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a b s t r a c t

The use of an electrical energy storage system (EESS) in a microgrid (MG) is widely recognized as a
feasible method for mitigating the unpredictability and stochastic nature of sustainable distributed
generators and other intermittent energy sources. The battery energy storage (BES) system is the
most effective of the several power storage methods available today. The unit commitment (UC)
determines the number of dedicated dispatchable distributed generators, respective power, the amount
of energy transferred to and absorbed from the microgrid, as well as the power and influence of EESSs,
among other factors. The BES deterioration is considered in the UC conceptualization, and an enhanced
mixed particle swarm optimizer (EMPSO) is suggested to solve UC in MGs with EESS. Compared to
the traditional PSO, the acceleration constants in EMPSO are exponentially adapted, and the inertial
weight in EMPSO decreases linearly during each iteration. The proposed EMPSO is a mixed integer
optimization algorithm that can handle continuous, binary, and integer variables. A part of the decision
variables in EMPSO is transformed into a binary variable by introducing the quadratic transfer function
(TF). This paper also considers the uncertainties in renewable power generation, load demand, and
electricity market prices. In addition, a case study with a multiobjective optimization function with
MG operating cost and BES deterioration defines the additional UC problem discussed in this paper.
The transformation of a single-objective model into a multiobjective optimization model is carried out
using the weighted sum approach, and the impacts of different weights on the operating cost and
lifespan of the BES are also analyzed. The performance of the EMPSO with quadratic TF (EMPSO-Q) is
compared with EMPSO with V-shaped TF (EMPSO-V), EMPSO with S-shaped TF (EMPSO-S), and PSO
with S-shaped TF (PSO-S). The performance of EMPSO-Q is 15%, 35%, and 45% better than EMPSO-V,
EMPSO-S, and PSO-S, respectively. In addition, when uncertainties are considered, the operating cost
falls from $8729.87 to $8986.98. Considering BES deterioration, the BES lifespan improves from 350 to
590, and the operating cost increases from $8729.87 to $8917.7. Therefore, the obtained results prove
that the EMPSO-Q algorithm could effectively and efficiently handle the UC problem.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
∗ Corresponding authors.
∗∗ Corresponding author at: School of Energy and Environment, City
University of Hong Kong, Kowloon, Hong Kong.

E-mail addresses: mprem.me@gmail.com (M. Premkumar),
owmyanitt@gmail.com (R. Sowmya), ramramki.krishnan@gmail.com
ttps://doi.org/10.1016/j.egyr.2022.12.024
352-4847/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a

nc-nd/4.0/).
(C. Ramakrishnan), pkjmtech@gmail.com (P. Jangir), esam.halim@fci.bu.edu.eg
(E.H. Houssein), sanchari.deb@warwick.ac.uk (S. Deb),
mnallapan2-c@my.cityu.edu.hk (N.M. Kumar).
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://doi.org/10.1016/j.egyr.2022.12.024
https://www.elsevier.com/locate/egyr
http://www.elsevier.com/locate/egyr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.egyr.2022.12.024&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mprem.me@gmail.com
mailto:sowmyanitt@gmail.com
mailto:ramramki.krishnan@gmail.com
mailto:pkjmtech@gmail.com
mailto:esam.halim@fci.bu.edu.eg
mailto:sanchari.deb@warwick.ac.uk
mailto:mnallapan2-c@my.cityu.edu.hk
https://doi.org/10.1016/j.egyr.2022.12.024
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


M. Premkumar, R. Sowmya, C. Ramakrishnan et al. Energy Reports 9 (2023) 1029–1053

1

t
M
M
e
t
i
i
e
r
t
l
t
d
t
i
u
R
c
m
V

i
(
s
n
g
2
f
a
t
u
r
p
p
o
E
t
s
n
c
p
c
r
a
a

h
u
t
a
c
a
(
t
i
p
a
t
w
t
2

(

. Introduction

Power system operational planning models integrate new dis-
ributed energy resources (DERs), with most such systems being
icrogrids (MGs) (Alsaidan et al., 2018; Gilani et al., 2020). An
G can be defined as a system that incorporates DERs such as
lectrical energy storage systems (EESS), tiny wind turbine sys-
ems, combined heat and power units, photovoltaic systems, and
nterruptible loads and is configured in such a direction where
t has at least one configurable source of energy (Moncecchi
t al., 2020; Ahmadi et al., 2015; Khorramdel et al., 2016). The
ising integration of such DERs has led to more difficult activi-
ies such as demand-side management, peak shaving, price and
oss reduction, and operational planning becoming more difficult
o do (Deckmyn et al., 2017). The MG operator schedules its
ispatchable resources most effectively, considering the uncer-
ainties in unreliable energy production, power market rate, and
nterruptible loads. Integrating renewable distributed generating
nits into the grid using MGs to do it effectively is possible.
enewable distributed generation provides unpredictable and in-
onsistent energy, and it creates new challenges for MGs (Mah-
oud, 2017; Jadhav et al., 2019; Choudhury, 2020; Invernizzi and
ielmini, 2018).
Diverse solutions are employed to reduce the unpredictabil-

ty and intermittent nature of sustainable distributed generation
DG). To sustain the frequency and voltage of the MG for both
hort- and long-term operations, the EESSs are crucial compo-
ents of the system. The EESS is a critical component in inte-
rating DG into the MG (Khorramdel et al., 2016; Khalid et al.,
021; Rezaee Jordehi, 2021a; Ferinar and Masoud, 2018). Dif-
erent energy storage methods have been used at the turbine
nd farm stages for offshore wind to balance power fluctua-
ion and enable wind energy to be more interoperable with
tilities and MGs (Gao, 2015; Faisal et al., 2018). It is being
ecommended and explored that an alternative configuration for
hotovoltaic converters be developed to integrate batteries into
hotovoltaic to make them able to produce constant power on
vercast days (Premkumar and Sowmya, 2019). The use of an
ESS is often considered to be the most effective method among
hese. EESS can store surplus renewable power for use at a later
tage when it is more beneficial, either from a financial or tech-
ical standpoint. EESS is utilized for various purposes, including
ost reduction, frequency, and voltage stability improvement,
ower quality improvement, energy exchange, and deferment of
apital expenses. In terms of EESS, battery energy storage (BES) is
egarded as the most promising choice due to its sophistication
nd capacity to provide high power density simultaneously (Chen
nd Liu, 2021; Chaudhary et al., 2021).
Lithium-ion technology and numerous other technologies

ave supplanted the lead-acid technology that was previously in
se. There are various types of EESS today, each with its proper-
ies, such as high energy density, effectiveness, price, longevity,
nd fast response (Moncecchi et al., 2018). Flow batteries, fuel
ells, pumped hydro, pressurized air, ultracapacitors, flywheels,
nd superconducting magnetic EESSs are all examples of EESSs
Alvarado-Barrios et al., 2020). Currently, EESSs are installed in
he majority of MGs. Several efforts have been undertaken to
mprove the efficiency of the deployment of EESSs to MGs in MG
lanning. Research is currently being conducted to determine the
ppropriate size and position for energy storage within an MG
o achieve the lowest possible price and network power losses
hile simultaneously increasing the reliability and certainty of
he MG (Lacap et al., 2021; Gaurav et al., 2015; Hittinger et al.,
015; Huang and Yang, 2021).
Microgrids are provided with energy management systems

EMSs) to keep operating costs and carbon emissions minimum.
1030
Economic load dispatch and UC are the two primary elements of
the EMS (Alvarado-Barrios et al., 2019; Rodríguez del Nozal et al.,
2020; Trivedi et al., 2016). When using the demand, UC module
and DER information have been sent to the MG central controller,
and the set of highly dedicated dispatchable distributed gener-
ations with their power, the power imported/exported from/to
the grid, and the position and power of EESS devices are ascer-
tained (Jangir et al., 2017). In contrast, all associated constraints
of the microgrid are comfortable, and the set of dedicated dis-
patchable DGs. Due to the uncertainty in forecasting demand,
renewable energy, and market rate, UC in EESS incorporated MGs
is modeled as a limited, mixed binary continuous problem with
unknown input data. The literature has proposed modeling and
solving UC in EESS-integrated MGs using various optimization
strategies (Alsaidan et al., 2017).

