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Abstract

This thesis consists of four papers written during the course of my PhD.

The first concerns an approach to non-ordinary Iwasawa theory and generalises the ‘plus/minus’
approach of Pollack.

The subsequent three chapters all concern p-adic families of cohomology classes. The first considers
interpolation of Euler system classes for GSp4 in ordinary families. The second generalises work
of Hida and Tilouine–Urban by proving control theorems for a large class of reductive groups.
The third and final paper concerns a construction for varying Euler system classes in non-ordinary
families.
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1 Introduction

Hello. This thesis concerns the theory of Euler systems, p-adic L-functions and their variation
in p-adic families. The (mostly conjectural) interplay between these two objects has important
consequences for Iwasawa theory and the theory of special values of L-functions, which we will
expounded upon below, before giving a more detailed run down of the contents of this thesis.

1.1 Mathematical context

1.1.1 Some Big conjectures

Our story begins, as it so often does, with the Birch–Swinnerton-Dyer conjecture. Fix a prime p
and let A/Q be a d-dimensional abelian variety. Its rational points A(Q) admit the structure of a
finitely generated abelian group; we write ralg for its rank. We define the p-adic Tate module

TpA = lim←−
n

A[pn]

then VpA := TpA⊗Qp is a 2d-dimensional Qp-linear GQ := Gal(Q̄/Q)-representation. Let ℓ ̸= p be
a prime, then if A has good reduction at ℓ then VpA is unramified at ℓ. We define the L-function
of A to be

L(A, s) =
∏
ℓ ̸=p

A good reduction at ℓ

Pℓ(VpA, ℓ
−s)−1

for s ∈ C, s≫ 0 where
Pℓ(TpA, t) := det(1− Frob−1

ℓ t|VpA)

and Frobℓ is the arithmetic Frobenius. The product converges for Re(s) > 3/2 and moreover
when A = E is an elliptic curve, L(E, s) extends analytically to the entire complex plane by a
reasonably well-known result of Wiles [Wil95], Taylor-Wiles [TW95] and Breuil-Conrad-Diamond-
Taylor [BCDT01]. Such a meromorphic continuation is expected to hold in general. We write ran
for the order of vanishing of L(A, s) at s = 1. We are now in a position state the conjecture of
Birch–Swinnerton-Dyer:

Conjecture 1.1.1. For A as above, we have

ran = ralg.

This conjecture is remarkable as it compares two seemingly disparate objects of fundamentally
different natures: the L-function and the Mordell–Weil group of the abelian variety, one analytic,
one algebraic.

Remark 1.1.2. There is another statement, sometimes referred to as the full Birch–Swinnerton-
Dyer conjecture, which gives a precise formula for the ran-th derivative of L(A, s) at s = 1 in terms
of a number of invariants of A including the order of the Tate–Shafarevich group

X(A) = ker

H1(Q, A(Q))→
∏

ℓ prime

H1(Qℓ, A(Qℓ))


a mysterious group which is not even known to be finite. In the case that A = E is an elliptic
curve, finiteness of X(E) implies the existence of an effective algorithm for computing the rank of
the Mordell–Weil group. This finiteness is expected but far from proven. It is, however, implied
by the full Birch–Swinnerton-Dyer conjecture.

The Birch–Swinnerton-Dyer conjecture is (modulo a few fickle grains) part of a vast web of conjec-
tures known collectively as the Bloch–Kato conjectures. Let K/Qp be a finite extension of fields
with ring of integers O and let V be a K-linear continuous GQ-representation unramified at almost
all ℓ ̸= p and de Rham at p with T ⊂ V a GQ-invariant O-lattice. Such a representation is called
geometric. The nomenclature is justified by the fact that all Galois representations arising as
subquotients of the étale cohomology of smooth projective varieties are geometric. Furthermore,
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the Fontaine–Mazure conjecture posits that all irreducible geometric Galois representations arise
in this way. Much like the Birch–Swinnerton-Dyer conjecture, the Bloch-Kato conjecture concerns
a comparison of algebraic and analytic invariants coming from V . On the algebraic side we have
the Bloch–Kato Selmer group H1

f (Q, T ):

Definition 1.1.3. Define subgroups of H1(Qℓ, T ) by

H1
f (Qℓ, T ) :=

{
ker
(
H1(Qℓ, T )→ H1(Qℓ, T ⊗ Bcris)

)
if ℓ = p

ker
(
H1(Qℓ, T )→ H1(GQℓ/Iℓ, T

Iℓ)
)

otherwise,

where Bcris is Fontaine’s ring of crystalline periods, and define the Bloch–Kato Selmer group:

H1
f (Q, T ) := ker

(
H1(Q, T )→

∏
ℓ

H1(Qℓ, T )
H1
f (Qℓ, T )

)
.

On the analytic side we construct the L-function of V :

L(V, s) =
∏

ℓ:V unramified at ℓ

det(1− Frob−1
ℓ ℓ−s|V )−1.

The Bloch–Kato conjecture is as follows:

Conjecture 1.1.4. For V as above we have

dimKH
1
f (Q, V ∗(1))− dimKH

0(Q, V ∗(1)) = ords=0L(V, s)

where V ∗(1) is the Tate dual of V .

In the case that V = VpA, the p-adic Tate module of an abelian variety A/Q, the Kummer map
gives an injection

A(Q)⊗Qp ↪→ H1
f (Q, VpA)

the cokernel of which has dimension equal to the rank of the p-part of X(A).

When ran ∈ {0, 1}, the Birch–Swinnerton-Dyer conjecture for elliptic curves has been proved by
Kolyvagin, building off work of Gross–Zagier, using the (anticyclotomic) Euler system of Heegner
points. Later Kato [Kat04] was able to prove Bloch–Kato in analytic rank 0 for modular forms of
weight k ≥ 2, recovering the ran = 0 elliptic curve case as a special case. We give an overview of
Kato’s method as the main motivation for much of our work will be based around a generalisation
of this method.

1.1.2 Kato’s method and generalisations

Just what is an Euler system?

Definition 1.1.5. Let V be as above and let T ⊂ V be a GQ-stable lattice and Σ a finite set of
primes. An Euler system for (T,Σ) is a collection of classes {cm} for m ≥ 0

cm ∈ H1(Q(ζm), T )

satisfying the following norm relations:

cores
Q(ζmℓ)
Q(ζm) (cmℓ) =

{
cm if ℓ ∈ Σ or ℓ|m
Pℓ(V

∗(1), σ−1
ℓ ) · cm otherwise

,

where σℓ is the image of Frobℓ in Gal(Q(ζm)/Q).

The primary utility of an Euler system is that if one can prove its non-vanishing (and certain local
conditions) then one obtains bounds on Selmer groups.

In [Kat04], Kato constructs an Euler system {zKato
m } associated to an elliptic curve E (or, more

generally, a modular form) by pushing forward classes in the étale cohomology of modular curves.
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If we fix m and set H1
Iw(Q(ζmp∞), VpE) =

(
lim←−nH

1(Q(ζmpn), TpE)
)
⊗Zp Qp then the system

{zKato
mpn }n≥1 defines an element zKato

mp∞ ∈ H1
Iw(Q(ζmp∞), VpE). When p is a prime of good reduction

for E, Perrin-Riou has constructed a map

L : H1
Iw(Q(ζmp∞), VpE)→ H⊗ Dcris(VpE)

interpolating the Bloch-Kato logarithm, where H is the ring of rigid analytic functions on the rigid
space W parameterising characters of Z×

p . When α is a root of the polynomial

X2P (VpE,X
−1) = X2 + apX + p

of p-slope < 1, Kato proves that the projection of L(zKato
mp∞) to the α-eigenspace of Dcris(VpE) is a

rigid analytic function with prescribed growth depending on the slope of α and whose specialisations
at finite order characters χ of Z×

p are, up to an explicit non-zero factor, equal to the value at s = 1
of the twisted L-function L(E,χ, s). We call such a function a p-adic L-function for E, and a result
linking the Bloch-Kato logarithm of (the bottom class of) an Euler system with L-values is called
an explicit reciprocity law.

In summary, Kato showed that

L(E, 1) ̸= 0 =⇒ zKato
0 ̸= 0 =⇒ H1

f (Q, VpE) = 0,

where the last implication is from the bounds on Selmer groups given by a non-vanishing Euler
system. Since H0(Q, VpE) = 0 we have proved one implication of Bloch–Kato when ran = 0.

1.1.3 Automorphic forms and p-adic variation

Applying Kato’s method to elliptic curves uses as crucial input the modularity theorem of Wiles
et.al. which implies that the Tate module of a rational elliptic curve occurs in the étale cohomology
of a modular curve. The following folklore conjecture is a vast generalisation of the modularity
theorem (see, for example, [BG10, Conjecture 3.2.1]).

Conjecture 1.1.6. Any irreducible geometric p-adic representation

ρ : GQ → GLn(Q̄p)

is automorphic in the sense that there is an algebraic (in the sense of Clozel [Clo]) automorphic
representation π of GLn(AQ) such that

WDp(ρ) = rec(πp ⊗ |det|
1−n
2 )

where rec is the local Langlands correspondence and WDp(ρ) is the Frobenius semisimple Weil–
Deligne representation associated to ρ at p.

Since automorphic L-functions are generally more amenable to analysis (for example, the functional
equation and meromorphic extension of automorphic L-functions for GLn are known) it behooves
us to study the automorphic side of things. In the special case of abelian surfaces, the above
conjecture is given by the paramodular conjecture:

Conjecture 1.1.7. Let A/Q be an abelian variety satisfying EndQ(A) = Z and of conductor N .
Then there is a Siegel modular form fA of weight (2, 2) and paramodular level N whose associated
p-adic (spin) GQ-representations coincides with the p-adic Tate module of A.

The Galois representations associated to Siegel forms of weight (2, 2) do not occur in the étale
cohomology of Siegel modular threefolds. In order to work with these Galois representations (and
indeed, in order to construct them) we need to work with p-adic families of Siegel modular forms.

In [Ser73], Serre defined p-adic modular forms as p-adic limits of classical modular forms and
used his Eisenstein family to give a new construction of the p-adic L-function of Kubota–Leopoldt
interpolating the values of the Riemann zeta function at odd negative integers. Serre’s space of
p-adic modular forms comes equipped with an action of the Hecke operators {Tℓ}ℓ ̸=p, Up but is
rather unwieldy and, in particular, the operator Up has an extremely large continuous spectrum.
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Serre’s p-adic modular forms were refined by Katz [Kat73] who defined a subspace of p-adic modular
forms, called overconvergent modular forms. Whereas p-adic modular forms arise as global sections
over the ordinary locus 1 of the modular curve, Katz defines overconvergent forms as sections which
‘overconverge’ to small neighbourhoods of the ordinary locus. The space of overconvergent modular
forms of fixed radius of overconvergence and tame level N is a Banach space admitting an action
of the Hecke operators {Tℓ}ℓ ̸=p, Up, the latter of which acts compactly, allowing for a rich spectral
theory. Using Serre’s Eisenstein family, Coleman was able to define overconvergent modular forms
of an arbitrary p-adic weight and showed that they vary in families, eventually culminating in the
construction of the eigencurve by Coleman–Mazur [CM98], a rigid analytic curve whose points
parameterise eigensystems of overconvergent eigenforms with finite Up-slope. The construction
of the eigencurve has been generalised to automorphic forms over more general groups by work
of Buzzard [Buz07], Urban [Urb11], Johansson–Newton [JN19], Ash-Stevens [AS08], Andreatta–
Iovita–Pilloni [AIP15] among others. The resulting rigid spaces are known as eigenvarieties, and
their points parameterise Hecke eigensystems of finite-slope automorphic forms.

A different approach to p-adic modular forms was given by Hida, who realised one could get a
good, and in particular integral, theory of p-adic modular forms by focusing only on those that
are ordinary; their Up eigenvalue is a p-adic unit. Hida shows that ordinary modular forms vary
p-adically in families known as Hida families. Unlike the theory of overconvergent forms which
has a predominantly p-adic analytic flavour, the theory of Hida families takes on a more algebraic
shape; the interpolating spaces considered in Hida theory are projective limits of classical spaces
and are projective over the Iwasawa algebra. The space of ordinary p-adic forms can be obtained
directly from the space of p-adic modular forms via an ordinary idempotent which can be defined
algebraically and in particular does not require any Banach structure.

Central to the theories of both Coleman and Hida are control theorems which allow one to isolate
classical forms within a p-adic family using the action of the Up-operator. In Section 4 we generalise
control theorems of Hida and Tilouine–Urban to the setting of reductive groups which are quasi-
split at p.

1.1.4 Overconvergent cohomology

Let Γ1(N) ⊂ SL2(Z) be the usual congruence subgroup of level N coprime to p. For k ≥ 2 and L
a field of characteristic 0 the classical Eichler–Shimura isomorphism identifies group cohomology
with spaces of classical modular forms:

H1(Γ1(N),Symk−2L2) ∼= Sk(Γ1(N), L)⊕ Sk(Γ1(N), L)⊕ Ek(Γ1(N), L),

where Sk(Γ1(N), L) is the space of weight k cusp forms for Γ1(N) with Fourier coefficients in L
and Ek(Γ, L) is the space of weight k complex Eisenstein series. The isomorphism is equivariant
for the action of the Hecke operators on both sides and canonical when L = C. This isomorphism
has been vastly generalised by work of Franke [Fra98].

The above isomorphisms motivate the use of one of our main tools, the overconvergent cohomology
of Ash–Stevens. Ash–Stevens define large modules D of p-adic distributions equipped with an action
of a monoid Σ containing Γ1(N). The cohomology groups H1(Γ1(N)∩Γ0(p),D) are p-adic Banach
spaces admitting an action of the Hecke operators Tℓ for ℓ ∤ Np and Up with Up acting compactly.
One can use these cohomology groups to construct a rigid analytic space parameterising the Hecke
eigensystems occurring in H1(Γ1(N),Symk−2Q2

p) with finite Up-slope. By a theorem of Chenevier
[Che05], this ‘cohomological’ eigencurve is isomorphic to the Coleman–Mazur eigencurve. The
study of overconvergent cohomology has both pros and cons compared to Coleman’s families of
overconvergent modular forms. For our applications we restrict ourselves to noting that, for a neat
congruence subgroup Γ ⊂ SL2(Z), since the complex upper half plane H is the universal cover of
Y (Γ) := H/Γ with fundamental group Γ, there is an isomorphism of cohomology groups

H1(Γ,Symk−2L2) ∼= H1
B(Y (Γ)(C),Symk−2L2)

where the right hand side is Betti cohomology of Y (Γ)(C) with coefficients in the local system
induced by Symk−2L2. The Betti-étale comparison isomorphism then identifies

H1(Γ,Symk−2Q2
p)
∼= H1

ét(Y (Γ)Q̄,Sym
k−2Q2

p),

1We remove the points corresponding to elliptic curves which are supersingular at p.
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where the right hand side is the absolute étale cohomology of the Q-curve Y (Γ)Q with coefficients
in the lisse étale sheaf associated to Symk−2Q2

p. The cohomology classes we will be working with
will naturally live in Betti and étale cohomology and so the above isomorphisms provide us an
avenue to constructing families of classes over subspaces of the eigencurve.

There is a general theory of overconvergent cohomology for the class of reductive groups G admit-
ting discrete series representations. This theory was developed in this generality by Urban [Urb11]
who used it to construct eigenvarieties in this setting. In general the representation Symk−2L2

will be replaced by an L-linear irreducible algebraic representation Vλ associated to a character
λ ∈ X•(TG) of a maximal torus TG. For applications to the Birch–Swinnerton-Dyer conjectures
we want to work with G = GSp2g for g ≥ 1. Automorphic forms for G include the classical genus
g Siegel modular forms. We will focus on how to generalise Kato’s argument for g = 1 to the case
g = 2 which is where the necessity of working with p-adic families first appears.

Recall that the paramodular conjecture associates to an abelian surface a weight (2, 2) Siegel
modular form of paramodular level. Much like weight 1 modular forms, the eigensystems of
these forms do not occur in classical cohomology (their weight is not cohomological). The Hecke
eigensystems of these forms do however exist as a p-adic limit of forms of cohomological weight,
giving a point on the eigenvariety E for G. One can define a Galois representation associated
to these forms by p-adic interpolation. Work of Loeffler–Skinner–Zerbes [LSZ21] associates an
Euler system, the Lemma–Flach Euler system, to cohomological weight Siegel modular forms by
pushing forward canonical classes in the étale cohomology of Siegel threefolds. By varying these
Euler system classes in a family over a subspace of E we hope to construct an Euler system for
weight (2, 2) forms by interpolation, giving us access to the first step in our adaptation of Kato’s
argument. In recent work, Loeffler–Zerbes [LZ21] have succeeded in constructing an Euler system
for ordinary abelian surfaces using the above method and have applied Kato’s method to prove
new cases of Birch–Swinnerton-Dyer. In Section 5 of this thesis we show how one can interpolate
the Lemma–Flach Euler system in non-ordinary families, taking the first step in applying Kato’s
argument to a class of non-ordinary abelian surfaces.

1.1.5 Loeffler’s machine

Whereas most of the discussion above has been focused on the classical cases of GSp2g for g ≥ 1,
the constructions of this thesis will often be applied in much greater generality. The jumping off
point is Loeffler’s machine for constructing norm compatible elements [Loe21] in the cohomology of
locally symmetric spaces. The generality of this material makes any exposition rather cumbersome,
so the author hopes you will forgive him some vagueities,2. Fundamental in this construction is
the theory of spherical varieties:

Definition 1.1.8. Let H ↪→ G be an embedding of connected reductive group schemes. The pair
(G,H) is called a spherical pair if H has an open orbit on the flag variety FG := Q̄G\G where QG
is a choice of parabolic subgroup of G and Q̄G is its conjugate under the long Weyl element of G.

Remark 1.1.9. The definition of a spherical pair is usually reserved for the case that QG is a Borel
subgroup of G, so if we were being super fastidious we might call the above pairs QG-spherical to
emphasise the dependency on the parabolic QG but we aren’t and we won’t.

In practice we want finer control over the open orbit. Let QH be a parabolic subgroup of H with
Levi decomposition QH = LH ⋉NH and suppose there is a normal algebraic subgroup L0

H ⊂ LH
such that for Q0

H := L0
G ⋉NH ⊂ QH (such a subgroup is a called a mirabolic subgroup) we have

• An element u ∈ G(Zp) mapping to [u] ∈ FG such the Q0
H -orbit of [u] is Zariski open.

• A subgroup Q0
G = L0

G ×NG ⊂ QG such that uQ0
Hu

−1 ∩ Q̄G ⊂ Q0
G.

Obviously the second point can be made to be trivial, but taking smaller Q0
G allows us to work

with a greater range of weights.

For open compact subgroups KH ⊂ H(Zp),KG ⊂ G(Zp) let YH(KH), YG(KG) be the locally
symmetric spaces for H,G level KH ,KG at p and some fixed tame level, chosen so that we have a

2The dictionary defies coldly my assertion that vagueities is a real English word, but I will wash my hands in
the cauldron of Hell before I concede.
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closed immersion
ι : YH(KH) ↪→ YG(KG).

Let VH , VG be irreducible algebraic representations of H,G respectively and by abuse of notation
use the same notation for their induced local-systems/lisse étale sheaves as appropriate.

Given a map
ι# : VH → ι∗VG

we obtain a pushforward map on cohomology groups

ι∗ : Hi(YH(KH), VH)→ Hi+c(YG(KG), VG),

where c is essentially the real codimension of YH(KH) in YG(KG) modulo a central irritation.
Define

Hi
Iw(Q

0
H , VH) = lim←−

KH⊃Q0
H

Hi(YH(KH), VH)

for a suitable3 cohomology theory Hi with appropriate coefficients VH .

Theorem 1.1.10. Let H,G,Q0
H , Q

0
G be as above and let ξH ∈ Hi

Iw(Q
0
H , VH) be a system of norm

compatible elements for H. Then there is an element

ξG := ([u]∗ ◦ ι∗)(ξH) ∈ Hi+c
Iw (Q0

G, VG)
fs

where the superscript refers to the finite-slope part of cohomology for a choice Hecke operator at p
depending on the parabolic QG.

When ξH arises as the realisation of some canonical classes in motivic cohomology we expect ξG
to be related to motivic L-functions i.e. the p-part of an Euler system or related to a p-adic
L-function.

Example 1.1.11. When H = GL2 ×GL1
GL2, G = GSp4 then the subgroup

Q0
H = {( x ∗

1 )× ( x ∗
1 )}

has an open orbit on the flag variety Q̄G\G associated to the Siegel parabolic

QG =

( ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗ ∗

)
∩GSp4.

Loeffler’s machine applied to cup products of Beilinson’s Eisenstein classes provides a construction
of the Lemma-Flach Euler system of [LSZ21] along with the proof of the p-direction norm relations.

Given this general p-adic theory of Euler systems, one can ask whether there is a general theory
of variation in families. This is answered in the affirmative for ordinary (or ‘Hida’) families by
Loeffler–Zerbes and the author in [LRZ21], the origins of which can be found in this thesis. The
situation of Coleman (non-ordinary) families is considered in the final part of this thesis.

Remark 1.1.12. There is (in some sense) an automorphic counterpart to this theory due to work
of Sakellaridis–Venkatesh on the relative Langlands programme. Let G,H be as above and recall
that a cuspidal automorphic representation Π of G(A) is called H-distinguished if there is φ ∈ Π
such that

P(φ) =
∫
[H]

φ(h)dh ̸= 0.

Associated to a spherical pair (G,H) we have a spherical variety X = G/H. Suppose for simplicity
that G is split. We can associate to X a split reductive group GX and a general principle states
(roughly) that a cuspidal automorphic representation Π of G is H-distinguished if and only if Π is
a functorial transfer from GX(A) plus an additional condition featuring L-functions. An additional
principle states that the functorial transfer condition is essentially equivalent to the existence (for
almost all primes v) of Π′

v in the local Vogan L-packet of Πv which is H-distinguished (there are

3‘suitable’ refers to Loeffler’s theory of cohomology functors [Loe21, Section 2]. In practice these will be Betti or
étale cohomology depending on whether we want to construct Euler systems or p-adic L-functions.
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various technical reasons why this principle is probably wrong as stated, hence its status as a
principle and not a conjecture).

The Ichino–Ikeda conjecture gives a formula for the square of P(φ) in terms of the L-function of Π
multiplied by some local data and thus when Π is H-distinguished we expect the integral to give
us information about the L-values of Π, and the above principle suggests that we should be able
to find Π′ in the (Vogan) L-packet of Π such that P(φ) ̸= 0 for some φ ∈ Π′.

The interpolation of period integrals such as P(φ) plays an important role in constructing p-adic
L-functions; see, for example, [LPSZ19], [BSDW21] and so this consonance of the above theory of
cohomological classes with the theory of Sakellaridis–Venkatesh is of explicit utility in the pursuit
of automorphic Iwasawa theory.

1.2 Contents of this thesis

We give an overview of the work contained in this thesis.

1.2.1 Plus/Minus p-adic L-functions for GL2n

This work has appeared, modulo minuscule revisions, in Annales mathématiques du Québec [Roc22].

As the material in this chapter is somewhat disjoint from subsequent chapters, we give a brief
motivation for the theory.

Let V be a geometric p-adic GQ-representation with integral GQ-lattice T and let d−(T ) =
rankV c=−1 be the the rank of the −1 eigenspace for complex conjugation. Assume for simplicity
that V is crystalline at p. Set

r(V ) := max{0, d−(T )− Fil0DdR(V )}

We say that V satisfies the rank r Panchishkin condition at p if r(V ) = r, r(V ∗(1)) = 0 and there
is a subspace V + ⊂ V satisfying

• V + is stable under GQp ,

• V + has all Hodge-Tate weights ≥ 0,

• V/V + has all Hodge-Tate weights ≤ 0.

Such a local subrepresentation is called a Panchishkin subrepresentation. The existence of a Pan-
chishkin subrepresentations is related to the notion of ordinarity.

Example 1.2.1. Let F be a genus 2 weight 3 Siegel modular form with associatedGQ-representation
VF . If we set V = V ∗

F , then:

• V satisfies r(V ∗
F ) = 1, r(VF (1)) = 0 and satisfies the rank 1 Panchishkin condition if and only

if F is ordinary for the Hecke operator

T (p) =

(
1
1
p
p

)
.

• V (−1) satisfies r(V (−1)) = 0, r(V ∗(2)) = 0 and satisfies the rank 0 Panchishkin condition if
and only if F is ordinary for the Hecke operator

T1(p
2) =

(
1
p
p

p2

)
.

Let Λ be the Z×
p Iwasawa algebra, which can be embedded as the bounded-by-1 sections over the

weight space W. The rank 0 Panchishkin condition is thought to be the ‘correct’ condition for a
bounded p-adic L-function Lp(V ) ∈ Λ[1/p] to exist for V . In this case the Iwasawa main conjecture

for V says that the characteristic ideal of a ‘Greenberg-Iwasawa’ Selmer group H̃1(Q, T ⊗ Λ) is
generated by Lp(V ). When the rank 0 Panchishkin condition is not satisfied we can often still
construct unbounded p-adic L-functions living in H whose growth is determined by a choice of

11



eigenvalue of the Frobenius φ acting on Dcris(V ). A natural question to ask is if there is an
analogous Iwasawa theory for these unbounded p-adic L-functions.

Assume for the rest of this section (for ease of notation) that p > 2. One approach to ‘non-ordinary’
Iwasawa theory has been initiated by Pollack [Pol03] and Kobayashi [Kob03]. Given a prime to
p level modular newform f of weight k and nebentype χ one can construct a p-adic L-function
Lp,α(f) for each root α of the Hecke polynomial

X2 − ap(f)X + χ(p)pk−1 (1)

of growth vp(α). Suppose further that f satisfies ap = 0. In this case both roots of (1) satisfy
vp(α) > 0 and as a result neither of our p-adic L-functions are bounded. In this setting Pollack
[Pol03] constructs bounded ‘± p-adic L-functions’ L±

p (f) satisfying

Lp,α(f) = log+k L
+
p (f) + log−k L

−
p (f),

where log±k are weight k ‘half-logarithms’ and are explicitly defined with prescribed zeroes. Using
these ‘plus/minus’ L-functions, Kobayashi [Kob03] (for elliptic curves) and Lei [Lei11] (weight ≥ 2
modular forms) define ±-Selmer groups and formulate analogues of the Iwasawa main conjecture for
these objects. Using Kato’s Euler system, the respective authors were able to prove one inclusion
in their ±-main conjectures. The full conjecture for GL2 has been proved by Xin Wan [Wan16]
in many cases and as a corollary used to prove full BSD for an infinite family of elliptic curves
without complex multiplication.

In the paper [Roc22] we generalise the construction of plus/minus p-adic L-functions to certain
cuspidal automorphic representations of GL2n.

To be precise, let Π be a cuspidal automorphic representation of GL2n unramified at p and admit-
ting a Shalika model 4. Denote the Satake parameters at p by α1, . . . , α2n, ordered by increasing
p-adic valuation (after fixing an isomorphism C ∼= Q̄p). Suppose that

αn + αn+1 = 0,

and that Π has sufficiently small slope at p in a precise sense. Given a p-stabilisation of Π satisfying
certain technical conditions, Barrera–Dimitrov–Williams [BSDW21] have constructed a p-adic L-
function Lp(Π) ∈ O(W) interpolating the critical values of the complex L-function L(Π). In this
paper the following theorem has been proved under some further constraints on Π:

Theorem 1.2.2. Suppose the parameters α1, . . . , αn−1 are such that the product
∏n−1
i=1 αi has the

smallest possible valuation. Then there are bounded rigid functions L±
p (Π) ∈ O(W)◦ satisfying

Lp(Π) = log+p L
+
p (Π) + log−p L

−
p (Π),

where the locus of zeroes of log+(Π) ∈ O(W) (resp log−p (Π)) is given precisely by characters of Z×
p

of the form θ · xj where j is a critical integer for Π and θ is a finite-order character of even (resp.
odd) p-power order.

This generalises work of Pollack [Pol03] in the case of GL2. As a novel application of this con-
struction, we use the fact that bounded functions on W have finitely many zeroes to prove the
following theorem:

Theorem 1.2.3. Under some technical assumptions on the complex L-function L(Π), for infinitely
many p-power Dirichlet characters we have

L(Π⊗ χ, ω + 1

2
) ̸= 0,

where ω is the purity weight of Π.

4An automorphic representation Π of GLn(Af ) admits a Shalika model if it is globally distinguished for a
particular subgroup known as the Shalika subgroup. A special case of a the general theory of Sakellaridis–Venkatesh
discussed in Remark 1.1.12 shows that this is equivalent to Π being the Langlands transfer of an automorphic
representation of GSp4.
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This theorem extends work of Dimitrov–Januszewski–Raghuram who work under the assumption
of Borel-ordinarity [DJR20].

Remark 1.2.4. We note that while we have labelled this under the banner of ‘non-ordinary’
Iwasawa theory, for n > 1 we are still operating under an ordinarity hypothesis, namely Siegel
ordinarity. This corresponds to the existence of an (n − 1)-dimensional subrepresentation of the

GQp -representation rec(Πp ⊗ |det|
1−n
2

p ). For n = 2 this is precisely the condition under which
we expect the existence of a rank 1 Euler system, an expectation which has been realised in the
construction of the Lemma-Flach Euler system of Loeffler–Skinner–Zerbes [LSZ21]. Note that
this does give us a construction of bounded measures in a case where we do not have the rank 0
Panchishkin condition.

The construction of signed p-adic L-functions for GL2n has been generalised by Lei–Ray [LR20]
who have managed to relax the condition αn+αn+1 = 0. They formulate signed main conjectures
using their signed p-adic L-functions.

1.2.2 Interpolating Iwahori level Lemma-Flach classes

Let H = GL2 ×GL1
GL2, G = GSp4 and let a, b,m ≥ 0 and a ≥ q ≥ 0, b ≥ r ≥ 0 be integers. In

[LSZ21] Loeffler–Skinner–Zerbes construct classes

c1,c2z
[a,b,q,r]
M,m,n ∈ H

4
ét(YG(M,pm, pn),Da,b(−q))

where the notation is as in op.cit. The tuple [a, b, q, r] parameterises the branching law describing
how the algebraic representation Da,b(−q) breaks up into irreducible representations after restric-
tion to H. The (Siegel) ordinary part of these classes satisfy the Euler system norm relations
after projecting to Galois cohomology. These classes can be constructed using Loeffler’s machine
(Theorem 1.1.10) by noting that the mirabolic subgroup

Q0
H = {( x ∗

1 )× ( x ∗
1 )}

of the Siegel parabolic QS = {(A X
B ) ∈ G : A,B ∈ GL2, X ∈ M2} has an open orbit on the Siegel

flag variety FS = Q̄S\G.

In Section 9 of op.cit the authors construct Iwasawa cohomology classes

c1,c2zét ∈ H4
Iw(NS(Zp),Zp)

where NS is the unipotent radical of QS , and moment maps

mom[a,b,q,r]
m,n : H4

Iw(NS(Zp),Zp)→ H4
ét(YG(M,pm, pn),Da,b(−q))

satisfying

mom[a,b,q,r]
m,n (c1,c2zét) = c1,c2z

[a,b,q,r]
M,m,n .

In [LZ20b] these classes are used to construct Galois cohomology classes

c1,c2z
[Π,r]
Iw ∈ H1

Iw(Q(ζMp∞),WΠ),

where Π is a one-parameter family of Siegel ordinary Hecke eigensystems, WΠ is the Λ-adic Galois
representation associated to Π and r ≥ 0 is fixed. These classes interpolate the Lemma–Flach
Euler system classes

c1,c2z
[Π(n),q,r]
m ∈ H1(Q(ζMpm),WΠ(n))

where Π(n) is a classical specialisation of Π at an integer n.

What we are doing here is varying the variables (a, q) occurring in the branching law. We would
like to construct a class

z
[Π′]
Iw ∈ H1

Iw(Q(ζMp∞),WΠ′ ⊗ Λ)

for Π′ a family of ordinary eigensystems varying in both weight variables a, b and WΠ′ is a family
of Galois representations interpolating the Galois representations of classical specialisations of Π′,
interpolating the classes

c1,c2z
[Π′(a,b),q,r]
m ∈ H1(Q(ζMpm),WΠ(a,b))
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for all a, b, q, r occurring in the branching law. Siegel-ordinarity is too weak of a condition to allow
for such variation; the quotient of the Siegel Levi subgroup by its derived subgroup is a rank 2
torus so we can only ever hope to vary two variables in this setting.

In Chapter 3 we consider the modified groups G̃ = G × GL1 and H̃ = H × GL1. The natural
extension BG̃ := BG × GL1 of the Borel subgroup of G to G̃ has unchanged flag variety and
moreover the subgroup

Q0
H̃
(R) := {( x ∗

y )× ( xy ∗
1 )× (y) : x, y ∈ R×}

has an open orbit on the flag variety for BG̃. Using Loeffler’s machine we obtain classes

c1,c2 z̃
[a,b,q,r]
Iw ∈ H4

Iw(BG̃(Zp), D̃
a,b ⊗ µqσr−q)ord

where (·)ord denotes the ordinary subspace for the Hecke operator at p associated to the Borel
subgroup, D̃a,b is an explicit twist of Da,b, µ is the similitude character on G and σ is the projection
of G̃ to its GL1 factor. We are then able to construct moment maps

mom[a,b,q,r] : H4
Iw(BG̃(Zp),Zp(3))→ H4

Iw(BG̃(Zp), D̃
a,b ⊗ µqσr−q)

satisfying

mom[a,b,q,r](c1,c2 z̃
[0,0,0,0]
Iw ) = c1,c2 z̃

[a,b,q,r]
Iw .

Pushing forward to Galois cohomology gives us the required class varying in a 4-parameter family.
This fulfils the promise of [LZ20b, Remark 17.3.10], rectifying that papers contemptible cowardice.

1.2.3 Derived control theorems for reductive groups

The classical control theorem of Hida gives us precise information as to when the specialisation
of a Λ-adic eigensystem is classical. To be precise, for integers k ≥ 0, r ≥ 1 let Ik,r be the ideal
of Λ = Zp[[Z×

p ]] generated by the elements [1 + pr] − (1 + pr)k, where square-brackets refer to
group-like elements. Note that this is the image of the kernel of the homomorphism

Λr := Zp[[1 + prZp]]→ Z×
p

[x] 7→ xk

under the natural inclusion Λr → Λ. If we define

H1
ord(Γ1(p

∞),Zp) = lim←−
r

H1
ord(Γ1(p

r),Zp),

where ord refers to the subspace on which Up acts invertibly, then this is a projective Λ-module
and Hida’s control theorem (in this particular case due to Ohta [Oht99]) gives an isomorphism

H1
ord(Γ1(p

∞),Zp)/Ik,r ∼= H1(Γ1(p
r),Symk−2Z2

p).

In particular one sees that one can construct families of ordinary Hecke eigensystems in ‘infinite p-
level’ cohomology groups whose specialisations at classical points give classical Hecke eigensystems
by classical Eichler–Shimura theory. This approach was utilised by Tilouine–Urban [TU99] in order
to construct several variable families of Hecke eigensystems specialising to Hecke eigensystems of
classical Siegel–Hilbert cusp forms.

