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 Abstract 

 Rising  antibiotic  resistance  is  an  imminent  threat  to  modern  healthcare.  Most  new 

 antibiotics  have  a  narrower  spectrum  of  activity  and  work  only  in  Gram-positive  bacteria. 

 The  World  Health  Organisation  published  a  list  of  high  priority  bacteria  with  startling 

 emerging  resistance,  including  Gram-negative  bacteria  such  as  Pseudomonas  ,  Klebsiell  a, 

 and  Escherichia  .  Gram-negative  bacteria  are  inherently  more  resistant  to  antimicrobials, 

 due  to  their  outer  membrane,  which  reduces  the  permeability  of  antimicrobials.  This 

 innate  resistance  presents  challenges  in  developing  novel  antibiotics.  A  high-throughput 

 universal  Gram-negative  permeability  assay  would  streamline  the  drug  development 

 process, enabling new broad-spectrum antibiotics to reinvigorate the drug pipeline. 

 This  thesis  will  explore  potential  avenues  for  monitoring  and  predicting  permeability.  The 

 following  work  is  an  interdisciplinary  investigation  into  Gram-negative  permeability  and 

 toolkit  development.  This  project  has  utilised  tools  from  biochemistry  such  as  enzyme 

 assays  and  mass  spectrometry  to  synthetic  biology  and  computer  science.  This  work 

 approaches  permeability  in  four  ways.  Firstly  a  potential  fluorescent  derivative  of 

 ampicillin  was  synthesised  and  analysed.  Secondly,  various  proteomic  techniques  were 

 utilised  to  monitor  the  covalent  binding  of  β-lactams  to  penicillin-binding  proteins,  as  a 

 proxy  of  β-lactam  permeability.  Thirdly,  bottom-up  synthetic  cells  were  created  to  model 

 permeability  in  bacteria.  Finally,  machine  learning  algorithms  consisting  of  supervised  and 

 unsupervised  techniques  were  used  to  predict  permeability.  In  this  work  alternative 

 methods  to  quantifying  β-lactam  permeability  were  trialled  in  chapters  3  and  4.  Whereas 

 in  chapters  5  and  6,  the  foundations  to  a  new  permeability  assay  and  permeability 

 predictions  were  laid.  Ultimately,  the  creation  of  tools  to  predict  and  quantify  permeability 

 will  come  from  many  fields.  Without  a  better  understanding  of  permeability,  antimicrobial 

 drug  development  will  stagnate.  Therefore,  to  deter  the  impending  antimicrobial 

 resistance  crisis,  drug  development  needs  to  be  faster,  more  intelligent,  and  better  thought 

 out;  this  could  be  achieved  with  a  permeability  assay  used  in  conjunction  with  activity 

 screens. 
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 SDS-PAGE  Sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

 SOC  Super Optimal broth with Catabolite repression 

 TCEP  Tris(2-carboxyethyl)phosphine 

 TEMED  Tetramethylethanediamine 

 TFA  Trifluoroacetic acid 

 TOF  Time-of-flight 

 UTP  Uridine-5ʹ-triphosphate 

 v/w  Volume to weight ratio 

 w/w  Weight to weight ratio 

 WHO  World Health Organisation 
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 Chapter 1. Introduction 

 1.1 Antibiotics 

 Bacteria  are  the  causative  agents  of  many  communicable  diseases  such  as  pneumonia  and 

 endocarditis,  these  diseases  when  left  untreated  are  often  deadly.  Antibiotics  are 

 antimicrobial  compounds  capable  of  killing  or  inhibiting  the  growth  of  bacteria.  Prior  to 

 the  discovery  and  commercialisation  of  antibiotics,  infectious  diseases  caused  early 

 mortality.  The  discovery  of  antibiotics,  coupled  with  vaccination  programs,  has 

 dramatically  increased  average  life  expectancies  from  56  years  in  the  1920s  (US)  to  80 

 years  (US)  1  .  Antibiotics  have  enabled  us  to  push  the  boundaries  of  modern  medicine, 

 allowing safe labour, transplant surgeries, and chemotherapy  1,2  . 

 Flemming  serendipitously  discovered  the  first  recognised  and  clinically  used  antibiotic 

 penicillin  in  1928  3  ;  Florey  and  Chain  purified  penicillin  in  1940  4  ,  making  it  commercially 

 available.  Sulfonamides  and  sulfones  were  also  developed  in  the  1930s  and  40s  5  .  Unlike 

 penicillin,  which  was  discovered  as  a  natural  product  of  mould  3,4  ,  sulfonamides  and 

 sulfones  were  made  synthetically.  Since  then,  many  other  classes  of  antibiotics  have  been 

 discovered  namely;  aminoglycosides  (1943)  6  ,  chloramphenicol  (1947)  7  ,  polymyxins 

 (1949)  8  tetracyclines  (1948)  9  ,  macrolides  (1952)  10  ,  glycopeptides  (1953)  11  ,  rifamycins 

 (1957)  12  ,  quinolones  (1962)  13  ,  lipopeptides  (1980)  14  and  oxazolidinones  (1986)  15  .  Shortly 

 after  each  class  was  brought  to  market,  bacteria  evolved  resistance  to  survive  in  the 

 presence  of  antibiotics,  limiting  their  efficacy.  As  resistance  to  antibiotics  is  constantly 

 spreading  and  increasing,  the  risk  of  a  post-antibiotic  era  grows.  The  challenge  of  rising 

 levels  of  antimicrobial  resistance  has  been  exacerbated  by  the  limited  success  of  antibiotic 

 development in the last twenty years. 

 The  majority  of  antibiotics  approved  in  the  last  five  years  (2017-2021)  belong  to 

 established  antibiotic  classes  like  fluoroquinolones  and  β-lactams,  with  only  one 

 compound  belonging  to  different  chemical  classes  (Lefamulin)  16  .  Prior  to  this,  teixobactin 

 was  developed,  which  polymerises  lipid  II,  preventing  the  production  and  maintenance  of 

 peptidoglycan.  However,  this  drug  is  only  active  in  Gram-positive  organisms.  The 

 antimicrobial  drug  development  pipeline  needs  novel  classes  of  antibiotics,  particularly 
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 those  that  target  the  World  Health  Organisation  (WHO)  priority  pathogens  (  Figure  1.1)  . 

 These  are  pathogens  that  the  WHO  has  recognised  and  defined  as  causing  the  most 

 significant  threat  globally  and  are  split  into  three  levels:  critical,  high,  and  medium  (  Figure 

 1.1  )  16  . 

 Figure  1.1  The  WHO  priority  pathogens.  WHO  priority  pathogens  are  split  into  three 
 levels; critical, high and medium. In each category is the organism and the AMR of concern. 

 1.1.1 Antibiotic mechanism of action 

 Antibiotics  fight  bacterial  infections  by  inhibiting  bacterial-specific  pathways,  leading  to 

 either  stasis  (bacteriostatic)  or  death  (bactericidal).  Different  antibiotic  classes  target 

 specific  areas  or  pathways  in  bacterial  cells,  such  as;  the  cell  wall,  protein  synthesis,  nucleic 

 acid synthesis, or inhibiting metabolic pathways (  Figure  1.2  )  17  . 
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 Figure  1.2  The  targets  of  antimicrobial  agents.  Antibiotics  target  a  variety  of  essential 
 pathways  in  bacteria.  This  figure  provides  an  overview  of  the  general  targets  of  different 
 classes of antimicrobials. 

 The  cell  wall  is  a  significant  target  for  many  antibiotics,  including  β-lactams  and 

 glycopeptides.  Peptidoglycan  is  a  complex  sugar  peptide  polymer  that  forms  a  mesh 

 around  the  cell;  it  is  a  crucial  cell  wall  component  18  .  The  production  of  peptidoglycan  is 

 complex  and  requires  many  different  enzymes,  spanning  multiple  cellular  compartments  18  . 

 β-lactams  and  glycopeptides  specifically  target  and  inhibit  the  activity  of  the  final  enzymes 

 involved  in  peptidoglycan  synthesis  18  .  These  enzymes  are  named  penicillin-binding 

 proteins  and  polymerise  lipid  II  and  the  cross-linking  of  the  glycan  strands  18  .  Peptidoglycan 

 is  an  ideal  antibiotic  target  because  it  is  essential  in  conferring  structural  shape  and 

 rigidity  in  bacteria,  and  without  it,  bacteria  are  susceptible  to  osmotic  pressure, 

 subsequent cell lysis and death  17,19  . 

 Bacteria  are  divided  into  two  categories;  Gram-positive  and  Gram-negative;  based  on  the 

 response  of  the  bacteria  to  Gram  staining  20,21  (  Figure  1.3  ).  Both  categories  have  different 

 cell wall compositions, but both have peptidoglycan (  Figure 1.3  )  22  . 
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 Figure  1.3  Differences  in  Gram-negative  (left)  and  Gram-positive  bacteria  (right)  cell 
 walls.  All  bacteria  have  a  phospholipid  bilayer  (green,  bottom  of  both  diagrams)  coated  in 
 peptidoglycan  (blue  and  purple  cross-linked  structure).  The  thickness  of  this 
 peptidoglycan,  however,  varies  between  the  two  groups.  Gram-negative  bacteria  (left)  have 
 a  much  thinner  peptidoglycan  layer  than  Gram-positive  bacteria,  which  are  coated  in  a 
 thick  peptidoglycan  layer  (right).  Gram-negative  cells  also  have  an  outer  membrane  on  top 
 of the peptidoglycan layer, which is absent in Gram-positive cells 

 Multiple  antibiotics  target  the  protein  synthesis  pathway.  Examples  of  drugs  targeting  this 

 pathway  include  aminoglycosides  and  tetracyclines,  which  target  the  30S  ribosome  23,24  . 

 Other  antibiotics  such  as  macrolides  and  chloramphenicol  target  the  50S  subunit  24  . 

 Multiple  antibiotics  target  the  DNA  synthesis  pathways;  some  antibiotics  directly  interfere 

 with  essential  DNA  transcription  by  inhibiting  topoisomerases,  such  as  quinolone 

 antibiotics  25  .  Drugs  like  trimethoprim  interfere  with  folic  acid  metabolism,  which  is 

 essential for normal nucleic acid synthesis  26  . 

 1.1.2 Antimicrobial resistance 

 Antibiotic  treatment  subjects  bacteria  to  selective  pressure;  in  response,  bacteria  develop 

 resistance  mechanisms  to  survive.  Bacteria  have  become  resistant  to  most  antibiotics,  and 

 super-resistant  strains  are  emerging  27  .  Antimicrobial  resistance  (AMR)  claims  the  lives  of 

 up  to  1.27  million  people  globally,  with  resistant  bacterial  infections  being  untreatable  28  . 

 Predictions  show  that  by  2050  up  to  10  million  people  a  year  could  die  from  rising  levels  of 

 AMR, and the global financial impact of AMR could amount to 100 trillion dollars  27  . 

 1.1.3 Mechanisms of AMR 

 There  are  two  genetic  mechanisms  by  which  bacteria  can  acquire  resistance,  first  by 

 mutational  resistance  and  secondly  by  horizontal  gene  transfer  1,29  .  Antibiotics  act  as  a 
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 selective  pressure  on  bacteria;  as  bacteria  multiply  and  genetic  diversity  increases, 

 subpopulations  of  bacteria  that  can  survive  the  antibiotic  due  to  spontaneous  mutations 

 emerge  29  .  As  spontaneous  mutations  occur,  those  mutations  that  provide  a  selective 

 advantage  against  the  antimicrobial  are  carried  forward  to  the  next  generation,  leading  to 

 populations  with  resistance  29  .  Rather  than  by  spontaneous  mutation,  bacteria  can  also  gain 

 resistance  by  horizontal  gene  transfer.  Horizontal  gene  transfer  involves  the  uptake  of 

 genetic  information  from  another  cell;  it  usually  happens  by  conjugation  29,30  .  There  are  also 

 phenotypic  mechanisms  of  resistance,  such  as;  biofilm  formation,  and  persistent 

 populations  31  .  Biofilms  are  formed  by  bacteria  adhering  to  a  surface  and  producing  an 

 extracellular  matrix.  Biofilms  can  protect  bacteria  from  antibiotics  and  often  complicate 

 hospital  acquired  infections  by  forming  on  catheters  and  breathing  tubes.  Persisting 

 bacteria  are  subpopulations  of  bacteria  that  are  in  a  transitive  dormant  state;  these 

 persistent cells are thought to be responsible for recurrent infections  32  . 

 Genetic  resistance  to  antibiotics  arises  in  the  following  ways:  alterations  or  destruction  of 

 the  antibiotic,  reduced  influx  or  increased  efflux  of  the  drug,  or  alterations  of  the  target  of 

 the  antibiotic  (  Figure  1.4  ).  In  the  case  of  antibiotic  alteration  or  destruction,  many 

 bacteria  can  produce  enzymes  that  modify  antibiotics,  such  as  aminoglycoside  modifying 

 enzymes  that  can  acetylate,  adenylate,  or  phosphorylate  aminoglycosides  rendering  them 

 inactive  30  .  β-lactamases  are  hydrolysing  enzymes  that  cleave  the  β-lactam  from  the 

 penicillin-binding  proteins  (PBP);  the  expression  of  these  enzymes  can  confer  resistance  to 

 β-lactams  30  .  Modifications  of  the  target  of  antibiotics  can  occur  for  many  different 

 antibiotics.  An  example  of  this  type  of  resistance  has  been  observed  in  β-lactams  30  . 

 Bacteria  have  a  range  of  PBPs  that  are  targeted  by  β-lactams;  bacteria  can  acquire  a 

 resistant  PBP  (PBP2a)  through  horizontal  gene  transfer.  PBP2a  can  function  in  the 

 presence of β-lactams, rendering the cell resistant to β-lactams. 

 Gram-negative  bacteria  are  more  intrinsically  resistant  to  treatment  due  to  their 

 impermeable  outer  membrane.  Gram-negative  bacteria,  as  well  as  their  Gram-positive 

 counterparts  also  express  efflux  pumps  that  actively  push  out  antimicrobials.  Low 

 compound  accumulation  is  a  result  of  both  an  impermeable  outer  membrane  and  active 

 efflux  33  .  The  combination  is  commonly  seen  in  clinical  strains  and  is  especially  hard  to 

 treat. 
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 Figure  1.4  How  resistance  emerges  in  bacteria.  Resistance  in  bacteria  can  occur  due  to 
 decreased  accumulation  by;  the  loss  or  modification  of  porins,  modification  or  loss  of  LPS, 
 or  overexpression  of  efflux  pumps.  The  target  of  antibiotics  can  be  lost  or  modified. 
 Alternatively, antibiotics can be altered or destroyed by enzymes in the cell. 

 1.2 Tackling AMR 

 The  rise  of  antimicrobial  resistance  has  two  key  drivers;  the  misuse  of  antibiotics  and  the 

 stagnation  of  antimicrobial  drug  development.  Antibiotics  have  been  misused  and 

 overused  in  healthcare,  agriculture  and  veterinary  practices,  driving  AMR  rates  1  .  To 

 address  this,  the  WHO  has  suggested  numerous  approaches  to  antibiotic  stewardship  at  a 

 personal  level,  in  healthcare  settings  and  agricultural  settings,  to  preserve  the  antibiotics 

 in our arsenal  27,34  . 