The authors of Murty and Kumar (2020) suggested an opti-
mal energy dispatch approach for standalone and grid-connected
microgrids using DERs, including EESS. Techno-economic implica-
tions of hybrid energy systems. The authors have addressed the
problem thus far to reduce operating costs. For efficient energy
management of MGs, power losses and emission-related objec-
tives are also addressed. A new multiobjective solution for EMS
together with a demand response (DR) program. Its influence on
optimal energy dispatch and techno-commercial benefits are also
included in the optimization problem. A fuzzy interface was also
created for EESS scheduling. The authors of Sufyan et al. (2019)
discover that economical scheduling considers the optimal bat-
tery capacity in isolated microgrids, resulting in lower operational
costs. Extreme discharge, on the other hand, reduces the battery’s
longevity. As a result, the price of real-time battery operation is
calculated by considering the depth of discharge at every iteration
cycle. The firefly method also optimizes the economic schedule
with battery sizing. To enable battery swap station existence as an
acceptable solution for electric vehicle requirement problems, the
authors of Ferinar and Masoud (2018) would go into considerable
detail. Accordingly, the problem has intersected with two tiers of
an operational field in this regard. In addition, issues about the
battery’s longevity would be considered as a major component in
the decision-making process for two different scenario scenarios.
It is an appropriate answer for governments that have been
unsuccessful in implementing electric vehicles in their respective
territories.

According to the researchers of Khorramdel et al. (2016), they
are attempting to examine the UC problem based on a here-and-
now (HN) strategy and cost–benefit analysis for the appropriate
size of battery banks (BBs) and MGs that are powered by wind en-
ergy conversion systems. The particle swarm optimization (PSO)
algorithm addresses this problem to decrease the overall cost
while simultaneously increasing the total benefits. BBs and non-
BBs scenarios have indeed been studied in this article in two
operating configurations: (1) grid-connected and (2) standalone.
Twelve operating situations have been examined in the exis-
tence and absence of BBs. According to the HN strategy, wind
power unpredictability is applied as a limitation in such operating
modes. The authors explain the mathematical equations associ-
ated with the HN technique in MGs and its integration into a
UC problem to determine the optimal size of BBs. The impact
of sustainable power and the availability of electric vehicles on
unit commitment is investigated (Zhu et al., 2022). It has been
decided to use a new parallel social learning PSO algorithm. The
suggested model is tested on various UC problems in several
different circumstances. It has been shown that renewables and
electric vehicles can help to alleviate the stress on the grid.

The authors of Li et al. (2021) discussed the difference be-
tween traditional Seng-Cheol Kang and multi-band uncertainty
robust optimization techniques. A linear UC model that con-
siders wind power unpredictability is developed based on the
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obust optimization model of the multi-band uncertainties. It is
ecommended that a parameter selection technique for a multi-
and uncertainties resilient optimization method be used in con-
unction with empirical datasets of wind power. The authors
lso compare and analyze the resilience and economy of UC
n traditional, Seng-Cheol Kang, and multi-band uncertainty ro-
ust optimization techniques as three different approaches to
roblem-solving under uncertainty. The authors of Wang et al.
2021) study consider the UC scheme and solve multidimensional
nergy trading problems (ETPs). The first step is to develop a
ixed-integer quadratic programming (MIQP) framework that
an be used to define UC for every MG and energy exchange
etween multiple MGs. In the following step, binary parame-
ers from UC problems are eased to persuade the non-convex
odel into an amenable convex model. It is also recommended to
se an alternating optimization technique built on the alternate
irection method of multipliers (ADMM) and the MIQP block
o simultaneously handle continuous and binary variables. An
n-depth rounding-off technique using thresholds is created to
eal with generators that are out of bounds, smooth the vari-
ble transfer between the ADMM and MIQP blocks, and provide
onvergence evidence. The authors of Hong et al. (2022) have
andled the UC problem using chance-constrained goal program-
ing, and the energy storage system is also taken into account

he UC problem.
The authors of Sayed et al. (2021) recommended a hybrid

echnique to solve the UC problem under stochastic and de-
erministic load demand. This technique comprises PSO and an
quilibrium optimizer. However, the authors considered the UC
roblem as a continuous optimization problem. The author of
ezaee Jordehi (2021b, 2020a) suggested a modified PSO by uti-
izing the quadratic transfer function to solve the UC problem
f the microgrid. Various case studies are considered to validate
he suggested strategy; however, the algorithm is not tested with
arious other transfer functions. The authors of Mohammadi and
ohammadi (2014) discussed the difficulty of achieving the best
ossible performance of a microgrid in the presence of uncer-
ainty. It is proposed that an EESS operate at its most efficient,
nd the approach ensures that the operation is feasible in most
ircumstances. The resultant optimization model is represented
s a mixed-integer linear programming (MILP) with a quadratic
ost function. A UC framework for micro-grid based on the fuel
ell as EESS was proposed by the authors of Mohammadi and
ohammadi (2014) and solved using an enhanced cuckoo search
lgorithm. Hydrogen storage control is implemented to make
he possible use of many fuel cells. It is necessary to utilize a
cenario-based stochastic optimization model since the nature of
he load, photovoltaic, wind turbine output power, and market
ricing is unknown. The optimal size of energy storage devices is
lso discussed. The authors of Marzband et al. (2017) investigated
ustainable day-ahead planning of grid-connected MG incorpo-
ating dispatchable distributed energy resources and adaptable
oad demand, specifically investigating the synchronously exist-
ng controllable and uncontrollable resources available despite
he availability of responsive and non-responding loads. It also
resents an efficient energy management system optimization
lgorithm based on MILP and the GAMS deployment for gener-
ting power optimization with the lowest possible hourly power
ystem operating expense and the most sustainable power gen-
ration. The UC of MG with wind power considering multi-time
cale demand response was discussed in Xu et al. (2021) and the
ILP was used to solve the UC problem. The optimal scheduling
f UC considering the electric vehicles and renewable power
eneration uncertainties is discussed in Pan and Liu (2022) and
he authors have used the CPLEX solver to handle the UC problem.

The authors of Aghdam et al. (2020) recommended that a
ystematic multi-layer method for UC in multiple MG systems,
1031
comprising renewable power units and battery energy storage,
has been developed. When it comes to the first layer, every
MG is responsible for its regional day-ahead scheduling and de-
termining whether it has excess or deficiency power. The next
layer is where the MG operator gathers data from various mi-
crogrids and performs a global optimization, and the other layer
is where microgrids are responsible for a deferment based on
orders obtained from the MG operator. When dealing with the
problem’s constraints, chance-constrained computing has been
applied; nevertheless, the uncertainty of load demand and re-
newable energy production has still not been considered. The
authors of Kim et al. (2020) considered the problem of UC in
an EESS-integrated MG with combined heat power, photovoltaic,
and wind generators as mixed-integer non-linear programming,
with MG system constraints and reactive power dispatch, has
taken into account, and parallel benders decomposition-based
optimization methodology has been employed to solve same. On
the other hand, the uncertainties associated with demand and
renewable energy production have still not been considered. In
order to utilize each generator’s features to their highest ex-
tent, lower energy costs, decrease the impact of carbon dioxide
emissions, and raise the incorporation of the microgrid into en-
ergy systems, management strategies for complex energy systems
composed of various technologies are essential. Therefore, the au-
thors of Nicolosi et al. (2021) have reported a new MILP method
to compute the management of microgrid systems.

