprocal [132]. This non-reciprocity of interactions

is something of a hallmark of active systems [113] and will reemerge in Chapter 3. The

defect unbinding now arises through competition between elastic attraction and the

active motility of +1/2 defects, transitioning the bulk system from the ordered phase to

the state of active turbulence described earlier. Due to the torques that +1/2 defects

experience their motion is not purely ballistic and by considering the persistence length

of this motion a criterion for active defect separation can be established [41; 38]. This

significance of the orientation of the +1/2 defects leads to an ‘order-through-disorder’

effect with rotational noise confounding their ability to actively separate from their −1/2

partners and stabilising the nematic phase [41; 38; 113].

Half-integer defects are a hallmark of nematic symmetry and their observation

has enabled the identification of many biological systems as active nematics. The distinct

local environment of topological defects makes them natural foci for functionality and the

impact they can have on the behaviour of biological matter is remarkable [20; 38; 113].

The recognition of biological nematic defects dates back to the 1960s, when they were
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observed in the orientation of fibroblast cells [133]. Work beginning in the 1990s showed

that the so-called ‘pinwheel’ patterns in the cells that make up the visual cortex of cats

are in fact also ±1/2 defects [134; 135; 136]. Further examples have subsequently been

found in both eukaryotic [28; 29] and prokaryotic cells [137; 138; 139], with bacterial

colonies exhibiting an isotropic-nematic phase transition as they grow [137] and even

displaying micro-domains of distinct nematic alignment which tile the colony like a

mosaic [139; 20].

Instances of nematic defects being tied to biological function are provided by

monolayers of neural progenitor cells and epithelial Madin-Darby Canine Kidney cells.

In the former cells are found to be depleted at −1/2 defects and accumulate at +1/2

ones, forming three-dimensional mounds [140]. In the latter +1/2 defects act as cen-

tres for apoptosis, that is cell death and extrusion from the monolayer [30]. In growing

biofilms vertical lift-off and mound formation has been instead found to occur at −1/2

defects [141]. The motility that +1/2 defects acquire in active systems allows them

to overcome the elastic repulsion that would keep them separate in passive nematics

to form +1 defects. These integer defects have been shown to play a crucial role in

developmental morphogenesis [142; 143; 144], for example in Hydra [145], where in the

early development two +1 defects define what is to become the body axis and protru-

sions driven by the self-propulsion of +1/2 defects are linked to the formation of later

structure. Similar defect-driven dynamic morphology occurs in deformable active shells

[146; 147; 148]. The formation of topological defects also plays a pivotal role in the

expansion of bacterial colonies [138; 13], with +1 asters appearing to support verticali-

sation of bacteria [15]. This leads to a tortoise-and-hare scenario, in which populations

of P. aeruginosa that were individually less motile than mutant strains were able to

outperform their faster rivals as the latter become frozen by the formation of +1 defects

[149].

Having discussed the role of defects in the dynamics of active nematics, we now

return to the issue of how this dynamics may be controlled. Numerical simulations

of laterally confined active nematics have revealed an additional ‘Ceilidh dance’ state

[150], intermediate to the spontaneous flow state and active turbulence and arising when

the characteristic vortex size is commensurate with the channel height. This state is

characterised by two columns of +1/2 defects that weave sinusoidally along the channel in

opposing directions. As the activity is increased patches of active turbulence form, with

the transition to the turbulent phase belonging to the directed percolation universality

class [151]. Similar confinement effects driven by the motility of +1/2 defects have been

observed for confinement to the disc [150; 152; 153; 154], where the Euler characteristic
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requires a total defect charge of +1. Recent experiments on mouse fibroblast cells have

observed both the spontaneous flow transition [155] and a dynamical state with two

+1/2 defects under circular confinement [156].

The state of active turbulence can also be tamed by effects that screen the hydro-

dynamic interactions. One route is to increase the substrate friction [157; 158; 159; 160].

The length scale of hydrodynamic screening is determined by the friction f as lsc ∼√
µ/ρf [20] and has much the same effect as a confinement scale; when lsc ∼ lA a defect-

free state is achieved [157] and for intermediate friction the defects arrange into a regular

lattice [158].

An additional method is to couple the active nematic to a soft interface. Hy-

drodynamic screening can be tuned by varying the viscosity of an oil layer [161], with

higher viscosity resulting in more defects by reducing their motility and hence impeding

their ability to annihilate [20]. Spatial structure can be induced via a passive smectic

[162; 163], with the active nematic organising into circular regions corresponding to the

toroidal focal conic domains in the smectic substrate [163]. On applying a magnetic

field the response of the smectic causes alternating lamellar flows to be established in

the active nematic [162].

The influence of curvature on topological defects has been investigated on the

sphere where the four requisite +1/2 defects display quasi-periodic motion between

tetrahedral and coplanar configurations [164; 165; 89]. Additional effects, including

defect localisation, arise on prolate or oblate spheroids [166]. The ability of the distinct

regions of Gaussian curvature on a torus to separate topological defects persists in active

nematics and has been confirmed experimentally [167].

2.4.2 Three dimensions

Point defects

To reiterate, in three dimensions the nematic GSM is S2/{p ∼ −p} ≡ RP 2. Accordingly,

point defects in three-dimensional nematics are classified by the homotopy classes of

maps S2 → RP 2. As π2(RP 2) ≡ Z there are an infinite number of distinct point

defects in three-dimensional nematics, some of which are shown in Figure 2.7, using the

representative field for a degree q defect [77]

nq(r, θ, ϕ) = sin θ [cos(qϕ)ex + sin(qϕ)ey] + cos θez. (2.18)
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q = −2 q = −1 q = 1 q = 2

Figure 2.7: Representative nematic point defects in three dimensions. The director field
is given by (2.18) and is shown on a spherical surface centred on the defect.

The case q = 1, for which n = r
|r| , serves as a quintessential example of all three-

dimensional nematic point defects and gives them the name hedgehog defects. In par-

ticular the q = 1 defect is known as a radial hedgehog and the q = −1 one a hyperbolic

hedgehog. The degree of a defect is most easily calculated by orienting the director,

lifting the GSM from RP 2 to S2. The degree of maps S2 → S2 can be found by pulling

back the area form on the image sphere to the measuring surface and integrating to give

q =
1

4π

∫
dxdyn · (∂xn× ∂yn) . (2.19)

The resulting integral is not invariant under the nematic symmetry n → −n, but rather

changes its sign. This is indicative of the inability to assign an unambiguous degree to

point defects in three-dimensional nematics [77; 168].

Line defects

Three dimensions allows the existence of not just point but also line defects. These are

classified according to π1(RP 2) ≡ Z2. The two elements of this group mean that there

is not an array of topologically distinguished line defects, rather the only topological

distinction that can be made is between a defect being present or not. This may seem

surprising, as naively one might expect that each of the point defects in two dimensions

could be extruded to give a topologically distinct line defect. To see why this is not so,

consider the director field [77]

nβ = cos(ϕ/2)ex + cosβ sin(ϕ/2)ey + sinβ sin(ϕ/2)ez. (2.20)

This provides a homotopy between the +1/2 (β = 0) and −1/2 (β = π) defect profiles.

A similar homotopy allows the removal of +1 defects through ‘escape into the third
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dimension’ and arises when normal anchoring is applied to cylindrically confined nemat-

ics [169; 170; 171]. It should be noted the above classification only captures the local

topology of a line defect. The question of how the director may be consistently extended

to provide a complete texture gives rise to more subtle global topology [172; 173; 75].

As in two dimensions, minimisation of the one-elastic-constant Frank free energy

(2.5) results in rotation of the director in a single plane. Unlike the two-dimensional

case, this plane is not restricted to being the plane normal to the defect line but can be

any plane in R2. We may define this winding plane by its unit normal vector Ω ∈ S2

and a different defect profile results according to the angle that Ω makes to the defect

line unit tangent vector t. The resulting minimal director fields can be given explicitly

as [43; 44]

n = cos(ϕ/2)m+ sin(ϕ/2)Ω×m, (2.21)

with ϕ the azimuthal angle around the defect line and m is a unit vector normal to both

Ω and t. When Ω is parallel or antiparallel to t (2.21) reduces to the profile of +1/2

and −1/2 two-dimensional point defects respectively, with these profiles being known as

wedge type. When Ω is orthogonal to t the resulting defect profiles are termed twist

type. Figure 2.8(a) illustrates (2.21) for different Ω with m fixed. This collection of

local profiles also displays the homotopy given in (2.20) between the two wedge type

profiles via a twist profile. There is a circle’s worth of local twist profiles, which may be

further categorised as radial or azimuth twist according to the direction of the director

along ϕ = 0. For the homotopy in (2.20) the director is always radial along this line and

so the twist profile in Figure 2.8 is of radial twist type.

Restriction of the director rotation to a single plane may also be used to provide

a global director texture around a closed defect loop, as first introduced by Friedel & de

Gennes [174]. Taking e1, e2 as an orthonormal basis for the plane, with e1 the asymptotic

director orientation we have

n = cos(ω/4)e1 + sin(ω/4)e2, (2.22)

with ω the solid angle function [45; 46] of the defect loop. This serves as a minimiser

of the Frank free energy (under the approximation of one elastic constant) regardless of

the shape of the defect loop or the orientation of Ω and so is able to capture much of the

geometric complexity that nematic defect loops can display. Representative examples of

this geometric diversity are shown in Figure 2.8(b) for planar circular loops with uniform

Ω = e1×e2. They are termed splay, bend and twist loops according to the predominant
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a)

β = 0

β = π/4

β = π/2

+1/2 Wedge

Twist

−1/2 Wedge

b)

Splay loop

Bend loop

Twist loop

Figure 2.8: Nematic line and loop defects. (a) Local profiles of defect lines. The director
is shown as blue rods in planes orthogonal to a defect line along which the local profile
varies according to the homotopy in (2.20). The director rotation is confined to the plane
normal to a winding vector Ω, shown as a black arrow. (b) Representative examples
of planar nematic defect loops. Their names stem from the dominant nature of the
director distortion through the centre of the loop. The local director profile is shown in
certain cross-sections of the loop and the loop is coloured according to the nature of this
winding, as in (a).
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nature of the nematic distortion on a line through the loop 4. We have chosen to keep

the plane of the defect loop fixed and hence (e1, e2) changes, being (ez, ex) for the splay

loop, (ex, ez) for the bend loop and (ex, ey) for the twist loop.

Topological defects in three-dimensional active nematics

The description of the active dynamics of three-dimensional active nematics in terms

of their topological defects is less developed than in two dimensions, in part due to

the greater geometrical complexity the defects can display and in part because until

recently an experimental realisation was lacking. Recent experiments have revealed the

dynamics to be dominated by charge-neutral defect loops [43], with charge-neutral here

referring to the vanishing of the hedgehog charge. The defect loops shown in Figure

2.8(b) are all charge-neutral and, within the one-elastic-constant approximation used for

simulations, are energetically equivalent. However, a bias towards those of twist type has

been found both experimentally and in numerical simulations [43], an observation that

currently lacks a complete explanation. Simulations of three-dimensional active nematics

confined to droplets have demonstrated that the dynamics of defect loops, along with the

topological changes they can undergo such as intersection and break-up, are key to the

understanding of active nematic turbulence [62]. The pivotal role of twist was identified

in a quasi-two-dimensional channel geometry where the onset of twist in defect lines

was found to initiate the transition from two-dimensional to three-dimensional active

turbulence [175].

Initial analytical work on the active dynamics of nematic defect loops has provided

a local description of the active flow at each point on the defect loop [44], resulting from

solving Stokes’ equations with the director distortions captured by Maxwell’s solid angle

function [46; 77]. By considering certain canonical orientations of planar defect loops

as shown in Figure 2.8(b) it was found that splay and bend defect loops self-propel. In

Chapter 4 we present a complementary global description of active nematic defect loops

based on a multipole expansion of the solid angle. Through this we are able to describe

loops with arbitrary alignment with respect to the far field and include the effects of

non-planarity, which we show leads to self-orientation of defect loops and a mechanism

to produce the observed bias towards loops of pure-twist type.

4We stress that this nomenclature should not be taken to mean that such defect loops are associated
only with these specific distortions of the director.
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2.5 Colloids in nematics

Colloidal inclusions transform the physics of nematics and their description requires

the synthesis of many of the concepts we have met so far. Reviews of their modelling,

properties and applications can be found in [176; 177; 90]. They typically result in the

formation of topological defects and so provide a fertile setting for the exploration of

global nematic topology [178] and the application of knot theory [179] to liquid crystalline

systems [180; 173]. They experience anisotropic elastic interactions mediated by the

nematic environment which may be understood from a multipole description of the

far-field distortions they induce [90]. This multipole description invites analogies with

electrostatics [181; 182] and a colloidal atom paradigm [183; 184] dating back to the

work of Einstein and Perrin [185]. In this vein colloids have been designed to induce

dominant multipole distortions that exceed the multipoles found in the atomic orbitals

of the periodic table [90; 186; 187; 188]. The ‘chemistry’ of nematic colloids has also

been investigated, with crystals formed from one species of colloid [189; 190] or binary

mixtures [191; 192]. This opens up applications for self-assembled metamaterials and

photonics [193].

To understand the response of the director to colloidal inclusions we add a sur-

face term, known as the Rapini-Papoular surface energy [194], to the bulk free energy

discussed earlier (2.5), giving

F =
K

2

∫
d3r|∇n|2 − W

2

∫
d2r(n · v)2, (2.23)

where v is an easy axis of director alignment and the coefficient W typically has a value

of 10−7 − 10−3Jm−2 [177]. Through appropriate treatment of the colloid surface the

preferred director anchoring may be normal, tangential or conical [90]. The competition

between the surface anchoring and the bulk elasticity defines a length known as the

extrapolation length [90] or Kleman-de Gennes length [177] as ξe = K/W . Recalling that

K ∼ 10−11 N, we have ξe ∼ 100 nm-10 µm. For colloids smaller than ξe the distortion

of the director is negligible. Minimisation of the total energy may favour deviating from

the surface anchoring condition and an interpretation of the extrapolation length is then

that the boundary condition is satisfied virtually at a distance ξe within the colloid [177].

Colloids larger than ξe will result in topological defects being formed in the bulk nematic,

with the total defect charge compensating the degree of the boundary condition so as to

allow for a uniform asymptotic alignment.

Surfaces may be classified, up to homeomorphism, by their genus, orientability
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and number of boundary components [90; 195] and varying these properties for colloids

results in a great richness of topological phenomena. This has been demonstrated for

generic handlebodies [196; 197], knotted colloids [198; 199] and in the use of colloids to

form knotted defect lines [200; 201], in an explicit illustration of global nematic topology

[173; 178]. The distortions induced by a trefoil knot are shown in Figure 2.9(a), with the

colour representing the orientation of the director when projected into a plane orthogonal

to the far-field alignment [198]. The points where the colours meet correspond to surface

defects known as boojums 5. In fact even for a fixed colloidal topology there can be many

ways for the boundary degree to be cancelled by a configuration of topological defects.

Taking the sphere with normal anchoring as an example the colloid may induce either a

hyperbolic hedgehog point defect or a defect loop with a cross-sectional profile of −1/2

winding [176], shown in a schematic two-dimensional cross-section in Figure 2.9(b) and

(c) respectively. This faculty for the point defect to ‘open up’ into a loop serves as

an explicit demonstration that line defects can carry a hedgehog charge. The defect

configuration that arises is dependent on the colloid size as well as the type and strength

of the anchoring [176]. In particular, tangential anchoring results in a pair of surface

boojum defects at the poles [176].

There is generally an energetic benefit from overlapping of regions of director

distortion, leading to anisotropic elastic interactions [177]. The distinct distortions asso-

ciated with the above arrangements of topological defects lead to distinct elastic interac-

tions. A phenomenological description of these interactions was introduced by Lubensky

et al. in 1998 [181] utilising the asymptotic form of the minimisers of the bulk elastic en-

ergy (2.6) and an analogy with electrostatics. The resulting elastic interaction potential

for axially symmetric particles is [204]

Uint = 4πK

∞∑
l=0

qlql′(−1)l
′
(l + l′)!

al+l′+2

rl+l′+1
Pl+l′(cos θ), (2.24)

where the Pl+l′(cos θ) are the Legendre polynomials.

The hedgehog defect configuration is rotationally symmetric but has no horizon-

tal plane of mirror symmetry and so the far-field distortion has dipole character; it is

known as the UPenn dipole. Just as for charge configurations this dipole can be viewed

5It is customary to note that this terminology was introduced by David Mermin to describe surface
defects in 3He-A, inspired by the action of the Snark in Lewis Carroll’s The Hunting of the Snark [202].
He found the motion of a bulk vortex to the surface reminiscent of the poem’s closing lines ‘He had
softly and suddenly vanished away - For the Snark was a boojum, you see.’ Mermin’s own account may
be found in [203].
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a) b) c)

d)

e)
f)

g)

h)

i)

Figure 2.9: Colloids in nematics. (a) A nematic distortion induced by a trefoil knot.
The colour indicates the orientation of the director in a plane orthogonal to the far-field
alignment according to the inset. From [198]. (b) and (c) Schematic representations of
the director distortions around a spherical colloid for the dipolar hyperbolic hedgehog
defect arrangement and quadrupolar Saturn ring defect loop configuration respectively.
The director is axially symmetric and is shown in a cross-section, with the black dots in-
dicating the location of the point or line defects. (d) Chains of dipolar colloids formed in
an emulsion of water droplets in a nematic, from [205]. (e) and (f) Schematics illustrat-
ing the formation of colloidal lattices for dipolar and quadrupolar colloids respectively,
from [177]. Their experimental realisations are shown in (g), from [189] and (h), from
[190]. (i) A hexadecapolar distortion induced in a nematic by a ‘gourd colloid’ with the
red lines indicating the locations of defect loops and boojum defects, from [186].
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as arising due to the separation of the index −1 hyperbolic hedgehog and a virtual index

+1 radial hedgehog located at the centre of the colloid [177]. These dipolar distortions,

along with their anisotropic interactions, were first observed in the experiments of Poulin

et al. in 1997 [205; 206] in which small water droplets were dispersed in a nematic, shown

in Figure 2.9(d). The resulting interaction has two lobes of attraction and causes col-

loids to primarily form long chains of parallel dipoles along the far-field direction with

weak perpendicular interactions between antiparallel dipoles allowing the formation of

two-dimensional [189] or even three-dimensional [207] crystals. A schematic illustration

of the dipolar alignment in the colloidal crystal is shown in Figure 2.9(e) and an ex-

perimental realisation in Figure 2.9(g). The point defect shown in Figure 2.9(b) has

been opened into a ring defect in Figure 2.9(e) due to the effects of confinement [177].

The far-field distortion around the defect loop is quadrupolar and given the colloid-loop

arrangement is called the Saturn ring quadrupole. This defect configuration was first

predicted by Terentjev in 1995 [208] and subsequently observed for colloids with weak

anchoring [209], small diameter [210] and under confinement to thin planar cells [211].

The elastic interaction between such colloids has four regions of attraction and leads

to the formation of either kinked chains or two-dimensional lattices [190], again illus-

trated schematically in Figure 2.9(f) and experimentally in Figure 2.9(h). As can be

seen from (2.24) the quadrupole elastic interaction is much weaker than that between

dipoles, decaying as r−5 rather than r−3. Accordingly the structures formed can be

disrupted by fluctuations in temperature or flows in the liquid crystal and deteriorate

over a timescale of about a month [190], whereas dipolar crystals can be stable for over

a year in laboratory conditions [189]. There has been a drive to design colloids that

result in high-order multipole distortions [187; 186; 188], motivated partly by the en-

suing intricacy of interactions which allows for the design of novel metamaterials and

also by a more fundamental study of multipole structure beyond that observed in the

periodic table [186]. To this end axisymmetric dominant multipoles up to order 6 have

been induced in a nematic environment by forming colloids from stacked spheres and

tuning the director anchoring on the surface. This is illustrated in Figure 2.9(i) for a

hexadecapole.

Both the directionality of the pair-wise elastic interactions and their power-law

nature can be probed by releasing a particle from an optical trap and tracking the

direction of the elastic forces through video microscopy [90]. In this way the use of the

multipole expansion for the director distortions to explain the physics of nematic colloids

has been robustly tested for dipolar distortions [212; 213; 214; 215; 216], quadrupolar

interactions [217; 190], octupoles [218; 187] and hexadecapoles [187], in addition to being
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confirmed numerically [219; 190].

In the following chapter we demonstrate how a multipole analysis can also be

usefully applied to understand the response to distortions of active nematics. The char-

acter of nematic distortions is not determined simply by the topology of the colloidal

inclusion, but also by its geometry. This nuance, in a two-dimensional context, will be

the subject of Chapter 5 and we a defer a review of work in this area until then.



The principle, I said

is leverage. Not quite

the Gunslinger rejoined,

that is the mechanism

I asked for the principle

Ed Dorn, Gunslinger I

3
Active Nematic Multipoles

A
ctive matter encompasses a wide array of systems across many length scales in

which the constituent elements input energy, driving the system out of equilib-

rium [220; 93; 57; 221]. An issue of fundamental importance is how to harness

the energy inherent in these non-equilibrium systems into useful work, for example by

transforming their often apparently random or chaotic dynamics into persistent mo-

tion. Among the most striking experimental realisations of this are active ratchets

[22; 23; 222; 223; 224] - persistent rotation of gears in bacterial baths - the separation of

bacteria by asymmetric barriers [225] and the rectification of the motion of microswim-

mers by an anisotropic medium [226; 227; 228].

We focus here on a particular class of active matter in which the individual el-

ements exhibit the orientational ordering associated with nematic liquid crystals [20].

Such active nematics include cell monolayers [156], tissues [30], bacteria in liquid crys-

talline environments [229] and suspensions of both bacteria [107] and synthetic micro-

tubules [61] and have been shown to be well-modelled by the addition of an active stress

to the hydrodynamics of nematics [40; 44].

The significant features of nematics are reflected in their active counterparts.

They exhibit hydrodynamic instabilities [93; 102] and spontaneous flow transitions [109;

155] and topological defects play a decisive role in their dynamics, possessing self-motility

37
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in both two [38; 40] and three dimensions [43; 62; 44].

The equilibrium response of the nematic director to perturbations can, when

linearised, be described in terms of multipoles [230; 231; 205; 181]. This has proved a

powerful tool in understanding the physics of colloidal inclusions [176; 186] and their

applications in metamaterials and soft photonics [193].

We find this an equally fruitful paradigm in active nematics. Utilising the same

multipole distortions we characterise the far-field active response to perturbations. This

allows us to identify those distortions which produce directed or rotational flows and

show that such responses may be naturally induced by colloids. The understanding

this gives of the relation between non-equilibrium responses and local manipulations

and molecular fields in active nematics will bring both fundamental insights and the

potential for control of active metamaterials.

3.1 Hydrodynamics of active nematics

The hydrodynamical equations of active nematics were presented in Section 2.3. An

often-used approximation is to consider the active flows generated by an equilibrium

director field. This approximation has been used previously in the theoretical description

of the active flows generated by defects in both two [40; 110] and three dimensions [44],

including on curved surfaces [89], and in active turbulence [111]. The equations can then

be taken to be h = 0 for the director field and the Stokes equation

−∇p+ µ∇2u = ζ∇ ·
(
nn
)
, (3.1)

for the active flow. Although one of the key applications of the work in this chapter is to

colloids, in our approach we only impose asymptotic conditions on the solutions, namely

that u vanishes with p and n tending to constant values. We do not include any short

scale conditions to explicitly handle the presence of a colloid, such as a no-slip condition

on u or Dirichlet conditions on n. In (3.1) we have neglected the Ericksen stress since

for an equilibrium director field it can be balanced by a contribution to the pressure

(representing nematic hydrostatic equilibrium). The neglect of the nematic stresses may

be further justified by observing that they are two powers of gradients higher order than

the retained active stress.

We limit our analysis to director fields that can be linearised around a (locally)
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uniformly aligned state, n = ez + δn, for which the equations reduce to

∇2δn = 0, (3.2)

∇ · u = 0, (3.3)

−∇p+ µ∇2u = ζ
[
ez
(
∇ · δn

)
+ ∂zδn

]
, (3.4)

with the same boundary conditions as discussed for (3.1), meaning that δn vanishes at

large distances. These nematic distortions correspond to elastic multipole states in the

director field, which are often thought of as an asymptotic description, however, they

provide a close approximation even at only moderate distances outside a ‘core’ region

that is the source of the multipole (and which we do not describe explicitly here, although

see the following chapter on disclination loops). This is relevant to the active system

as it is well-known that the uniformly aligned active nematic state is fundamentally

unstable [25] and active nematics are turbulent on large enough scales. Our solutions

should be interpreted as describing the behaviour on intermediate scales, larger than the

core structure of the source but smaller than the scale on which turbulence takes over.

3.2 Multipole director distortions

As outlined above, we take the director to be n = ez + δn, where δn is a two-component

vector of transverse distortions, both components of which are harmonic, meaning that

at order l they may be expressed as 1/rl+1Y l
m or as l derivatives of 1/r. Since we

are considering perturbations around a uniformly aligned state, there is significance to

the symmetries of this ground state, namely an SO(2) subgroup of the full rotation

group corresponding to rotations around ez. As δn is comprised of two independent

harmonic functions the distortions at order l form a 2(2l + 1)-dimensional vector space

and a natural basis is provided by the irreducible representations under the action of

SO(2). This gives immediate insight into the nature of the active response that harmonic

distortions might induce, for just as the presence or lack of active motility in nematic

point defects is a consequence of their respective symmetries [40], the spin of multipoles

under the action of SO(2) has consequences for their active flows. The spin denotes

the number of equivalent symmetry states in a full rotation, with the sign indicating

whether a local director rotation results in a global rotation of the same (positive) or

opposing (negative) sense. In particular, spin ±1 distortions may lead to translations

along or rotations about transverse directions and only spin 0 ones can do so along or

about ez.
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Before calculating the active response to elastic multipole states, we first expand

upon their structure as differentials of 1/r. This apparent diversion is worthwhile as it

sets up the derivative-based perspective of harmonics we take throughout this chapter,

which is also mirrored in our calculation of their active responses.