 During  the  last  20  or  so  years,  there  has  been  a  mass  exodus  by  big  pharmaceutical 

 companies  from  antibiotics  drug  discovery  35–38  .  Big  pharma  has  left  for  two  main  reasons; 

 developing  antimicrobials  is  not  profitable,  and  secondly,  in  a  practical  sense,  it  is 

 challenging  35,36  .  Developing  antimicrobials  is  not  profitable  because  infections  are  acute,  so 

 treatments  are  short,  and  resistance  emerges  quickly,  limiting  financial  returns  36,38  .  The 

 speed  at  which  bacteria  acquire  resistance  is  increased  further  by  physicians'  willingness 

 to  prescribe  novel  antibiotics  rather  than  saving  novel  antibiotics  as  a  last  resort  38  .  The 

 WHO  (2021)  reports  that  small  pharmaceutical  companies  have  developed  most 
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 antibiotics  in  the  preclinical  pipeline.  These  small  pharmaceutical  companies  do  not  have 

 the  funds  for  the  entire  clinical  trial  process  16,38  .  If  smaller  therapeutic  companies  bring  a 

 drug  through  the  clinical  trials  process,  they  are  at  risk  of  going  bust,  as  evidenced  by 

 Achaogen  39  ,  which  went  bust  after  attempting  to  bring  'Zemdri'  to  market  37  .  There  have 

 been  some  attempts  to  mitigate  this  with  'push'  and  'pull'  incentives  aimed  to  bring  big 

 pharma  back  into  antibiotic  development  and  to  support  smaller  biotech  companies 

 throughout  the  cripplingly  expensive  development  process.  However,  this  has  not  been 

 enough to increase the entry of new antibiotics to the market  40  . 

 Aside  from  the  financial  practicalities  impeding  antibiotic  development,  developing 

 antibiotics  is  inherently  difficult  due  to  the  intrinsic  properties  of  bacteria  41  .  There  are 

 barriers  to  developing  successful  antimicrobials,  such  as  accumulation,  resistance  rates 

 and  cytotoxicity  41,42  .  Accumulation  refers  to  achieving  inhibitory  concentrations  inside 

 bacteria;  the  main  barriers  are  efflux  and  permeability.  A  potential  antimicrobial  exhibiting 

 a  target-specific  effect  can  have  its  effect  significantly  reduced  in  vivo  due  to  attenuation  of 

 accumulation,  either  rendering  the  compound  ineffective  or  requiring  high  levels  of  a 

 compound  that  would  be  toxic  43,44  .  Therefore,  understanding  permeability  issues  is  key  to 

 reducing  the  cost  of  developing  these  drugs  and  enabling  the  reinvigoration  of  the 

 antimicrobial pipeline  44,45  . 

 Alternatives  to  traditional  antibiotic  therapies  are  also  being  developed  to  treat  infectious 

 diseases.  Vaccines  against  Streptococcus  pneumoniae  ,  a  leading  cause  of  pneumoniae,  were 

 successful  in  drastically  reducing  pneumoniae  infections  amongst  children  and  elderly 

 populations  46  .  However,  vaccines  have  a  narrow  spectrum  of  activity,  targeting  not  just  a 

 specific  bacterial  species,  but  also  specific  serotypes  46  .  The  causative  agents  of  infections 

 like  pneumoniae  vary  throughout  different  age  groups,  genders  and  locations  46  .  Therefore, 

 targeting  one  pathogen  will  not  give  lasting  protection  against  pneumoniae.  Additionally, 

 by  targeting  a  specific  serotype  will  enact  a  selective  pressure  on  bacteria,  causing 

 populations  of  different  serotypes  to  thrive.  Alternatively,  there  has  been  a  push  to  use 

 other  therapies  such  as;  bacteriophages,  probiotics,  antibodies,  and  CRISPR-Cas9 

 treatments  47–50  .  By  having  a  diverse  anti-infective  arsenal  the  rise  of  AMR  could  be 

 minimised. 
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 1.3 Outer Membrane permeability 

 Both  Gram-negative  and  Gram-positive  bacteria  have  worrying  rates  of  AMR.  However, 

 Gram-negative  bacteria  pose  a  more  significant  challenge  to  drug  development  because  of 

 the  outer  membrane  45,51  .  This  factor  is  reflected  in  the  critical  pathogens  selected  by  the 

 WHO (  Figure 1.1  ), which are all Gram-negative  16  . 

 Figure  1.5  A  diagram  of  the  cell  envelope  of  Gram-Negative  bacteria.  The  major 
 constituents  of  the  outer  membrane  are  LPS  and  phospholipids,  which  form  an 
 asymmetric  bilayer.  Within  this  outer  membrane  are  transport  proteins,  non-specific 
 (OmpF),  specific  (FhuA,  LamB),  channel  proteins,  and  efflux  pumps.  Beneath  this  is  a  thin 
 layer of peptidoglycan and a plasma membrane. 

 The  outer  membrane  of  Gram-negative  bacteria  is  an  asymmetric  lipid  bilayer  (  Figure 

 1.5  )  42  .  The  inner  leaflet  of  the  outer  membrane  is  composed  mainly  of  phospholipids  52  ;  the 

 composition  of  phospholipids  varies  between  species  and  varies  due  to  conditions  such  as 

 temperature  and  growth  phase  52  .  In  E.  coli  ,  the  inner  phospholipid  leaflet  is  generally 

 regarded  to  have  a  composition  of  75%  phosphatidylethanolamine  (PE),  20% 

 phosphatidylglycerol  (PG),  and  5%  cardiolipin  52  .  The  ratio  of  these  phospholipids  can  be 

 altered  by  the  bacteria,  as  can  the  degree  of  saturation  of  their  fatty  acyl  chains  52  .  In  low 

 temperatures,  the  fluidity  of  the  membrane  is  maintained  by  an  increase  in  unsaturated 

 fatty  acids  52  .  At  high  temperatures,  the  fluidity  is  maintained  by  an  increase  in  saturated 

 fatty acids  52  . 
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 The  outer  leaflet  of  the  outer  membrane  is  primarily  composed  of  lipopolysaccharide 

 (LPS)  (  Figure  1.6  ).  Lipid  A  makes  up  the  lipid  tail  of  LPS;  appended  to  which  are  two  sugar 

 ‘cores’  51  (  Figure  1.6  ).  The  disaccharide  sugar  core  proximal  to  lipid  A  is  composed  of  KDO 

 (3-deoxy-α-D-manno-octulosonic  acid)  sugars,  whilst  the  outer  core  is  composed  of 

 hexoses.  Attached  to  the  core  sugars  is  another  oligosaccharide  -  known  as  the  ‘O-antigen’; 

 this  is  the  outermost  component  of  the  LPS,  and  it  is  immunogenic  51  (  Figure  1.6  ).  The  LPS 

 in  the  outer  leaflet  is  anionic;  divalent  cations  stabilise  the  LPS,  forming  a  rigid  and  stable 

 layer  41  . 

 Figure  1.6  Key  components  of  the  outer  membrane,  LPS  (A)  and  porins  (B).  LPS  is  a 
 membrane  anchored  polysaccharide,  made  of  lipid  A,  the  inner  sugar  core  (KDO2),  the 
 outer  sugar  cores  (hexoses),  and  finally  the  O  antigen.  Porins  are  β-barrel  homotrimers 
 that have a constriction zone which is thought to confer some specificity. 

 The  outer  lipid  layer  occludes  the  entry  of  many  key  hydrophilic  and  hydrophobic 

 molecules  that  are  necessary  for  bacterial  survival  51  .  The  outer  membrane  has  many 

 membrane  channels  that  vary  in  their  substrate  selectivity  to  compensate  for  this.  In  E. 

 coli  ,  for  example,  there  are  selective  transport  channels  such  as  LamB  for  sugars  and  FhuA 

 for iron and non-selective transport channels such as OmpF and OmpC (  Figure 1.6  )  41,42  . 

 OmpF  and  OmpC  are  homotrimeric  β-barrel  porins  42,53  allowing  solutes  with  molecular 

 weights  under  600  Da  entry  42,54  (Figure  1.6)  .  Structural  orthologues  of  OmpF  and  OmpC 

 are  found  in  other  bacteria,  such  as  OmpK35  and  OmpK36  in  Klebsiella  sp.  42  .  Hydrophilic 

 antibiotics  enter  E.  coli  primarily  through  OmpF  and  OmpC  42,55  .  These  porins  are  primarily 

 composed  of  β-sheets;  they  have  small  extracellular  turns  and  intracellular  loops  56  .  One  of 
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 these  loops  (L3),  folds  into  the  channel  creating  a  narrower  region  known  as  ‘the 

 constriction zone’  56  (Figure 1.6)  . 

 Even  though  OmpF  and  C  are  generally  considered  non-selective,  the  constriction  zone 

 may  result  in  some  specificity  in  transport  due  to  the  electrostatic  interactions  between 

 the  acidic  amino  acids  in  L3  and  antibiotics  57–61  .  Modifications  to  this  region  can  make  it 

 harder  for  molecules  such  as  β-lactams  and  chloramphenicol  to  travel  through  58,60,61 

 (Figure  1.7)  .  Other  species  are  less  permeable  to  antibiotics  than  E.  coli  due  to  the  porins 

 they  express;  Pseudomonas  species,  for  example,  have  monomeric  porins  that  can  only 

 allow  solutes  with  a  mass  smaller  than  200  Da  entry  and  have  more  electrostatic 

 requirements  41  .  The  porins  in  Pseudomonas  contribute  to  the  relative  impermeability  of 

 the  bacteria,  which,  in  general,  is  thought  to  be  80%  less  permeable  than  E.  coli  41  .  It  is 

 believed  that  most  antibiotics  permeate  slowly  through  the  lipid  layer  of  Pseudomonas  , 

 because of the selectivity of their porins  62  . 

 When  exposed  to  antibiotics,  Gram-negative  bacteria  can  further  reduce  permeability  by 

 altering  the  composition  of  the  outer  membrane  55  .  When  exposed  to  colistin,  bacteria  can 

 alter  the  phosphate  head  of  the  lipid  A  in  LPS  to  reduce  its  negative  charge,  therefore 

 reducing  the  electrostatic  interactions  between  LPS  and  colistin  63,64  .  Bacteria  can  also 

 become  LPS  deficient  in  order  to  evade  colistin  treatment  63,64  .  Changes  to  the  lipid  layer 

 can  affect  antibiotics  that  translocate  through  the  lipid  layer:  aminoglycosides,  macrolides 

 and  rifamycins  (Figure  1.7)  55  .  For  small  hydrophilic  compounds  like  β-lactams, 

 modifications  or  loss  of  porins  can  induce  resistance  55  .  Mutations  to  the  constriction  zone 

 of  porins  can  cause  resistance;  by  altering  the  amino  acids  in  this  zone,  the  selective 

 electrostatic interactions that confer specificity are lost  58,65  . 
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 Figure  1.7  Antimicrobials  have  different  entry  pathways  through  the  Gram-negative 
 outer  membrane.  β-lactams  and  chloramphenicol  primarily  enter  the  cell  through  porins, 
 whereas  aminoglycosides,  macrolides  and  rifamycins  have  lipid-mediated  pathways. 
 Quinolones  and  tetracyclines  are  capable  of  translocating  the  outer  membrane  via  both 
 pathways. 

 1.4 Permeability assays 

 Antibiotics  are  typically  identified  in  two  ways;  phenotypic  screening  or  target-based 

 screening  43  .  In  phenotypic  based  screens  bacteria  are  exposed  to  large  libraries  of 

 compounds  and  are  identified  based  on  antimicrobial  susceptibility  measured  by  minimal 

 inhibitory  concentrations  (MIC)  and  minimal  bactericidal  concentrations  (MBC).  Whereas 

 in  target-based  screening,  a  target  of  interest  is  identified,  and  potential  inhibitors  are 

 screened  for  affinity  and  inhibitory  activity.  Both  screening  methods  are  expensive  and 

 yield  minimal  hits  43  .  To  streamline  both  methods,  a  permeability  assay  could  be  used  in 

 tandem  to  either  eliminate  impermeable  molecules  or  to  define  rules  surrounding 

 permeability for rational drug design. 

 Permeability  assays  either  analyse  individual  factors  influencing  permeability,  such  as 

 porins  or  the  lipid  layer  or  take  a  holistic  approach  by  measuring  accumulation  in  whole 

 cells.  Proteoliposomes,  liposomes,  and  artificial  bilayers  have  commonly  been  used  to 

 monitor  permeability  42,66–68  .  Using  these  simplified  models  of  the  outer  membrane  allows 

 for  precise  experimental  manipulation  to  examine  specific  parts  of  permeability. 
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 Whole-cell  permeability  assays  provide  a  more  realistic  account  for  permeability  in  vivo. 

 However, it is difficult to discern the individual contributions of each variable. 

 1.4.1 Use of enzymatic reactions to measure permeability 

 Permeability  has  been  monitored  using;  enzymatic  reactions,  radiometric  compounds,  via 

 compound  fluorescence,  mass  spectrometry,  and  antimicrobial  activity  41,42,69  .  Enzymatic 

 reactions  to  monitor  permeability  were  amongst  the  first  means  of  measuring 

 permeability  70  .  Of  this  group  of  assays,  perhaps  the  most  widely  used  is  the 

 micro-iodometric  assay  70  (Figure  1.8)  .  The  micro-iodometric  assay  is  centred  around  the 

 use  of  triiodide  starch  solution,  which  is  a  deep  blue  colour  71,72  (Figure  1.8)  .  When  cells 

 are  treated  with  penicillin,  the  penicillin  is  hydrolysed  to  penicilloic  acid  by  β-lactamases 
 70–72  (Figure  1.8).  The  build  up  of  penicilloic  acid  then  decolourises  the  starch-iodide 

 solution,  showing  that  penicillin  has  successfully  translocated  the  outer  membrane  71,72 

 (Figure  1.8)  .  As  β-lactamases  rapidly  turn  over  β-lactams,  the  rate-limiting  step  in  this 

 assay  is  the  translocation  of  penicillin  across  the  outer  membrane.  Thus  decolourisation  of 

 the  starch-iodide  solution  can  be  used  as  a  readout  of  β-lactam  permeability  70  .  This  assay 

 has  been  well  categorised  and  does  not  require  washing.  However,  this  technique  is  not 

 applicable  to  other  antibiotics,  and  is  therefore  unsuitable  for  broad  drug  development 

 screening. 
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 Figure  1.8  Micro-iodometric  assay  used  as  an  enzyme  readout  for  permeability.  The 
 triiodide-starch  complex  is  a  deep  blue  colour;  this  complex  is  decolourised  rapidly  in  the 
 presence  of  penicilloic  acid.  Before  the  breakdown  of  penicillin  into  penicilloic  acid,  the 
 triiodide-starch  complex  is  a  deep  blue  colour  (A).  However,  this  complex  is  decolourised 
 by the build-up of penicilloic acid by β-lactamase (B) 

 1.4.2 Use of radiolabeled compounds to measure permeability 

 Another  common  technique  for  measuring  accumulation  is  by  using  radioactively  labelled 

 antibiotics.  Here  cells  are  incubated  with  the  radioactivity  labelled  antibiotic,  the  excess 

 antibiotic  is  washed  away,  and  the  radioactivity  is  measured.  Radioactivity  has  been  used 

 to  monitor  14  C  rifampicin  73  ,  14  C  azithromycin  74  ,  14  C  erythromycin  74  ,  3  H  tetracycline  75,76  ,  3  H 

 chloramphenicol  75  ,  14  C  norfloxacin  75  ,  3  H  ciprofloxacin  77  .  It  is  a  sensitive  technique  with  a 

 low  background  signal,  and  the  data  is  directly  quantifiable  69  .  The  technique  has  been  used 

 with  a  range  of  bacteria,  including;  E.  coli,  S.  aureus,  P.  aeruginosa,  and  in  combination  with 

 other  permeability  techniques  for  greater  confidence  77  .  However,  this  technique  includes 

 wash  steps,  which  prevent  the  immediate  measurement  of  permeability.  Furthermore, 

 radiolabelling  thousands  of  compounds  for  permeability  screens  would  be  expensive, 

 impractical and carries too many risks  69  . 
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 1.4.3 Use of fluorescence to monitor permeability 

 Another  frequently  used  technique  is  to  monitor  compounds  using  their  innate  fluorescent 

 qualities,  or  by  fluorescently  modifying  antibiotics.  Fluoroquinolones  68,78,79  and 

 tetracyclines  80,81  have  innate  fluorescent  qualities  that  allow  permeability  to  be  monitored 

 based  on  this.  Innately  fluorescent  antibiotics  have  been  used  to  quantify  permeability  into 

 liposomes  25,68,79  through  lipid  layers  and  porins  and  through  whole-cell  analysis,  looking  at 

 single  cells  or  general  populations  of  bacteria  82,83  .  The  permeability  of  norfloxacin  was 

 quantified using liposomes and proteoliposomes trapped on a microfluidic chip  68,79  . 