The functioning of BES has a considerable impact on the
longevity and deterioration of the network. The depth to which
it is discharged and the number of discharging/charging events it
undergoes significantly impact BES deterioration. Because of the
cyclic deterioration of BES, it may need to be changed before its
stated life span is completed. The lifetime of BES diminishes as
the depth of discharge (DoD) of the system is increased (Alsaidan
et al., 2018; Bao et al., 2021; Abdulgalil et al., 2019). The key
findings must be addressed in relation to the findings that have
been evaluated. Ignoring that the DoD impacts the lifespan and
operational costs of BES, it has not been addressed in most UC
for MGs. The risks associated with load demand, photovoltaic
or wind power generation, and market price have still not been
considered in certain circumstances (Tiwari et al., 2021; Abujarad
et al., 2017). In UC, neglecting all or some ambiguous facts makes
it impossible to make realistic decisions. Considering the sophisti-
cation of metaheuristic optimization algorithms, these have only
been applied in a limited number of EESS-integrated MGs to solve
UC problems. In addition, the emission factor has not been solved
while handling the UC problem in many research works (Tiwari
et al., 2018; Jiao et al., 2017; Lijun et al., 2021; Kumar, 2021).

After thorough investigation, this paper introduces BES deteri-
oration along with an effective optimization algorithm to solve UC
in battery storage-integrated grid-tied MGs while considering and
dealing with the sources of uncertainty of load demand, market
demand price, and renewable energy production through strong
design and optimization. A multiobjective problem with BES de-
terioration and MG operational costs is used to construct the UC
problem. A linear-weighted-sum method transforms the derived
multiobjective problem into a single-objective model, and the im-
pact of weight parameters on microgrid operational costs and BES
lifetime is rigorously examined in this paper. It is also explored
how the size of the BES affects the functioning of the MG. The
PSO algorithm is the most widely used algorithm for complex
real-time applications, and PSO proved to be a reliable tool for
optimization problems with uncertainties and constraints. In
addition, PSO is preferred in most industries compared to other
metaheuristic algorithms. This motivated the authors to select
PSO for this complex application. As discussed, the basic version
of the PSO algorithm is applied to many real-world optimiza-
tion problems, and it has proved its superiority in handling
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nconstrained and constrained problems (Eberhart and Kennedy,
995). However, PSO is trapped by local optima when applied
o complex non-linear problems (Rezaee Jordehi, 2020c). Many
SO variants are introduced to solve complex optimization prob-
ems, and PSO with time-varying acceleration coefficients (TVAC)
trategy is discussed and considered in this paper (Achayuthakan
nd Ongsakul, 2009; Sun et al., 2011; Ghasemi et al., 2019;
ezaee Jordehi and Jasni, 2013; Jordehi, 2016). The proposed
lgorithm is called as enhanced mixed PSO (EMPSO) algorithm
nd is recommended to solve mixed integer optimization prob-
ems, i.e., handle the continuous, integer, and binary decision
ariables. The binary version of the proposed EMPSO is ob-
ained by employing different transfer functions (TFs), such as
-shaped (Manjula Devi et al., 2022), V-shaped (Agrawal et al.,
022), U-shaped (Ahmed et al., 2021), Tapper-shaped (He et al.,
022) etc., in the literature to transform the continuous algo-
ithm to its binary version (Devi et al., 2022). This paper uses
-shaped, V-shaped, and Quadratic transfer functions to demon-
trate each version’s effectiveness. Out of many versions, the
uadratic transfer function offers the best result for the proposed
SO algorithms (Manjula Devi et al., 2022; Jordehi, 2019). It has
een shown that the TVAC framework promotes a good balance
etween cognitive and social aspects in the early phase and
ucceeding iterations. Based on the above-all discussions, the
rimary contributions and highlights of this study are given as
ollows.

• A new PSO variant called EMPSO is proposed to solve the
mixed integer optimization problems, i.e., scheduling for UC
in microgrid systems.

• The cognitive and social constants and inertial weight of
EMPSO are modified using adaptive non-linear parameters.

• A part of the continuous decision variables of the UC prob-
lem is transformed using the quadratic transfer function.

• Uncertainties are considered in electricity price, load de-
mand, and renewable power generation, and a multiobjec-
tive optimization model is also developed using a weighted-
sum approach.

• Five case studies are considered to validate the proposed
algorithm, and the performance of EMPSO is compared with
other variants of PSO algorithm.

he remainder of this paper is structured as follows. Section 2
escribes the problem formulation and mathematical modeling
f the UC problem. Section 3 discusses the basic concepts of the
SO algorithm and also discusses the formulation procedure of
he EMPSO algorithm. Section 4 comprehensively discusses the
xperimental investigations on various test scenarios and also
resents the performance comparison of the proposed algorithm
ith different TFs. Section 5 concludes the paper with the future
cope of the proposed approach.

. Problem formulation

This section discusses the formulation of the objection func-
ion for the UC problem in the BES-integrated MG system. The UC
ptimization model is to lower the operational cost of the system
y calculating the best scheduling and energy production for the
xisting generation units while meeting some constraints. The
ecision variables contain information about the condition of the
ES and the power and status of dispatchable distributed gener-
tors (DDGs) at various points. The objective is described as a bi-
bjective optimization model, with the objectives being the MG
perational costs and BES lifespan, respectively (Rezaee Jordehi,
021b). In this paper, the timeframe of UC is taken to be 24 h with
1032
a resolution of 1 h. The condition of the BES device at a given time
t is represented by vt and it is found using Eq. (1).

vt =

⎧⎨⎩
−1 for discharging
+1 for charging

0 for idle
(1)

Eq. (2) is used to compute the level of energy of the battery at a
given time t .

Et =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Et−1 + ηcPc if vt = 1

Et−1 −

(
Pd
ηd

)
if vt = −1

Et−1 if vt = 0

(2)

Eq. (3) can be used to determine the DoD of a battery at a given
time t .

DoDt = 1 −

(
Et

Emax

)
(3)

Eq. (4) can be used to calculate the maximum DoD that a battery
can suffer during its operation surface.

DoD = max(DoDt ) (4)

Therefore, employing Table 1, we can determine the lifetime of
BES, which is the primary objective in a multiobjective framework
(J1). In this paper, the Lead–acid BES device is considered for
further analysis.

J1 = τ (5)

Eq. (6) can be used to calculate the operational costs of dispatch-
able DGs. The operational cost can be expressed mathematically
using a quadratic equation.

F t
i = ai + bi × Pi (t) + ci ×

(
Pi (t)2

)
(6)

where Pi (t) denotes the power of ith dispatchable distributed
generator element at time t , and ai, bi, and ci denote the co-
efficients of the ith dispatchable distributed generator element.
The cost of MG functioning, which is the second objective, is
computed by adding the sums of the four attributes listed below.

J2 =

N∑
i=1

24∑
t=1

F t
i +

24∑
t=1

ρtPgrid,t +

N∑
i=1

24∑
t=1

SDi,t +

N∑
i=1

24∑
t=1

SCi,t (7)

where ρt denotes the market pricing at time t , Pgrid,t represents
the power exchange with the utility at time t , SDi,t denotes
the shut-down cost of the ith dispatchable distributed generator
element at time t , and SCi,t denotes the start-up cost of the ith
dispatchable distributed generator element at time t . The value of
Pgrid,t is negative if the power is exported to the utility and posi-
tive if the utility delivers the power. It is necessary to normalize
the objective function values in relation to their respective values
and make them comparable, and then they are summed up.