As a prelude, let us consider some aspects of complex geometry. A complex

manifold has a complex structure which provides a splitting of the complexified tangent

bundle into a holomorphic and anti-holomorphic bundle [232]. A similar splitting of the

derivative allows a decomposition at order l into l+1 distinct bundles, see the discussion

in [75]. Vector fields are sections of these bundles and the winding of their zeros can be

inferred from the bundle they belong to [75].

Inspired by these points, and in light of the natural distinction with the far-field

direction, we complexify the transverse plane, making the decomposition R3 ∼= C ⊕ R
and describing the transverse distortions via the complex function δn = δnx+ iδny. The

natural choice for the derivatives on C is the Wirtinger derivatives

∂w =
1

2
(∂x − i∂y),

∂w̄ =
1

2
(∂x + i∂y),

(3.5)

with the Laplacian given by ∂2
z +4∂ww̄. This brings us to two equivalent expressions for

the harmonic director distortions

δn = δnx + iδny =
∞∑
l=0

l∑
m=−l

qlm

(a
r

)l+1
Y m
l (θ, ϕ),

=

∞∑
l=0

l∑
m=−l

q̃lmal+1∂m
w̄ ∂l−m

z

1

r
,

(3.6)

where Y m
l : S2 → C are the spherical harmonics, the qlm and q̃lm are complex coefficients

and a is a characteristic length of the multipole, as might be set by the radius of a

colloid. For compactness of notation it is to be understood that when m is negative in

the second equation ∂m
w̄ represents ∂

|m|
w . The index m denotes the topological charge of

the phase winding of the spherical harmonic. This gives the spin of the corresponding

vector field as 1 − m, where the 1 is due to a vector being a spin-1 object. Although

the director n has spin-2 symmetry it is simplest to treat it as an oriented vector with

the understanding that all results must be invariant under the global change n → −n.

The multipoles at order l therefore have spins that range from 1− l to 1 + l. They are

illustrated up to quadrupole order in Figure 3.1, along with a representation in terms
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of topological defects which we shall elaborate upon shortly. The structure of Figure

3.1 is such that differentiation maps the distortions of one order to the next, with ∂z

leaving the distortion in the same spin class, ∂w̄ moving it one column to the left and

∂w moving it one column to the right. The operators ∂w and ∂w̄ therefore play the same

role as the raising and lowering operators in quantum mechanics and the shift by one in

the spin values simply results from the object on which they act being a spin-1 director

as opposed to a spin-0 wavefunction.

We shall predominantly follow Maxwell [45; 233; 234] and use the latter of the two

harmonic representations in (3.6), describing the nematic distortions as derivatives of

1/r. This will allow us to express the active flow response as the same set of derivatives

acting on an analogous fundamental flow. The 1/r monopole distortion itself results

from a rotation by an angle θ0 of the nematic in a sphere of radius a. For this the

equilibrium director field is [230]

n = cos

(
θ0a

r

)
ez + sin

(
θ0a

r

)
ex, (3.7)

and has the far-field character of a monopole distortion, n ≈ ez +
θ0a
r ex. Such distor-

tions are shown at the top of Figure 3.1 and can be controllably created using platelet

inclusions [235] by employing optical torques to balance the elastic torques associated

with monopolar distortions [21] which preclude their existence in equilibrium. In the

active case the response will be different because the active stresses associated with the

distortion (3.7) will drive fluid flows.

At order l the nematic distortions form a 2(2l+1)-dimensional vector space. We

are now in a position to see that the action of SO(2) provides a natural basis for that

vector space. The dipolar distortion tensor p has 2(2+ 1) = 6 dimensions and a basis is

given by

p0 =

{
∂w̄

1

r
, i∂w̄

1

r

}
∼ − 1

2r3
{xex + yey,−yex + xey} ∼ 1

r2
{
Y 1
1 , iY

1
1

}
,

p1 =

{
∂z

1

r
, i∂z

1

r

}
∼ − 1

r3
{zex, zey} ∼ 1

r2
{
Y 0
1 , iY

0
1

}
,

p2 =

{
∂w

1

r
, i∂w

1

r

}
∼ − 1

2r3
{xex − yey, yex + xey} ∼ 1

r2
{
Y −1
1 , iY −1

1

}
,

(3.8)

where we have presented three representations for the distortions of each spin class:

in terms of complex derivatives of 1/r, two-component vectors whose coefficients are

homogenous polynomials of degree 1 and complex spherical harmonics. In the interest of
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space we have suppressed certain prefactors in the last of these, but note the difference in

sign, and in some cases normalisation, between our representation as complex derivatives

and the standard form of the harmonic distortions as two-component vectors [181]. The

two basis functions of any spin class are related by a factor of i, which corresponds to

a local rotation of the transverse director distortion by π
2 . For a spin-s distortion this

is equivalent to a global rotation by π
2s , with the pair of distortions having the same

character and simply providing a basis for all possible orientations. The exception is

when s = 0, such distortions lack an orientation and the local rotation produces two

distinct states that transform under rotations as a scalar and pseudoscalar. In the

dipole case the first is the isotropic distortion recognisable as the UPenn dipole [205],

the second is an axisymmetric chiral distortion with the far-field character of left-handed

double twist. This is equivalent to the transition between an aster and a vortex in two

dimensions, both of which constitute spin-0 point defects. The non-singular nature of

the chiral distortion is simply a result of the distortion sitting in a uniform background

which tilts the director out of the plane and renders the vortical pattern helical. The

full dipole distortion tensor can be represented as the direct sum p =
⊕

i p
i, by which

it is meant that any element v ∈ p can be expressed via its coordinates in the pi, with

addition defined coordinate-wise and any distinct pair of the pi having intersection {0}.
Separating p0 into its isotropic and chiral components allows a full decomposition of the

dipole tensor as

p = pI ⊕ pC ⊕ p1 ⊕ p2. (3.9)

Figure 3.1 (preceding page): The multipolar director distortions up to quadrupole order.
The director is shown as blue rods along with a topological skeleton corresponding to
the spherical harmonic, as elaborated upon in Figure 3.2, where appropriate. The defect
loops are coloured according to the local winding of the director as in Figure 2.8 and
the charge of any point defect is indicated through the use of opposing colour pairs:
red (+1) and cyan (−1), yellow (+2) and blue (−2) and green (+3) and magenta (−3).
Their charge is further indicated by a local decoration of the director with an orientation,
indicated by black arrows. Each multipole order is classified into vertical pairs according
to the spin of the distortion, with distortions within a pair related by multiplying the
complex harmonic by i, that is rotating the director by π/2. Typically this results in
a global rotation by π/2s, save for the spin-0 modes, for which it converts an isotropic
distortion to a chiral one. For most distortions the director is shown in a planar cross-
section in which the distortion is radial. For the chiral distortions there is no such plane
but the integral curves are shown in orange to emphasise that these are of pure bend
type.
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This decomposition of the dipolar tensor was presented in [236].

Similarly, the 10-dimensional quadrupolar distortions may be given a basis

Q−1 =

{
∂2
w̄

1

r
, i∂2

w̄

1

r

}
∼ 3

4r5
{
(x2 − y2)ex + 2xyey,−2xyex + (x2 − y2)ey

}
∼ 1

r3
{
Y 2
2 , iY

2
2

}
,

Q0 =

{
∂2
w̄z

1

r
, i∂2

w̄z

1

r

}
∼ 3

2r5
{xzex + yzey,−yzex + xzey} ∼ 1

r3
{
Y 1
2 , iY

1
2

}
,

Q1 =

{
∂2
z

1

r
, i∂2

z

1

r

}
∼ 1

r5
{
(2z2 − x2 − y2)ex, (2z

2 − x2 − y2)ey
}
∼ 1

r3
{
Y 0
2 , iY

0
2

}
,

Q2 =

{
∂2
wz

1

r
, i∂2

wz

1

r

}
∼ 3

2r5
{xzex − yzey, yzex + xzey} ∼ 1

r3
{
Y −1
2 , iY −1

2

}
,

Q3 =

{
∂2
w

1

r
, i∂2

w

1

r

}
∼ 3

4r5
{
(x2 − y2)ex − 2xyey, 2xyex + (x2 − y2)ey

}
∼ 1

r3
{
Y −2
2 , iY −2

2

}
.

(3.10)

Once again the spin-0 distortions can be further partitioned into those that transform

as a scalar and pseudoscalar, these being the Saturn’s ring distortion [208] and a chiral

quadrupole with opposing chirality in the two hemispheres respectively. As such the

quadrupolar tensor can be decomposed as the direct sum

Q = Q−1 ⊕QI ⊕QC ⊕Q1 ⊕Q2 ⊕Q3. (3.11)

Before embarking upon a full description of the basis nematic multipole distor-

tions that we have identified it will be helpful to discuss how such harmonics might be

associated with a configuration of topological defects. The nature of the derivatives of a

field directly relates to the structures that can arise in the neighbourhoods of its zeros

and hence to the types of topological defects that it can exhibit. Indeed, if we restrict

to the case m = ±l then the classification of derivatives according to their spin in (3.6)

mirrors that of point defects of a vector field in two dimensions. While it is typically not

possible to establish a one-to-one correspondence between topological defects and har-

monics, we can associate a harmonic with an arrangement of topological defects which

would be expected to produce it in the far field on the basis of commensurate symmetries

and defects of a type and location corresponding to the nodal set of the harmonic. This

connection will allow us to condense the visualisation of complicated three-dimensional

fields into a few discrete elements, suggests means by which such distortions might be in-

duced and enables us to build an intuition for their behaviour in active systems through

established results for defects [44].

Examples of this association are shown in Figure 3.2. On the left is the harmonic
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∂w̄
1
r ∼ 1

r2
Y 1
1 ∂2

w̄z
1
r ∼ 1

r3
Y 2
1 ∂2

w̄∂
3
z
1
r ∼ − 1

r6
Y 5
2

Figure 3.2: The connection between spherical harmonics and nematic topological defects.
The coloured spheres indicate the phase of the complex spherical harmonics with the
nodal set shown in white for simplicity. A representative skeleton of the corresponding
nematic distortion is shown in black and the red arrows indicate the winding vector of
the director.

that describes the UPenn dipole, with the form −eiϕ sin θ. This has nodes at the two

poles about which the phase has −1 winding and so we can infer similar winding of

the director in the transverse plane, shown in brown. Supplementing with the far-field

alignment along ez yields the familiar picture of a pair of oppositely charged hedgehog

defects.

Similarly, the Saturn ring quadrupole, described by eiϕ sin 2θ, has zeros at the

poles and around the equator. The winding about the poles is still +1, but the sign

change in the lower hemisphere means that in the transverse plane around the south

pole the vector points inwards, resulting in both point defects having topological charge

+1. With regards to the equatorial line, since the director is everywhere radial the

winding vector must be tangential to the defect loop, shown by the red arrows in Figure

3.2. As the phase changes by π on passing from one hemisphere to the other the winding

must be ±1 and the far-field alignment allows us to determine it to be −1.

For a general multipole distortion of the form ∂m
w̄ ∂l−m

z (1/r) the nodal set is the

poles along with l − m lines of latitude. The phase winding of the spherical harmonic

dictates the transverse winding of the director and, when supplemented with the far-

field alignment, allows us to associate topological point defects with the poles. Similarly,

nodal lines may be connected with defect loops with integer winding and a winding

vector that rotates according to eimϕ. In Figure 3.2 we illustrate this for the case

∂2
w̄∂

3
z (1/r) ∼ −Y 5

2 /r
6.
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We now apply this to the dipolar and quadrupolar distortions we have identified.

As already stated, the isotropic scalar in p0 is the UPenn dipole, its pseudoscalar coun-

terpart a chiral pure bend distortion whose integral curves are shown in orange in Figure

3.1. As a pure bend mode it may be of particular relevance to extensional systems given

their instability to bend distortions. The two dipoles of p1 are transverse to the far-field

alignment, they are related to those resulting from a defect loop of wedge-twist type

[43] and will be discussed further in the following chapter. The distortions of p2 have a

hyperbolic character; they describe the far field of a pair of point defects both of which

have a hyperbolic structure. Such hyperbolic defect pairs arise in toron configurations

in frustrated chiral nematics [77; 237].

Similarly, Q0 contains the Saturn ring quadrupole as the scalar, with the pseu-

doscalar a pure bend chiral distortion. For the latter, the integral curves of the director

possess opposing chirality in the two hemispheres, which could be generated by an ap-

propriately coated Janus particle. The director distortion exhibits a helical perversion in

the z = 0 plane and, being a local rotation of the Saturn ring distortion, may be viewed

as resulting from a pair of vortex point defects along with a pure twist defect loop with

integer winding. This is similar to the bubble-gum defect lines [238] that appear between

a colloidal dyad with normal anchoring, suggesting that this chiral quadrupole could be

formed by two colloids with opposing chiral tangential anchoring.

The spin-1 quadrupoles consist of pairs of wedge-twist defect loops. The distor-

tions of Q2 may be associated with a pair of hyperbolic defects along with a defect ring

with the appropriate symmetry. The harmonics of spin −1 and 3 contain no z-derivatives

and so are associated with pairs of point defects only.

Having established the appropriate basis of distortions we now move our attention

to the response they induce in an active nematic. Just as the distortions could be derived

from monopoles, we shall see that the active flows can be derived from corresponding

fundamental flows.

3.3 Flows from multipole distortions

A note before we proceed. The construction for calculating active flow responses that we

develop in this section requires knowledge of the multipole as a specified set of derivatives

of 1/r. As the multipoles are harmonic there are cases, for distortions of quadrupole order

and higher, where there is potential ambiguity in the choice of derivatives, for example

between ∂2
z1/r and −4∂2

ww̄1/r. As the flow responses do not share the harmonicity of

the nematic distortions these derivatives produce distinct active flows, neither of which
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is a priori ‘more correct’ than the other. Accordingly we highlight this multiplicity of

solutions when it arises and will show both solutions. However, in the following section

we show that the non-equilibrium phenomena that result from certain distortions, as

characterised by net active forces and torques, correspond to integrals of the director

components and so do not suffer from this ambiguity. Additionally, the following chapter

on defects loops will serve to illustrate that when a specific context is given a particular

set of derivatives can naturally be determined and any apparent ambiguity resolved.

We turn now to calculating the active response to the elastic multipoles described

above. As our description is linear the responses due to the two components of δn are

independent and so to simplify the derivation of the active response we consider only

distortions in the x-component for now; we will present a combined formulation shortly.

Within this restriction to a single component a generic distortion at order l may be

written as

δn = al+1ex∇v1 · · · ∇vl

1

r
, (3.12)

valid for r >> a where ∇v ≡ v · ∇, the directional derivative [239]. For brevity we

suppress the factor of al+1 while discussing the general solution and reinstate it when we

come to discussing particular examples. Substituting (3.12) into (3.4) gives the Stokes

equation the form

−∇px + µ∇2ux = ζ∇v1 · · · ∇vl

[
ex ∂z + ez ∂x

]1
r
, (3.13)

where the use of superscripts is to emphasise that we are only treating the response

to distortions in the x-component of the director. We do not impose any particular

boundary condition at short distances, but seek flow solutions that decay to zero for

large distances, with the pressure tending to a constant. Although well-behaved decaying

solutions enter at dipole order in 3D, and at quadrupole order in 2D, in a manner

reminiscent of the Stokes paradox, we still find it useful to present lower orders.

Taking the divergence of both sides of (3.13) we have

−∇2px + µ∇2∇ · ux = ζ∇v1 · · · ∇vl
∂2
xz

2

r
. (3.14)

Making use of the continuity equation ∇ · ux = 0 in conjunction with the general result

∇2r = 2
r we arrive at the pressure solution

px = −ζ∇v1 · · · ∇vl
∂x∂zr = ζ∇v1 · · · ∇vl

xz

r3
. (3.15)
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Substituting this solution back into the Stokes equation in (3.12) we obtain

µ∇2ux = ζ∇v1 · · · ∇vl

{
ex ∂z

[
1

r
− ∂x∂xr

]
− ey ∂x∂y∂zr + ez ∂x

[
1

r
− ∂z∂zr

]}
. (3.16)

We again integrate, this time using the addition relation ∇2r3 = 12r. This yields

ux =
ζ

4µ
∇v1 · · · ∇vl

{
ex

[
z

r
+

x2z

r3

]
+ ey

xyz

r3
+ ez

[
x

r
+

xz2

r3

]}
. (3.17)

We can see that both the pressure and flow solutions for a generic multipole

distortion may be expressed through derivatives of a fundamental response to a monopole

deformation, namely

px = ζ
xz

r3
, (3.18)

ux =
ζ

4µ

{
ex

[
z

r
+

x2z

r3

]
+ ey

xyz

r3
+ ez

[
x

r
+

xz2

r3

]}
. (3.19)

This flow response, shown as the top panel in Figure 3.3, is primarily extensional in the

xz-plane; its lack of decay with distance reflects the generic hydrodynamic instability

of active nematics [25]. However, the response to any higher multipole does decay and

vanishes at large distances.

The pressure and flow solutions in (3.18) and (3.19) are of course complemented

by analogous ones resulting from distortions in the y-component of the director. By

interchanging x and y these are found to be

py = ζ
yz

r3
, (3.20)

uy =
ζ

4µ

{
ex

xyz

r3
+ ey

[
z

r
+

y2z

r3

]
+ ez

[
y

r
+

yz2

r3

]}
. (3.21)

As illustrated in our derivation of the flow response to a generic distortion in the x-

component (3.17), the linearity of our calculation makes these fundamental responses

sufficient to derive the active flow induced by an arbitrary multipole distortion through

the separate action on (3.19) and (3.21) of the derivatives appropriate to describe the x

and y components of the director respectively.

However, in light of our previous description of nematic multipoles as complex

derivatives and its use in identifying pairs of basis distortions in distinct spin classes it

is natural to formulate the calculation in terms of a single fundamental response from

which the response to a given distortion can be attained through application of a complex
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derivative. This is achieved by taking the combinations p = px − ipy and u = ux − iuy.

To see this consider the multipole distortion δn = (Lx + iLy)1/r, where the Li are

generic real differential operators which generate the i-component of the director by

acting on 1/r. This distortion has a conjugate partner in the same spin class, given by

i(Lx + iLy)1/r = (−Ly + iLx)1/r. Acting with this same operator on ux − iuy we have

(Lx + iLy)(u
x − iuy) = (Lxu

x + Lyu
y)− i(−Lyu

x + Lxu
y) (3.22)

and can see that the flow response for our original distortion forms the real part and

that for its conjugate partner the coefficient of −i and the same holds for the pressure

response. This leads us to a complex fundamental pressure response

p̃ = ζ
w̄z

r3
(3.23)

and, introducing complex basis vectors ew = ex+iey and ew̄ = ex−iey, a complex-valued

fundamental flow vector

ũ =
ζ

4µ

{
ew

w̄2z

2r3
+ ew̄

[
z

r
+

ww̄z

r3

]
+ ez

w̄

r

(
1 +

z2

r2

)}
. (3.24)

We use a tilde to distinguish these fundamental responses from those that result due to a

generic distortion and which may be found by appropriate differentiation. This provides

a unified framework in which the active response to a generic nematic multipole can be

calculated through the application of the same complex derivatives that we have used

to describe the distortion. The resulting active flows for distortions up to quadrupole

order are shown in Figure 3.3, with their layout corresponding to that of the nematic

distortions in Figure 3.1 which induce them.

Typically the active responses induced by the two distortions in a spin class will,

like the distortions themselves, be related by a global rotation such that while both are

needed to form a sufficient basis, the real part essentially serves as a proxy for the pair.

This is not true for the spin-0 distortions and so in providing an explicit illustration

of this calculation we use the case of the UPenn dipole [205] and its partner the chiral

dipole. The far-field transverse director is

δn ≈ αa2∂w̄
1

r
, (3.25)

with α is a dimensionless coefficient, and the corresponding derivative of the fundamental
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flow solution in (3.24) gives

αa2∂w̄ũ =
αa2

4r5
{
ew zw̄(4z2 + ww̄)− ew̄ 3zw2w̄ + ez 2

[
3z4 + (z2 + ww̄)2

]}
. (3.26)

Taking the real part gives, after some manipulation, the flow induced by the UPenn

dipole as

u = αa2R∂w̄ũ =
ζαa2

8µ

{
ez

(
1

r
+

z2

r3

)
+ er

z

r2

(
3z2

r2
− 1

)}
, (3.27)

where er is the unit vector in the radial direction. The flow response to the conjugate

distortion, the isotropic chiral dipole is given by

u = −αa2I∂w̄ũ = −ζαa2

4µ

z

r2
eϕ, (3.28)

with eϕ the azimuthal unit vector. Both flows decay at large distances like 1/r, with

the UPenn flow having a striking net flow directed along the z-axis, as shown in Figure

3.3. The flow is reminiscent of that of the Stokeslet flow [240; 241] associated with a

point force along ez. The chiral dipole generates an axisymmetric flow composed of

two counter-rotating vortices aligned along ez, mirroring the circulating flows produced

by spiral defects in two dimensions [88]. The 1/r decay of these active vortex flows

is unusually slow, slower than the decay of a point torque in Stokesian hydrodynamics

[241].

Despite the similarity between the active flow induced by the UPenn dipole and

a Stokeslet, there is a key difference in their angular dependence. In a Stokeslet, and all

related squirming swimmer flows [242; 243] that result from derivatives of it, the terms

with higher angular dependence decay more quickly such that the lowest order terms

dominate the far field. By contrast, distortions in active nematics produce asymptotic

flow fields in which all terms decay at the same rate regardless of their angular depen-

dence as they all result from the same derivative of the fundamental flow. Thus, even if

the same angular terms are present in both systems, the lowest order ones will dominate

Figure 3.3 (preceding page): The active flows due to three-dimensional nematic multipole
distortions up to quadrupole order. The flows are grouped according to their spin, in
correspondence with the distortions in Figure 3.1. Green and red arrows indicate the
net active force and torque for the relevant dipoles and quadrupoles respectively. The
flow solutions shown for spin-1 quadrupoles correspond to the operators ∂2

z and i∂2
z ,

additional solutions for spin-1 quadrupoles corresponding to ∂2
ww̄ and i∂2

ww̄ are shown in
Figure 3.4.
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in the squirming case while the far field will bear the signature of the highest order in

the active nematics.

A closer point of comparison comes from the flows induced by active colloids

within a passive nematic [244; 228]. Calculation of the relevant Green’s functions [245]

has shown that the anisotropy of the medium leads to a difference in effective viscosities

such that a Stokeslet aligned along the director pumps more fluid in this direction. This

fits with the anisotropy displayed in (3.27), reaffirming the similarity between the flow

induced by the UPenn dipole and the Stokeslet.

Considering the pressure response for these distortions in the same way we have

αa2∂w̄p =
ζαa2

2r5
z(2z2 − ww̄)

=
ζαa2z

2r3

(
3z2

r2
− 1

)
.

(3.29)

As this expression is purely real it comprises the response due to the UPenn dipole in its

entirety; the vanishing of the imaginary part shows that the chiral dipole is compatible

with a zero-pressure solution. Our complexified construction allows this property to

be read off immediately, since ∂w̄(w̄z
m/rn) will be real for any m and n, with this also

resulting in the vanishing z-component of flow for the chiral dipole. Indeed, this property

of pure realness is unchanged by the action of ∂z, it being real itself, and so extends to

higher order distortions.

For the remaining multipoles up to quadrupole order we do not provide the same

explicit calculation but instead highlight the key features of the active flows they induce.

In full we find that half of the dipole distortions contain directed components in their

active flow responses. Along with the isotropic UPenn dipole which produces flow along

ez the two spin-1 dipoles produce directed flows transverse to it. These directed flows

indicated that were the source of the distortion free to move it would exhibit active

self-propulsion. The net transverse flows for the dipoles of p1 is in accordance with

the previously established motile nature of such defect loops [44]. We shall give them

greater consideration in Chapter 4 when we present a description of the active dynamics

of defect loops through their multipole distortions

Along with the chiral dipole, the two additional dipoles which do not generate

directed flows are those with spin 2. These produce active flows which are extensional

with the expected two-fold rotational symmetry about the z-axis. Direct calculation

shows that the flows resulting from spin-2 distortions have zero azimuthal component.

Once again, this observation is unaffected by z-derivatives and so holds true for the
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∂2
ww̄

1
r i∂2

ww̄
1
r

Figure 3.4: Additional flow solutions induced by spin-1 nematic multipoles. The nematic
multipoles which induce the flows are shown below them as complex derivatives of 1/r.
The red arrows indicate the net active torque.

higher-order multipoles of the form ∂n
z ∂w(1/r).

Similarly, there are ten linearly independent quadrupoles, five of which can be

seen from Figure 3.3 to generate rotational flows. As expected, it is the four modes of

Q±1 that generate rotations about transverse directions and QC that produces rotation

around ez. For two of these, namely those in Q1, the director distortions are planar,

suggesting a two-dimensional analogue and the potential to generate them with cogs or

gears, something we shall investigate in Section 3.5 and Chapter 5. These distortions

may be associated with a pair of opposingly oriented charge-neutral defect loops and so

the rotational flow generated by these distortions is in accordance with their antiparallel

self-propulsion. As highlighted at the beginning of this section there are two distinct

flow solutions for the multipoles of Q1, according to whether the derivative taken is

∂2
z (1/r) or −4∂2

ww̄(1/r). The flows induced by the former are shown in Figure 3.3, those

of ∂2
ww̄(1/r) in Figure 3.4. The predominately horizontal form of the flows induced by

∂2
z (1/r) fits with the interpretation as a pair of defect loops; double transverse derivatives

such as in −∂2
ww̄(1/r) will naturally arise when we consider buckling of defect loops in

the following chapter and the vertical nature of the quadrupole flow will reappear in the

context of non-planar splay loops. While the exact form of the flows differ, they both

generate a rotational component about the same axis.

The quadrupoles of Q−1 are composed of pairs of point defects with topological

charge +2. Using ∂2
w̄

1
r as an example, the rotation can be understood by considering

the splay distortions in the xz plane. The splay changes sign for positive and negative

x, leading to antiparallel forces. The active forces are greatest in this plane, as this is

where the transverse distortion is radial resulting in splay and bend distortions. Along
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ey the distortions are of twist type and so do not contribute to the active force. This

results in the rotational flow shown in Figure 3.3. The stretching of the flow along ez

is as observed for a rotlet in a nematic environment [245]. Finally, rotation about the

z-axis results from QC . As for the chiral dipole the induced flow is purely azimuthal and

compatible with zero pressure.