We generalise previous work of Hida [Hid95] for SLn and Tilouine-Urban [TU99] for GSp4 and
prove control theorems for the Betti cohomology of locally symmetric spaces associated to a large
class of reductive groups. As in the above cases, the Betti cohomology groups carry a natural Hecke
action and our theorems give precise information about when one can lift an ordinary integral Hecke
eigensystem to a family of eigensystems taking values in an Iwasawa algebra. Unlike in the case of
SL2 we will in general have non-vanishing infinite p-level ordinary cohomology groups outside of
the middle degree. This suggests that the correct generalisation of Hida’s control theorem should
use the language of derived categories.

More precisely, let G be a connected reductive Q-group which is quasi-split at a prime p. Let
Q = MQNQ ⊂ G be a parabolic subgroup with Levi MQ and unipotent radical NQ, and let
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K = KpK
p ⊂ G(Af ) be an open compact subgroup of G(Af ). We consider the locally symmetric

space
SK = G(Q)\G(A)/K ·K∞

where K∞ is the product of a maximal compact subgroup for Gder(R) and the real points of the
centre of G. Let K0(p

n) ⊂ G(A) be the depth n parahoric subgroup associated to Q and let K1(p
n)

be the points of K0(p) which are in NQ(Z/pnZ) mod pn. Suppose L/Qp is a finite extension over
which G splits with ring of integers OL. Given an irreducible OL-linear representation Vλ of G/OL
of highest weight λ ∈ X•(MQ) we can construct a locally constant sheaf Vλ on SK . The Betti
cohomology RΓ(SKpK?(p),Vλ) carries a natural action of the Hecke operator UQ associated to Q.
Define the Q-ordinary cohomology of SKpK?(pn)

RΓQ−ord(SKpK?(pn),Vλ) := eQRΓ(SKpK?(pn),Vλ),

where eQ := limn U
n!
Q is the ordinary idempotent associated to Q. Denote by Λ = Λ(SG) the

Iwasawa algebra OL[[SG]], where SG = MQ(Zp)/Mder
Q (Zp) and for n ≥ 1 let Λn be the Iwasawa

algebra of Sn = {s ∈ SG : s ≡ 1 mod pn}.

Theorem 1.2.5. For all λ as above there is a perfect complex M•
λ ∈ D(Λ) concentrated in degrees

[0, ν] satisfying
Hi(M•

λ) = lim←−
n

Hi
Q−ord(K1(p

n),Vλ/pn)

and for all χ as above there is a quasi-isomorphism

M•
λ ⊗LΛn O

(χ)
L ∼ RΓQ−ord(K1(p

n),Vλ+χ),

for n ≥ 1 and a quasi-isomorphism

M•
λ ⊗LΛ O

(χ)
L ∼ RΓQ−ord(K0(p),Vλ+χ).

We also construct pairings on ordinary cohomology in the case that Q = B is a Borel subgroup
and give criteria for localisations of the cohomology of M•

λ to vanish outside the middle degree d,
at least after taking invariants under the prime-to-p part ∆ of SG, in which case Hd

Q−ord(M
•
λ)

∆ is
a projective Λ-module.

The techniques used Chapter 4 are analogous to those used in the previously cited papers of
Hida and Tilouine–Urban, however those papers do not work in the derived setting, as we do.
Furthermore, this paper is intended to be used as a toolkit for those wanting to work with Euler
systems in families. The papers of Hida and Tilouine–Urban work with Qp/Zp- coefficients, and
thus are not directly applicable to Euler systems constructed using the methods of Loeffler-Zerbes
et.al. which exist in étale cohomology with Zp-linear coefficients. The results of Chapter 4 have
already found applications in a general construction of Euler systems in ordinary families in the
work of Loeffler–Zerbes and the author [LRZ21].

1.2.4 Spherical varieties and non-ordinary families of cohomology classes

Previously we gave an example of how interpolating cohomology classes is an indispensable tool for
work on the Bloch–Kato conjectures. In Chapter 5 we construct a family of Euler systems varying
over a family of Borel-ordinary Siegel forms. This construction has been massively generalised by
Loeffler–Zerbes [LRZ21] and the author to include classes constructed using Loeffler’s machine i.e.
spherical pairs of reductive groups (G,H). In these constructions we always make an ordinarity
assumption with respect to some parabolic subgroup QG of our reductive group G. An algebraic
automorphic representation unramified at p is QG-ordinary if a certain parahoric Hecke operator
UQ (determined by QG) at p has an eigenvalue which is a p-adic unit (for some embedding of the
field of definition into Q̄p).

Example 1.2.6. In the case of GL2, weight 2 modular forms with rational Fourier coefficients
which are ordinary at p correspond to elliptic curves which are ordinary at p, so by focusing on
ordinary forms we miss out on curves which are supersingular at p.
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In this paper we relax the ordinarity assumption of [LRZ21] and construct cohomology classes
varying in p-adic families with only a finite slope assumption; the Hecke operator UQ has a non-
zero eigenvalue. Under an additional non-critical slope condition, requiring the Hecke operator UQ
to instead have an eigenvalue of slope less than a prescribed value determined by the weight, we
show that these classes can be pushed forward into Galois cohomology. We show that in the case
of GSp4 this construction can be used to give Galois cohomology classes interpolating the Lemma–
Flach Euler system of Loeffler–Skinner–Zerbes [LSZ21] with full variation in the weight variables.
One expects that the image of this class under the ‘overconvergent Perrin-Riou regulator’ should
be related to a multi-variable p-adic L-function interpolating the p-adic L-functions of a family of
Siegel modular forms as they vary in a Coleman family.

We assume the setting of Loeffler’s machine i.e. we have a spherical pair of reductive groups (G,H)
and we have constructed norm-compatible cohomology classes

z[λ]r ∈ Hi(Ir, Vλ)
fs

for5 r ≥ 0 and λ ∈ X•(SG) where SG = MG/M
der
G is the maximal torus quotient of the Levi of

QG and Ir is the depth r Iwahori subgroup. In this paper we construct ‘large’ cohomology classes

interpolating the classes z
[λ]
0 as λ varies over the weight space WG parameterising continuous

characters of SG(Zp)/S0
G(Zp), where S0

G is the image of Q0
G in SG. We show that one can use this

construction to interpolate the Lemma-Flach Euler system classes in Coleman families of Siegel
modular forms.

This construction generalises previous constructions of large Euler system classes in the case of
G = GL2 ×GL1

GL2, H = GL2 (Beilinson–Flach case [LZ16]), G = GL2, H = ResE/Q(GL1) for
E an imaginary quadratic field (Heenger point case [JLZ21]), G = GL2 × GL2 × GL2, H = GL2

(diagonal cycle case [BSV20]). The method is inspired by the last of these papers and differs greatly
from the first two. In the Beilinson–Flach and Heegner point cases the authors work with modules
of p-adic distributions and treat interpolation in the weight and cyclotomic variables separately. In
the diagonal cycle case the authors use modules of p-adic analytic functions (of which the spaces
of distributions are their duals). Using these modules of analytic functions it is straightforward to
interpolate the algebraic branching maps and include the cyclotomic variable as part of the whole
package. We develop the method of [BSV20] in the following novel ways:

• The methods of [BSV20] involves pushing forward the trivial class in the 0-degree cohomology
of the trivial representation. Our method interpolates branching laws corresponding to any
irreducible H-representation of an irreducible G-representation and expands the family of
classes one can pushforward to a much wider class including Beilinson’s Eisenstein classes.

• Our methods require no compatibility between the parabolics chosen for H and G.

• We develop a theory of locally Iwasawa functions. The modules of these functions sit between
the modules of locally analytic functions of differing analytic radii and are profinite, giving
us greater control over the étale cohomology groups utilised in the construction of Galois
cohomology classes.

We show how, in the étale case, we can project these classes into H1(Q,WΠ) for a family of Galois
representations WΠ varying in a Coleman family Π passing through a small-slope classical point.

In [LZ21] the authors crucially utilise the interpolation results of [LRZ21] to prove cases of Birch–
Swinnerton-Dyer for abelian surfaces satisfying an ordinarity condition at p. The construction of
the large Lemma–Flach class in this paper is expected to be the first step in extending these results
to the non-ordinary setting.

2 Plus/Minus p-adic L-functions for GL2n

2.1 Introduction

Let f =
∑∞
n=0 anq

n be a normalized cuspidal newform of weight k and level N with character ε,
and let p be a prime such that p ∤ N . Let α be a root of the Hecke polynomial X2−apX+pk−1ε(p)

5the norm relation at r = 0 does not follow immediately from Loeffler’s machine and will be given by some Euler
factor.
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which, after fixing an isomorphism Q̄p ∼= C, satisfies r := vp(ap) < k − 1, where vp is the p-adic
valuation on Cp normalized so that vp(p) = 1. From this data we can construct an order r locally

analytic distribution L
(α)
p on Z×

p whose values at special characters interpolate the critical values

of the complex L-function of f and its twists. The arithmetic of L
(α)
p is well understood in the case

that f is ordinary at p i.e. when r = 0, but is more mysterious in the non-ordinary case, since the

unbounded growth of L
(α)
p means that it does not lie in the Iwasawa algebra, and hence cannot be

the characteristic element of an Iwasawa module.

In [Pol03] Pollack provides a solution to this problem in the case that ap = 0 by constructing
bounded distributions L+

p , L
−
p each of which interpolate half the values of the complex L-function

of f and its twists. Kobayashi [Kob03] and Lei [Lei11] have formulated Iwasawa main conjectures
using these ‘plus/minus p-adic L-functions’, shown them to be equivalent to Kato’s main conjecture
and proved one inclusion in these conjectures using Kato’s Euler system. The converse inclusion
has been proved in many cases by Wan [Wan16].

Now let Π be a cuspidal automorphic representation of GL2n(AQ). Suppose that Π is cohomological
with respect to some pure dominant integral weight µ, and that it is the transfer of a globally
generic cuspidal automorphic representation of GSpin2n+1(AQ). Let p be a prime at which Π is
unramified, and let α1, . . . , α2n be the Satake parameters at p. We call a choice of α =

∏n
i=1 αji

for {j1, . . . , jn} ⊂ {1, . . . , 2n} a p-stabilisation of Π. When a p-stabilisation α is non-critical
and under some further auxiliary technical assumptions Dimitrov, Januszewski and Raghuram
[DJR20] (ordinary case) and Barrera, Dimitrov andWilliams [BSDW21] construct a locally analytic

distribution L
(α)
p on Z×

p interpolating the L-values of Π. If we assume α satisfies a non-critical
slope condition then this p-stabilisation is non-critical, although this is a stronger condition. We
show that that there are at most two choices of α satisfying the non-critical slope condition and

thus at most two non-critical slope L
(α)
p can be constructed from a given Π.

There is an increasing filtration Dr(Z×
p ,Cp) on the space D(Z×

p ,Cp) of Cp-valued distributions on
Z×
p which measures the ‘growth’ of the distribution in a precise way (Definition 2.2.15). The 0th

part of this filtration is the space of measures on Z×
p . The construction of [BSDW21] shows that

L(α)
p ∈ Dvp(α)(Z×

p ,Cp).

Suppose we have two non-critical slope p-adic L-functions for a given Π and suppose the following
condition, which we dub the ‘Pollack condition’, holds:

Pollack condition: αn + αn+1 = 0. (2)

We prove the following theorem, stated for an odd prime p:

Theorem 2.1.1. Let α be a p-stabilisation satisfying the non-critical slope condition and let
Crit(Π) be the set of critical integers for Π defined in Definition 2.2.20. There exist a pair of
distributions L±

p ∈ Dvp(α)−#Crit(Π)/2(Z×
p ,Cp) satisfying

L(α)
p = log+ΠL

+
p + log−ΠL

−
p ,

where log±Π ∈ D#Crit(Π)/2(Z×
p ,Cp) are distributions depending only on Crit(Π) of order #Crit(Π)/2.

If the valuation of
∏n−1
i=1 αi is minimal (see Proposition 2.2.22) the distributions L±

p are contained
in D0(Z×

p ,Cp). These distributions satisfy the following interpolation property for j ∈ Crit(Π):∫
Z×
p

xjθ(x)L+
p (x) = (∗)L(Π⊗ θ, j + 1/2)

log+Π(x
jθ)

for θ a Dirichlet character of conductor an even power of p, and∫
Z×
p

xjθ(x)L−
p (x) = (∗)L(Π⊗ θ, j + 1/2)

log−Π(x
jθ)

for θ a Dirichlet character of conductor an odd power of p, where the (∗) are non-zero constants.

When p = 2 the result holds with the signs of the distributions log±Π swapped.
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Remark 2.1.2. Since we assume that µ is pure, the condition that
∏n−1
i=1 αi be minimal is equiv-

alent to the statement that this p-stabilisation is P-ordinary (See [Hid98, Section 6.2]) where
P ⊂ GL2n is the parabolic subgroup given by the partition 2n = (n− 1) + 2 + (n− 1).

As an application we prove the following extension of the main result of [DJR20]:

Theorem 2.1.3. In the case that L±
p are bounded distributions, the purity weight w is even, and

Crit(Π) ̸= {w/2}, we have
L(Π⊗ θ, (w + 1)/2) ̸= 0

for all but finitely many characters θ of p-power conductor.

Remark 2.1.4. The assumption on the purity weight is to ensure that the central L-value is
critical.

Relation to other work: Since this paper first appeared in preprint form, Lei and Ray [LR20]
have used the results of this paper to formulate an Iwasawa main conjecture for Π, relating the
signed p-adic L-functions of Theorem 1.0.1 to signed Selmer groups. They have also generalised
the construction of the signed p-adic L-functions to allow certain cases with αn + αn+1 ̸= 0, using
the theory of Wach modules.

2.2 Preliminaries

2.2.1 p-adic distribution spaces

We recall the relevant theory of continuous functions on Z×
p . The main reference for this section

is [Col10, Section I.5].

Let L be a complete extension of Qp.

Definition 2.2.1. Define

C (Zp, L) := {f : Zp → L : f continuous},

the space of continuous L-valued functions on Zp.

If we equip C (Zp, L) the infimum valuation it becomes an L-Banach space in the sense of [Col10,
Section I.1].

Definition 2.2.2. For a ∈ Cp, h ∈ R define

B̄(a, h) = {z ∈ Cp : v(z − a) ≥ h}.

Write OB̄(a,h),L for the space of L-valued rigid functions on B̄(a, h).

We have an isomorphism
OB̄(a,h),L

∼= L⟨X − a⟩.

Definition 2.2.3. Define

LA(Zp, L) = {f : Zp → L : ∀a ∈ Zp,∃n ∈ Z≥0, Fa,n ∈ OB̄(a,h),L s.t. ∀z ∈ a+pnZp, f(z) = Fa,n(z)},

the space of L-valued locally analytic functions on Zp. This is the space of functions locally
described by a convergent power series.

Since Zp is compact, for any f ∈ LA(Zp, L) there exists (non-unique) n ∈ Z≥0, called the radius of
analyticity, such that the restriction of f to a+ pnZp is described by a power series for all a ∈ Zp.

Definition 2.2.4. Define for h ∈ Z≥0 a filtration

LAh(Zp, L) = {f ∈ LA(Zp, L) : f has radius of analyticity h}.

We call these locally h-analytic functions.
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We give the spaces LAh(Zp, L) a valuation vLAh in the following way: Let uh = (ph(1− p))−1 and
let vB̄(a,uh) be the valuation on OB̄(a,uh) given by

vB̄(a,uh)(f) = infm{vp(am) + nuh : f(X) =

∞∑
i=0

ai(X − a)i}.

An element f ∈ LAh(Zp, L) locally extends to such a power series and we define

vLAh(f) = infa∈ZpvB(a,uh)(f).

This gives LA(Zp, L) the structure of a Fréchet space.

Definition 2.2.5. Let r ∈ R≥0. Let f ∈ C (Zp, L). We say that f is of order r if there are
functions f (i) : Zp → L such that if we define

εh(f) = inf x∈Zp
y∈phZp

vp

f(x+ y)−
⌊r⌋∑
i=0

f (i)(x)yi/i!

 ,

then
εh(f)− rh→∞ as h→∞.

We denote the set of such functions by C r(Zp, L).

The space C r(Zp, L) is a Banach space with valuation given by

vC r (f) = inf

(
inf0≤j≤⌊r⌋,x∈Zp(

f (i)(x)

i!
), infx,y∈Zp (εn(f)− rvp(y))

)
.

For any r we have a continuous inclusion

LA(Zp, L) ↪→ C r(Zp, L)

with dense image, and C 0(Zp, L) = C (Zp, L)

Definition 2.2.6. Define
D(Zp, L) = Homcont(LA(Zp, L), L),

the space of locally analytic distributions on Zp.

The space D(Zp, L) admits the structure of a Fréchet space via the family of valuations given by
restricting to LAh(Zp, L) and taking the dual of vLAh .

Definition 2.2.7. Let r ∈ R≥0. Define

Dr(Zp, L) = Homcont(C
r(Zp, L), L).

The space Dr(Zp, L) embeds as a subspace of D(Zp, L).

Remark 2.2.8. The space D0(Zp, L) of bounded distributions is often referred to as the space of
measures on Zp.

We equip each Dr(Zp, L) with the valuation

vDr (µ) = inff∈C r(Zp,L)\{0} (vp(µ(f))− vCr (f)) .

For µ ∈ Dr(Zp, L), f ∈ C r(Zp, L) we write

µ(f) =:

∫
Zp
f(x)µ(x).

We give the space D(Zp, L) the structure of an L-algebra via convolution of distributions:∫
Zp
f(x)(µ ∗ λ)(x) :=

∫
Zp

(∫
Zp
f(x+ y)µ(x)

)
λ(y).
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2.2.2 Integral transforms

We recall the theory of p-adic integral transforms, allowing us to identify the distribution modules
Dr(Zp, L) with certain spaces of rigid analytic functions.

Definition 2.2.9. For x ∈ Cp, a ∈ R, let B(x, a) = {y ∈ Cp : vp(y − x) > a}. We define

R+ =

{
f =

∞∑
n=0

anX
n ∈ L[[X]] : f converges on B(0, 0)

}

We give R+ the structure of a Fréchet space via the family of valuations vB̄(0,uh).

Definition 2.2.10. Let ℓ(n) = inf{m : n < pm}, and for r ∈ R≥0 define

R+
r = {f =

∞∑
n=0

anX
n ∈ L[[X]] : vp(an) + rℓ(n) is bounded below as n→∞}.

We can put a valuation on these spaces

vr(f) = infhbh + rℓ(h),

where ℓ(h) is the smallest integer satisfying pℓ(h) > h. However, a different valuation will be useful
for our purposes.

Lemma 2.2.11. A power series f ∈ L[[X]] is in R+
r if and only if infh∈Z≥0

(vB̄(0,uh)(f) + rh) ̸=
−∞. Furthermore, the spaces R+

r are Banach spaces when equipped with the valuation

vr(f) = infh∈Z≥0
(vB̄(0,uh)(f) + rh).

Moreover, vr(f) is equivalent to v′r(f).

Proof. [Col10, Lemme II.1.1].

Lemma 2.2.12. If f ∈ R+
r , g ∈ R+

s , then fg ∈ R+
r+s.

Proof. [Col10, Corollaire II.1.2].

Theorem 2.2.13. Define the Amice transform:

A : D (Zp, L) ∼= R+

µ 7→
∫
Zp
(1 +X)xµ(x).

The Amice transform is an isomorphism of L-algebras under which the spaces Dr(Zp, L) and R+
r

are identified isometrically with respect to the valuations vDr and v′r.

Proof. [Col10, Théorème II.2.2] and [Col10, Proposition II.3.1].

We now consider the multiplicative topological group Z×
p . Let

q =

{
p if p odd

4 otherwise.

We have the well-known isomorphism

Z×
p
∼= (Z/qZ)× × 1 + qZp,
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the second factor of which is topologically cyclic. Let γ be a topological generator of 1+qZp. Such
a choice allows us to write any x ∈ 1 + qZp in the form x = γs for a unique s ∈ Zp, giving us an
isomorphism of topological groups

1 + qZp ∼= Zp
γs 7→ s.

Thus Z×
p is homeomorphic to p − 1 (resp. 2 when p = 2) copies of Zp, and we can use the

above theory of Zp in this context, defining LA(Z×
p , L), D(Z×

p , L) in the obvious way; each space
decomposes as a direct sum over their restrictions to each Zp component and we take the infimum
of the valuations on each summand.

Definition 2.2.14. Define weight space to be the rigid analytic space W over Qp representing

L 7→ Homcont(Z×
p , L

×).

Integrating characters gives a canonical identification

D(Z×
p ,Qp) = H0(W,OW),

where OW is the structure sheaf of W. This is isomorphism commutes with base change in the
sense that for a finite extension L/Qp we have

D(Z×
p , L) = D(Z×

p ,Qp)⊗̂QpL = H0(WL,OWL
),

whereWL =W×Qp Sp(L) and Sp(L) is the affinoid space associated to L. We identifyW(Cp) with
the set ⊔ψBψ, where Bψ = B(0, 0) and the disjoint union runs over characters of Z×

p which factor
through (Z/qZ)×. We can thus identify D(Z×

p , L) with functions on ⊔ψBψ which are described by
elements of R+ on each Bψ. Given a distribution µ ∈ D(Z×

p , L) we write the corresponding rigid
function on W as M (µ).

On each Bψ the global sections OW(Bψ) are given (after choosing a coordinate X) by precisely
R+. As these are quasi-Stein spaces, the topology on OW(Bψ) is that of a Fréchet space induced
by an increasing chain of affinoids

Y1 ⊂ Y2 ⊂ . . . ,
which we can choose to be the closed discs of radius uh, whence the topology as global sections
over a rigid space coincides with the topology on R+ given by the family of valuations vB̄(0,uh) (see
[Pot13, 1C]).

Definition 2.2.15. For r ∈ R≥0 we define a subspace Dr(Z×
p , L) ⊂ D(Z×

p , L) by

Dr(Z×
p , L) = {µ ∈ D(Z×

p , L) : M (µ)|Bψ ∈ R+
r for all ψ}.

These spaces decompose as a direct sum

Dr(Z×
p , L) = ⊕ψDr(Zp, L)

and we equip it with the valuation given by

vDr (µ) := infψvDr (µψ)

where µψ is the projection of µ to the ψ component.

2.2.3 Automorphic representations

Fix n ≥ 1 and set G = GL2n. Let Π be a cuspidal automorphic representation of G(AQ). Let
T ⊂ G be the maximal diagonal torus and let

µ = (µ1, . . . , µ2n) ∈ Z2g

be an integral weight. We say µ is dominant if µ1 ≥ · · · ≥ µ2n, and we say µ is pure if there is
ω ∈ Z, the purity weight of µ, such that

µi + µ2n+1−i = ω

for all i = 1, . . . , n.
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Definition 2.2.16. We say that Π is cohomological with respect to a dominant integral weight µ
if the (g∞,K∞)-cohomology

Hq(g∞,K∞,Π⊗ V µC )

is non-vanishing for some q. Here g∞ is the Lie algebra of G(R), K◦
∞ ⊂ G(R) is the identity com-

ponent of the maximal open compact subgroup and V µC is the irreducible C-linear G-representation
of highest weight µ.

Cohomological representations occur in the Betti cohomology of locally symmetric spaces for G.
Purity of µ is a necessary condition for Π to be cohomological.

The complex dual group of GSpin2n+1 is given by GSp2n(C). Let

ι : GSp2n(C)→ GL2n(C)

by the natural inclusion.

Definition 2.2.17. We say that Π is the transfer of a globally generic cuspidal automorphic
representation π of GSpin2n+1(AQ) if for each unramified place ℓ such that πℓ corresponds to
semi-simple conjugacy class [tℓ] in GSp2n(C), the local representation Πℓ is the unique irreducible
unramified admissible representation corresponding to ι([tℓ]) under the Satake isomorphism.

Remark 2.2.18. • For a given globally generic automorphic representation π of GSpin2n+1(A)
the existence of such a transfer was proved by Asgari-Shahidi [AS06, Theorem 1.1].

• A necessary and sufficient condition for Π to be the transfer of a globally generic cuspidal
automorphic representation of GSpin2n+1 is that it admits a Shalika model which realises Π
in a certain space of functions W : G(AQ)→ C, see [BSDW21, Section 2.6] for details.

2.2.4 p-stabilisations

Let Π be a cuspidal automorphic representation of G(AQ) which is cohomological with respect to
a pure dominant integral weight µ and suppose that Π is the transfer of a globally generic cuspidal
automorphic representation of GSpin2n+1(AQ). Let B denote the upper triangular Borel subgroup
of G.

Given a prime p at which Π is unramified, define the Hodge-Tate weights of Π at p to be the
integers

hi = µi + 2n− i, i = 1, . . . , 2n. (3)

Remark 2.2.19. These weights coincide with the Hodge-Tate weights of the Galois representation
associated to Π when the Hodge-Tate weight of the cyclotomic character is taken to be 1.

Definition 2.2.20. Define a set

Crit(Π) = {j ∈ Z : µn ≥ j ≥ µn+1}.

Remark 2.2.21. It is shown in [GR14, Proposition 6.1.1] that the half integers j + 1/2 for
j ∈ Crit(Π) are precisely the critical points of the L-function L(s,Π) in the sense of Deligne
[Del79, Definition 1.3].

Let p be a prime at which Π is unramified. There is an unramified character

λp : T (Qp)→ C×

such that Πp is isomorphic to the normalised parabolic induction module Ind
G(Qp)
B(Qp)(| · |

2n−1
2 λp). We

define the Satake parameters at p to be the values αi = λp,i(p), where λp,i denotes the projection
to the ith diagonal entry. After choosing an isomorphism Q̄p ∼= C, we reorder the αi so that they
are ordered with respect to decreasing p-adic valuation and such that αiα2n+1−i = λ for a fixed λ
with p-adic valuation 2n− 1 + w. That we can do this is a result of the transfer from GSpin2n+1,
see [AS06, (64)].
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We define the Hodge polygon of Π to be the piecewise linear curve joining the following points in
Rn: {

(0, 0), (j,

j∑
i=1

h2n+1−i) : j = 1, . . . , 2n

}
and define the Newton polygon on Π at p to be the piecewise linear curve joining the points{

(0, 0), (j,

j∑
i=1

vp(α2n+1−i)) : j = 1, . . . , 2n

}
.

The following result is due in this form to Hida [Hid98, Theorem 8.1].

Proposition 2.2.22. The Newton polygon lies on or above the Hodge polygon and the end points
coincide.

Definition 2.2.23. Let I = (i1, . . . , in) ⊂ Zn satisfy 1 ≤ i1 < . . . < in ≤ 2n, and set

αI := αi1 · · ·αin .

We call αI p-stabilisation data for Π.

Let Q ⊂ GL2n be the parabolic subgroup given by the partition 2n = n + n. The following
conditions are translations of the conditions of the same name given in [BSDW21, Section 2.7].

Definition 2.2.24. Let I be as above.

• We say that the product αI is of Shalika type if I contains precisely one element of each pair
{i, 2n+ 1− i} for i = 1, . . . , n, see [DJR20, Definition 3.5(ii)].

• We say that αI is Q-regular if it is of Shalika type and if for any other choice of J ⊂ Zn
satisfying the above properties aJ ̸= aI . This amounts to choosing a simple Hecke eigenvalue
for the Up-operator associated to Q acting on the Q-parahoric invariants of Πp, see [DJR20,
Definition 3.5(i)] and [BSDW21, Section 2.7].

• Set rI = vp(αI)−
∑2n
i=n+1 hi. We say that αI is non-critical slope if it satisfies

rI < #Crit(Π).

• We say that αI is minimal slope if

rI = #Crit(Π)/2.

Remark 2.2.25. The conditions in Definition 2.2.24 are used to control a certain local twisted
integral at p, attached to a choice of parahoric-invariant vectorW in the Shalika model. In [DJR20,
Proposition 3.4], the authors show that this local zeta integral is an explicit multiple of W (1). In
[DJR20, Lem. 3.6], they use the Shalika-type and Q-regular conditions to exhibit an explicit vector
W in the Shalika model attached to αI withW (1) = 1, and hence deduce non-vanishing of the local
zeta integral. We note that Πp always admits p-stabilisations of Shalika type. The terminology is
justified by [BSDW21, Remark 2.5], which explains that the refinements of Shalika type are exactly
those that arise from refinements of GSpin2n+1. Finally, if the Satake parameter of Πp is regular
semisimple, then all stabilisations of Πp are Q-regular.

In [BSDW21] the authors construct 6 a locally analytic distribution L
(αI)
p ∈ D(Z×

p ,C×
p ) with

respect to a choice of non-critical slope Q-regular p-stabilization data αI . The distribution L
(αI)
p is

of order rI and by [Vis76, Lemma 2.10] is uniquely defined by the following interpolation property:
Let θ : Z×

p → Q̄p be a finite-order character of conductor pm, then for m ≥ 1 we have∫
Z×
p

xjθ(x)L(αI)
p (x) = ξ∞,j

cxjθ
αmI

L(Π⊗ θ, j + 1/2), j ∈ Crit(Π), (4)

6The authors actually construct p-adic L-functions for the wider class of non-critical p-stabilisations, but we
only work with non-critical slope p-stabilisations in this paper.
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where cxjθ is a constant depending only on xjθ and the infinite factor ξ∞,j is the product of a

choice of period and a zeta integral at infinity. We call such a L
(αI)
p a ‘non-critical slope p-adic

L-function’.

2.3 Plus/Minus p-adic L-functions

We construct the titular plus/minus L-functions. We first note that the condition of non-critial
slope imposes strong restrictions on the number of p-adic L-functions we can construct.

Theorem 2.3.1. There are at most two choices of p-stabilization αI for which L
(αI)
p is non-critical

slope.

Proof. Without loss of generality we may assume that µ2n = 0, forcing w = µ1. The end points of
the Newton and Hodge polygons coinciding implies that

vp(λ) = hi + h2n+1−i, i = 1, . . . , n. (†)

The ‘non-critical slope’ condition for I = (i1, . . . , in) is equivalent to

vp(αI)−
2n∑

i=n+1

hi < hn − hn+1.

We observe that any I that includes a 2-tuple of integers the form (i, 2n+1− i) is not non-critical
slope. Indeed, we can find an explicit I containing some (i, 2n + 1 − i) with minimal valuation,
namely (n, n + 1, n + 3, . . . , 2n), amongst all I containing some (i, 2n + 1 − i). For such an I we
have

vp(αI)− (hn+1 + hn+2 . . .+ h2n) ≥ hn + hn+1 + hn+3 + · · ·+ h2n − (hn+1 + . . .+ h2n)

= hn − hn+2

> hn − hn+1,

where the first inequality is a consequence of the Newton polygon lying above the Hodge polygon
and (†), and the strict inequality is due to dominance. Thus any I containing a pair of integers
(i, j) with i < j and j ≤ 2n + 1 − i cannot be non-critical slope, since any such I has greater
valuation than (n, n + 1, n + 3, . . . , 2n). This leaves us with two choices of potential non-critical
slope n-tuples:

In+1 = (n+ 1, n+ 2, . . . , 2n),

and
In = (n, n+ 2, . . . , 2n).

In light of Theorem 6.3.3 it is clear that the only two choices of p-stabilization data which can give
a non-critical slope distribution are

α = αn+1αn+2 . . . α2n, β = αnαn+2 . . . α2n.

Definition 2.3.2. We say that Π satisfies the ‘Pollack condition’ if

αn + αn+1 = 0.

Corollary 2.3.3. For a non-critical slope p-stabilisation αI we have the following:

• The p-stabilisation αI is of Shalika type.

• If we assume the Pollack condition and that at least one of αn, αn+1 ̸= 0, then αI is Q-regular.
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Proof. The first part is immediate from Theorem 6.3.3.

For the second claim recall that a p-stabilisation αI is Q-regular if

αI ̸= αJ

for all I ̸= J . Suppose αI is a non-critical slope p-stabilisation. Then by Theorem 6.3.3

αI = αnαn+2 · · ·α2n or αn+1αn+2 · · ·αn+1,

and by the Pollack condition these are clearly not equal. Finally, for a critical slope p-stabilisation
αJ we must have vp(αJ) > vp(αI) so αJ ̸= αI .

2.3.1 Pollack ±-L-functions

Let Π be as in the previous section. Set

α = αn+1αn+2 . . . α2n, β = αnαn+2 . . . α2n,

and let r = vp(α)−
∑2n
i=n+1 hi = vp(β)−

∑2n
i=n+1 hi. The Pollack condition forces

r ≥ #Crit(Π)/2

since

r = vp(α)−
2n∑

i=n+1

hi ≥ vp(αn+1)− hn+1

=
hn + hn+1

2
− hn+1

=
hn − hn+1

2
= #Crit(Π)/2,

where the first inequality comes from Newton-above-Hodge, and the lower bound given is tight, with
the bound being achieved when the end point of the segment of the Newton polygon corresponding
to αn+2 · · ·α2n touches the Hodge polygon. This justifies the use of the term ‘minimal slope’ in
Definition 2.2.24.

We assume that
r < #Crit(Π)

so that we can construct precisely two non-critical slope p-adic L-functions L
(α)
p , L

(β)
p ∈ Dr(Z×

p ,Cp).

Remark 2.3.4. Unlike in the case of GL2, for n > 1 the non-critical slope condition for α, β
is a priori implied by the Pollack condition. Indeed, suppose one has a cuspidal automorphic
representation Π of GL2n(AQ) satisfying the Pollack condition at a prime p for which vp(αi) =
vp(αj) for 1 ≤ i, j ≤ 2n. The value r is then the same for any choice of p-stabilization, so there are
either

(
2n
n

)
non-critical slope p-adic L-functions or there are none. But Theorem 6.3.3 says there

can be at most two choices of non-critical slope p-stabilization.

Following Pollack, we define

G± =
L
(α)
p ± L(β)

p

2
,

so that

L(α)
p = G+ +G−

L(β)
p = G+ −G−.

We note that in the case of L
(β)
p , the interpolation formula is given by∫

Z×
p

xjθ(x)L(β)
p (x) = (−1)mξ∞,j

cxjθ
αm

L(Π⊗ θ, j + 1/2), j ∈ Crit(Π),
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from which it follows that∫
Z×
p

xjθ(x)G+(x) = 0, if the conductor of θ is pm, m odd∫
Z×
p

xjθ(x)G−(x) = 0, if the conductor of θ is pm, m even.

Equivalently (noting that characters of conductor pm correspond to (m − 1)th roots of unity), if
ζpm is any pmth root of unity and p is odd,

M (G+)(γjζpm − 1) = 0 for m even

M (G−)(γjζpm − 1) = 0 for m odd

on each of the connected components7 of W(Cp) (which we recall we are identifying with p − 1
copies of B(0, 0)). When p = 2 the sign flips and the above vanishing is equivalent to.

M (G+)(γjζpm − 1) = 0 for m odd

M (G−)(γjζpm − 1) = 0 for m even

For any j ∈ Z, Pollack defines the following power series

log+p,j(X) :=
1

p

∞∏
m=1

Φ2m(γ−j(1 +X))

p

log−p,j(X) :=
1

p

∞∏
m=1

Φ2m−1(γ
−j(1 +X))

p
,

in Qp[[X]], where Φm is the pmth cyclotomic polynomial.

Lemma 2.3.5. The power series log+p,j(X) (resp. log−p,j(X)) is contained in R+
1/2 and vanishes

at precisely the points γjζpm − 1 for every pmth root of unity ζpm with m even (resp. odd).

Proof. The statements in the lemma are proved in [Pol03, Lemma 4.1 4.5]. We reprove that log+p,j
is contained in R+

1/2 using the setup of Section 2.2, the result for log−p,j being similar.