 There  are  two  approaches  in  whole-cell  fluorescent  permeability  assays:  the  drug  is  added, 

 the  cell  is  washed  and  lysed,  and  the  fluorescence  is  quantified,  giving  permeability  values 

 for  a  population  of  bacteria  82,84  .  Alternatively,  the  permeability  of  fluorescent  compounds 

 in  individual  cells  can  be  quantified,  either  by  a  microfluidic  method  83,85  ,  or  by  using  deep 

 UV  micro  spectrofluorimetry  82,84  .  These  techniques  can  also  be  adapted  for  use  with 

 fluorescently  labelled  antibiotics,  increasing  their  applicability  86–88  .  The  microfluidic 

 techniques,  in  particular,  allow  for  rapid  quantification  of  permeability,  which  is  often 

 missed by other approaches due to wash steps  83  . 

 1.4.4 Use of mass spectrometry to measure permeability 

 Mass  spectrometry  (MS)  techniques  are  popular  in  quantifying  the  accumulation  of 

 antimicrobials  69,77,89–96  .  MS  is  a  sensitive  label-free  technique  that  applies  to  a  broad  range 

 of  targets  69  .  The  general  workflow  of  this  technique  involves  growing  a  dense  bacterial 

 culture,  treating  the  bacteria  with  antibiotics,  harvesting  the  cells,  and  then  washing  and 

 lysing  cells  before  analysing  and  quantifying  the  cell  lysate  69  .  Some  authors  have  proposed 

 measuring  the  supernatant  and  measuring  the  decrease  in  the  concentration  of  antibiotics 

 as  opposed  to  the  accumulated  antibiotic  90  .  MS  techniques  have  been  used  in  conjunction 

 with  radiometric  measurements  77  and  spectrofluorometric  measurements  to  ratify  and 

 reinforce  measurements  97  .  MS  techniques  have  been  used  for  large-scale  accumulation 

 assays  89,96  .  Richter  et  al.  89  generated  some  ‘rules’  surrounding  permeability,  leading  to  the 

 authors  converting  narrow-spectrum  drugs  to  broader  spectrum  drugs  89  .  More  recently,  a 

 high-throughput  solid-phase  extraction  MS  technique  was  established;  compatible  with 

 96-well  plates  96  .  Another  solid-phase  extraction  MS  technique  was  used  in  conjunction 
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 with  liquid-chromatography  MS  (LC-MS)  to  monitor  the  inhibition  of  their  target  enzyme 

 CoaD  via  the  concentration  of  metabolite  ions,  this  led  to  a  sensitive  assay  that  aided  in  the 

 optimisation  of  an  inhibitor  of  CoaD  98  .  Criticisms  of  general  MS  techniques  include  the  use 

 of  multiple  wash-steps  and  non-specific  binding,  both  of  which  lead  to  variability  in  results 

 and  initial  rates  or  missed  permeability  measurements  due  to  preparation  steps.  MS 

 permeability  assays  also  introduce  bias  into  compound  screening,  as  these  techniques 

 require  the  compound  to  be  ionisable.  Furthermore  most  MS  techniques  do  not  account  for 

 subcellular  localisation  43,69  .  There  have,  however,  been  some  developments  to  measure 

 subcellular  accumulation  by  MS,  either  by  subcellular  fractionation  95  ,  or  by  imaging  MS 

 (TOF-SIMS)  99  . 

 1.4.5 Use of drug susceptibility to measure permeability 

 Another  method  used  to  measure  whole-cell  permeability  is  via  drug  susceptibility  testing. 

 Here,  bacteria  are  treated  with  antibiotics  to  find  the  minimal  inhibitory  concentration 

 (MIC)  43  .  By  using  knockouts  or  mutants,  an  idea  of  the  permeability  properties  of  a  drug 

 can  be  built  (Figure  1.9)  .  This  general  method  has  been  used  by  Iyer  et  al.  100  to  create  a 

 permeability  assay  called  ‘titratable  outer  membrane  permeability  assay  system’  (TOMAS) 

 that  uses  an  E.  coli  knockout  strain  transformed  with  a  OprD  from  P.  aeruginosa,  the 

 predominant  porin  in  this  bacteria.  The  OprD  gene  was  expressed  in  an  arabinose 

 expression  vector,  so  the  concentration  of  OprD  was  titratable,  meaning,  increasing  the 

 concentration  of  arabinose  (the  inducer  of  promoter  on  the  plasmid),  resulted  in  the 

 expression  of  more  OprD  100,101  (Figure  1.9)  .  The  difference  in  MIC  between  the 

 non-induced  strains  and  the  various  titrations  of  arabinose  was  used  to  inform  on  porin 

 permeability  and  preference  100  .  This  assay  was  used  to  aid  in  the  development  of  a  PBP3 

 inhibitor  101  .  This  assay  could  be  applied  to  other  porins  or  specific  mutations  in  porins. 

 However,  the  parent  knockout  strain  in  the  TOMAS  assay  struggles  when  efflux  pumps  are 

 also  knocked-out,  limiting  the  ability  of  this  assay  to  investigate  both  effects 

 simultaneously. 

 Zgurskaya  et  al.  33,102,103  also  used  a  drug  susceptibility  technique  as  a  read-out  for 

 permeability;  they  used  strains  of  E.  coli  and  P.  aeruginosa  which,  overexpressed  FhuA 

 channels  that  had  been  mutated  to  remain  ‘open’  33,102  (Figure  1.9)  .  The  authors  also 

 created  efflux  knockout  versions  of  these  strains  to  investigate  the  interplay  between 

 permeability  and  efflux  33  .  Zgurskaya  et  al.  103,104  used  this  assay  to  predict  the  permeability 
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 properties  of  E.  coli  and  P.  aeruginosa  103,104  .  These  assays  are  sensitive  to  the  porin  used 

 and  are  applicable  to  large  drug  screening  techniques.  However,  using  these  drug 

 susceptibility  assays  does  not  allow  for  resolution  of  subcellular  localisation,  nor  do  they 

 allow accurate kinetics measurements. 

 Figure  1.9  Antimicrobial  susceptibility  as  a  tool  to  measure  permeability  in  two 
 ways.  Whole-cell  susceptibility  assays  have  been  used  to  assess  permeability,  this  has  been 
 adapted  in  two  ways  to  look  at  permeability;  TOMAS  assay  and  hyperporinated  FhuA 
 strains. 

 1.4.6  Use  of  chemoinformatics  and  simulations  in  permeability 

 studies 

 Computational  techniques  have  been  implemented  to  look  at  permeability,  in  the  form  of 

 simulations  of  permeability  or  using  cheminformatics  to  predict  permeability.  Molecular 

 dynamics  and  Brownian  motion  simulations  have  been  used  to  model  antibiotics  passage 

 through  porins  and  the  lipid  layer  42,57,60,61,65,105,106  .  These  simulations  have  highlighted  the 

 importance  of  the  electrostatic  interactions  in  porins  and  the  necessity  to  explore  these 

 interactions  further  to  understand  permeability  better  42,57,60,61,65,107,108  .  Simulation  studies 

 have  highlighted  the  differences  in  permeability  between  artificial  membranes  made  of 
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 lipids  like  phosphatidylcholine  (POPC)  compared  to  membrane  mimetics,  showing  that 

 different  lipids  affect  the  permeability  of  lipid-mediated  drug  uptake  109  .  Molecular  dynamic 

 studies  have  been  used  to  aid  in  the  development  of  new  antibiotics  110  ;  using  a 

 combination  of  biochemical  (target  assays),  molecular  dynamics  and  the  TOMAS 

 permeability assay, diazabicyclooctane, an inhibitor of PBPs was developed  100,101,110  . 

 Chemoinformatic  techniques  determine  the  chemical  space  of  compounds;  this  is  then 

 used  to  inform  machine  learning  techniques  to  make  predictions  on  compound  activity. 

 This  approach  was  used  by  Stokes  et  al.  to  identify  Halicin  as  a  novel  antibiotic  111  . 

 Zgurskaya  et  al.  have  been  using  cheminformatic  techniques  to  elucidate  the  rules 

 surrounding accumulation in  E. coli  and  P. aeruginosa  103,104  . 

 1.4.7 Use of outer membrane vesicles to model permeability 

 There  have  also  been  permeability  assays  that  utilise  outer  membrane  vesicles  (OMVs)  as 

 models  of  permeability  105,109  (Figure  1.10)  .  OMVs  are  small  (25-250  nm)  vesicles  created 

 from  the  blebbing  of  the  Gram-negative  cell  wall  112,113  .  OMVs  contain  an  asymmetrical  lipid 

 bilayer,  membrane  proteins,  and  some  soluble  proteins  from  the  original  cell,  such  as 

 β-lactamases  113–115  (Figure  1.10)  .  These  OMVs  have  been  used  in  swelling  assays  105  and 

 OMPA  109  (Outer  Membrane  vesicle  based  Permeation  Assay).  In  OMPA,  OMVs  are 

 reconstituted  into  a  bilayer  (using  filtered  96-well  plates,  pegylated  lipids  and  agarose), 

 and  the  concentration  of  the  drug  through  the  bilayer  is  monitored  via  absorbance 

 measurements  and  LC-MS  109  (Figure  1.10)  .  In  the  OMV  swelling  assay,  the  size  of  OMVs  is 

 monitored  by  dynamic  light  scattering  (DLS)  in  response  to  antibiotics  over  time  105 

 (Figure  1.10)  .  The  results  of  the  swelling  assay  were  used  to  compare  predictions  of  drug 

 permeabilities generated by molecular dynamic experiments. 
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 Figure  1.10  The  formation  of  OMV  and  their  use  in  permeability  assays.  OMV  are 
 formed  from  blebbings  of  the  outer  membrane.  These  OMVs  have  been  used  in  swelling 
 assays  -  where  drugs  were  added,  causing  the  OMV  to  swell  increasing  the  size  of  OMVs. 
 OMVs  have  been  used  in  OMPA  assays  which  constitute  the  vesicle  into  a  bilayer  and  the 
 accumulation  of  drugs  at  the  other  side  of  the  bilayer  is  quantified  by  MS  and 
 spectrophotometry. 

 1.5 Identified rules of Gram-negative permeability 

 Some  general  rules  surrounding  permeability  have  been  identified  by  utilising  some  of  the 

 permeability  assays  mentioned  above  in  combination  with  large-scale  physicochemical 

 analysis  of  known  antimicrobials.  In  2008  O’Shea  and  Moser  concluded  that  porin 

 limitations  control  entry  into  Gram-negative  organisms,  finding  that  compounds  <600  Da 

 and  highly  polar  compounds  were  more  permeable  116  .  They  found  that  compounds  in  high 

 throughput  screens  were  generally  less  polar  and  smaller  than  antimicrobials  on  the 

 market  43,116  .  A  retrospective  study  of  3200  antimicrobials  by  AstraZeneca  in  2014  found 

 that  hits  from  high-throughput  screens  tend  to  be  more  hydrophobic  than  active 

 antimicrobials,  but  simply  reducing  hydrophobicity  was  not  enough  to  encourage 

 permeability  43,117  .  This  is  presumably,  in  part,  due  to  the  various  entry  points  into  bacteria, 

 i.e.  via porins or through the lipid layer, and due  to efflux. 

 Another  2014  study  by  Davis  et  al.  91  used  an  LC-MS  accumulation  assay  to  identify 

 physicochemical  properties  affecting  accumulation  in  E.  coli  ,  B.  subtilis  ,  and  M.  smegmatis  91  . 

 They  found  variability  in  the  physicochemical  descriptors  affecting  each  bacterium  91  .  In  E. 
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 coli  hydrophobicity  (in  agreement  with  O’Shea  and  Moser  and  AstraZeneca),  ring  content 

 and  size  were  positively  correlated  to  accumulation  91  .  In  B.  subtilis,  flexibility  and 

 hydrophobicity  were  positively  correlated  to  accumulation,  whereas  in  M.  smegmatis  ,  ring 

 content  was  positively  correlated  to  permeability  91  .  This  study  also  noted  the  importance 

 of  efflux  91  .  This  study  was  done  using  one  class  of  compounds  (sulfonyladenosines)  and 

 noted the variability between bacteria  91  . 

 In  2017  Richter  et  al.  89  used  an  LC-MS  assay  to  measure  the  accumulation  of  180 

 compounds  in  E.  coli  89  .  Two  hundred  ninety-seven  physicochemical  descriptors  of  the  180 

 compounds  were  used  to  identify  key  predictors  of  permeability  using  a  random  forest 

 model  89  .  The  key  features  identified  were;  an  ionisable  N  itrogen  (primary  amine),  high 

 R  igidity,  and  low  T  hree  dimensionality  (globularity)  -  they  termed  these  ‘e  NTR  y  rules'  89  . 

 Richter  et  al.  89  used  these  rules  to  convert  antimicrobials  specifically  targeting 

 Gram-positive  organisms  to  broad-spectrum  antimicrobials  89  .  In  2018  Iyer  et  al.  92 

 monitored  the  accumulation  of  LigA  inhibitors  using  an  LC-MS  accumulation  assay,  finding 

 that positive charge and hydrophobicity increase intracellular accumulation  42,92  . 

 Zgurskaya  et  al.  2018  used  MICs  and  MIC  ratios  of  hyperporinated  (FhuA)  E.  coli  and  P. 

 aeruginosa  PAO1  mutants  compared  to  wild-type  and  efflux  mutants  to  identify  the 

 molecular  properties  of  accumulation  103  .  They  used  142  molecular  descriptions  that 

 accounted  for  the  charge,  connectivity,  molecular  topology,  number  of  atoms,  number  of 

 bonds,  physical  properties,  potential  energy,  shape  and  surface  area  of  fluoroquinolones 

 and  β-lactams  to  inform  a  random  forest  model  (  like  Richter  et  al.)  and  learn  molecular 

 properties  of  accumulation  103  .  They  identified  that  permeability  and  efflux  were  positively 

 correlated  with  different  properties,  in  E.  coli  relative  to  P.  aeruginosa  103  .  Molecular 

 descriptors  that  were  positively  correlated  with  permeability  in  E.  coli  were  rigidity  and 

 many  electrostatic  interactions  42,103  .  In  P.  aeruginosa  ,  shape,  flexibility,  and  negative  partial 

 charges  of  compounds  were  positively  correlated  with  permeability  42,103,104  .  In  comparison, 

 the  qualities  that  were  positively  correlated  to  efflux  were  partial  positive  charges,  number 

 of  rotatable  bonds,  and  lipophilicity  42,103,104  .  Zgurskaya  et  al.  went  on  to  use  a  machine 

 learning  algorithm  to  predict  permeability  from  MICs  of  hyperporinated  strains  and 

 molecular dynamics results  104  . 