The Saturn ring distortion produces a purely radial flow reminiscent of a stresslet

along ez. The purely radial nature is a result of the divergencelessness of the flow,

combined with the 1/r2 decay and rotational invariance about ez. Working in spherical

coordinates we have

∇ · u =
1

r2
∂r(r

2ur) +
1

r sin θ
[∂θ(uθ sin θ) + ∂ϕuϕ] = 0 (3.30)

All active flows induced by quadrupole distortions decay as 1/r2 and so ∂r(r
2ur) = 0.

The distortion is rotationally symmetric and achiral, meaning uϕ = 0 and the condition

of zero divergence reduces to

1

r sin θ
∂θ(uθ sin θ) = 0. (3.31)

The only non-singular solution is uθ = 0, resulting in ur being the only non-zero flow

component. Although they lack the rotational symmetry of a stresslet, the flows pro-

duced by the quadrupoles of Q2 are also purely radial. The argument is largely the

same as before, except that the vanishing of uϕ is not due to rotational invariance but a

property inherited from the spin-2 dipoles.

The quadrupoles of Q3 produce extensional flows whose spin-3 behaviour under

rotations about ez is commensurate with that of the distortions. Although they visually

resemble the similarly extensional flows produced by the dipoles of p2, they do not share

the property of a vanishing azimuthal flow component.

3.4 Active forces and torques

The directed and rotational active flow components highlighted above result in viscous

stresses whose net effect must be balanced by their active counterparts, since the net

force and torque must be zero. Consequently, these generic aspects of the response of an

active nematic can be identified by considering the contribution that the active stresses
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make to the force and torque

fa =

∫
ζnn · dA ≈

∫
ζ

{
ex

z δnx

r
+ ey

z δny

r
+ ez

x δnx + y δny

r

}
dA, (3.32)

τa =

∫
x× ζnn · dA

≈
∫

ζ

{
ex

[
xy δnx

r
+

(y2 − z2)δny

r

]
+ ey

[
(z2 − x2)δnx

r
− xy δny

r

]
+ ez

z(−y δnx + x δny)

r

}
dA,

(3.33)

integrating over a large sphere of radius r. Formally the multipole approximation un-

derlying these relations holds for r >> a, although it holds approximately for r ≳ a, see

Figure 4.1. These integrals depend on the surface of integration, as the active stresses

are neither divergenceless nor compactly supported. However, a spherical surface is con-

cordant with the multipole approach we are taking and the results are then independent

of the radius. From these expressions we can read off the multipole that will gener-

ate any desired active force or torque; dipoles generate forces and quadrupoles generate

torques. When the active torque is non-zero, the compensating viscous torque will drive

a persistent rotation of the multipole, creating an active ratchet; similarly, a non-zero

active force will generate directed fluid flow.

If the multipole is free to move it will self-propel and rotate. The translational and

rotational velocities are related to the viscous forces and torques by a general mobility

matrix [99]; using the simplest expressions corresponding to a sphere of radius a in

ordinary Stokes flow gives

U =
−1

6πµa
fa, (3.34)

Ω =
−1

8πµa3
τa. (3.35)

We again use the UPenn dipole as an example. Integrating the active stresses

over a spherical surface of radius r we find an active force∫
ζnn · dA ≈ −ζαa2

2

∫ {
ex

xz

r4
+ ey

yz

r4
+ ez

[
z

r
+

x2 + y2

r4

]}
dA,

= −4πζαa2

3
ez.

(3.36)

Balancing this against Stokes drag predicts a ‘self-propulsion’ velocity for the active
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dipole of

U =
2ζαa

9µ
ez. (3.37)

For extensile activity (ζ > 0) the dipole moves ‘hyperbolic hedgehog first’ and with

a speed that increases linearly with the core size a. The same self-propulsion speed

along ex and ey is found for the transverse dipoles of p1. The same behaviour has been

observed in a related system of an active droplet within a passive nematic [228], with

the droplet inducing a UPenn dipole in the nematic and moving in the direction of the

hedgehog defect at a speed that grew with the droplet radius. The mechanism at play

is different however; the motion results from directional differences in viscosity resulting

from the anisotropic environment.

To illustrate the rotational behaviour we use a member of Q1, ∂2
z (1/r), as an

example. We find an active torque∫
ζx× nn · dA ≈ ζαa3

∫
1

r6
(2z2 − x2 − y2)

{
xyex + (z2 − x2)ey − yzez

}
dA

=
8πζαa3

5
ey.

(3.38)

Balancing against Stokes drag as was done in the dipole case gives an angular velocity

Ω = −ζα

5µ
ey. (3.39)

We note that for this and all other distortions which result in net torques the angular ve-

locity is independent of the colloid size. In accordance with the relation ∂2
z+4∂2

ww̄(1/r) =

0, the torque resulting from ∂2
ww̄(1/r) is of the opposite sign and a quarter the strength.

The net active torques due to harmonics of Q0 and Q−1 have the directions indicated

in Figure 3.3 and half the magnitude of (3.38).

Let us consider the approximate magnitude of the effects we have described.

Beginning with the self-propulsion speed, the fluid viscosity is roughly 10−2Pa s [150],

although effects due to the elongated form of the nematogens could increase this by a

factor of 30 or so [246; 247]. Both the activity [40] and the dipole moment constant [181]

are of order unity, meaning the colloid would approximately cover its radius in a second.

Similar approximations for the quadrupole give an angular velocity of about 2/3rad s−1.

For a colloid of radius 10µm this has an associated power of the order of femtowatts,

the same as predicted for bacterial ratchets [23].
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3.5 Two-dimensional systems and ratchets

As noted above, the planar nature of the rotational distortions in Q1 suggests the ex-

istence of two-dimensional analogues. In part motivated by this we now discuss the

active response of multipolar distortions in two dimensions, again beginning with the

connection between these multipoles and topological defect configurations.

3.5.1 Multipoles as topological defects

The categorisation of the harmonic distortions in two dimensions is much simpler, but we

provide it here for completeness. The symmetry of the far-field director is now described

by the order 2 group {1, Rz}, with Rz reflection with axis ez, under which the monopole

distortion nx ∼ A log(r/R) is antisymmetric. The higher-order distortions are once again

generated via differentiation of the monopole, with ∂z leaving the symmetry under Rz

unchanged and ∂x inverting it. The basis at any order of derivative can be reduced to{
∂n−1
z ∂xnx, ∂

n
z nx

}
, modulo a similar caveat relating to a multiplicity of flow solutions

as in three dimensions. These two distortions are symmetric and anti-symmetric under

Rz respectively and of course correspond to the two harmonic functions cosnθ/rn and

sinnθ/rn.

In two dimensions the connection between defect configurations and far-field mul-

tipole distortions can be made concrete. The director for a two-dimensional nematic can,

under the one-elastic-constant approximation, be represented by a meromorphic function

such that the angle that the director makes to ex is given by

ϕ = ϕ0 +
∑
j

sjI {ln(z − zj)} , (3.40)

which, upon performing a series expansion, gives

ϕ = ϕ0 +
∑
j

sjI {ln(z)} −
∞∑
n=1

I
{∑

j sjz
n
j z̄

n
}

n|z|2n
, (3.41)

where the sj denote the topological charges of the defects and the zj their locations.

Provided the total topological charge is zero the winding term proportional to ln z van-

ishes and ϕ0 is the far-field alignment. The distortions are given as a series of harmonics

in which the coefficient of the nth harmonic is determined by a sum of znj weighted by

the defect charges.

We would like to have a basis of representative defect configurations for each
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harmonic distortion. However, it can be seen from (3.41) that the correspondence be-

tween arrangements of topological defects and the leading order nematic multipole is

not one-to-one. Two defect-based representations of harmonic will prove particularly

useful to us. The first, which we develop in this chapter, provides a representation in

terms of half-integer defects on the disc and allows an intuition for the response to mul-

tipole distortions in active nematics through known results for such defects [39; 40]. The

second uses the method of images to construct defect arrangements corresponding to a

specific anchoring condition on the disc, with the same multipoles dominating the ne-

matic distortion in the far field. This representation naturally lends itself to the control

of induced multipoles through colloidal geometry and we shall present it fully in Chapter

5. Nonetheless, both of these representations will be of use to us in the remainder of

this chapter and as they are equally valid near-field representations for the asymptotic

distortions that we are considering we will pass fairly freely between them.

With this aforementioned half-integer representation in mind, let us consider sets

of 2m defects sitting on the unit circle, with −1/2 defects at the mth roots of unity and

+1/2 defects at the intermediate points. A useful formula here is the following for the

sum of a given power of these roots of unity, after first rotating them all by a given angle

θ
m−1∑
k=0

(
eiθei

2π
m

k
)n

=

meinθ, if m|n

0, otherwise
. (3.42)

The vanishing of this sum for values of n that are not multiples of m comes directly from

the expression for the geometric sum and is a consequence of the cyclic group structure

of the roots of unity. It means that the lowest order multipole distortion induced by

such an arrangement of defects is order m and so allows a desired multipole distortion to

be selected as the dominant far-field contribution. Explicitly, the director angle is given

by

ϕ = ϕ0 +
∑
k odd

I
{
z̄mk

}
k|z|2mk

= ϕ0 +
I {z̄m}
|z|2m

+O

(
1

z3m

)
, (3.43)

with the approximation becoming rapidly better for higher-order multipoles due to the

condition that n must be an odd multiple of the number of defects. Rotating the entire

set of defects rigidly by an angle −π/(2m) generates the conjugate multipole as the

dominant far-field contribution

ϕ = ϕ0 +
∑
k odd

I
{
(−i)kz̄mk

}
k|z|2mk

= ϕ0 −
R {z̄m}
|z|2m

+O

(
1

z3m

)
, (3.44)
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with the natural interpolation between these two harmonics as the defect configuration

is rigidly rotated.

Hence we can interchange between a given harmonic distortion and a defect ar-

rangement which has this harmonic as its dominant far-field contribution, with the

correspondence becoming rapidly more accurate for higher orders, allowing us to relate

the existing results for the behaviour of active defects [39; 40] to ours and vice versa.

This correspondence is illustrated in Figure 3.5. The locations of +1/2 and −1/2 defects

are indicated with red and cyan dots respectively and the background colouring denotes

the phase of the complex function
∑

sj ln(z − zj), whose imaginary part provides the

director angle for the given defect arrangement. The integral curves of this director field

are shown in black and are remarkably well matched by those of the leading multipole,

shown in white, despite the asymptotic nature of the approximation. In this context we

are able to make precise the notion of a core region of a singular distortion, outside of

which our multipole approach applies. The series in (3.41) is attained through a Taylor

series of terms of the form ln(1− 1/z), which are convergent for |z| > 1. More generally

the greatest radial displacement of a defect defines a core radius, outside of which the

multipole series converges onto the exact director angle.

3.5.2 Flows from multipole distortions

We can proceed analogously to our three-dimensional calculation in generating the active

flows from a fundamental response in two dimensions, provided we are mindful of the

logarithmic form that the monopole now has. A director rotation by θ0 inside a disc of

radius a results in an equilibrium texture given by

n = cos

(
θ0 log(r/R)

log(a/R)

)
ez + sin

(
θ0 log(r/R)

log(a/R)

)
ex, (3.45)

which in the far field tends to a monopole distortion n ≈ ez +
θ0 log(r/R)
log(a/R) ex. Due to the

logarithmic divergence of the fundamental harmonic in two dimensions it is necessary

to normalise through a large length R such that a uniformly aligned far-field director is

recovered.

Solving Stokes’ equations as before the fundamental flow solution is now found
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a) b)

c) d)

Figure 3.5: Representative defect configurations for nematic multipoles in two dimen-
sions. The red and cyan dots indicate the locations of +1/2 and −1/2 defects respec-
tively. The black curves are the integral curves of the corresponding director field and
the background colour shows the phase of the complex function whose imaginary part
gives the exact director angle, as in (3.40). The white lines are the integral curves of the
dominant multipole, that is the leading term of (3.41). The multipole series converges
onto the exact director angle outside a core region, shown as a white disc, and the lead-
ing multipole provides a remarkably good approximation in this region.
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to be

ũ =
ζθ0

4µ log(a/R)

[
ex

(
z log

( r

R

)
− x2z

r2

)
+ ez

(
x log

( r

R

)
− xz2

r2

)]
, (3.46)

p̃ = − ζθ0
log(a/R)

xz

r2
. (3.47)

There is a clear similarity between these solutions and their three-dimensional counter-

parts, but while the fundamental flow response is still extensional it now grows linearly

with distance from the distortion, with this change in scaling inherited by the subsequent

harmonics.

As in the three-dimensional case we can gain general insight into the active re-

sponse of a nematic by considering the net contribution of the active stresses to the force

and torque when integrated over a large circle of radius r∫
ζnn · erdr ≈

∫
ζ

{
zδnx

r
ex +

xδnx

r
ez

}
dr, (3.48)

∫
x× ζnn · erdr ≈

∫
ζ
(z2 − x2)δnx

r
dr. (3.49)

We see that in two dimensions both dipoles will self-propel if free to move and there is

a single chiral quadrupole which produces rotations.

The far-field flow solutions for distortions up to dipole order are illustrated in

Figure 3.6, superposed over the nematic director. Both dipoles are now motile and as in

the three-dimensional case they set up flows reminiscent of the Stokeslet. Vertical and

horizontal self-propulsive modes may be viewed as resulting from normal and tangential

anchoring respectively of the nematic on a disc. Interpolating between these orthogonal

modes the angle of motility changes commensurately with the anchoring angle, such

that sufficient control of the boundary conditions would allow for self-propulsion at

an arbitrary angle with respect to the far-field alignment. This change in the dipole

character can be represented by rigidly rotating the defect pair around the unit circle

and the resulting motility is as would be expected from the position and orientation of

the +1/2 defect [40; 130; 131]. Determining the motility induced by these dipolar modes

is complicated by the Stokes paradox and although this can be circumvented by various

means we do not pursue this here. If such dipolar colloids were fixed within the material

they would pump the ambient fluid and so it should be possible to use them to produce

the concentration, filtering and corralling effects observed previously by funneling motile

bacteria [225].
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a)

b) c)∂x ∂z

Figure 3.6: Monopole and dipole distortions in two-dimensional active nematics. The
active flow in white is superposed on the pressure field, with the integral curves of the
director shown in black. (a) The fundamental monopole response is extensional and
grows linearly with distance from the distortion. (b) and (c) show the flows induced
by dipole distortions, labelled by the appropriate derivative of the nematic monopole,
with the green arrows indicating the direction of self-propulsion that would result from
net active forces in extensile systems. The vertical and horizontal dipoles are the far-
field director responses to normal and tangential anchoring respectively and may also
be interpreted as arising from a pair of +1/2 (cyan) and −1/2 (red) defects. The self-
propulsion matches that expected for the +1/2 defect.

The quadrupolar distortions and their corresponding flows are illustrated in Fig-

ure 3.7. We show both the flows that result from the three possible second derivatives

as well as their negatives. Although the latter is redundant, it is intended to highlight
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the connections between the location of defects, anchoring conditions on the disc and

induced flows. The flow in Figure 3.7(a) is purely radial and resembles the stresslet

flow, unsurprising as it results from differentiating the vertical dipole in the same way

as the stresslet is related to the Stokeslet. It is produced by a quadrupole distortion

which may be associated with normal anchoring on the disc – its counterpart with tan-

gential anchoring, shown in Figure 3.7(b), has all the charges in its representative defect

configuration inverted and a reversed flow response. Just as for the dipole distortions,

the character of the quadrupole can be smoothly varied through adapting the boundary

condition and the topological defects which represent the harmonic rotate rigidly in step

with the changing anchoring angle.

The other four panels of Figure 3.7 show the active response to chiral quadrupoles.

As was highlighted in our three-dimensional discussion, there are two distinct differential

operators which produce the same nematic multipole; a comparison of the corresponding

active responses is provided by panels (c) and (f) as well as by (d) and (e). Although

the nature of the induced flows differs, being predominately horizontal and vertical

respectively, the phenomenology of the active response, as characterised by the net

active torque, is the same. It is tempting to ask if one of the flow solutions makes more

sense in terms of the orientation of the motile +1/2 defects [130; 131]. This can be found

in terms of Φ (2.8) as ∂z
(
Φ/Φ̄

)
, evaluated at the position of the defect. Fittingly, this

reveals the orientation to be neither horizontal nor vertical but halfway in-between. For

extensile activity the distortion shown in Figure 3.7(c) and (f) generates anticlockwise

rotation, as can easily be justified via our representation of the far-field director structure

as arising from a square arrangement of two +1/2 and two −1/2 defects – the dual mode

rotates clockwise, see Figure 3.7(d) and (e). By choosing boundary conditions such that

the defects are positioned closer to the mid-line of the colloid the strength of the active

torque can be tuned.

This shows that suitable adaptation of the boundary conditions on a disc can in

principle lead to all the self-propulsive and rotational modes in two dimensions. There is

still interest in developing a purely geometric route to inducing these multipoles through

modification of the colloidal shape, not least because while all the distortions in Figure

3.5 arise as formal solutions of a boundary value problem, some, such as the horizontal

dipole in Figure 3.5(b), are not observed experimentally. Understanding the connection

between colloidal shape and nematic distortion and applying this understanding to design

colloids with desired properties will be the work of Chapter 5. In it we will show, amongst

other things, how all the distinct active phenomena described here can be achieved

geometrically, in particular producing ratchet effects with asymmetric cogs.
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We end this section by commenting on the effect of chiral active stresses, which

have been shown to be relevant in certain populations of eukaryotic cells [248; 249].

Such stresses cause the active force to be misaligned with the nematic director. The

flow responses for purely chiral stresses are similar but with the monopole response

rotated by π
4 , leading to the roles of the two distinct dipole and quadrupole distortions

being interchanged. A generic mixture of achiral and chiral stresses leads to a smooth

interpolation of the behaviour of the multipole distortions, much as it causes a rotation

of the flow profile of the +1/2 defect [248].

3.6 Discussion

We have presented a framework for understanding the far-field flow and pressure re-

sponse to distortions in active nematics. These fit into a hierarchical structure such that

the responses to all higher-order distortions may be derived from those for monopole

distortions. The lack of decay exhibited in the monopole flow response is reflective of

the fundamental hydrodynamic instability inherent to active nematics [220].

Particularly striking are those distortions for which the active response comprises

a net active force or torque and we identified the dipole and quadrupole distortions

which induce such responses. For unpinned distortions a net active force results in self-

propulsion, mirroring the observed dynamics of biologically [228; 229; 250] or chemically

Figure 3.7 (preceding page): Quadrupole distortions in two-dimensional active nematics.
The active flow is shown in white superposed on the pressure field, with the integral
curves of the director shown in black. The distortions are labelled by the derivative
of the nematic monopole that produces them and the red arrows indicate the rotation
that would result from net active torques in an extensile system. The character of
the quadrupole distortion in a two-dimensional nematic can be determined through the
anchoring conditions. Achiral quadrupoles arise from normal or tangential anchoring,
shown in (a) and (b) respectively. Oblique anchoring leads to chiral quadrupoles which
result in net rotations, shown in (c)-(f). In this case there are two distinct derivatives that
produce the same nematic quadrupole and hence two distinct flow solutions, illustrated
in the pairs (c) and (f) as well as (d) and (e). Although the flows differ, the net active
torque does not. The sign and strength of the chiral mode can be tuned via the anchoring
angle as seen by comparing the flows in (c) and (d) or (e) and (f). The quadrupoles
may also be interpreted as the far-field distortion arising from configurations of +1/2
(cyan) and −1/2 (red) defects. A given change in anchoring angle corresponds to a
commensurate but opposite rigid rotation of the defects and any rotational flow is in
accordance with the self-propulsion of the +1/2 defects.
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[251] active colloids in passive nematics. If the distortion is fixed then such forces will

act as fluid pumps, such as have been used to maintain large concentration gradients in

populations of bacteria [225]. Similarly, a net active torque will result in either rotation

of the colloid or stirring of the fluid. The former response is similar to the behaviour of

ratchets in bacterial baths [22; 23; 222], although the orientational order of the nematic

environment impacts the chiral response due to a cog-shaped inclusion.

The addition of colloidal inclusions to nematic liquid crystals had a transfor-

mational effect, making possible metamaterials which are self-assembling and photo-

responsive [176; 193]. Ultimately, these applications result from basic properties of the

elastic response of the nematic director to local distortions [181] which result in inter-

actions which are long-ranged and anisotropic. Our results on the active response to

distortions suggests that there is the potential for colloids to have a similar impact on

the behaviour of active nematics. The ability to produce self-propulsive and rotational

inclusions is a key step towards being able to fashion micro-machines to extract work

from such materials. Beyond this, it will be of interest to understand fully how the

multi-particle behaviour will be affected by a combination of hydrodynamic and elastic

interactions, along with whatever collective phenomena might result.

Our multipolar approach to the active behaviour of nematics mirrors the descrip-

tion of colloidal elastic interactions in passive nematics [90; 186]. Given the diversity of

collective phenomena already present in these passive colloidal systems [177] it is natural

to ask what dynamics would arise when this is combined with the active multipoles we

have discussed. A detailed approach to the pair-wise interactions of active nematic in-

clusions would follow analogously that for isotropic active fluids [252], with the density

fluctuations replaced by director distortions and the particle current replaced by the

flow of the ambient fluid. Nonetheless, some basic points can be extracted from the flow

solutions. The dominant contribution to the hydrodynamic interactions between two

colloids is the advection of each by the flow of the other. All dipole distortions produce

flows which are even under r → −r and so both colloids are advected with the same

velocity. This means that even for dipoles which are not self-propulsive by themselves,

they can acquire propulsion in pairs. This collective motility is reminiscent of that found

for pairs of scallops or dumbbell swimmers [253; 254]. The direction of propulsion de-

pends on the displacement of the two colloids. By contrast, the flows resulting from

quadrupole distortions are all odd under r → −r, meaning that the advection velocity is

opposing for the two colloids. For the purely radial flows of the Saturn’s ring quadrupole

and those in Q2 this suggests that the dominant hydrodynamic interaction will be at-

tractive or repulsive, depending on the angular separation of the colloids. Inherent to
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this discussion of pairwise hydrodynamic interactions is their non-reciprocity. This is a

hallmark of active matter which is observed across a wide range of systems [113].



Find out the cause of this effect,

Or rather say, the cause of this defect,

For this effect defective comes by cause.

Hamlet, Act 2, Scene 2. Polonius

4
Active Defect Loops as Active Multipoles

A
ctive nematics are a class of materials combining self-driven, or motile, con-

stituents with the orientational order of ordinary nematic liquid crystals [93; 57;

20]. Examples include bacterial suspensions [107], bacteria in a liquid crystal

host [229], cell monolayers [156], tissues [30] and synthetic microtubule suspensions [61].

The main properties are well-established for two-dimensional active nematics, including

their turbulent dynamics and self-motile topological defects [20]. Interest is now growing

in three-dimensional active nematics, with initial results on the cross-over in behaviour

of defect lines as a function of cell gap [175], the onset of the fundamental instability in

channel geometry [255; 256], the dynamics and deformations of droplets [257; 147], the

characterisation and dynamics of defect loops [62; 43; 44], and the statistical properties

of the turbulent state [63]. Defect loops are fundamental objects in three-dimensional

active nematics, analogous to ±1/2 point defects in two dimensions. They are created

spontaneously and exhibit their own complex dynamics [62; 43], which a local analysis

sheds light on by the determination of a self-propulsion velocity for each point of the

loop [44].

The description of defects in two-dimensional active nematics as effective particles

with their own dynamics has been influential in developing understanding [39; 40; 89;

150; 258; 42; 110] and it is natural to ask about the extent to which material properties

68
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in three dimensions can similarly be reduced to an effective description in terms of defect

loops. Although the problem is analogous to that in two dimensions, there are differences

in the topological characterisation [178] and, more significantly, in the geometric diversity

of defect loops. The geometry comes from both the shape of the defect loop and also the

nature of the distortion in the director field around the loop. Exemplars of this come

from cases where the director distortion through the middle of the loop is of pure splay,

bend or twist type [43; 44] (see Figure 4.1). These have identical properties in passive

nematics with one elastic constant [174] but behave distinctly in active systems, both in

their self-propulsion dynamics [44] and in the abundances of different types, with twist

defect loops found to be the most prevalent [43; 44].

An initial analysis of active defect loops has been developed in terms of the local

profile and self-propulsion velocity assigned to each point [44]. Here, we construct a

complementary global description based on an asymptotic multipole expansion for the

director field. We show how the multipole structure of the active stresses generates a

global self-dynamics for defect loops, involving both translational and rotational motion.

The self-dynamics identifies twist loops as the only force- and torque-free states, suggest-

ing a mechanism for the observed bias towards twist loops in three-dimensional active

nematics [43]. Finally, we determine the fluid flows associated to defect loops; these are

long range with a leading 1/r decay, such that the active hydrodynamics dominates the

interactions between defect loops. We describe these qualitatively for the stable twist

loops.

4.1 Multipole description of nematic defect loops

Aminimal model for defect loops in nematics was introduced by Friedel & de Gennes [174],

in which the director rotates within a single plane, which here we take to define the xz-

plane, and the director field is

n = cos θ ez + sin θ ex, (4.1)

with θ increasing by π as you go once around the loop. In the one-elastic-constant

approximation the Frank free energy is minimised whenever θ is a harmonic function,

giving θ = 1
4ω, where ω is the solid angle function for the loop [174; 45; 46; 44]. (In writing

this we are taking the far-field orientation of the director to define the z-direction.)

This construction is independent of the shape or relative orientation of the defect loop

and varying the orientation, relative to the plane of the director field, gives different
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geometries and local profiles for the defect loop. We illustrate this for splay, bend and

twist type loops in Figure 4.1.

The global orientation of a defect loop, and hence its geometric type, is encoded

in the structure of the multipole expansion for its solid angle function. The multipole

expansion is known from applications in magnetostatics [259; 260] and vortex hydrody-

namics [261]. Here we present a purely geometric formulation, dependent only on the

form of the space curve K. By considering the asymptotics of this function we arrive at

the multipole expansion used in this chapter.