An analysis of the Newton copolygon of the Eisenstein polynomial Φn gives us that

vB̄(0,uh)(Φn((γ
−j(1 +X))/p) =

{
0 if h ≤ n− 1

pn−h−1 − 1 otherwise,

and thus

vB̄(0,uh)(log
+
p,j) =

h+1
2∑

m=1

(
p2m−h−1 − 1

)
=
p−(h+1) − 1

1− p2
− 1

2
− h

2
,

whence

infh

(
vB̄(0,uh)(log

+
p,j) +

h

2

)
=

1

p2 − 1
− 1

2
<∞,

so log+p,j(X) ∈ R+
1/2 by Lemma 2.2.11.

7We are referring to the connected components as a rigid space as opposed to those of the topology on Cp induced
by vp.
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We define
log±Π(X) =

∏
j∈#Crit(Π)

log±p,j(X) ∈ R+
Crit(Π)/2.

By abuse of notation we will write log±Π(X) for the element of OW(W) given by log±Π(X) on each
connected component of W.

Lemma 2.3.6. We have

lim sup
h

(
vB̄(0,uh)(log

±
Π) +

#Crit(Π)

2
h

)
<∞.

Proof. It follows from the proof of Lemma 2.3.5 and the multiplicativity of vB̄(0,uh) that

vB̄(0,uh)(log
+
Π) +

#Crit(Π)

2
h = #Crit(Π)

(
p−(h+1) − 1

1− p2
− 1

2

)
.

The right side converges as h→∞ so the lim sup is finite. A similar argument works for log−Π .

It follows from the above discussion and [Laz62, 4.7] that for odd p the rigid function log±Π(X)
divides M (G±) in OW(W), and for p = 2 we have that log∓Π(X) divides M (G±) in OW(W).
Define plus/minus p-adic L-functions L±

p (X) to be the elements of OW(W) satisfying

M (G±) = log±Π(X) · L±
p (X)

for p odd, and
M (G±) = log∓Π(X) · L±

p (X)

for p = 2. We write L±
p for the distribution M−1(L±

p (X)).

Proposition 2.3.7. We have

L±
p ∈ Dr−#Crit(Π)/2(Z×

p ,Cp).

Proof. We note that

lim inf
h

(
−vB̄(0,uh)(log

±
Π)−

#Crit(Π)
2 h

)
= − lim sup

h

(
vB̄(0,uh)(log

±
Π) +

#Crit(Π)
2 h

)
> −∞.

By the additivity of vB̄(0,uh) ([Col10, Proposition I.4.2]) we have

vB̄(0,uh)(L
±
p ) + (r − #Crit(Π)

2 )h = vB̄(0,uh)(G
±) + rh− vB̄(0,uh)(log

±
Π)−

#Crit(Π)
2 h,

and so since G± ∈ Dr(Z×
p ,Cp) (and thus lim inf

(
vB̄(0,uh)(G

±) + rh
)
> −∞) we have

lim inf
h

(
vB̄(0,uh)(L

±
p ) + (r − #Crit(Π)

2 )h
)
> −∞

and so by Lemma 2.2.11 we are done.

In particular, in the minimal slope case r = #Crit(Π)
2 we get two bounded distributions.

Remark 2.3.8. • One might ask if there is an analogue of the plus/minus theory for p-adic
L-functions for GL2n+1. Beyond the exact methods used in the present paper, there is an
immediate stumbling block: in general, for n ≥ 3 odd, the usual theory of p-adic L-functions
is very poorly developed. For non-ordinary Π on GL2n+1, the only constructions of p-adic
L-functions are for n = 1 and Π a symmetric square lift from GL2; in this case, a study of
signed Iwasawa theory has been considered in [BLV18].

• The proofs above show that if we relax the minimal slope hypothesis we still obtain a pair
of plus/minus L-functions which are unfortunately not bounded. Since the subsets of weight
space on which these functions interpolate L-values are disjoint it seems that there is no hope
in attempting a similar construction for these functions.
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• In the case that we have a GL2n(AQ) representation admitting p-stabilisations which are
critical but not non-critical slope Theorem 6.3.3 no longer holds. As a result, for each such p-
stabilisation we can construct a p-adic L-function, giving us at most

(
2n
n

)
p-adic L-functions.

It’s possible that one could generalise the methods of this paper and utilise all of these p-adic
L-functions to construct bounded functions analogous to L±

p , but this is not something we
have explored.

2.3.2 An example of a GL4(AQ) representation satisfying the Pollack condition

We give an example of a cuspidal automorphic representation of GL4(AQ) satsifying the Pollack
condition and having minimal slope using the theory of twisted Yoshida lifts (see [LZ20a, Section
6] for an overview).

Let F = Q(
√
5) and let σi : F → R, i = 1, 2 be the embeddings of F into R. The prime 41

splits in F and we write M for one of its prime factors. Using Magma we see that there is a
weight (4, 2) cuspidal Hilbert newform f over F of level N =M2 and of trivial character and with
complex multiplication by the unique extension E/F such that E/Q is not Galois and in which
M ramifies. Thus there is a Hecke character ψ over E with infinity type z 7→ ε1(z)

3ε2(z)
2ε̄2(z),

where εi, ε̄i : E → C, i = 1, 2, are the pairs of conjugate embeddings of E and such that the Hecke
eigenvalue of f at a prime ℘ of F is given by

a℘ =


ψ(q1) + ψ(q2) if ℘ = q1q2 in E

ψ(q) if ℘ = q2 in E

0 otherwise.

Let L be the number field generated by the Hecke eigenvalues of f . Since the weight is not parallel
we have F ⊂ L. Fix a rational prime p ∤ N and let Lv be the completion of L at a prime v over p.
Suppose now that p splits in F and write p = ℘1 · ℘2, labelled such that σi(℘i) is below v.

Let ψGal,v : GE → Lv be the v-adic character of GF = Gal(F̄ /F ) associated to ψ by class field

theory, so that Vf,v := IndGFGEψGal,v is the GF -representation associated to f . This representation
is crystalline at primes not dividing N . The Hodge-Tate weights of Vf,v are given by (0, 3) at σ1
and (1, 2) at σ2.

The restriction of Vf,v to GE splits as a direct sum of characters:

Vf,v|GE = ψGal,v ⊕ ψcGal,v,

where c ∈ Gal(E/F ) is the non-trivial element. If a prime ℘ of F above p splits in E then a
decomposition group D℘ ⊂ GF at a prime over ℘ is contained in GE and we have Dcris(Vf,v|D℘) =
Dcris(ψGal,v|D℘) ⊕ Dcris(ψ

c
Gal,v|D℘) whence f is ordinary at ℘ as the image of the functor Dcris is

weakly admissible. Taking v to be above σ1(℘) and writing the prime decomposition of ℘ in E as
℘ = q1q2 we have

vv(ψ(q1)) = 0

vv(ψ(q2)) = 3

up to reordering of the qi.

Theorem 2.3.9. Suppose π is a cuspidal automorphic representation generated by a holomorphic
Hilbert modular form of weight (k1, k2) over a totally real field F . Suppose that:

• For 1 ̸= θ ∈ Gal(F/Q) we have πθ ̸≈ π,

• There is a Hecke character ε over Q such that the central character ωπ of π satisfies

ωπ = ε ◦NormF/Q.

Then there is a unique globally generic cuspidal automorphic representation Θ(π, ωπ) of GSp4(AQ)

(a twisted Yoshida lift) of weight (k1+k22 , |k1−k2|2 − 2) with central character ε satisfying

L(Π, s) = L(π, s+
max{k1, k2} − 1

2
).
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Proof. See [LZ20a, Theorem 6.1.1 and Proposition 6.1.4].

Let π be the cuspidal automorphic representation of GL2(AE) generated by f . Since f has non-
parallel weight we see that π ̸≈ πθ for non-trivial θ ∈ Gal(F/Q).

Set Π = Θ(π, 1). Then Π a cuspidal automorphic representation of GSp4(AQ) of weight (3, 3) with
trivial central character. This weight lies in the cohomological range and thus Π is cohomological.
The Hodge-Tate weights of Π are (0, 1, 2, 3).

Recall that we have a rational prime p such that p splits in F :

pOF = ℘1℘2.

We assume further that ℘2 is inert in E and ℘1 splits, and we write the factorisation of ℘1 as

℘1 = P1P2.

Primes satisfying the above conditions are not uncommon, for example, the primes 11 and 19 admit
this splitting phenomena in the tower E/F/Q. We remark that a necessary condition for such a
splitting is that E is non-Galois over Q. The local L-factor of Π at such a p is given by

Lp(Π, s)
−1 = (1− ψ(P1)p

−s)(1− ψ(P2)p
−s)(1− ψ(℘2)p

−2s).

Choosing a prime v of L lying above p such that v lies above σi(℘i), we deduce that Π satisfies
the Pollack condition and has two minimal slope p-stabilisations. By Corollary 2.3.3 these p-
stabilisations are Q-regular and Shalika. There is an exceptional isomorphism GSp4

∼= GSpin5 and
so we are done by applying the functorial lift from GSpin5 to GL4.

2.4 Non-vanishing of twists

We use L±
p to show non-vanishing of the complex L-function of Π at the central value, extending

work of Dimitrov, Januszewski, Raghuram [DJR20] to a non-ordinary setting.

Proposition 2.4.1. In the case that Crit(Π) ̸= {w/2}, we have

L±
p ̸= 0.

Proof. We consider L+
p , the case of L−

p being essentially identical and we further assume p is odd
for brevity of notation (although the same argument works in this case). Note that a character
θ : Z×

p → C×
p of conductor pm+1 corresponds to a choice of primitive pmth root of unity ζθ in a

disc W determined by the restriction ψθ of θ to (Z/pZ)×, which gives us the identification∫
Z×
p

xjθ(x)log+Π(x) = log+Π(ψθ, γ
jζθ − 1),

where on the left hand side we use the description of log+Π as a distribution and on the right hand
side log+Π(ψθ,−) is the restriction of log+Π to the disc in W corresponding to ψθ. We adopt the
analogous notation for Lp. It follows from Lemma 2.3.5 that log+Π(ψθ, γ

jζθ − 1) ̸= 0 if m is odd
(resp. even for p = 2). Thus for characters θ of odd p-power conductor we have the interpolation
property

Lp(ψθ, γ
jζθ − 1) ∼ L(Π⊗ θ, j + 1/2)

log+Π(ψθ, γ
jζθ − 1)

, j ∈ Crit(Π),

where ∼ is used here to mean ‘up to non-zero constant’. By Jacquet-Shalika [JS76, 1.3] we have

L(Π⊗ θ, s) ̸= 0 for Re(s) ≥ w/2 + 1

for finite order characters θ, and by applying the functional equation we get non-vanishing for
Re(s) ≤ w/2. Since Crit(Π) contains an integer k not equal to w/2, the above discussion gives us

L(Π, k + 1/2) ̸= 0,

and thus L+
p ̸= 0.
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Remark 2.4.2. Proposition 2.4.1 actually proves the stronger result that the power series M (L±
p )|Bψ

is non-zero for each choice of ψ.

We can turn this back on itself and use L±
p to say something about nonvanishing of L(Π⊗ θ, (ω+

1)/2) in the case when L±
p ∈ D0(Z×

p ,Cp).

Theorem 2.4.3. In the case that L±
p are bounded distributions, w is even, and Crit(Π) ̸= {w/2},

we have
L(Π⊗ θ, (w + 1)/2) ̸= 0

for all but finitely many characters θ of p-power conductor.

Proof. Assume p odd for brevity, again noting that the argument works fine for p = 2. For any
character ψ of (Z/pZ)× we can write M (L±

p )|Bψ = L±
p (ψ, T ) ∈ OL[[T ]] ⊗OL L for some finite

extension L/Qp. We note that M (L±
p ) =

∑
ψ 1BψL

±
p (ψ) where 1Bψ denotes the indicator function

on Bψ. This power series is non-zero by Proposition 2.4.1 and Remark 2.4.2, and so Weierstrass
preparation tells us that each L±

p (ψ, T ), and thus L±
p , has only finitely many zeroes. Given any

character θ of p-power conductor, we have∫
Z×
p

xw/2θ(x)L?
p(x) ∼ L(Π⊗ θ, (w + 1)/2),

where

? =

{
+ if the conductor of θ is odd p-power

− otherwise
.

Thus, for all but finitely many θ, we have

L(Π⊗ θ, (w + 1)/2) ̸= 0.

3 Lemma–Flach classes in Hida families

3.1 Introduction

We construct classes in Galois cohomology interpolating the Lemma–Flach Euler system of [LSZ21]
as it varies in a 4-parameter Hida family. This generalises [LSZ21, Section 9] in which variation in
a two parameter family was considered.

The novelty in this construction is in the application of Loeffler’s machine; in order to obtain
classes varying in a 4-parameter family we must increase the number of variables in our Iwasawa
algebra by working with Shimura varieties for the group G̃ := GSp4 ×GL1. In this setting we can
find a subgroup

Q0
H̃
⊂ H̃ = GL2 ×GL1 ×GL2 ×GL1

which has an open orbit on the flag variety BG̃\G̃ and thus gives classes in the Borel-ordinary

Iwasawa cohomology of G̃, a module over a rank 4 Iwasawa algebra. This gives the required
variation and an analogous argument to that in [LSZ21] in the 2-variable case gives classes in the
Galois cohomology of the families of Borel-ordinary Galois representations constructed in [TU99].

3.2 Prerequisites

3.2.1 Algebraic groups

All algebraic groups will be treated as group schemes over Z. Let G = GSp4 be the group scheme
defined for a Z-algebra R by

G(R) = {(X,µ) ∈ GL4(R)×R× : XTJX = µJ},

where J :=

(
1

1
−1

−1

)
. We write µ : G → G/[G,G] ∼= Gm for the similitude character sending

(X,µ) to µ. Set
H = GL2 ×GL1 GL2,
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where product is fibred over the determinant. There is a natural inclusion ι : H ↪→ G given by(
a b
c d

)
×
(
a′ b′

c′ d′

)
7→
(
a b
a′ b′

c′ d′

c d

)
× (det). (5)

Let BG = TG × NG ⊂ G be the Borel subgroup of upper triangular matrices, TG ⊂ B the
maximal torus of diagonal matrices and NG the unipotent radical of BG. Define a Borel subgroup
BH = BG ∩H of H with Levi decomposition TH ⋉NH , where TH = TG ∩H,NH = NG ∩H.

For an algebraic group G write
G̃ = G ×GL1.

The above inclusion of H into G extends naturally to an inclusion

ι : H̃ ↪→ G̃,

by extending to the identity on the GL1 factor. We have a Borel subgroup BG̃ = B̃G with Levi

decomposition BG̃ = TG̃ ⋉NG where TG̃ = T̃G and similarly for H.

3.2.2 Algebraic representations

Let χi ∈ X•(TG), i = 1, 2 be the projection to the first and second diagonal entries of TG, so that
{χ1, χ2, µ} forms a basis for X•(TG). These elements extend trivially to the maximal torus T̃G
of G̃. Writing σ for the character given by projection to the GL1 factor in the direct product,
the set {χ1, χ2, µ, σ} forms a basis for X•(T̃G). For a, b ≥ 0, we write V a,b for the Q-linear
representation of G̃ of highest weight (a + b)χ1 + aχ2. In general, given any dominant integral
weight λ ∈ X•(TG), let Vλ = (Vλ, vλ) be the irreducible representation of highest weight λ with a
choice of highest weight vector vλ. Let Vλ,Z be the maximal integral lattice with respect to vλ in
the sense of [LSZ21, Definition 4.2].

Proposition 3.2.1. Let λ, λ′ be dominant integral weights. The Cartan product is the unique
G̃-equivariant homomorphism

Vλ,Z ⊗ Vλ′,Z → Vλ+λ′,Z

satisfying vλ · vλ′ = vλ+λ′ . For any non-zero v ∈ Vλ,Z, v′ ∈ Vλ′,Z we have v · v′ ̸= 0.

Proof. [LSZ21, Proposition 4.2.1].

Remark 3.2.2. The Borel–Weil theorem realises algebraic representations as subrepresentations
of the coordinate ring of G̃. Via this optic, the Cartan product is nothing but multiplication of
regular functions.

For a representation V of G̃ write ι∗V for the restriction of the representation to H̃ via ι. The
following branching law describes how V a,b decomposes as a representation of H.

Proposition 3.2.3. We have

ι∗V a,b =
⊕

0≤q≤a

⊕
0≤r≤b

W a−q+b−r,a−q+r ⊗ detq,

as H-representations, where W c,d = Symc(Q2)⊠ Symd(Q2) is the irreducible H-representation of
highest weight (c, d) with respect to BH .

As in [LSZ21, Section 4.3] we fix choices va,b,q,r ∈ V a,b of highest weight vectors for H̃ in each
W a−q+b−r,a−q+r ⊗ detq factor. As W c,d has a canonical choice of highest weight vector ec1 ⊠ fd1
where {e1, e2}, {f1, f2} are standard bases for the standard representation of GL2, we can define
canonical branching maps

br[a,b,q,r] :W a−q+b−r,a−q+r ⊗ detq → ι∗V a,b

by sending ec1 ⊠ fd1 to va,b,q,r. By [LSZ21, Proposition 4.3.5], these branching maps restrict to
inclusions of admissible lattices:

br[a,b,q,r] :W a−q+b−r,a−q+r
Z ⊗ detq → ι∗V a,bZ , (6)

where W a−q+b−r,a−q+r
Z is the minimal admissible lattice in W a−q+b−r,a−q+r.
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Remark 3.2.4. The minimal admissible lattice in W c,d
Z is given by TSymc(Z2) ⊠ TSymd(Z2)

where TSymr is the space of degree r symmetric tensors. The maximal admissible lattice is given
by Symc(Z2)⊠ Symd(Z2).

3.2.3 A (slightly) different Lie-theoretic computation

Define a cocharacter TB ∈ X•(T̃G) by TB(x) =

(
x3

x2

x
1

)
× (x) and set u =

(
1 1 1
1 1
1 −1

1

)
. We will

need the natural analogue of ‘a Lie-theoretic computation’ [LSZ21, Section 4.4]:

Lemma 3.2.5. Let va,b,q,r ∈ V a,b be as above. Then the projection of uhva,b,q,r to the highest TB
weight subspace of V a,b is given by (2h)qhrva,b,0,0.

Proof. Let V = V 0,1 be the standard representation of GSp4 and note that we can identify V 1,0

with the irreducible direct summand of
∧2

V 0,1 spanned by e1∧e2. The vectors va,b,q,r are defined
in [LSZ21, Section 4.3] as the Cartan product va,b,q,r = vb−r ·(v′)r ·wa−q ·(w′)q where v = e1 ∈ V 0,1,
v′ = e2 ∈ V 0,1, w = e1 ∧ e2 ∈ V 1,0 and w′ = e1 ∧ e4 − e2 ∧ e3 ∈ V 1,0. Notice that v, w are highest
weight vectors for TB (and are thus fixed by u) whereas v′, w′ are not. By the equivariance of the
Cartan product it suffices to compute the projections of uhv′ and uhw′ to the highest TB weight
subspaces to get the result.

3.2.4 Shimura varieties

Set S = ResC/R(Gm) and define

hH̃ : S→ H̃R

a+ ib 7→ (
1

a2 + b2

(
a b
−b a

)
)2 × (1).

This defines a Shimura datum (H̃, hH̃) for H̃. The inclusion ι : H̃ ↪→ G̃ induces a compatible

Shimura datum (G̃, hG̃), where hG̃ = ι ◦ hH̃ .

Definition 3.2.6. Let R ∈ {G,H, G̃, H̃}. We say U ⊂ R(Af ) is sufficiently small if it acts without
fixed points on the set

R(Q)\R(A)×HR,

where

HR =

{
H×H if R = H, H̃

H2 if R = G, G̃

and H is the complex upper half plane and H2 is the genus 2 Siegel space.

Given open compact subgroups U ⊂ H̃(Af ),K ⊂ G̃(Af ) the above Shimura data induce smooth
quasiprojective varieties YH̃(U), YG̃(K) which are canonically defined over Q and whose C-points
are given by

YH̃(U)(C) = H̃(Q)\H̃(Af )×H2/U,

YG̃(K)(C) = H̃(Q)\G̃(Af )×H2/K.

For open compact subgroups U ⊂ U ′ of H̃(Af ) there is a natural finite etale ‘projection’ morphism

prUU ′ : YH̃(U)→ YH̃(U ′),

and similarly for G̃. Define pro-varieties

YH̃ := lim←−
U

YH̃(U)

YG̃ := lim←−
K

YH̃(K),

32



where the limit is taken over all open compact subgroups ordered by inclusion. These carry natural
actions of H̃(Af ) and G̃(Af ) induced by the conjugation isomorphisms

Y∗(U)
[g]−→ Y∗(g

−1Ug)

which are given on C-points by right-translation. We have

YH̃(C) = H̃(Q)\H̃(Af )×H×H
YG̃(C) = H̃(Q)\G̃(Af )×H2.

The group homomorphism ι : H̃ ↪→ G̃ induces an injective map

ι : YH̃ ↪→ YG̃

which descends to a map
ιUK : YH̃(U)→ YG̃(K)

whenever ι−1(U) ⊂ K. This map is not necessarily injective, with a criteria for injectivity being
given by [LSZ21, Proposition 5.3.1].

We can, in a similar fashion, define compatible Shimura data for the groups H and G which give
varieties YH , YG such that the natural projection q : G̃ → G induces a morphism of Shimura
varieties

q : YG̃ → YG

compatible with the maps induced by ι.

We will also briefly need the Shimura variety YGL2×GL1
defined by the Shimura datum

hGL2×GL1
: a+ ib 7→ (

1

a2 + b2
(
a b
−b a

)
)× (1).

This Shimura datum is compatible with the GL2 Shimura datum

hGL2
: a+ ib 7→ (

1

a2 + b2
(
a b
−b a

)
)

under the natural projection homomorphism

q : GL2 ×GL1 → GL2

and thus we get a morphism of Shimura varieties

YGL2×GL1

q−→ YGL2
.

3.2.5 Level groups

We give a reference for the level groups we will be using in this section. We first define normal
subgroup Q◦

H ⊂ QH̃ which will be the key input into construction of the branching maps: For a
Zp-algebra R define

Q◦
H̃
(R) :=

{(
x ∗

1

)
×
(
xy ∗

y−1

)
× (y) : x, y ∈ R×

}
.

Definition 3.2.7. We define open compact subgroups of H̃(Qp) and G̃(Qp):

• Q◦
H̃p

(pn) = {g ∈ QH̃(Zp) : g ∈ Q◦
H̃

mod pn}, n ≥ 0,

• Q◦
H̃p

(pm, pn) = {h ∈ Q◦
H̃p

(pn), µ, σ ≡ 1 mod pm}, n,m ≥ 0,

• Q◦
G̃p

(pm, pn) = {g ∈ G̃(Zp) : g ∈ NG̃(Zp) mod pn, µ, σ ≡ 1 mod pm}, n,m ≥ 0,

recalling that µ, σ are our basis for X•(G̃) given by the similitude character and projection to the
direct GL1-factor respectively.
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Fix a finite set of primes S not including p. We define level groups

Q◦
G̃
(pm, pn) = Q◦

G̃p
(pm, pn)×KS ×

∏
ℓ/∈S∪{p}

G̃(Zℓ) ⊂ G̃(Af )

Q◦
H̃
(pm, pn) = Q◦

H̃p
(pm, pn)× US ×

∏
ℓ/∈S∪{p}

H̃(Zℓ) ⊂ H̃(Af ),

where KS ⊂ G̃(QS), US ⊂ H̃(QS) are chosen so that the above groups are sufficiently small (this
may require enlarging S by finitely many primes). Let M > 0 be a square-free integer coprime to

p. For an open compact subgroup K ⊂ G̃(Ẑ) we write K(M) = {k ∈ K : µ, σ(k) ≡ 1 mod M}, for
example QG̃(M,pm, pn).

We define the non-tilde’d groups Q◦
G(M,pm, pn) to be the image of the tilde’d group under the

natural projection map q : G̃→ G.

3.2.6 Coefficient sheaves

For G ∈ {H,G, H̃, G̃}, given a sufficiently small open compact subgroup U ⊂ G(Af ) and a free
Zp-module V of finite rank, equipped with a continuous left action of U , we can assign to V a
locally constant U -equivariant étale sheaf V on YG(U) such that for any U ′ ◁ U open we have

V (YG(U
′)) = V U ′

and such that the pullback action of u ∈ U/U ′ on H0
et(YG(U),V ) is given by the natural action of

u on V U . If the action of U on V extends to some monoidM⊂ G(Af ) then the sheaf V becomes
M-equivariant and we get an action of the Hecke algebra H(U\M/U) on the cohomology groups
H∗
et(YG(U),V ).

Set

D̃a,b
Zp = V a,bZp ⊗ µ

−(2a+b) × σa

H̃c,d
Zp =W c,d

Zp ⊗ µ
−(c+d) × σd

Da,b
Zp = V a,bZp ⊗ µ

−(2a+b)

Hc,d
Zp =W c,d

Zp ⊗ µ
−(c+d),

and let D̃a,b
Zp , H̃

c,d
Zp ,D

a,b
Zp ,H

c,d
Zp be their respective associated etale sheaves. By abuse of notation

we will write V ⊗ µx × σy for the etale sheaf associated to a G̃-representation V ⊗ µx × σy.

Our chosen normalizations ensure that the highest weight space for the cocharacter TB is exactly
0. Moreover, this also holds for the cocharacters

TS : x 7→
(
x
x

1
1

)
× (1), TK : x 7→

(
x2

x
x

1

)
× (x).

This will be key when constructing Hecke operators that preserve integrality.

For c = a+ b− q − r, d = a− q + r. the branching maps (6) induce morphisms of sheaves

br[a,b,q,r] : H̃ c,d → ι∗D̃a,b
Zp ⊗ µ

qσr−q.

We note that if f c,d ∈ H̃c,d
Zp is a highest weight vector then Q0

H̃
· f c,d = f c,d and thus

br[a,b,q,r](f c,d) ∈ (D̃a,b
Zp ⊗ µ

qσr−q)Q
0
H̃

and this space is one-dimensional.
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3.2.7 Hecke operators

Definition 3.2.8. For ? ∈ {B,S,K}, define

α̃? = T?(p) ∈ T̃G(Qp)

and
α? := q(α?).

Remark 3.2.9. The letters B,S,K refer to Borel, Siegel and Klingen and refer to the fact that
the cocharacters TB , TS , TK are strictly dominant with respect to the (natural extensions to G̃ of
the) parabolic subgroups PB = BG, PS , PK of G which bear these names. Specifically, this means
that for ? ∈ {B,S,K}

⟨T?, α⟩ > 0

for all relative roots α of G with respect to P?.

For ? ∈ {B,S,K}, m ≥ 1 the element α̃−m
? ∈ G̃(Qp) has a well defined action on the integral

representation D̃a,b
Zp .

For ? ∈ {S,K, B} we define morphisms of sheaves

[α̃−1
? ]# : D̃a,b

Zp → [α−1
? ]∗D̃a,b

Zp

via the action of α̃−m
? on D̃a,b

Zp and another morphism of sheaves

pX [α−1
? ]# : Da,b

Zp → [q(α−1
? )]∗Da,b

Zp

via the action of pX?α−1
? on Da,b

Zp where

X? =

{
0 if ? = S

a otherwise.

We write

[α̃?]∗ = ([α̃?], [α̃
−1
? ]#),

[α?]∗ = ([α?], p
X [α−1

? ]#).

For any open compact subgroup K ⊂ G̃(Af ), consider the diagram of Shimura varieties

YG̃(α̃?Kα̃
−1
? ∩K) YG̃(K ∩ α̃

−1
? Kα̃?)

YG̃(K) YG̃(K)

pr

[α̃?]

pr

Definition 3.2.10. For K as above and ? ∈ {B,S,K}, we define Hecke operators Ũ?,U?, on
H∗

et(YG̃(K), D̃a,b
Zp ⊗ µ

qσr−q) and H∗
et(YG(q(K)),Da,b

Zp ⊗ µ
q) respectively by

Ũ? = (pr∗ ◦ [α̃?]∗ ◦ pr∗)
U? = (pr∗ ◦ [α?]∗ ◦ pr∗)

where the projection morphisms are as in the above diagram and the sheaf morphisms [α̃?]#, [α?]#
ignore the twists by µqσr−q and µq respectively.
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3.2.8 Cohomology functors

We recall the formalism of cohomology functors from [Loe21]. For this section only, let G be a
locally profinite topological group and Σ ⊂ G an open submonoid.

Definition 3.2.11. Let P(G,Σ) be the category whose objects consist of the open compact sub-
groups of G contained in Σ, and whose morphisms are given by

HomP(G,Σ)(U, V ) = {g ∈ U\Σ/V : g−1Ug ⊂ V }.

We write [g] for the corresponding double coset, with composition defined to be [g] ◦ [h] = [hg]. If
U ⊂ V we write prUV = [1], or often just pr.

Definition 3.2.12. Define a cohomology functor for (G,Σ) with coefficients in a commutative ring
A to be a pair of functors (M∗,M

∗), where

M∗ : P(G,Σ−1)→ A−mod,M∗ : P(G,Σ)op → A−mod,

such that

1. M∗(U) =M∗(U) =:M(U) for all U ∈ P(G, σ)

2. If for g : V → U we write [g]∗ =M∗([g]) and similarly for M∗, then

[g]∗ = [g−1]∗ ∈ HomA(M(V ),M(U))

whenever this makes sense.

A morphism of cohomology functors M → N is a pair of natural transformations

M∗ =⇒ N∗,

M∗ =⇒ N∗.

We will be working with cohomology functors satisfying the following useful axiom.

Definition 3.2.13. We say a cohomology functorM is Cartesian if for any open compact subgroup
V ⊂ Σ and any open compact subgroups U,U ′ ⊂ V there is a commutative diagram

⊕
γM(Uγ) M(U ′)

M(U) M(V )

∑
pr∗

∑
[γ]∗

pr∗

pr∗

where the sum runs over a set of representatives for the double quotient U\V/U ′, and Uγ :=
U ∩ γU ′γ−1.

Definition 3.2.14. For a cohomology functor M define the Iwasawa cohomology MIw(K) for any
compact subgroup K ⊂ G to be

MIw(K) = lim←−
U⊃K

M(U).

Given any triple (g,K,K ′) such that g−1Kg ⊂ K ′ we can define pushforward maps [g]∗ :MIw(K)→
MIw(K

′) and furthermore if M is Cartesian and K ⊂ K ′ has finite index, we can define a pullback
map

MIw(K
′)→MIw(K).

Let MG be a Cartesian cohomology functor for (G,Σ). Suppose H is another locally profinite
topological group, and that we have an injective group homomorphism

ι : H ↪→ G

onto a closed subgroup of G.
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Definition 3.2.15. Given Cartesian cohomology functors MH ,MG for H and G respectively, a
pushforward ι∗ : MH → MG is a collection of maps MH(V ) → MG(K) for each pair of open
compacts U ⊂ ΣH ,K ⊂ ΣG, satisfying ι(V ) ⊂ K which are compatible with pushforward maps
[h]∗ for h ∈ H ∩ Σ−1 and satisfying the following diagram

⊕
γMH(V ∩ γι−1(U)γ−1) MG(U)

MH(V ) MG(K)

∑
[γ]∗

∑
pr∗

ι∗

pr∗

where the sum runs over a fixed set of representatives γ for the double quotient V \K/U , and [γ]∗
is the composition

MH(V ∩ γι−1(U)γ−1)
ι∗−→MG(γUγ

−1)
[γ]∗−−→MG(U).

Example 3.2.16. Let G = G(Qp) be the Qp-points of a connected reductive group G defined over
Q. Suppose G admits a Shimura datum (G, h) which satisfies the axiom ‘SV5’ (see [Mil05]). Let
YG be the associated Shimura variety defined over its reflex field E. Choose an open compact

subgroup Up ⊂ G(A(p)
f ) such that for any open compact U ⊂ G the product UpU ⊂ G(Af ) is neat,

and let V be an étale sheaf on YG(U
pU) induced from a Zp-linear algebraic representation V of G.

If we set Σ = {g ∈ G : gV ⊂ V }, and for any integers i, n, consider the functor

P(G,Σ)→ Zp-mod

U 7→ Hi
et(YG(U

pU),V (n)),

where for g−1V g ⊂ U , the pullback [g]∗ is defined as the composition

Hi
et(YG(U

pV ),V (n))→ Hi
et(YG(U

pV ), [g]∗V (n))→ Hi
et(YG(U

pU),V (n)).

The above functor is then a Cartesian cohomology functor for (G,Σ) with coefficients in V .

Given a morphism of Shimura data

(H, hH)→ (G, hG)

induced by a closed immersion of reductive groups H ↪→ G, both satisfying Milne’s axiom SV5 8,

there is a closed immersion of Shimura varieties YH
ι
↪−→ YG , say of algebraic codimension d, which

induces a pushforward map

ι∗ : Hi
et(YH, ι

∗V )→ Hi+2d
et (YG ,V (d))

3.2.9 Eisenstein classes and Lemma-Flach elements

Let S0(A2
f ,Q) denote the space of Schwartz functions ϕ on A2

f which satisfy ϕ(0, 0) = 0. This
space has a right action of GL2(Af ) given by A · ϕ(x, y) = ϕ((x, y) ·A). Let YGL2

= lim←−U YGL2
(U)

be the infinite level modular curve, let HkQ be the motivic sheaf over Y associated to the highest

weight representation SymkQ2 of GL2 and let H k
Zp be the Lisse étale sheaf induced by Symk(Z2

p).

Theorem 3.2.17 (Beilinson). There is a GL2(Af )-equivariant map

S0(A2
f ,Q)→ H1

mot(YGL2
,HkQ(1))

written as ϕ 7→ Eiskmot,ϕ, the motivic Eisenstein symbol.

We write Eiskét,ϕ = rét(Eis
k
mot,ϕ) ∈ H1

ét(YGL2
,H k

Qp(1)), where rét is the étale regulator. We will need

integral versions of the these classes. For an integer c > 1, let cS((A(p)
f × Zp)2,Z) ⊂ S0((Af )2,Q)

be the subspace of functions of the form ϕ(c) · ch(Z2
c), where ϕ

(c) is a Zp-valued Schwartz function

on (A(c)
f )2 such that ϕc(0, 0) = 0.

8‘G has no R-split torus in the centre which is not Q-split’
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Theorem 3.2.18 (Kings). For a sufficiently small open compact subgroup U ⊂ GL2(A(pc)
f × Zp),

and any c coprime to 6p there is a GL2(A(pc)
f × Zp)-equivariant map

cS((A(p)
f × Zp)2,Zp)U → H1

ét(Y (U),H k
Zp(1)),

written ϕ 7→ cEis
k
ét,ϕ, such that

cEis
k
ét,ϕ = (c2 − c−k( c c )

−1
)Eiskét,ϕ.

Recall we defined Shimura varieties YGL2×GL1
and YGL2

with a natural projection morphism

YGL2×GL1

q−→ YGL2 .

Define a morphism of sheaves
q# : H̃ k

Zp → q∗H k
Zp

to be the identity on H k
Zp i.e. we ignore the GL1-twist.

Definition 3.2.19. Define

Ẽis
k

mot,ϕ = q∗(Eiskmot,ϕ) ∈ H1
mot(YGL2×GL1

, H̃ k
Qp(1)).