J1n =
J1

J1,base
(8)

J2n =
J2

J2,base
(9)

J = ω1 × J1n + ω2 × J2n (10)

where ω1 and ω2 are weight factors to decompose the multiob-
jective optimization problem as a single-objective optimization
problem. Eq. (11) should be properly maintained to sustain the
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G’s real power balance.

t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pgrid,t +

N∑
i=1

24∑
t=1

Pi,t +

Nr∑
i=1

24∑
t=1

Pj,t − Pc, if vt = 1

Pgrid,t +

N∑
i=1

24∑
t=1

Pi,t +

Nr∑
i=1

24∑
t=1

Pj,t , if vt = 0

Pgrid,t +

N∑
i=1

24∑
t=1

Pi,t +

Nr∑
i=1

24∑
t=1

Pj,t + Pc, if vt = −1

(11)

where Pj,t denotes the power of a jth renewable distribution
network at a given time t and Nr refers to the total number
of renewable DGs accessible. As shown in Eq. (12), the output
of each DG is restricted to a specific range within which it is
permitted to operate.

ui,tPi,l ≤ Pi,t ≤ ui,tPi,h (12)

where ui,t denotes the status of the ith DDG at time t and Pi,h and
Pi,l denote the maximum and minimum power of the ith DDG at
time t , correspondingly. Eq. (13) presents the ramp rate bounds
of DGs.
Pi,t − Pi,t−1 ≤ Ru,i

Pi,t−1 − Pi,t ≤ Rd,i

}
(13)

where Rd,i and Ru,i denote ramp-down and ramp-up rates of the
ith dispatchable DG. The start-up cost is the amount spent when
a generating unit is powered on. Heating equipment must be
warmed up before being used in a production environment. The
procedure of warming up is costly, and as a result, it impacts the
entire operational cost. A unit’s restart cost is calculated by how
long that has been out of commission. Various units have varying
start-up costs, and the cost to bring unit i up to speed can be
computed using Eq. (14).

SCi
t
=

SCi,hot −→ MDTi ≤ T t
Off ,i ≤ MDTi + Tcold,i

SCi,cold −→ T t
Off ,i > MDTi + Tcold,i

}
(14)

where SCi,cold and SCi,hot denote the cold and hot start-up cost
of the ith thermal unit, respectively, MDTi denotes minimum
downtime of the ith thermal unit, T t

Off ,i denotes the time duration
that unit i was continuously off, and Tcold,i denotes the time
duration for cooling of unit i.

It is ensured by Eq. (15) that there is sufficient time for
temperature variations to reduce after the shut-down or start-up
of the DGs.

ONi = Ton,i
(
ui,t − ui,t−1

)
OFFi = Toff ,i

(
ui,t−1 − ui,t

)} (15)

where OFFi and ONi represent the successive OFF and ON times,
respectively of the ith dispatchable DG unit, and Toff ,i and Ton,i
represent the minimum OFF and ON time of the ith dispatchable
DG unit. To ensure that the link connecting MG and the utility
does not exceed its power flow limitation, Eq. (16) must be
satisfied.

−Pgrid,max ≤ Pgrid,t ≤ Pgrid,max (16)

where Pgrid,max represents the maximum power flow capability of
the connection between the utility and the grid. The BES energy
level (Et ) at any given time should be less than or equal to its
ratings, and it has to be equal to or higher than a boundary, as
shown in Eq. (17).

Emin ≤ Et ≤ Emax (17)
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Table 1
Lifespan vs. DoDs for various BES types (Rezaee Jordehi, 2021b, 2020b).
DoD in % Lifespan of different types of BES

NaS NiCd Lead-Acid

10 100000 7900 8000
20 60000 5800 2500
30 30000 3400 1500
40 15000 2000 950
50 10000 1200 700
60 9000 900 590
70 7000 800 500
80 6000 700 450
90 5000 600 390
100 4000 500 350

3. Proposed enhanced mixed particle swarm optimizer
(EMPSO) algorithm

When it comes to handling difficult, constrained, non-linear
real-world optimization problems, metaheuristics are one of the
most effective optimization algorithms. The metaheuristic algo-
rithms are population-based and gradient-free approaches that
attempt to explore a near-global result with less computational
effort. They may handle an optimization problem and solve it
in an iterative process. This section mainly discusses the basic
version of PSO and the proposed EMPSO formulation.

3.1. Particle swarm optimizer (PSO) algorithm

The particle swarm optimizer (PSO) algorithm, developed in
Eberhart and Kennedy (1995) and influenced by the social be-
havior of bird flocking, is an evolutionary algorithm capable of
finding the optimal global solution. This algorithm performs by
initially developing and dispersing a large random solution, called
particles, throughout the N-dimensional search space during the
first step of this process.

It is decided which positions are used from a specific time be-
tween two integers. The location of the ith particle is symbolized
by a vector (xi = x1,i, x2,i, . . . , xt,i). Following that, each particle
is designated a fitness value based on its N -dimensional location,
which is defined by the optimization problem, and every particle
identifies the earlier best-explored position (pbest ), as well as the
best position that had the best fitness for the whole flock (gbest ).
The velocity (v) and position of each particle i (xi) is presented in
Eqs. (18) and (19), respectively.

vt+1
i = vt

i + C1 × rand1 ×
(
Pp,best − xti

)
+ +C2 × rand2

×
(
Pg,best − xti

)
(18)

xt+1
i = xti + vt+1

i (19)

where t denotes the current iteration, rand1 and rand2 denote
the random numbers between (0,1), Pp,best and Pg,best denote the
personal best and global best position of the particle, and C1 and
C2 denote the acceleration coefficients.

3.2. Improved particle swarm optimizer

It was discovered in Shi and Eberhart (1998) that the inertial
weight could be included in the basic PSO, which considerably
improved the characteristics of the existing PSO. The inertial
weight (ω) is stated in Eqs. (20)–(21).

vt+1
i = ω × vt

i + C1 × rand1 ×
(
Pp,best − xti

)
+ +C2

× rand2 ×
(
Pg,best − xti

)
(20)

xt+1
i = xti + vt+1

i (21)
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Fig. 1. Acceleration coefficients and inertia weight update over the number of iterations.
Fig. 2. Complete flow of proposed UC strategy for MG with energy storage.
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There are several inertial weight schemes to choose from, each
ith its advantages and disadvantages. The following are differ-
nt inertia weight factors to improve the performance of the PSO
lgorithm (Sun et al., 2011; Ghasemi et al., 2019; Rezaee Jordehi
nd Jasni, 2013).

= ωmax − (ωmax − ωmin) ×
t

tmax
(22)

ω = ω −
(ωmax − ωmin)

tmax
(23)

= (ωmax − ωmin) −
(tmax − t)

+ ωmin (24)

tmax

p

1034
ω =
2(

ϕ − 2 +

√
ϕ2 − 4ϕ

) + ωdamp; ϕ = ϕ1 + ϕ2 (25)

here ωmax denotes maximum inertia weight, ωmin denotes mini-
um inertia weight, tmax denotes the maximum number of itera-

ions, ωdamp denotes inertia weight damping ratio, and ϕ1 and ϕ2
enote the constriction coefficients (=2.05).

.3. Proposed EMPSO algorithm

For this research, the authors have chosen a strategy ex-
ressed in Eq. (25), whose inertial weight reduces linearly with
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Table 2
Various case studies.
Case Study (CS) Details

CS1 UC in the absence of BES degradation and uncertainties

CS2 UC considering the uncertainties (load demand, market
price, and renewable energy)

CS3 UC considering BES degradation
CS4 Effect on MG’s operating cost due to different BES sizes

CS5 Effect on MG’s operating cost due to different weight
factors

Table 3
Various parameters of PSO and EMPSO.
Parameters Value

Population size 20000
tmax 100
ωmin 0.4
ωmax 0.9
Cmin 0.5
Cmax 2.2
Maximum velocity for continuous
variables

0.1 times of decision
variable range

Maximum velocity for binary variables 6

each iteration. In addition, a multivariate model of the PSO al-
gorithm is used in this paper, wherein the acceleration coef-
ficients are not constant. They adjust exponentially with each
iterative process, resulting in better global search effectiveness
and globally optimal convergence at the end of the exploration
and faster global optimization convergence. With extensive test-
ing in numerous applications, the proposed algorithm has proven
superior to many other variations in localized exploitation and
global explorations. The acceleration coefficients of the proposed
algorithm are calculated using Eqs. (26) and (27).