The solid angle function ω(x) is the unique harmonic function on the complement

of a curve K which winds by 4π about any segment and tends to 0 mod 4π for large

distances. While ω(x) depends only on K it is perhaps most easily defined via an

orientable surface Σ that spans K. In a natural extension of the definition of angle,

ω(x) is then the projected area of Σ on a unit sphere centred on x [45; 46], that is

w(x) =

∫
Σ

x− y

|x− y|3
· dS, (4.2)

with y parameterising Σ. There are several equivalent expressions for the solid angle

function [46], for example it can be defined using only geometric properties of K as [46]

ω(x) = 2π (1±Wr(K))−
∫
K

p ·T× dT

1± p ·T
mod 4π, (4.3)

where Wr(K) is the writhe of K [262; 263], p = y−x
|y−x| with y labelling points on the

loop K and T is the unit tangent vector to K.

A formulation that facilitates the extraction of asymptotic behaviour is

ω(x) =

∫
K

p∞ × p

1 + p∞ · p
· dp mod 4π, (4.4)

with p as in (4.3) and p∞ an arbitrary constant vector. This relation can be arrived

at from the projected area formula (4.2) by making an arbitrary choice of spherical

coordinates (θ, ϕ) such that ω(x) =
∫
(1 − cos θ)dϕ [45; 46] and then taking p∞ as the

direction θ = 0 [46]. We seek an asymptotic expansion of ω(x) for |x| = r ≫ |y|, for
which it is convenient to take the choice p∞ = − x

|x| , and then make a general series
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Figure 4.1: Defect loops of (a) splay, (b) bend, and (c) twist type. In each case the
director field is shown (blue cylinders) on a slice through the defect loop; the colour map
shows the structure of the solid angle function. The defect loop is coloured according to
the torsion of the curve; red where it is maximally negative and blue where it is maximally
positive. The insets give a simplified representation of the defect loops, showing only the
variation of the director field through the centre of the loop. The arrows indicate the
multipole frame – in green the d3 direction of the dipole vector and in red the d1 and
d2 directions coming from the quadrupole tensor. (d) Comparison of the full solid angle
function (right half) with the multipole approximation (4.24) (left half); the multipole
approximation accurately captures the solid angle from distances only moderately larger
than the loop size.
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expansion of the terms in the integrand

p∞ × p · dp = −x

r
× y

|y − x|
· dy

|y − x|
, (4.5)

= −x

r
× y

r
· dy
r

[
1−

(
2x · y
r2

− y2

r2

)]−1

, (4.6)

= −x

r
× y

r
· dy
r

∞∑
n=0

(
2x · y
r2

− y2

r2

)n

, (4.7)

1

1 + p∞ · p
=

[
2−

(
x

r
· y − x

|y − x|
+ 1

)]−1

, (4.8)

=
1

2

∞∑
n=0

[
1

2

(
x

r
· y − x

|y − x|
+ 1

)]n
, (4.9)

=
1

2

∞∑
n=0

1

2n

[
x

r
· y − x

r

∞∑
m=0

(−1)m(2m)!

22m(m!)2

(
−2x · y

r2
+

y2

r2

)m

+ 1

]n
. (4.10)

We consider the expansion of the solid angle function up to quadrupole order.

In doing so we first observe that the part in square brackets in (4.10) is already second

order in y, so that it is sufficient to retain only the leading n = 0 term, 1
1+p∞·p ≈ 1

2 . As

a result we have

ω(x) =

∫
K
−x

r
× y

r
· dy
r

(
1 +

2x · y
r2

+O(y2)

)(
1

2
+O(y2)

)
(4.11)

and so arrive at

ω(x) =
1

2

∫
K
ϵijkyjdyk ∂i

1

r
− 1

3

∫
K
ϵiklyjykdyl ∂i∂j

1

r
+ . . . , (4.12)

where we have used that ∂i
1
r = −xi

r3
and ∂i∂j

1
r =

3xixj

r5
− δij

r3
. The position of the defect

loop (x = 0) is taken to be the location of its ‘centre of mass’ (assuming a uniform

density).

The dipole moment is a vector whose direction gives the principal orientation

of the defect loop. As it has the form 1
2

∫
K y × dy we can recognise it as a vector

of projected areas. The i-component is the area of the loop when projected along di.

The dipole vector points in the direction of greatest projected area and its magnitude

is this area. The quadrupole moment is a traceless, symmetric rank 2 tensor, giving

a secondary orientation. Similarly, it is −2
3 times the first moment of area tensor, for

which the ij-component is given by the j-moment of the area of the loop when projected
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along di. However, since ∂i∂j
1
r is symmetric only the symmetric part contributes.

4.1.1 Generic perturbations of a circular loop

The expressions in (4.12) hold for any shape of defect loop, but for our current focus we

calculate them explicitly only for the representative curve

y(u) = (a0 cosu, a0 sinu,
1

6
τ0a

2
0 sin 2u) (4.13)

corresponding to a loop that is approximately a circle of radius a0. The parameter τ0

captures the non-planarity of the loop and is the amplitude of its torsion. We justify this

form of defect loop by describing general perturbations of a circular loop and calculating

the dipole and quadrupole moments for its solid angle function.

We parameterise a generic loop using a Cartesian basis {d1,d2,d3} as

y(θ) = r(θ)
[
cos θ d1 + sin θ d2

]
+ h(θ)d3, (4.14)

where r(θ) is the radius of the curve in the d1d2 plane, r = y21+y22, and h(θ) is its height

in the d3 direction. The generic perturbations of a loop about a planar circle of radius

a0 are captured by the Fourier series

r(θ) = a0 +
∞∑
n=2

(
an sinnθ + bn cosnθ

)
, (4.15)

h(θ) = A2 sin 2θ +

∞∑
n=3

(
An sinnθ +Bn cosnθ

)
. (4.16)

In writing these, the low order Fourier modes have been fixed through the freedom in

the choice of frame. Transformations of the frame under the Euclidean group afford six

degrees of freedom, three translational and three rotational. The n = 1 terms of r(θ)

correspond to translations of the loop’s centre of mass and so we choose the origin such

that these are zero, along with the n = 0 term of h(θ). Similarly, the n = 1 terms of

h(θ) correspond to rigid rotations of the loop and so we orient the frame such that both

these terms vanish. The remaining rotational degree of freedom is a gauge freedom in

the choice of where θ = 0, which we choose such that B2 = 0 in h(θ).

With this generic form established we can evaluate the dipole vector and quadrupole
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tensor. For the dipole vector we have

1

2

∫
K
ϵijkyjdyk =

1

2

[∫
(rh′ − hr′)(sin θd1 − cos θd2)dθ

−
∫

hr(cos θd1 + sin θd2)dθ +

∫
r2dθd3

]
.

(4.17)

The explicit evaluation of these integrals is achieved through the orthogonality of the

Fourier modes with the end result

1

2

∫
K
ϵijkyjdyk = π

(
a20 +

1

2

∞∑
n=2

(
a2n + b2n

))
d3

+ π

(
A2a3 +

∞∑
n=3

n

2

[
An(an+1 − an−1) +Bn(bn+1 − bn−1)

])
d1

+ π

(
−A2b3 +

∞∑
n=3

n

2

[
Bn(an+1 + an−1)−An(bn+1 + bn−1)

])
d2.

(4.18)

The dominant contribution is πa20 d3, with all other terms being second order in pertur-

bations.

Proceeding similarly for the quadrupole tensor gives

−1

3

∫
K

1

2
(ϵiklyj+ϵjklyi)ykdyl =

1

6

[∫
hr2

1 + cos 2θ sin 2θ 0

sin 2θ 1− cos 2θ 0

0 0 −2

 dθ

+

∫
r(hr′ − rh′)

 sin 2θ − cos 2θ 0

− cos 2θ − sin 2θ 0

0 0 0

dθ

+

∫
r(h2 − r2)

 0 0 cos θ

0 0 sin θ

cos θ sin θ 0

dθ

+

∫
h(hr′ − rh′)

 0 0 sin θ

0 0 − cos θ

sin θ − cos θ 0

dθ

]
.

(4.19)

The lowest order contribution comes from the first two terms and is given by

1

6

∫
r2(h sin 2θ + h′ cos 2θ)dθ(d1d2 + d2d1) =

πa20A2

2
(d1d2 + d2d1). (4.20)
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As this is proportional to A2, this term is only present for non-planar curves. It has

an interpretation as the sum of two first moments of area of the curve, as was already

mentioned. A second interpretation may be given in terms of the torsion of the curve.

The torsion of a space curve is given by [264]

τ =
(y′ × y′′) · y′′′

|y′ × y′′|2
. (4.21)

Evaluating this for the curve y = (a0 cos θ, a0 sin θ,A2 sin 2θ) gives

τ = − 6A2 cos 2θ

a20 +A2
2(10− 6 cos 4θ)

≈ −6A2

a20
cos 2θ. (4.22)

Hence we characterise the torsion of our perturbed loop as τ ≈ −τ0 cos 2θ, with A2 =
a20τ0
6 . This identifies the minimal perturbation of a circular loop that captures non-zero

dipole and quadrupole terms in the solid angle function; this minimal model being the

one given in (4.13).

All other terms that arise in (4.19) are at least quadratic in the perturbations

of a circle. In particular, in the case of a planar loop, corresponding to h(θ) = 0, the

leading contribution is

a0
12

∞∑
n=3

[
(anan−1 + bnbn−1)(d1d3 + d3d1) + (anbn−1 − bnan−1)(d2d3 + d3d2)

]
, (4.23)

arising due to asymmetry of the loop with respect to the d1 or d2 axes. Therefore, while

the quadrupole tensor for planar loops is not zero, it is an order higher in perturbations

than that in (4.20) and so for generic perturbations about a circular shape the former

non-planar term will be dominant.

Using (4.13) in (4.12) yields

ω(x) = πa20∇d3

1

r
+

πa40τ0
6

∇d1∇d2

1

r
+ · · · , (4.24)

where {d1,d2,d3} are the Cartesian basis vectors for the coordinate system adapted to

the defect loop. The direction of the dipole is the basis vector d3 and its magnitude

is the ‘area bound by the loop’. The quadrupole tensor is
πa40τ0
12 [d1d2 + d2d1] and is

proportional to τ0 so that it vanishes for planar loops without torsion. The directions

d1,d2 correspond to those of ‘principal torsion’; specifically, the torsion is τ ≈ −τ0 cos 2u

and takes its maximal negative value along the directions ±d1 and its maximal positive

value along ±d2. This multipole frame is illustrated in Figure 4.1 and used in all figures
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in this chapter.

4.2 Active forces and torques

In an active nematic, the activity imparts additional material stresses −ζnn, where ζ

is a phenomenological coefficient that is positive in extensile materials [93; 57; 20]. For

simplicity of presentation we will assume ζ > 0 in what follows, as is the case in the

experimental system [43]. On large scales active nematics are unstable [25] and exhibit a

state of active turbulence [107; 106; 111]. However, on intermediate scales a description

can be given using the local nematic alignment. This is what is implied in the description

of the local flows and self-propulsion velocities of topological defects and defect loops [40;

89; 258; 110; 44]. Our analysis similarly applies on these intermediate scales. Despite

only working at moderate distances the multipole expansion still accurately captures the

structure of the solid angle function, and hence of the director field. This is illustrated

in Figure 4.1(d), where we see good agreement even at distances only moderately larger

than the defect loop size.

The active stresses generate self-dynamics for the defect loop, which we charac-

terise first by the contributions that they make to the force and torque on a spherical

volume centred on the loop. At distances large compared to the size of the loop (r ≳ a)

the active stress can be approximated by

− ζnn = −ζezez −
ζω

4

[
ezex + exez

]
+ · · · , (4.25)

and using this the contribution to the force is

F =

∫
−ζnn · dA,

= −ζ

∫ [
ezz +

ω

4
(exz + ezx)

] 1
r
dA,

(4.26)

with the integral taken over a spherical surface entirely enclosing, and centred on, the

defect loop. Through the orthogonality of the spherical harmonics we can see that, for

example, the only contribution along ex will come from the part of ω proportional to

the dipole z
r3
. In full the only terms which survive integration are

− ζ

∫
πa2

4

[
−(d3 · ez)z2

r3
ex −

(d3 · ex)x2

r3
ez

]
1

r
dA, (4.27)
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which on integrating gives

F =
ζπ2a2

3

[(
ez · d3

)
ex +

(
ex · d3

)
ez

]
. (4.28)

This force depends on the surface over which the integral is taken, since the active

stress is neither compactly supported nor divergence-free, but for the multipole analysis

a spherical surface is natural and the result (4.28) is then independent of the radius and

determined by the dipole part of the solid angle (4.24).

Similarly, the active stress contribution to the total torque acting on the defect

loop is given by

T =

∫
x×

(
−ζnn

)
· dA,

= −ζ

∫ [
−xzey + yzex +

ω

4

(
yxex +

(
z2 − x2

)
ey − yzez

)] 1
r
dA,

(4.29)

where again the integral is taken over a spherical surface enclosing the entire loop and

is independent of its radius. Once more the orthogonality of the spherical harmonics

ensures that the only surviving terms are

−ζ

∫
πa4τ0
24

{
ex [d1 · (exey + eyex) · d2]xy∂

2
xy

1

r

+ ey [d1 · (ezez − exex) · d2] (z
2 − x2)(∂2

z − ∂2
x)
1

r

−ez [d1 · (eyez + ezey) · d2] yz∂
2
yz

1

r

}
1

r
dA,

(4.30)

such that

T =
−ζπ2a40τ0

30

{
ex

[
d1 ·

(
exey + eyex

)
· d2

]
+ 2ey

[
d1 ·

(
ezez − exex

)
· d2

]
− ez

[
d1 ·

(
eyez + ezey

)
· d2

]}
,

(4.31)

determined by the quadrupole part of the solid angle (4.24). We reiterate that the torque

is proportional to the magnitude of the torsion of the loop and hence dependent on its

non-planar shape.

If the defect loop was a rigid body, its self-dynamics would follow from the resis-

tance matrix relating the force and torque to the translational and rotational velocities.

However, we can also expect internal dynamics affecting its shape and form, which in
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turn control the dipole and quadrupole moments. Nonetheless, even without knowledge

of the internal dynamics, qualitative features of the global dynamics can be extracted

from the structure of the force and torque and, in particular, the defect loop geometries

for which they vanish. We consider the force first for the three representative loops of

splay, bend and twist type.

a)

b)

Figure 4.2: (a) Active forces and torques experienced by generic splay, bend and twist
defect loops. The external green and red arrows indicate the force F (4.28) and torque
T (4.31), respectively. The torque depends on the structure of the quadrupole tensor
and is shown here for representative cases. (b) Stable left- and right-handed twist loops.
Note that the principal torsion directions are oppositely oriented in the two cases.

For the splay loop (d3 = ez) the force is directed along ex; for the bend loop

(d3 = ex) it is directed along ez; and for the twist loop (d3 = ey) it vanishes. This

is illustrated by the large green arrows in Figure 4.2(a). Assuming a leading diagonal

response, we expect the splay loop to move along x, the bend loop to move along z
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and the twist loop to remain stationary. On dimensional grounds the magnitude of the

resistance should scale as µa0, where µ is the viscosity, so that the defect loop velocity

scales as ζa0/µ and therefore increases linearly with the size of the defect loop. In [44]

the dynamics of these three geometries of defect loop were determined by assigning a

local self-propulsion velocity to each point of the loop on the basis of its local director

profile and exactly the same predictions obtained and confirmed by numerical solution

of the full hydrodynamic equations.

We turn now to the torque (4.31) and the rotational motion of the defect loop.

The torque is illustrated for the splay, bend and twist loops by the large red arrows

in Figure 4.2(a). For the splay loop (d3 = ez), taking the general orientation d1 =

cos γ ex + sin γ ey for the quadrupole moment (out-of-plane buckling) the torque is

T = −ζπ2a40τ0
30

[
ex cos 2γ + ey sin 2γ

]
, (4.32)

and acts to reorient the defect loop from splay type to either bend or twist type. If we

take the frictional resistance to scale as µa30 on dimensional grounds, then the rotational

velocity will scale as ζa0τ0/µ and again increases linearly with the size of the defect

loop. The situation is entirely analogous for bend loops (d3 = ex), which experience a

torque reorienting them into twist or splay geometry. For twist loops (d3 = ey), taking

a general orientation d1 = cos γ ez + sin γ ex the torque is

T =
ζπ2a40τ0

15
sin 2γ ey, (4.33)

and is purely about ey so that they retain their twist character. The torque vanishes

when γ = 0, π2 and is restorative around γ = π
2 , identifying this as a stable orientation

for the defect loop. Of course, there are also twist loops with d3 = −ey; the torque they

experience has a parallel description except that now the stable orientation corresponds

to γ = 0 (d1 parallel to ez). These two stable states differ in the handedness of the twist

rotation in the director passing through the defect loop; the case d3 = ey corresponds

to right-handed twist (dextro twist loop), while d3 = −ey corresponds to left-handed

twist (laevo twist loop). They are illustrated in Figure 4.2(b).

The existence of stable states and a general drive to convert other geometries

towards these suggests that the self-dynamics will create a bias in the occurrence of

different types of loops, favouring the stable twist forms. Observations in experiments

and simulations [43] have found a prevalence of twist loops and it is natural to speculate

that the active dynamics we have described may contribute to explaining this. In the
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absence of chirality (as in our analysis) one expects equal numbers of right- and left-

handed twist loops, although statistics for this from experiment or simulation are not

currently available. However, as the biopolymers that go into active nematics are chiral

it is possible there will be an imbalance in the proportion the two types.

4.3 Active flows

We now determine the far-field structure of the fluid flows generated by defect loops

and show that they confirm the self-dynamics described above. To do so, we adopt the

strategy of seeking a solution of the Stokes equations with active nematic force term

given by the director field of a defect loop [44]. These are ∇ · u = 0 and

−∇p+ µ∇2u = ζ∇ · (nn) = ζ

4

[
ex ∂z + ez ∂x

]
ω, (4.34)

taking the linearised form of the active stresses. We seek solutions with u tending to

zero and p tending to a constant for large r. No boundary condition is imposed at short

distances, although a more complete approach would involve a matched asymptotics

with the solution in [44]. The multipole expansion for the solid angle (4.24) is given in

terms of derivatives of the generating monopole 1/r and the resulting flow is therefore the

same derivatives of the fundamental flow in response to this monopole, which provides

a convenient representation for the solution, as laid out in the previous chapter,

p =
ζ

4

(
πa20∇d3 +

πa40τ0
6

∇d1∇d2 + · · ·
)
xz

r3
, (4.35)

u =
ζ

16µ

(
πa20∇d3 +

πa40τ0
6

∇d1∇d2 + · · ·
)

×
{
ex

[
z

r
+

x2z

r3

]
+ ey

xyz

r3
+ ez

[
x

r
+

xz2

r3

]}
.

(4.36)

We remark that the fundamental solution – the part in curly braces in (4.36) – does not

decay with distance; this is the active flow that would result from a localised (monopole)

reorientation of the director field in an otherwise uniformly aligned nematic and the non-

decay may be viewed as a signature of the fundamental instability of active nematics [25].

The flow generated by a defect loop does decay but only slowly, with the leading dipole

contribution falling off as 1/r. These flows are shown in Figure 4.3 for splay, bend

and twist type loops. For the splay and bend loops there is a clear directed flow,

consistent both with the non-zero force (4.28) and with the global self-propulsion of
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these loops found previously [44]. The bottom row of Figure 4.3 shows the quadrupole

contributions to the flow; again, for the splay and bend loops there is a rotational

character consistent with the non-zero torque (4.31) and indicating a corresponding

rotation of the defect loop. The flow generated by the stable twist loop, Figure 4.3(c), is

predominantly extensional in the xz-plane of the director and shows neither a directed

nor a rotational component. In each Cartesian plane the flow is normal to the plane and

with an alternating sign in each quadrant. In the xz-plane this amounts to the buckling

flow found in [44]. Along the x- and z-axes the flow shows local circulations, while along

the y-axis it has a hyperbolic structure.

ex

ey
ez

Splay Bend Twist

a) b) c)

Figure 4.3: The asymptotic flows induced by defect loops. The dipole contribution for
each defect loop geometry is shown in the top row, with the quadrupole flows shown
below. For splay (a) and bend (b) loops the dipole and quadrupole flows show directed
and rotational flows respectively, corresponding to the net active forces and torques
experienced by the defect loops. (c) A stably-oriented right-handed twist loop. The
stability of this configuration is reflected by the lack of propulsive or rotational flows;
the dipole flow is predominantly extensional as described in the text.
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By considering a generic perturbation of a defect loop the analysis in this chap-

ter reveals the connection between non-planarity and active self-rotation, a dynamical

feature that was not apparent from the results of [44] as it only considered planar loops.

The multipole flow captures the global self-propulsion and rotation; however, it does

not reproduce the detailed variation in local self-propulsion velocity at each point of

the loop associated with the varying director profile [44]. This suggests that a matched

asymptotics between the multipole and local calculations may yield a more complete

analysis. Such an approach should also allow for the back effects of active stresses and

flows on the shape of the defect loop (size a0 and torsion τ0) to be included, for instance

through an overdamped curve dynamics.

The slow decay (∼ 1/r) of the active flows generated by defect loops suggests that

hydrodynamic interactions may be particularly strong and important. The strength

can be compared with the elastic dipole-dipole interactions mediated by the director

field [181], which fall off more rapidly as 1/r3. The leading character of the hydrodynamic

interactions is that each loop is advected and rotated by the flow(s) generated by the

other(s). As an example, we consider qualitatively the advective interactions between

stable twist loops (d3 = ±ey). The dipole part of the flow (4.36) is even under x → −x

and has different signs for the right- and left-handed loops. As a result, two twist loops

of the same handedness advect each other with the same velocity, creating a collective

motility reminiscent of that for pairs of scallops or dumbbells [254; 253]. In contrast,

two loops with opposite handedness advect each other with equal but opposite velocities.

The integral curves of the dipole part of (4.36) form closed loops that do not visit the

origin, suggesting that this contribution to the hydrodynamic interaction may lead to

a periodic motion of two loops of opposite handedness – a type of ‘waltzing’ – rather

than simple attraction or repulsion, although it is likely that the actual dynamics will

be far less regular than this heuristic picture and may be significantly affected by any

large scale turbulence.

We conclude our discussion of defect loop hydrodynamics with an intriguing

consequence for global nematic topology. Consider a pair of defect loops that form a

Hopf link. There are two distinct compatible textures, corresponding to giving the loops

a circulation in the same or opposing direction [75; 178]. These circulations relate to the

dipole vector via the right-hand rule and, within our linear description, result in the two

textures inducing active propulsion in perpendicular directions. While this prediction

is not likely to be testable experimentally, it does provide a striking example of the

ramifications topology can have for active dynamics.
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4.4 Discussion

We have provided a global description of nematic defect loops in terms of a multipole

decomposition of the director field. This complements the previous local analysis [44]

and also shows the importance of non-planarity of defect loops in leading to net active

torques. We find that twist loops are the only geometry with vanishing force and torque,

providing a possible explanation of their preponderance in active nematics [43]. There

are many immediate directions for development, including extending the analysis to more

general shapes of defect loops, or multiple loops, and connecting this global description

with the local analysis of [44] to incorporate the change in internal structure, or shape,

of the defect loop to potentially develop a form of matched asymptotics. Also of interest

will be to consider defect loops with non-zero topological charge and in confinement [62],

and the effects of chiral active stresses [265].



‘Here is an ordinary square.’

‘Woah, woah, slow down egghead!’

Professor Frink explaining the cube (or

‘Frinkahedron’) to Chief Wiggum,

The Simpsons, S07E06, Homer3

5
Polygonal Colloids in Two-Dimensional Nematics

A
lthough the generation of defects due to colloidal inclusions is topological in

origin, with the total charge of the defects compensating the degree of the

director boundary condition on the surface of the colloid, the way in which

this is realised is determined by the colloidal geometry. There is a great richness in the

distortions that can arise even from genus 0 colloids, allowing specific deformations to

be selected through appropriate variation of the colloidal shape. As discussed in Section

2.5 this has profound consequences for the elastic interactions between colloids and the

behaviour of the colloidal nematic system and this, along with recent techniques allowing

the production of intricately shaped colloids [266] makes this area ripe with potential.

Better understanding the relationship between colloidal shape and the induced nematic

distortion will open up new avenues for the design of soft metamaterials and photonic

crystals [193]. In light of our results in Chapter 3 we are also motivated to understand

how we might achieve geometric control of self-propulsive and rotational deformations

and realise a nematic analogue of the bacterial ratchets. In service of these twin aims

we shall, in this chapter, track a course through polygonal colloidal geometry from the

square to the Koch fractal [266; 267].

Such shape-dependency of distortions has been realised through the use of ‘gourd’

colloids to induce high-order multipoles [186], tuning the equilibrium orientation of el-

84
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lipsoids through variation of their aspect ratio [268; 269] and using spherocylindrical

colloids to determine the form of ring defects [270]. A particularly effective route is

to use sharp edges and vertices to determine the placement of topological defects since

there is an energetic benefit in the nematic melting to the isotropic phase at the locations

where the greatest director distortion would be required [271]. This has been exploited to

control the equilibrium orientation, pair-wise interactions or tilings of truncated polygo-

nal pyramids [272; 273], cylinders [274; 275], microbullets [275], cubes [275; 276], concave

and convex polygonal prisms [277] and spirals [278].

Our focus in this chapter is on polygonal colloids in two-dimensional nematics.

Of key importance in this context is the 2009 experimental study of the distortions in-

duced by lithographically fabricated regular polygonal platelets [279]. This showed that

the nature of the distortion was dependent on the number of sides of the polygon, being

dipolar for odd-sided polygons and quadrupolar for even-sided ones, as illustrated in

Figure 5.1(a)-(d). Numerical simulation of polygonal platelets in thin three-dimensional

nematics confirmed these results and also demonstrated the impact this has on colloidal

assembly into chains and lattices [280]. The lattices formed by pentagons are particularly

intricate due to the voids that arise [280] and these can be used to form quasicrystalline

Penrose tilings [281; 282], shown in Figure 5.1(e). The effects on concavity were inves-

tigated via simulations of stars formed of radial arms, with a similar odd-even effect

arising and distinct ground and metastable states being observed [283], as shown in Fig-

ure 5.1(f)-(k). A particularly striking example of the richness of distortions that can

arise from genus 0 colloids is provided by iterations of the Koch snowflake fractal [267].