Definition 3.2.20. By taking the cup product of an Eisenstein symbol Eiscmot,ϕ1
with Ẽis

d

mot,ϕ2

there is an H̃(Af )-equivariant map

S0(A2
f ,Q)⊗2 → H2

mot(YH̃ ,H
c,d
Qp (2)).

Proposition 3.2.21. For an appropriate choice of integers c1, c2 > 1 and a sufficiently small open

compact subgroup U ⊂ H̃(A(pc)
f × Zpc), there is a H̃(A(pc)

f × Zpc)-equivariant map

(c1S((A
(p)
f × Zp)2,Zp)⊗ c2S((A

(p)
f × Zp)2,Zp))U → H2

ét(YH̃(U), H̃ i,j
Zp (2))

written ϕ 7→ c1,c2Ẽis
i,j

ét,ϕ, where(
c1 − c−i2 (( c1 c1 ), id)

−1
) (
c2 − c−j1 (id, ( c2 c2 ))

−1
)
Ẽis

i,j

ét,ϕ = ret(c1,c2Ẽis
i,j

mot,ϕ).

We introduce level groups which will be useful in proving the norm relations at p.

Definition 3.2.22. Define level groups Um, Vm ⊂ G̃(Af ) to be equal to QG̃(M,pm, pn) away from
p (suppressing the dependence on M) and at p let:

(Um)p = {g ∈ G̃(Zp) : g ∈ Q̄0
G̃

mod pm, α−m
B gαmB ∈ G̃(Zp)}

(Vm)p = αmBUmα
−m
B .

As in [LSZ21] we choose the following integral test data

• An element ξUm ∈ H(G̃(Af ),Z) fixed by the right translation action of Um,

• A subgroup W ⊂ H̃(Af ) such that for all x in the support of ξUm we have W ⊂ H̃(Af ) ∩
xUmx

−1,

• An element
ϕUm ∈ (c1S((A

(p)
f × Zp)2,Zp)⊗ c2S((A

(p)
f × Zp)2,Zp))

invariant under W .
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Recall that S is the finite set of primes away from p at which QG̃(M,pm, pn) is ramified. We define
the above data as products

ξUm = ch(KS)⊗
⊗
ℓ/∈S

ξℓ, W =WS ⊗
∏
ℓ

Wℓ, ϕUm = ϕS ⊗
⊗
ℓ/∈S

ϕℓ.

The data at primes in S or primes dividing M is not so important for our current applications and
is chosen as in [LSZ21, Section 8.4.4]. At p we choose the following data:

• Set ξp = ch(uUm)

• Set Wp := Q◦
H̃p

(M,pm, pm).

• Set ϕp to be the characteristic function of (0, 1) ·Wp.

We choose our pair of integers c1, c2 > 1 such that the following conditions are satisfied:

• The ci are coprime to 6p
∏
ℓ∈S ℓ,

• Our chosen vector ϕS is preserved by the action of the elements (( ci 1 ), (
ci

1 )
−1

) ∈ (GL2 ×
GL2)(QS) (note that these elements are not in H),

• For each ℓ ∈ S the subgroup KS is normalised by the elements

(
1
c1

1
c1

)
and

( c2
1
c2

1

)
.

Definition 3.2.23. Define a class

c1,c2Z̃
[a,b,q,r]
Um

∈ H4
ét(YG̃(Um), D̃a,b

Zp ⊗ µ
qσr−q)

in the following way: Write ξUm as a finite Z-linear sum of characteristic functions ch(xiUm). Then

W ⊂ H̃(Zp) ∩ xiUmx−1
i by definition and we define c1,c2Z̃

[a,b,q,r]
Um

as the sum over the images of

c1,c2Ẽis
c,d

ét,ϕUm
under the pushforwards

H2
ét(YH̃(W ), H̃ c,d

Zp (2))→ H2
ét(YH̃(H̃(Zp) ∩ xiUmx−1

i ), H̃ c,d
Zp (2))

br[a,b,q,r]−−−−−−→ H2
ét(YH̃(H̃(Zp) ∩ xiUmx−1

i ), ι∗D̃a,b
Zp ⊗ µ

qσr−q(2))

ι∗−→ H4
ét(YG̃(xiUmx

−1
i ), D̃a,b

Zp ⊗ µ
qσr−q(3))

[xi]∗−−−→ H4
ét(YG̃(Um), D̃a,b

Zp ⊗ µ
qσr−q(3))

for each xi.

3.3 Norm relations in the p-direction

3.3.1 Norm relations for m ≥ 1

We prove the p-direction norm relations for m ≥ 1 using the theory of [Loe21].

As usual we define an open compact subgroup Up ⊂ G̃(A(p)
f ) by

Up = US ×
∏

ℓ/∈S∪{p}

G̃(Zℓ),

where the subgroup US ⊂ G̃(Qℓ) is chosen such that the product UpU is sufficiently small. For
K,U open compact subgroups of H̃(Qp) and G̃(Qp) respectively, we set

MH̃(K) := H2
ét(YH̃(ι−1(Up)K), H̃ c,d

Zp )

MG̃(U) := H4
ét(YG̃(U

pU), D̃a,b
Zp ⊗ µ

qσr−q).

Let B̃op
G denote the conjugate of B̃G under the long Weyl element. The mirabolic subgroup

Q◦
H̃
⊂ H̃ can be easily seen to have dimension 4, equal to the dimension of the flag variety

F := G̃/B̃op
G
∼= G/Bop

G . In order the apply the machinery of [Loe21] we verify the following
conditions hold:
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1. There is an element u ∈ G̃ such that the stabiliser StabQ◦
H̃
([u]) is contained in Q◦

H̃
∩uT̃Gu−1.

2. The Q◦
H̃

orbit of [u] in F is open i.e. (G̃,Q◦
H̃
) is a spherical pair.

Lemma 3.3.1. The image of the element

u =

(
1 1 1 0
0 1 0 1
0 0 1 −1
0 0 0 1

)
× (1) ∈ G̃(Zp)

in F(Zp) has trivial Q◦
H̃
-stabiliser and satisfies conditions 1 and 2 above.

Proof. We have Q◦
H̃
∩ uT̃Gu−1 = {1} and that StabQ0

H̃
([u]) is trivial follows from a routine com-

putation. By [DA70, Théorème 10.1.2] the orbit map

Q0
H̃
→ F

q 7→ qu

is a monomorphism and its set theoretic image is dense (for dimension reasons) and constructible
and therefore open in F . By comparing structure sheaves we see that this is an open immersion.

Since Q◦
H̃
∩ uT̃Gu−1 = {1} we take Q̄0

G̃
= N̄G̃.

Definition 3.3.2. Define a map

sm,∗ = (sm, s
#
m) : H4

ét(YG̃(Um), D̃a,b
Zp ⊗ µ

qσr−q)→ H4
ét(YG̃(Vm), D̃a,b

Zp ⊗ µ
qσr−q)

to be the map induced by

sm : YG̃(Um)
αmB−−→ YG̃(Vm)

and the morphism of sheaves

s#m : D̃a,b
Zp ⊗ µ

qσr−q → s∗mD̃a,b
Zp ⊗ µ

qσr−q

induced by the action of α−m
B on D̃a,b

Zp (independent of r, q).

Define
Z̃

[a,b,q,r]
Vm

:= sm,∗

(
Z̃

[a,b,q,r]
Um

)
Proposition 3.3.3. The classes Z̃

[a,b,q,r]
Vn

satisfy the following norm compatibility:

pr
Vm+1

Vm
(Z̃

[a,b,q,r]
Vm+1

) = ŨB · Z̃ [a,b,q,r]
Vm

Proof. There are finitely many k ∈ Z and elements x ∈ G̃(Af ) such that

c1,c2Z̃
[a,b,q,r]
Um

=
∑
k

k([x]∗ ◦ ι∗ ◦ br[a,b,q,r])(c1,c2Ẽis
c,d

ét,ϕUm
).

The elements x all have p-part u and thus we can apply [Loe21, Theorem 4.5.4] to get the desired
compatibility after applying sm,∗

For n ≤ m we have inclusions

Vm ⊂ QG̃(M,pm, pm) ⊂ QG̃(M,pm, pn). (7)

Definition 3.3.4. For n ≤ m define classes

z̃
[a,b,q,r]
ét,M,m,n ∈ H

4
ét(YG̃(M,pm, pn),Da,b

Zp ⊗ µσ
r−q)

by pushing forward the classes Z̃
[a,b,q,r]
Vm

along the inclusion (7).
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Finally, we define classes

z̃
[a,b,q,r]
ét,M,m,n ∈ H

4
ét(YG̃(M,pm, pn),Da,b

Zp ⊗ µσ
r−q)

for all m,n ≥ 0 by taking n′ ≥ m and pushing forward along

QG̃(M,pm, pn
′
) ⊂ QG̃(M,pm, pn).

Proposition 3.3.5. The classes z̃
[a,b,q,r]
et,M,m,n satisfy the following norm relations:

1. (prn+1
n )∗(z̃

[a,b,q,r]
et,M,m,n+1) = z̃

[a,b,q,r]
et,M,m,n.

2. (prm+1
m )∗(z̃

[a,b,q,r]
et,M,m+1,n) = ŨB z̃

[a,b,q,r]
et,M,m,n,m ≥ 1.

Proof. The first relation is obvious and the second follows from the fact that for m ≥ 1 both Vm
and QG̃(M,pm, pn) have Iwahori decompositions and so the coset representatives defining ŨB are
the same at both levels allowing us to apply the Cartesian axiom for cohomology functors.

Remark 3.3.6. One can show that

(pr10)∗(z̃
[a,b,q,r]
et,M,1,n) = (ŨK − pr{p}ŨS)(ŨS − pq)(z̃[a,b,q,r]M,0,n )

by a careful analysis of many diagrams.

Let ∆
(r)
m = (Z/MpmZ)× then there is an isomorphism of GQ-modules

Hi
ét(YG̃(M,pm, pn), D̃a,b ⊗ µqσr) ∼= Hi

ét(YG(M,pm, pn),Da,b(−q))⊗Zp Zp[∆(r)
m ]

where the GQ-action on the group ring Zp[∆(r)
m ] is trivial and the action of (t, z) ∈ TG̃(Zp) =

TG(Zp)× Z×
p is given for [g] ∈ ∆

(r)
m by

(t, z)[g] = zr+a[zg].

We obtain classes

z̃
[a,b,q,r]
ét,M,m,n ∈ H

4
ét(YG(M,pm, pn),Da,b(−q))⊗Zp Zp[∆(r)

m ]

satisfying norm-compatibility in the p-direction.

3.4 Moment maps and p-adic interpolation

3.4.1 Fractured moment maps for H̃ and the über-branch

We rejig the moment maps in [LSZ21] to work for norm compatible classes in the Iwahori tower.
Let Σ be a finite set of primes such that the prime to p level is unramified outside Σ, so that our
Shimura varieties all have models over Z[Σ−1]. For n ≥ m ≥ 0 we introduce auxiliary level groups

Q′
G̃
(M,pm, pn) = {g ∈ Um : g ≡ 1 mod pn},

writing Y ′
G̃
(M,pm, pn) for the G̃-Shimura variety of level Q′

G̃
(M,pm, pn), and setting

Z̃
[a,b,q,r]
M,m,n := Z̃

[a,b,q,r]
Q′
G̃
(M,pm,pn).

We recall that our Euler system elements have the form

Z̃
[a,b,q,r]
M,m,n =

∑
a([x] ◦ ι∗ ◦ br[a,b,q,r])(Ẽis

c,d
)

where all of the x have p-part u. For brevity reasons we prove our results assuming that

Z̃ [a,b,q,r]
m,n = ([u] ◦ ι∗ ◦ br[a,b,q,r])(Ẽis

c,d
).

It will be reasonably easy to see that in the general case we can apply the results to each summand
independently, making sure to choose the appropriate prime-to-p H̃-level group for each summand.
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Lemma 3.4.1. For any c, d, the mod pn reduction of the vectors

ec ⊠ fd ∈ H̃c,d
Zp

are invariant under Q◦
H̃
(pm, pn) for any m,n.

Proof. For all n, the vectors ecn ⊠ fdn are highest weight vectors for the maximal torus of H and so
are invariant under NH(Zp). Since Q◦

H̃
(pm, pn) is upper triangular mod pn it suffices to compute

the action of the torus
( x 1 )×

(
xy

y−1

)
× (y−1)

which can easily be seen to fix the vector in question.

We thus obtain a canonical section ecn ⊠ fdn ∈ H0
et(YH̃(pm, pn)Σ, H̃ c,d

n ), where H̃ c,d
n is the mod pn

reduction of the sheaf H̃ c,d
Zp .

Definition 3.4.2. Define moment maps

momc,d
n : H2

Iw(YH̃(pm, p∞)Σ,Zp(2))→ H2
et(YH̃(pm, pn), H̃ c,d

Zp (2))

by restricting the image of

(zs)s 7→ (prsn)∗(zs ∪ ecs ⊠ fds )s≥n ∈ lim←−
s

H2
et(YH̃(pm, pn)Σ, H̃

c,d
s ) = H2

et(YH̃(pm, pn)Σ, H̃
c,d
Zp )

to the generic fibre.

Theorem 3.4.3. There is a class

ẼIm ∈ H2
Iw(YH̃(pm, p∞)Σ,Zp(2)),

depending on some suppressed parameters, which satisfies

momc,d
n (ẼIm) = Ẽis

c,d

m,n.

Proof. Define

ẼIm = (Ẽis
0,0

m,s)s≥1.

The result follows from [LSZ21, Theorem 9.1.4] and fact that the following diagram commutes for
s ≥ n

H1
et(YH̃(ps),H c,d

s ) H1
et(YH̃(pn),H c,d

s )

H1
et(YH(ps),H c,d

s ) H1
et(YH(pn),H c,d

s )

pr∗

q∗

pr∗

q∗

which can be deduced from the Cartesian axiom of cohomology functors.

In order to interpolate in the r variable we will need an auxiliary moment map.

Definition 3.4.4. We define ‘fractured moment maps’

mom[c,d,r]
n : H2

Iw(YH̃(pm, p∞)Σ,H
0,r
Zp (2))→ H2

et(YH̃(pm, pn),H c,d
Zp (2))

to be the map given by restricting

(zs)s 7→ (prsn)∗((zs ∪ ecs ⊠ fd−rs )s≥n

to the generic fibre.
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Lemma 3.4.5. The map mom
[c,d,r]
n fits into a diagram

H2
Iw(YH̃(pm, p∞),Zp(2)) H2

Iw(YH̃(pm, p∞),H 0,r
Zp (2))

H2
ét(YH̃(pm, pn),H c,d

Zp (2))

Ür

momc,dn
mom[c,d,r]

n

where the top map Ür is given by taking the limit over zs 7→ zs ∪ 1⊠ frs .

Proof. This follows from the definition of the Cartan product.

3.4.2 Moment maps for G̃

Lemma 3.4.6. For all a, b, the mod pn reduction of the vectors d
[a,b,0,0]
n are invariant under

Q◦
G̃
(pm, pn) for all m,n.

Proof. We observe that d[a,b,0,0] are highest weight vectors for D̃a,b
Zp and thus are invariant under

the unipotent radical NG of the Borel BG̃. Since Q◦
G̃
(pm, pn) is contained in NG̃(Zp) mod pn we

are done.

Definition 3.4.7. For 0 ≤ q ≤ a, 0 ≤ r ≤ b, define

mom[a,b,q,r]
n : H4

Iw(YG̃(p
m, p∞),Dq,r

Zp (3)⊗ µ
qσr−q)→ H4

ét(YG̃(p
m, pn),Da,b

Zp (3)⊗ µ
qσr−q)

by cup product with d
[a−q,b−r,0,0]
s modulo ps, projection to the nth level of the projective limit and

lifting to the generic fibre.

Lemma 3.4.8. The following diagram commutes:

H2
Iw(YH̃(pm, p∞)Σ,H

0,r
Zp ) H4

Iw(YG̃(p
m, p∞)Σ,D

q,r
Zp (3)⊗ µ

qσr−q)

H2
et(YH̃(pm, pn),H c,d

Zp ) H4
ét(YG̃(p

m, pn),Da,b
Zp (3)⊗ µ

qσr).

[u]∗◦ι∞◦br[q,r,q,r]

mom[c,d,r]
n mom[a,b,q,r]

n

[u]∗◦ιn,∗◦br
[a,b,0,r]

Proof. This follows from the definition of the branching maps and the fact that the d[a,b,q,r] are
compatible under the Cartan product.

The above definitions and diagrams carry over perfectly well to the case of the dashed level groups
Q′
G̃
(pm, pn). We define a class

Z̃ q,r
m :=

(
u∗ ◦ ι∞,∗ ◦ br[q,r,q,r] ◦ Ür(ẼIm)

)
∈ H4

Iw(Y
′
G̃
(pm, p∞),Dq,r

Zp (3)⊗ µ
qσr−q).

Remark 3.4.9. In the general case this should of course be replaced by the sum

Z̃ q,r
m =

∑
a([x]∗ ◦ ι∞,∗ ◦ br[q,r,q,r] ◦ Ür)(ẼIm)

for some a ∈ Z.

Proposition 3.4.10. The moment maps mom
[a,b,q,r]
n satisfy the following interpolation property:

mom[a,b,q,r]
n (Z̃ q,r

m ) = Z̃ [a,b,q,r]
m,n

for all n ≥ max{m, 1}.
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Proof. Using the above lemma and [LSZ21, Proposition 9.3.1] we get

mom[a,b,q,r]
n (u∗ ◦ ι∞,∗ ◦ br[q,r,q,r]((EIm,n ∪ frn)n)) = u∗ ◦ ιn,∗ ◦ br[a,b,q,r] ◦mom[c,d,r]((EIm,n ∪ frn)n)

= u∗ ◦ ιn,∗ ◦ br[a,b,q,r] ◦momc,d
n (EIm)

= Z̃ [a,b,q,r]
m,n ,

where we can pull out [u]∗ because it fixes the highest weight vectors d[a−q,b−r,0,0] and thus com-
mutes with the moment maps.

Lemma 3.4.11. For 0 ≤ q ≤ a, 0 ≤ r ≤ b, d[q,r,q,r]m is invariant under Q′
G̃
(pm, p∞).

Proof. Q′
G̃
(pm, p∞) is contained in the principal congruence subgroup of level pm and is thus trivial

mod pm.

Proposition 3.4.12. We have

Z̃ q,r
m ≡ Z̃ 0,0

m ∪
(
u∗d

[q,r,q,r]
m ⊗ ζqm ⊗ τ r−qm

)
mod pm,

where ζm, τm are choices of (multiplicative) basis elements for the mod pm representations defined
respectively by µ and σ.

Proof. Clear from the definitions.

We now prepare ourselves to move back to our non-dashed level groups.

Definition 3.4.13. Define

z̃q,rm = sm,∗(Z̃
q,r
m ) ∈ H4

Iw(YG̃(p
m, p∞),Dq,r

Zp (3)⊗ µ
qσr−q).

Corollary 3.4.14. We have the following interpolation property:

mom[a,b,q,r]
n (z̃q,rm ) = z̃

[a,b,q,r]
ét,m,n

for all a ≥ q, b ≥ r.

Proof. This follows from the fact that αB fixes the vectors d[a−q,b−r,0,0] and is identical to [LSZ21,
Corollary 9.4.3].

3.4.3 Interpolating in q and r

We need the following technical lemma which is analagous to [LSZ21, Proposition 9.5.1]:

Lemma 3.4.15.

z̃q,rIw,m = (−1)q+r2q z̃0Iw,m ∪ (d[q,r,0,0]m ⊗ ζqm ⊗ τ r−qm ) mod pm.

Proof. Recall that, by definition, the morphisms of sheaves s#m ignores twists of Da,b
Zp . By the

previous section we have

Z̃ q,r
m = Z̃ 0

m ∪ (u∗d
[q,r,q,r]
m ⊗ ζqm ⊗ τ r−qm ) mod pm.

Since the torus T ′′(x) has all weights ≤ 0 then α−m
B acts through positive integral powers of pm,

which kill all weight subspaces of Dq,r
m except the 0-weight subspace. Thus it suffices to compute

the projection of u∗d
[q,r,q,r] to the weight 0 subspace, which is precisely the content of Lemma 3.2.5

when h = −1.
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Set
H4

Iw(YG̃(p
∞, p∞),Zp(3)) = lim←−

m

H4
Iw(YG̃(p

m, p∞),Zp(3))

and define the Borel-ordinary projector

ẽord = lim
k→∞

Ũk!B ,

which is well-defined on the above projective limit by Tilouine-Urban [TU99].

Definition 3.4.16. Set
z̃Iw := (Ũ−m

B · ẽord(z̃0Iw,m))m≥1

Definition 3.4.17. We define

mom[a,b,q,r]
m,n : H4

Iw(YG̃(p
∞, p∞)Σ,Zp(3))→ H4

et(YG̃(p
m, pn),Da,b

Zp (3)⊗ µ
qσr−q)

by cup product with d[a,b,0,0] ⊗ ζq ⊗ τ r−q ∈ H0
Iw(YG̃(p

∞, p∞)Σ,D
a,b
Zp ⊗ µ

qσr−q)

Theorem 3.4.18. For m ≥ 0, n ≥ 1, 0 ≤ q ≤ a, 0 ≤ r ≤ b we have

mom[a,b,q,r]
m,n (z̃Iw) =

1

(−1)q+r2q

{
Ũ−m
B · ẽord(z̃[a,b,q,r]et,m,n ) m ≥ 1

(1− pr{p}ŨS
ŨK

)(1− pq

ŨS
)ẽord(z̃

[a,b,q,r]
et,m,n ) m = 0.

Proof. Essentially identical to [LSZ21, Theorem 9.6.4].

We have an isomorphism of Zp[[TG̃(Zp)]][GQ]-modules

Hi
Iw(YG̃(M,p∞, p∞)Q̄,Zp(3)) ∼= H4(YG(M,p∞, p∞)Q̄,Zp(3))⊗ Zp[[∆∞]]

where ∆∞ ∼= Z×
p × (Z/MZ)× equipped with the trivial Galois action. Similarly there is an isomor-

phism of Zp[[TG̃(Zp)]]-modules in integral étale cohomology:

Hi
Iw(YG̃(M,p∞, p∞)Σ,Zp(3)) ∼= H4(YG(M,p∞, p∞)Σ,Zp(3))⊗ Zp[[∆∞]].

This gives an interpretation of z̃Iw as a measure on ∆∞ valued in H4(YG(M,p∞, p∞)Σ,Zp(3)),
where the moment map mom

[a,b,q,r]
m is given on Zp[∆∞] for δ ∈ ∆∞ by

[δ] 7→ δr+a[δ mod pm].

Remark 3.4.19. When m = 0, n = 1 the above map becomes [δ] 7→ δr+a which can be interpreted
for µ ∈ Zp[[∆∞]] as an integral ∫

Z×
p

zr+aµ(z).

In this case the moment maps interpolate Iwahori level classes for G.

3.4.4 Classes in Galois cohomology

Consider the map

H4
ét(YG(M,pm, pn)Σ,D

a,b(3−q))⊗Zp[∆m]→ H0(Z[Σ−1], H4(YG(M,pm, pn)Q̄,D
a,b(3−q))⊗Zp[∆m])

(8)
induced by the base change map YG̃,Σ → YG̃,Q̄, where the Galois cohomology on the right is
unramified outside of Σ. We call classes in the kernel of this map cohomologically trivial classes.
As in the Siegel ordinary case [LSZ21, Corollary 9.6.6], we see that the Borel-ordinary classes are
cohomologically trivial:

Lemma 3.4.20. For m ≥ 1 or q, r ≥ 1 the classes ẽord(c1,c2 z̃
[a,b,q,r]
ét,M,m,n) are cohomologically trivial.

45



Proof. An application of Deligne reciprocity and Shaprio’s lemma gives us

H0(Q, H4
ét(YG̃(M,pm, pn)Q̄,D

a,b ⊗ µqσr−q)) = H0(Q(ζMpm), H
4
ét(YG̃(p

n)Q̄, D̃
a,b ⊗ µqσr−q))

and taking the inverse limit over m on gives H0(Q, H4
ét(YG̃(M,p∞, pn)Q̄, D̃

a,b ⊗ µqσr−q)) = 0

by [Nek06, Proposition 8.3.5] (using crucially that H4
ét(YG̃(p

n)Q̄, D̃
a,b ⊗ µqσr−q) is a finitely gen-

erated Zp-module). We thus immediately see from Proposition 3.3.5 that for m ≥ 1 the class

ẽord(c1,c2 z̃
[a,b,q,r]
ét,M,m,n) maps to zero under the edge map (8) and if m = 0 and q, r ≥ 1 the Euler factor

(1− pr{p}ŨS
ŨK

)(1− pq

ŨS
) is invertible and the result follows.

If we consider the Hochschild Serre spectral sequence for YG̃

Hi(Z[Σ−1], Hj
ét(YG(M,pm, pn)Q̄,D

a,b(3− q))⊗Zp[∆m])

=⇒ Hi+j
ét (YG(M,pm, pn)Σ, D̃

a,b(3− q))⊗ Zp[∆m],

we see that the cohomologically trivial classes in H4
ét(YG(M,pm, pn)Σ,Da,b(3− q))⊗ Zp[∆m] map

into the Galois cohomology group H1(Z[Σ−1], H3
ét(YG(M,pm, pn)Q̄,D

a,b(3− q))⊗ Zp[∆m]).

Remark 3.4.21. Since Iwasawa cohomology is automatically unramified outside p, the results of
Lemma 3.4.20 hold for Galois cohomology with restricted ramification.

Let Π be a non-endoscopic, non-CAP cuspidal automorphic representation of G(AQ), discrete series
at infinity and of (cohomological) weight (k1, k2) with k1 ≥ k2 ≥ 3 and (a, b) = (k2 − 3, k1 − k2).
Suppose further that Πp is unramified and has a Borel-ordinary p-stabilisation. As in [LSZ21,
Section 10], a choice of Iwahori-invariant UB eigenvector for Πp gives us a map

H3
ét(YG̃(M,pm, pn)Q̄,D

a,b
Zp (3)⊗ µ

qσr−q)→WΠ(−q)⊗ Zp[∆(r)
m ]

where WΠ is the Galois representation associated to Π by Taylor [Tay89] and Weissauer [Wei05].

Definition 3.4.22. We define

zΠm ∈ H1(Q(ζMpm),WΠ(−q)⊗ Zp[∆(r)
m ])

to be the pushforward of ẽord(c1,c2z
[a,b,q,r]
ét,M,m,n).

We recall some results of Tilouine–Urban [TU99] on families of Siegel modular forms.

Definition 3.4.23. WriteW for the rigid analytic weight space parameterising characters of (Z×
p )

2.

The following definition is the Borel analogue of [LZ20b, Definition 17.1.2]

Definition 3.4.24. Let U ⊂ W be an affinoid subspace containing 0. We define a Borel-type Hida
family Π passing through (a, b) to be the data of:

• For each pair of non-negative integers (m,n) ∈ U a globally generic cuspidal automorphic
representation Π′, cohomological at infinity with coefficients in V a+m,b+n such that Π(m,n) =
Π′.

• An embedding of the coefficient field of Π(m,n) into Q̄p with respect to which Π(m,n) is
Borel-ordinary.

• Rigid analytic functions ti,ℓ ∈ O(U) for i = 1, 2, ℓ ̸= p such that for each (m,n) ∈ U∩Z2
≥0 the

values of t1,ℓ, t2,ℓ at (m,n) are given respectively by the eigenvalues of the spherical Hecke
operators diag(ℓ, ℓ, 1, 1), ℓ−(a+m+b+n)diag(ℓ2, ℓ, ℓ, 1) on the ‘arithmetic twist’ Π(m,n)arith :=

Π(m,n)⊗ ∥·∥−
2a+b

2 .

• Rigid analytic functions u1,p, u2,p with u1,pu2,p taking p-adic unit values such that for all
(m,n) ∈ U∩Z2

≥0 we can write the Hecke-parameters of Π(m,n)arith as (αm,n, βm,n, γm,n, δm,n)
with

u1,p(m,n) = αm,n, u2,p(m,n) =
βm,n + γm,n
pa+m+b+n+1

.
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Theorem 3.4.25 (Tilouine–Urban). Let Π be as above.

• There is a disc U ⊂ W and a Borel-type Hida family Π over U such that Π(0, 0) = Π.

• After possibly shrinking U there is a free rank 4 O(U)-module WΠ whose fibre at (m,n) ∈
U ∩ Z2

≥0 gives the Galois representation WΠ(m,n) associated to Π(m,n).

The Galois representation WΠ occurs as a direct summand in H3
ét(YG(M,p∞)Q̄,Zp(3)) and so we

can pushforward the classes z̃Iw to get a class

z̃
Π
Iw ∈ H

1
Iw(Q(ζMp∞),WΠ ⊗ Zp[[∆∞]])

interpolating the classes ẽord(c1,c2 z̃
Π(a,b),q,r
m ) for (a, b) ∈ U , 0 ≤ q ≤ a, 0 ≤ r ≤ b via the moment

maps mom
[a,b,q,r]
m,n .

4 Derived control theorems for reductive groups

4.1 Introduction

Fix a prime p. Since the 1980s, starting with the seminal work of Hida [Hid86], p-adic families
of Hecke eigensystems have been an indispensible tool in arithmetic geometry. Control theorems
allow us to isolate classical eigensystems using the action of the Hecke algebra. We prove control
theorems for the ordinary arithmetic cohomology associated to a large class of reductive groups.

To be precise, let G be a connected reductive algebraic group over Q unramified over Qp with
Borel subgroup BG, splitting field K/Qp and reductive model G over Zp. Let QG be a parabolic
subgroup of G with Levi decomposition QG = LG ×NG, where NG is the unipotent radical of QG
and LG is the Levi subgroup. Let TG be a maximal torus contained in QG and let SG = Lder

G \LG.
Write Sn(Zp) ⊂ SG(Zp) for the subgroup of points which reduce to the identity mod pn. Let
χ ∈ X•(LG), λ ∈ X•(TG) be characters such that λ is dominant for BLG and λ + χ is dominant
for BG and write Vλ+χ for the K-linear irreducible representation of G of highest weight λ and
Wλ for the K-linear irreducible representation of LG of highest weight λ. Write Vλ,OK for the
minimal admissible OK-lattice in Vλ+χ and Wλ,OK for the minimal admissible lattice in Wλ. Let

Γ ⊂ G(Q) ∩ G(Ẑ) be a congruence subgroup of level prime to p, let Γ0(p
n) be the subgroup of

points which reduce to QG(Z/pnZ) mod pn and let Γ1(p
n) be the subgroup of points which reduce

to NG(Z/pnZ) mod pn.

We prove the following theorem:

Theorem 4.1.1. For all λ as above there is a perfect complexM•
λ ∈ D(OK [[SG(Zp)]]) concentrated

in degrees [0, ν] satisfying

Hi(M•
λ) = lim←−

n

Hi(Γ1(p
n),Wλ,OK/p

n)ord

and for all χ as above there is a quasi-isomorphism

M•
λ ⊗LOK [[Sn(Zp)]] O

(χ)
K ∼ RΓ(Γ1(p

n), Vλ+χ,OK )
ord,

for n ≥ 1 and a quasi-isomorphism

M•
λ ⊗LOK [[SG(Zp)]] O

(χ)
K ∼ RΓ(Γ0(p

n), Vλ+χ,OK )
ord

for n = 0.

The aim of this work is to provide a toolbox for those working with Euler systems varying in Hida
families, such as those constructed in [KLZ17] and [LSZ21], and to act as a companion piece to
forthcoming work of Loeffler–Zerbes in which they construct such interpolating classes for the same
broad class of reductive groups with which we work.

We remark that there are many similar results in the literature, for example the work of Hida
[Hid95] for SLn and Tilouine-Urban [TU99] for GSp4, albeit not in the derived setting. Indeed many
of their proofs generalise readily to the general setting with only minor tweaks in order to work with
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complexes instead of cohomology groups and to account for changes in convention. The conventions
in the aforementioned papers tend to differ greatly from those occurring in the literature on Euler
systems and so we think it valuable, even in the existing cases, to have statements of these results
with our conventions.

The layout of the paper is as follows:

• In Section 4.2 we fix the notations and conventions we will use for reductive groups, highest
weight representations and interpolating modules.

• In Section 4.3 we prove the derived control theorem.

• In Section 4.4 we prove p-stabilisation and duality results.

• In Section 4.5 we deduce control results for ‘adèlic cohomology’. We prove compatibility
with the Hecke algebra TS,p generated by the anemic Hecke algebra TS and the Up-operator
and use this to prove a vanishing result for Iwasawa cohomology under the assumption that
the Iwahori-level cohomology vanishes outside of the middle degree when localised at some
maximal ideal of TS,p.

4.2 Notation

4.2.1 Algebraic groups and Iwasawa algebras

The setting:

• G is a connected reductive algebraic Q-group, unramified over Qp and satisfying Milne’s
axiom (SV5) i.e. the centre contains no R-split torus which is not Q-split. The group-scheme
G/Qp thus splits over a finite unramified extension K of Qp with ring of integers O and
admits a reductive group-scheme model G over Zp.

• Fix a choice of Borel subgroup and maximal torus BG ⊃ TG defined over Zp.

• Fix a choice QG of standard parabolic subgroup of G with Levi factor LG and unipotent
radical NG. Let L

der
G denote the derived subgroup of LG. We write Q̄G for the image of QG

under the longest Weyl element.

• Let SG = Lder
G \LG and let SG = Lder

G (Zp)\LG(Zp) ⊂ SG(Zp).

Let η : Gm/Zp → Z(LG) be a cocharacter which is strictly dominant with respect to QG in the
sense that ⟨η,Φ⟩ > 0 for all relative roots Φ. Set τ = η(p). We then have⋂

i

τ−iN̄G(Zp)τ i = {1}.

Define

Nr = τ rNG(Zp)τ−r,
N̄r = τ−rNG(Zp)τ r,
Lder
r = {ℓ ∈ LG(Zp) : ℓ mod pr ∈ Lder

G (Z/prZ)}

for r ≥ 1 and set Lder
0 = LG for future notational convenience. Define open-compact subgroups

V0,r = N̄rLGN0

V1,r = N̄rL
der
r N0.

Fix a prime-to-p congruence subgroup Γ ⊂ G(Ẑ) and let

Γ?,r = V?,r ∩ Γ,

for ? ∈ {0, 1}.

Define
Λ0 := O[[SG]].
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Let Sr = {s ∈ SG : s ≡ 1 mod pr} = Lder
G (Zp)\Lder

r . This is a free Zp-module. Set

Λr := O[[Sr]].

The ring Λ0 decomposes into a direct sum

Λ0 =
⊕
ψ

Λ
(ψ)
1 ,

where the sum runs over characters ψ : S1\SG → O× and Λ
(ψ)
1 = Λ1 with the action of S1\SG

given by ψ.

Lemma 4.2.1. Let M be a Λ0-module. Suppose M is free as a Λ1-module under the inclusion
Λ1 ↪→ Λ0. Then M is projective as a Λ0-module.

Proof. It suffices to prove that Λ1 is a projective Λ0-module, which is clear from the above decom-
position.

Given a character χ : Sr → O× we write

χ† : Λr → O

for the induced homomorphism.