 There  is  some  consensus  around  the  rules  of  permeability;  hydrophobicity,  charge  and 

 shape.  However,  there  is  variability  between  the  rules  across  different  types  of  bacteria 

 and  across  the  rules  that  govern  efflux.  Further  variability  in  these  results  could  arise  from 

 35 

https://www.zotero.org/google-docs/?wT7O0j
https://www.zotero.org/google-docs/?gST4JU
https://www.zotero.org/google-docs/?jMnW8i
https://www.zotero.org/google-docs/?zkWNeD
https://www.zotero.org/google-docs/?Z8ZJ9N
https://www.zotero.org/google-docs/?5TIAlx
https://www.zotero.org/google-docs/?Q61DKG
https://www.zotero.org/google-docs/?2BlzFE
https://www.zotero.org/google-docs/?O3Z0t1
https://www.zotero.org/google-docs/?uaIBQ7
https://www.zotero.org/google-docs/?O2tab5
https://www.zotero.org/google-docs/?tw0kQi
https://www.zotero.org/google-docs/?5vz9LF
https://www.zotero.org/google-docs/?N1gcDH
https://www.zotero.org/google-docs/?w8eeBp
https://www.zotero.org/google-docs/?m2gvPe
https://www.zotero.org/google-docs/?SSCExS
https://www.zotero.org/google-docs/?LiiY0U
https://www.zotero.org/google-docs/?3aJSui


 the  method  and  conditions  used  in  the  permeability  assay,  variability  in  wash  stages,  or 

 growth  media  used,  which  could  alter  the  environment  of  the  bacterium  leading  to 

 differences  in  accumulation.  Therefore,  developing  strict  rules  that  define  permeability 

 may  not  be  possible,  especially  until  there  is  a  better  understanding  of  antimicrobial 

 accumulation in bacteria. 

 To  develop  new  antibiotics,  more  tools  to  understand  Gram-negative  permeability  are 

 essential.  These  tools  could  be  in  the  form  of  a  permeability  assay  used  for  high 

 throughput  screening  that  does  not  perturb  the  natural  permeability  process  of  bacteria. 

 Or  by  creating  models  of  the  outer  membrane  that  are  representative  and  controllable  to 

 dissect  the  individual  permeability  components,  or  by  fully  elucidating  the  path  of  each 

 antibiotic class to extrapolate these findings to new antimicrobials. 

 1.6 Thesis aims 

 ●  To  develop  tools  and  methodology  to  monitor  β-lactam  permeability  in  a  label-free 

 manner. 

 ●  To  create  a  model  of  the  E.  coli  outer  membrane  using  synthetic  biology,  that  can  be 

 used to measure permeability in a high throughput format. 

 ●  To use machine learning tools to create a model that can predict permeability. 
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 Chapter 2. Material and methods 

 This  chapter  begins  with  general  methods,  followed  by  more  specific  methods  relating  to 

 individual results chapters. 

 2.1 General materials and methods 

 2.1.1 Reagents and materials 

 All  chemicals  purchased  for  these  experiments  were  of  analytical  grade,  the  majority  of 

 which  came  from  Merck  (Sigma),  Fisher  scientific,  Melford,  and  Avanti  polar  lipids  unless 

 otherwise  stated.  The  oligonucleotides  used  for  molecular  biological  techniques  were 

 purchased from IDT. 

 All  buffers  were  prepared  using  Ultrapure  MilliQ  water,  buffers  for  molecular  biology 

 techniques,  chromatography,  and  cell-free  expression  systems  were  all  filtered  through 

 0.22  µm  MF-Millipore  membrane  filters  (Merck).  Buffer  pH  was  adjusted  using  a 

 SevenEasy  pH  meter  (Mettler  Toledo),  calibrated  at  room  temperature  with  pH  4.0,  7.0  and 

 10.0 buffer standards. Buffers for long term storage were kept at 4 °C. 

 2.1.2 Bacterial growth reagents and strains 

 2.1.2 Bacterial growth media 

 All  media  was  sterilised  by  autoclaving  for  twenty  minutes  at  121˚C.  Antibiotic  resistance 

 genes  were  used  to  select  the  correct  colonies.  Antibiotic  stocks  at  either  100  µg.mL  -1 

 ampicillin,  50  µg.mL  -1  kanamycin  or  35  µg.mL  -1  chloramphenicol  were  added  to  media 

 when necessary. Agar plates were poured in microbiological safety cabinets. 
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 2.1.2.1 Lysogeny broth 

 Lysogeny  broth  (LB)  media  was  used  as  the  standard  for  most  bacterial  growth.  Its 

 composition,  unless  stated  otherwise,  was  1%(w/v)  tryptone,  1%(w/v)  sodium  chloride, 

 0.5%  (w/v)  yeast  extract  118  .  For  some  protein  expression  trials  this  was  supplemented 

 with  1%  (w/v)  glucose  to  protect  from  leaky  expression.  Glucose  solution  was  prepared 

 and sterilised separately and was added when appropriate  119  . 

 2.1.2.2 LB agar plates 

 LB  media  was  solidified  by  supplementation  with  1.5%  (w/v)  bactoagar.  The  suspension 

 was  autoclaved  for  twenty  minutes  at  121˚C,  allowed  to  cool  to  50˚C,  at  which  point 

 appropriate  antibiotics  were  added.  25  mL  of  this  media  was  poured  per  petri  dish  and 

 allowed to set in a microbiological safety cabinet. 

 2.1.2.3 Super Optimal broth with Catabolite repression 

 Super  Optimal  broth  with  Catabolite  repression  (SOC)  media  was  used  in  the  outgrowth 

 step  of  chemical  transformations  120  .  SOC  was  composed  of  2%  (v/v)  peptone,  0.5%  (w/v) 

 yeast  extract,  10  mM  sodium  chloride,  2.5  mM  potassium  chloride,  10  mM  magnesium 

 chloride, 10 mM magnesium sulfate and 20 mM glucose  120  . 

 2.1.2.4 Low salt LB 

 For  strains  of  E.  coli  lacking  porins,  low  salt  LB  121  was  used  for  growth  and  recovery.  As  it 

 was  observed  that  both  BL21ΔABCF  and  BL21ΔACF  grew  poorly  in  high  salt 

 concentrations  122  .  Low  salt  LB  was  composed  of  1%  (w/v)  tryptone,  0.5%  (w/v)  sodium 

 chloride  and  0.5%  (w/v)  yeast  extract.  For  low  salt  LB  plates  1.5%  (w/v)  bacto  agar  is 

 added  121  . 
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 2.1.2.5 Cation-adjusted Mueller-Hinton Broth 

 Cation-adjusted  Mueller-Hinton  123  broth  was  used  for  determination  of  minimal  inhibitory 

 concentrations  (MIC).  The  medium  was  composed  of  17.5  g.L  -1  casein  acid  hydrolysate,  3.0 

 g.L  -1  beef  extract,  1.5  g.L  -1  starch,  20-25  mg.L  -1  Ca  2+  and  10-12.5  mg.L  -1  Mg  2+  (both  from 

 chloride salts) adjusted to pH 7.3  123  . 

 2.1.2.6 Cell Free Auto Induction Media (CFAI) 

 CFAI  broth  124  is  used  as  a  medium  to  perform  protein  over-expression.  The  medium  was 

 composed  of  100  mM  sodium  chloride  2%  (w/v)  tryptone,  0.5%  (w/v)  yeast,  80  mM 

 dipotassium  hydrogen  phosphate,  and  44mM  potassium  dihydrogen  phosphate  124  .  This 

 was  prepared  with  MilliQ  water,  buffered  with  5.0  M  potassium  hydroxide  to  pH  7.2  and 

 autoclaved  124  .  This  was  supplemented  with  a  filter  sterilised  40  mL  sugar  solution;  1.25% 

 (w/v) glucose, 10% (w/v) lactose and 15% (v/v) autoclaved glycerol  124  . 

 2.1.2.7  E. coli  strains used in this work 

 A range of bacterial species and strains were used in this work.  E. coli  strains in particular 

 were used for molecular biology techniques, protein purification, and compound testing. 

 The strains used, their genotype and their use is described below in  Table 2.1. 
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 Strain  Genotype  Use 

 NEB-5  a  fhuA2 Δ(argF-lacZ)U169 phoA glnV44 
 Φ80Δ (lacZ)M15 gyrA96 recA1 relA1 

 endA1 thi-1 hsdR17 

 Plasmid 
 overproduction 

 BL21 (λDE3) 
 F-  omp  T  hsd  SB (rB- mB-)  gal dcm rne  131 

 (λDE3) 

 Protein 
 purification 

 overexpression 
 strain 

 BL21 pLysS 
 F–, ompT, hsdSB (rB–, mB–), dcm, gal, 

 λ(DE3), pLysS, Cmr 

 Protein 
 purification 

 overexpression 
 strain 

 Rosetta  (DE3) cells  Genotype: F- ompT hsdSB(rB- mB-) gal dcm 
 (DE3) pRARE (CamR) 

 Cell-free protein 
 synthesis lysate 

 BL21ΔACF  122 

 A gift from Jack Leo 
 (Addgene plasmid # 
 102268) 

 Genotype = ΔompA ΔompC ΔompF 
 Precursor strain = BL21Gold(DE3) 

 [genotype F- ompT hsdS(rB– mB– ) dcm+ 
 Tetr gal λ(DE3) endA the] 

 Permeability 
 control 

 Bl21 ΔACFB  122 

 A gift from Jack Leo 
 (Addgene plasmid # 
 102270) 

 Genotype = ΔompA ΔompC ΔompF ΔlamB 
 Precursor strain = BL21Gold(DE3) 

 [genotype F- ompT hsdS(rB– mB– ) dcm+ 
 Tetr gal λ(DE3) entheHte] 

 Permeability 
 Control 

 ΔOMPA  125 

 Strain: JW0940-6 
 CGSC: 8942 

 F-,  Δ(araD-araB)567  ,  ΔlacZ4787  (::rrnB-3), 
 λ  -  ,  ΔompA772::kan  ,  rph-1  ,  Δ(rhaD-rhaB)568  , 

 hsdR514 

 Permeability 
 Control 

 ΔOMPC  125 

 Strain: JW2203-1 
 CGSC Number: 9781 

 F-,  Δ(araD-araB)567  ,  ΔlacZ4787  (::rrnB-3), 
 λ  -  ,  ΔompC768::kan  ,  rph-1  ,  Δ(rhaD-rhaB)568  , 

 hsdR514 

 Permeability 
 Control 

 ΔOMPF  125 

 Strain: JW0912-1 
 CGSC Number:  8925 

 F-,  Δ(araD-araB)567  ,  ΔlacZ4787  (::rrnB-3), 
 λ  -  ,  ΔompF746::kan  ,  rph-1  ,  Δ(rhaD-rhaB)568  , 

 hsdR514 

 Permeability 
 Control 

 Table 2.1 The  E. coli  strains used in this thesis, along with their genotype and source. 

 2.1.3 Preparation of competent Cells 

 Chemically  competent  cells  were  prepared  via  the  Hanahan  120,126  method,  following  this 

 adapted  protocol  by  Green  and  Rogers  127  .  A  small  overnight  growth  of  5  mL  was  set  up, 
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 containing  LB  and  antibiotic  if  required,  and  inoculated  with  whichever  strain  was  to  be 

 made  competent.  The  following  day  this  culture  was  diluted  1  in  10  into  sterile  LB  (usually 

 2.5  mL  of  overnight  growth  into  250  mL  of  fresh  LB).  This  was  supplemented  with  any 

 required  antibiotic  and  20  mM  magnesium  sulphate.  When  the  cell  density  reached  0.6  as 

 measured  at  an  absorbance  of  600nm,  the  culture  was  harvested  by  centrifugation  at  4,500 

 ×  g  for  10  minutes  at  4  °C  in  a  JA  25.50  rotor.  The  following  steps  were  then  performed  on 

 ice  in  microbiological  safety  cabinet:  the  cells  were  gently  resuspended  and  washed  with 

 100  mL  of  ice  cold  TFBI  buffer  (30  mM  potassium  acetate,  10  mM  calcium  chloride,  50  mM 

 manganese  chloride,  100mM  rubidium  chloride,  15%  (v/v)  glycerol,  pH  5.8).  This 

 suspension  is  incubated  for  5  minutes  on  ice,  and  then  pelleted  again  as  before.  The  cells 

 were  then  resuspended  in  10  mL  of  TFBII  (10  mM  MOPS  pH  6.5,  75  mM  calcium  chloride, 

 10  mM  rubidium  chloride,  15%  (v/v)  glycerol).  The  resulting  suspension  was  incubated  on 

 ice  for  1  hour,  before  dispensing  in  50  µL  aliquots,  flash  freezing  in  liquid  nitrogen  and 

 storing  at  -80˚C.  The  competency  of  these  cells  was  determined  using  pUC19  plasmid  the 

 following day. 

 2.1.4 DNA quantification 

 DNA  samples  were  quantified  by  using  an  N60  Nanophotometer  (Implen),  measuring 

 absorbance at 260 nm with either water or eluent buffer as blank. 

 2.1.5 DNA transformation of competent cells 

 DNA  transformation  of  competent  cells  was  done  according  to  NEB  supplied  protocol.  50 

 µL  of  the  desired  competent  cells  were  thawed  on  ice.  2  µL  of  plasmid  was  added  to  the 

 competent  cells,  and  mixed  by  flicking  the  tube  4  times.  This  mixture  incubated  on  ice  for 

 30  minutes.  After  the  incubation  on  ice  the  cells  were  heat  shocked  at  42˚C  for  30  seconds, 

 and  then  left  to  cool  down  on  ice.  950  µL  of  SOC  media  was  added  to  the  tube,  which  is 

 then  incubated  at  37˚C  for  1  hour  at  180  rpm.  After  incubation,  150  µL  of  cells  were  plated 

 on solid media supplemented with the relevant antibiotic and grown overnight at 37˚C . 
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 2.1.6 Glycerol stocks 

 Following  successful  transformations,  one  colony  was  inoculated  into  10  mL  LB  and 

 incubated  overnight  at  37°C  with  shaking  at  180  rpm.  A  250  µL  aliquot  of  the  culture  was 

 mixed  with  250  µL  of  50%  (v/v)  sterile  glycerol,  and  flash  frozen  with  liquid  nitrogen 

 before storage at -80°C. 

 2.1.7 Sequencing 

 Samples  were  sent  to  GENEWIZ  (Leipzig,  Germany)  for  sequencing.  The  samples  were 

 prepared  as  per  the  company  guidelines.  Once  the  result  was  received,  the  sequence  data 

 was  translated  with  the  ExPASy  translate  tool  (SIB).  The  translated  protein  sequence  was 

 then  analysed  using  the  protein  specific  Basic  Local  Alignment  Search  Tool  (BLASTP) 

 against the theoretical sequence of the protein to check for alignment and mutations. 

 2.1.8 Minimal Inhibitory Concentration (MIC) microbroth dilution 

 MICs  were  used  in  both  the  iAmp  Chapter  (Chapter  3)  and  in  the  machine  learning 

 (Chapter  6).  MICs  were  carried  out  in  accordance  with  The  Clinical  and  Laboratory 

 Standards  Institute  (CLSI)  guidelines  128  .  Briefly,  bacteria  were  diluted  in 

 phosphate-buffered  saline  (PBS)  to  a  cell  density  of  1.5  x  10  8  CFU/mL  as  determined  by  0.5 

 McFarland  standards,  and  further  diluted  1  in  a  100  in  cation-adjusted  Mueller-Hinton 

 broth.  In  96  well  plates  (GREINER),  200  µL  of  cation-adjusted  Mueller-Hinton  broth  was 

 supplemented  with  the  double  the  highest  concentration  of  antibiotic  to  be  tested.  From 

 this  first  well  100  µL  was  carried  across  in  a  serial  dilution.  The  wells  were  then  inoculated 

 with  100  µL  of  the  working  stock  of  bacteria.  The  plate  was  then  incubated  for  18-22  hours 

 at  37  °C,  after  which  the  results  were  interpreted.  For  the  polymyxin  control,  E.  coli  was 

 supplemented with a sub inhibitory concentration of polymyxin (0.0625 µg/mL). 
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 2.2 Protein purification 

 The  proteins  purified  in  this  work  followed  a  general  workflow;  transforming  gene  into 

 expression  line,  large  scale  growth  of  expressing  line  expressing  gene  of  interest,  cells  are 

 pelleted,  lysed  by  sonication,  and  soluble  fraction  is  kept  for  purification.  The  soluble 

 fraction  was  then  purified  by  IMAC  chromatography  and  analysed  for  purity  on  an 

 SDS-PAGE gel. More in depth protocols for PBP3 and PBP4 are described below. 