Experiments and numerical simulations, shown in Figure 5.1(l) and (m) respectively,

demonstrated a proliferation of topological defects that was exponential in the iteration

of the fractal [266].

In this chapter we provide an analytical description for the distortions of a two-

dimensional nematic due to polygonal colloids. Such deformations are captured by

harmonic functions and our restriction to two dimensions allows us to construct these

through the use of conformal maps from the circle to the boundary of the colloid. The use

of conformal maps in physics is wide ranging; they are of relevance whenever Laplace’s

equation is being solved in a two-dimensional domain. Liquid crystalline examples in-

clude the modelling of both passive [121] and active [164] nematics on the sphere via

stereographic projection but conformal symmetries also underpin the description of crit-

ical phenomena in statistical mechanics [285] and have been used to posit a cyclic model

of the history of the universe [286]. Central to the latter two examples is that confor-

mal mappings do not preserve lengths, only angles, as illustrated beautifully in much



86

a)

b)

c)

d)

e)

f)

g)

h)

i)

j)

k)

l) m) n)

α = 0



87

of the artwork of M.C. Escher [287; 288], see Figure 5.1(n). We will employ a partic-

ular class of conformal transformation known as Schwarz-Christoffel maps [289], which

are particularly well-suited for providing maps to polygonal domains. There has been

some prior use of these mappings in describing nematics, for example in characterising

the textures that arise due to a sawtooth substrate [290], or on the interior of regular

polygons [291], with some of these applications reviewed in [292]. More broadly they

may be utilised to address problems of potential flow, as laid out in Lamb’s classic text

on hydrodynamics [293]. A distinction between describing the nematic director in the

interior of a polygonal boundary compared to on the exterior of a polygonal colloidal

is that in the former case specification of the boundary condition requires knowledge of

the charges and locations of all topological defects, whereas in the latter we may assume

a defect-free bulk, as justified by experiments [279; 266] and simulations [280; 283].

Having set up the necessary machinery, we begin with calculating the nematic

distortions due to regular polygons. This enables us to quantify their experimental de-

scription and will form the basis for our subsequent investigations. We follow this with

a modified form of star polygons that allow the effects of concavity to be tuned. Next

we investigate the behaviour of chiral cog-shaped colloids and find that depending on

Figure 5.1 (preceding page): Shape-controlled nematic distortions with polygonal col-
loids. (a), (b) and (c) Schematic representations of experimentally observed distortions
induced by polygons in 5CB with tangential anchoring, with the dashed lines denoting
the mirror lines of the director. (a) and (c) Polygons with an odd number of sides align
with one side parallel to the far-field alignment, n0, and induce a dipole moment per-
pendicular to n0. The square in (b) aligns with one of its diagonals along n0 and induces
a quadrupole distortion. From [279]. These schematics for the director orientation are
inferred from measurements of fluorescent confocal polarising microscopy, as shown for
the square colloid in (d). From [279]. (e) A quasicrystalline tiling formed in a nematic
from 55 pentagonal colloids, from [281]. (f) - (k) Schematics of the director distortion for
star colloids in their ground state ((f), (g) and (h)) and metastable orientation ((i), (j)
and (k)). The dashed lines indicate mirror lines of the nematic director and the arrows
denote the elastic dipole for stars with an odd number of arms. From [283]. (l) and
(m) A colloid with the shape of the second iteration of the Koch fractal in a nematic
with vertical far-field alignment. The experimental image in (l) shows the system viewed
through crossed polarisers, (m) shows the result of Landau-de Gennes numerical simula-
tion with the location of topological defects highlighted. (n) M.C. Escher’s Circle Limit
III highlights the conformal symmetry used in this chapter. It is based on a conformal
map of a (6, 4, 2) tessellation of the hyperbolic plane. The angles at which the fish meet
is invariant, even as the fish themselves shrink ever smaller towards the boundary. From
[284].
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the parameters of the cog the chiral quadrupole can display either subtle orientation-

dependency or have a consistent sign as the cog is rotated, allowing the engineering

of active nematic ratchets. Lastly we apply the techniques we develop to design col-

loids capable of producing arbitrarily high-order multipoles as the dominant director

distortion.

5.1 The Dirichlet problem and conformal mapping

From applying the Euler-Lagrange equations to the Frank free energy with one elastic

constant, we see that in an energy minimising nematic texture the director angle ϕ should

be a harmonic function, which is uniquely determined by the boundary conditions. In our

problem we have Dirichlet conditions on the surface on the polygon and an asymptotic

value for the director angle provided by the far-field alignment. It is inconvenient to solve

this Dirichlet problem on the exterior of the polygon. However if we have an analytic

map f : z → ζ taking a domain Ω onto another domain Ω′ then a function ϕ(z) solving

the problem in Ω will provide ϕ(f(z)) which solves the analogous problem in Ω′. This

can be confirmed directly through application of the chain rule

∂z̄∂zϕ(f(z)) = ∂z̄ [∂zζ∂ζϕ(ζ)]

= (∂z̄∂zζ) ∂zϕ(ζ) + ∂z̄ ζ̄∂zζ∂ζ̄∂ζϕ(ζ).
(5.1)

As ζ is an analytic function the first term vanishes, leaving us with the result

∂z̄∂zϕ(f(z)) = |∂zζ|2∂ζ̄∂ζϕ(ζ). (5.2)

These analytic or holomorphic maps possess the striking property of being con-

formal, that is they leave angles unchanged (or are isogonal) and preserve orientations.

This is most readily seen by means of a Taylor expansion

f(z) = f(z0) + (z − z0)
df

dz
+ . . . , (5.3)

from which we see that the effect of the mapping on the local neighbourhood of z0 is

scaling and rotation by the complex number df
dz . Indeed not only are all holomorphic

maps conformal but the converse is also true, all conformal maps are provided by holo-

morphic functions. Their antiholomorphic counterparts, functions only of z̄, correspond

to mappings which preserve angles but reverse orientation.
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5.1.1 The Riemann mapping theorem

The existence of such conformal maps is guaranteed by the Riemann mapping theorem.

This states that for Ω, Ω′ non-empty simply connected subsets of C, neither of which

is the whole of C, there exists a three-parameter family of biholomorphic mappings

f : Ω → Ω′ [294; 295]. As the holomorphicity of maps is maintained in composition

we can construct all desired maps via maps from the disc D. With f1 : D → Ω and

f2 : D → Ω′, we have f2 ◦ f−1
1 : Ω → Ω′. Viewed this way the aforementioned three

degrees of freedom reveal themselves as the three parameters of automorphisms of the

disc, described by the Möbius transformations [296].

A physical argument for this statement is provided by the very problem we are

addressing in this chapter. Consider two nematic systems, each containing a simply

connected colloid with normal anchoring, a defect-free bulk and a consistent far-field

alignment. The nematic textures that result from minimising the energy subject to these

constraints will have a harmonic angle function the contours of which, along with those

of the harmonic conjugate, form an orthogonal grid filling the domain. By appropriately

associating these grids we can construct a conformal map between the domains. The

three parameters of such maps arise as the freedom to choose the difference in far-field

alignment between the two systems and which point in the bulk of one system is mapped

to infinity in the other. Similar reasoning can be made in the context of fluid flow [296]

and electrostatics [67]. Though such arguments are appealing, and indeed in the spirit

of the one put forward by Riemann in his own PhD thesis [297], they are flawed due

to presupposing a solution to the Dirichlet problem, an error that was identified by

Weierstrass [298]. The fallibility of our physical intuition notwithstanding, the result

holds and so we content ourselves with the knowledge that it has been subsequently

proven, first by Osgood in 1900 [299] and subsequently by Carathéodory [300] and Koebe,

the essence of whose proof is contained in the account of Hilbert [301]. A history of the

theorem is provided in [302; 303] and a modern revisiting of Riemann’s idea can be found

in [304].

We can therefore separate our problem into two parts, finding conformal maps

from the exterior of the disc onto the exterior of our colloid and solving the analogous

Dirichlet problem for the director angle on the exterior of the disc.
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5.1.2 The Dirichlet problem on the disc

The problem at hand amounts to the solving of

∂z̄∂zϕ(z, z̄) = 0 (5.4)

subject to the boundary conditions

ϕ = f(θ) : S1 → R for |z| = 1,

ϕ → 0 as z → ∞.
(5.5)

The generic solution of (5.4) consists of a holomorphic and antiholomorphic part

ϕ(z, z̄) = ϕ1(z) + ϕ2(z̄). (5.6)

Performing a Fourier expansion of the boundary condition we have

f(θ) =
∑
n∈Z

ane
inθ = a0

log(|z|/R)

log(1/R)

∣∣∣
|z|=1

+

∞∑
n=1

anz̄
−n
∣∣∣
|z|=1

+

∞∑
n=1

a−nz
−n
∣∣∣
|z|=1

. (5.7)

Having expressed f(θ) in terms of negative powers of z and z̄ we can readily extend this

to a regular function on the whole disc exterior as

ϕ(z, z̄) = a0
log(|z|/R)

log(1/R)
+

∞∑
n=1

(anz̄
−n + a−nz

−n). (5.8)

We now give consideration to certain boundary value problems for which the

dominant far-field distortion is dipolar or quadrupolar. These will provide insight into

the distortions induced by polygonal colloids that we shall come to later.

Firstly, taking θ ∈ (−π, π) and f(θ) = θ we find

an =

0 if n = 0

i
n if n ̸= 0

, (5.9)

giving

ϕ(z, z̄) = i

∞∑
n=1

1

n
(z̄−n − z−n). (5.10)

The boundary condition consists of a linear increase of ϕ with θ and a discontinuous

drop by 2π. The latter results from passing through a charge −2 defect. The former is
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associated with positive winding at the origin and so, invoking charge neutrality, we may

conclude that there is a +2 defect there. In this way we are able to reason directly from

the boundary condition to the standard UPenn dipole configuration [181], as shown in

the top-left panel of Figure 5.2. Indeed this can be confirmed directly by setting

ϕ(z, z̄) = Im

{
log

(
z2

(z − 1)2

)}
= i

[
log

(
1− 1

z

)
− log

(
1− 1

z̄

)] (5.11)

which, upon Taylor expansion, yields (5.10). We can generate solutions with arbitrary

anchoring angle by noting that the transformation f(θ) → f(θ + α), for some constant

α, rotates the location of the surface defect clockwise by α while rotating the director

anchoring anticlockwise the same amount, as illustrated along the top row of Figure 5.2.

This corresponds to the substitution z → eiαz in (5.10), meaning the dipole character

rotates commensurately with the defect, being vertical for normal anchoring when α = 0

and horizontal for tangential anchoring when α = π/2. As the nematic director is

invariant to rotations by π there are two distinct energy minimisers for these equivalent

boundary conditions in which the defect sits at antipodal points.

To transition from a dipole-dominated distortion to a quadrupole-dominated one

we must introduce additional defects by reversing the direction of the director along

sections of the boundary. The boundary condition

f(θ) =


θ + π if − π ≤ θ ≤ −π + θd,

θ if − π + θd ≤ θ ≤ π − θd,

θ − π if π − θd ≤ θ ≤ π,

(5.12)

splits the −2 point defect into two −1 defects with an opening angle of θd, giving

ϕ(z, z̄) = i
∞∑
n=1

(−1)n+1

n
cos(nθd)(z

−n − z̄−n). (5.13)

The correspondence between the boundary condition and the defect configuration can

be inferred via the same reasoning as for the dipole case and may be confirmed directly
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α = 0 α = π
4 α = π

2

θd = 0

θd = π
4

θd = π
2

Figure 5.2: A two-dimensional nematic with varying anchoring conditions on a disc. The
integral curves of the director are shown superposed on the phase field of its angle. As
the director anchoring condition is changed from normal (α = 0, left column) to tangen-
tial (α = π/2, right column) the surface defects rotate around the disc commensurately
but in the opposite sense. Also shown is the opening up of the −2 surface defect present
in a dipole distortion (top row) into a pair of −1 defects with opening angle θd. When
θd = π/2 the distortion is dominated by a quadrupole term (bottom row). The dipole
character varies commensurately with the defect rotation, being vertical for normal an-
choring (α = 0) and horizontal for tangential anchoring (α = π/2). The quadrupole
character changes at twice this rate; it is achiral for normal anchoring, purely chiral for
α = π/4 and achiral but with reversed sign for tangential anchoring.
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by comparison with

ϕ(z, z̄) = Im

{
log

(
z2

(z − eiθd)(z − e−iθd)

)}
=

i

2

[
log

(
1− 2 cos θd

z
+

1

z2

)
− log

(
1− 2 cos θd

z̄
+

1

z̄2

)]
.

(5.14)

When θd = 0 (5.13) reduces to the previous dipole expression given in (5.10) and in

general causes a reduction of the dipole term as shown in Figure 5.2. Once again we

generate energy minimisers for generic anchoring via f(θ) → f(θ+α), resulting in com-

mensurate but opposing rotation of the surface defects and the director at the boundary,

shown in the middle row of Figure 5.2. Of particular relevance is the case θd = π/2, for

which the −1 defects sit at antipodal points and the dipole term vanishes, with (5.13)

becoming

ϕ(z, z̄) = i

∞∑
n=1

(−1)m

2m
(z̄−2m − z−2m), (5.15)

this being the Saturn ring configuration [181], with the corresponding director distortions

shown in the bottom row of Figure 5.2. The quadrupole character changes at twice the

rate of the rotation of the defects; it is purely achiral for both normal and tangential

anchoring, although with opposing sign and is purely chiral for α = π/4.

These calculations show that in principle any dipole or quadrupole can be induced

by controlling the anchoring conditions on the disc, solving the matter of inducing all the

self-propulsive and rotational active responses that we described previously in Chapter

3, at least in two dimensions. However, we should emphasise that we have simply

presented solutions to certain boundary value problems and there is no guarantee a

priori that these will arise as the equilibrium state of a nematic system. The nature

of the equilibrium distortion is affected by the type and strength of surface anchoring

as well as the colloidal size [176]. In particular the configurations with generic opening

angle shown in Figure 5.2(d)-(f) are never stable and for tangential anchoring only the

quadrupole distortion in panel (f) is observed [176]. We should therefore not let this

apparent resolution dissuade us from our polygonal inclusions and instead view these

distortions as templates to inform our understanding of those induced by polygons. The

investment we have made in describing the distortions around a disc will be justified by

them serving as a ‘classical limit’ for the discretised polygonal distortions that follow.

This concludes the ideas which underpin the work of this chapter; the remainder

of this section is devoted to the technicalities of their implementation. As such it is not

needed in order to understand the results that follow and can be passed over on a first
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reading.

5.1.3 Schwarz-Christoffel maps

For all its power the Riemann mapping theorem is not constructive. For explicit map-

pings we turn to the formulation introduced and developed in a series of papers by

Christoffel [305; 306; 307; 308] beginning in 1867 and two years later, though indepen-

dently, by Schwarz [309; 310; 311]. In a slight inversion of history these mappings are

known as Schwarz-Christoffel transformations. An excellent review of their development,

theory and applications can be found in the monograph by Driscoll and Trefethen [289].

Schwarz-Christoffel transformations are predicated on the notion that the desired map-

ping has a derivative expressible as the product of some set of canonical functions, that

is [289]

f ′(z) =
∏

fk(z). (5.16)

It naturally follows that argf ′ = Σargfk and so by choosing the fk appropriately such

that each is a step function we can contrive to make argf ′ a piecewise constant function

with prescribed jumps and hence map the real axis to a polygon. This faculty for pro-

ducing conformal maps to polygons, along with the rich variety of nematic distortions

they can induce, is why we focus on colloids of this form. Through additional modifi-

cations we can generate our desired transformations from the exterior of the disc to the

exterior of polygons.

To make this precise, let us begin by setting out our notion for polygons. We

define a polygonal colloid through a piecewise linear curve Γ comprised of n vertices

ζ1, . . . , ζn and bounding an interior region P , see the example in Figure 5.3. The vertices

have interior angles µ1π, . . . , µnπ. The corresponding exterior angles are νkπ, with νk =

1− µk, and for Γ to form a closed curve we require
∑

k νk = 2.

To determine the form of fk(z) in (5.16) we note that (z− zk)
−νk has a constant

argument on R save for a jump of νkπ at zk and is analytic in the upper half-plane

H+. It follows that a conformal transformation that maps R onto Γ and H+ onto P is

provided by

f(z) = A+ C

∫ z n∏
k=1

(z′ − zk)
−νkdz′. (5.17)

The zk are the prevertices, preimages of the vertices under the map such that ζk = f(zk).

That these prevertices are well-defined is a consequence of the Carathéodory–Osgood

theorem [289; 312]. The complex constants A and C allow for scaling, translation and

rotation of the image. Together with the prevertices they form a set of parameters which
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ζ1

ζ2

ζ3

ζ4

µ1π
µ2π

µ3π

µ4π

ν1π

ν2π

ν3π

ν4π

Figure 5.3: The notation for labelling polygons. The vertices ζi have interior angles µiπ
and exterior angles νiπ, with νi = 1− µi.

are overdetermined to the tune of the three degrees of freedom inherent in Riemann’s

mapping theorem. The lower limit of integration is left unspecified as it only provides a

constant that may be absorbed into A.

The proof that (5.17) truly is an analytic function as required goes as follows

[289; 313]. By the Schwarz reflection principle [296] we may analytically continue f

across R into the lower half-plane, H−, as shown in Figure 5.4. The image of this

continuation is found by reflecting P in one of the sides of Γ. Returning to the upper

half-plane we reflect about a side of the new polygon, so that each branch of f in H+

corresponds to an even number of such reflections. This results in the translation and

rotation of P meaning each branch of f has the form c1f + c2, for c1 and c2 complex

constants. It follows that f ′′/f ′ is analytic in H+, save perhaps at the prevertices of Γ.

Indeed, we argued previously that in the neighbourhood of zk we have f ′ = (z− zk)
−νk ,

up to multiplication by some analytic function and so f ′′/f ′ has a simple pole at zk with

residue −νk. This can be regularised by subtraction of the appropriate pole and doing

so for all prevertices leaves

F(z) =
f ′′(z)

f ′(z)
−
∑
k

νk
z − zk

(5.18)

as an entire function. As all the prevertices are finite f is analytic at z = ∞ and a

Laurent expansion shows that f ′′/f ′ → 0 as z → ∞. The same is clearly also true for

νk/(z − zk) and so by Liouville’s theorem F(z) is constant and, as it vanishes at z = ∞
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z1 z2 z3 z4
ζ1

ζ2

ζ3

ζ4
H+

H−

P P ′

P ′′

Figure 5.4: The argument for analyticity of the Schwarz-Christoffel map. The function
in (5.17) takes the prevertices zi to the vertices ζi and the upper half-plane H+ to the
polygon P . Successive reflection in edges of the image polygon gives branches of (5.17)
on H− or H+, as indicated by the colour of the polygon, and shows that all branches
are related by a translation and a rotation.

must be zero everywhere. Writing f ′′/f ′ as (log f ′)′ and integrating produces (5.17).

There are two modifications we must make to (5.17) that we now consider in

turn. The first is to change the domain of the map from the upper half-plane to the unit

disc, D. This is achieved by composition of maps and application of the chain rule. For

h(z) : H+ → P and g(z) : Σ → H+ we have f(z) = h(g(z)) : Σ → P with [289]

f ′(z) = h′(g(z))g′(z)

= Cg′(z)
∏
k

[g(z)− g(zk)]
−νk .

(5.19)

A map from the disc to the upper half-plane is provided by the Möbius transformation

g(z) = i1+z
1−z , giving

f ′(z) = C
2i

(1− z)2

∏
k

[
2i(z − zk)

(1− z)(1− zk)

]−νk

. (5.20)

Using that
∑

k νk = 2 and absorbing various constants into C we integrate to obtain

f : D → P, f(z) = A+ C

∫ z∏
k

(
1− z′

zk

)−νk

dz′. (5.21)

Next we must consider mapping to the exterior region P ′. The first change that

this necessitates is reversing the sign of the exterior angles. In the same manner as before
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this leads us to

F(z) =
f ′′(z)

f ′(z)
−
∑
k

νk
z − zk

(5.22)

as an entire function. The difference now is that since the image of f contains the point

at infinity it no longer follows that F(z) is constant. Taking f(0) = ∞ implies that f

has a simple pole there and so at the origin f ′′/f ′ = −2/z plus some analytic part. We

therefore modify (5.22) to give

F2(z) =
f ′′(z)

f ′(z)
−
∑
k

νk
z − zk

+
2

z
= 0. (5.23)

Integrating we find

f : D → P ′, f(z) = A+ C

∫ z

z′−2
∏
k

(
1− z′

zk

)νk

dz′. (5.24)

Finally, we may make the replacement z → 1/z in (5.24) to attain our desired conformal

map from the exterior of the disc to the exterior of the polygon. With this general

expression in our possession we now present the derivation of certain particular mappings

that we shall make use of.

Despite its apparently explicit nature the Schwarz-Christoffel integral in (5.24)

requires determination of the prevertices. This ‘parameter problem’ is highly non-linear

and typically computationally expensive to solve [289]. In this chapter we primarily

focus on polygons which are sufficiently symmetric as to constrain the locations of the

prevertices. Here we derive mappings for three forms of polygon, namely regular poly-

gons, star polygons and cog polygons, representative examples of which are shown in

Figure 5.5 along with the notation that we employ. Those mappings for which the in-

tegral does not reduce to a closed form we do not present here but rather treat as they

arise.

Regular polygons

In the case of regular polygons all exterior angles are 2/n and symmetry allows the

prevertices to be taken as the nth roots of unity and indeed to be fixed points of the

map. Due to the cyclic nature of the roots of unity the product in the integrand of

(5.24) reduces to (1− tn)2/n. In addition we can set A = 0 and determine C by requiring
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2π
n

γπ

γπ

Figure 5.5: Representative examples of some of the families of polygonal colloids con-
sidered in this thesis. From left to right: regular polygons with exterior angle 2π/n,
star polygons and cog polygons formed by attaching isosceles and right-angled triangles
respectively to each side of a regular polygon.

f(1) = 1 such that

f(z) =

∫ z
z′−2(1− z′n)

2
ndz′∫ 1

z′−2(1− z′n)
2
ndz′

. (5.25)

Making the transformation t = z′n/zn brings the numerator to

1

nz

∫ 1

t−
1
n
−1 (1− znt)

2
n dt. (5.26)

This has the form of Euler’s integral representation of the hypergeometric function [314,

Eq. 15.3.1]

2F1(a, b; c;x) =
1

B(b, c− b)

∫ 1

0
tb−1(1− t)c−b−1(1− xt)−adt, (5.27)

with the beta function B(u, v) = Γ(u)Γ(v)
Γ(u+v) [314, Eq. 6.2.2]. However this integral is only

applicable for Rc > Rb > 0 and comparing (5.26) and (5.27) we have b = −1/n < 0.

The singularity at t = 0 can be handled through various adaptations of the integration

contour, such as changing the lower limit to 0+ [315, Eq. 15.6.4]. In light of the arbitrary

nature of the lower limit in our case we find it cleaner to utilise the Pochhammer contour,

shown in Figure 5.6, where the integration may be defined in terms of a generic point

p ∈ (0, 1). Topologically this path is the commutator of the two generators of the

(non-abelian) fundamental homotopy group of the twice-punctured plane. It is therefore

homotopically non-contractable while being homologous to zero, as it has no net winding

around either 0 or 1. This yields the following identity [315, Eq. 15.6.5]
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0 p 1

Figure 5.6: The Pochhammer integration contour. This is the contour used in (5.28) to
circumvent the singularity at t = 0.

2F1(a, b; c;x) = e−icπΓ(1− b)Γ(1 + b− c)
1

4π2

∫
C
tb−1(1− t)c−b−1(1− xt)−adt, (5.28)

such that we may write the numerator of (5.25) as

4π2eicπ

Γ(1− b)Γ(1 + b− c)

1

nz
2F1

(
− 2

n
,− 1

n
; 1− 1

n
; zn
)
. (5.29)

For the denominator we set z = 1, using Gauss’s summation theorem [314, Eq. 15.1.20]

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
(5.30)

to give

f(z) =
Γ
(
1 + 1

n

)
2F1

(
− 2

n ,−
1
n ; 1−

1
n ; z

n
)

Γ
(
1− 1

n

)
Γ
(
1 + 2

n

)
z

. (5.31)

This we tidy by applying the Legendre duplication formula for the gamma function [314,

Eq. 6.1.18]

Γ(2s) =
Γ(s)Γ(s+ 1

2)

21−2s
√
π

(5.32)

to Γ(1+2/n). Additionally making the substitution z → 1/z and allowing for a rotation

of the image polygon from the roots of unity by an angle α we arrive at our desired map

from the disc exterior to the exterior of a regular polygon

f(z) =
4−

1
n
√
πz2F1(− 2

n ,−
1
n ; 1−

1
n ; e

inαz−n)

Γ(1− 1
n)Γ(

1
2 + 1

n)
. (5.33)
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Star polygons

The star polygons are a perturbation of the regular polygons and the calculation follows

in the same fashion. We take the vertices of the base regular polygon to still be at

the nth roots of unity, the newly introduced prevertices sit at the intermediate points.

Consequently, referring to Figure 5.5, we have

f(z) =

∫ z
z′−2(1− z′n)

2
n
−2γ(1 + z′n)2γdz′∫ 1

z′−2(1− z′n)
2
n
−2γ(1 + z′n)2γdz′

. (5.34)

Again making the substitution t = z′n/zn brings the numerator to the form

1

nz

∫ 1

t−
1
n
−1 (1− znt)

2
n
−2γ (1 + znt)2γ dt. (5.35)

Comparing with Picard’s single integral representation of Appell’s F1 function [315,

Eq. 16.15.1]

F1(a, b1, b2, c;x, y) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0
ta−1(1− t)c−a−1(1− xt)−b1(1− yt)−b2dt, (5.36)

we find that the numerator of (5.34) is given by 1

1

nz

Γ
(
− 1

n

)
Γ
(
1− 1

n

)F1

(
− 1

n
, 2γ − 2

n
,−2γ, 1− 1

n
; zn,−zn

)
. (5.37)

To normalise we use [316, Eq. 5.10.10]

F1(a, b1, b2, c; 1, z) = 2F1(a, b1; c; 1)2F1(a, b2; c− b1; z)

=
Γ (c) Γ (c− a− b1)

Γ (c− a) Γ (c− b1)
2F1(a, b2; c− b1; z).