4.2.2 Chain complexes and Hecke algebras

Let R be a ring. For an arithmetic subgroup Γ ⊂ G(Z) we can find a resolution C•(Γ) of R by
finite free R[Γ]-modules [Urb11, Lemma 4.2.2]. Given a left R[Γ]-module M , we define a complex

C •(Γ,M) := HomR[Γ](C•(Γ),M),

satisfying Hi(C •(Γ,M)) = Hi(Γ,M). This of course depends on the choice of C•(Γ) but its image
RΓ(Γ,M) in the derived category does not.

Given groups Γ,∆, a Γ-module M and ∆-module N , it is a standard fact from group cohomology
(see e.g. [Urb11, 4.2.5]) that a pair (ϕ, f) consisting of a group homomorphism ϕ : Γ → ∆ and a
map of abelian groups f : N →M satisfying

f(ϕ(γ)m) = γf(m)

for all n ∈ N and γ ∈ Γ induce a natural map

C •(∆,M)→ C •(Γ, N)

Example 4.2.2. • If ι : Γ ↪→ ∆ and M = N then we have the restriction map

res∆Γ = (ι, id)

• If α ∈ G(Q) acts on M , then define

[α] = (α(·)α−1, α(·))

If Γ′ ⊂ Γ is a finite index subgroup, then C•(Γ) is also a resolution of R by finite free Γ′-modules
so there is a unique homotopy equivalence δ : C•(Γ) → C•(Γ

′) extending the identity. We define
the corestriction map

coresΓΓ′ : HomΓ′(C•(Γ
′),M)

◦δ−→ HomΓ′(C•(Γ),M)
∑
γi−−−→ HomΓ(C•(Γ),M),

where γi is a full set of coset representatives for Γ′\Γ.
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Now suppose we have arithmetic groups Γ,Γ′ ⊂ Γ′′ and that M is an R[Γ′′]-module with a com-
patible action of α ∈ G(Q). The double coset ΓαΓ′ defines a map

C •(Γ,M)→ C •(Γ′,M)

via
[ΓαΓ′] = coresΓ

′

Γ′∩α−1Γα ◦ [α] ◦ res
Γ
αΓ′α−1∩Γ, (9)

where we suppress the dependence on the homotopy δ.

Definition 4.2.3. Define
T := [Γτ−1Γ].

4.2.3 Ordinary subspaces

We perform a somewhat ad-hoc construction of the ordinary subspace. Let (R,m) be a local ring
complete with respect to the m-adic topology. Suppose M is a topological R[Γ]-module with a
compatible action of τ−1 and such that the action of T on C •(Γ,M) is continuous for the induced
product topology. Suppose further that M is compact so that C •(Γ,M) is also compact. Then we
can make sense of the ordinary part of C •(Γ,M):

C i(Γ,M)ord :=
⋂
n≥0

T nC i(Γ,M).

All of the coefficient modules that we consider will satisfy these conditions.

Suppose we know that the quotients C i(Γ,M)/mn are finite R/mn-modules. Then by results of
Pilloni [Pil20] there is an idempotent e = limn T n! such that

eC i(Γ,M) = C i(Γ,M)ord.

4.2.4 Algebraic representations

Let λ ∈ X•(TG) be dominant with respect to the Borel BLG := BG ∩ LG of LG. Define

C LG
alg (λ) := {f ∈ O[LG/O] : f(bx) = (−λ)(b)f(x) ∀ b ∈ BLG/O},

an admissible O-lattice (in the sense of [LSZ21, 4.2]) in the K-linear irreducible representation of
LG/K of lowest weight −λ with left LG action given by right translation. Suppose χ ∈ X•(LG) is
such that λ+ χ is dominant for G, and write

CG
alg(λ+ χ) = {f ∈ O[G/O]⊗ C LG

alg (λ) : f(qg) = (−χ(q))qf(g) ∀ q ∈ QG/O}
∼= {f ∈ O[G/O] : f(bg) = (−λ− χ)(b)f(g) ∀ b ∈ BG/O}

an admissible O-lattice in the irreducible representation of G/K of lowest weight −(λ + χ). The

above isomorphism is given by mapping the C LG
alg (λ) factor to K under the ‘evaluation at 1’ map.

Definition 4.2.4. Define

Wλ,O = HomO(C
LG
alg (λ),O)

Vλ+χ,O = HomO(C
G
alg(λ+ χ),O).

given the structure of LG/O (resp. G/O) representations via the contragredient representation. We
note that Wλ,O is an admissible lattice in the K-linear representation of LG of highest weight λ
and Vλ+χ,O is an admissible lattice in the K-linear highest weight representation of highest weight
λ+ χ.

We define an action of τ on Vλ,O as follows: τ gives a well-defined map Vλ,O ⊗K → Vλ,O ⊗K and
if we set hλ = ⟨η, λ⟩, then phλτ−1 preserves the lattice Vλ,O, so we let

τ−1 ∗ v = phλτ−1v.

Remark 4.2.5. This action corresponds to the action of τ on CG
alg(λ) given by restricting to the

big Bruhat cell N̄GLGNG and setting (τ ∗ f)(n̄ℓn) = f(τ−1n̄τℓn).
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4.2.5 Distribution modules

We define the distribution modules which will serve as the coefficients for our interpolating com-
plexes.

Definition 4.2.6. Define spaces

Yr := Lder
r N0\V0,1 ∼= Sr\SG × N̄1,

Yuniv := Lder
G N0\V0,1 ∼= SG × N̄1.

We extend the natural right action of V0,1 on Yr to an action of the monoid generated by V0,1 and
τ by letting

(ℓ, n) ∗ τ = (ℓ, τ−1nτ).

Definition 4.2.7. Given a character λ ∈ X•(TG) dominant with respect to BLG , let

Cr(λ) = {Continuous f : N0\V0,1 → C LG
alg (λ) : f(ℓx) = ℓf(x) ∀ ℓ ∈ Lder

r },

Cuniv(λ) = {Continuous f : N0\V0,1 → C LG
alg (λ) : f(ℓx) = ℓf(x) ∀ ℓ ∈ Lder

G }

where the functions are continuous for the p-adic topologies on the source and target. These spaces
are isomorphic to the spaces of continuous C LG

alg (λ)-valued functions on Yr, Yuniv respectively via
the map

ϕ : f 7→
(
ℓn̄ 7→ ℓ−1f(ℓn̄)

)
. (10)

We endow these spaces with an action of V0,1 by right translation:

(g · f)(x) = f(xg).

We define a twisted action of SG on Cuniv(λ):

(ℓ ∗ f)(x) = ℓ−1f(ℓx). (11)

The isomorphism (10) is equivariant for this action if we give the target the natural left translation
action of SG.

Definition 4.2.8. Define modules of distributions

Dr(λ) = HomO,cont(Cr(λ),O),
Duniv(λ) = HomO,cont(Cuniv(λ),O).

Using the identification (10) we have isomorphisms of O-modules:

Dr(λ) ∼= O[[Yr]]⊗Wλ,O, (12)

Duniv(λ) ∼= O[[Yuniv]]⊗Wλ,O, (13)

from which we see Duniv obtains a natural action of Λ0 corresponding to the ∗-action (11) in the
sense that for µ ∈ Duniv(λ), f ∈ Cuniv(λ) and [s] ∈ Λ0 corresponding to s ∈ SG:∫

N0\V0,1

f(x)([s] · µ)(x) =
∫
N0\V0,1

(s ∗ f)(x)µ(x).

Let χ ∈ X•(SG) be a character such that λ+ χ is dominant for G. There is a natural map

Duniv(λ)→ Dr(λ+ χ)

factoring through Duniv(λ)⊗O(χ), given by dualising the inclusion

Cr(λ+ χ) ↪→ Cuniv(λ).

In our proof of the control theorem we will need a few finite modules.
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Definition 4.2.9. Set Os := O/ps and C LG
alg (λ; ps) := C LG

alg (λ) ⊗ Os. For s ≥ r we define the
following Os-modules:

Cr(λ; p
s) := {f : NG(Z/psZ)\V0,1(ps)→ C LG

alg (λ; ps) : f(ℓx) = ℓf(x) ∀ℓ ∈ Lder
r }

Dr(λ; ps) := HomOs(Cr(λ; p
s),Os)

C̃r(λ; p
s) := {f : LG(Z/psZ)→ C LG

alg (λ; ps) : f(ℓx) = ℓf(x) ∀ℓ ∈ Lder
r }

D̃r(λ; ps) := HomOs(C̃r(λ; p
s),Os),

where V0,1(p
s) ⊂ G(Z/psZ) is the mod ps reduction of V0,1. Note that we endow Dr(λ; ps) with

the action of Γ0,1 corresponding to right translation of functions and give D̃r(λ; ps) an analogous
action of Γ0,s.

The utility of these modules is given by the fact that

D̃r(λ; ps) = Ind
Γ0,s

Γ1,r∩Γ0,s
Wλ,s,

and
lim←−
s

Dr(λ; ps) = Dr(λ).

4.3 Derived control

Let ν be the virtual cohomological dimension of G. For a commutative ring R let D(R) denote
the derived category of R-modules.

Definition 4.3.1. A bounded complex of R-modules is called perfect if it consists of finite pro-
jective R-modules. We call an object M ∈ D(R) perfect if it can be lifted to a perfect complex of
R-modules.

Write O(χ) for O with Λ0-module structure given by χ†. We prove the following theorem.

Theorem 4.3.2. For each λ ∈ X•(TG) dominant for BLG there is a perfect complex M•
λ ∈ D(Λ0)

concentrated in degrees [0, ν] satisfying

Hi(M•
λ) = lim←−

r

Hi(Γ1,r,Wλ,O ⊗Or)ord

and for all χ ∈ X•(SG) such that λ+ χ is dominant for G there are quasi-isomorphisms

M•
λ ⊗LΛr O

(χ) ∼ RΓ(Γ1,r, Vλ+χ,O)
ord

for r ≥ 1 and
M•
λ ⊗LΛ0

O(χ) ∼ RΓ(Γ0,1, Vλ+χ,O)
ord

for r = 0.

Remark 4.3.3. This result corrects an error in the main result of [AS97] in which a small indexing
mistake in the proof of Lemma 1.1 hides the contribution of some inscrutable Tor groups to the
kernel of the specialisation map. Explicitly, it is stated in op.cit that for G = GLn there is an
injective map

Hi(Γ0,1,Duniv)
ord/I

(λ)
0 ↪→ Hi(Γ0,1, Vλ,O)

ord

for all i. Our analysis shows that for this to happen it is necessary that the image of the Tor group

TorΛ0
−2(H

i−1(Γ0,1,Duniv)
ord,O(λ)) in Hi(Γ0,1,Duniv)

ord/I
(λ)
0 vanishes. It seems to us that there is

no a priori reason that this should be the case- it is not purely formal from the numerology. We
describe in Section 4.5 some additional hypothesis that force the vanishing of the Tor groups which
constitute the obstruction to the statement in op. cit.

We prove that there is a sequence of quasi-isomorphisms for r ≥ 0:

C •(Γ0,1,Duniv(λ))
ord ⊗Λr O(χ) ∼ C •(Γ0,1,Dr(λ+ χ))ord ∼ C •(Γ1,r, Vλ+χ,O)

ord.
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Definition 4.3.4. Let {s(r)i }i be a Zp-basis for Tr(Zp). Given an algebraic character χ : SG(Zp)→
O× we write I

(χ)
r for the kernel of the induced homomorphism

χ† : Λr → O.

It is generated by the regular sequence ([s
(r)
i ]− χ(s(r)i ))i.

The first of the above sequence of quasi-isomorphisms is an immediate consequence of the following
lemma.

Lemma 4.3.5. The kernel of the map

rλχ : Duniv(λ)→ Dr(λ+ χ) (14)

dualising the inclusion
ιλχ : Cr(λ+ χ)→ Cuniv(λ) (15)

is given by I
(χ)
r Duniv(λ).

Proof. For simplicity we assume that λ is trivial. In particular this means that the action (11) is
just left translation and the isomorphism (10) is essentially trivial. The image of Cr(χ) under (15)
is given by the subspace of Cuniv(1) satisfying (ℓ · f)(x) = χ(ℓ)f(x) for all ℓ ∈ Lder

r .

Note that I
(χ)
r is the kernel of the map

µ 7→
∫
Sr

χ(x)µ(x),

which is merely a distribution-theoretic way of writing χ†. There is a finite set Φr = {γ1, . . . , γm}
such that

SG = Φr ×Sr.

Suppose µ =
∑
i≥0 µ1,i⊗µ2,i ∈ Duniv(1) ∼= O[[SG]]⊗̂O[[N̄1]] and suppose without loss of generality

that the set {µ2,i}i≥0 is independent over O in the sense that if there are ci ∈ O such that∑
ciµ2,i = 0 then ci = 0 for all i. Write

ai :=

∫
Sr

χ(s)µ1,i(s)

Suppose µ ∈ ker(r1χ). We then have for f ∈ Cr(χ):∫
SG×N̄1

f(sn̄)µ(sn̄) =

∫
Sr×Φr×N̄1

f(sϕn̄)µ(sϕn̄)

=
∑
j

∫
Sr×N̄1

f(sγj n̄)µ(sn̄)

=
∑
j

∫
Sr×N̄1

χ(s)f(γj n̄)µ(s, n̄)

=
∑
i

∑
j

∫
Sr

χ(s)µ1,i(s)

∫
N̄1

f(γj n̄)µ2,i(n̄)

=
∑
i

ai

∫
Φr×N̄1

f(x)µ2,i(x)

=

∫
Φr×N̄1

f(x)

(∑
i

aiµ2,i

)
(x)

= 0

Since restriction of continuous functions in Cr(χ) to Φr × N̄1 is an isomorphism, this implies that∑
i aiµ2,i = 0 and by our assumption on the independence of the distributions µ2,i we get that

ai =

∫
Sr

χ(s)µ1,i(s) = 0
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for all i as required.

The second quasi-isomorphism follows from the following few lemmas. The next result is a variation
of a lemma which appears frequently in papers on Hida theory, for example [Hid95, Proposition
4.1], [TU99, Lemma 3.1], and shall be henceforth known as the ‘Hida lemma’.

Lemma 4.3.6. For s ≥ r let M be a compact Γ1,r-module with a compatible action of τ−1. The
following diagram commutes on cohomology

C •(Γ1,r ∩ Γ0,s,M) C •(Γ1,r,M)

C •(Γ1,r ∩ Γ0,s,M) C •(Γ1,r,M)

T s−r

cores

τ−(s−r) T s−r

cores

Proof. We do the proof for the top triangle, the bottom triangle being similar. We first note that

(Γ1,r ∩ Γ0,s) ∩ τ−(s−r)(Γ1,r ∩ Γ0,s)τ
s−r = N̄2s−rLrN0 ∩G(Q)

so that when computing T s−r our corestriction will sum over representatives for N̄s/N̄2s−r. Then

Γ1,r/Γ1,r ∩ Γ0,s = N̄r/N̄s,

and so if γ′i is a set of representatives for Γ1,r/Γ1,r ∩ Γ0,s, then γi := τ−(s−r)γ′iτ
s−r is a set of

representatives for N̄s/N̄2s−r.

The Hecke operator T is given on complexes by the composition of pairs

(δ1,
∑
i

γi) ◦ (τ−1(·)τ, τ−1) ◦ (ι, id) = (τ−1δ1(·)τ,
∑

γiτ
−1)

where δ1 is the canonical homotopy equivalence

C•((Γ1,r ∩ Γ0,s) ∩ τ(Γ1,r ∩ Γ0,s)τ
−1)→ C•(Γ1,r ∩ Γ0,s)

extending the identity and we abuse notation by writing corestriction as a compatible pair, and
τ−1 ◦ cores is given by

(τ−1(·)τ, τ−1) ◦ (δ2,
∑

γ′i) = (δ2(τ
−1(·)τ),

∑
τ−1γ′i)

= (δ2(τ
−1(·)τ),

∑
γiτ

−1),

where δ2 is the canonical homotopy equivalence of Γ1,r ∩ Γ0,s-complexes

C•(Γ1,r ∩ Γ0,s)→ C•(Γ1,r).

The maps δi induce the identity on cohomology so the result follows.

The upshot of this lemma is that the restriction of the above corestriction map to the ordinary
subspace is a quasi-isomorphism, so we have a quasi-isomorphism

C •(Γ1,r ∩ Γ0,s,M)ord ∼= C •(Γ1,r,M)ord.

The following proposition will allow us to attack our problem using the Hida lemma in conjunction
with Shapiro’s lemma by reducing to the case of twisting by characters. Let Vλ+χ,s := Vλ+χ,O⊗Os,
Wλ,s :=Wλ,O ⊗Os.

Proposition 4.3.7. Let s ≥ r. There are isomorphisms

C •(Γ1,r ∩ Γ0,s, Vλ+χ,s)
ord ∼= C •(Γ1,r ∩ Γ0,s,Wλ,s(χ))

ord

C •(Γ0,s,Dr(λ; ps))ord ∼= C •(Γ0,s, D̃r(λ; ps))ord
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Proof. We prove the first isomorphism, the second being not dissimilar. Consider the map

C •(Γ1,r ∩ Γ0,s, Vλ+χ,s)
ord → C •(Γ1,r ∩ Γ0,s,Wλ,s(χ))

ord

induced by the dual of the inclusion of LG-modules

C LG
alg (λ; ps)(χ−1) ↪→ CG

alg(λ+ χ; ps).

The image of C LG
alg (λ; ps)(χ−1) in CG

alg(λ + χ; ps) under the above inclusion is given by CG
alg(λ +

χ; ps)N̄G(Zp). When LG is a maximal torus this is just the inclusion of the lowest weight subspace.
The kernel Ks ⊂ Vλ+χ,s of the dual map is given by functionals

CG
alg(λ+ χ; ps)→ Os

whose restriction to C LG
alg (λ; ps)(χ−1) is zero. We want to show that

C i(Γ1,r ∩ Γ0,s,Ks)ord = 0.

Let z ∈ C i(Γ1,r ∩ Γ0,s,Ks), then for c ∈ Ci(Γ) there are functionals ϕ
(c)
i ∈ Ks such that

(T kz)(c) =
∑

γiτ
−k · ϕ(c)i ,

so via the contragredient representation it suffices to show that if f ∈ CG
alg(λ + χ; ps) and k ≫ 0

then τk · f is N̄G(Zp)-invariant. Since τ−kN̄0τ
k = N̄k, then for k ≥ s

τ−kN̄0τ
k ≡ 1 mod ps,

whence we are done.

Lemma 4.3.8. For r ≥ 1 there is a quasi-isomorphism

C •(Γ0,1,Dr(λ+ χ))ord ∼= C •(Γ1,r, Vλ+χ,O)
ord.

Proof. We have the following chain of quasi-isomorphism

C •(Γ0,1,Dr(λ+ χ))ord ∼= lim←−
s

C •(Γ0,1,Dr(λ+ χ; ps))ord

∼= lim←−
s

C •(Γ0,s,Dr(λ+ χ; ps))ord

∼= lim←−
s

C •(Γ0,s, D̃r(λ+ χ; ps))ord

∼= lim←−
s

C •(Γ1,r ∩ Γ0,s,Wλ,s(χ))
ord

∼= lim←−
s

C •(Γ1,r ∩ Γ0,s, Vλ+χ,s)
ord

∼= lim←−
s

C •(Γ1,r, Vλ+χ,s)
ord

∼= C •(Γ1,r, Vλ+χ,O)
ord,

where the second line is the Hida lemma, the fourth line is Shapiro’s lemma and the sixth line is
the Hida lemma again.

The case r = 0 has the same proof with the Shapiro’s lemma step being trivial.

Corollary 4.3.9. There is a quasi-isomorphism

C •(Γ0,1,Duniv(λ))
ord ∼= lim←−

r

C •(Γ1,r,Wλ,r)
ord.
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Proof. Note that Duniv(λ) = lim←−r Dr(λ) = lim←−r,s Dr(λ; p
s). The previous lemma gives us that

C •(Γ0,1,Dr(λ; ps))ord = C •(Γ1,r ∩ Γ0,s,Wλ,s)
ord

and the result follows from setting s = r and taking the inverse limit over r on both sides.

We write
C i(Γ1,∞,Wλ,O)

ord := lim←−
r

C i(Γ1,r,Wλ,r)
ord

and similarly for cohomology.

4.3.1 Perfection

Lemma 4.3.10. Let N be a Λr-module with trivial Γ0,1-action. Then

C •(Γ0,1,Duniv(λ))
ord ⊗Λr N

∼= C •(Γ0,1,Duniv(λ)⊗Λr N)ord

Proof. There’s an integer n such that

C •(Γ0,1,Duniv(λ)) ∼= ⊕ni=1Duniv(λ)

as Λr[Γ0,1]-modules. The result follows since the Λr-action is continuous and commutes with the
Hecke action.

Lemma 4.3.11. The Λr-regular sequence ([s
(r)
i ]−χ(s(r)i ))i generating I

(χ)
r is Duniv(λ)-regular for

any λ.

Proof. We reduce, using the isomorphism (13), to showing that the given sequence is regular in
Λ0, which is visibly the case.

Proposition 4.3.12. For any choice of C•(Γ0,1), the modules C •(Γ0,1,Duniv(λ))
ord are finite flat

Λ1-modules.

Proof. Let m1 denote the maximal ideal of Λ1. There is an exact sequence

0→ m1C
•(Γ0,1,Duniv(λ))

ord → C •(Γ0,1,Duniv(λ))
ord → C •(Γ0,1,D1(λ)/p)

ord → 0.

In a similar way to Proposition 4.3.7 we can show that

C •(Γ0,1,D1(λ)/p)
ord ∼= C •(Γ0,1, (O/p)[S1\SG])

ord

and thus that it is finite. Thus we can apply Nakayama’s lemma to conclude that C •(Γ0,1,Duniv(λ))
ord

is a complex of finitely generated Λ1-modules. The ideal m1 is generated by a regular sequence
(p, x1, . . . , xn), and Λ1/m1

∼= Fpk for k = [K : Qp]. By the local criterion for flatness as stated in
[Eis13, theorem 6.8], it suffices to show that

TorΛ1
1 (C ∗(Γ0,1,Duniv(λ))

ord,Fpk) = 0.

This group is computed by the Koszul complex for (p, x1, . . . , xm) tensored with C ∗(Γ0,1,Duniv(λ))
ord,

and thus it suffices to prove that the above sequence is C ∗(Γ0,1,Duniv(λ))
ord-regular. This follows

from the fact that this sequence is Duniv(λ)-regular and Lemma 4.3.10.

Corollary 4.3.13. The complex C •(Γ0,1,Duniv(λ))
ord is a perfect complex of Λ0-modules concen-

trated in degrees [0, ν].

Proof. By the above lemmas the modules C i(Γ0,1,Duniv(λ))
ord are finite flat over the local ring Λ1

and are thus free. We are done by Lemma 4.2.1.

Definition 4.3.14. WriteM•
λ for the image of C •(Γ0,1,Duniv(λ))

ord in D(Λ0), the derived category
of Λ0-modules.
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Proof. (of Theorem 4.3.2) By Proposition 4.3.12 we have

M•
λ ⊗LΛr O

(χ) ∼ C •(Γ0,1,Duniv(λ))
ord ⊗Λr O(χ)

by Lemma 4.3.5 we have
M•
λ ⊗LΛr O

(χ) ∼ C •(Γ0,1,Dr(λ))ord

and by Lemma 4.3.8
M•
λ ⊗LΛr O

(χ) ∼ C •(Γ1,r, Vλ,O)
ord.

4.4 p-stabilisation and duality

4.4.1 p-stabilisation

Let K = G(Zp) and J = τ−1Kτ ∩ K. Set

Γ = Kp ×K ∩G(Q)

for a fixed open-compact subgroup Kp ⊂ G(Ẑ(p)). Define a Hecke operator T0 = [Γτ−1Γ]. Let W
be the Weyl group of G, WL the Weyl group of LG and w0 the long Weyl element in W . For any
W -set X, x ∈ X, w ∈W write xw := w · x. Let I be the parahoric subgroup associated to QG.

Lemma 4.4.1.
Kτ−1K = ⊔w∈W/WLG

⊔u∈(w0w)−1Jw0w∩I\I uwτ
−1K (16)

Proof. The proof given for the GSp4 case in [TU99] carries over verbatim.

We will call a weight λ ∈ X•(T ) very regular if it has trivial stabiliser in the Weyl group. An
equivalent formulation is that it does not lie in the wall of one of the Weyl chambers. The method
of proof of the following theorem is, for the most part, the same as that used in [TU99, Proposition
3.2] and [Hid95, Lemma 7.2].

Theorem 4.4.2. For λ very regular and dominant for BG there is a quasi-isomorphism

C •(Γ, Vλ,O)
T0−ord ∼= C •(Γ0,1, Vλ,O)

ord

given by restricting e ◦ res to the ordinary subspace defined by T0.

Proof. Consider the restriction map

res : C •(Γ, Vλ,O)→ C •(Γ0,1, Vλ,O).

and its mod pr reductions
resr : C •(Γ, Vλ,r)→ C •(Γ0,1, Vλ,r).

Write ℓ, ℓ′ respectively for the restrictions of the maps e ◦ res, e0 ◦ cores to the ordinary subspaces
on their respective sources, and write ℓr for the analagous maps

C •(Γ, Vλ,r)
ord ←→ C •(Γ0,1, Vλ,r)

ord.

We claim that
T ◦ res1 = res1 ◦ T0

on cohomology.

It suffices to show that the strata in the decomposition (16) corresponding to non-trivial elements
of W/WL give elements that are divisible by p when applied C i(Γ, Vλ,O), since the stratum corre-
sponding to the trivial element is precisely V0,1τ

−1V0,1.

Fix representatives w ∈ G(O) of W . None of the following will depend on this choice. Let

f ∈ C i(Γ, Vλ,O), then for z ∈ C i(Γ) there are v
(z)
uw ∈ Vλ,O such that

(T f)(z) =
∑
u,w

uwτ−1v(z)uw.
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Recall that we can consider the v
(z)
i as functions G(O)→Wλ,O. In this optic we have

(wτ−1 · v(z)i )(g) = phλv(z)uw(gτ
−1w)

= phλv(z)uw(gwτ
−1
w )

= p
hλ−hλ

w−1 (τ−1
w · v(z)uw)(gw).

We claim that hλ = hλw−1 if and only if w ∈WL. We note that if w ∈WL then

hλw−1 := ⟨ηw, λ⟩
= ⟨η, λ⟩
= hλ,

because η takes values in Z(LG), thus we descend to an action of W/WLG on ⟨η, λ⟩.

Letting ΦL be the set of simple roots of LG corresponding to BL we note that

Z(LG) =
⋂
α∈ΦL

ker(α),

and thus that ⟨η, α⟩ = 0 for α ∈ ΦL. Thus for any w ∈W , if we write Φ′
L = ΦG\ΦL for the set of

relative simple roots of LG, then as λ is dominant there are non-negative integers nα such that

λ− λw =
∑
α∈ΦL

nαα+
∑
α∈Φ′

L

nαα

whence it is clear that
hλ ≥ hλ−1

w

with equality holding if

λ− λw−1 =
∑
α∈ΦL

nαα

Note that if w ∈W,w′ ∈WL then if λw = λw′ then λw′w−1 = 1 and so by very regularity w = w′,
and in particular w ∈WL. This says that for w ∈W the character λw occurs in Wλ if and only if
w ∈WL or, in other words

λ− λw−1 =
∑
α∈ΦL

nαα ⇐⇒ w ∈WL,

which is what we want. We conclude that

w /∈WL =⇒ uwτ−1v(z)uw ≡ 0 mod p

and thus T0 ≡ T mod p.

In particular we have
T ◦ res1 = res1 ◦ T0,

which implies that res maps between the ordinary subspaces for the respective Hecke operators.
Recall the definition of the ordinary idempotents

e? = lim
n→∞

T n!?

for ? ∈ {∅, 0}.

The above result shows that
e ◦ res1 = res1 ◦ e0.

To show the map ℓ′1 is surjective we note that

ℓ′1 ◦ ℓ1 = [Γ : Γ0,1].

This index is prime to p so injectivity follows.
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Proving surjectivity for ℓ1 is a little trickier. Define maps

P : Hi(Γ0,1, Vλ,1)→ Hi(Γ0,1,Wλ,1)

ι : Hi(Γ0,1,Wλw0 ,1
)→ Hi(Γ0,1, Vλ,1)

via the natural maps

Vλ,1 →Wλ,1

Wλ,1 → Vλ,1

given by dualising evaluation at 1 and inclusion respectively. These maps are intertwined by the
map

[W] : Hi(Γ0,1,Wλ,1)→ Hi(Γ0,1,Wλw0
,1)

induced by W = w0τ
−1 ∈ Γτ−1. Recall that P restricts to an isomorphism on T -ordinary

subspaces. We will show that the map

P ◦ resΓΓ0,1
◦ coresΓΓ0,1

◦ ι ◦ [W] : Hi(Γ0,1,Wλ,1)→ Hi(Γ0,1,Wλ,1)

is a bijection on T -ordinary subspaces, whence we can conclude that the restriction map is surjec-
tive. Note that

Γ = ⊔u,wuw(τΓτ−1 ∩ Γ)

= ⊔u,wuw(w0Γ0,1w
−1
0 )

= ⊔u,wuww0Γ0,1,

where u,w are as in (16), and the last line is obtained by multiplying both sides on the right by
w0 which can be assumed to be in Γ by weak approximation. Let f ∈ C i(Γ0,1,Wλ,1), then for
z ∈ Ci(Γ0,1) we have

(res ◦ cores ◦ ι)(W · f)(z) =
∑
u,w

uww0(W · f)(w−1
0 w−1uz).

Since (W · f) takes values in Wλw0,1
we see that only the terms for w = 1 will be non-zero under

P, so

(P ◦ res ◦ cores ◦ ι)(W · f)(z) =
∑
u

uw0(W · f)(w−1
0 w−1uz)

but
uw0(W · f)(w−1

0 w−1uz) = uτ−1f(τu−1z)

so the sum is just the expression for the Hecke operator T and this is invertible on the T -ordinary
subspace by definition.

Now that we know that the maps
ℓ1, ℓ

′
1

are both surjective, we see from the diagram

Hi(Γ, Vλ,r)
ord Hi(Γ0,1, Vλ,r)

ord

Hi(Γ, Vλ,r)
ord/p Hi(Γ, Vλ,1)

ord Hi(Γ0,1, Vλ,1)
ord Hi(Γ0,1, Vλ,r)

ord/p

ℓr

ℓ′r

ℓ1

ℓ′1

that we can use Nakayama’s lemma to deduce that the maps ℓr, ℓ
′
r are also both surjective. Since

these are finite sets we can deduce that ℓr is a bijection for all r and by taking the inverse limit
we get that ℓ is an isomorphism. Therefore we get the desired quasi-isomorphism

C •(Γ, Vλ,O)
T0−ord ∼ C •(Γ0,1, Vλ,O)

ord.
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Let F be a number field over which G splits. By various results of Borel and Tits there is a finite
set of primes S such that G has a split reductive model over the ring of S-integers OF,S . We note
that this implies that for every p /∈ S the group G is unramified at p. For λ ∈ X•(TG) dominant
for BLG and χ ∈ X•(LG) such that λ+ χ is dominant for G, define

Wλ,F,S = {f ∈ OF,S [LG] : f(b̄x) = λ(b̄)f(x) ∀ b̄ ∈ B̄LG}
Vλ,F,S = {f ∈ OF,S [G]⊗Wλ,F,S : f(q̄g) = χ(q̄)q̄f(g) ∀ q̄ ∈ Q̄G}.

Note that these OF,S-modules are independent of p. It is clear from our previous definition of the
action of τ−1 that it preserves these modules and thus we have an action of T0 on the cohomology
groups Hi(Γ, Vλ,F,S). For a prime p write Fp for a p-adic completion of F and OFp for its ring of
integers.

Corollary 4.4.3. There is a finite set of primes SΓ containing S such that for primes p /∈ SΓ the
cohomology groups Hi(Γ0,1, Vλ,OFp )

ord are torsion-free as O-modules.

Proof. The cohomology group e0H
i(Γ, Vλ,F,S) gives an OF,S-lattice in e0H

i(Γ, Vλ,OFp ) and thus,

by the previous theorem, in eHi(Γ0,1, Vλ,OFp ). Since this lattice is independent of p and finitely
generated if we let

SΓ = S ∪ {torsion primes in e0H
i(Γ, Vλ,F,S)}

then SΓ is finite and for all p /∈ SΓ the OFp -module eHi(Γ0,1, Vλ,OFp ) = e0H
i(Γ, Vλ,F,S) ⊗OFp is

torsion free.

4.4.2 Duality results

For this section only set QG = BG. We show how to obtain a derived control result for compactly
supported group cohomology. We show that the O-linear Poincaré duality pairing at level Γ0,1 is
non-degenerate outside of a finite set of primes. Throughout this section λ is dominant for BG.

Definition 4.4.4. For any left Γ0,1-module M define a complex

C •
c (Γ0,1,M) = C2d−•(Γ0,1)⊗Γ0,1

M,

where 2d := dimRG(R)/K∞ for a maximal open compact subgroup K∞ ⊂ G(R).

This complex satisfies
Hi(C •

c (Γ0,1,M)) = Hi
c(Γ0,1,M)

We can define a Hecke operator T on C •
c (Γ0,1,M) in the same way as for C •(Γ0,1,M) and whence

define the ordinary part of the complex, denoted C •
c (Γ0,1,M)ord and uniquely defined up to ho-

motopy equivalence.

Remark 4.4.5. As modules we have

C i
c (Γ0,1,M) = C i(Γ0,1,M).

In particular C •
c (Γ0,1,Duniv(λ))

ord is a perfect complex of Λ0-modules.

Definition 4.4.6. We define a pairing of O-modules

(−,−)r : Hi
c(Γ1,r, Vλ,O)⊗O H2d−i(Γ1,r, (Vλ,O)

∨)→ O.

by
(x, y)r = φλ(x ∪W(y))

where φλ is the natural map Vλ,O ⊗ (Vλ,O)
∨ → O.

Let λ∨ := −ω0λ where ω0 is the long Weyl element. We note that in general (Vλ,O)
∨ ̸= Vλ∨,O; we

can at most say that
Vλ∨,O ⊂ (Vλ,O)

∨

since the former is the minimal lattice and the latter is the maximal admissible lattice.
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Lemma 4.4.7. Let V min
λ,O be the maximal admissible lattice in Vλ. There is an isomorphism

C i(Γ0,1, V
min
λ,O )ord ∼= C i(Γ0,1, Vλ,O)

ord.

Proof. The strict dominance requirement for η forces

hλ − hµ > 0 (17)

for all characters µ ̸= λ of TG appearing in Vλ. We recall that, given a choice of highest weight
vector vλ, an admissible lattice in Vλ is the direct sum of its intersections with the weight spaces
for TG, and the highest weight spaces are the O-linear span of vλ. By construction of the ∗ action,
τ−1 fixes λ and for µ ̸= λ we have that τ−r ∗ (V max

λ,O )µ = pr(hλ−hµ)(V max
λ,O )µ. By (17) we see that

lim
r
τ−r ∗ V max

λ,O = O · vλ.

In particular, as Vλ,O is an open subgroup of V max
λ,O we see that for r ≫ 0:

τ−r ∗ V max
λ,O ⊂ Vλ,O.

It’s easy to see that this implies the result.