 2.2.1 Purifying  E. coli  PBP3 

 A  pET46b  plasmid  (kind  gift  from  Dr  D.  Bellini)  containing  E.  coli  PBP3  (without  the 

 transmembrane  helix)  was  expressed  in  E.  coli  BL21  (DE3).  3  L  of  culture  were  grown  at 

 37°C  with  shaking  at  180  rpm  until  an  O.D.  600  reached  0.6,  at  which  point  protein 

 expression  was  induced  with  0.5  mM  IPTG  at  which  point,  cells  were  grown  overnight  at 

 25°C.  Cells  were  pelleted  at  10  000  x  g  for  15  mins.  Cell  pellets  were  resuspended  in  150 

 mL  of  buffer  A  (100  mM  Tris,  500  mM  NaCl,  20  mM  imidazole,  2%  glycerol  (v/v),  pH  8.0) 

 supplemented  with  20𝜇g  mL  -1  deoxyribonuclease  I  from  bovine  pancreas  and  1mg  mL  -1 

 lysozyme  from  chicken  egg  white.  Cells  were  lysed  by  sonication  at  70%  power  on  salted 

 ice  bath,  ten  times  for  20  seconds  interspersed  by  a  minute  in  between  to  maintain  cooling. 

 Lysate  was  centrifuged  at  16  000  RPM  for  30  minutes  at  4°C.  A  5  mL  HisTrap  column  was 

 charged  with  nickel  and  equilibrated  with  50  mL  of  buffer  A.  following  this  the  supernatant 

 was  loaded  onto  the  column  with  a  peristaltic  pump  at  ambient  temperature  and  at  a  flow 

 rate  of  1  mL  per  minute,  unbound  contaminants  were  washed  off  with  30  mL  of  buffer  A. 

 Target  protein  was  eluted  on  the  AKTA  10/100  system  (GE  Healthcare)  at  a  flow  rate  2 

 mL/minute,  with  a  gradient  of  0-100  buffer  B  (100  mM  Tris,  500  mM  NaCl,  500  mM 

 imidazole,  2%  glycerol  (v/v),  pH  8.0)  over  50  minutes  where  2  mL  fractions  were 

 collected.  Pooled  fractions  were  analysed  by  SDS-PAGE  gels,  then  concentrated  and  buffer 

 exchanged into a storage buffer (10 mM Tris, 500 mM NaCl, 10% (v/v) glycerol (pH 8.0). 

 2.2.2 PBP4 

 pET28b  containing  E.  coli  dacB  gene  (kind  gift  from  J.  Tod)  was  transformed  into  50  µL 

 stock  of  BL21  pLysS  cells.  From  this  a  colony  was  selected  and  grown  overnight  at  37°C.  1 
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 mL  of  overnight  starter  culture  (37°C  with  shaking  at  180  rpm)  was  used  to  inoculate  1  L 

 of  LB  media  supplement  with  20%  (w/v)  glucose.  This  was  grown  at  37°C  with  shaking  at 

 180  rpm  until  an  OD600  of  0.6  was  reached.  The  culture  was  then  induced  with  0.5  mL  of  1 

 M  isopropyl  β-d-1-thiogalactopyranoside  (IPTG)  and  further  grown  for  4  hours.  The 

 culture  was  then  pelleted  at  10  000  x  g  for  15  mins.  The  pellet  was  resuspended  in  100  mM 

 Tris pH 8 at 3 mL buffer/g wet weight cells. and frozen at -80°C until use. 

 For  purification  2.5  mg/mL  lysozyme  and  1  mg/mL  of  DNase  was  added  to  the  pelleted 

 cells  which  were  thawed  at  4°C  on  the  roller.  The  cell  suspension  was  sonicated  at  70% 

 pulses  for  ten  15  second  bursts  interspersed  by  1  minute  cooling  on  ice  per  round.  The 

 lysate  was  centrifuged  at  50  000  x  g  for  45  minutes  at  4°C,  and  the  subsequent  supernatant 

 was  loaded  onto  a  5  mL  nickel-loaded  HisTrap  HP  column  (GE  healthcare)  equilibrated 

 with  buffer  A.  This  was  eluted  with  100%  buffer  B  over  50  minutes  flowing  at  1  mL/min)  2 

 mL fractions collected. 

 PBP4  proteins  were  further  purified  using  a  Cibacron  brilliant  red  dye  3BA  gravity  flow 

 column.  The  column  was  first  washed  with  water  then  equilibrated  with  100  mL  buffer  C 

 (50  mM  N-(2-hydroxyethyl)  piperazine  N'-(2-ethanesulfonic  acid)  (HEPES),  5mM 

 dithiothreitol  (DTT),  10%  (v/v)  glycerol,  2mM  phenylmethanesulfonyl  fluoride).  Then 

 fractions  containing  PBP4  were  exchanged  into  buffer  C  via  a  30  kDa  molecular  weight 

 cut-off  centrifugal  concentrator  (Amicon).  PBP4  in  buffer  C  was  then  added  to  the  column, 

 which  was  washed  with  0-100%  buffer  D  (buffer  C  supplemented  by  0.5  M  NaCl).  Eluted 

 fractions  containing  the  desired  protein  were  identified  through  analysis  on  12%  SDS 

 PAGE gels. 

 2.2.3 Purifying deGFP 

 p70a-deGFP  plasmid  129  was  transformed  into  BL21  (DE3)  cells.  A  colony  of  the  successful 

 transformation  was  used  to  inoculate  1  L  of  LB,  which  was  grown  overnight  at  37°C  180 

 rpm  shaking,  in  2.5  L  Erlenmeyer  flasks  with  Tunair  caps.  The  following  day  this  culture 

 was  pelleted  by  centrifugation  at  10  000  x  g  for  15  mins  (Beckman  JLA  8.1000).  The  pellet 

 was  resuspended  in  buffer  A  (3  mL  per  gram  of  pellet).  This  was  then  supplemented  with 

 20  𝜇g  mL  -1  DNase  and  1mg  mL  -1  lysozyme.  Cells  were  lysed  by  sonication  at  70%  power  on 

 salted  ice  bath,  ten  rounds  of  20  seconds  sonication,  interspersed  by  a  minute  cooling.  The 

 lysate  was  centrifuged  at  50  000  x  g  for  30  minutes  at  4°C  (Beckman  JA  25.5).  The 
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 supernatant  was  loaded  onto  a  5  mL  nickel  column  as  before  (  2.2.1  )  and  the  same 

 purification steps were taken as for PBP3. 

 2.2.4 Protein Quantification 

 Soluble  proteins  purified  without  detergents  were  quantified  using  either  absorbance  at 

 280  nm  or  the  BioRad  protein  assay  based  on  the  method  of  Bradford  130  (1976). 

 Membrane  proteins  were  quantified  using  the  bicinchoninic  acid  (BCA)  protein  assay 

 (Smith  et al  . 1985  131  ). 

 2.2.4.1 Absorbance at 280 nm 

 A  nanophotometer  (Implen)  was  used  to  measure  absorbance  at  280  nm.  The  protein 

 buffer  was  used  as  a  blank.  The  absorbance  was  then  used  to  calculate  the  protein 

 concentration.  Here,  protein  concentration  (mg.mL  -1  )  was  equal  to  absorbance  at  280  nm 

 multiplied  by  a  protein  factor  (“Eprot”)  where  Eprot  was  the  Molecular  weight  (Da) 

 divided  by  Molar  extinction  coefficient  at  280  nm  (M  -1  .cm  -1  )  multiplied  by  path  length  (1). 

 The Eprot value was calculated by ExPASy ProtParam. 

 2.2.4.2 Bradford (BioRad) Protein Assay 

 10  µL  of  soluble  protein  was  diluted  into  800  µl  of  water  following  this  200  µl  of  Bio-Rad 

 protein  assay  dye  was  added.  This  was  incubated  for  five  minutes  at  room  temperature. 

 The  absorbance  was  then  measured  at  595  nm  in  a  Jenway  UV-Vis  spectrophotometer.  The 

 concentration  is  derived  from  the  following  formula  (calibration  curve  and  formula  for 

 these  calculations  were  by  Dr.  A.  Lloyd):  µg.mL-1  protein  =  mean  absorbance  595nm/0.1  x 

 1.95 x 1000/ sample volume (µL) 

 2.2.5 Visualising proteins in SDS-PAGE gels 

 To  visualise  the  protein,  and  tentatively  identify  purified  proteins  SDS-PAGE  gels  132  were 

 used.  Protein  samples  were  run  on  SDS-PAGE  gels  in  a  TRIS-glycine  buffer  system  132,133  . 

 Gels  were  made  using  a  Mini-Protean  Tetra  System  gel  kit  (Bio-Rad).  Gel  components  are 

 outlined  in  Table  2.2  .  10  µg  of  protein  was  mixed  with  a  4x  (Laemmli  133  )  loading  buffer 
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 composed  of  0.2M  Tris-HCl  pH  6.8,  0.4M  DTT,  8%  (w/v)  SDS,  4.3  M  glycerol.  The  samples 

 were  briefly  heat  denatured,  then  loaded  in  12%  SDS-PAGE  gels  (  Table  2.2  )  and  run  at  180 

 V  for  ~50  minutes.  The  gels  were  stained  with  InstantBlue  (Exedeon)  and  imaged  with  an 

 E-box illuminator (Vilber). 

 Component  Resolving 5 mL  Stacking 1.5 mL 

 Tris pH 8.8  375 mM 

 Tris pH 6.8  125 mM 

 Acrylamide (29:1) 
 12% (w/v)  5% (w/v) 

 SDS (w/v) 
 0.1% (w/v)  0.1% (w/v) 

 Ammonium persulfate 
 (APS) 

 37.5 µL of 10% 
 (w/v) 

 7.5 µL of 10% (w/v) 

 Tetramethylethanediamine 
 (TEMED) 

 7.5 µL  1.5 µL 

 Table 2.2 Components of 12% SDS-PAGE gels. 

 2.2.6 Bocillin gels 

 SDS-PAGE  gels  that  were  used  to  visualise  bocillin-binding  penicillin  binding  proteins  were 

 prepared  according  to  previously  reported  method  134  ,  this  technique  was  used  in  Chapter  3 

 (iAmp),  and  Chapter  4  (MS  β-lactam).  Bocillin  is  a  BODIPY  fluorophore  couple  to 

 penicillin  134  .  In  this  assay  16  µg  of  PBPs  were  incubated  with  β-lactam  antibiotic  of 

 interest,  or  moenomycin  or  water,  for  thirty  minutes  at  room  temperature.  The  PBP  was 

 then  incubated  with  a  5:1  molar  ratio  of  bocillin  at  37°C  for  1  hour  (in  the  dark).  Following 

 this,  the  samples  had  4x  loading  dye  added,  and  they  were  analysed  by  SDS-PAGE  (see 

 methods  above).  To  detect  fluorescence,  Typhoon  FLA  9500  laser  was  used  then  gels  were 

 stained with InstantBlue (Exedeon) and imaged with an E-box illuminator (Vilber). 
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 2.3 Chapter 3 specific techniques - iAmp 

 For the completion of iAmp Chapter (Chapter 3) the following techniques were used. 

 2.3.1 iAmp synthesis 

 iAmp  was  synthesised  by  a  two-hour  incubation  at  99°C  in  a  thermocycler  as  previously 

 reported  135  . It was then purified by high performance  liquid chromatography (HPLC). 

 2.3.2 HPLC 

 To  purify  the  initial  sample  of  iAmp  10  μL  of  10  mg/mL  sample  and  ampicillin  were 

 injected  by  the  autosampler  into  HPLC  (Agilent).  This  was  chromatographed  through  an 

 analytical  reverse  phase  C18  column  (Zorbax),  4.6  mm  inner  diameter,  150  mm  length, 

 5µm  particle  size,  and  a  pore  size  of  80  Å.  Samples  were  eluted  by  a  5-95%  (v/v)  methanol 

 gradient  over  35  minutes,  at  ambient  temperatures.  Both  fluorescence  and  absorbance 

 detectors  were  used.  The  fluorescent  detector  was  set  to  excitation  350  nm  and  emission 

 450  nm.  The  absorbance  was  monitored  at  218,  254,  280  and  350  nm.  To  purify  greater 

 amounts  of  iAmp  a  preparatory  reverse  phase  C18  column  was  used,  and  multiple 

 injections were made and samples were taken and collated from the same time points. 

 2.3.4 Mass Spectrometry 

 The peaks from iAmp HPLC chromatography were analysed by direct injection nanoflow 

 ESI in positive mode (+5.5 kV) on Waters G2 Mass Spectrometry. The samples were 

 prepared by 1 in 10 dilution into water and 0.1% formic acid. The chromatograms were 

 processed into spectra and interpreted using MassLynX software (Waters) 

 2.3.5 D-ala release coupled assay 

 PBP4  Carboxypeptidase  activity  led  to  the  release  of  the  C-terminal  D-Ala  from 

 UDP-MurNac-pentapeptide  which  in  this  assay  (  components  outlined  in  Table  2.3  )  was 

 47 

https://www.zotero.org/google-docs/?RH2rwP


 coupled  to  the  production  of  resorufin  leading  to  a  measurable  absorbance  increase  at  A  555 

 nm  (Catherwood  et  al.  136  ,  2020).  DAAO  catalysed  the  oxidation  of  D-alanine  (D-ala)  to 

 pyruvate,  ammonia,  and  hydrogen  peroxide.  The  latter  was  reacted  by  horseradish 

 peroxidase  (HRP)  with  amplex  red  to  generate  resorufin.  D-ala  release  was  monitored  on 

 Varian Cary 100 UV/Vis double beam spectrophotometer at 30°C. 

 Component  Final Concentration/volume 

 Water  to a final volume of 0.2 mL 

 Buffer Bis-Tris Propane pH 8.5  50 mM 

 MgCl  2  20 mM 

 D-amino acid oxidase (DAAO)  36.1 U mL  -1 

 Horseradish peroxidase (HRP)  14.3 U mL  -1 

 10-acetyl-3,7-dihydroxy 

 phenoxazine (Amplex Red) 

 50 μM 

 PBP4  50 nM 

 UDP-MurNac-pentapeptide (DAP)  20 μM 

 Table  2.3  components  in  the  D-ala  release  assay.  The  following  assay  components  were 
 kind  gifts  from  J.  Tod  and  Dr.  A.  Lloyd;  DAAO,  HRP,  Amplex  red,  UDP-MurNac-pentapeptide. 
 DAAO,  and  HRP  U  mL-1  was  determined  by  Dr.  A.  Lloyd  as  μmol.min-1  of  1mM  D-alanine 
 for DAAO, and 20 μM H2O2 for HRP. 