(5.38)

1Similarly to the derivation of the conformal map for regular polygons, this representation is valid only
for Ra > 0 and our value of a = −1/n lies outside this range. An adaptation of the integration contour
as employed in (5.28) is needed to make this intermediate step valid. While integral representations of
the Appell F1 function using adapted integration contours can be derived, they are not presented in
standard reference texts, such as [316], and we have not yet derived the suitable variation fit for our
parameter values. The error is only in the intermediate integral since, just as in the derivation of the
mapping for regular polygons, the modified integration contour will introduce a prefactor common to
both the numerator and denominator of (5.34), leaving our conformal map in (5.39) unchanged.
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Again replacing z with 1/z and including rotations of the image polygon we come to

f(z) =
Γ
(
1 + 1

n − 2γ
)
zF1

(
− 1

n , 2γ − 2
n ,−2γ, 1− 1

n ; e
inαz−n,−einαz−n

)
Γ
(
1− 1

n

)
Γ
(
1 + 2

n − 2γ
) . (5.39)

Cog polygons

The derivation of the Schwarz-Christoffel map for the cog shapes shown in Figure 5.5

follows the same path as for the star polygons; having introduced n vertices to a regular

n-gon the desired mapping is again given by the Appell F1 function. However, the

asymmetry of the shape means that the preimages of the new vertices do not simply

interlace evenly the existing ones and their location must be determined numerically.

Denoting the first such preimage anticlockwise from 1 by eiχ we have

f(z) =

∫ z
z′−2(1− z′n)

4−n
2n

−γ
(
1− z′n

einχ

) 1
2
+γ

dz′∫ 1
z′−2(1− z′n)

4−n
2n

−γ
(
1− z′n

einχ

) 1
2
+γ

dz′
. (5.40)

Continuing as in the case of star polygons we reach the conformal transformation

f(z) =
Γ
(
1
2 + 1

n − γ
)
zF1

(
− 1

n , γ + n−4
2n ,−1

2 − γ, 1− 1
n ; e

inαz−n, ein(α+χ)z−n
)

Γ
(
1− 1

n

)
Γ
(
1
2 + 2

n − γ
)
2F1

(
− 1

n ,−
1
2 − γ, 1− 1

n − n−4
2n − γ, einχ

) . (5.41)

5.2 Regular polygons

When analysing the director fields around regular polygons we shall find that their be-

haviour mirrors the above templates of dipole and quadrupole distortions according to

whether their number of sides is odd or even [279]. We therefore treat these two cases in

turn, in each case focusing initially on the simplest examples of triangles and squares as

these will provide some key insights that can be applied first to regular polygons with

arbitrary side number and later to more complex polygonal shapes. Ultimately it will

emerge that all regular polygons produce a modification of the quadrupole distortion.

The compatibility of the polygon with quadrupolar symmetry is dependent on the num-

ber of sides modulo four, prompting us to further subdivide our analysis. Some of the

formulae and arguments that arise are simpler for even-sided polygons, so we lead with

them.
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5.2.1 Even-sided polygons

Our description of how the induced distortions change with the orientation of the colloid

will be rooted in understanding the director profile when the colloid is in a symmetric

configuration. For a square there are two such states - a ‘compass’ one in which the ver-

tices are positioned along the cardinal directions and an orthogonal one, corresponding

to a rotation of the former by π
4 . In both of these the nematic has two lines of mirror

symmetry, namely the far-field alignment direction and its perpendicular. However, the

position of the vertices relative to these mirror lines means that the two squares must be

differently decorated with topological defects to produce a distortion of the same mul-

tipole character. In order to maintain normal anchoring around the square there must

be a half-integer defect at each vertex and to have a unique far-field director alignment

we require charge-neutrality of these defects. In the compass state, shown in Figure

5.7(a), each vertex sits on one of the mirror lines and so quadrupolar symmetry only

constrains the charges of defects on opposing defects to be the same. This allows us

to place +1/2 defects on the north and south vertices and −1/2 ones at the east and

west, the opposing choice corresponding to tangential rather than normal anchoring. By

contrast, in the orthogonal state shown in Figure 5.7(b) the displacement of the vertices

from the mirror lines means that quadrupolar symmetry demands that all vertices carry

the same topological charge. Thus a form of geometric frustration arises – an incompat-

ibility between the symmetry and charge neutrality. To relieve this tension and keep the

square charge-neutral we have to add charge −1 defects on the equator. This means that

while a square in the compass alignment can generate an achiral quadrupole distortion

with only the four ±1/2 defects necessary to turn the director at the vertices, in the

orthogonal orientation eight such defects are needed.

We note that a similar frustration would arise when trying to form an achiral

dipole distortion with a square colloid, although with the role of the two configurations

reversed due to the dipole lacking horizontal mirror symmetry. In the orthogonal align-

ment four defects suffice, shown in Figure 5.7(c), +1/2 defects at the top vertices and

−1/2 defects at the bottom ones. In the compass orientation the vertical symmetry and

lack of horizontal symmetry means we wish to have the same charge at the east and

west vertices and different charges at the north and south. This is satisfied by a −1/2

defect at the south vertex and +1/2 defects at the other three, but this leaves the total

topological charge at +1. Inducing a dipole in the compass state therefore requires six

half-integer defects, with a −3/2 defect at the south vertex, shown in Figure 5.7(d).

From the above arguments we can see that although these two alignments of
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a) b)

c) d)

Figure 5.7: Geometric frustration due to symmetry of colloids. The integral curves of
the director field are shown in black superposed on the phase field of its angle with
normal anchoring on a square colloid. Topological defects are shown in red (positive)
and cyan (negative) with areas scaled according to the magnitude of their charge. (a)
and (b) For a quadrupolar distortion the four requisite half-integer vertex defects suffice
when the square is in the ‘compass’ orientation, shown in (a). In (b) the square is in an
orthogonal orientation and satisfying both quadrupolar symmetry and charge-neutrality
requires four +1/2 defects and a pair of −1 defects. (c) and (d) A similar frustration
arises when placing defects on a square to generate a dipole, although the roles of the
two orientations are reversed. (c) Generating a dipolar distortion around a square in the
orthogonal alignment needs only four half-integer defects, in the ‘compass’ state in (d)
three +1/2 defects and a −3/2 defect are needed.
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the square are ostensibly equal symmetry states, their differing compatibility with the

symmetry of multipoles garners them different energies. Without calculation we can

see that the energy is minimised by a quadrupole induced by the compass state, as has

been demonstrated experimentally [279]. This both minimises the number of topolog-

ical defects and arranges them so as to maximise the separation between like charges,

producing a higher-order distortion with a more rapid radial decay.

Another insight provided by this reasoning is that we should not expect the

number of topological defects to remain constant as the orientation of a colloid is varied.

This orientation-dependent behaviour is what we now seek to determine.

Numerics

As was seen in our discussion of the Dirichlet problem on the disc exterior, although

a harmonic function is fully determined by the boundary conditions, normal anchoring

does not correspond to a unique condition. At any point on the boundary we are free

to change the director angle ϕ by a multiple of π, corresponding to the placement of a

topological defect. A colloid in a given orientation may therefore be associated with an

endless array of boundary conditions.

To address this we employ numerical simulations, minimising the energy

F =
K

2

∫
Ω
|∇n|2d2A− W

2

∫
∂Ω

(n · v)2dl. (5.42)

The first of these terms is the familiar Frank free energy which acts to minimise elastic

distortions in the bulk. The second is the Rapini-Papoular energy [194] which enforces

normal anchoring on the colloidal boundary, but crucially does so without specifying a

particular value of ϕ. We perform our simulations in the strong anchoring regime where

W >> K. The energy minimisation is performed by iteratively updating the director

according to the perpendicular component of the molecular field, h⊥, evaluated as

h =
δF

δn
,

h⊥ = h− (h · n)n.
(5.43)

To avoid numerical artifacts that might result from sharp corners we describe the bound-

ary of the square colloid as a circle in a Lp norm, that is a function of the form

(xp + yp)
1
p = c. (5.44)
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This produces a circle for p = 1, a square for p = ∞ and for intermediate values provides

an approximation of a square with smoothly rounded corners. A similar rounding has

been employed to ameliorate the effects of sharp edges in the numerical simulation of

polyhedral colloids in nematics [271; 275]. The simulation domain was a 200×200 square

lattice with a uniform alignment imposed on a circle of radius 100 and the square colloid

had a circumradius of 20.

A selection of the results is shown in Figure 5.8, taking p = 6 in (5.44), although

other values were used to ensure robustness of the behaviour to the specifics of the

smooth boundary. Here, and throughout the remainder of this chapter, we use α to

denote the orientation of the colloid with respect to its equilibrium orientation. The

reusing of this variable is intended to highlight the similar role played by the anchoring

angle of the director on a disc and the orientational angle of a polygonal colloid with

normal anchoring. We find that as the square’s orientation is varied the defects remain

pinned at the vertices such that a generic orientation can be described via a rigid rota-

tion of the compass state. This pinning behaviour is akin to that observed for obliquely

oriented hexagonal colloids [235]. The positive defects sit at the inside vertices, those

with negative charges at the outside ones, with ‘inside’ and ‘outside’ defined via their

position in the direction transverse to the far field. Rotating clockwise from the com-

pass configuration the +1/2 defects are at the upper right and lower left vertices, when

rotating anticlockwise they are at the upper left and lower right. These two branches of

behaviour collide at the orthogonal alignment, in which there is no distinction between

interior and exterior vertices. On passing through this orientation there is a discontinu-

ous jumping of topological charge and an interchanging of the location of the +1/2 and

−1/2 defects. This effective transfer of topological charge −1 from the outside vertices

to the inside is mediated by the previously described orthogonal state in which the −1

defects sit in the middle of the vertical side.

Analytical Description

The behaviour described above in the case of the square follows mutatis mutandis for

arbitrary side number and so in presenting an analytical description we generalise to

any even-sided polygon. What has been referred to as the compass orientation is in

general an alignment of the colloid such that its vertices lie at the roots of unity and the

complementary symmetry state is given by a rotation of π
n .

Our first task is to determine the appropriate Dirichlet problem on the exterior

of the disc. To establish the boundary conditions for the roots of unity configuration
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a) b) c) d)

α = 0 α = π
8 α = π

4 α = 3π
8

Figure 5.8: Numerical simulations of squares in a two-dimensional nematic. The integral
curves of the director are shown in white, superposed on a colour plot of the Frank
free energy density. Topological defects with charge +1/2 sit at ‘inside’ vertices; ones
with charge −1/2 at ‘outside’ ones. The defects remain pinned at the vertices as the
orientation of the square is varied, with additional defects arising when α = π/4.

we note that as the director distortion is a quadrupole we might expect them to be a

modification of the quadrupole boundary conditions for a disc. In fact it is clear that we

need a discretisation of this function, which is achieved by the addition of a sawtooth

wave with opposite gradient and periodicity determined by the number of sides, such

that the director angle is constant along each side. This gives us

ϕ(θ) =

∞∑
m=1

(−1)m+1

m
sin 2mθ +

∞∑
m=1

2

mn
sinnmθ (5.45)

and through similar considerations we find that in the orthogonal configuration

ϕ(θ) =

∞∑
m=1

(−1)m+1

m
sin 2mθ +

∞∑
m=1

2(−1)m

mn
sinnmθ. (5.46)

It should be noted that the symmetry arguments concerning the compass arrangement

hinged on the number of sides being a multiple of four. When this is not the case the

role of the above equations as providing the boundary conditions for the roots of unity

and orthogonal configurations is switched.

In full therefore the director angle around an even-sided regular polygon rotated
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from the roots of unity by an angle α is given by

ϕ(z, z̄) =

∞∑
m=1

i(−1)m+1
[(
e−iαz

)−2m −
(
eiαz̄

)−2m
]

2m

+
∞∑

m=1

i(±1)m
[(
e−iαz

)−mn −
(
eiαz̄

)−mn
]

mn
+

α log(
√
zz̄/R)

log(1/R)

(5.47)

and in the orthogonal configuration by

ϕ(z, z̄) =
∞∑

m=1

i(−1)m+1
[
z−2m − z̄−2m

]
2m

+
∞∑

m=1

i(∓1)m [z−mn − z̄−mn]

mn
, (5.48)

where the choice of ± is made according to the number of sides mod four as described

above. The monopole term in (5.47) is in accordance with the elastic torque that re-

sults from an orientation that doesn’t minimise the energy [21] and has been observed

experimentally using hexagonal colloids [235]. These formulae for the director angle on

the exterior of the disc are supplemented by the conformal map from this region to the

exterior of a regular polygon, derived in Section 5.1.3 to be

ζ =
4−

1
n
√
πz2F1(− 2

n ,−
1
n ; 1−

1
n ; e

inαz−n)

Γ(1− 1
n)Γ(

1
2 + 1

n)
. (5.49)

It should be noted that this map with α = 0 always takes the disc to a polygon with

its vertices sitting at the roots of unity. However, it is physically more meaningful to

measure the rotation angle of a colloid with respect to its equilibrium orientation. When

n ≡ 2 mod 4 these are orthogonal to each other and so a shift of π/n must be added

to α. In later sections of this chapter we consider polygons which are constructed as a

modification of regular polygons and the same shift is naturally required whenever the

base polygon has side number 2 mod 4.

The resulting nematic textures, shown in Figure 5.9, manifestly match those of

our numerical simulations for squares in Figure 5.8 and show the same pinning and

jumping behaviour of defects. We see that in a generic alignment the interior vertices

carry a topological charge of +2/n with−1+2/n at the equatorial ones. In the orthogonal

state all vertices have a winding of +2/n while two −1 defects sit at the equator. As such,

both converge onto the disc quadrupole distortion discussed in 5.1.2, with continuous

positive winding and two −1 surface defects. The director field defines an everywhere

orthogonal field corresponding to ϕ → ϕ + π/2. Making this transformation along
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with a global rotation to keep the far-field alignment fixed we see that our solution for

normal anchoring provides a complementary solution for tangential anchoring in which

the polygon has been rotated by π/2, with both these solutions having equal energy

in a one-elastic-constant approximation. As normal and tangential anchoring produce

distortions with predominantly splay and bend character respectively their deformation

energies will differ if elastic anisotropy is present. With the exception of when n ≡ 0

mod 4 this means that different orientations of the polygon result in equilibrium for

normal and tangential anchoring. We present both solutions in this section but as it

represents a degeneracy of information we restrict to showing just normal anchoring in

later sections.

We now consider the role on the induced multipole distortions played by the

discretisation of the disc space boundary conditions and the map to the polygon exterior.

The first point to make is that from Taylor expanding the hypergeometric function we

see that

ζ =
4−

1
n
√
πz

Γ(1− 1
n)Γ(

1
2 + 1

n)
+O(z1−n) (5.50)

and so although the unit circle is strongly distorted to map onto the boundary of the

polygon this angular dependence decays very rapidly and the conformal map tends to

a radial rescaling. Consequently, the character of the far-field multipoles is determined

by the boundary conditions on the disc space with the conformal map simply modifying

the asymptotic strength of these multipoles. From (5.47) and (5.50) we can see that the

strength of the induced quadrupole sQ varies with the side number n as

sQ =
π

8
1
nΓ2(1− 1

n)Γ
2(12 + 1

n)
. (5.51)

Figure 5.9 (preceding page): Analytic solutions for even-sided regular polygons in a
two-dimensional nematic. The integral curves of the director are shown superposed on
the phase field of its angle. The distortions induced by square and hexagonal colloids
are shown for both normal and tangential anchoring with the colloid in the equilibrium
orientation (α = 0, left column), the metastable orthogonal state (α = π/n, right
column) and an intermediate alignment (middle). As the orientation of the polygon is
changed any defects rotate rigidly with the colloid and remain fixed at the vertices. The
orthogonal orientation represents a degenerate state in which additional defects arise.
The distortions for normal and tangential anchoring are related by a local rotation of
the director by π/2, along with a global π/2 rotation to keep the far-field orientation
fixed.
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Figure 5.10: The dependence of quadrupole strength on side number for even-sided
regular polygons. Convergence onto the disc in the large n limit is borne out by the
asymptotic value of 1. The line is purely to guide the eye.

with this scaling with n shown in Figure 5.10. The far-field quadrupole strength increases

with n, tending to 1 in the large n limit, in accordance with the convergence of the

distortions induced by regular polygons onto those of the disc.

The change in multipole character as the polygon rotates can therefore be inferred

directly from our knowledge that we rigidly rotate the roots of unity configuration. We

focus our attention on the quadrupole distortions as they are of the greatest relevance

for active systems; the behaviour of higher-order multipole follows analogously. Starting

with a purely achiral configuration, the strengths of the achiral and chiral quadrupoles

vary as cos 2α and sin 2α respectively, the same as the dependence on anchoring angle

for colloidal discs. However, unlike in the disc case this smooth variation does not

continue indefinitely, but instead holds only for α ∈ (−π/n, π/n), that is to say until the

orthogonal configuration is reached, at which point the sudden change in which vertices

are ‘outside’ causes the sign of the chiral quadrupole to flip and the strength of the

achiral quadrupole to increase again. As expected, since the polygon is an achiral shape

there is no net chiral quadrupole over a cycle of rotation, although it is possible for active

stresses to act to stabilise the higher energy orthogonal state. The rate of change of a

multipole with rotation is fixed by its order, but the period of change is a consequence

of the number of sides of the polygon, meaning that as the number of sides increases

the deviations from purely achiral multipoles decrease, again demonstrating convergence
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onto the disc.

5.2.2 Odd-sided polygons

Let us now analyse odd-sided polygons in the same fashion, using the triangle as a

concrete example. We again begin with numerical simulations before proceeding to an

analytical description. The two key configurations now are the vertical one in which

the triangle is symmetric in the far-field direction and the horizontal one where the

vertices sit at the roots of unity, shown in Figure 5.11 (a) and (c) respectively. In the

vertical state there is +2
3 winding at the inside vertex and −1

3 winding at the outside

ones, similarly to before. From the simulation results shown in Figure 5.11 we see that

just as before varying the triangle’s orientation causes a rigid rotation of this pattern

until a horizontal state is reached. At this point the vertical alignment of a side causes a

degeneracy in which vertex is inside, resolved by the two aligned vertices both having +2
3

winding and a −1 defect being introduced between them. These two equatorial negative

charges alter the dominant character of the distortion from a dipole to a quadrupole,

matching experimental observations [266].

a) b) c) d)

α = 0 α = π
12 α = π

6 α = π
4

Figure 5.11: Numerical simulations of triangles in a two-dimensional nematic. The
integral curves of the director are shown in white, superposed on a colour plot of the
Frank free energy density. Positive winding occurs at the ‘inside’ vertex, negative winding
at the ‘outside’ ones. The topological defects remain pinned at the vertices of the triangle
as its orientation is varied, with an additional defect arising on the vertical edge when
α = π/6.

We are able to understand how the distortions will change with orientation just

from these rotation and switching rules, without the need to find an explicit Fourier

series for the boundary conditions. Here we restrict our attention to the dipoles, as

they are the relevant distortions for self-propulsion in active nematics. Naively one

might think that a triangular colloid could propel in any direction, depending on which
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direction it points. In light of the three-fold symmetry of a triangle this then raises the

question in which direction does a triangle point? The symmetry is of course broken by

the far-field direction and the vertices are ascribed different windings according to the

position relative to this alignment. The dipole induced by the triangle therefore points

towards the positive winding at the inside vertex. It follows immediately that there

is only a limited set of directions in which the triangle can self-propel, falling in two

bands according to whether the inside vertex is at the top or at the bottom. Although

these discontinuities act against the easy design of self-propelling colloids they provide

an intriguing non-linear response to orientation. A triangular colloid placed in an active

nematic with its orientation varying diffusively would seem to behave in a manner akin

to run-and-tumble swimming [47] with the drastic change in propulsion direction caused

by passing through the horizontal configuration acting as tumble events. As the number

of sides is increased the width of the bands shrinks so that the self-propulsion direction is

confined closer and closer to up and down. Unlike for even-sided polygons, the behaviour

of the dipole with orientation does not map directly onto the disk case in the limit of

large side number. The disk does not have an orientation and so the symmetry must

be spontaneously broken in the selection of a sign for the vertical dipole and once this

choice is made it is invariant to rotations of the disc. By contrast an odd-sided polygon

always points up or down and rotating it results in rapid flipping of the sign of the

vertical dipole.

We again combine generalising with providing an analytical description. The

negative winding on a regular polygon occurs at the outside vertices, which, taking

an anatomical viewpoint, may be termed the ‘shoulders’ of the polygon. For an even

number of sides the equilibrium state corresponds to these shoulder vertices sitting at

the equator and the boundary condition is simply a discretisation of the quadrupole

boundary condition. When the side number is odd the shoulder vertices will always

sit just above or below the equator and so an additional term is needed to reverse the

director orientation in these two regions, giving the boundary condition in the vertical

alignment as

ϕ(θ) =
∞∑

m=1

(−1)m+1

m
sin(2mθ) +

∞∑
m=1

2

mn
sin(nmθ)

+

∞∑
m=1

2
[
cos
(
mπ
2

)
− cos

(
m(n±1)π

2

)]
m

sin(mθ),

(5.52)

the choice of sign being positive when n ≡ 3 mod 4 and negative when n ≡ 1 mod 4. The
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dipole term that is introduced as a result is as we would expect for a pair of −1 defects

with a generic opening angle (5.13). The −1 defects sit at the ‘shoulders’ of the polygon,

that is the vertices at the horizontal extremes. As n varies the position shoulders tends

to the equator, oscillating above and below it according to the value of n mod 4, with

this ‘shrugging’ resulting in a weakening and alternating dipole coefficient.

In the horizontal configuration the boundary condition is given by a discretisation

of the quadrupole boundary condition rotated by π/2 to account for the transverse

orientation of the polygon

ϕ(θ) =
∞∑

m=1

(−1)m+1

m
sin(2mθ) +

∞∑
m=1

2(−1)m

mn
sin
[
nm

(
θ ± π

2

)]
. (5.53)

The sign choice is negative for n ≡ 3 mod 4 and positive when n ≡ 1 mod 4. This is

because rotation of the vertical orientation may result in a polygon with its nose pointing

either left or right. As this rotation turns a shoulder vertex into the nose this sign choice

is also determined by whether the polygon’s shoulders sit above or below the equator.

Accordingly the director angle around an odd-sided regular polygon rotated an angle α

from vertical is given by

ϕ(z, z̄) =
∞∑

m=1

i(−1)−m+1

2m

[(
e−iαz

)−2m −
(
eiαz̄

)−2m
]

+

∞∑
m=1

i

mn

[(
e−iαz

)−mn −
(
eiαz̄

)−mn
]

+
∞∑

m=1

i
[
cos
(
mπ
2

)
− cos

(
m(n±1)π

2

)]
m

[(
e−iαz

)−m −
(
eiαz̄

)−m
]
+

α log(
√
zz̄/R)

log(1/R)

(5.54)

and in the horizontal configuration by

ϕ(z, z̄) =
∞∑

m=1

i(−1)m+1

2m

[
z−2m − z̄−2m

]
+

∞∑
m=1

i(−1)m

mn

[
(∓iz)−mn − (±iz̄)−mn

]
. (5.55)

The resulting nematic textures are shown for triangular and pentagonal colloids

in Figure 5.12 and reproduce those observed in the numerical simulations of Figure 5.11

in the case of triangles with normal anchoring. The textures for tangential anchoring

with the colloid in the equilibrium state (α = 0) match those observed experimentally

[279]. In considering the director winding at the vertices we see that generically there

is a winding of +2/n at (n − 2) vertices and of −n−2
n at the remaining two. In the
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horizontal alignment there is a −1 defect in the middle of the vertical edge, a winding

of −1 + 2
n at the opposing vertex and of + 2

n at all others. In both cases there is a clear

convergence onto the distortions associated with the disc, as described in Section 5.1.2,

in the large n limit.

Examining the asymptotic strength of the dominant multipoles as we did for even-

sided polygons we see from (5.54) and (5.50) that the dipole and quadrupole strengths

sp and sQ are given by

sp = ± 2
√
π

4
1
nΓ
(
1− 1

n

)
Γ
(
1
2 + 1

n

) sin( π

2n

)
,

sQ =
π

8
1
nΓ2

(
1− 1

n

)
Γ2
(
1
2 + 1

n

) cos(π
n

)
,

(5.56)

shown in Figure 5.13. The dipole coefficient decays in an oscillatory fashion, in accor-

dance with the ‘shrugging’ identified above and quantifying the weakening strength of

the dipole observed experimentally for triangles and pentagons [279]. The alternation

in sign does not appear to have been noted before, see for example the same direction

of elastic dipole shown in Figure 5.1(a) and (c), taken from [279]. As for even-sided

polygons the quadrupole coefficient grows with n and asymptotes to 1, affirming once

more the convergence onto the disc limit.

Figure 5.12 (preceding page): Analytic solutions for odd-sided regular polygons in a two-
dimensional nematic. The integral curves of the director are shown superposed on the
phase field of its angle. The distortions induced by triangular and pentagonal colloids
are shown for both normal and tangential anchoring with the colloid in the equilibrium
orientation (α = 0, left column), the metastable orthogonal state (α = π/n, right
column) and an intermediate alignment (middle). As the orientation of the polygon is
changed any defects rotate rigidly with the colloid and remain fixed at the vertices. The
orthogonal orientation represents a degenerate state in which additional defects arise.
The distortions for normal and tangential anchoring are related by a local rotation of
the director by π/2, along with a global π/2 rotation to keep the far-field orientation
fixed.
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Figure 5.13: The dependence of multipole strengths on side number for odd-sided regular
polygons. The dipole and quadrupole strengths sp and sQ are shown with triangular and
square icons respectively, with red and blue lines to guide the eye. The dipole strength
oscillates and decays to zero while the quadrupole strength tends to 1, demonstrating
convergence onto the distortion due to a disc in the large n limit.