C1 = Cmin + (Cmax − Cmin) × exp

[
−

(
4 × t
tmax

)2
]

(26)

2 = Cmax − (Cmax − Cmin) × exp

[
−

(
4 × t
tmax

)2
]

(27)

here Cmin and Cmax denote the minimum and maximum value
f acceleration coefficients. Fig. 1 illustrates the updates of accel-
ration coefficients and inertia weight over iterations.
The unit commitment in BES-integrated MGs is solved using

n enhanced PSO variant considered in this research. When solv-
ng this challenge, three kinds of control variables/vectors are
resented in this paper as follows: the output power of dispatch-
ble DGs is a continuous vector/variable, the dispatchable DGs
tatus is a binary variable/vector, and the status of the BES unit
s an integer variable. Multiple approaches should be employed
n order to cope with various types of control variables/vectors.
q. (28) represents the position of the ith particle.

i =
[
Xi,1, Xi,2, . . . , Xi,dim

]
(28)

here dim denotes the problem dimensions. The particles are
enerated randomly, and the particle with the optimal objective
s designated as the global optimum. For integer parameters, such
s the condition of the BES part at various intervals, Eqs. (20)
nd (21) are executed on every iteration, and each parameter is
ormalized to the next integer value. Eqs. (20)–(21) are wholly
rrelevant for binary variables in their original state. In binary
SO, for binary decision parameters, once the velocity vector
as been modified with Eq. (20), an S-shaped transfer function
nd V-shaped transfer function and is defined by the following
1035
expressions are being used to map the velocity profile into the
range [0,1] after the velocity vector have been updated with
Eq. (20). Eq. (29) presents the sigmoidal (S-shaped) transfer func-
tion, which guides the particle i to travel in a binary position.

S
(
vk
i (t)

)
=

1

1 + e−vki (t)
(29)

where vk
i represents the continuous velocity of particle i in di-

mension k at the current iteration t . Because the magnitude of the
S-shaped transfer function appears to be continuous, it should be
employed as a boundary for achieving the binary numbers. The
S-shape transfer is a steady transformation function that turns
an unbounded input into a bounded output. The fact that the
transfer function’s velocity is increasing improves the possibility
of computing position vectors. The extensively employed stochas-
tic threshold is utilized to ensure the binary value in a sigmoidal
expression, as illustrated in Eq. (30), to achieve the binary value.

−−−−−→
X (t + 1) =

{
0, if rand < S

(
vk
i (t)

)
1, if rand ≥ S

(
vk
i (t)

) (30)

where vk
i (t) and

−−−−−→
X (t + 1) represent the velocity of the particle

i in dimension k at each iteration t , and rand denotes the ran-
dom number between (0,1). In addition to the S-shaped transfer
function, this paper also uses the V-shaped transfer function to
convert the decision variable into its binary form. The following
expressions are useful to convert the part of the decision variable
into its binary form.

S
(
vk
i (t)

)
=

2
π

× atan
(π

2
× vk

i (t)
)

(31)

−−−−−→
X (t + 1) =

{−−→
X (t)−1, if rand < S

(
vk
i (t)

)
−−→
X (t), if rand ≥ S

(
vk
i (t)

) (32)

where
−−→
X (t)−1 denotes the complement of the binary decision

variable
−−→
X (t). The V-shaped transfer function benefits from not

requiring the particle to acquire a value between 0 and 1 due to
its shape. It permits the particle to turn to the compliments only
when the fitness levels are high; otherwise, it would stay in the
present location due to its lower fitness value.

Nevertheless, according to the study, the effectiveness of bi-
nary PSO, as represented by Eqs. (29)–(32) in addressing engi-
neering optimization problems involving binary parameters is in-
sufficient in these situations. This research presents an enhanced
technique for handling binary classification variables, namely the
state of dispatchable DGs decision variables. Eq. (20) is used to
update the velocity in this strategy, and then Eq. (33) is used to
map the updated velocities into the range [0,1] using a quadratic
transfer function.

S
(
vk
i (t)

)
=

⎧⎪⎨⎪⎩
(

vk
i (t)

0.5 × vmax

)2

, if vk
i (t) < 0.5 × vmax

1, if vk
i (t) ≥ 0.5 × vmax

(33)

where vmax denotes the maximum value of velocity. Particle lo-
cations are modified using Eq. (32) after the velocities associ-
ated with binary decision parameters have been mapped into
the range [0,1]. The particle’s position is updated for all integer
decision vectors (24-hour status of BES units) using Eq. (34).

xt+1
i = round

(
xt+1
i

)
(34)

The updated position xt+1
i is obtained from Eq. (21) and

rounded off to its integer values. Because the problem involves
many uncertain input variables, which include 24-hour load de-
mand, 24-hour production of renewable energy sources, and 24-
hour market electricity price, because the uncertainties impact
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oth BES life span and MG operating cost, rigorous optimization is
sed to simulate the problem uncertainties. It is possible to create
n uncertainty incorporated into the forecast error of data, and by
tilizing a robust optimization algorithm, it is possible to obtain
robust decision variable over the uncertainty range. As depicted
n Fig. 2, the proposed approach is organized. The Pseudocode of
he proposed EMPSO algorithm is presented in the Algorithm.

4. Results and discussions

This section describes how the proposed methodology has
een used for unit commitment in BES-integrated grid-tied MGs
nd how the results are evaluated comprehensively. There are
ive different case studies used in the simulations. The details of
he case studies are described in Table 2. All the five selected
ase studies are analyzed using the proposed EMPSO with an
-shaped transfer function named EMPSO-S, a V-shaped trans-
er function named EMPSO-V, and a quadratic transfer function
amed EMPSO-Q and a traditional PSO with a sigmoid transfer
unction named PSO-S. The algorithmic parameters of the PSO
nd the proposed EMPSO are listed in Table 3.
The considered MG in this study has four dispatchable DGs

microturbines) and two renewable DG sources with a maximum
1036
load demand of 16.14 MW at Hour 18 and minimum load demand
of 8.47 MW at Hour 3. The required data for dispatchable DGs are
listed in Table 4. The load demand, market electricity price, and
the output of two renewable DGs (RDGs) are listed in Table 5. The
demand and market price profiles are better illustrated in Fig. 3.

The maximum power transferred between MG and the utility
is restricted to 10 MW. The dispatchable DGs (DDGs) is assumed
to be turned off at the start. The MG’s operating cost is $8971.2
if the battery energy storage unit is unused. The lead–acid bat-
tery is considered in this paper, and the battery storage unit
specifications are provided in Table 6.

The uncertainty in renewable energy sources is 10%, the un-
certainty in electricity market pricing is 3%, and the uncertainty
in day-ahead forecasted load demand is 3% is considered in this
paper to simulate the CS2.

4.1. Case study 1 (CS1)

This case study deals with the MG with BES integration. How-
ever, the battery degradation and uncertainties in demand, mar-
ket price, and power ratings of RDGs are not considered. The
rating of the battery storage system is considered to be 5 MW. The
proposed algorithms, such as EMPSO-Q, EMPSO-V, and EMPSO-
S, are functional to UC in microgrids with BES integration. In
addition to the proposed algorithms, the conventional PSO-S is
also applied to the same problem. The operating cost of the MG
obtained for all the above-said algorithms is equal to $8729.87,
$8962.13, $9935.88, and $12536.3, respectively. To have a fair
comparison, all the algorithms are executed ten times individu-
ally. Due to better performance, the optimal resource scheduling
obtained by the EMPSO-Q is illustrated in Fig. 4. The status of the
BES and depth of discharge (DoD) of the BES are illustrated in
Fig. 5.

The absence of consideration for battery deterioration results
in a maximum DoD of 94.5%, with a life span as limited as 350.
MG operators can benefit from the BES unit by allowing it to
recharge during a low-price period and discharge during a high-
price period, allowing them to profit from energy exchange. Only
when the profits generated by the pricing difference between
two times greater than the cost of BES power losses is it ac-
ceptable to engage in power exchange between different periods.
Table 7 shows the optimal state and power of generating units,
as determined by the proposed EMPSO-Q.