We now discuss the Hecke action on (−,−)r. We define an ‘adjoint’ Hecke operator T ∗ defined by

coresΓ
′

Γ′∩τ−1Γτ ◦ [τ ] ◦ res
Γ
τΓ′τ−1∩Γ

and with action on V ∨
λ given by τ ∗ v = p−hλτv. This satisfies

T x ∪ y = x ∪ T ∗y.

Lemma 4.4.8. The ordinary idempotent eord is self-adjoint for the pairing (−,−)r.

Proof. Note that W normalizes Vr. Thus

W−1ΓτΓW = τw−1
0 ΓτΓw0τ

−1

= Γτw−1
0 τw0τ

−1Γ

= Γw−1
0 τw0Γ.

The element w−1
0 τw0 ∈ T (Qp) is the image of p under the cocharacter η−1

w0
which satsfies ⟨η−1

w0
, α⟩ >

0 for all positive roots α. Thus Γw−1
0 τw0Γ defines the same idempotent eord as Γτ−1Γ so we are

done.

Proposition 4.4.9. There is a cofinite set of primes for which the pairing

(−,−)r : Hi
c(Γ1,r, Vλ,O)

ord ⊗H2d−i(Γ1,r, (Vλ,O)
∨)ord → O

is non-degenerate.

Proof. Note that W induces an isomorphism

Hj(Γ1,r, (Vλ,O)
∨)ord ∼= Hj(Γ1,r, (Vλ,O)

∨)T
∗−ord

where the latter is the ordinary subspace for the adjoint Hecke operator T ∗. Thus non-degeneracy
of the pairing is implied by non-degeneracy of the standard Poincaré duality pairing because this
restricts to a pairing between the ordinary and T ∗-ordinary subspaces. This pairing is well-known
to descend to a non-degenerate pairing

Hi
c(Γ1,r, Vλ,O)/(tors)⊗H2d−i(Γ1,r, Vλ,O)/(tors)→ O.

We know from Corollary 4.4.3 (and the analogous version for compactly supported cohomology)
that the groups Hj

c (Γ1,r, Vλ,O)
ord, Hj(Γ1,r, (Vλ,O)

∨)ord are free O-modules for a cofinite set of
primes and thus the result follows.
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Thus the pairing (−,−)r descends to a pairing

Hi
c(Γ1,r, Vλ,O)

ord ⊗H2d−i(Γ1,r, (Vλ,O)
∨)ord → O

which is non-degenerate outside of a finite set of primes SΓ.

Remark 4.4.10. Although one can extend the proof of Lemma 4.4.7 to the situation that λ is
a character of LG for a general parabolic QG, a generalisation of the duality pairing to general
parabolics is hampered by the fact that the ‘Atkin-Lehner’ style operator W does not necessarily
preserve Levi subgroups.

4.5 Adèlic cohomology and Hecke algebras

4.5.1 Adèlic cohmology and localisations

For U = U?,r ⊂ G(Af ), let T(U) be the Hecke algebra of locally constant U -biinvariant functions
on G(Af ). It is generated by indicator functions on double cosets UαU , α ∈ G(Af ). We write
TS(U) for the Hecke algebra restricted to places at which U is hyperspecial and let

TSp (U) = TS(U)⊗ T ⊂ T(U).

This subalgebra is well known to be commutative. We will often drop the open compact U from
the notation. Assuming Gder sastisfies strong approximation (which we do from now on), there is
a finite set {t1, . . . , tn} such that

G(Af ) = ⊔iG(Q)× tiU,

and if we define
Γ(ti, U) := tiUt

−1
i ∩G(Q)

then for any O[U ]-module M with a compatible τ−1 action, TSp (U) acts naturally on the complex

RΓ(U,M) :=
⊕
i

C •(Γ(ti, U),M).

It can be shown that the image of this complex in the homotopy category does not depend on the
choice of ti. We can define the double coset action (and thus the action of TSp (U)) in terms of
non-adèlicised Hecke operators (defined in Section 4.2.2) on summands in the following way:

Let x ∈ G(Af ) have p-part τ−1 and let xti = γx,itjik ∈ G(Q)tjiU . The action is then given by:

[UxU ] =
⊕
i

[Γ(ti, U)γ−1
x,iΓ(tji , U)].

As TSp (U) is generated by double coset operators, this description suffices to define the action of

TSp (U).

We assume now thatM is finitely-generated as anO-module. The definition of these coset operators
as given by (9) in terms of functorial morphisms shows that the double cosets [V1,rxV1,r] for r ≥ 1
commute with corestriction maps and thus define Hecke operators on the inverse limit

RΓ(V1,∞,M) := R lim←−
r

RΓ(V1,r,M/pr) = lim←−
r

RΓ(V1,r,M/pr).

In particular we get an action of T and can use this to define the ordinary complex RΓ(V1,∞,M)ord

defined uniquely up to homotopy and satisfying

RΓ(V1,∞,M)ord = lim←−
r

RΓ(V1,r,M)ord

in the homotopy category.

Since by weak approximation we can choose ti ∈ G(Ẑ) to be trivial at p, by looking on individual
summands we obtain derived control theorems for this ‘adèlic cohomology’.
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For ? ∈ {∅, p}, write TS? (U,M) for the image of TS? ⊗ R in End(RΓ(U,M)). Write TSλ :=
TS(V0,1,Duniv)

ord, where the superscript ord refers to restricting the ordinary subspace. This
is well-defined as TSp is commutative and acts continuously. We prove a variant of the derived

control theorem for localisations by ideals of TSλ . The proof of the following theorem is pretty
much identical to [APS08, Theorem 5.1] except that we work with complexes of Hecke modules.

Theorem 4.5.1. There is a natural bijection (not an isomorphism of schemes)

Spec TSλ/I(χ)r ↔ Spec TS(V1,r, Vλ+χ,O)ord.

Proof. We note that since the elements of TSλ are Λ0-linear there is a natural map

q : TSλ → TS(V1,r, Vλ+χ,O)ord

which lifts into a diagram

TS

TSλ TS(V1,r, Vλ+χ,O)ord.
q

The two vertical maps are surjective and thus so is q.

To prove the theorem it suffices to show that ker(q) ⊂ Rad(I
(χ)
r TSλ). The ideal I

(χ)
r ⊂ Λr is

generated by a regular sequence (x1, . . . , xm). We proceed by induction on m. Suppose I
(χ)
r = (x)

and let T ∈ ker(q). Then T (C •(V0,1,Duniv(λ))
ord) ⊂ xC •(V0,1,Duniv(λ))

ord. We know that the
modules C i(V0,1,Duniv(λ))

ord have no x-torsion, so

T ′ := x−1T ∈ EndΛ0(M
•
λ)

is well-defined. Define

X = {ϕ ∈ EndΛ0(M
•
λ) : ∃k such that xkϕ ∈ TSλ}.

Then X is a finitely generated Λ0-module and T ′ ∈X . Since X is finitely generated there is an
integer N such that xNX ⊂ TSλ . Thus

TN+1 = x(xNTN+1) ∈ TSλ ,

so T ∈ Rad(I
(χ)
r TSλ).

Now let m ≥ 1 and suppose the induction hypothesis holds for regular sequences of length m.

Suppose I
(χ)
r = (x1, . . . , xm+1) then consider

ψ : TSλ
φ−→ TS(M•

λ/(x1, . . . , xm))→ TS(V1,r, Vλ+χ,O)ord.

We note that the proof of the m = 1 case holds perfectly well for the second map in the above
sequence and so if T ∈ ker(ψ) then φ(T ) ∈ Rad(xm+1TS(M•

λ/(x1, . . . , xm))) so that there is N such
that φ(TN ) is in this radical and thus there is an element z ∈ TSλ such that φ(TN ) = xm+1φ(z).
By the induction hypothesis

TN − αz ∈ Rad((x1, . . . , xm)TSλ)

so there is M such that
(TN − αz)M ∈ (x1, . . . , xm)TSλ

whence it is clear that
TNM ∈ I(χ)r TSλ .

Corollary 4.5.2. Let ℘ ∈ Spec TSλ/I
(χ)
r , then

(M•
λ)℘ ⊗LΛr O

(χ) ∼ RΓ(V1,r, Vλ+χ,O)ord℘
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Proof. The control theorem tells us precisely how prime ideals move between the big and small
Hecke algebras and localisation is exact.

Let V = Kp ×G(Zp).

Theorem 4.5.3. Suppose there is a maximal ideal m ∈ SpecTS such that

H•
? (V0,1, Vλ,O)m = Hd

? (V0,1, Vλ,O)m

for ? ∈ {∅, c} and Hd
? (V0,1, Vλ,O)m is finite free as an O-module. Let ∆p be the prime-to-p part of

SG(Zp). Then

H•
? (V1,∞, Vλ,O)

ord,∆p

m = Hd
? (V1,∞, Vλ,O)

ord,∆p

m ,

where (·)∆p refers to ∆p-invariants. Furthermore, Hd
? (V1,∞, Vλ,O)

ord,∆p

m is a free Λ1-module.

Proof. We note that as ∆p has prime-to-p order, taking ∆p invariants is an exact functor on O-
modules. Let mr be the maximal ideal of Λr generated by p and I

(1)
r . An easy corollary of derived

control is the following ‘mod p’ variant:

M•
λ,? ⊗L

Λr Λr/mr ∼ RΓ?(V1,r, Vλ,1)
ord.

We note that since Hi
?(V0,1, Vλ,O)

ord
m is a free O-module for all i, the short exact sequence

0→ Vλ,O
p−→ Vλ,O → Vλ,1 → 0

gives us that Hi
?(V0,1, Vλ,O)

ord
m /p = Hi

?(V0,1, Vλ,1)
ord
m and so

Hi
?(V0,1, Vλ,1)

ord
m = 0

for all i. We consider the spectral sequence

Ei,j2 : TorΛ1
−i(H

j
? (V1,∞, Vλ,O)

ord,Λ1/m1) =⇒ Hi+j
? (V1,1, Vλ,1)

ord,

which satisfies Ei,j2 = 0 for j > ν. We can apply the exact functor (·)∆p to the spectral sequence
to get

(Ei,j2 )∆
p

: TorΛ1
−i(H

j
? (V1,∞, Vλ,O)

ord,Λ/m1)
∆p =⇒ Hi+j

? (V1,1, Vλ,1)
ord,∆p = Hi+j

? (V0,1, Vλ,1)
ord.

Moreover, we can show that

TorΛ1
−i(H

j
? (V1,∞, Vλ,O)

ord,Λ1/m1)
∆p = TorΛ1

−i(H
j
? (V1,∞, Vλ,O)

ord,∆p ,Λ1/m1),

(see Lemma 4.5.5) so the spectral sequence becomes

(Ei,j2 )∆
p

: TorΛ1
−i(H

j
? (V1,∞, Vλ,O)

ord,∆p ,Λ1/m1) =⇒ Hi+j
? (V0,1, Vλ,1)

ord.

We can then read off that

Hν
? (V1,∞, Vλ,O)

ord,∆p

m /m1
∼= Hν

? (V0,1, Vλ,1)
ord
m = 0

and thus Nakayama allows us to conclude that

Hν
? (V1,∞, Vλ,O)

ord,∆p

m = 0.

Now (Ei,j2 )∆
p

= 0 for j > ν−1 and so we perform this step inductively to getHj
? (V1,∞, Vλ,O)

ord,∆p

m =

0 for j > d, so that (Ei,j2 )∆
p

= 0 for j > d. We can now read off that there is a surjection

Hd−1
? (V0,1, Vλ,1)

ord,∆p

m = Hd−1
? (V0,1, Vλ,1)

ord
m ↠ TorΛ1 (H

d
? (V1,∞, Vλ,O)

ord,∆p

m ,Λ1/m1),

and since Hd−1
? (V0,1, Vλ,1)

ord
m = 0 the Tor group vanishes and so by the local criterion for flatness

Hd
? (V1,∞, Vλ,O)

ord,∆p

m is a flat Λ-module. Since

Hd
? (V1,∞, Vλ,1)

ord,∆p

m /m1
∼= Hd

? (V0,1, Vλ,1)
ord
m

Nakayama gives us that Hd
? (V1,∞, Vλ,1)

ord,∆p

m is finitely generated and thus it is free. We’re left to
showing

Hj
? (V1,∞, Vλ,1)

ord,∆p

m = 0

for j < d, but since Hd
? (V1,∞, Vλ,1)

ord,∆p

m is free we have (Ei,d2 )∆
p

= 0 for i < 0 so we can proceed
much as we did for j > d.
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Remark 4.5.4. Examples of our assumption holding include the work of Mokrane-Tilouine [MT02],
where they prove that the assumptions hold for G = GSp2g and suitably nice maximal ideals of

TS . Such results will generally be proved at prime-to-p level and can be deduced at level V0,1 via
Theorem 4.4.2.

Lemma 4.5.5. Let M be a Λ0-module, then

(M ⊗Λ Λ/m1)
∆p =M∆p ⊗Λ Λ/m1.

Proof. We can decomposeM into a direct sum of ψ-eigenspacesM (ψ) where ψ runs over characters
ψ : ∆p → O×. Thus

M ⊗Λ Λ/m1 = ⊕ψ(M (ψ) ⊗Λ Λ/m1).

Since ∆p acts on the tensor product through M and preserves the eigenspaces by definition, we
need only to show that

ψ(∆p) ≡ 1 mod p =⇒ ψ ≡ 1
but ∆p is finite so ψ takes values in (O/p)× ↪→ O×, so the implication holds.

5 Spherical varieties and non-ordinary families of cohomol-
ogy classes

5.1 Introduction

Let p be a prime. In this paper we give a construction of non-ordinary p-adic families of cohomology
classes interpolating classes constructed by pushing forward classes from a ‘small’ reductive group
to a larger one. The construction of such classes has been automated via the ‘spherical varieties’
machine of Loeffler [Loe21]. These cohomology classes arise naturally in the study of Iwasawa
theory as Euler systems and in the construction of p-adic L-functions. Our construction provides
a vast generalisation of previous works such as [LZ16] and [BSV20] and acts a sequel to [LRZ21]
in which ordinary families of cohomology classes were considered.

The non-ordinary setting requires fundamentally different methods than in the ordinary case.
We use a method inspired by work of Greenberg–Seveso [GS20] and Bertolini–Seveso–Venerucci
[BSV20] on balanced diagonal classes. Our method utilises modules of analytic functions in place
of the usual modules of analytic distributions to interpolate branching maps between algebraic
representations.

Suppose we have an inclusion of reductive groups H ↪→ G satisfying the conditions set out in
[LRZ21, 2.1]. Let µ, λ be dominant algebraic weights of H,G and let V Hµ , V Gλ be the respective
irreducible representations. For a wide-open disc U ⊂ WG containing λ, where WG is a suitable
weight space, we define modules of locally analytic functions Aan

λ , A
an
U which are modules for a

parahoric subgroup JG. There is a natural inclusion

V Gλ ↪→ Aan
λ

and a specialisation map
Aan

U → Aan
λ .

Let YH(JH), YG(JG) denote the parahoric level locally symmetric spaces (of some suitably small
tame level) associated to H,G. Suppose λ is Q0

H -admissible in the sense of Definition 5.2.3 and let
V Hµ → V Gλ be the resultingH-inclusion. As a key ingredient in his construction of norm-compatible
classes, Loeffler [Loe21] constructs a map

Hi(YH(JH), V Hµ )→ Hi+c(YG(JG), V
G
λ )

for i ≥ 0 and c = dimRYG − dimRYH − rkR(
ZH

ZG∩ZH ). We can lift this map to a map

Hi(YH(JH), V Hµ )→ Hi+c(YG(JG), A
an
λ ). (18)

In Section 6 we construct what we call a ‘big branching map’ map in Betti cohomology:

Hi(YH(JH), DH
U )→ Hi+c(YG(JG), A

an
U ), (19)
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where DH
U is a module of distributions over U specialising to V Hµ at λ. Our main result is the

following:

Theorem 5.1.1. There is a commutative diagram of Betti cohomology groups

Hi(YH(JH), DH
U ) Hi+c(YG(JG), A

an
U )

Hi(YH(JH), V Hµ ) Hi+c(YG(JG), A
an
λ ),

(20)

where the top map is (19) and the bottom is (18).

When YH , YG admit compatible Shimura data we construct an analagous map in étale cohomology.
This requires a construction of new objects: profinite modules AIw

U , AIw
λ which we dub ‘Iwasawa

analytic functions’. Roughly speaking, these consist of functions on JG which extend to a wide-open
rigid analytic neighbourhood.

Theorem 5.1.2. There is a commutative diagram of étale cohomology groups

Hi
ét(YH(JH)Q̄, D

H
U (j)) Hi+2e

ét (YG(JG)Q̄, A
Iw
U (j + e))

Hi
ét(YH(JH)Q̄, V

H
µ (j)) Hi+2e

ét (YG(JG)Q̄, A
Iw
λ (j + e))

(21)

where j ∈ Z and c = 2e.

Let Σ be a finite set of primes containing p and the primes at which the level of G ramifies and
suppose YH(JH), YG(JG) admit Σ-integral models YG(JH)Σ, YH(JG)Σ. The diagram of Theorem
5.1.2 then also holds for the étale cohomology of these integral models. Let q = dimYH(JG). In
Section 6.4 we show how, under certain hypotheses (small slope, vanishing outside the middle
degree after localisation at a maximal ideal of the Hecke algebra) we can push-forward classes in
Hq+1(YG(JG)Σ, A

Iw
U ) to obtain classes in Galois cohomology.

Theorem 5.1.3. Suppose m is a ‘nice’ (in a precise sense) maximal ideal of the unramified Hecke
algebra acting on H•(YG(JG)Q̄, V

G
λ ). Then there is an affinoid V ⊂ WG containing λ and an

‘Abel–Jacobi’ map
AJU : Hq+1(YG(JG)Σ, A

Iw
U,m)→ H1(OE,Σ,WU )

where E is the reflex field of YG, OE,Σ is its ring of Σ-integers, and WU is a family of Galois
representations over U specialising to Hq(YG(JG)Q̄, V

G
λ )m at λ.

The proof of this theorem uses in an essential way the profiniteness of the modules AIw
U,m. We

can similarly construct Abel–Jacobi maps at finite level and the above commutative diagram in
étale cohomology shows that the image of classes constructed using Loeffler’s machine under this
Abel–Jacobi map interpolate in families over U .

Example 5.1.4. In Section 6.6 we consider the case of G = GSp4 and H = GL2 ×GL1
GL2.

By considering auxiliary groups G̃ = G × GL1 and H̃ = H × GL1 we obtain a spherical pair for
the Borel subgroup of G̃ and our construction gives a Galois cohomology class zU ∈ H1(Q,WU )
interpolating the Lemma–Flach classes constructed in [LSZ21] (or, more precisely, their Iwahori-
variants constructed in [LRZ21, Section 7]). We expect this class to play a role in proving new cases
of Bloch–Kato and Birch–Swinnerton-Dyer, much as their ordinary counterparts have in [LZ21].

This work contains several novel developments of the theory initiated with [GS20] and [BSV20]:

• We work in the full generality of Q-groups which are unramified at p (modulo an easily
removed condition on the centre).

• The methods of op.cit. involve pushing forward the trivial class in H0(YH(JH),Zp) along a
JG-map Zp → Aan

U,m interpolating H-maps Zp → V Gλ for λ ∈ U . Our use of the distribution

modules DH
U,m over YH allows us to interpolate a wider class of branching maps and expands
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the canonical classes we can consider. In particular we can now consider push-forwards of
families of Beilinson’s Eisenstein classes (generalising Siegel units on modular curves), see
Section 6.2.2.

• Our construction and use of the profinite modules AIw
U,m, which are essential in showing

cohomological triviality of both interpolating classes and ‘finite-level’ classes satisfying a
small slope condition (as opposed to an ordinarity condition where the proof is simpler and
does not generalise, relying on the vanishing of Iwasawa cohomology in degree 0).

• Our construction allows for interpolation of ‘admissible’ weights λ in the disc U for whom
V Gλ has non-zero invariants under a mirabolic subgroup Q0

H ⊂ H. In Section 6.5.1 we show
that there is a torus S such that if one considers the pair

(G̃, H̃) = (G× S,H × S),

then every weight of λ is invariant under a mirabolic subgroup Q0
H̃
⊂ H̃ after twisting by

a character of S acting trivially on parahoric level cohomology, essentially removing the
admissibility condition.

5.2 Setup

We fix the notation used throughout the paper. Note that here G is an arbitrary group, whereas
later we will fix groups G and H both of which satisfy the conditions set forth below.

Fix a prime p. We recall the following setting from [LRZ21]:

• Let G be a connected reductive group over Q satisfying Milne’s axiom (SV5), that is, the
centre contains no R-split torus which is not Q-split 9 .

• G is a reductive group scheme over Zp whose base-extension to Qp coincides with that of G.

• QG is a choice parabolic subgroup of G and Q̄G is the opposite parabolic, so that LG =
QG∩ Q̄G is a Levi subgroup of QG and the big Bruhat cell UGBru = N̄G×LG×NG is an open
subscheme of G over Zp, where NG is the unipotent radical of QG and N̄G is its opposite.

• Let SG denote the torus LG/L
der
G with character lattice X•(SG) and let X•

+(SG) denote the
QG-dominant weights. Let CG = G/Gder denote the maximal torus quotient of G.

• Let JG ⊂ G(Zp) be the parahoric subgroup associated to QG. This group admits an Iwahori
decomposition

JG = (JG ∩ N̄G(Zp))× LG(Zp)×NG(Zp)

• Let A be the maximal Qp-split torus in the centre of LG.

We choose a subtorus S0
G ⊂ SG and let L0

G and Q0
G be its preimages under the quotient maps

LG → SG and QG → SG respectively. Let ΦG denote the roots of G, ∆G the simple roots and Φ+
G

the positive roots. Set dG = dimNG.

5.2.1 Algebraic representations

Let K/Qp be a finite unramified extension over which G splits and let O be the ring of integers of
K. For λ ∈ X•

+(SG) we define

Vλ = {f ∈ K[G] : f(n̄ℓg) = λ(ℓ)f(g) ∀n̄ ∈ N̄G, ℓ ∈ LG, g ∈ G}

with g acting by right-translation. By the Borel–Weil–Bott theorem this is the irreducible G-
representation of highest weight λ with respect to a Borel subgroup BG ⊂ QG. We let fλ denote
the unique choice of highest weight vector satisfying f(n̄ℓn) = λ(ℓ) for n̄ℓn ∈ UGBru. We also write

PGλ = {f ∈ K[G] : f(nℓg) = λ−1(ℓ)f(g) ∀n ∈ NG, ℓ ∈ LG, g ∈ G},

so that (PGλ )∨ ∼= Vλ as G-representations. A canonical choice of highest weight vector of (PGλ )∨
with respect to BG is given by the functional δ1 : f 7→ f(1).

9As noted in [LRZ21] this condition is for convenience and can be relaxed with some fastidious bookkeeping.
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5.2.2 Integral lattices

Definition 5.2.1. An admissible lattice in Vλ is an O-lattice L ⊂ Vλ invariant under G/O and
whose intersection with the highest weight subspace is O · fλ.

We refer to [LRZ21, Section 2.3] for properties of admissible lattices. Let Vλ,O denote the maximal
admissible lattice in Vλ, given in the Borel–Weil–Bott presentation as

Vλ,O = {f ∈ O[G] : f(n̄ℓg) = λ(ℓ)f(g) ∀ n̄ ∈ N̄G, ℓ ∈ LG, g ∈ G}.

Similarly defining PGλ,O, then (PGλ,O)∨ is isomorphic to the minimal admissible lattice in Vλ.

5.2.3 Cohomology of locally symmetric spaces

As in [LRZ21] we fix a neat prime-to-p level group Kp and for an open compact subgroup U ⊂
G(Zp) let YG(U) denote the locally symmetric space of level KpU . We let Hi(YG(U),F ) refer to
one of the following cohomology theories on YG(U):

• Betti cohomology of the locally symmetric space YG(U) viewed as a real manifold, with
coefficients in a locally constant sheaf F .

Suppose now that G admits a Shimura datum with reflex field E.

• Étale cohomology of ȲG(U) := YG(U)Q̄ with coefficients in a lisse étale sheaf F .

• Let Σ be a sufficiently large finite set of primes containing those dividing p. We consider
the étale cohomology of an integral model YG(U)Σ of YG(U) defined over OE [Σ−1] with
coefficients in F . Here we assume the Shimura datum is of Hodge type.

5.2.4 Branching laws for algebraic representations

We now work in the situation of [Loe21] and [LRZ21] and consider an embedding H → G of
reductive Q-groups, extending to an embedding H → G of reductive group schemes over Zp. We
assume we have choices of data as in Section 5.2 for both H and G. We in particular note that
we require no compatibility between the choices of parabolic subgroups QH , QG other than those
stated below.

Denote by F := Q̄G\G the flag variety associated to the parabolic Q̄G. We assume that there is
u ∈ F(Zp) satisfying:

(A) The Q0
H -orbit of u is Zariski open in F ,

(B) The image of Q̄G ∩ uQ0
Hu

−1 under the projection QG → SG is contained in S0
G.

Under the above assumptions, the space USph = Q̄GuQ
0
H is a Zariski open subset of G. We refer

to it (and its image in the flag variety) as the spherical cell.

Remark 5.2.2. Note that since the flag variety is connected, UGBru ∩ Usph ̸= ∅ so we can always
take u ∈ UBru(Zp) and in particular we can take u ∈ NG(Zp), which we assume from now on.

By [LRZ21, Proposition 3.2.1], for λ ∈ X•
+(SG) the space V

Q0
H

λ has dimension ≤ 1.

Definition 5.2.3. We call weights satisfying dimV
Q0
H

λ = 1 Q0
H -admissible weights and denote the

cone of such weights by X•
+(SG)

Q0
H .

For λ ∈ X•
+(SG)

Q0
H the space V

Q0
H

λ is spanned by the polynomial function f sphλ ∈ K[G] uniquely

defined by setting f sphλ (u) = 1. The H-orbit of f sphλ generates an irreducible representation of H
of some highest weight µ ∈ X•

+(SH) with respect to a Borel BH ⊂ QH . By [LRZ21, Proposition

3.2.6] f sphλ ∈ Vλ,O.

Definition 5.2.4. Define the twig ϕ ∈ O(G×H) by

ϕ(g, h) = f sphλ (gh−1).
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Lemma 5.2.5. The twig ϕ has the following properties:

• For fixed g ∈ G, the function h 7→ ϕ(g, h) is in PHµ,O.

• For fixed h ∈ H, the function g 7→ ϕ(g, h) is in Vλ,O.

Proof. The function ϕ is clearly algebraic in both variables. Fix g ∈ G, then for ℓh ∈ LH

ϕ(g, ℓhh) = f sphλ (gh−1ℓ−1
h ) = µ(ℓh)

−1ϕ(g, h),

Now fix h ∈ H. Let ℓg ∈ LG, then

ϕ(ℓgg, h) = f sphλ (ℓggh
−1) = λ(ℓg)ϕ(g, h),

whence we are done.

Proposition 5.2.6. Let λ ∈ X•
+(SG)

Q0
H and let µ ∈ X•

+(SH) be the associated weight of H. Then
there is a unique H-equivariant map

brλµ : (PHµ,O)∨ → Vλ,O

sending δ1 to f sphλ . Under this map a functional ε ∈ (PHµ,O)∨ is mapped to the function on G/O
given by

g 7→ ⟨ε, ϕ(g,−)⟩.

5.2.5 Weight spaces

Write SG = LG(Zp)/L0
G(Zp) = SG(Zp)/S0

G(Zp) ⊂ (SG/S
0
G)(Zp). The torus SG splits into a direct

product SG = Stor
G ×SG,1 with the logarithm map identifying SG,1

∼= ZnGp for some integer nG
and Stor

G of finite order.

Definition 5.2.7. Write WG for the rigid analytic space over Qp parameterising continuous char-
acters of SG. The space WG admits a formal model WG := SpfΛ(SG) over Zp, where Λ(SG) is
the Iwasawa algebra associated to SG.

Definition 5.2.8. For i = 1, . . . , n let si ∈ SG,1 be a Zp-basis. For an integer m ≥ 0 we denote
by Wm ⊂ WG the wide-open subspace consisting of weights λ satisfying

vp(λ(si)− 1) >
1

pm(p− 1)

for all i.

Fix a finite extension E/Qp and for some m ≥ 0 let U ⊂ Wm be a wide-open disc defined over E.
Let ΛG(U) ∼= OE [[t1, . . . , tn]] denote the OE-algebra of bounded-by-one rigid functions on U with
mU its maximal ideal.

Let

Sstab
H =

QH ∩ u−1Q̄Gu

Q0
H ∩ u−1Q̄Gu

,

the quotient of the stabilisers of [u] ∈ F(Zp) in QH and Q0
H . As remarked in [LRZ21, Remark

3.2.4] the natural map Sstab
H → QH/Q

0
H is an isomorphism. It turns out more is true:

Lemma 5.2.9. The natural inclusion

(QH ∩ u−1Q̄Gu)(Zp)→ QH(Zp)

induces an isomorphism

(QH ∩ u−1Q̄Gu)(Zp)
(Q0

H ∩ u−1Q̄Gu)(Zp)
∼= QH(Zp)/Q0

H(Zp).
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Proof. For g ∈ QH(Zp), write Ug := Usphg. Each Ug is Zariski open and thus Ug ∩ U1 ̸= ∅ for all
g. Thus for any g ∈ QH(Zp) there is r1, rg ∈ Q̄G(Zp), q1, qg ∈ Q0

H(Zp) such that

r1uq1 = rgugqg

and so gqgq
−1
1 = u−1r−1

g r1u ∈ (u−1Q̄Gu ∩ QH)(Zp). In particular, for any g ∈ QH(Zp) there is

q ∈ Q0
H(Zp) such that gq ∈ (u−1Q̄Gu)(Zp), whence the claim follows.

Definition 5.2.10. We define a group scheme homomorphism

ω : SH/S
0
H → QH/Q

0
H → Sstab

H → SG/S
0
G

where the last map is given by conjugation by u and projection to SG. This is well defined by
assumption (B).

Given a Q0
H -admissible weight λ the associated H-weight µ is given by λ ◦ ω. By Lemma 5.2.9, ω

induces a homomorphism
SH → SG

of profinite abelian groups.

Lemma 5.2.11. There is a morphism of affine formal schemes:

Ω : WG →WH

given on points by Ω(λ)(s) = λ(ω(s)).

Proof. The map
Λ(SH)→ Λ(SG)

given by linearly extending [s] 7→ [ω(s)] is a map of topological rings since ω is algebraic and
therefore continuous.

Define the universal character for the torus SG

kGuniv : SG → Λ(SG)
×

s 7→ [s]

where Λ(SG) is the Iwasawa algebra of SG and is canonically isomorphic to the bounded-by-1
global sections of WG. Note that kGuniv ∈WG(ΛG(U)).

Define
kHuniv : SH → Λ(SG)

×

by kHuniv = Ω(kGuniv). Let U ⊂ WG be a wide open disc. Define

kGU : SG → ΛG(U)×

to be the character given by composing kGuniv with restriction to U . Define

kHU = Ω(kGU ) : SH → ΛG(U)×.

This character has the useful property that for λ ∈ U

λ ◦ kHU = Ω(λ).

Lemma 5.2.12. If U ⊂ Wm then the characters kGU , k
H
U are m-analytic on SG, (resp. SH),

viewed as a disjoint union of copies of ZnGp (resp. ZnHp ) indexed by Stor
G (resp. Stor

H ).

Proof. Since kHU is the pullback of kGU by an algebraic map, it suffices to prove the lemma for the
latter character. Moreover, since kGU is a character it suffices to show m-analyticity on SG,1. If we
let {si}i be a basis for SG,1

∼= (1 + pZp)n then we need to show that for any z ∈ Zp z 7→ kGU (s
z
i )

is m-analytic on Zp. We can then proceed much as in [LZ16, Lemma 4.1.5].

70



5.2.6 Hecke algebras

Let Kp ⊂ G(A(p)
f ) be a prime-to-p level group and let S be a finite set of primes containing those

at which Kp is ramified and not containing p. Define

TS := C∞c (Kp\G(AS∪{p}
f )/Kp,Zp)

the space of Zp-valued compactly supported locally constantKp-biinvariant functions onG(AS∪{p}
f ).

This is a commutative Zp-algebra.

Set
A− = {a ∈ A : vp(α(a)) ≥ 0 ∀ α ∈ ∆G\∆L}

and define A−− ⊂ A− with a strict inequality. We then define the double coset algebra

U−
p := Zp[JGaJG : a ∈ A−],

and similarly U−−
p . There is a Zp-algebra isomorphism

Zp[A−/A(Zp)] ∼= U−
p .

In particular, U−
p is commutative.

Definition 5.2.13. Define the unramified QG-parahoric Hecke algebra:

T−
S,p := TS ⊗ U−

p .

5.2.7 Locally analytic function spaces

Let B be one of the local rings O or ΛG(U) for a wide-open disc U ⊂ WG and let mB be its
maximal ideal and a character κ : TG(Zp)→ B× such that

κ =

{
λ if B = O
kGU if B = ΛG(U)

for some λ ∈ X•(TG).

Definition 5.2.14. For m ≥ 0 define

LAm(Zdp, B) = {f : Zdp → B : ∀ a ∈ Zdp,∃fa ∈ B⟨T1 . . . , Td⟩ s.t. f(a+ pmx) = fa(x) ∀x ∈ Zdp}.

This space is isomorphic to
∏
aB⟨p−mT1, . . . , p−mTd⟩ as a B-module, where a runs over (Z/pmZ)d.

The exponential map gives an isomorphism NG(Zp) ∼= (LieNG)(Zp) ∼= ZdGp , where for the second

isomorphism we choose a basis such that NG(pZp) = pZdGp .

Definition 5.2.15. For m ≥ 0, define

Aan
κ,m = {f : UGBru(Zp)→ B : f(n̄tn) = κ(t)f(n), and f |NG(Zp) ∈ LAm(ZdGp , B)}

equipped with the mB-adic topology. If B = ΛG(U) for a wide open disc U ⊂ Wm and κ = kGU , we
write Aan

U,m := Aan
kGU ,m

.

Restriction to NG(Zp) gives a B-module isomorphism Aan
κ,m
∼= LAm(ZdGp , B) with inverse f 7→

(n̄tn 7→ κ(t)f(n)). We give these spaces an action of a ∈ A− via

(a · f)(n̄ℓn) = f(n̄ℓana−1).

The following proposition is well-known and the proof is very similar to that of Proposition 5.2.26
below (which is less well-known) so we omit it.

Proposition 5.2.16. Suppose κ : SG(Zp) → B× is an m-analytic character. The modules Aan
κ,m

are preserved by both the right translation action of JG and the action of A− described above.
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Adapting the proof of [Urb11, 3.2.8] to our situation we see that for a ∈ A−−

aAan
κ,m+1 ⊂ Aan

κ,m (22)

and thus the action of A−− is by compact operators since the inclusions Aan
κ,m ⊂ Aan

κ,m+1 are
compact.

If λ ∈ X•
+(SG) then there is a natural JG-equivariant inclusion

V Gλ ↪→ Aan
λ,m,

which also preserves the A− action.

Definition 5.2.17. If λ ∈ U ⊂ Wm is the restriction to SG(Zp) of an algebraic character of
(SG/S

0
G)(Qp), then there is a natural specialisation map

ρλ : Aan
U,m → Aan

λ,m

given by post-composing with the map

ΛG(U)→ ΛG(U)⊗λ OE ∼= OE .