5.3 Principles of polygonal colloids in nematics

Before pressing on to the consideration of more intricate polygons we would do well

to pause and consolidate the understanding we have acquired thus far. We have the

following observations. The appropriate boundary condition is that where the director

angle ϕ ∈ [−π/2, π/2]. As the orientation of the colloid is varied the distortion is rigidly

rotated, with the addition of a monopole term to maintain the anchoring condition, with

the caveat that whenever an edge is moved through the vertical the director orientation

is reversed so as to maintain the appropriate bounds on ϕ. We have also found negative

winding to occur at the outside vertices of polygons and positive winding elsewhere.

Let us examine this last point more closely by considering the director winding

that may be induced by a vertex. In this it will be beneficial to choose an orientation

for the director, but all statements we make are of course independent of this choice. As

illustrated in Figure 5.14, a vertex generically exists in one of two states, namely with

the director on the two edges oriented in the same sense, either inwards or outwards, as

in (a) and (c) or in opposing senses, as in (b) and (d). According to these circumstances

we will have to rotate the director on one edge either clockwise or anticlockwise around

the vertex to have it match that on the other side and hence the induced winding will
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νπ

w = νπ > 0

µπ

w = −µπ < 0

νπ

w = νπ < 0

µπ

w = (2− µ)π > 0

a) b)

c) d)

Figure 5.14: Local picture for director winding at a vertex. Schematics of the director,
decorated with an orientation to aid our argument, around a vertex of a colloid with
normal anchoring and vertical far-field alignment. a) and c) For a vertex aligned along
the far-field orientation the induced director winding w is equal to the exterior angle for
both convex and concave vertices. b) and d) For vertices which point ‘into the flow’ of
the director field the winding at the vertex is determined by the interior angle and there
is a discontinuous change in the induced winding for convex and concave vertices.
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be given by either the exterior or interior angle. In the first case we see that the director

winding is given by the exterior angle νπ, positive for a convex vertex, shown in Figure

5.14(a), and negative for a concave one, shown in Figure 5.14(c). As ν ∈ [−1, 1] this

always produces the minimal winding, commensurate with maintaining ϕ ∈ [−π/2, π/2].

In the latter case a convex vertex produces negative winding determined by the interior

angle as −µπ, shown in Figure 5.14(b). The range of the interior angle differs from

that of the exterior angle, with µ ∈ [0, 2] and so when µ > 1, as for the concave vertex

in Figure 5.14(d), the appropriate winding is not −µπ but rather (2 − µ)π. When the

director orientation was consistent across a vertex the winding varied smoothly from

positive to negative as the vertex transitioned from convex to concave. With a reversal

of orientation between the two edges there is instead a ‘buckling’, a discontinuous jump

in winding as the vertex changes character.

The dividing line between these two regimes of behaviour is, in light of the bounds

on ϕ, when one of the edges of the vertex is vertical, hence the discontinuous behaviour

we have seen associated with this. Indeed a vertical line may, if desired, be viewed as

containing a vertex with µ = 1, at which a defect with topological charge ±1 may be

placed. If we restrict attention to convex polygons, as we have been considering so far,

we recover our prior observation as to the locations of positive and negative windings.

We note that as µk = 1−νk and
∑

k νk = 2, associating two vertices with winding −µkπ

and the rest with νkπ automatically satisfies topological charge neutrality.

This local description of the director winding at a vertex underpins the nature of

the nematic distortions around all the colloids that we consider. As we shall see in the

next section, the discontinuous change in winding associated with concave vertices leads

to radically different distortions when concavity is introduced to a polygon. However,

we shall also see that due to the orientation-dependent vertex behaviour laid out here

any effects resulting from concavity or chirality of a shape are also subject to orientation

dependence.

5.4 Star Polygons

We now consider star polygons formed by attaching an isosceles triangle of base angle

γπ to each side of a regular polygon, which we term the base polygon. This allows

us to investigate the role of concavity on the induced nematic distortions. A point of

comparison is provided by numerical simulations of star colloids composed of n radial

lines emanating from a common centre and equidistributed in angle [283], corresponding

to the γ = 1
2 limit of our shapes. Our construction allows us to effectively tune the
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degree of concavity and identify distinct regions of behaviour separated by discontinuous

jumps as edges are pushed through vertical alignment. These bands of behaviour are

of width 2/n in γ, 2π/n being the exterior angle of the base polygon. Here we restrict

our focus to the orientations in which the director possesses lines of symmetry, although

the distortions for generic alignment would follow from the arguments given previously.

This gives us a stable and metastable state, as identified in [283], corresponding to the

equilibrium and orthogonal orientations of the base polygon respectively. While the term

star polygon is a natural fit for the shapes we consider here, it is also used for regular

polygons described by the Schläfli symbol {p
q} [317] in which of the p vertices every qth is

connected. When self-intersections are removed to form a concave polygon of the same

geometry these form a subset of our family of polygons and correspond to particular

values of γ. Although all of the stars have an even number of sides, they inherit many

of their features from the regular polygon they are based on and so we classify them

according to whether this has even or odd side number.

As was the case for regular polygons, the analytical description of the nematic

distortions around star polygons is achieved through the combination of appropriate

boundary conditions on the disc and conformal maps from the disc to the polygonal

domain. The construction of the former will be laid out in this section, the latter is

provided by

ζ =
Γ
(
1 + 1

n − 2γ
)
zF1

(
− 1

n , 2γ − 2
n ,−2γ, 1− 1

n ; e
inαz−n,−einαz−n

)
Γ
(
1− 1

n

)
Γ
(
1 + 2

n − 2γ
) , (5.57)

with α the angle of rotation of the base polygon from its roots-of-unity configuration.

The derivation of this map is provided in Section 5.1.3.

Beginning with stars for which the base polygon has an even number of sides,

we may surmise certain aspects of behaviour without explicit calculation by noting that

γ = 1
2n produces a 2n-gon and γ = 1

n the original n-gon rotated by π
n . As the 2n-gon will

be invariant under rotation by π
n its alignment will be the same for both orientations

of the base polygon and this degeneracy suggests that there should be no significant

differences in the distortions induced for γ < 1
2n . The second observation indicates that

the star is still a convex polygon for γ < 1
n and so any effects of concavity only appear

for γ above this threshold. Indeed, when the base polygon is in its equilibrium state

the orthogonally aligned n-gon produced by γ = 1
n will contain vertical signs and herald

inversion of the director. When the base polygon is in the orthogonal state director

inversion is delayed until γ = 2
n , provided this is less than 1

2 .

In constructing explicit solutions we start by observing that the initial mod-
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ification to the boundary conditions is provided by a square wave of magnitude

γπ and period π
n . For the roots of unity orientation this has the Fourier series

−4γ
∑∞

m=1
1

2m−1 sin [(2m− 1) θ] and so when combined with the boundary condition

for the base polygon (5.45) we have

ϕ(z, z̄) =

∞∑
m=1

i(−1)m+1(z−2m − z̄−2m)

2m
+

∞∑
m=1

i(z−mn − z̄−mn)

mn

− 4γ
∞∑

m=1

i(z(1−2m)n − z̄(1−2m)n)

2(2m− 1)
.

(5.58)

When the base polygon is in the orthogonal alignment this perturbing square wave must

be rotated by π
n , reversing its sign, which is added to (5.46) to result in

ϕ(z, z̄) =
∞∑

m=1

i(−1)m+1(z−2m − z̄−2m)

2m
+

∞∑
m=1

i(−1)m(z−mn − z̄−mn)

mn

+ 4γ

∞∑
m=1

i(z(1−2m)n − z̄(1−2m)n)

2(2m− 1)
.

(5.59)

We reiterate at this point that whether the roots of unity or the orthogonal orienta-

tion is the equilibrium state is dependent on whether n is congruent to 0 or 2 modulo

4. The resulting nematic distortions for square- and hexagon-based stars are shown in

the left-most panels of Figures 5.15 and 5.16. The modification of the boundary con-

ditions only weakly perturb the distortions induced by the base polygon, regardless of

orientation, since while γ is sufficiently small that no edges have moved through the

vertical the modification must be n-fold periodic so the lowest order term introduced

is sin(nθ) which leaves the fundamental quadrupole nature of the distortion unaffected.

The aforementioned degeneracy of the two orientations for γ = 1
2n is illustrated for the

square.

This state of affairs is lost when concavity is introduced. For a square in the

roots of unity alignment its four equatorial sides buckle through the vertical at γ = 1
4 ,

inverting the orientation of the nematic on these edges. This mandates the addition of

∞∑
m=1

2i(−1)m sin2
(
mπ
n

)
m

(z−2m − z̄−2m) (5.60)

to (5.58), which flips the sign of the quadrupole term producing the markedly distinct

distortion shown for γ = 3
8 in Figure 5.15. Conversely, in the orthogonal alignment the
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Figure 5.15: Square-based stars in a two-dimensional nematic. The integral curves of
the director are shown superposed on the phase field of its angle. The base square is
shown in grey inside the colloid to make its orientation clear. (a) and (b) When the base
square is in the equilibrium configuration there are two distinct bands of behaviour. (a)
A weak perturbation of the distortion around a square. (b) The quadrupole coefficient
is reversed, brought about by the inversion of the director orientation along the four
equatorial sides when concavity is introduced at γ = 1/4. (c) and (d) With the base
square in the orthogonal alignment the distortion is always a weak perturbation of that
for a square.
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Figure 5.16: Hexagon-based stars in a two-dimensional nematic. The integral curves of
the director are shown superposed on the phase field of its angle. The base hexagon
is shown in grey inside the colloid to make its orientation clear. Two distinct bands of
behaviour are displayed. (a), (b) and (c) When the base hexagon is in the equilibrium
configuration there is a weak perturbation of the hexagon distortion, as shown in (a),
until γ = 1/6 when director inversions cause the quadrupole term to vanish and the
distortion to be dominated by a hexadecapole. (d), (e) and (f) With the base hexagon
in the roots-of-unity configuration the weak perturbation band, shown in (d), persists
until γ = 1/3. Compared to the equilibrium alignment the effect of the subsequent
inversions is twice as pronounced at quadrupole order and so leads to a reversal of the
quadrupole mode, shown in (f). We highlight the case of γ = 1/3, shown in (c) and (e),
as its symmetry will be useful in later generalisations of high-order distortions.
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concavity is not associated with any inversion of orientation and so (5.59) holds for all

γ. The nematic distortion continues to be a small perturbation of that for the base

polygon so that the two orientations of the same star produce distortions dominated

by quadrupoles of opposing sign. This orientation-dependent effect of concavity is at

its heart the orientation-dependent vertex behaviour we discussed previously. All the

concave vertices in Figure 5.15(d) are inducing director winding according to their ex-

ternal angle, the equatorial pair in Figure 5.15(b) are causing winding determined by

their internal angle.

A similar situation arises for the hexagonal stars. As the equilibrium state is

provided by the base hexagon being in the orthogonal configuration the weakly perturbed

director is described by (5.59), with a phase shift of π/n being applied to both the final

square wave term and the Schwarz-Christoffel map in (5.57). Inversion on the four

equatorial edges occurs for the equilibrium state at γ = 1
6 , with the director angle

given by the addition of (5.59) and (5.60). As the number of sides on the base polygon

increases, the effect of inversion on these four edges weakens. For the square-based

stars the coefficient of the quadrupole term in (5.60) was −2 and so it reversed the sign

of the quadrupole. For hexagon-based stars it is only half as strong and so leads to

perfect cancellation of the quadrupole term and so for γ > 1
6 the induced distortion is

predominately hexadecapolar. A generic case is shown for γ = 1
4 in Figure 5.16, but the

nematic distortion for γ = 1
3 is of particular interest due to its symmetry; the star has

the geometry of the {6
2} regular polygon. It is also the second iteration in a sequence

converging on the Koch snowflake fractal [267] and the textures for its two orientations

shown in Figure 5.16 replicate those achieved in the experimental study of such fractal

colloids [266]. We will discuss this polygon further in Section 5.6, when we consider how

it might be generalised in order to produce generic high-order nematic multipoles.

In the metastable state there is no possibility of inversion occurring on the four

equatorial sides as the edges they originate from are already vertical. Accordingly, the

nematic distortion is largely that of the base polygon until γ = 1
3 , resulting in the two

distinct distortions for γ = 1
4 shown in Figure 5.16. The inversion then occurs on the

four next-most equatorial edges, captured by the addition of

∞∑
m=1

2i(−1)m sin
(
mπ
n

)
sin
(
mπ
2

)
m

(z−2m − z̄−2m) (5.61)

to (5.58). The positioning of these edges further from the mirror axis enhances their

impact, doubling it when it comes to the quadrupole term, leading to the same reversal
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in quadrupole character seen for the stable alignment of the square. This is illustrated

for γ = 5
12 in Figure 5.16(f).

Moving to stars based on odd-sided regular polygons insight is similarly gained

by observing that, as before, γ = 1
2n results in a 2n-gon while for γ = 1

n we recover the

original polygon rotated by π. It is easy to see that these two conditions also correspond

to the point at which pairs of sides become vertical when the base polygon is vertical

and horizontal respectively and thus are the values of γ at which additional inversions

of the director will need to be included.

The procedure for constructing the boundary conditions is much the same as in

the even-sided case. When the base polygon is aligned vertically the initial modification

is by the same square wave which, when added to (5.54) yields

ϕ(z, z̄) =

∞∑
m=1

i(−1)m+1(z−2m − z̄−2m)

2m
+

∞∑
m=1

i(z−mn − z̄−mn)

mn

+
∞∑

m=1

i
[
cos
(
mπ
2

)
− cos

(
m(n+1)π

2n

)]
m

(z−m − z̄−m)

− 4γ

∞∑
m=1

i(z(1−2m)n − z̄(1−2m)n)

2(2m− 1)
.

(5.62)

In the horizontal alignment this additional contribution must be rotated by π
2n resulting

in

ϕ(z, z̄) =

∞∑
m=1

i(−1)m+1(z−2m − z̄−2m)

2m
+

∞∑
m=1

i(−1)m((−iz)−mn − (iz̄)−mn)

mn

− 4γ
∞∑

m=1

i

((
e−i π

2n z
)(1−2m)n

−
(
ei

π
2n z̄
)(1−2m)n

)
2(2m− 1)

.

(5.63)

As previously, this modification does not affect the fundamental mode of distortion

and only constitutes a minor perturbation. This is illustrated for both orientations of

triangle- and pentagon-based stars in the left-most panels of Figures 5.17 and 5.18.

Inversion occurs on pairs of edges rather than quartets, causing the leading effect

to be at dipole rather than quadrupole order, and again at different values of γ according

to the alignment of the base polygon. When the orientation is vertical the initial inversion
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Figure 5.17: Triangle-based stars in a two-dimensional nematic. The integral curves of
the director are shown superposed on the phase field of its angle. The base triangle is
shown in grey inside the colloid to make its orientation clear. Two distinct bands of
behaviour are displayed. (a) and (b) When the base triangle is vertical there is a weak
perturbation of the triangle distortion, shown in (a), until γ = 1/6 when inversions of
the director orientation flip the sign of the dipole, as shown in (b). (c) and (d) When
the base triangle is horizontal a weak perturbation of the quadrupolar distortion around
a triangle, shown in (c), persists until γ = 1/3, at which point inversions of the director
orientation introduce a horizontal dipole, shown in (d).
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Figure 5.18: Pentagon-based stars in a two-dimensional nematic. The integral curves of
the director are shown superposed on the phase field of its angle. The base pentagon is
shown in grey inside the colloid to make its orientation clear. Three distinct bands of
behaviour are displayed. (a), (b) and (c) When the base pentagon is vertical there is
a weak perturbation of the pentagon distortion, as shown in (a), until γ = 1/10 when
inversions of the director flip the sign of the dipole, illustrated in (b). Further inversions
that arise at γ = 3/10 revert the dipole to its original character, shown in (c). (d), (e)
and (f) When the base pentagon is horizontal a weak perturbation of the quadrupolar
distortion around a pentagon, shown in (c), persists until γ = 1/5, at which point
inversions of the director orientation introduce a horizontal dipole, shown in (e). As
shown in (f), additional director inversions that occur for γ = 2/5 reverse the character
of this dipole.
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is on the equatorial sides at γ = 1
2n , corresponding to the addition to (5.62) of

±
∞∑

m=1

i
[
cos
(
m(n+1)π

2n

)
− cos

(
m(n−1)π

2n

)]
m

(z−m − z̄−m). (5.64)

The overall sign is positive when n ≡ 3 mod 4 and negative when n ≡ 1 mod 4. This

sign change has the same origin as arose for the sign of the dipole for regular polygons

described earlier. According to whether the shoulders of the base polygon sit below or

above the equator these new edges of the star will either be faced downwards or upwards

when pushed through the vertical.

While the impact of this inversion weakens with increasing side number, so does

the strength of the initial dipole due to the base polygon. The dipole term in (5.64) is

double the magnitude of that in (5.54) and of opposite sign, resulting in a reversal of the

dipole coefficient, as shown in Figures 5.17 and 5.18. The pentagonal star with γ = 3
20

shows that concavity is not required for this change. Subsequent inversions occur at

γ = 2k+1
2n , provided this is less than 1/2, implemented via

±
∞∑

m=1

i
[
cos
(
m(n−(2k−1))π

2n

)
− cos

(
m(n−(2k+1))π

2n

)]
m

(z−m − z̄−m). (5.65)

the sign dependent both on the value of n modulo 4 and the parity of k. This is shown

for a pentagonal star in Figure 5.18(c), where it reverts the dipole back to its original

sign.

For the horizontal orientation the first inversion is delayed until γ = 1
n . For the

same γ the vertically aligned star in Figure 5.17(a) produces a dipole distortion but when

aligned horizontally the same star in Figure 5.17(c) produces a dominantly quadrupolar

distortion, both distortions being a weak perturbation of that resulting from a triangle.

Inversion occurs on the two edges on either side of the nose of the base polygon and

requires adding
∞∑

m=1

2i sin2
(
mπ
2n

)
m

((±iz)−m − (∓iz̄)−m) (5.66)

to (5.63), with the top and bottom sign choices applying when n ≡ 3 mod 4 and n ≡ 1

mod 4 respectively. This is because rotation of the vertical orientation of an odd-sided

regular polygon may result in a polygon with its nose pointing either right or left. As

this rotation turns a shoulder vertex into the nose this sign choice is again determined

by whether the shoulders of the base polygon sit above or below the equator. This
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inversion introduces a dipole term where there previously was none, as shown in Figures

5.17(d) and 5.18(e), where the opposing signs of the dipole is in line with the preceding

discussion.

Further inversions occur for γ = k
n , again with the proviso that this be less than

1/2, implemented by the addition of

∑ i
(
cos
(
(n−1)mπ

n

)
− cos

(
(n−2)mπ

n

))
m

((±iz)−m − (∓iz̄)−m), (5.67)

with the top and bottom sign choices again applying when n ≡ 3 mod 4 and n ≡ 1 mod

4 respectively. This has a larger dipole coefficient than (5.66) and so reverses the sign

of the nematic dipole, as illustrated in Figure 5.18(f).

The results of this section show how a judicious introduction of concavity can

cause inversion of the director orientation on certain edges of polygonal stars, leading to

the modification, reversal or cancellation of fundamental multipole terms in the induced

nematic distortion. In line with the discussion of Section 5.3 there is an orientation-

dependence to these effects.

5.5 Cog Polygons

From concavity, we now turn our attention to the effect of colloidal chirality. In particular

we seek to understand how active ratchet behaviour such as observed in bacterial baths

[22; 23] might be generated in nematically ordered systems. In doing so we consider a

‘weak activity’ limit, in which the timescale for actively driven changes in the orientation

of the cog is slower than that for director relaxation. This means we can always take the

director to be in its equilibrium state and distinguishes the following results from those

relating to sustained rotation in systems of mesoscale active turbulence [318]. Our work

in Chapter 3 identified the chiral quadrupole as being responsible for the generation of a

net active torque and so persistent actively-driven rotation will require a consistent sign

of this multipole as the orientation of the colloid is varied.

We construct our cogs from regular n-gons by adding a right-angled triangle

with base angle γπ to each edge, as shown in Figure 5.5. As with regular polygons

we begin with numerical simulations, shown in Figure 5.19 for square-based cogs with

γ = 1/8. We find that the distortions follow from the principles we laid out in Section

5.3; rigid rotation along with a reversal of the director orientation along an edge as it

rotates through the vertical. The orientation-dependent effect of concavity observed in
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Figure 5.19: Numerical simulations of square-based cogs in a two-dimensional nematic.
The integral curves of the director are shown in white, superposed on a colour plot
of the Frank free energy density. The base angle for each cog tooth is π/8. As the
orientation of the cog is varied the director winding remains pinned at the vertices, with
the orientation of the director being reversed along an edge when it passes through the
vertical, illustrated for a pair of long edges in (b). This leads to a changing in the sign
of the chiral quadrupole between (a) and (d).

the previous section is also evident, with the concave vertices of the cog only inducing

positive winding in Figure 5.19(b).

As always the first step in providing an analytical description of this behaviour

is construction of the appropriate boundary condition on the circle. The boundary

condition for cogs is more intricate than for the prior families of polygons and not

particularly illuminating. Rather than presenting it for each cog that we consider we

give the algorithmic process for its construction. Taking the boundary condition for the

base regular polygon as a starting point, the addition of the cog teeth is captured by a

square wave alternating between the values γπ and −π/2. Unlike for previous polygons

where the locations of all prevertices were constrained by symmetry, the preimage of

the apex of each cog tooth must be determined numerically and will be dependent both

on γ and n. We denote the first such prevertex anticlockwise from 1 by eiχ. This

will typically result in a boundary condition where the director angle ϕ lies outside

[−π/2, π/2] in places and so the director orientation will need to be reversed along these

segments to bring ϕ back within this range. Using the case n ≡ 0 mod 4 as a partial

example, the first step gives

ϕ(θ) =
∞∑

m=1

(−1)m

m
sin(2mθ) +

∞∑
m=1

2

mn
sin(nmθ) + γπ − (1 + 2γ)nχ

4

+
∞∑

m=1

(
1
2 + γ

)
(1 + (−1)m)

m

[
sin
[nm

2

(
θ − nχ

2

)]
− sin

(nm
2

θ
)]

.

(5.68)
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Figure 5.20: Analytical solutions for cog polygons in a two-dimensional nematic. The
integral curves of the director are shown superposed on the phase field of its angle and
the base regular polygon is shown inside the cog in grey. Four equally spaced orientations
are shown. In the top row the square-based cog displays orientation-dependent chirality;
the sign of the chiral quadrupole changes as the cog is rotated. In the bottom row a
cog with 14 teeth produces a consistently signed chiral quadrupole, corresponding to a
consistent direction of active torque in an active system. The angle of the cog teeth is
π/8 in both cases, only the number of teeth is changed.

Any requisite reversal of director orientation may be achieved by using that

θ2 − θ1
2

+
∞∑

m=1

sin(m(θ − θ1))− sin(m(θ − θ2))

m
(5.69)

increases ϕ by π between θ1 and θ2.

A striking feature of both the numerical simulations of square-based cogs shown

in Figure 5.19 and their analytical companions in Figure 5.20 is the reversal in sign of the

chiral quadrupole, cos 2θ. This is the multipole associated with net active torques and so

this change in its sign hinders the ability to use cogs to generate persistent rotations in

active nematics. It does, however, provide an instance of orientation-dependent chirality

[319; 320]. As defined by Lord Kelvin an object is chiral if it lacks mirror symmetry

[321; 322] and we may associate with it a handedness to distinguish it from its mirror
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image. This definition is intuitive and useful in, for example, labelling the different

enantiomers of molecules, but the situation here is more subtle. The induced distortion

is a function of the orientation of the colloid in the nematic environment and by simply

rotating the cog the surrounding director field can be transformed into its mirror image.

There are two factors behind the variation of the chiral mode: the rigid rotation

of the distortion as the cog is rotated and inversions of the director orientation along

certain edges. Both of these can be reduced by increasing the number of teeth. With n

teeth the cog returns to its original state after a rotation of 2π/n, so the smooth variation

of the chiral mode can be made arbitrarily small. Sticking with the case n ≡ 0 mod 4

for concreteness there will generically be two inversion events, each affecting a pair of

antipodal edges. The exact length of the arc of the circle corresponding to each edge

depends on χ but is at most 2π/n and so from (5.68) we can see that the modification

to the boundary conditions necessitated by such an inversion is bounded by

2π

n
+

∞∑
m=1

1 + (−1)m

m

[(
1− cos

(
2mπ

n

))
sin(m(θ − θ1)) + sin

(
2mπ

n

)
cos(m(θ − θ1))

]
, (5.70)

with θ1 varying according to the location of the edges on which the inversion is occurring.

The discontinuous change brought about by these inversions can therefore also be made

arbitrarily small. In short, as for regular polygons, the distortions induced by a cog

converge onto the rotationally invariant disc distortion, this time with anchoring angle

γπ. The orientational dependence of the chiral quadrupole is much like the dipole

induced by odd-sided polygons, they are signatures of discretisation which grow ever

fainter with increasing side number.

This smoothing out of distortion variations means that the persistent rotation of

cogs observed in bacterial ratchets [22; 23] is achievable in orientationally-ordered active

matter. An explicit demonstration of the consistent chirality of the induced distortion

is given in Figure 5.20 for a cog with 14 teeth. The correspondence with the disc limit

is confirmed by noting that the negative winding is situated on the first teeth to be

tilted through the vertical, that is at 2πk/n where k is the smallest integer such that

π/n + γπ + 2πk/n > π/2. In the large n limit we may take equality and find that

the displacement of the negative winding from the equatorial points tends to γπ, in

accordance with the quadrupole distortion for anchoring angle of γπ on the disc.