From 1 h to 11 h, the market electricity price is lesser than
the bid prices of DGs; therefore, the grid supplies the required
demand. During 3 h, 5 h, and 9 h, the electricity price is less,
i.e., 13.51 $/MWh, 18.51 $/MWh, and 21.84 $/MWh; therefore,
the battery energy storage units get charged, and the amount
payable is equal to $20.27, $27.77, and $32.76, respectively. The
equal demand is calculated by subtracting the two renewable
DGs power output and DDGs, and the grid must supply the equal
demand. For instance, at 9 h, DG1 is ON, and it can supply up
to 2.02 MW, and the BES unit charges to its maximum power,
i.e., 1.5 MW, so the total available DDGs power is now available
at 0.52 MW. At the same time, the equal demand is 10.52 MW
at 9 h, which must be supplied by the grid (9.99 MW) and the
DDG (0.52 MW). At 8 h, the battery is discharging due to the
high market price. At this time, the revenue generation is $34.245.
Despite the fact that the utility is the most cost-effective source,
the utility cannot meet the entire demand of MG between 8 h
to 10 h because the power flow restriction of the interconnection
between the grid and MG is a binding limitation. As a result, DG1,
the next most cost-effective resource, is initiated and supplied
with a minimum power level of 2.02 MW. Fig. 6 illustrates the
optimal status of all DGs during 24 h.

From 11 h onwards, DG1 is the most cost-effective power
source; thus, it is supplied with the highest amount of energy.
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Table 4
Data of all four dispatchable DGs (Rezaee Jordehi, 2021b).
DGs a ($/MWh2) b ($/MWh) c ($) Pmin (MW) Pmax (MW Ramp-down and

Ramp-up limit (MW/h)
Ton and Toff (H) SC ($) SD ($)

1 0 27.7 0 1 5 2.5 3 30 10
2 0 39.1 0 1 5 2.5 3 30 10
3 0 61.3 0 0.8 3 3 1 20 6
4 0 65.6 0 0.8 3 3 1 20 6
Table 5
Specifications of day-ahead load demand, market price, and power of RDGs (Rezaee Jordehi, 2021b).
Time Load demand

(MW)
Market
price ($)

Output of
RDG1 (MW)

Output of
RDG2 (MW)

Time Load demand
(MW)

Market
price ($)

Output of
RDG1 (MW)

Output of
RDG2 (MW)

1 h 8.73 15.03 0 0 13 h 13.92 65.79 0.40 0.81
2 h 8.54 10.97 0 0 14 h 15.27 66.57 0.37 1.20
3 h 8.47 13.51 0 0 15 h 15.36 65.44 0 1.23
4 h 9.03 15.36 0 0 16 h 15.69 79.79 0 1.28
5 h 8.79 18.51 0.63 0 17 h 16.13 115.45 0.05 1.00
6 h 8.81 21.80 0.80 0 18 h 16.14 110.28 0.04 0.78
7 h 10.12 17.30 0.62 0 19 h 15.56 96.05 0 0.71
8 h 10.93 22.83 0.71 0 20 h 15.51 90.53 0 0.92
9 h 11.19 21.84 0.68 0 21 h 14.00 77.38 0.57 0
10 h 11.78 27.09 0.35 0 22 h 13.03 70.95 0.6 0
11 h 12.08 37.06 0.62 0 23 h 9.82 59.42 0 0
12 h 12.13 68.95 0.36 0.75 24 h 9.45 56.68 0 0
Fig. 3. Various profiles; (a) Demand profile, (b) Market price.
Fig. 4. Power-sharing of the DGs and grid in demand–supply for 24 h (CS1).
If required to function with maximum output and obtain the
greatest possible profit from energy exchange at 11 h, DG1 must
work with 4.52 MW at 11 h according to the ramp-up rate
1037
limit. During the 12 h to 22 h (except DG3 at 13 h, DG4 at
15 h, and DG1 at 22 h), all DGs, bidding available at a cheaper
price, making it prudent to completely load them and export the
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Fig. 5. Status of BES and DoD for 24 h (CS2).
Fig. 6. Optimal Status of all DGs for 24 h by EMPSO-Q (CS1).
Table 6
Specification details of the BES unit.
Specifications Values

Power rating (MW) 5 or 10
Charging and discharging powers (MW) 1.5
Minimum permissible energy level (MW) 0.2
Initial energy level (MW) 1
Charging efficiency (%) 95
Discharging efficiency (%) 90

excess energy to the utility, allowing you to get a huge income
via energy exchange. BES is discharged at 17 h and 18 h, when
the market price is pretty high, i.e., 115.45 $/MWh and 110.28
$/MWh, respectively, resulting in $173.18 and $165.42 in profit
for MG. It is impossible to discharge BES after 19 h because
the discharge causes it to exceed its maximum DoD limitation,
as shown in Fig. 5. Because the market price is lowering from
20 h to 24 h, charging and discharging BES units at a reduced
price is not a reasonable move. As a result, BES is idle for 20 h
to 24 h. Due to the fact that the shut-down cost of DG3 and
DG4 is much less than the losses incurred by operations with
low power during 23 h and 24 h, these generators are turned
off. For better understanding, Fig. 7 illustrates the dispatchable
generation, power levels of DDGs, equal load demand, grid power,
1038
and the optimal BES status. For instance, at 17 h, the equal load
demand of 15.08 MW is supplied by all DDGs (16 MW) and
BES units (1.5 MW), and the remaining power, i.e., 2.42 MW, is
supplied to the grid. Therefore, the revenue generation at 17 h is
(2.42∗$115.45) = $279.389.

4.2. Case study 2 (CS2)

Here, the uncertainties in load demand data, market pricing
data, and renewable power for 24 h are considered, and robust
optimization is employed to achieve the best possible results.
The term ‘‘robust optimization’’ refers to a process in which an
uncertainty range is constructed, and all proposed algorithms are
applied to figure out a reliable solution throughout the entire
uncertainty range. The forecast error for renewable energy pro-
duction has been considered to be 10%, while the forecast error
for load demand and the market price has been estimated to be
3%. The operating cost of the MG obtained by EMPSO-Q, EMPSO-
V, EMPSO-S, and PSO-S equals $8986.98, $9869.55, $12285.8,
and $12530.7. Due to better performance, the optimal resource
scheduling obtained by the EMPSO-Q is illustrated in Fig. 8. The
status of the BES unit and DoD of the BES is illustrated in Fig. 9.

Like CS1, the absence of consideration for battery deterioration

results in a maximum DoD of 94.5%, with a life span as limited as
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Fig. 7. Power-sharing of all DDGs, grid, and BES in demand–supply for 24 h (CS1).

Fig. 8. Power-sharing of the DGs and grid in demand–supply for 24 h (CS2).

Fig. 9. Status of BES and DoD for 24 h (CS2).

1039
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Table 7
Optimal power and status of DGs with linear bid functions by EMPSO-Q (CS1).
350. MG operators can benefit from the BES unit by allowing the
unit to recharge during a low-price period and discharge during a
high-price period, allowing them to profit from energy exchange.
Table 8 shows the optimal state and power of generating units
obtained by the proposed EMPSO-Q. Compared to Table 7, the
operating cost of the MG is significantly increased due to the con-
sideration of uncertainties. Nevertheless, the obtained solution is
robust in the face of uncertainties in renewable energy genera-
tion, load demand, and price; that is, no variance of uncertain
data from the specified uncertainty set can result in an operating
cost that is significantly greater than the attained operation cost,
which is a significant improvement over previous solutions.