The space Aan
U,m is not the unit ball in a Banach algebra, but we can define a basis {ei}i∈I for a

countable indexing set I such that for any f ∈ Aan
U,m there are ai ∈ ΛG(U) such that

• ai → 0 in the cofinite filtration on I.

• We have f =
∑
i∈I aiei.

This can be seen from the identification of Aan
U,m with a product of Tate algebras. This basis is

sufficient to define Fredholm determinants of compact operators.

Definition 5.2.18. Let V ⊂ U ⊂ WG be an affinoid contained in a wide open disc U . Define

Aan
V,m := Aan

U,m⊗̂O(V)◦

where O(V)◦ are the bounded-by-1 global sections of V.

The space Aan
V,m[1/p] = Aan

U,m⊗̂O(V) is an orthonormalisable Banach O(V)-module with unit ball
Aan

V,m.

Let H ↪→ G be an embedding and let N̄H(pZp) ∼= ZdHp be the algebraic isomorphism given by the
logarithm map.

Definition 5.2.19. For κ ∈ {kHU , µ} where µ = λ ◦ ω for some λ ∈ X•
+(SG), define

PH,anκ,m := {f : JH → B : f(ntn̄) = κ(t)−1f(n̄), and f |N̄H(pZp) ∈ LAm(ZdHp , B)}.

These modules clearly satisfy all the properties of Aan
κ,m and admit a natural JH -equivariant inclu-

sion
PHλ ↪→ PH,anλ,m .

5.2.8 Locally analytic distribution modules

Suppose we have an embedding of reductive Q-groups H ↪→ G satisfying the conditions outlined
in the introduction.

Definition 5.2.20. For κ ∈ {kHU , µ} where µ = λ ◦ ω for some λ ∈ X•
+(SG), define

DH
κ,m = Homcont,B(PH,anκ,m , B),

given the weak topology i.e. the weakest topology making the evaluation maps continuous.

These spaces are topologically generated as a B[JH ]-modules by evaluation-at-1 distribution δ1.

For m ≥ 1 let X
(i)
κ,m be the image of DH

κ,m in DH
κ,m−1/p

i.
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Definition 5.2.21. Define
FilnDH

κ,m ⊂ DH
κ,m

to be the kernel of the composition

DH
κ,m → X(i)

κ,m → X(i)
κ,m ⊗B/pi B/mB .

By generalising the argument of Hansen [Han15] we see that {FilnDH
κ,m}n≥0 is a decreasing filtra-

tion invariant under JH such that DH
κ,m/Fil

nDH
κ,m is finite for all n ≥ 0 and

DH
κ,m = lim←−

n

DH
κ,m/Fil

n
κ,m,

which allows us to define a lisse étale sheaf DH
κ,m over our symmetric spaces for H.

Definition 5.2.22. Define a ΛG(U)-linear specialisation map

spµ : DH
U,m → (PHµ,O)∨.

as the map uniquely characterised by preserving the evaluation-at-1 map δ1.

5.2.9 Locally Iwasawa functions

Let B, dG be as in the previous section.

Definition 5.2.23. For m ≥ 0 define

LIm+1(ZdGp , B) = {f : ZdGp → B : ∀ a ∈ Zdp,∃fa ∈ B[[T1 . . . , TdG ]] s.t. f(a+p
m+1x) = fa(px) ∀x ∈ ZdGp }.

This space admits a natural structure as a B[[T1, . . . , TdG ]]-module and is isomorphic to∏
aB[[p−mT1 . . . , p

−mTdG ]].

Definition 5.2.24. Let nB be the maximal ideal of B[[T1, . . . , TdG ]]. Define a filtration Filnm+1 on
LIm+1(ZdGp , B) by

Filnm+1 := nnBLIm+1(ZdGp , B).

We see that
LIm+1(ZdGp , B) ∼= lim←−

n

LIm+1(ZdGp , B)/Filnm+1.

The modules LIm+1(ZdGp , B)/Filnm+1 are finite and thus the modules LIm+1(ZdGp , B) are profinite
and in particular they are nB-adically complete and separated.

For m ≥ 0 there is a chain of inclusions

LAm(ZdGp , B) ⊂ LIm+1(ZdGp , B) ⊂ LAm+1(ZdGp , B) (23)

given by restriction. This corresponds to∏
a mod pm

B⟨p−mT1, . . . , p−mTdG⟩ ↪→
∏

a mod pm

B[[p−mT1, . . . , p
−mTdG ]]

↪→
∏

a mod pm+1

B⟨p−(1+m)T1, . . . , p
−(1+m)TdG⟩.

Write lim−→m
LAm(ZdGp , B) = LA(ZdGp , B) for the space of all B-valued locally analytic functions on

ZdGp . The inductive systems {LAm(Zdp, B)}m≥0 and {LIm+1(ZdGp , B)}m≥0 are cofinal in the inverse
system

. . .→ LAm(ZdGp , B)→ LIm+1(ZdGp , B)→ LAm+1(ZdGp , B)→ . . . ,

with the arrows given by the inclusions (23). Thus

lim−→
m

LIm(ZdGp , B) = LA(ZdGp , B).

Let κ : SG(Zp)→ B be an m-analytic character.
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Definition 5.2.25. For m ≥ 0 define

AIw
κ,m+1 := {f : UGBru(Zp)→ B : f(n̄tn) = κ(t)f(n), and f |NG(Zp) ∈ LIm+1(ZdGp , B)},

given the mB-adic topology. As in the locally analytic case we write AIw
U,m := AIw

kU ,m
when U ⊂ Wm.

These spaces are isomorphic to LIm(ZdGp , B) as B-modules and the filtration on LIm(ZdGp , B) defines

a filtration Filnκ,mA
Iw
κ,m ⊂ AIw

κ,m.

When no danger of ambiguity exists we will write Filnκ,m for Filnκ,mA
Iw
κ,m.

Proposition 5.2.26. for n ≥ 1 the modules AIw
κ,m,Fil

n
κ,m are preserved by the actions of JG and

A− inherited from those on Aan
κ,m+1.

Proof. For m ∈ Q≥0, let Gm be the Qp-rigid space of points g ∈ G such that

|g − 1| ≤ pm

and set G◦m = ∪m′>mGm′ ⊂ G0. Define a rigid analytic group J ◦
G,m = G◦m ·JG (the group generated

by JG and G◦m in G0). This group admits an Iwahori decomposition

J ◦
G,m = (N̄ ◦

m · N̄G(Zp))× (L◦
m · LG(Zp))× (N ◦

m ·NG(Zp)).

Choosing a set Γ of representatives for JG mod pm+1 then

J ◦
G,m = ⊔γ∈ΓG◦mγ

The space AIw
κ,m is identified with the module of B-valued bounded-by-1 rigid functions F on J ◦

G,m

such that for n̄ℓ ∈ Q̄G(Zp) · G◦m, j ∈ J ◦
G,m we have

F (n̄ℓj) = κ(ℓ)F (j).

Viewed via this optic, it is clear that AIw
κ,m is stable under right translation by JG.

Let 1 be the trivial character. The space AIw
1,m is a subring of O(J ◦

G,m)B := O(J ◦
G,m)≤1⊗̂ZpB and

acts on AIw
κ,m via multiplication of functions in O(J ◦

G,m)B . Then Filn
1,m is an ideal of AIw

1,m and

Filn
1,m = (Fil1

1,m)n. Furthermore,

Filnκ,m = Filn
1,mA

Iw
κ,m.

Since the action of JG respects the ring structure of O(J ◦
G,m)B it suffices to show that Fil1κ,m is

preserved by JG.

We note that
Fil1κ,m = {F ∈ AIw

κ,m : F (γ) ≡ 0 mod p ∀ γ ∈ Γ},

so taking F ∈ Fil1, j ∈ JG then for γ ∈ Γ there is γj ∈ Γ and ε ≡ 1 mod pm+1 such that εγj = γj
and thus

(j · F )(γ) = F (εγj) ≡ 0 mod p.

The action of A− on J ◦
G,m is by

a ∗ J ◦
G,m = (N̄ ◦

m · N̄G(Zp))× (L◦
m · LG(Zp))× a(N ◦

m ·NG(Zp))a−1

We can see that this is well-defined noting that for a set of representatives Γ′ of NG(Zp) mod pm+1

we have
N ◦
m ·NG(Zp) = ⊔n∈Γ′N ◦

m · n

and each N ◦
m ·n is isomorphic to a direct product of balls Uα,m of radius p−m and centre 0 contained

in the root spaces Uα:
N ◦
m · n =

∏
α∈ΦL

Uα,m,
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where ΦL = ΦG\ΦL. Thus we have an isomorphism

N ◦
m ·NG(Zp) =

∏
α∈ΦL

Uα,m ×NG(Z/pm+1Z)

with the action of a ∈ A− given by

aN ◦
m ·NG(Zp)a−1 =

∏
α∈ΦL

pvp(α(a))Uα,m × aNG(Z/pm+1Z)a−1

=
∏
α∈ΦL

Uα,m+vp(α(a)) × aNG(Z/p
m+1Z)a−1

and Uα,m+vp(α(a)) ⊂ Uα,m since vp(α(a)) ≥ 0 by definition of A−, so aN ◦
m · NG(Zp)a−1 ⊂ N ◦

m ·
NG(Zp). We can prove the filtration Filnκ,m is invariant under the action of A− in a similar way to
that of JG.

Corollary 5.2.27. Let Kp ⊂ G(Ap) be a neat open-compact subgroup. The modules AIw
κ,m induce

lisse étale sheaves A Iw
κ,m over YG(K

pJG).

6 Locally analytic branching laws

Let U ⊂ WG be a wide-open disc and m ≥ 0. We construct branching maps

DH
U,m → Aan

U,m

interpolating the algebraic branching maps of Section 5.2.4.

6.1 The Big Twig

We consider functions on the set (Usph ·QH)(Zp) = (Q̄GuQH)(Zp).

Lemma 6.1.1. The function

fU : (Usph ·QH)(Zp)→ ΛG(U)
n̄ℓuqg 7→ kHU (g)kGU (ℓ)

for n̄ℓ ∈ Q̄G(Zp), q ∈ Q0
H(Zp), g ∈ QH(Zp) is well-defined.

Proof. For i = 1, 2, let gi ∈ QH(Zp), qi ∈ Q0
H(Zp) and n̄iℓi ∈ Q̄G(Zp), and suppose (noting

that QH normalises Q0
H so without loss of generality we can swap gi and qi in our presentation)

n̄1ℓ1ug1q1 = n̄2ℓ2ug2q2, then rearranging we get

(n̄2ℓ2ug2)
−1n̄1ℓ1ug1 ∈ Q0

H(Zp), (†)

so the map ω of Definition 5.2.10 applied to the left hand side is trivial. Since Q0
H(Zp) ⊂ QH(Zp)

we have that
u−1ℓ−1

2 n̄−1
2 n̄1ℓ1u ∈ QH(Zp) ∩ u−1Q̄G(Zp)u,

whose image under

QH(Zp) ∩ u−1Q̄G(Zp)u→ Sstab
H (Zp)→ (SG/S

0
G)(Zp)

is equal to the image of ℓ−1
2 ℓ1 under the projection LG(Zp) → (SG/S

0
G)(Zp). Applying ω to (†),

we get

1 = ω((n̄2ℓ2ug2)
−1n̄1ℓ1ug1) = ω(g2)

−1ω(g1)ω(u
−1ℓ−1

2 n̄−1
2 n̄1ℓ1u) = ℓ−1

2 ℓ1ω(g2)
−1ω(g1),

so
ℓ2ω(g2) = ℓ1ω(g1) mod S0

G(Zp)

and applying kGU allows us to conclude.
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Remark 6.1.2. The above proof shows that we can view fU as the pullback of kGU via the map

(Usph ·QH)(Zp)→ SG,

n̄ℓuq 7→ ℓω(q) mod L0
G(Zp).

Definition 6.1.3. Define a ∗-action of A− on UBru(Zp) by

a ∗ n̄ℓn = n̄ℓana−1.

Lemma 6.1.4. For any a ∈ A−− we have

(a ∗ UBru(Zp))u ⊂ USph(Zp).

Proof. It suffices to check this on F(Zp). Furthermore, as USph is Zariski open in FG, it suffices
to show that the inclusion holds mod p. We compute

(a ∗ UBru(Zp))u = Q̄G(Zp)aNG(Zp)a−1u

≡ Q̄G(Fp)u mod p

∈ USph(Fp),

where the second equality follows from the fact that aNG(Zp)a−1 ≡ 1 mod p.

Fix τ ∈ A−−. We want to study locally analytic functions on Usph. Let [Usph] denote the image of
USph in FG (alternatively the orbit of the image of u under Q0

H). For any r there is an injection

ϕ : Zdp ∼= τ rNG(Zp)τ−r ↪→ [USph]

τ rnτ−r 7→ [uτ rnτ−r]

which defines an open compact chart around [u] ∈ USph(Zp) ⊂ FG(Zp). Let V
(r)
u be the image

of this map, an open compact neighbourhood of [u]. By Q0
H -homogeneity this defines an atlas

{ϕq : Zdp → V
(r)
u q}q∈Q0

H
, giving [USph] the structure of a p-adic manifold.

Definition 6.1.5. For a character κ : SG → B×
κ , define

Aanκ,Sph := {f : USph → B : f(sg) = κ(s)f(g) ∀ g ∈ USph, s ∈ S0
G(Zp), f |V (r)

u q
locally analytic ∀ q ∈ Q0

H}

Lemma 6.1.6. We have
fU ∈ Aanκ,Sph.

Proof. By Lemma 6.1.1 we can identify

Aanκ,Sph = {f : SG×{u}×
(
Q0
H ∩ u−1Q̄Gu

)
\Q0

H(Zp)→ ΛG(U) : f(s, u, q) = κ(s)f(u, q), f |(Q0
H∩u−1Q̄Gu)\Q0

H
locally analytic}

where
(
Q0
H ∩ u−1Q̄Gu

)
\Q0

H
∼= [USph] and the image of the identity has an open compact-neightbourhood

V (r) given by the image of τ rNG(Zp)τ r. Since fU is Q0
H -invariant and the Q0

H -translates of V (r)

cover
(
Q0
H ∩ u−1Q̄Gu

)
\Q0

H(Zp) it suffices to show that fU is locally analytic when restricted to

V (r) = {1} × {u} × τ rNG(Zp)τ−r, but f(1, u, τ rnτ−r) = 1 so we are done.

Definition 6.1.7. For r ≥ 0, write

Nr := τ rNG(Zp)τ−r, N̄r := τ rN̄G(Zp)τ−r, Lr = {ℓ ∈ LG(Zp) : ℓ ∈ L0
G mod pr}.

We define the following open-compact subgroups of G(Zp)

Wr := N̄r × Lr ×Nr, Vr = N̄0 × Lr ×Nr.

We note that τ−rWrτ
r ⊂ Vr.
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Let {γ1, . . . , γn} be a set of representatives for Nr\N0, so that

UBru = ⊔ni=1Q̄GNrγi.

Let A
(r)
κ,m ⊂ Aan

κ,m denote the subspace of locally analytic functions supported on Q̄GNr.

Lemma 6.1.8. For every r ≥ 0 we have a u−1Wru-equivariant decomposition

Aan
κ,m = A(r)

κ,mu⊕Aκ,m,(r)u,

where Aκ,m,(r)u are the functions supported ⊔ni=2Q̄GNrγiu.

Proof. That there is such a decomposition of B-modules follows from the fact that each Q̄GNrγi
is open-compact in UBru. The equivariance condition follows from the fact that Wr preserves
Q̄GNr.

We have a natural JH ∩ u−1Wru-equivariant restriction map

ψ0
m,r : A

an
κ,sph,m → A(r)

κ,mu

which we extend to
ψm,r : A

an
κ,sph,m → Aan

κ,m

via the above decomposition.

Definition 6.1.9. Define the level pr Big Twig ΦU,r : UBru × JH → ΛG(U) by

ΦU (g, j) = ψm,r
((
j−1 · fU

))
(g).

The following lemma is then clear from the above discussion:

Lemma 6.1.10. Suppose U ⊂ Wm. The Big Twig satisfies the following properties:

• For fixed j ∈ JH
g 7→ ΦU,r(g, j) ∈ Aan

U,sph,m

• For fixed g ∈ UBru

j 7→ ΦU,r(g, j) ∈ PH,anU,m .

6.2 The Big Branch

Definition 6.2.1. For m ≥ 0, define the level pr, m-analytic, Big Branch

BRm,r : D
H
U,m → Aan

U,m

defined for ε ∈ DH
U,m, g ∈ UBru by

BRm,r(ε)(g) = ⟨ε,ΦU,r(g, ·)⟩.

These maps are equivariant for the action of JH ∩ u−1Wru on both sides.

Proposition 6.2.2. Let λ ∈ X•
+(S

0
G)

Q0
H and set µ = Ω(λ). Let U ⊂ WG be a wide-open disc

containing λ. The diagram

DH
U,m Aan

U,m Aan
U,m

PHµ
)∨

Aan
λ,m Aan

λ,m

spµ

BRm,r τ−ru−1

ρλ

brλ τ−ru−1
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Proof. By density of Dirac measures it suffices to show, for j ∈ JH , commutativity on the distri-
butions δj defined by ∫

JH

f(x)δj(x) = f(j).

Note that (j ·f sphλ ) agrees with ρλ(ψm,r (j · fU )) after restriction to Q̄GNru. Write f sphλ = f sphλ,0 +F ,

where f sphλ,0 is the function supported on f sphλ obtained by restricting f sphλ to Q̄GNru and extending

by zero. Clearly F vanishes identically on Q̄GNr, so in particular [τ−ru−1]F ≡ 0, so [τ−ru−1]
factors through restriction to Q̄GNru whence the result follows.

Theorem 6.2.3. For each r ≥ 1, there is a commutative diagram of Betti cohomology groups

Hi(YH(JH ∩ u−1Wru), D
H
U,m+1) Hi+c(YG(Wr), A

an
U,m+1)

Hi(YH(JH ∩ u−1Wru), (PHµ )∨) Hi+c(YG(Vr), A
an
λ,m+1).

[uτ ]∗◦ι∗◦BRm,r

[uτ ]∗◦ι∗◦br
λ
µ

(24)

Proof. This follows from the above Proposition, using the fact that τ−rWrτ
r ⊂ Vr

Corollary 6.2.4. Suppose we have elements zHU,r ∈ Hi(YH(JH ∩ u−1Wru), D
H
U,m+1) which are

compatible under the natural projections

prr+1 : Hi(YH(JH ∩ u−1Wr+1u), D
H
U,m+1)→ Hi(YH(JH ∩ u−1Wru), D

H
U,m+1)

for r ≥ 1. Then, writing

zGU,r = [uτ ]∗ ◦ ι∗ ◦BRm,r

(
zHU,r

)
∈ Hi+c(YG(Wr), A

an
U,m+1),

we have
prr+1

(
zGU,r+1

)
= Up · zGU,r.

Proof. This is (essentially) the main result of [Loe21]. In op. cit. the author uses the level groups
Ur := N̄0 × Lr ×Nr where we use Wr.

Example 6.2.5. We compute the Big Twig in some familiar situations, using the techniques of
[BSV20]. Let H = GL2 and suppose for simplicity that p ̸= 2. In this case FH ∼= P1

Zp and for an
integer k ≥ 0 we can identify the representation Vk of highest weight k with the global sections of
the sheaf OP1(k), the space degree k homogeneous polynomials on Z2

p.

We consider the setting of [LZ16], given by taking G = GL2 ×GL1 GL2 and H = GL2 embedded
diagonally. Taking u = ( 1 1 ) × ( 1 1

1 ) and Q0
H = {( x y1 )} then Q0

H has an open orbit USph on
FG = (P1)2 given for a Zp-algebra R by

USph(R) = {[x1 : x2]× [y1 : y2] ∈ (P1 × P1)(R) : x1, y1, x2 − y2 ∈ R×}.

We have SG = TG, the standard diagonal torus, and S0
G = {1} so the weight space WG parame-

terises characters of TG. The cocharacters

λ∨1 : x 7→
(
x

x−1

)
×
(
1

1

)
λ∨2 : x 7→

(
1

1

)
×
(
x

x−1

)
λ∨3 : x 7→

(
1

x

)
×
(
1

x

)
determine a decomposition

WG =WGL1 ×WGL1 ×WGL1
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where WGL1 is the standard weight space parameterising characters of Z×
p . Write kU,i = kGU ◦ λ∨i

and further define

k∗U,1 = kU,1 − kU,3
k∗U,2 = kU,2 − kU,3.

Let k, k′ ≥ 0 be integers, then for 0 ≤ j ≤ min{k, k′} there is an H-equivariant map

Vk+k′−2j ⊗ detj → Vk ⊗ Vk′ .

Define a section

Fk,k′,j ∈ O(P1)(k)⊗O(P1)(k′)

Fk,k′,j(x1, x2, y1, y2) = xk−j1 yk
′−j

1 det( x1 x2
y1 y2 )

j
,

then Fk,k′,j ∈ (Vk ⊗ Vk′ ⊗ detj−k−k
′
)Q

0
H and Fk,k′,j(u) = 1 so Fk,k′,j is a highest weight vector for

the action of H of highest weight ( x x−1 det ) 7→ xk+k
′−2jdetj . Let U ⊂ WG be a wide-open disc

with universal character kGU : TG(Zp)→ ΛG(U)×. Then Fk,k′,j restricted to Usph(Zp) takes values
in Z×

p so the function

FU : USph(Zp)→ ΛG(U)×

FU (x1, x2, y1, y2) = x
k∗U,1
1 y

k∗U,2
1 det

(
x1 x2
y1 y2

)kU,3
is well defined and is homogeneous of weight kGU . Setting τ = ( p 1 )× ( p 1 ) then for n =

(
1 z1

1

)
×(

1 z2
1

)
∈ NG(Zp) and i−1 =

(
i1 i2
pi3 i4

)
∈ JH the Big twig is given by

ΦU (τnτ
−1u, i) = (i1 + p2i3z1)

k∗U,1(i1 + pi3(1 + pz2))
k∗U,2(det(i)−1(1 + p(z2 − z1)))kU,3 .

Example 6.2.6. We consider the situation of [GS20] and [BSV20]. Let H be as in the previous
exapmle and set G = GL2 ×GL1

GL2 ×GL1
GL2, QG = BG = TG × NG the upper triangular

Borel subgroup, and SG = TG. We consider the diagonal embedding of H into G. Taking u =
( 1 1 )×

(
1 −1

1

)
× ( 1 1

1 ) we see that H has an open orbit on FG ∼= (P1)3. For a triple of non-negative
integers r = (r1, r2, r3) let Vr = Vr1 ⊠Vr2 ⊠Vr3 . We have uHu−1∩ B̄G = ZH = H ∩u−1B̄Gu = S0

G

from which it follows that a necessary condition for Vr to have an H-invariant element is for there
to exist an integer r such that r1 + r2 + r3 = 2r. If we further suppose that for each permutation
σ ∈ S3 we have rσ(1) + rσ(2) ≥ rσ(3) then the function Detr ∈ Vr given by

(x1, x2)× (y1, y2)× (z1, z2) 7→ 2−r det

(
x1 x2
y1 y2

)r−r3
det

(
x1 x2
z1 z2

)r−r2
det

(
y1 y2
z1 z2

)r−r1
,

is well defined and Detr ∈ (Vr ⊗ det−r)H . Writing, for g ∈ G, Detr(g) := Detr((1, 0)
3g), we see

that Detr(u) = 1 (this is the reason for the factor of 2−r) and thus for n̄t ∈ B̄, h ∈ H that:

Detr(n̄tuh) = det(h)rtλr ,

where λr is the highest weight of Vr, using additive notation for characters.

Recall that WG parameterises weights of the rank 3 torus SG(Zp) = (TG/ZH)(Zp). For i = 1, 2, 3
write λ∨i ∈ X•(SG/S

0
G) for the cocharacter given by composing

x 7→
(
x

x−1

)
with the inclusion into the ith GL2-component of SG and reduction modulo S0

G. These cocharacters
determine a decomposition of WG:

WG =WGL1
×WGL1

×WGL1
(25)
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and we define U = U1 × U2 × U3 ⊂ WG as a product of wide-open discs Ui ⊂ WGL1 contained in
each factor of the decomposition (25). Suppose that each Ui is centred on an integer ki ∈ Z; the
condition that our weights be trivial on ZH forces k1 + k2 + k3 to be even. We define

kU,i = kGU ◦ λ∨i .

These characters take the form kU,i(z) = ω(z)k1+k2+k3⟨z⟩kU ,i where ω(z) is the Teichmüller repre-
sentative of z ∈ Z×

p . We further define

k∗U,1(z) = ω(z)
k1+k2−k3

2 ⟨z⟩
kU,1+kU,2−kU,3

2

and similarly for i = 2, 3 to obtain characters k∗U,i satisfying k∗U,σ(1) + k∗U,σ(2) = kU,σ(3) for all
permutations σ ∈ S3 and write

k∗U,123 = k∗U,1 + k∗U,2 + k∗U,3.

Set τ = ( p 1 ) × ( p 1 ) × ( p 1 ). Retaining additive notation for characters, we then have for n̄t ∈
B̄G(Zp), n =

(
1 z1

1

)
×
(
1 z2

1

)
×
(
1 z3

1

)
∈ NG(Zp):

ΦU (n̄tτnτ
−1u, h) = (2det(h))

−k∗U,123 ×

tk
G
U det

(
1 pz1
1 −1 + pz2

)k∗U,3
det

(
1 pz1
1 −1 + pz2

)k∗U,2
det

(
1 −1 + pz2
1 1 + pz3

)k∗U,1
defining an element of Aan

U,m ⊗ (k∗U,123 ◦ det)−1 for suitably large m.

6.2.1 Étale cohomology

Lemma 6.2.7. For U ⊂ Wm+1 there is a commutative diagram

DH
U,m AIw

U,m+1

(PHµ )∨ AIw
λ,m+1

Proof. Just compose the diagram (6.2.3) with the inclusions

A3
κ,m
∼= Aan

κ,m ↪→ AIw
κ,m+1

for appropriate κ.

Lemma 6.2.8. Suppose U ⊂ Wm, m ≥ 0. The Big Branch BRm+1 is continuous for the profinite
topologies on DH

U,m+1 and AIw
U,m+1.

Proof. The assumption on U means that h 7→ Φ(g, h) is an element of PH,anU,m so the (m+1)-analytic

Big Branch BRm+1 factors through restriction to this module and lands in AIw
U,m+1. Recalling

notation from Section 5.2.8, we have a commutative diagram

DH
U,m+1 AIw

U,m+1

X
(i)
U,m+1 X

(i)
U,m+1 ⊗ ΛU/m

i
U AIw

U,m+1 ⊗ ΛU/m
i
U

DH
U,m/p

i

BRm+1

BRm

BRm

for i ≥ 0. We need to show that for each n ≥ 0 there is i = i(n) such that BRm+1(Fil
iDH

U,m+1) ⊂
FilnAIw

U,m+1. From the diagram it suffices to show that there is i = i(n) such that miUA
Iw
U,m ⊂

FilnAIw
U,m+1 but this is easily verifiable.
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Corollary 6.2.9. Suppose YH , YG admit compatible Shimura data. In this case there is e ∈ Z such
that 2e = c For any integer j there is a commutative diagram of étale cohomology groups

Hi(YH(JH ∩ u−1U1u),DH
U,m+1(j)) Hi+2e(YG(JG),A Iw

U,m+1(j + e))

Hi(YH(JH ∩ u−1U1u), (PHµ )∨(j)) Hi+2e(YG(JG),A Iw
λ,m+1(j + e)),

Tr◦[uτ ]∗◦BR

Tr◦[uτ ]∗◦br
λ
µ

where (j) denotes a cyclotomic twist.

6.2.2 Eisenstein classes

Let H = GL2, QH = BH and as in Example 6.2.5 let Vk denote the irreducible H-rep of highest
weight k ≥ 0. A large proportion of examples of Euler systems arise as push-forwards of Eisenstein
classes in the cohomology of modular curves, for example [KLZ17], [LSZ21]. We briefly discuss
how these classes fit into our framework.

Let S0((A(p)
f ×Zp)2,Zp) be the space of Zp-valued Schwartz functions ϕ on (A(p)

f ×Zp)2 satisfying

ϕ(0, 0) = 0 and for an integer c coprime to 6p, let cS0((A(p)
f × Zp)2,Zp) denote the subspace of

S0((A(p)
f ×Zp)2,Zp) of the form ϕ(c) ⊗ ch(Z2

c), where ϕ is a Z-valued Schwartz function on (A(c)
f )2

and Zc =
∏
ℓ|c Zℓ. We equip these spaces with the natural right translation action of H.

Proposition 6.2.10. Let k ≥ 0. For c as above and U ⊂ H(A(pc)
f × Zpc) a neat open compact

subgroup there is a map

cS0((A(p)
f × Zp)2,Zp)→ H1

ét(YH(U)Σ, Vk,Zp(1))

ϕ 7→c Eis
k
ét,ϕ

whose image in H1(YH(U)Σ, Vk) satisfies

cEis
k
ét,ϕ =

(
c2 − c−k

(
c

c

)−1
)
rét(Eis

k
mot,ϕ),

where Eiskmot,ϕ is Beilinson’s motivic Eisenstein class, and rét is the étale regulator.

Let Kp ⊂ H(A(pc)
f × Zc) be a choice of tame subgroup such that KpJH is neat and let ϕ be a

Zp-valued Schwartz function on (A(p)
f )2 invariant under Kp. By [KLZ17, Section 4] there is an

Eisenstein–Iwasawa class

cEIϕ ∈ H2(YH(JH)Σ,Λ(NH(Zp)\JH)),

where Λ(NH(Zp)\JH) is the étale sheaf associated to the space of Zp-valued measures onNH(Zp)\JH .
for all k ≥ 0 There is a kth moment map

momk : H1(YH(JH)Σ,Λ(NH(Zp)\JH)(1))→ H1(YH(JH)Σ, V
∨
k,Zp(1))

satisfying
momk(cEIϕ) = cEis

k
ét,ϕ1

,

where ϕ1 = ϕ⊗ ch(pZp × Z×
p ).

Remark 6.2.11. The space V ∨
k,Zp is H-isomorphic to the space TSymk(Z2

p) of weight k symmetric

tensors on Z2
p.

Let U ⊂ Wm. We define a map

ψU : Λ(NH(Zp)\JH)→ DH
U,m
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given, for j ∈ NH(Zp)\JH , by sending the Dirac measure δj to the ‘evaluation-at-j’ distribution.
The kth moment map factors through ψU as

momk : Λ(NH(Zp)\JH)
ψU−−→ DH

U
ρk−→ V ∨

k,Zp ,

whenever k ∈ U , and so we define

cEIUét,ϕ := ψU,∗(cEIϕ) ∈ H1(YH(JH),DH
U (1)).

Proposition 6.2.12. For k ∈ Z≥0 ∩ U , the class cEIUét,ϕ satisfies

ρk(cEIUét,ϕ) = cEis
k
ét,ϕ1

.

Proof. Clear from the above discussion.

We will use these classes in Section 6.6 to interpolate the Lemma–Flach Euler system of [LSZ21]
in Coleman families.

6.3 Complexes of Banach modules

6.3.1 Slope decompositions

Definition 6.3.1. Let F ∈ A{{T}} and let h ∈ R≥0. We say that F has a slope ≤ h factorisation
if we have a factorisation

F = Q · S

where Q is a polynomial and S is Fredholm, such that

1. Every slope of Q is ≤ h

2. S has slope > h

3. ph is in the interval of convergence of S.

Such a factorisation is unique if it exists.

Definition 6.3.2. LetM be an R-module equipped with an R-linear endomorphism u. For h ∈ Q
we say that M has a ≤ h-slope decomposition if it decomposes as a direct sum

M =Mu≤h ⊕Mu>h

such that

• Both summands are u-stable.

• Mu≤h is finitely generated over A.

• For every m ∈Mu≤h there is a polynomial Q ∈ R[t] of slope ≤ h with Q∗(0) a multiplicative
unit, such that Q∗(u)m = 0.

• For any polynomial Q ∈ R[t] of slope ≤ h with Q∗(0) a multiplicative unit, the map

Q∗(u) :Mu>h →Mu>h

is an isomorphism.

If such a decomposition exists it is unique and u acts invertibly on Mu≤h. Let R be a Banach
Qp-algebra and let M be a Banach R-module with an action of U−−

p by compact operators. For
u ∈ U−−

p let Fu ∈ R{{t}} denote the Fredholm determinant of u acting on M . The following
theorem follows directly from results of Coleman, Serre and Buzzard (see [Urb11, Theorem 2.3.8],
for example):
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Theorem 6.3.3. Let R,M be as above and suppose that M is projective as a Banach module with
R-linear compact operator u.

If we have a prime decomposition Fu(T ) = Q(T )S(T ) in R{{T}} with Q a polynomial such that
Q(0) = 1 and Q∗(T ) invertible in R then there exists RQ(T ) ∈ TR{{T}} whose coefficients are
polynomials in the coefficients of Q and S and we have a decomposition of M :

M = Nu(Q)⊕ Fu(Q)

of closed R submodules satisfying

• The projector on Nu(Q) is given by RQ(u).

• Q∗(u) annihilates Nu(Q).

• Q∗(u) is invertible on Fu(Q).

If A is Noetherian then Nu(Q) is projective of finite rank and

det(1− tu | Nu(Q)) = Q(t).

When the decomposition Fu = QS is a slope ≤ h factorisation then the decomposition in the above
theorem is a slope ≤ h factorisation and Mu≤h = Nu(Q)

6.3.2 Slope decompositions on cohomology

Let K = KpK
p ⊂ G(Af ) be a neat open compact subgroup with Kp ⊂ JG admitting an Iwahori

decomposition and let R be a Qp Banach algebra. From now on we assume that G,H admit
compatible Shimura data and set q = dimCYG.

Definition 6.3.4. For an R[K]-module M let

C •(ȲG(K),M)

be the ‘Borel–Serre’ complex defined in [Han17, Section 2.1] whose cohomology computesH•(ȲG(K),M)
(as R-modules). We let RΓ(ȲG(K),M) be the image of the above complex in the derived category
of Banach R-modules.

Remark 6.3.5. We won’t always have defined an étale sheaf associated to M so by abuse of
notation we let H•(ȲG(K),M) denote the Betti cohomology of the locally constant sheaf of R-
modules induced by M in this case, noting that this is isomorphic as an R-module to the étale
cohomology whenM has an associated étale sheaf (we might think of this as bequeathing the Betti
cohomology with a Galois action).

SupposeM is an orthonormalisable BanachR-module and with a continuous action of A−. Then we
can define an action of the Hecke algebra T−

S,p on the complex C •(ȲG(K),M) via its interpretation

as an algebra of double coset operators. Suppose further that A−− acts compactly on M . Then
the action of U−−

p on C •(ȲG(K),M) acts compactly on the total complex ⊕iC i(ȲG(K),M). We
refer to the following proposition from [Han17, 2.3.3]:

Proposition 6.3.6. Let R be an affinoid algebra. If C• is a complex of projective Banach R-
algebras equipped with an R-linear compact operator u, then for any x ∈ Sp(R) and h ∈ Q≥0 there
is an affinoid subdomain Sp(R′) ⊂ Sp(R) such that x ∈ Sp(R′) and such that the complex C•⊗̂RR′

admits a slope ≤ h decomposition for u and (C•⊗̂RR′)u≤h is a complex of finite flat R′-modules.