 2.3.6 Imaging iAmp 

 An  overnight  growth  of  E.  coli  was  prepared  from  a  single  colony,  by  growing  in  10  mL  LB 

 at  37°C  overnight,  the  following  day  this  was  diluted  with  LB  to  OD  600  0.6,  and  grown  for  2 

 hours.  From  this  growth  three  samples  were  prepared  in  1.5  mL  eppendorfs,  they  were 

 treated  with  either  200  μM  bocillin,  200  μM  iAmp  or  equal  volumes  water,  for  30  minutes 

 at  37°C.  The  excess  compound  was  removed  by  washing  the  cells  with  PBS  in  3  kDa  MWCO 

 spin  filters.  A  1.5%  (w/v)  agarose  pad  was  made  to  immobilise  bacteria.  2  μL  of  bacteria 

 was  placed  onto  a  cover  slip,  and  the  agarose  pad  was  overlaid,  on  top  of  this  the  glass  slide 

 was  added.  The  samples  were  visualised  using  confocal  microscopy  (ZEISS  LSM  880 
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 airyscan).  iAmp  was  visualised  with  diode  laser  using  the  set-up  for  ALEX  350  fluorophore, 

 as  it  was  the  most  similar  possible,  absorbance  346  nm,  emission  442  nm.  Bocillin  treated 

 samples  were  visualised  with  the  argon  laser  and  filters  for  excitation  and  emission  of  485 

 and  520  nm  respectively.  Both  samples  were  visualised  using  100x  oil  lens.  Images  were 

 analysed  using  FIJI  ImageJ  137  software.  Imaging  was  done  with  the  help  of  Warwick 

 Imaging  Suite  (Ian  Hands-Portman)  who  facilitated  sample  preparation  and  training  on  the 

 microscope. 

 2.4 Chapter 4 specific techniques - mass spectrometry and 

 β-lactam acylation 

 2.4.1 Proteomic preparation 

 Peptides  were  either  prepared  using  in-gel  or  in-solution  technique  followed  by  the 

 filter-aided  sample  preparation  (FASP)  protocol  and  C18  stage  tips.  Protocols  used  were 

 provided by Warwick Proteomics Research Technology Platform. 

 2.4.2 Proteomic gel digestion 

 20  μg  of  PBPs  incubated  with  1  mM  antibiotic  were  fractionated  on  an  SDS-PAGE  gel  as 

 above,  and  visualised  as  above  but  with  the  exception  of  a  shorter  staining  duration.  Gel 

 slices  containing  the  protein  were  excised  and  de-stained  in  50%  (v/v)  ethanol  and  50  mM 

 ammonium  bicarbonate.  Once  de-stained,  the  gel  fragments  were  dehydrated  with  100% 

 (v/v)  ethanol.  The  samples  were  then  reduced  by  the  addition  of  10  mM 

 (tris(2-carboxyethyl)phosphine)  (TCEP)  and  acylated  with  40  mM  chloroacetic  acid  (CAA), 

 for  30  minutes  at  ambient  temperatures.  The  gel  slices  were  washed  three  times  with  50% 

 (v/v)  ethanol  50mM  ammonium  bicarbonate.  This  was  again  dehydrated  with  100%  (v/v) 

 ethanol.  The  dehydrated  gel  slice  was  then  rehydrated  with  2.5  ng/µl  trypsin  and  50  mM 

 ammonium  bicarbonate  and  left  to  digest  overnight  at  ambient  temperature.  Various 

 incubation  temperatures  of  this  step  were  trialled,  to  probe  the  fragility  of  the  covalent 

 bond  upon  processing.  The  following  day  the  peptides  were  extracted  by  sonication  (bath) 

 with  the  addition  of  25%  (v/v)  acetonitrile  and  5%  (v/v)  formic  acid,  and  the  extracted 
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 solution  was  then  concentrated  under  vacuum  to  20  µl,  to  be  resuspending  in  2%  (v/v) 

 acetonitrile, 0.1% (v/v) trifluoroacetic acid (TFA) to 50 µl. 

 2.4.3 In-solution and FASP protocol 

 100  μg  of  protein  incubated  with  1  mM  antibiotic  was  diluted  with  8  M  urea  into  400  μl, 

 and  buffer  exchanged  into  urea  using  10  kDa  molecular  weight  cut-off  (MWCO) 

 microcentrifuge  ultrafiltration  units,  three  times.  All  centrifugation  steps  were  performed 

 at  8  000  x  g.  This  buffer  was  then  exchanged  into  50  mM  ammonium  bicarbonate  three 

 times.  The  sample  was  then  reduced  with  10  mM  TCEP  and  alkylated  with  40  mM  CAA  in 

 50  mM  ammonium  bicarbonate  for  thirty  minutes  at  room  temperature.  The  sample  was 

 washed  three  more  times  with  50  mM  ammonium  bicarbonate  to  remove  TCEP  and  CAA. 

 Sample  was  then  digested  with  trypsin  2  µg/100µg  overnight  at  room  temperature.  The 

 following  day  the  peptide  was  separated  from  the  proteases  via  centrifugal  ultrafiltration 

 as above. Peptides were then prepared using the stage tip protocol. 

 2.4.4 C18 Stage tip protocol 

 A  C18  membrane  was  loaded  into  a  200  µl  tip,  conditioned  with  100%  (v/v)  methanol  for 

 2  minutes  and  centrifuged  in  a  microfuge  at  2000  rpm.  The  membranes  were  then 

 equilibrated  with  100%  (v/v)  acetonitrile  and  re-centrifuged.  The  membranes  were  then 

 equilibrated  with  2%  (v/v)  acetonitrile  and  0.1%  (v/v)  TFA  for  4  minutes  at  2000  rpm. 

 Then  10  µg  of  peptides  were  applied  to  the  stage  tips.  The  sample  was  then  washed  with 

 acidified  ethyl  acetate  (1%  (v/v)  TFA).  Peptides  were  then  eluted  with  60-80%  (v/v) 

 acetonitrile.  The  acetonitrile  was  removed  under  vacuum,  and  the  peptides  were 

 resuspended in 50 µL ammonium bicarbonate 2% (v/v) acetonitrile and 0.1% (v/v) TFA. 

 2.4.5 Proteomic mass spectrometry 

 Bottom-up  proteomic  samples  were  run  by  Warwick  Proteomic  Facility.  The  protocol  used 

 is  as  follows.  A  5  µL  aliquot  of  extracted  peptides  (total  sample  volume  50  µl)  from  each 

 sample  was  analysed  by  means  of  nanoLC-ESI-MS/MS  using  an  Ultimate  3000/Orbitrap 

 50 



 Fusion  mass  spectrometer  (Thermo  Scientific)  using  a  60  minute  LC  separation  on  a  50  cm 

 column. 

 2.4.6 Proteomic search: Maxquant and Scaffold 

 MaxQuant  138  was  used  to  perform  a  database  search  of  LC-MS/MS  data  to  identify  protein 

 Scaffold  139  was  used  to  visualise  and  analyse  proteomics  data  sets.  Proteome  databases  for 

 Escherichia  coli  (  E.  coli),  Pseudomonas  aeruginosa  (PSEAE  ),  Burkholderia  pseudomallei 

 (BURKP  ), and  Homo sapiens  were acquired from (UNIPROT). 

 2.4.7 FT-ICR MS 

 20  µM  E.  coli  PBP3  was  diluted  into  50  mM  ammonium  acetate  and  washed  three  times 

 with  50  mM  ammonium  acetate  in  30  kDa  MWCO  1.5  mL  centrifugal  concentrators.  For  the 

 ceftriaxone  PBP3  sample  the  E.  coli  PBP3  was  preincubated  with  100  µM  ceftriaxone 

 sodium  salt.  The  20  µM  PBP3  in  50  mM  ammonium  acetate  was  diluted  to  5  µM  in  water. 

 All  FT-ICR  MS  experiments  were  run  and  analysed  by  Dr  Y.  Lam  (University  of  Warwick). 

 The  samples  were  injected  through  nano  electrospray  ionisation  and  run  on  Bruker  12 

 tesla Solarix FT-ICR MS. 

 2.4.8 MALDI-TOF 

 MALDI-TOF  samples  were  run  and  analysed  by  Dr  Y.  Lam,  who  had  also  developed  this 

 protocol.  Samples  for  MALDI-TOF  (Bruker  Microflex)  were  diluted  to  1  µM  in  1:1  water 

 with  0.1%  TFA:acetonitrile,  5  μl  of  the  sample  was  mixed  with  5µL  of  matrix.  1  µL  of  this 

 mixture  was  spotted  onto  the  grid.  Matrix  was  40  mg/mL  sinapinic  acid  dissolved  in  water 

 with  0.1%  TFA:acetonitrile  1:1.  The  Instrument  was  calibrated  with  bovine  serum  albumin 

 (BSA),  in  positive  ionisation  mode.  A  mass  range  of  10-200  kDa  was  collected  using  a  60HZ 

 nitrogen  laser  set  at  82%  strength.  2000  scans  were  accumulated.  Data  was  analysed  using 

 Bruker software. 
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 2.5 Chapter 5 specific techniques - synthetic cells 

 These are techniques specifically used in the creation and visualisation of synthetic cells as 

 described in Chapter 5. 

 2.5.1 Creating cell-free extract 

 A  colony  of  Rosetta  (DE3)  cells  was  picked  and  used  to  inoculate  1  L  of  cell-free 

 auto-induction  (CFAI)  media  in  a  2.5  L  Erlenmeyer  flask,  with  tunair  cap  124  .  The  culture 

 was  grown  at  30°C  shaking  at  200  rpm  for  16  hours  overnight.  The  protocol  followed  was 

 adapted  from  Levine  et  al.  124  .  The  following  day  the  culture  was  pelleted  at  5000  x  g  for  10 

 minutes  at  4°C.  It  was  then  washed  and  resuspended  with  50  mL  ice  cold  filtered  and 

 autoclaved  S30a  buffer  (14  mM  magnesium  glutamate,  60  mM  potassium  glutamate, 

 50mM  TrisHCl,  2mM  DTT).  The  resuspended  cells  were  centrifuged  again  at  5000  x  g  for 

 10  minutes  at  4°C.  Pellet  was  then  flash  frozen  with  liquid  nitrogen  (even  if  lysate  was 

 being  prepared  the  same  day).  The  frozen  pellet  was  resuspended  with  1  mL  per  1  g  of 

 pellet  with  S30a  buffer  (resuspension  via  vortexing  and  resting  on  ice).  The  cell  solution 

 was  then  sonicated  at  50%  in  an  ice-salt  bath.  Three  cycles  of  30  seconds  on  and  1  minute 

 off  were  used.  The  lysate  was  centrifuged  at  18  000  x  g  for  15  minutes  at  4°C.  The 

 supernatant  was  collected,  and  concentrated  in  a  3000  Da  MWCO  centrifugal  concentrator. 

 The concentrated supernatant was aliquoted, flash frozen, and stored at -80°C till use. 

 2.5.2 Cell-free protein synthesis reaction 

 Cell-free  protein  synthesis  (CFPS)  reactions  were  set  up  according  to  the  work  of  Noireaux 

 et  al  .  129,140–144  .  Prior  to  full-scale  CFPS  reactions,  each  cell-free  lysate  extract  required 

 adjustment  to  the  correct  magnesium  glutamate,  PEG-8000  conditions,  and  plasmid 

 concentrations.  Therefore  trial  CFPS  reactions  were  performed  in  small-scale  plate  reader 

 assays  in  a  PHERAstar  plate  reader  (BMG)  in  394  well  plates  (GREINER).  p70  a  -deGFP  129,140 

 plasmid  (Arbour  biosciences)  was  used  in  all  GFP  work.  For  all  CFPS  reactions  a  master 

 mix  was  always  prepared  to  avoid  pipetting  errors  as  the  reaction  contained  such  small 

 volumes.  The  reactions  were  incubated  for  2  hours  at  30°C  and  continuously  monitored  in 

 the PHERAstar (BMG). 
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 The  components  of  the  CFPS  reaction  are  described  in  Table  2.4  .  The  energy  solution  in 

 this  system  was  made  as  a  14x  stock,  composed  of;  700  mM  HEPES  (pH8),  21  mM  ATP  and 

 GTP,  12.5  mM  UTP  and  CTP,  3.64  mM  coenzyme  A,  4.62  mM  NAD,  cAMP  10.5  mM,  0.95  mM 

 folinic acid, 14 mM spermidine, and 420 mM 3-phosphoglyceric acid. 

 Component  Stock concentration  Final Concentration 

 ATP  NAD  mix  (additional 

 supplement) 

 100 mM  1.5 mM 

 Green  fluorescent  protein 

 (deGFP) plasmid nM 

 481nM  15 nM 

 Crude extract  110 mg/mL  14 mg/mL 

 Magnesium glutamate  100 mM  5 mM 

 Potassium glutamate  1000 mM  60 mM 

 DTT  1000 mM  60 mM 

 Amino Acid solution  100 mM  1.5 mM 

 Energy solution  14x  1x 

 PEG x8000  40% (w/v)  2 %(w/v) 

 tRNA  100 mg/mL  0.2 mg/mL 

 Maltodextrin  500 mM  35 mM 

 Table  2.4  The  components  of  the  CFPS  reaction.  The  energy  solution  is  composed  of 
 HEPES  pH  8,  ATP,  UTP,  CTP,  GTP,  Co-enzyme  A,  NAD,  cAMP,  folinic  acid,  spermidine  and 
 3-phosphoglyceric acid. 

 2.5.2.1 DNA preparation 

 For  all  cell-free  protein  synthesis  reactions  the  DNA  used  was  prepared  using  MAXI  prep 

 (Qiagen)  to  prevent  contamination  with  RNase.  The  DNA  was  quantified  using  the 

 Nanodrop (as mentioned earlier). 
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 2.5.3 Creating synthetic cells 

 2.5.4 Preparing synthetic lipids 

 The  lipids  used  in  this  work  were;  palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine  (POPC) 

 (Avanti),  E.  coli  polar  lipid  extract  (Avanti),  KDO2  -  lipid  A  (Avanti), 

 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine  (DOPE), 

 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol)  (DOPG), 

 1-oleoyl-2-{12-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]dodecanoyl}-sn-glycero-3-[phos 

 pho-rac-(1-glycerol)]  (NBD-PG)  (Avanti), 

 1,2-Dihexadecanoyl-sn-Glycero-3-Phosphoethanolamine  (Marina  Blue™  DHPE) 

 (Invitrogen).  When  the  lipid  was  purchased  it  was  resuspended  in  chloroform  (to  the 

 appropriate  concentration),  and  aliquoted  into  sealed  glass  vials  that  were  coated  in  foil. 

 Lipids  were  prepared  in  different  ways  depending  on  using  the  eppendorf  technique  or 

 the  microplate technique. 

 Eppendorf  technique  was  adapted  from  141,145  ;  for  this  technique  this  lipid  was  dissolved 

 to  a  concentration  of  20  mg/mL  in  chloroform.  40  µL  if  this  was  mixed  into  400  µL  of 

 mineral  oil,  this  was  incubated  at  65°C  for  1  hour  for  the  chloroform  to  evaporate.  The 

 lipid-oil solution was then desiccated overnight to remove residual chloroform. 

 Microplate  technique  was  adapted  from  146,147  ;  for  this  technique  the  lipids  were  made  up 

 to  a  concentration  of  8  mM.  The  E.  coli  lipid  extract  had  a  reported  phospholipid  profile  of 

 67%  (w/w%)  phosphatidylethanolamine,  23.2  (w/w%)  phosphatidylglycerol,  and  9.8% 

 cardiolipin,  as  such  the  weighted  average  of  this  (798.64  g/mol)  was  used  to  calculate  the 

 molarity.  To  a  glass  5  mL  vial,  75  µL  of  lipid  stock  and  1.5  µL  of  500  µM  fluorescent 

 membrane  stain  Dil  iodide  [1,1-Dioctadecyl-3,3,3,3-  tetramethylindocarbocyanine  iodide] 

 (AATBio)  was  added  and  dried  under  nitrogen  stream.  Then  in  an  ATMOS  dry  bag  (Sigma) 

 1.5  mL  of  mineral  oil  was  added  to  the  lipid,  giving  a  final  concentration  of  400  µM  lipid  in 

 mineral  oil,  and  0.5  µM  Dil  iodide.  The  lipid  mineral  oil  mix  was  sonicated  in  a  30°C  water 

 bath for 1 hour, and then was left incubated at room temperature overnight. 