When analyzing the performance with scenario 1, it is clear
hat considering uncertainties has resulted in a $257.98 increase
n the operating costs of MG. Although the result found in this
ase is resilient, the variations in market price, renewable energy,
nd load demand within the uncertainty range do not result in
n operating cost greater than $8986.98, which is the maximum
ost of operation. As previously stated, the ON/OFF condition and
cheduling of MG sources are primarily influenced by changes in
arket pricing and equal demand, as well as other factors. In ac-
ordance with Figs. 8 and 9, the incorporation of uncertainties has
mpacted the optimal scheduling of resources, and in particular,
he BES scheduling. It is important to note that BES is charged
uring less price durations of 1 h, 4 h, and 10 h and discharged
uring high price durations of 6 h, 17 h, and 18 h. The optimal
tatus of all DGs for 24 h is illustrated in Fig. 10. Similar to CS1,
ig. 11 illustrates the dispatchable generation, power levels of
DGs, equal load demand, grid power, and the optimal BES status.
or instance, at 17 h, the equal load demand of 14.9471 MW
s supplied by all DDGs (16 MW) and BES units (1.5 MW), and
he remaining power, i.e., 2.55294 MW, is supplied to the grid.
herefore, the revenue generation at 17 h is (2.55294∗$115.45)
$294.737.
1040
4.3. Case study 3 (CS3)

The deterioration of BES is taken into consideration and is
incorporated into the purpose of the unit commitment problem.
The operating cost of the MG and BES lifespan is considered a
multiobjective model. The multiobjective optimization problem
is transformed into a single objective optimization problem using
the linear weighted sum technique. The operation cost of the MG
and BES unit life cycle is diverse; hence, they must be normalized
before transforming into a single-objective problem. BES life span
has been normalized in relation to 350, which would be the
BES lifecycle in CS1. The operating cost of the MG has been
normalized to $8971.2, which is the operation cost without a
BES unit. The aggregate objective values obtained by EMPSO-Q,
EMPSO-V, EMPSO-S, and PSO-S equal 0.9539, 1.10, 1.3126, and
1.325, respectively. The results were obtained using the weight
factors of 0.9 and 0.1. Due to better performance, the optimal
resource scheduling obtained by the EMPSO-Q is illustrated in
Fig. 12. The status of the BES unit and DoD of the BES is illustrated
in Fig. 13.

Table 9 shows the optimal state and power of generating units
obtained by the proposed EMPSO-Q. The optimal status of all DGs
is illustrated in Fig. 14. The operating cost obtained by the PSO-S,
EMPSO-V, and EMPSO-S is equal to $1.5406E+04, $1.1479E+04,
and $1.5182E+04, respectively. The BES life span is 590, 590,
and 390, respectively, and normalized objective values are 1.716,
1.279, and 1.692 and 0.593, 0.593, and 0.897, respectively.

The operating cost, BES life span, normalized objective value,
and normalized BES life span obtained by the proposed EMPSO-Q
equals $8917.7, 590, 0.9941, and 0.593, respectively. In CS3, the
BES life span improves from 350 to 590, while the operating cost
of the MG increases from $8729.87 to $8917.7. When comparing
UC outcomes between CS1 and CS3, it is clear that by considering
BES deterioration in the fitness function, the BES life span rises
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Table 8
Optimal power and status of DGs with linear bid functions by EMPSO-Q (CS2).
Fig. 10. Optimal Status of all DGs for 24 h by EMPSO-Q (CS2).
rom 350 to 590. The BES unit is charged during 1 h and 3 h and
ischarged during 16 h.
Similar to CS1, Fig. 15 illustrates the dispatchable generation,

ower levels of DDGs, equal load demand, grid power, and the
ptimal BES status. For instance, at 16 h, the equal load demand
f 14.41 MW is supplied by all DDGs (16 MW) and BES units (1.5
W), and the remaining power, i.e., 3.09 MW, is supplied to the
rid. Therefore, the revenue generation at 16 h is (3.09∗$79.79)
$246.551.

.4. Case study 4 (CS4)

It is decided to utilize a 10 MW BES rather than the formerly
sed 5 MW BES to discover the influence of BES capacity on
1041
microgrid functioning. It is shown in Figs. 16 and 17 that the op-
timum scheduling of resources for UC could be achieved without
considering uncertainty. The operation cost of the MG obtained
by EMPSO-Q, EMPSO-V, EMPSO-S, and PSO-S equals $8453.33,
$10228, $12079.1, and $12588.8, respectively. Compared to CS1,
the operating cost of MG is $276.54 lesser in CS4 due to the
inclusion of the high capacity of the BES unit. Due to better
performance, the optimal resource scheduling obtained by the
EMPSO-Q is illustrated in Fig. 16. The status of the BES and DoD
is illustrated in Fig. 17.

The absence of consideration for battery deterioration results
in a maximum DoD of 90.25%, with a life span as limited as 350.
MG operators can benefit from the BES unit by allowing the unit
to recharge during a low-price period and discharge during a
high-price period, allowing them to profit from energy exchange.
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Fig. 11. Power-sharing of all DDGs, grid, and BES in demand–supply for 24 h (CS2).
Fig. 12. Power-sharing of the DGs and grid in demand–supply for 24 h (CS3).
Table 10 shows the optimal state and power of generating units,
as determined by the EMPSO-Q. The optimal status of all DGs is
shown in Fig. 18.

Although due to its low energy potential, a 5 MW BES unit
could only be charged for 3 h during the low-price hours 3 h, 5 h,
and 9 h, a 10 MW BES can be charged for seven hours during the
low-price hours 5 h, 6 h–10 h, and 15 h and be discharged over
a longer period of time (14 h, 16 h–20 h), allowing the MG to
participate in more energy arbitrage and lower its operating costs.
Similar to CS1, Fig. 19 illustrates the dispatchable generation,
power levels of DDGs, equal load demand, grid power, and the
optimal BES status. For instance, at 18 h, the equal load demand
of 15.32 MW is supplied by all DDGs (16 MW) and BES units (1.5
MW), and the remaining power, i.e., 2.18 MW, is supplied to the
1042
grid. Therefore, the revenue generation at 18 h is (2.18∗$110.28)
= $240.411.

4.5. Case study 5 (CS5)

In CS5, unit commitment can be performed for diverse groups
of weight factors in order to establish the impact of weight factors
on the operating cost of MG and BES unit lifespan. A different
pair of weight factors are considered, as listed in Table 11. Due
to the better performance of EMPSO-Q in all earlier case studies,
the operating cost of the MG, BES unit lifespan, and aggregate
objective values obtained by the EMPSO-Q algorithm are listed. As
discussed in CS4, where BES deterioration was disregarded, that
is, where the weight factors for the operating cost of the MG and
BES lifespan were 1 and 0, respectively, the operating cost of the
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Fig. 13. Status of BES and DoD for 24 h (CS3).

Fig. 14. Optimal Status of all DGs for 24 h by EMPSO-Q (CS3).

Fig. 15. Power-sharing of all DDGs, grid, and BES in demand–supply for 24 h (CS3).
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Table 9
Optimal power and status of DGs with linear bid functions by EMPSO-Q (CS3).
Fig. 16. Power-sharing of the DGs and grid in demand–supply for 24 h (CS4).
MG was $8999.11, and the BES lifespan was 350 (refer to CS1)
with an aggregate objective value of 1.0031. When the weight
factors for the MG and BES lifetime operating cost are modified to
0.8 and 0.2, respectively, the optimum schedule of microgrid re-
sources is obtained. MG operation cost is $9.1055E+03, whereas
ES lifespan is 590 for this set of weights, and the aggregate
bjective value is 0.9748. When the weight factors for the MG
nd BES lifetime operating cost are modified to 0.5 and 0.5,
espectively, the optimal schedule of MG resources is obtained.
G operation cost is $9.1319E+03, whereas BES lifespan is 590

or this set of weights, and the combined objective value is
.8067. When the weight factors for the MG and BES lifetime
1044
operating cost are modified to 0.2 and 0.8, respectively, the opti-
mal schedule of MG resources is obtained. MG operation cost is
$9.1506E+03, whereas BES lifespan is 590 for this set of weights,
and the combined objective value is 0.6781. As predicted, the rise
in the weight assigned to MG operation costs has resulted in an
improvement in the operating cost of the MG and a decrease in
the lifecycle of the BES. Due to better performance, the optimal
resource scheduling obtained by the EMPSO-Q is illustrated in
Fig. 20. The status of the BES unit and DoD of the BES is illustrated
in Fig. 21.

For the weight factors of 0.8 and 0.2, the BES unit gets charged
during 1 h and 2 h and discharged during 15 h. Table 12 shows
the optimal state and power of generating units, as determined
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Fig. 17. Status of BES and DoD for 24 h (CS4).
Table 10
Optimal power and status of DGs with linear bid functions by EMPSO-Q (CS4).
by the proposed EMPSO-Q for the weight factors of 0.8 and 0.2.
The optimal status of all DGs for the weight factors of 0.8 and 0.2
is illustrated in Fig. 22.