We will also need the following easy technical lemma.

Lemma 6.3.7. Let N ⊂M be an inclusion of projective Banach R-modules with R-linear compact
operator u such that

uM ⊂ N

Suppose further that N,M admit slope ≤ h decompositions, then for h ∈ Q≥0 we have

Mu≤h = Nu≤h.

83



Moreover, if e≤hu is the slope ≤ h idempotent on M associated to u by Theorem 6.3.3 then

e≤hu N = Nu≤h

i.e. e≤hu is a slope ≤ h idempotent for N .

Proof. By [AS08, Theorem 4.1.2(c)&(d)] we have a slope ≤ h decomposition on M/N such that

0→ Nu≤h →Mu≤h → (M/N)u≤h → 0

is an exact sequence. However, u(M/N) = 0 by our hypothesis so u has infinite slope on M/N
and thus (M/N)u≤h = 0 for any h ∈ Q≥0 (as u must be invertible on finite slope parts) whence
Nu≤h =Mu≤h.

For the statement involving the idempotent it’s easy to see that for any idempotent operator ϕ on
M preserving N we have ϕ(N) = ϕ(M) and that e≤hu is immediate since

e≤hu M =Mu≤h = Nu≤h.

By Proposition 6.3.6 we can shrink V to an affinoid V ′ also containing x0 and such that the complex
admits a slope ≤ h decomposition for any u ∈ U−−

p , h ∈ Q≥0 with projector e≤h ∈ O(V ′){{u}}. In
this case by Lemma 6.3.7 we have

C •(ȲG(K), Aan
V′,m)u≤h ∼= C •(ȲG(K), Aan

V′,m+1)
u≤h.

We will need slope decompositions for coefficents defined over a wide-open disc in weight space.

Lemma 6.3.8. Let U ⊂ WG be a wide open disc and let x0 ∈ U . There is a wide open disc
x0 ∈ U ′ ⊂ U such that the complex C •(ȲG(K), Aan

U,m) admits a slope ≤ h decomposition.

Proof. As explained above, there is an affinoid V ⊂ U containing x0 over which C •(ȲG(K), Aan
V,m)

admits a slope ≤ h decomposition. By shrinking we can assume that V is a closed disc centered
on x0. Let U ′ be the wide-open disc given by taking the ‘interior’ wide-open disc of this affinoid
disc. Since an orthonormal basis of Aan

V,m gives an orthonormal basis of Aan
U ′,m and the Banach

norm on ΛG(U ′)[1/p] restricts to the Gauss norm on O(V) we get a slope ≤ h decomposition on
C •(ȲG(K), Aan

U ′,m) and all the above results hold in this case. Note in particular that the projector

e≤h is still in O(V){{u}} when computing the decomposition for U ′.

Lemma 6.3.9. Let h ∈ Q≥0 and let U be a wide-open disc such that C •(ȲG(K), Aan
U,m) admits

a slope ≤ h decomposition. Then the slope ≤ h total cohomology H•(ȲG(K), Aan
U,m+1)

u≤h is a

Galois-stable direct summand of H•(ȲG(K),A Iw
U,m+1) as a ΛG(U)-module.

Proof. Write

Mm :=C •(ȲG(K), Aan
U,m)

Im :=C •(ȲG(K), AIw
U,m),

so that we have natural inclusions

Mm ⊂ Im+1 ⊂Mm+1. (26)

The key point is that the natural action of u on Mm, Im+1 is the restriction of the action of u on
Mm+1, so we can apply Lemma 6.3.7. Since uMm+1 ⊂Mm it follows from (26) that

uIm+1 ⊂Mm.

By Theorem 6.3.3 there is an idempotent e≤hm ∈ uR{{u}} such that

e≤hm Mm+1 = Iu≤hm+1 =Mu≤h
m
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where the second equality is Lemma 6.3.7. Moreover, by Lemma 6.3.7 we have that

e≤hm Mm =Mu≤h
m

(i.e. e≤hm does not depend on m) from which we can infer that

Mu≤h
m = e≤hIm+1

is a direct summand of Im+1 and thus H•(Mm)u≤h is a direct summand of the total cohomology
H•(Im) by functoriality.

To show Galois-stability we note that for each i

Hi(ȲG(K), AIw
U,m) = lim←−

n

Hi(ȲG(K), AIw
U,m/Fil

n)

as Galois modules, with each H•(ȲG(K), AIw
U,m/Fil

n) finite. Since e≤h can be represented by a
polynomial in u mod pn and since the Hecke operators commute with the Galois action we see
that for g ∈ GQ

g · e≤h = e≤h · g mod pn

for all n and by taking the limit over n we get the result.

6.3.3 Refined slope decompositions and classicality

As in [SW21, Section 3.5] we consider a more refined slope decomposition. For i = 1, . . . , n
let Qmax

G,i denote the maximal parabolic subgroups of G containing QG. These correspond to a

subset {α1, . . . , αn} of the simple roots of G and by taking ai ∈ A− such that v(αi(ai)) > 0 and
v(αj(ai)) = 0 for j ̸= i we can associate Hecke operators Ui ∈ U−

p as the image of ai under the
isomorphism Zp[A−/A(Zp)] ∼= U−

p .

Definition 6.3.10. Set hcriti := −(⟨λ, αi⟩+ 1)v(α(ai)).

Let h := (h1, . . . , hn) ∈ Qn≥0. Suppose a Banach R moduleM admits a slope ≤ haux decomposition

with respect to the operator U0 := U1 · · ·Un ∈ U−−
p for some haux >

∏
i hi, so that M≤haux is a

finite projective Banach R-module. In particular, the whole of A− acts compactly on M≤haux and
supposing that the Fredholm series Fi admit slope hi decompositions for each i then we can define

M≤h = ∩i(M≤haux)≤hi .

Lemma 6.3.11. For 0 ≤ i ≤ n let h(i) = (h1, . . . , hi) and suppose the Ui act compactly on M .
Set

M≤h(i+1)

= (M≤h(i)

)Ui+1≤hi+1 .

Then
M≤h(n)

=M≤h.

Proof. It suffices to prove the following statement: Suppose M is a Banach module equipped with
two compact operators U1, U2 whose Fredholm determinants F1, F2 admit slope h1, h2 factorisations
respectively. Then

MU1≤h1 ∩MU2≤h2 = (MU1≤h1)U2≤h2

Suppose F2 = Q2S2 is the slope ≤ h2 factorisation and F̃2 = Q̃2S̃2 is a slope factorisation
of the Fredholm determinant F̃2 of U2 restricted to MU1≤h1 . Then Q̃2 divides Q2 so for m ∈
(MU1≤h1)U2≤h2 we have Q∗

2m = 0 and thus m ∈MU1≤h1 ∩MU2≤h2 .

Conversely suppose m ∈ MU1≤h1 ∩ MU2≤h2 . Then in particular m ∈ MU1≤h1 and so we can
write m = m2 + n where m2 ∈ (MU1≤h1)U2≤h2 and n is in the complement (MU1≤h1)U2>h2 . As
m ∈ MU2≤h2 we have Q∗

2(U2)m = 0 but also Q∗
2(U2)m2 = 0 by the same argument as in the first

inclusion, so Q∗
2(U2)n = 0 and since Q∗

2 is a slope ≤ h2 polynomial and Q∗
2(0) is a multiplicative

unit then n = 0 by Definition 6.3.2.
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Corollary 6.3.12. Let M be a projective Banach R-module with an action of an R-linear compact
operator u. Then the module M≤h is a finite projective R-module and a direct summand of M
with projector e≤h ∈ R{{U1, . . . , Un}}.

Proof. The above lemma states that we can obtain the refined slope decompositionM≤h onM≤haux

by recursively taking a finite number of slope decompositions so the result follows from Theorem
6.3.3.

We say h is non-critical if for all i = 1, . . . , n we have hi < hcriti .

Theorem 6.3.13. For h ∈ Qn≥0 non-critical and λ ∈ X•
+(SG) there is a quasi-isomorphism:

RΓ(ȲG(K),A an
λ,m)≤h ∼= RΓ(ȲG(K), V Gλ,m)≤h.

Proof. This is proved for compactly supported cohomology with coefficients in modules of distri-
butions in [SW21, Theorem 4.4] using the dual of a parabolic locally analytic BGG complex. The
same proof (sans dualising) can easily be adapted to our setting using this complex.

We end with a variation of Proposition 6.3.6

Lemma 6.3.14. Let R be an affinoid algebra and let C• be a complex of projective Banach R-
algebras equipped with a continuous R-linear action of U−

p such that U−−
p acts via compact operators.

Then for any x ∈ Sp(R) and h ∈ Qn≥0 there is an affinoid subdomain Sp(R′) ⊂ Sp(R) such that

x ∈ Sp(R′) and such that the complex C•⊗̂RR′ admits a slope ≤ h decomposition and (C•⊗̂RR′)≤h

is a complex of finite flat R′-modules.

Proof. We know that by Proposition 6.3.6 there is an affinoid Sp(R0) containing x and such that
U0 admits a slope ≤ haux decomposition on ⊕iCi and affinoids Sp(Ri) such that Ui admits a slope
decomposition on (⊕iCi)≤haux and x ∈ Sp(Ri) for each i. Taking the intersection of these subsets
gives us the required affinoid. The finite flatness follows from the above corollary.

Definition 6.3.15. If U is a wide-open disc such that H•(ȲG(K), Aan
U,m) admits a slope ≤ h

decomposition we say that U is h-adapted.

6.3.4 Control theorem

We prove control results for the cohomology of locally symmetric spaces.

Lemma 6.3.16. Let λ ∈ Wm with residue field L and U ⊂ Wm a wide-open disc containing λ,
then there is a quasi-isomorphism

RΓ(ȲG(K), Aan
U,m)[1/p]⊗LΛG(U)[1/p] L ∼ RΓ(ȲG(K), Aan

λ,m ⊗Qp L).

Proof. This follows from the fact that

Aan
U,m[1/p]⊗ΛG(U)[1/p] L = Aan

λ,m[1/p]⊗Qp L.

Corollary 6.3.17. For h ∈ Qn≤0 non-critical, an h adapted wide-open disc U ⊂ Wm and algebraic
λ ∈ U , there is a quasi-isomomorphism

RΓ(ȲG(K), Aan
U,m)[1/p]≤h ⊗LΛG(U)[1/p] L ∼ RΓ(ȲG(K), Vλ,O)[1/p]

≤h ⊗Qp L.

Proof. This is an immediate corollary of Theorem 6.3.13 and the previous lemma.
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6.3.5 Vanishing results

Let U be an h-adapted wide-open disc.

Definition 6.3.18. For h ∈ Qn≥0 set

TU,h = im
(
T−
S,p → EndΛG(U)[1/p](RΓ(ȲG(K), Aan

U,m)[1/p]≤h)
)

Tλ,h = im
(
T−
S,p → EndΛG(U)[1/p](RΓ(ȲG(K), Vλ,O)[1/p]

≤h)
)

Lemma 6.3.19. The natural map
rλ : TU,h → Tλ,h

induces a bijection
Spec(Tλ,h)→ Spec(TU,h/ker(rλ)) (27)

Proof. This is [AS08, Theorem 6.2.1(ii)].

Lemma 6.3.20. Suppose λ ∈ U and mλ ⊂ Tλ,h is a maximal ideal such that

RΓ(ȲG(K), Vλ,O)[1/p]
≤h
mλ

is quasi-isomorphic to a complex concentrated in degree q = dimCYG. Then if MU is the image of
mλ under the identification (27) then

RΓ(ȲG(K), Aan
U,m)≤h

MU

is quasi-isomorphic to a complex of projective (TU,h)MU modules concentrated in degree q.

Proof. This follows from the Lemma 2.9 of [BDJ21].

6.4 Classes in Galois cohomology

We give a recipe for mapping étale classes into Galois cohomology.

6.4.1 Bits of eigenvarieties and families of Galois representations

Let h ∈ Qn≥0. Consider the total étale cohomology H•(ȲG(K),AU,m)[1/p]≤h for an h-adapted
wide-open disc U .

Definition 6.4.1. For U ,h as above define EU,h to be the quasi-Stein rigid space defined by

O(EU,h) := TU,h ⊗ΛG(U)[1/p] O(U).

The structure morphism
w : EU,h →WG

is finite and we refer to it as the weight map.

For L/Qp a point x ∈ EU,h(L) corresponds to an eigensystem of T−
S,p acting onH

•(ȲG(K),Aw(x))[1/p]
≤h⊗

L.

Definition 6.4.2. We call a point x ∈ EU,h(L) classical if w(x) is the restriction of a dominant
algebraic character and the associated eigensystem occurs in H•(ȲG(K), Vw(x))⊗Qp L.

Remark 6.4.3. Theorem 6.3.13 says that non-critical slope eigensystems of classical weight are
classical.

Definition 6.4.4. We say a classical point x ∈ EU,h(L) is really nice if(
H•(ȲG(K), Vw(x))[1/p]⊗Qp L

)
x
=
(
Hq(ȲG(K), Vw(x))[1/p]⊗Qp L

)
x

is a free O(EU,h)x-module of rank 1 and the weight map is étale at x.
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Definition 6.4.5. Define a complex of coherent sheaves M•
U,h over EU,h as that induced by the

complex of O(EU,h)-modules

C •(ȲG(K),AU,m)[1/p]≤h ⊗ΛG(U)[1/p] O(U).

Proposition 6.4.6. Let x ∈ EU,h be a really nice point. Then there is an affinoid neighbourhood
x ∈ V ⊂ EU,h such that for non-critical h the complex of sheaves

M•
U,h|V

is quasi-isomorphic to a complex of locally free sheaves concentrated in degree q.

Proof. By Lemma 6.3.20 the stalk of M•
U,h at x is quasi-isomorphic to a complex concentrated in

degree q. By coherence we can find an affinoid V ⊂ U containing x such that

M•
U,h|V

is quasi-isomorphic to a complex concentrated in degree q.

Definition 6.4.7. We say an affinoid V ⊂ EU,h is righteous if the restriction of the weight map
to V is an isomorphism onto its image and M•

U,h|V is quasi-isomorphic to a complex of locally free
sheaves concentrated in degree q.

Clearly a subaffinoid of a righteous affinoid is also righteous.

Lemma 6.4.8. If x ∈ EU,h is really nice then it has an affinoid neighbourhood V which is righteous.

Proof. This follows immediately from the weight map being étale at really nice points and Propo-
sition 6.4.6.

Suppose now that x ∈ EU,h is really nice with righteous neighbourhood V. Take a wide-open disc
U ′ ⊂ V containing x so that w−1(w(U ′)) is a finite disjoint union of spaces isomorphic to w(U ′).
Let f̃ ∈ Tw(U ′),h be an idempotent satisfying

f̃ · Tw(U ′),h
∼= O(U ′)

and f̃ ·H•(ȲG(K),Aw(U ′))[1/p]
≤h = Hq(ȲG(K),Aw(U ′))[1/p]

≤h|U ′ and let f ∈ T−
S,p⊗̂O(U ′) be a

lift of f̃ .

Definition 6.4.9. Define an O(U ′)-linear Galois representation

WU ′ := Hq(ȲG(K),Aw(U ′))[1/p]
≤h⊗̂Tw(U′),hO(U

′) = f ·Hq(ȲG(K),Aw(U ′))[1/p]
≤h.

This Galois representation is a direct summand of Hq(ȲG(K),Aw(U ′))[1/p]
≤h with projector f .

Lemma 6.4.10. For x ∈ EU,h really nice with residue field L(x) and U ′ as above, we have

WU ′ ⊗O(w(U ′)) L(x) ∼= f ·Hq(ȲG(K), Vw(x))x =:Wx.

Proof. The left hand side is isomorphic to the stalk of Hq(ȲG(K),AU )[1/p]
≤h at x and this is

equal to the right hand side by standard control results.
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6.4.2 Abel–Jacobi maps

Let Σ be a set of primes of the reflex field E such that we have an integral model YG,Σ of YG
over OE [Σ−1] and let K = KpKp ⊂ G(Af ) be a neat open compact subgroup with Kp ⊂ JG and
admitting an Iwahori decomposition. In this section we construct a weight κ Abel–Jacobi map

AJ≤h
κ : (f · e≤h)Hq+1

ét (YG(K)Σ,A
Iw
κ,m)[1/p]→ H1(OE [Σ−1],Wκ)

for weights κ : SG → B×, where Wκ is a Galois representation defined below.

By the Hochschild–Serre spectral sequence there is an Abel–Jacobi map

AJ : Hq+1
ét (YG(K)Σ,A

Iw
κ,m)[1/p]0 → H1(OE [Σ−1], Hq

ét(ȲG(K),A Iw
κ,m)[1/p])

where Hq+1
ét (YG(K)Σ,A Iw

κ,m)[1/p]0 is the kernel of the base-change map

Hq+1
ét (YG(K)Σ,A

Iw
κ,m)→ Hq+1

ét (ȲG(K),A Iw
κ,m).

Let h ∈ Qn≥0.

Lemma 6.4.11. Let e≤h ∈ B{{U−
p }} be the slope ≤ h projector on C •(ȲG(K), AIw

κ,m)[1/p], then

e≤hH•
ét(ȲG(K),A Iw

κ,m)[1/p] = H•
ét(ȲG(K),A Iw

κ,m)[1/p]≤h.

Proof. Since the differentials d are continuous and Up-equivariant and since e≤h converges on each
C i(ȲG(K), AIw

κ,m) then d(e≤hx) = e≤hd(x) and so e≤h preserves cocycles and coboundaries and by
Lemma 6.3.7

e≤hZ(ȲG(K), AIw
κ,m)[1/p] = Z(ȲG(K), AIw

κ,m)[1/p]≤h

and
e≤hB(ȲG(K), AIw

κ,m)[1/p] = B(ȲG(K), AIw
κ,m)[1/p]≤h

and the result follows by comparing Betti and étale cohomologies.

We note that for B = O,ΛG(U), the series e≤h is a p-adic limit of polynomials. This is clear for
B = O and also holds when B = ΛG(U). Indeed, by construction e≤h converges on an affinoid
V × Anrig containing U × Anrig and thus we can write e≤h as a p-adic limit of O(V)-coefficient

polynomials in the operators U1, . . . , Un. We can assume without loss of generality that e≤h is
optimally integrally normalised in the sense that e≤h ∈ O(V)◦{{U1, . . . , Un}} and e≤h ̸≡ 0 mod p.
Since pr vanishes on Hi

ét(ȲG(K),A Iw
κ,m/Fil

r) we have a well-defined action of e≤h which mod pr is

represented by a polynomial e≤h
r ∈ B[U1, . . . , Un] and this sequence satisfies e≤h = limr e

≤h
r . We

can arrange it such that
e≤h
r+1 ≡ e≤h

r mod pr.

Since Up acts on H•
ét(YG(K)Σ,A Iw

κ,m/Fil
r) for all r the collection of elements {e≤h

r }r≥0 map to a

compatible system of endomorphisms of the inverse system H•
ét(YG(K)Σ,A Iw

κ,m/Fil
r) and thus we

get an action of e≤h on lim←−H
•
ét(YG(K)Σ,A Iw

κ,m/Fil
r) = H•

ét(YG(K)Σ,A Iw
κ,m). Moreover, since the

base-change map

BCn : Hq+1
ét (YG(K)Σ,A

Iw
κ,m/Fil

r)→ Hq+1
ét (ȲG(K),A Iw

κ,m/Fil
r)

is Up-equivariant for 0 ≤ r ≤ ∞ and p-adically continuous it commutes with e≤h and thus induces
a map

e≤hHq+1
ét (YG(K)Σ,A

Iw
κ,m)→ Hq+1

ét (ȲG(K),A Iw
κ,m)[1/p]≤h.

Remark 6.4.12. There is no reason for us to believe that the image of e≤h in End(Hq+1
ét (YG(K)Σ,A Iw

κ,m))
is an idempotent.
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Let h be non-critical, V ⊂ EU,h a righteous affinoid containing a very nice point x, and let U ′, f be
as in Section 6.4.1. We then have

Hq+1
ét (ȲG(K),A Iw

U,m)[1/p]≤h ⊗TU,h O(U ′) = f ·Hq+1
ét (ȲG(K),A Iw

U,m)[1/p]≤h = 0

and
Hq+1
ét (ȲG(K),A Iw

λ,m)[1/p]≤h
x = 0

We thus have for κ ∈ {kGU , λ}

(f · e≤h)Hq+1
ét (YG(K)Σ,A

Iw
κ,m)[1/p] ⊂ Hq+1

ét (YG(K)Σ,A
Iw
κ,m)[1/p]0.

Definition 6.4.13. We define the weight κ slope ≤ h Abel–Jacobi map

AJ≤h
κ : (f · e≤h)Hq+1

ét (YG(K)Σ,A
Iw
κ,m)[1/p]→ H1(OE [Σ−1],Wκ)

to be the restriction of AJ to (f · e≤h)Hq+1
ét (YG(K)Σ,A Iw

κ,m)[1/p].

6.5 Criterion for Q0
H-admissibility and superfluous variables

6.5.1 Criterion for Q0
H-admissibility

Let µ ∈ X•
+(SH), λ ∈ X•

+(SG) and suppose there is an injective H-map

V Hµ → V Gλ .

Is there a character χ ∈ X•(G) such that µ+ χ ∈ X•
+(SH)Q

0
H?

Lemma 6.5.1. Suppose µ is trivial on Q0
H ∩Gder and the maximal torus quotient CG of G is split.

Then there is χµ ∈ X•(G) such that (Vλ ⊗ χ−1
µ )Q

0
H ̸= {0}.

Proof. We have an injection
Q0
H/(Q

0
H ∩Gder)→ CG

and thus Q0
H/(Q

0
H ∩ Gder) is a split torus. The restriction of µ to Q0

H lifts (non-uniquely) to a
character χµ of G whence the result follows.

The assumptions in Lemma 6.5.1 won’t hold in every case, so we describe a process to widen
the number of Q0

H admissible weights by substituting the pair (G,H) for a slightly modified pair
(G̃, H̃).

Assume S0
H satisfies Milne’s assumption (SV5). This is equivalent to the real points of the subgroup

(S0
H)a = ∩χ∈X•(SH)Ker(χ)

being compact 10. For an algebraic group M define M̃ :=M × S0
H and let

Q0
H̃

:= {(h, h̄) ∈ Q0
H × S0

H}

where h̄ denotes the image of h in S0
H . Since this is the kernel of the map Q̃H → S0

H given by

(q, s) 7→ q̄s−1 it is a mirabolic subgroup of Q̃H . We have that F̃ := ˜̄QG\G̃ ∼= F and its easy to see
that Q0

H̃
has an open orbit on F̃ . A character µ ∈ X•(SH) induces a character µ̃ ∈ X•(Q0

H̃
) given

by
(h, h̄) 7→ µ(h̄)

which corresponds to µ under the isomorphism Q0
H
∼= Q0

H̃
sending h to (h, h̄). What’s more, µ̃

admits an extension to a character χµ ∈ X•(G̃) by simply taking for (g, s) ∈ G̃

χµ(g, s) = µ(s).

Thus
(V Gλ ⊗ χ−1

µ )Q
0
H̃ ̸= {0}

i.e. the weight λ− χµ is Q0
H̃
-admissible.

10We emphasise again that we are only imposing this assumption for convenience.
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6.5.2 Superfluous variables

For this section we suppose that there is a central torus TZ ⊂ ZG such that

SG/S
0
G = TZ/(S

0
G ∩ TZ)× SZ = SZ × SZ (28)

for some complementary torus SZ .

Remark 6.5.2. This will notably occur when the group itself is of the form G × TZ as in, for
example, the construction given in Section 6.5.1.

In this case we get a product decomposition

WG =WZ ×WZ

where the components correspond to those in the decomposition (28).

Lemma 6.5.3. Let KG = KpJG ⊂ G(Af ) be a neat open compact subgroup. Let UZ ⊂ WZ ,UZ ⊂
WZ be wide-open discs and set U = UZ × UZ . For any h ∈ Qn≥0 there is an isomorphism of

ΛU = ΛUZ ⊗̂OΛUZ -modules
H•(ȲG(KG), A

Iw
U,m)≤h⊗̂OΛUZ

Proof. There are finitely many g ∈ G(Af ) and arithmetic subgroups Γg ⊂ G(Q) such that

C •(ȲG(KG), A
Iw
U,m) = ⊕C •(Γg, A

Iw
U,m)

as ΛU -modules. Moreover, since KG is assumed neat, the groups Γg have trivial centre so in
particular for any g we have a Γg-module isomorphism

AIw
U,m
∼= AIw

UZ ,m⊗̂ΛUZ

and
C •(Γg, A

Iw
U,m) = C •(Γg, A

Iw
UZ ,m)⊗̂ΛUZ .

Recall from Section 6.3.3 that ai ∈ A− are elements defining the Hecke operators Ui used in our
slope decompositions. Taking the image of ai in SG/S

0
G we have a decomposition ai = ai,Z × aZi

corresponding to (28) and it’s easy to see that ai,Z acts trivially on AIw
U,m from which we can infer

that for h ∈ Qn≥0:

C •(Γg, A
Iw
U,m)≤h ∼= C •(Γg, A

Iw
UZ ,m)≤h⊗̂ΛUZ

and thus
C •(ȲG(KG), A

Iw
U,m) ∼= C •(ȲG(KG), A

Iw
UZ ,m)≤h⊗̂ΛUZ .

Since ΛUZ is a flat O-module we deduce the result.

The lemma has a global geometric interpretation:

Lemma 6.5.4. Let U = UZ ×WZ , then

E≤h
U
∼= E≤h

UZ ×WZ .

Proof. This follows from the fact that

EndΛUZ ⊗̂OWZ
(C •(ȲG(KG), A

Iw
UZ ,m)≤h⊗̂OWZ

) = EndΛUZ
(C •(ȲG(KG), A

Iw
UZ ,m)≤h)⊗̂OWZ

.

Throughout this paper there have been a number of times where we have had to shrink our
subspace U ⊂ WG. The upshot of the above discussion is that if U decomposes as a product over
the decomposition (28) then we only need to shrink the WZ-component. If Dℓa(SZ ,M) denotes
the space of locally analytic distributions on SZ with values in a Banach-module M then there is
a canonical isomorphism

Dℓa(SZ ,M) ∼= OWZ
⊗̂M.
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For U = UZ ×WZ the Galois representation of Definition 6.4.9 looks like

WU ∼= Dℓa(SH ,WUZ )

echoing Theorem A [LZ16].

Example 6.5.5. In Section 6.5.1 we showed that we could modify a spherical pair (G,H) to get
a pair (G̃, H̃) such that any weight λ ∈ X•

+(SG) is Q
0
H -admissible up to a twist by a character χλ

of G̃. Recall that G̃ = G× S0
H so there is an obvious decomposition SG̃/S

0
G̃
= SG/S

0
G × S0

H of the
form (28) and thus a decomposition

WG̃ =WG ×WZ .

Moreover, as showed in Section 6.5.1, the character χλ can be chosen to factor through the S0
H

component, i.e. χ ∈ WZ . Therefore, using the results of this section, taking Ũ = U × WZ with
U ⊂ WG we can construct a class f sphŨ ∈ AIw

Ũ,m such that for any λ ∈ U , f sphŨ interpolates the

Q0
H -invariant vectors f sphλ−χλ ∈ A

Iw
λ,m(−χλ).

6.6 Example: (GSp4,GL2 ×GL1 GL2)

We show how the above theory can be used to construct a class interpolating non-ordinary variants
of the Lemma–Flach Euler system constructed in [LSZ21]. Let G = GSp4 and H = GL2×GL1

GL2.
These groups admit a natural embedding

H ↪→ G.

as used in [LSZ21]. As in [LRZ21, Section 7.1] to get the full weight variation we need to modify
G and H. Set

• G̃ = G×GL1 ×GL1, H̃ = (GL2 ×GL1
GL2)×GL1 ×GL1,

• QG̃ = BG̃ = BG×GL1×GL1, QH̃ = BH̃×GL1×GL1, where BG = TG×NG, BH = TH×NH
are the respective upper triangular Borels.

• For a Zp-algebra R define Q0
H̃
(R) = {( x ∗

1 )×
(
xy ∗

y−1

)
× (y)× (x) : x, y ∈ R× }.

• Set LG̃ = TG̃ = TG ×GL1 ×GL1 and LH = TH̃ = TH ×GL1 ×GL1.

There is a natural embedding
H̃ ↪→ G̃

extending the embedding of H into G and Q0
H̃

has an open orbit on the flag variety F with trivial
stabiliser.

Let 0 ≤ q ≤ a, 0 ≤ r ≤ b. Consider the following dominant character of TG̃

λ[a,b,q,r] :

( x1
x2

x−1
2 x3

x−1
1 x3

)
× (x4)× (x5)→ xa+b1 xa2x

−2a−b
3 xr−q+a4 xq5

and write V [a,b,q,r] for the irreducible G̃-representation of highest weight λ[a,b,q,r] with maximal

admissible lattice V
[a,b,q,r]
Zp . Note that V [a,b,0,−a] = Da,b in the notation of [LSZ21]. An easy

computation using the branching law for H ↪→ G [LSZ21, Proposition 4.3.1] shows that

(V [a,b,q,r])Q
0
H̃ ̸= 0

and thus that there is an H̃-map (
P [c,d]
Zp

)∨
→ V

[a,b,q,r]
Zp

where P [c,d]
Zp := PH̃

λ[c,d],Zp for the weight

λ[c,d] :
(
y1

y−1
1 y3

)
×
(
y3

y−1
2 y3

)
× (y4)× (y5) 7→ yc1y

d
2y

−(c+d)
3 y−d4 ,
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and c = a+ b− q − r, d = a− q + r.

Fix prime-to-p open compact subgroups Kp
G ⊂ G(A(p)

f ) and Kp
G = Kp

G ∩H such that Kp
GJG and

Kp
HJH are neat. Define Kp

G = Kp
G ×GL1(A(p)

f )2 and Kp

H̃
= Kp

G̃
∩ H̃(A(p)

f ). We see from [LRZ21,

Section 7.1] (but using parahoric test data at p) that there is a class

c1,c2z
[a,b,q,r]
ét ∈ H4(YG(JG)Σ, V

[a,b,q,r]
Zp (3))

obtained by pushing forward a cup-product of Eisenstein classes

c1,c2Eis
c,d
ϕ = c1Eis

c
ét,ϕ1

⊔ c2Eis
d
ét,ϕ2

∈ H2(YH(JH)Σ, (P [c,d]
Zp )∨(2))

where the auxiliary values c1, c2 are chosen to ensure integrality of the classes as in Section 6.2.2
and ϕ = ϕ1 ⊗ ϕ2.

By the results of Section 6.4, if Π is a cohomological cuspidal automorphic representation of G of
weight (a, b) and non-critical slope ≤ h giving a really nice point on the G eigenvariety, then there
is an Abel–Jacobi map

AJΠ : (f · e≤h)H4(YG̃(JG)Σ, V
[a,b,q,r]
Zp (3))0 → H1(Q,WΠ)

whereWΠ is the 4-dimensional Galois representation constructed by Taylor and Weissauer [Tay91],
[Wei05].

Theorem 6.6.1. Let U ⊂ Wm be a wide-open disc. There is a class

c1,c2zU,m ∈ Dℓa((Z×
p )

2, H4(YG(JG)Σ,A
Iw
U,m))

such that for any cohomological cuspidal automorphic representation Π of weight (a, b) and non-
critical slope ≤ h at p giving a really nice point on the GSp4 eigenvariety and for any 0 ≤ q ≤
a, 0 ≤ r ≤ b, up to shrinking U , we have

ρ[a,b,q,r]
(
AJ≤h

U (c1,c2zU,m)
)
=

(
1− pq

α

)(
1− p1+a+rχ2(p)

β

)
AJΠ(c1,c2z

[a,b,q,r]
ét )

where α is the eigenvalues for the Siegel operator US, αβ/p
1+a is the eigenvalue for the Klingen

operator UK and χ2 is a prime-to-p Dirichlet character depending on the choice of Schwartz function
away from p.

Proof. The weight space WG̃ decomposes as

WG̃ =WG ×WGL1
×WGL1

.

Let Ũ = U ×WGL1
×WGL1

Define

c1,c2 ẼIϕ(p) ∈ H2(YH̃(JH̃),Λ(NH̃(Zp)\JH̃)(2)) ∼= H2(YH(JH),Λ(NH(Zp)\JH)(2))⊗Λ(Z×
p )⊗Λ(Z×

p )

for prime-to-p Schwartz functions ϕ
(p)
i , ϕ(p) = ϕ

(p)
1 ⊗ϕ

(p)
2 as the image of c1EIϕ(p)

1
⊔ c2EIϕ(p)

2
. These

classes interpolate the classes c1,c2Eis
c,d
ét,ϕ for varying c, d. Similar to Section 6.2.2, define

c1,c2 ẼI
U
ϕ(p) ∈ H2(YH̃(KH)Σ,D

H̃
Ũ,m(2))

by pushing forward c1,c2 ẼIϕ(p) along the natural map

Λ(NH̃(Zp)\JH̃)→ DH̃
Ũ,m.

We have an isomorphism H4(YG̃(JG̃),A
Iw
Ũ,m) = H4(YG(JG),A Iw

U,m)⊗ Λ(Z×
p )⊗ Λ(Z×

p ).
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Applying the machinery of this paper to c1,c2 ẼIU we obtain

c1,c2z
JG
U ∈ H4(YG(JG)Σ,A

Iw
U,m)⊗ Λ(Z×

p )⊗ Λ(Z×
p ).

Shrinking U if necessary, the slope ≤ h Abel–Jacobi map AJ≤h
U is well-defined (after inverting p),

and so for admissible weights λ[a,b,q,r] we have an equality of classes

ρ[a,b,q,r](AJ≤h
U (c1,c2z

JG
U )) =

(
1− pq

α

)(
1− p1+a+rχ2(p)

β

)
AJ≤h

Π (c1,c2z
[a,b,q,r]
ét ) ∈ H1(Q,WΠ),

where the Euler factor is computed by a zeta integral computation (due to Loeffler) comparing
classes at V1 and Iwahori level (see Remark ??).
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Astérisque 295 (2004), 117–290.

[KLZ17] Guido Kings, David Loeffler, and Sarah Livia Zerbes, Rankin–Eisenstein classes and
explicit reciprocity laws, Cambridge Journal of Mathematics 5 (2017), no. 1, 1–122.

[Kob03] Shin-ichi Kobayashi, Iwasawa theory for elliptic curves at supersingular primes, Inven-
tiones mathematicae 152 (2003), no. 1, 1–36.
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[Oht99] Masami Ohta, Ordinary p-adic étale cohomology groups attached to towers of elliptic
modular curves, Compositio Mathematica 115 (1999), no. 3, 241–301.

[Pil20] Vincent Pilloni, Higher coherent cohomology and p-adic modular forms of singular
weights, Duke Mathematical Journal 169 (2020), no. 9, 1647–1807.

[Pol03] Robert Pollack, On the p-adic L-function of a modular form at a supersingular prime,
Duke Mathematical Journal 118 (2003), no. 3, 523–558.

[Pot13] Jonathan Pottharst, Analytic families of finite-slope Selmer groups, Algebra & Number
Theory 7 (2013), no. 7, 1571–1612.

[Roc22] Rob Rockwood, Plus/minus p-adic L-functions for GL2n, Annales mathématiques du
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