 2.5.5 Feeding Solutions 

 The  solution  surrounding  the  formed  GUVs  is  known  as  the  outer  solution  or  as  the 

 ‘feeding  solution’  (Nouireaux  et  al.  141  ).  It  can  be  formed  in  three  ways.  The  simplest  is  F1 
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 which  consists  of;  PBS  and  200-400  mM  glucose  (depending  on  the  osmolarity  of  the 

 solution  encapsulated  by  GUVs).  F2  is  the  S30a  buffer  (  mentioned  in  section  2.5.1  ) 

 supplemented  with  PEG  x8000  2%  (w/v),  and  35mM  maltodextrin.  The  most  complex 

 feeding  solution  F3  contains  all  of  the  components  of  the  CFPS  reaction  without  the  DNA 

 or  lysate;  S30a  buffer,  1.5  mM  amino  acids,  1x  energy  solution  (  composition  mentioned  in 

 section 2.5.2  ), 35mM maltodextrin, 0.2mg/mL tRNA. 

 2.5.6 Preparing Synthetic Cells in  Eppendorf method 

 To  create  synthetic  cells  in  eppendorfs,  a  20  µL  reaction  of  CFPS  was  supplemented  with 

 80  mM  glucose  (final  volume).  This  mixture  was  added  on  top  of  the  lipid-mineral  oil 

 mixture  and  vortexed  for  30  seconds,  the  CFPS-lipid  in  oil-and  glucose  solution  was  then 

 left  to  equilibrate  on  ice  for  10  minutes.  This  solution  was  layered  onto  200  µL  of  a  feeding 

 solution.  The  feeding  solution  contained  the  same  components  as  the  regular  CFPS  set  up, 

 without  crude  extract  and  plasmid.  This  mixture  was  then  centrifuged  for  30  minutes  at  16 

 000  x  g  which  resulted  in  the  pelleting  of  giant  unilamellar  vesicles  (GUVs)  which 

 contained  the  cell  free  mixture.  This  solution  was  incubated  at  30°C  for  2  hours,  with 

 DNase before imaging under argon laser confocal microscopy. 

 2.5.7  Preparing  Synthetic  cells  and  GUVs  bulk  production  using  microplate 

 method 

 Glass  bottom  96-well  plates  (Corning)  were  used  to  bulk  produce  liposomes.  Plates  were 

 coated  with  30  μL  of  2  mg/mL  BSA,  which  was  allowed  to  incubate  for  an  hour.  The  excess 

 BSA  was  removed,  and  the  wells  were  washed  with  100  μL  of  outer  solution  also  known  as 

 feeding  solution.  The  outer  solution  or  feeding  solution  used  depending  on  the  experiment, 

 a  mixture  of  F1,  F2,  and  F3  were  used  in  different  applications.  The  optimised  method  is  as 

 followed;  50  µL  of  the  chosen  outer  solution  was  added  to  each  coated  well.  Then  the  plate 

 was  transferred  to  a  dry  bag  (ATMOS  Sigma)  flushed  three  times  and  filled  with  nitrogen 

 for  the  rest  of  the  protocol.  From  here  20  µL  of  400  µM  lipid  in  mineral  oil  was  added 

 carefully  on  top  of  the  outer/feeding  solution  to  form  an  interface.  This  was  incubated  for 

 thirty  minutes.  An  emulsion  was  made  of  5  µL  inner  solution  (either  CFPS  or  purified 

 protein)  in  250  µL  of  400  µM  lipid  in  mineral  oil.  This  was  mechanically  agitated  by 

 dragging  the  eppendorf  across  an  eppendorf  rack.  50  µL  of  this  emulsion  was  added  on  top 
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 of  the  interface.  The  plate  was  removed  from  the  dry  bag,  and  spun  at  300  x  g  for  3  minutes 

 to form the GUVs. 

 2.5.8 Imaging synthetic cells and GUVs in microplate 

 Synthetic  cells  generated  by  the  microplate  technique  were  visualised  in  the  microplate 

 due  to  the  optimised  glass  bottom  of  the  plate.  All  confocal  fluorescence  microscopy  was 

 done  using  ZEISS  LSM  550  microscope  (Warwick  Imaging  Suite).  The  fluorophores  and 

 their  relevant  wavelengths  are  supplied  in  the  table  (  Table  2.5  )  below.  The  Zeiss  880  has 

 laser  lines  for  405  (Diode),  458  (Argon),  488  (Argon),  514  (Argon),  561  (diode),  633  nm 

 (HeNe).  The  relevant  lasers  and  filters  were  used  for  each  fluorophore.  When  multiple 

 fluorophores  were  used,  the  ‘best  scan’  option  was  used  for  visualising  both  fluorophores. 

 In  general  the  following  options  were  used;  1024x1024,  bit  depth  of  12,  max  speed,  laser 

 at  2%,  max  speed,  1  AU  (airy  unit).  Different  experiments  called  for  different  types  of 

 images,  as  such  tile  scans,  z-  stacks,  and  time  series  were  used.  When  a  tile  scan  was  called 

 for,  a  bounding  grid  method  was  employed.  For  a  time  series  experiment,  a  scan  was  taken 

 every  3  minutes  for  2  hours.  Data  from  microscopy  experiments  were  analysed  using  FIJI 

 ImageJ  137  software  to  create  the  final  images  shown.  In  general  most  images  had 

 brightness  and  contrast  auto  corrected.  Z-stacks  were  merged,  colour  channels  were 

 overlaid. 

 Fluorophore  Absorbance/ Excitation (nm)  Emission (nm) 

 deGFP protein  488  510 

 mPlum protein 

 (a kind gift from M. Sambrook) 

 590  648 

 Dil Iodide (AATBio)  550  564 

 Marina Blue DHPE (Invitrogen)  365  460 

 16:0-12:0 NBD PG (Avanti)  461  534 

 Calcein  495  515 

 Table 2.5 The fluorophores used in this work, and their excitation and emission values. 
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 2.5.9 Calcein leakage assay 

 To  test  the  effect  of  antimicrobial  peptides  on  GUVs  a  calcein  leakage  assay  was  done 

 following  protocols  adapted  from  Tamba  et  al.  2005  148  ,  and  Moniruzzaman  et  al  .  2015  149  .  In 

 this  work  1  mM  calcein  was  encapsulated  (inner  solution)  in  GUVs  (using  microplate  GUV 

 method).  This  experiment  was  done  using  an  asymmetric  lipid  bilayer  that  consisted  of 

 KDO2-lipid  A  on  the  outer  membrane,  and  E.  coli  phospholipid  on  the  inner  membrane 

 (400  µM).  The  polymyxin  50  µM  was  added  to  the  outer  solution,  so  after  the  GUVs  were 

 formed they were in contact with the polymyxin. 

 2.6 Chapter 6 specific techniques - machine learning 

 In  Chapter  6  (using  machine  learning  to  predict  permeability)  there  were  two  sources  of 

 data;  one  from  MICs  generated  according  to  section  2.1.9  and  the  second  from  an 

 open-source  database  of  permeability  results  (SPARK).  The  compounds  in  the  databases 

 were  converted  into  a  molecular  (mathematical)  representation  in  four  ways; 

 physiochemical  descriptors,  Mol2Vec  algorithm  150  ,  extended-circular  fingerprints  151 

 (ECFPs),  and  by  graph  representations  152  .  These  molecular  representations  were  then  used 

 to  train  three  different  types  of  models;  a  multi-layer  perceptron,  random  forest  model, 

 and  a  graph  convolutional  model.  More  details  describing  these  concepts  can  be  found  in 

 Chapter 6  . 

 2.6.1 The initial permeability dataset (generated in-house) 

 The  initial  permeability  database  used  for  the  machine  learning  algorithm  was  based  on 

 MIC  results.  Methods  of  undertaking  MICs  were  outlined  in  section  2.1.9  and  the  E.  coli 

 strains  used  were  mentioned  in  2.1.2.  Other  strains  that  were  also  used  were  Pseudomonas 

 aeruginosa  PAO1  and  Staphylococcus  aureu  s  ATCC  29213  were  also  used  in  this  work. 

 Below  is  a  list  of  antibiotics  used  in  this  work.  All  antibiotics  were  made  up  to  a  starting 

 concentration of 3.2 mg/mL in water or DMSO and stored at -20°C until use. 
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 β-lactams 
 1.  Flucloxacillin 
 2.  Methicillin 
 3.  Penicillin G 
 4.  Ampicillin 
 5.  Carbenicillin 
 6.  Amoxicillin 
 7.  Piperacillin 
 8.  Azlocillin 
 9.  Nafcillin 
 10.  Cefsulodin 
 11.  Cefaclor 
 12.  Cefoxitin 
 13.  Cephalexin 
 14.  Cephalothin 
 15.  Cefepime 
 16.  Cefoperazone 
 17.  Cefotetan 
 18.  Ceftazidime 
 19.  Cefotaxime 
 20.  Ceftriaxone 
 21.  Cefixime 
 22.  Aztreonam 

 Macrolides 
 1.  Clarithromycin 
 2.  Dirithromycin 
 3.  Azithromycin 

 4.  Clindamycin 
 5.  Erythromycin 
 6.  Telithromycin 

 Glycopeptide 
 1.  Vancomycin 
 2.  Dalbavancin 
 3.  Oritavancin 
 4.  Teicoplanin 
 5.  Telavancin 

 Oxazolidinones 
 1.  Linezolid 
 2.  Tedizolid 

 Quinolones 
 1.  Oxolinic acid 
 2.  Levofloxacin 
 3.  Fleroxacin 
 4.  Ciprofloxacin 
 5.  Sparfloxacin 

 Aminoglycoside 
 1.  Amikacin 
 2.  Neomycin 
 3.  Gentamicin 
 4.  Spectinomycin 

 Tetracycline 
 1.  Minocycline 
 2.  Doxycycline 

 Polymyxins 
 1.  Polymyxin B 
 2.  Colistin 

 Other 
 1.  Metronidazole 
 2.  Fusidic acid 
 3.  Novobiocin 
 4.  Chloramphenicol 
 5.  Nitrofurantoin 
 6.  Phosphomycin 
 7.  Rifampicin 
 8.  Trimethoprim 
 9.  Daptomycin 
 10.  Triclosan 
 11.  d-Cycloserine 
 12.  6-Aminopenicillani 

 c acid 
 13.  Quinidine 
 14.  Sulbactam 
 15.  β-lactamase (  E. 

 faecalis  ) 

 The  relative  change  between  BL21  E.  coli  ,  and  BL21  E.  coli  treated  with  0.0625  μg/mL 

 polymyxin  B  determined  the  permeability  classes  assigned  to  the  compounds.  With 

 compounds  whose  MICs  stayed  the  same  with  polymyxin  treatment  being  categorised  as 

 Class  0  -  whereby  permeability  is  not  a  major  issue.  Whereas  compounds  that  exhibited  a 

 large  difference  between  wildtype  and  hyperpermeable  strain  were  classified  as  either  1,  2 

 or 3 depending on the degree of difference. 

 2.6.2 Second permeability dataset - from open-source platform 

 Using  the  CO-ADD  SPARK  platform  a  new  dataset  was  generated  by  searching  their 

 available  platform  for  compounds  with  MIC  results  for  wild  type  and  hyperpermeable 

 strains  of  E.  coli  .  The  newly  curated  dataset  was  checked  for  null  or  repeated  compounds 

 which were removed. 
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 2.6.3 Software packages used in Chapter 6 

 Both  datasets  were  created  on  Google  Collaboratory  notebooks,  using  Pandas  and  Numpy 

 packages.  All  the  graphs  were  created  using  Matlab  Plot  and  Seaborn  libraries.  The 

 molecular  descriptions  of  compounds  were  created  using  RDKit,  Mol2Vec,  and 

 DeepChem  153  packages.  The  models  were  created  using  primarily  DeepChem  153  and  also 

 Scikit learn, WandB, Keras, and tensorboard. 

 2.6.4 Molecular representations of compounds 

 The  compound  structural  information  is  denoted  in  a  SMILES  format  in  both  datasets. 

 These  SMILES  had  to  be  converted  to  mathematical  molecular  representations  to  train  the 

 models.  This  was  done  in  four  ways;  physicochemical  descriptors,  Mol2Vec  150  ,  Extended 

 connectivity fingerprints  151  (ECFP) and Graph representations  152  . 

 To  convert  the  compounds  to  physicochemical  descriptors,  RDKit  154  descriptor  function 

 and  fragment  functions  were  used  to  return  the  values.  These  physicochemical  descriptors 

 were  used;  the  number  of  rotatable  bonds,  molecular  weight,  number  of  carboxylic  acids, 

 number  of  amines,  number  of  hydrogen  bond  acceptors,  number  of  hydrogen  bond  donors, 

 LogP,  globularity,  number  of  heterocycles  and  number  of  pyridines.  This  means  for  each 

 compound  there  were  numerical  features  generated  for  each  descriptor,  and  these  were 

 the inputs for the model. 

 Extended  connectivity  fingerprints  151  were  generated  using  DeepChem's  'featurising’ 

 tool  153  .  In  each  compound,  the  neighbouring  atoms  were  mapped  with  a  radius  of  3;  the 

 mapping  gives  each  substructure  a  numerical  value.  The  unique  numerical  values  from  a 

 compound are transformed into a bit vector string of 1024 values. 

 Mol2Vec  150  was  used  to  create  molecular  representations  using  a  Morgan  fingerprint  155 

 (similar  to  ECFPs)  with  a  radius  of  1.  The  substructures  generated  from  Morgan 

 fingerprints  have  a  numerical  ‘identifier’.  Mol2Vec  model  was  pretrained  on  20  million 

 compounds  and  has  embedded  the  chemical  space  between  compounds  150  .  The  numerical 
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 identifiers  are  fed  into  the  pre-trained  Mol2Vec  model,  which  returns  a  300  dimension 

 matrix for each compound  150  . This makes the input  for models a 300 dimension vector. 

 For  the  graph  convolutional  model  152  ,  molecular  representations  are  learnt  during  the 

 training.  In  the  graphs,  the  atoms  become  nodes,  and  bonds  become  edges;  information 

 about  the  molecule  is  learnt  by  aggregating  information  from  surrounding  atoms  and 

 updating  the  atom.  The  graph  convolutional  model  comes  from  work  by  Duvenaud  2015  152 

 and is implemented by DeepChem  153  . 

 2.6.5 The models used to predict permeability 

 The  first  model  used  to  predict  permeability  was  a  small  multi-layer  perceptron  .  It  was 

 built  using  SKLearn.  The  dataset  had  63  compounds,  four  permeability  classifications,  and 

 12  physicochemical  descriptors.  First,  the  data  was  split  into  three  stratfield  K  -folds. 

 Following  this,  the  features  are  scaled  using  ‘MinMaxScaler’  to  a  value  between  0  and  1. 

 The  model  was  a  ‘Sequential’  model,  with  a  dense  input  layer  of  12  with  a  ‘rectified  linear 

 use’  activation,  followed  by  a  dense  hidden  layer  of  8  with  a  ‘rectified  linear  use’  activation 

 function,  with  a  final  dense  layer  of  4  neurons  again  with  a  ‘softmax  cross  entropy’ 

 activation.  The  model  was  compiled  with  an  ‘SGD’  optimiser,  and  the  loss  function  used 

 was  ‘categorical  cross  entropy’.  A  validation  callback  that  monitored  ‘value  loss’  was  used 

 to prevent overfitting. 