Similar to all case studies, Fig. 23 illustrates the dispatchable
eneration, power levels of DDGs, equal load demand, grid power,
nd the optimal BES status for the weight factors of 0.8 and 0.2.
or instance, at 15 h, the equal load demand of 14.13 MW is
upplied by all DDGs (16 MW) and BES units (1.5 MW), and the
emaining power, i.e., 3.37 MW, is supplied to the grid. Therefore,
he revenue generation at 18 h is (3.37∗$65.44) = $220.533.
1045
4.6. Performance comparison and statistical analysis

In order to verify the performance of all selected algorithms,
the statistical data, such as Min, Mean, standard deviation (STD),
and runtime (RT), are listed and analyzed in this section. All se-
lected algorithms are executed 10 times for each case study, and
all the statistics parameters are listed in Table 13. Boldface letters
in Table 13 indicate the best results. Also, in terms of the Min,
Mean, and STD, EMPSO-Q outperforms the EMPSO-V, EMPSO-S,
and PSO-S. Based on statistic parameters, EMPSO-Q stood first,
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Fig. 18. Optimal Status of all DGs for 24 h by EMPSO-Q (CS4).
Fig. 19. Power-sharing of all DDGs, grid, and BES in demand–supply for 24 h (CS4).
Table 11
Various objective values for different weight factors.
Weight factors MG cost ($) BES Lifecycle Aggregate

objective values

ω1 ω2

1 0 8.9991E+03 350 1.0031
0.8 0.2 9.1055E+03 590 0.9936
0.5 0.5 9.1319E+03 590 0.8067
0.2 0.8 9.1506E+03 590 0.6781

followed by EMPSO-V, EMPSO-S, and PSO-S. The RT value of PSO-
S is less than all other selected algorithms for all case studies.
However, the difference between the RT values obtained by PSO-
S and EMPSO-Q is much less and almost negligible. Therefore,
based on statistical data analysis, it was noticed that the proposed
EMPSO-Q is a robust tool for the MG unit commitment problem.
1046
To observe the convergence behavior of all algorithms, the
convergence curve obtained by all algorithms in all case studies
is illustrated in Fig. 24. From Fig. 24a–d, it was observed that
the convergence behavior of EMPSO-Q is more excellent than
all other selected algorithms. Due to the superior convergence
performance of EMPSO-Q, the convergence curves obtained by
EMPSO-Q for CS5 with different weights are illustrated for a
better understanding of the weight factor’s impact on operating
cost and BES lifespan. The increase in the weight of operating
costs has resulted in an improvement in operating costs and a
decrease in the lifecycle of the BES.

Based on the obtained results and critical analysis, the pro-
posed algorithm is considered to be a promising scheduling algo-
rithm for the unit commitment problem of the microgrid systems
considering the uncertainties. It has the benefits, such as simple
implementation, quicker convergence, effective uncertainty han-
dling, and low computational burden. Nevertheless, the proposed
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Fig. 20. Power-sharing of the DGs and grid in demand–supply for 24 h (weight factors of 0.8 and 0.2).

Fig. 21. Status of BES and DoD for 24 h (weight factors of 0.8 and 0.2).

Fig. 22. Optimal Status of all DGs for 24 h by EMPSO-Q (weight factors of 0.8 and 0.2).
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Fig. 23. Power-sharing of all DDGs, grid, and BES in demand–supply for 24 h (weight factors of 0.8 and 0.2).

Fig. 24. Convergence curves; (a) CS1, (b) CS2, (c) CS3, (d) CS4, (e) CS5 with different weight factors.
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Fig. 24. (continued).
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Table 12
Optimal power and status of DGs with linear bid functions by EMPSO-Q (CS5).
Table 13
Statistical parameters of all selected algorithms on all case studies.
Case study Algorithm Min Mean STD RT

CS1

EMPSO-Q 8729.87 8901.36 78.56 6.404e+03
EMPSO-V 8962.13 9125.41 124.43 6.543e+03
EMPSO-S 9935.88 10203.25 235.81 5.916e+03
PSO-S 12536.3 12987.63 269.16 5.224e+03

CS2

EMPSO-Q 8986.98 9145.47 81.24 1.149e+04
EMPSO-V 9869.55 10145.62 132.49 1.137e+04
EMPSO-S 12285.8 12597.18 149.44 1.131e+04
PSO-S 12530.7 12998.75 204.83 1.128e+04

CS3

EMPSO-Q 0.9539 0.9978 0.0269 1.078e+04
EMPSO-V 1.10 1.362 0.1564 1.107e+04
EMPSO-S 1.313 1.504 0.2143 1.081e+04
PSO-S 1.325 1.6693 0.2245 1.051e+04

CS4

EMPSO-Q 8453.33 8556.44 69.47 1.041e+04
EMPSO-V 10228 10469.11 110.45 1.058e+04
EMPSO-S 12079.1 12369.78 136.56 1.039e+04
PSO-S 12588.8 12997.37 198.37 1.031e+04

CS5
(0.8 and 0.2
weight)

EMPSO-Q 0.9936 1.001 0.012 1.081e+04
EMPSO-V 1.145 1.211 0.023 1.114e+04
EMPSO-S 1.308 1.398 0.045 1.094e+04
PSO-S 1.335 1.412 0.074 1.056e+04
algorithm also has possible limitations, such as high computation
time than the traditional PSO, convergence slows down in the
later search phase, and it may fall into the local solutions oc-
casionally. However, the above-said limitations are overcome by
employing efficient boosting techniques, such as adaptive param-
eters (Premkumar et al., 2021b), the Chao mechanism (Premku-
mar et al., 2021a), hybrid algorithms (Premkumar et al., 2021),
etc., and the same has been considered as the future scope of this
study.
1050
5. Conclusion

In MGs, unit commitment is a constrained, mixed continu-
ous, integer, and binary optimization problem with stochastic
inputs such as electricity market price, renewable energy gen-
eration, and load demand. In this study, BES deterioration has
been considered in the unit commitment model in grid-connected
microgrids. A new variant of the PSO algorithm is employed
with different transfer functions to optimize continuous, binary,
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nd integer decision variables to handle unit commitment prob-
ems for the microgrid. For five different case studies, UC has
ndeed been handled. UC has been stated as a robust optimization
ethod, considering the unpredictability of electricity market
ricing, renewable energy generation, and load demand. The ob-
ained findings confirm the effectiveness of the suggested al-
orithms over the basic PSO version, as well as the noticeable
ifference of BES on the saving of operating costs of MG. The
ddition of BES has improved the energy exchange capabilities of
he microgrid while simultaneously lowering its operating costs.
hen uncertainties are considered, the findings reveal opera-

ional costs fall from $8729.87 to $8986.98. As a consequence
f considering BES deterioration, the BES lifespan improves from
50 to 590, and the operating cost of the MG increases from
8729.87 to $8917.7. Furthermore, the impact of weight factors
n a multiobjective optimization problem on the cost of MG
peration and the lifespan of a BES has been examined. The
indings in various case studies confirm that the EMPSO-Q al-
orithm outperforms EMPSO-V, EMPSO-S, and PSO-S in terms of
erformance.
The interval number technique may be used in future research

o model the uncertainty associated with charging and discharg-
ng electric vehicles. In addition, the proposed algorithms may
oncentrate on a detailed parametric study of the robustness
f the computational efficiency of the model parameters that
ave been provided in the literature. It is suggested to apply
he proposed algorithms in transaction settlement, groundwa-
er management, frequency assignment, cyber–physical systems,
lant location, etc. The formulation of a typical guiding prin-
iple for specifying required model parameters depending on
he complexity of the problem may further improve the broad
pplication of proposed algorithms by increasing their universal
pplication. Additionally, the perspective on energy efficiency for
C in relation to electric vehicles and the uncertainty in multiple
nergy sources might be explored.
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