Having identified these two distinct modes of behaviour, let us investigate more

closely the relationship between the chiral response of the nematic and the parameters

of the cog. Figure 5.21 shows the phase space for the coefficient of the chiral quadrupole
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Figure 5.21: The phase space of the chirality of distortions induced by cogs in two-
dimensional nematics. The temperature map represents the strength of the chiral
quadrupole when averaged over all orientations of the cog as a function of the num-
ber of cog teeth n and the tooth angle γ. The two black lines form the boundaries of the
region for which the chiral quadrupole has a consistent sign under rotation, correspond-
ing to a consistent active torque in active nematics. The polygonal icons correspond to
the locations in phase space of the cogs shown in Figure 5.22.
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as a function of both the number of teeth n and the tooth angle γπ. It was generated by

constructing the boundary condition for a cog and then averaging the chiral quadrupole

coefficient over a full rotation. For each n from 3 to 16 100 evenly-spaced values of

γ were used. The distortions produced by the cogs which sit at the locations of the

polygonal icons are shown in Figure 5.22. Between the two black lines is the region

for which the chiral quadrupole has a consistent sign under rotation, allowing for active

nematic ratchets. There are several regions we can identify. When n is small (3 or 4)

there is no value of γ which will produce a consistent chiral response. The square icon

denotes a typical example, shown in the second row of Figure 5.22; there is a modest

net chiral quadrupole but its sign changes from the first two panels to the last two. The

region in the bottom-left of Figure 5.21 is even more extreme, as despite the angle of the

cog teeth being such as to ostensibly induce a positive chiral quadrupole, the averaged

coefficient is actually negative. This counter-intuitive state of affairs is illustrated by the

triangle-based cog in the first row of Figure 5.22. The cog shown there is also convex,

something that is possible only for triangle-based cogs with γ < 1/6, but this is not

necessary for the net chiral quadrupole to be negative. For n ≥ 5 a band of γ values

develops for which the chiral response is of a consistent sign, with this band opening up

with increasing n. The heptagon-based cog in the third row of Figure 5.22 provides an

example of the behaviour typical for intermediate values of n; the chiral quadrupole is

of a consistent sign but there is still significant variation in the nematic distortion as

the orientation of the cog is changed. Lastly, in the high n limit we can understand the

chiral response of the nematic to the cog by modelling it as a disc with anchoring angle

γπ. Our discussion in Section 5.1.2 predicts the dependence of the chiral quadrupole

Figure 5.22 (preceding page): Further analytical solutions for cog polygons in a two-
dimensional nematic. The integral curves of the director are shown superposed on the
phase field of its angle and the base regular polygon is shown inside in grey. Four equally-
spaced orientations are shown for each cog, which sit at the locations of the polygonal
icons in the phase space in Figure 5.21. 1st row (n = 3, γ = 0.1): the chiral quadrupole
changes sign with rotation but is net negative, despite the teeth angle γ being positive.
2nd row (n = 4, γ = 0.35): the chiral quadrupole is positive on average but is not
consistent in its sign. 3rd row (n = 7, γ = 0.28): the chiral quadrupole is consistently
positive. This value of γ gives the greatest average chirality for a cog with seven teeth,
but there is still considerable variation as the cog rotates. 4th row (n = 16, γ = 0.25):
as the number of teeth increases the variation of the distortion due to rotation becomes
smaller and smoother, the average chirality is maximised for γ = 0.25 and this maximum
value tends to 1/2.
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coefficient, sCQ, on γ to be

sCQ =
1

2
sin(2πγ) (5.71)

and this is an increasingly good approximation for the behaviour in the high-n region

of parameter space. As demonstrated by the hexadecagon-based cog in the fourth row

of Figure 5.22, the variation of the distortion with cog orientation grows smaller and

smoother with increasing n, the maximum value of the average chiral quadrupole tends

to 1/2 and the value of γ for which this is achieved tends to 1/4. As far as using cogs to

generate active nematic ratchets the optimal design is therefore to have as many teeth

as feasible, in order to maximise the smoothness of the net active torque and the range

of γ which can be utilised. The strength of the active torque can then be tuned using

(5.71).

It should come as no surprise that the cogs which are ‘most chiral’, at least in the

sense of our definition, are those with intermediate values of γ. Both γ = 0 and the limit

γ → 1/2 correspond to achiral shapes, the former regular polygons the latter tending

to star-shaped polygons (although the γ = 1/2 limit itself does not yield a bounded

polygon, as the two edges of the cog teeth become parallel). The black lines in Figure

5.21 are intriguingly non-monotonic and display sizeable jumps. The upper boundary

exhibits an odd-even effect and is given by the largest fraction with denominator n

that is less than 1/2. The lower boundary is less regular and seems to display a mod

4 effect. Neither of these is particularly surprising, given the dependence on n mod 4

that we have encountered throughout this chapter due to the compatibility of discrete

boundaries with the symmetry of a quadrupole. We do not discuss the specifics of these

threshold values any further since they are tied to the precise cog construction that

we have employed in this chapter and are thus of secondary interest compared to the

qualitative phenomenology we have described, which applies to the chiral response of a

nematic regardless of the exact geometry of the colloid.

We have shown that the same active ratchet behaviour achieved in bacterial sus-

pensions lacking orientational ordering [22; 23] can be achieved in an active nematic. It

is worth emphasising however that although the rotational effects seem similar, and even

share the property of becoming smoother with increasing teeth number [23], their origin

is not the same. The previously observed bacterial ratchets resulted from rectification

of the swimming direction of the bacteria to produce coherent motion from an incoher-

ent, isotropic environment and the mechanism for generating rotation is unchanged by

rotation of the cog. The orientational order of a nematic gives meaning to the orien-

tation of the cog relative to a far-field alignment and it was by no means guaranteed
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that the ratchet behaviour would be replicable in this context, particularly given the

orientation-dependence of the chiral distortions that drive the rotation of the cog. It is

gratifying then that these effects melt away with increasing tooth number, allowing the

active ratchet effect to be recovered.

5.6 High-order multipoles

We conclude this chapter with the most striking illustration of the diversity of distortions

that can result from a genus 0 colloid; tailoring the colloidal geometry so as to produce a

prescribed multipole as the dominant term in the distortion. As laid out in the introduc-

tion, this has been a major aim in the study of nematic colloids [187; 186; 188; 90], mo-

tivated both by the intricate collective structures that result from the highly anisotropic

interactions and, inspired by the colloidal atom paradigm, a general desire to investigate

the physics that results from high-order multipole structures. In this section we shall

demonstrate that the techniques we have developed can be used to design a colloid whose

far-field distortion is dominated by a multipole of arbitrarily high order.

To illustrate how the shape of a polygonal colloid relates to the multipoles that

it induces we return to the example of the {6
2} hexagonal star identified in Section 5.4.

That the dominant multipole is fourth-order rests on two facts. Firstly, the twelve edges

of the polygon exist in only three orientations which are cycled through in the same

order four times. Secondly, by symmetry the prevertices are equally distributed on the

circle. Together these constrain the boundary condition on the circle to have four-fold

periodicity and preclude any harmonic below fourth order. In this light we can see that

the dipoles and quadrupoles that dominate the distortions of regular polygons result

from every odd-sided one consisting of a 1-cycle of n orientations while the even-sided

ones provide a 2-cycle of n/2 orientations, the same director orientation arising on pairs

of opposite sides.

The path ahead is clear. To have a colloidal distortion be dominated by an

order l multipole that colloid should comprise an l-cycle of some set of orientations and

have equidistributed prevertices. The first of these tasks is straightforwardly achieved,

but the second is more subtle, for while we can input evenly-spaced prevertices to the

Schwarz-Christoffel integral (5.24) and specify the exterior angle at each we are not

free to separately choose the edge lengths. In our pursuit of high-order multipoles we

must accept whatever side lengths stem from equally-spaced prevertices and there is no

guarantee a priori that the resulting polygon is simple, that is free from self-intersections.

As noted in [289], there is no elementary expression in terms of the polygon parameters
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corresponding to the condition of being simple. Our best strategy is to maintain as much

symmetry in the polygonal colloid as possible.

Inspired by the form of the hexagonal star, let us consider colloids formed of a

triangle with k additional triangles attached to each edge. This gives us the family of

polygons shown in Figure 5.23 in which the kth member induces a dominant (1+3k)-pole.

We start with a 1-cycle and increase the order of the cycle by one with each adjoined

triangle. In full the director angle follows directly from (5.54), with α = 0, by modifying

the exponents of z and z̄ according to the order of the cycle and is given by

ϕ(z, z̄) =
∞∑

m=1

i
(
z−(1+3k)m − z̄−(1+3k)m

)
2m

−
∞∑

m=1

i
(
z−3(1+3k)m − z̄−3(1+3k)m

)
6m

. (5.72)

The form of the Schwarz-Christoffel map follows directly from our construction, but to

provide an explicit example, when k = 2 we take the mapping to have the form

ζ(z) = 1− C

∫ 1/z

1

[(
1− z′3

) (
1− e

4iπ
7 z′3

)(
1− e−

4iπ
7 z′3

)]2/3
z′2
[(

1− e
2iπ
7 z′3

)(
1− e−

2iπ
7 z′3

)(
1− e

6iπ
7 z′3

)(
1− e−

6iπ
7 z′3

)] 1
3

dz′, (5.73)

with the complex constant C determined numerically by requiring the vertices of the

base triangle to be fixed points of the map. We might hope that we could extend this

method of attaching copies of a shape onto each of its sides to arbitrary regular polygons,

but as the number of sides is increased the exterior angle at the fusion points becomes

increasingly negative and self-intersections arise.

k = 0 k = 1 k = 2 k = 3

l = 1 l = 4 l = 7 l = 10

Figure 5.23: A one parameter family of polygonal colloids based on a triangular motif.
The integral curves of the director are shown superposed on the phase field of its angle.
Starting with a base triangle the kth member of the family has k triangles on each edge
of the base triangle and induces a (1 + 3k)-pole as the dominant far-field distortion.
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However, as even-sided polygons already represent a 2-cycle of orientations they

allow us to modify this construction by not attaching copies of the full polygon but

instead (approximately) half of it. To be exact, from a regular polygon with 2q sides

we construct a ‘petal’ motif from q + 1 edges, giving us a series of edges with a pair

of parallel sides at its ends. Replacing each edge of the 2q-gon with this motif forms

a ‘flower’ polygon whose edges provide a (2 + 2q)-cycle of q orientations. We may also

choose to place more than one copy of this motif on each side and so have a two-parameter

family of polygons constructed by placing k petals on each edge of a 2q-gon. The director

angle that results is again, by construction, an iterated version of that for the regular

polygons (5.47) giving

ϕ(z, z̄) =
∞∑

m=1

i(−1)m+1
(
z−m(2+2qk) − z̄−m(2+2qk)

)
2m

+

∞∑
m=1

i
(
z−mq(2+2qk) − z̄−mq(2+2qk)

)
2mq

, (5.74)

with the parameters of the Schwarz-Christoffel map determined as described previously.

The nematic distortions are shown in Figure 5.24 for squares, hexagons, octagons and

decagons with up to three petals replacing each edge. We only show the case where

the base polygon is in its equilibrium alignment as this is sufficient to demonstrate the

idea, as for regular polygons, for odd q the fact that the equilibrium orientation does

not correspond to the roots of unity requires a rotation to be incorporated into the

Schwarz-Christoffel map and the boundary condition. The rapid decay of the nematic

distortion means that the bulk is screened from the presence of the colloid, creating a

form of ‘elastic invisibility’, analogous to optical cloaking [323].

The proliferation of topological defects that arises due to the colloids in Figure

5.24 is similar to that observed for colloids taking the form of iterations of the Koch

snowflake [266]. The difference is that while the Koch colloids are equilateral in real

space, the flower colloids we present here are equilateral (or should that be equiarcal)

in the preimage space. Both families of colloids have intricate structure which requires

high-order multipoles to be induced in the nematic and hence many places of director

winding on the boundaries, but in the flower colloids the locations of these defects are

tuned so as to perfectly cancel all but the highest harmonics, whereas in the Koch colloids

there is no such destructive interference and more fundamental modes still dominate.

The intricacy of the Koch colloids suggests that the same direct laser writing methods

should be able to manufacture at least the simpler of the colloids in Figures 5.23 and

5.24 and their multipole character may be probed through the same video microscopy

techniques used to study regular polygonal colloids [279].
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k = 0 k = 1 k = 2 k = 3

n = 4

n = 6

n = 8

n = 10

2 6 10 14

2 8 14 20

2 10 18 26

2 12 22 32

Figure 5.24: A two parameter family of polygonal ‘flower’ colloids based on a ‘petal’
motif from even-sided regular polygons. The integral curves of the director are shown
superposed on the phase field of its angle. For each base even-sided n-gon a family is
formed by adding to each side k ‘petals’ formed from n/2+1 sides of the base n-gon. The
(n, k) polygon induces a (2 + nk)-pole as the dominant far-field distortion, as indicated
by the numbers in the upper-right corner of each panel.
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The construction we have presented allows for arbitrarily high multipoles to be

induced in nematics. We must remember though that while our continuum description

is able to respond perfectly to satisfy the boundary anchoring no matter how intricately

we crenelate the colloid, the responsiveness of a nematic is governed by the correla-

tion length, which is ∼ 10nm. Features smaller than this scale will result in regions

where the nematic preferentially melts into the isotropic phase [266] and this is what

ultimately limits the order of multipole that we can induce. What we have presented

here merely serves as a demonstration of the method and is by no means an exhaustive

set of all the colloids that might be designed to produce high-order distortions. There

are many different colloidal geometries that produce the same multipole as the leading

contribution to the nematic distortion, raising the question of which design is optimal.

Such optimisation may be based on the ‘purity’ of the dominant multipole, that is its

separation from the next-leading term, the practicality of construction, which is likely

to be determined by the ratio of the smallest to largest edge lengths of the colloid and

the sensitivity of the distortion to imperfections in manufacturing, such as incorrect side

lengths. The balance of factors will probably be context-dependent and so we do not

delve into this matter further, save to say that our construction provides us the tools for

such differentiation of colloidal designs.

5.7 Discussion

We have provided a method for constructing harmonic nematic textures which minimise

the one-elastic-constant free energy subject to normal anchoring on the boundary of a

polygonal colloid. This has allowed us to quantify previous experimental observations

[279; 283] and also make experimentally testable predictions for the behaviour of certain

polygonal colloids in both active and passive nematics. There are various directions for

further development of this work, centred on either widening the class of colloidal shape

we consider or extracting additional results from the constructed director fields.

Taking the first of these, we have focused our attention here on relatively sym-

metric polygons for which the parameters of the Schwarz-Christoffel transformation were

(largely) constrained, allowing the maps to be expressed analytically in closed form, but

there is no need for this restriction. To the extent that any domain may be approxi-

mated by a polygon, the Schwarz-Christoffel mapping provides a constructive proof of

Riemann’s mapping theorem and the methods of this chapter may be extended to any

colloid. In a more general approach one might determine the locations of the prever-

tices numerically, for example using [324], greatly expanding the scope of this chapter’s
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methods. As an illustration of this we offer the second iteration of the Koch snowflake,

shown in Figure 5.25. The nematic distortion reproduces that found experimentally and

numerically, see Figure 5.1(l) and (m), but is arrived at via the approach of this chapter:

determination of the appropriate boundary condition on the disc along with the requisite

conformal map. Furthering the investigation of the relationship between nematic order-

ing and fractal geometry initiated in [266] is just one avenue that this broader approach

opens up. Various adaptations of the Schwarz-Christoffel transformation exist [289] and

could be utilised to further extend the applicability of our methods, such as to include

curvilinear polygons [289; 313] or multiply connected domains [289; 313; 325], based on

the Schwarzian derivative and the Schottky-Klein prime function respectively.

Figure 5.25: The second iteration of the Koch snowflake in a two-dimensional nematic.
The nematic texture is calculated by determining the appropriate boundary condition
on a disc, along with the conformal map from the disc to the Koch colloid and agrees
with those found experimentally and numerically, shown in Figure 5.1(l) and (m).

As to the second point, it should be possible to calculate both the elastic defor-

mation energy and the net active force and torque for a colloid through an appropriate

contour integral. The asymptotic form of the Schwarz-Christoffel mapping, as illustrated

in (5.50), allows them to serve as a reasonable proxy for conformal maps for a polygon

in a finite, circular domain and the explicit solutions for the director field we have pro-

vided then allow the elastic energy to be calculated directly. Using Green’s first identity

the bulk integral may be transformed into one over the boundary of the polygon, with

the integration contour being deformed to avoid the vertices. Such calculations have
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been employed to find the total elastic deformation energy of a nematic confined to a

polygonal domain [326]. As the net active force and torque are given by integrals of

the stress tensor they should also be expressible as integrals over a similarly deformed

contour, providing a second canonical expression for these properties, complementing

the asymptotic integration approach utilised in this thesis.



Art is limitation;

the essence of every picture is the frame.

G.K. Chesterton, Orthodoxy

6
Envoi

O
ur threefold exploration of nematic harmonics now concluded, we have seen

the power they have to illuminate the non-equilibrium behaviour of active

nematics, as well as how they may be controllably induced in all their diversity

through colloidal geometry.

Whether it be capturing the flow response to generic distortions and yielding

predictions for activity-driven self-propulsive and ratchet behaviour of colloids (Chapter

3) or providing a description of the dynamics of fundamental topological excitations

(Chapter 4), our linear, far-field approach has been successful both in matching existing

results on active nematics and providing new predictions.

This asymptotic perspective is balanced by our work in Chapter 5, where in the

name of understanding the connection between the shape of a colloid and the induced

nematic distortion our attention was focused on the near field, in fact the boundary

of the colloid itself. As always with conformal maps, where the boundary leads the

bulk follows. Our results revealed not just how to induce those multipoles that we had

previously identified as being relevant to active phenomenology, but also a geometric

route to near-arbitrary control of the multipole structure of a nematic.

In addition to the specific avenues for continuation laid out at the end of each

chapter there are two broad areas for extension of the multipole approach of this thesis:
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chirality and boundaries. The pairing of parity and time-reversal symmetry breaking

has dramatic consequences for the behaviour of chiral active matter [113] and active

cholesterics provide a natural setting in which to study this [327; 265]. Distortions of

the phase field that captures the cholesteric twist can be described in the same manner

as those of the layer structure of a smectic. Using existing results in the latter con-

text [328; 329] to provide a far-field picture of such cholesteric distortions could both

have application to the response of passive cholesterics to colloidal inclusions [330] and

provide the same insight into the active response as has been achieved for nematics.

Boundaries have a similarly striking effect on the behaviour of microswimmers [331], in-

cluding attraction to the boundary [332] and circular swimming [333], and their effect in

rectifying the turbulent dynamics of active nematics is a rich and ongoing area of study,

as described in Section 2.4.1. Just as a boundary-adapted Stokeslet allows a description

of the behaviour of microswimmers near boundaries, an adaptation of the calculations

in Chapter 3 to provide the fundamental active response to nematic distortions in the

presence of a boundary, will potentially allow greater understanding of the effect of the

role of confinement in the behaviour of active nematics.

The intent of this work was not to study active nematics in a specific realisa-

tion, but to provide a general framework for understanding the dynamics of the class of

such systems. The results contained herein provide experimentally testable predictions

applicable to a broad range of active and passive nematics. It is hoped that they consti-

tute a useful contribution, however modest, to the attempt to understand and control

nematically-ordered matter in all its forms.
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[9] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet. Novel type of phase

transition in a system of self-driven particles. Physical review letters, 75(6):1226,

1995.

[10] J. Toner and Y. Tu. Long-range order in a two-dimensional dynamical xy model:

how birds fly together. Physical review letters, 75(23):4326, 1995.

[11] M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina,

A. Orlandi, G. Parisi, A. Procaccini, M. Viale, et al. Empirical investigation

of starling flocks: a benchmark study in collective animal behaviour. Animal

behaviour, 76(1):201–215, 2008.

145



BIBLIOGRAPHY 146

[12] D.J.G. Pearce, A.M. Miller, G. Rowlands, and M.S. Turner. Role of projection

in the control of bird flocks. Proceedings of the National Academy of Sciences,

111(29):10422–10426, 2014.

[13] D. Dell’Arciprete, M.L. Blow, A.T. Brown, F.D.C. Farrell, J.S. Lintuvuori, A.F.

McVey, D. Marenduzzo, and W.C.K. Poon. A growing bacterial colony in two

dimensions as an active nematic. Nature communications, 9(1):1–9, 2018.

[14] H. Li, X. Shi, M. Huang, X. Chen, M. Xiao, C. Liu, H. Chaté, and H.P. Zhang.
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[15] M. Başaran, Y.I. Yaman, T.C. Yuce, R. Vetter, and A. Kocabas. Large-scale

orientational order in bacterial colonies during inward growth. arXiv preprint

arXiv:2008.05545, 2020.

[16] V. Narayan, S. Ramaswamy, and N. Menon. Long-lived giant number fluctuations

in a swarming granular nematic. Science, 317(5834):105–108, 2007.

[17] A. Kudrolli, G. Lumay, D. Volfson, and L.S. Tsimring. Swarming and swirling in

self-propelled polar granular rods. Physical review letters, 100(5):058001, 2008.

[18] W.F. Paxton, K.C. Kistler, C.C. Olmeda, A. Sen, S.K. St. Angelo, Y. Cao,

T.E. Mallouk, P.E. Lammert, and V.H. Crespi. Catalytic nanomotors: au-

tonomous movement of striped nanorods. Journal of the American Chemical So-

ciety, 126(41):13424–13431, 2004.

[19] J. Palacci, B. Abécassis, C. Cottin-Bizonne, C. Ybert, and L. Bocquet. Colloidal

motility and pattern formation under rectified diffusiophoresis. Physical review

letters, 104(13):138302, 2010.

[20] A. Doostmohammadi, J. Ignés-Mullol, J.M. Yeomans, and F. Sagués. Active ne-

matics. Nature communications, 9(1):1–13, 2018.

[21] P.-G. De Gennes and J. Prost. The physics of liquid crystals. Number 83. Oxford

University Press, 1993.

[22] R. Di Leonardo, L. Angelani, D. Dell’Arciprete, G. Ruocco, V. Iebba, S. Schippa,

M.P. Conte, F. Mecarini, F. De Angelis, and E. Di Fabrizio. Bacterial ratchet

motors. Proceedings of the National Academy of Sciences, 107(21):9541–9545, 2010.



BIBLIOGRAPHY 147

[23] A. Sokolov, M.M. Apodaca, B.A. Grzybowski, and I.S. Aranson. Swimming bac-

teria power microscopic gears. Proceedings of the National Academy of Sciences,

107(3):969–974, 2010.

[24] R.P. Feynman, R.B. Leighton, and M. Sands. The Feynman lectures on physics,

Vol. I: The new millennium edition: mainly mechanics, radiation, and heat, vol-

ume 1. Basic books, 2011.

[25] R.A. Simha and S. Ramaswamy. Hydrodynamic fluctuations and instabilities in or-

dered suspensions of self-propelled particles. Physical review letters, 89(5):058101,

2002.

[26] A. Ahmadi, T.B. Liverpool, and M.C. Marchetti. Nematic and polar order in

active filament solutions. Physical Review E, 72(6):060901, 2005.

[27] A. Ahmadi, M.C. Marchetti, and T.B. Liverpool. Hydrodynamics of isotropic and

liquid crystalline active polymer solutions. Physical Review E, 74(6):061913, 2006.

[28] H. Gruler, U. Dewald, and M. Eberhardt. Nematic liquid crystals formed by living

amoeboid cells. The European Physical Journal B-Condensed Matter and Complex

Systems, 11(1):187–192, 1999.

[29] G. Duclos, S. Garcia, H.G. Yevick, and P. Silberzan. Perfect nematic order in

confined monolayers of spindle-shaped cells. Soft matter, 10(14):2346–2353, 2014.

[30] T.B. Saw, A. Doostmohammadi, V. Nier, L. Kocgozlu, S.P. Thampi, Y. Toyama,

P. Marcq, C.T. Lim, J.M. Yeomans, and B. Ladoux. Topological defects in epithelia

govern cell death and extrusion. Nature, 544(7649):212–216, 2017.

[31] W. Whewell. Xi. Essay towards a first approximation to a map of cotidal lines.

Philosophical Transactions of the Royal Society of London, (123):147–236, 1833.

[32] W. Whewell. Researches on the tides; Sixth series. On the results of an extensive

system of tide observations, made on the coasts of Europe and America, in June

1835. Philosophical Transactions of the Royal Society of London, (126):289–341,

1836.

[33] M.B. Hindmarsh and T.W.B. Kibble. Cosmic strings. Reports on Progress in

Physics, 58(5):477, 1995.

[34] D.R. Tilley and J. Tilley. Superfluidity and superconductivity. Routledge, 2019.



BIBLIOGRAPHY 148

[35] M.V. Berry and M.R. Dennis. Phase singularities in isotropic random waves.

Proceedings of the Royal Society of London. Series A: Mathematical, Physical and

Engineering Sciences, 456(2001):2059–2079, 2000.

[36] M.V. Berry and M.R. Dennis. Knotted and linked phase singularities in monochro-

matic waves. Proceedings of the Royal Society of London. Series A: Mathematical,

Physical and Engineering Sciences, 457(2013):2251–2263, 2001.

[37] J. Leach, M.R. Dennis, J. Courtial, and M.J. Padgett. Knotted threads of darkness.

Nature, 432(7014):165–165, 2004.

[38] S. Shankar, A. Souslov, M.J. Bowick, M.C. Marchetti, and V. Vitelli. Topological

active matter. arXiv preprint arXiv:2010.00364, 2020.

[39] L. Giomi, M.J. Bowick, X. Ma, and M.C. Marchetti. Defect annihilation and

proliferation in active nematics. Physical review letters, 110(22):228101, 2013.

[40] L. Giomi, M.J. Bowick, P. Mishra, R. Sknepnek, and M.C. Marchetti. Defect

dynamics in active nematics. Philosophical Transactions of the Royal Society A:

Mathematical, Physical and Engineering Sciences, 372(2029):20130365, 2014.

[41] S. Shankar, S. Ramaswamy, M.C. Marchetti, and M.J. Bowick. Defect unbinding

in active nematics. Physical review letters, 121(10):108002, 2018.

[42] S. Shankar and M.C. Marchetti. Hydrodynamics of active defects: From order to

chaos to defect ordering. Physical Review X, 9(4):041047, 2019.

[43] G. Duclos, R. Adkins, D. Banerjee, M.S.E. Peterson, M. Varghese, I. Kolvin,

A. Baskaran, R.A. Pelcovits, T.R. Powers, A. Baskaran, et al. Topological structure

and dynamics of three-dimensional active nematics. Science, 367(6482):1120–1124,

2020.
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