 The  second  model  created  was  a  multilayer  perceptron  .  The  dataset  used  was  the  750 

 compounds  from  the  SPARK  dataset.  The  compounds  were  featurised  into  a  300 

 dimension  vector;  the  values  returned  by  physicochemical  descriptors  were  also  used  to 

 increase  the  dataset's  features  to  317.  The  model  used  was  a  ‘sequential’  Keras  model;  the 

 first  input  layer  was  a  dense  layer  with  317  neurons  and  a  ‘rectified  linear  use’  activation 

 function.  This  fed  into  a  dense  layer  of  300  neurons  and  ‘rectified  linear  use’  activation 

 function,  followed  by  a  dropout  layer  of  0.2.  This  fed  forward  into  another  dense  hidden 

 layer  of  300,  with  the  same  activation  function.  This  fed  into  another  dropout  layer  of  0.2, 

 which  finally  fed  into  a  dense  output  layer  with  three  neurons  (3  classes),  with  a  ‘soft  max’ 

 activation  function.  The  model  was  compiled  with  ‘sparse  cross  entropy’  loss,  an  ‘SGD’ 

 optimiser,  and  a  validation  callback  was  used.  The  average  results  of  5  stratified  K  folds 

 were reported. 
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 The  third  type  of  mode  l  used  was  the  graph  convolutional  model  .  The  model  was  built  in 

 DeepChem  153  ,  using  the  model  architecture  described  by  Duvenauld  et  al.  152  .  In  this  model, 

 the  input  for  each  compound  is  an  input  of  75  atomic  features,  and  adjacent  atoms  are 

 used  to  generate  graph  representations  for  each  molecule  152  .  The  model  has  two 

 convolutional  blocks,  one  gathering  block  and  one  final  output  layer.  Molecules  are  fed  into 

 the  model  in  ‘batches’,  and  a  batch  size  of  11  was  used.  Each  convolutional  block  has  graph 

 convolutional  layers  with  128  neurons,  using  a  ‘tanh’  activation  function;  this  is  fed  into  a 

 batch  normalisation  layer,  which  is  then  fed  into  a  graph  pooling  layer.  After  the  two 

 convolutional  blocks,  there  is  a  gathering  block  which  consists  of  one  dense  layer  of  256 

 neurons  with  a  ‘tanh’  activation  function,  followed  by  a  batch  normalisation  layer,  into  a 

 graph  gathering  layer  using  a  ‘tahn’  activation  function.  This  is  fed  into  a  final  output  layer 

 which  consists  of  three  neurons  for  the  multiclass  and  two  neurons  for  the  binary  class. 

 The  loss  function  used  was  ‘Categorical  Cross  Entropy’.  The  dataset  was  split  into  train,  test 

 and validation datasets (80:10:10). 

 Th  e  fourth  type  of  model  used  was  a  Random  Forest  model;  it  was  created  using  the 

 DeepChem  program,  which  had  an  SKlearn  wrapper,  meaning  the  root  of  functions  used  in 

 this  model  were  from  Sklearn.  Before  using  this  tree,  the  dataset  was  split  into  train  test 

 and  validation  datasets  (80:10:10).  The  datasets  were  transformed  with  a  normalisation 

 transformation  function  on  the  y  data.  For  this  ensemble  model,  100  estimators  (number 

 of  trees  in  the  model)  were  used.  The  ‘max  feature’  function  determined  the  split  in  the 

 trees,  and  the  ‘auto’  function  was  used;  this  uses  the  square  root  of  the  input  features 

 (√1024 in this case), meaning random 32 features were used to determine the split. 

 The  database  and  the  successful  models  (binary  GCN  and  RF)  were  uploaded  to  github  and 

 are available at:  https://github.com/amhen/abx_perm_ML 
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 Chapter 3. iAmp – a quantifiable β-lactam? 

 3.1 Background 

 3.1.1 β-lactam Permeability 

 Penicillins  make  up  50%  of  the  prescribed  antibiotics  in  UK  primary  care;  it  is,  therefore, 

 essential  to  better  understand  the  mechanisms  that  allow  drug  permeation  into 

 Gram-negative  bacteria  156  ,  which  are  intrinsically  more  resistant  to  antibiotics  due  to  their 

 outer  membrane.  This  outer  membrane  is  both  selective  and  restrictive,  and  as  such,  it  has 

 channels  known  as  porins  that  allow  essential  nutrients  to  enter.  Porins  allow  small  (under 

 600  Da)  hydrophilic  compounds  to  cross  the  membrane,  so  they  are  a  key  entry  point  for 

 antibiotics,  including  β-lactams  (Figure  3.1  )  157,158  .  The  most  abundant  proteins  in  the  E. 

 coli  outer  membrane  are  the  porins  OmpF  and  OmpC,  both  are  β-barrel  homotrimers  55,56  . 

 Porins  allow  the  passage  of  hydrophilic  molecules  as  the  inside  of  the  channel  is  lined  with 

 hydrophilic residues  55  (Figure 3.1.B.i). 

 Porin  channels  have  extracellular  loops  and  transmembrane  turns.  The  third  extracellular 

 loop  folds  into  the  centre  of  the  porin  and  is  known  as  the  constriction  zone  159  (Figure 

 3.1.C)  .  It  is  thought  that  there  are  molecular  interactions  in  the  porin  that  confer  selectivity 

 in  this  constriction  zone  59  .  As  a  mechanism  of  antibiotic  resistance,  porins  can  be  lost  or 

 mutated  to  achieve  resistance  through  impeding  permeability  65,160  .  There  are  mutations  in 

 the  constriction  zone  that  are  thought  to  reduce  the  permeability  of  β-lactams  59,65,160  . 

 Establishing  a  universal,  sensitive  and  specific  method  that  could  measure  β-lactams 

 travelling through the porins would benefit our understanding of penicillin permeability. 
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 Figure  3.1  A  depiction  of  E.  coli  cells  where  porins  are  present  in  the  outer 
 membrane.  They  have  hydrophobic  residues  (in  reds  and  oranges)  on  the  outside  of  the 
 channels  to  interact  with  the  lipid  environment  of  the  membrane  and  hydrophilic  residues 
 (in  blue)  lining  the  porin  channel  which  enable  the  transit  of  hydrophilic  molecules  such  as 
 β-lactams.  Figure  3.1.B  (i  and  ii)  illustrates  a  monomer  of  OmpF  with  a  single  channel, 
 though  typically  found  as  a  homotrimer.  Figure  3.1.Ci  highlights  (in  pink)  an  extracellular 
 E.  coil  -loop  structure  that  extends  into  the  channel  and  functionally  constrict  the  channel  . 
 The  narrowness  of  the  constriction  zone  is  exemplified  in  space  filling  model  3.1.C(ii)  . 
 Figure  was  created  using  Biorender  and  Chimera  161  ,  the  protein  structure  used  was 
 accession number 2ZFG  162  . 

 3.1.2 Fluorescent antibiotics 

 Fluorescent  techniques  allow  biologists  to  visualise  both  biological  and  chemical 

 processes.  Fluorescent  antibiotics  allow  the  study  of  the  interactions  between  drugs  and 

 bacteria.  Consequently,  they  are  conducive  to  observing  drug  permeability  163  .  Some 

 antibiotics,  such  as  fluoroquinolones,  have  weak  intrinsic  fluorescence,  which  means  the 

 drug  can  be  monitored  68,79  .  Fluoroquinolones  such  as;  ofloxacin,  ciprofloxacin  and 

 norfloxacin  contain  quinolone  groups,  which  exhibit  fluorescence  qualities  when  excited  at 

 the  appropriate  wavelength.  As  such,  fluoroquinolones  have  been  used  to  study 

 permeability.  Fluoroquinolones  have  been  used  in  microfluidic  chips  to  monitor  the 

 permeability  across  lipid  layers  and  through  porins  68,79  ,  and  more  recently  to  monitor 

 permeability  across  single  cells  83,85  .  Fluorescent  antibiotics  have  allowed  the  authors  to 
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 monitor  the  accumulation  and  subcellular  localisation  of  antibiotics  in  a  label-free 

 method  83  . 

 Unlike  fluoroquinolones,  most  β-lactams  are  not  innately  fluorescent;  this  impedes  the 

 monitoring  of  β-lactam  permeability.  Antibiotics  can  be  modified  with  fluorescent  groups, 

 which  can  help  visualise  accumulation.  However,  fluorescent  analogues  tend  to  have 

 lowered  efficacy;  the  addition  of  fluorophores  will  impact  structure-activity  relationship 

 (SAR)  studies  86,164  .  The  reduced  efficacy  could  be  due  to  either  a  reduced  affinity  to  the 

 target  or  an  alteration  in  permeability.  Permeability  can  be  reduced  by  an  increase  in 

 negative  charge  164  .  Alternatively,  the  changes  to  the  molecule  could  alter  the  natural 

 permeability  process  for  a  compound.  Fluorescent  groups  tend  to  have  lipophilic 

 characteristics,  meaning  the  addition  of  the  fluorophore  could  change  the  properties  of 

 compounds,  thus  affecting  the  permeability  of  the  drug  163  . This  prohibits  the  investigation 

 of  the  permeability  of  these  compounds.  Bocillin  is  a  popular  fluorescent  β-lactam  often 

 used  in  SAR  studies;  this  is  a  bodipy-fluorophore  conjugated  onto  penicillin  (  Figure  3.2)  134  . 

 Bocillin  has  enabled  many  drug  interactions  to  be  studied  and  is  frequently  used  to 

 examine  the  affinity  of  PBPs  for  different  antibiotics  via  inhibition  competition  assays  134  .  It 

 is  also  often  used  in  visualisation.  However,   having  the  bodipy  group  on  the  β-lactam  adds 

 lipophilicity,  meaning  it  may  bypass  the  porins  and  slowly  translocate  through  the  lipid 

 layer.  As  a  result,  it  cannot  be  used  to  study  porins.  Therefore  having  a  β-lactam  with 

 demonstrable  fluorescent  properties  would  be  helpful  to  understand  Gram-negative 

 permeability. 

 Figure 3.2 Structure of bocillin.  The bodipy group  is highlighted in green. 
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 3.1.3 iAmp 

 Kotagiri  et  al.  135  reported  the  discovery  of  a  fluorescent  degradation  product  of  ampicillin 

 that  retains  the  β-lactam  ring  of  ampicillin.  They  named  the  compound  iAmp.  Kotagiri  et 

 al.  135  reported  the  mass  of  iAmp  as  348.8  Da  and  the  mass  of  ampicillin  to  be  349.4  135  .  They 

 proposed  that  an  oxidative  deamination  reaction  at  the  primary  amine  leads  to  the 

 creation of this fluorescent derivative  (Figure 3.3)  . 

 Figure  3.3  The  proposed  structure  of  iAmp.  The  formation  of  iAmp  as  described  by 
 Kotagiri  et  al  .  135  ,  in  blue  is  the  β-lactam  ring,  and  in  pink  is  the  primary  amine  of  ampicillin. 
 iAmp  is  thought  to  lose  its  primary  amine  -  gaining  a  ketone  group.  The  β-lactam  ring 
 inhibits  PBPs  covalently  binding  to  the  highly  conserved  active  site  serine  residue. 
 Therefore,  maintaining  the  integrity  of  the  β-lactam  ring  is  key  for  functionality 
 comparisons. 

 If  iAmp  maintains  the  β-lactam  ring,  it  may  be  a  good  substitute  for  monitoring  ampicillin 

 permeability  fluorescently.  and,  for  example,  using  the  microfluidic  accumulation  method 

 used  to  study  quinolones,  which  are  innately  fluorescent  68,79  ,  or  more  broadly  by  looking  at 

 fluorescence  polarisation.  There  is  an  established  bocillin  fluorescence  polarisation  assay 

 that  is  used  to  screen  for  inhibitors  of  PBPs  165  .  When  bocillin  is  excited  with  polarised  light 

 it  has  rapid  rotation  due  to  its  small  size,  leading  to  depolarised  light  emission.  In  contrast, 

 when  bocillin  is  bound  to  PBPs  it  has  a  much  slower  rotation  (because  of  the  large  size  of 

 the  complex),  leading  to  polarised  light  being  emitted.  As  β-lactams  have  a  higher  affinity 

 for  PBPs  than  bocillin  so  they  displace  the  binding  of  bocillin,  so  depolarised  light  is 

 emitted.  Ideally  iAmp  could  be  used  in  place  of  bocillin,  and  this  assay  could  be  used  as  a 

 proxy  for  permeability.  The  research  presented  in  this  chapter  aimed  to  validate  the 

 reported  structure  iAmp,  the  method  used  to  produce  it,  and  evaluate  its  use  in  the  study 

 of the permeability of β-lactams. 
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 3.1.4 Research aims 

 ●  Synthesise and purify the previously reported fluorescent derivative of ampicillin 

 ●  Establish  if  this  fluorescent  product  of  ampicillin  degradation  can  be  used  to 

 quantify the permeability of β-lactams. 

 ●  Investigate  the  effect  of  outer  membrane  contributions  from  porins  and  lipid 

 layers on the permeability of β-lactams. 

 3.2 Results and Discussion 

 3.2.1 Synthesis of iAmp 

 Kotagiri  et  al.  135  report  the  formation  of  a  fluorescent  derivative  of  ampicillin  upon  heating 

 to  99°C.  To  replicate  this,  10  mg/mL  of  ampicillin  was  heated  in  a  thermal  cycler  (Agilent 

 SureCylcer  8800)  at  99°C  for  two  hours.  The  heat  degradation  of  ampicillin  led  to  an 

 observable  yellow  colour  change  in  white  light.  Under  ultraviolet  (UV),  blue  light  was 

 emitted  from  the  heat-treated  ampicillin,  iAmp  (  Figure  3.4  ).  The  fluorescent  excitation  and 

 absorption  spectrum  were  as  described  by  Kotagiri  et  al.  135  (Figure  3.5)  .  The 

 heat-degraded  ampicillin  demonstrates  the  same  fluorescence  observed  by  Kotagiri  et 

 al.  135  . 

 Figure  3.4  Eppendorfs  containing  ampicillin  on  the  left,  and  iAmp  on  the  right, 
 visualised  in  gel  imager.  Ampicillin  and  iAmp  are  visualised  on  a  UV-gel  doc.  The  iAmp 
 sample  appears  saturated  and  in  this  image  black,  whereas  the  ampicillin  sample  does  not 
 emit any light at this wavelength so appears transparent. 
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 Figure  3.5  Fluorescence  spectrum  of  the  compound  purified  by  High-performance 
 liquid  chromatography  (HPLC).  The  observed  fluorescence  is  inline  with  that  which  was 
 reported  by  Kotagiri  et  al.  135  . The  excitation  is  highest  at  ~350  nm.  Emission  (at  an 
 excitation wavelength of 350 nm) has a broader peak around 440-460 nm. 

 3.2.2 Purification of iAmp 

 To  investigate  the  structure  and  activity  of  the  fluorescent  derivatives  of  ampicillin,  the 

 heat-degraded  sample  (presumed  to  be  iAmp)  was  purified  by  preparatory  reverse  phase 

 C18  HPLC.  In  this  instance,  the  stationary  phase  (the  column)  was  hydrophobic,  meaning 

 compounds  that  are  less  polar  and  have  a  lower  hydrophobicity  will  have  a  greater  affinity 

 to  the  column.  In  this  purification,  the  mobile  phase  was  a  methanol  gradient  (5-95% 

 methanol).  As  a  result,  more  hydrophilic  and  polar  compounds  will  have  a  greater  affinity 

 for  the  methanol  and  elute  faster.  The  HPLC  separation  was  analysed/observed  using 

 fluorescence  detection  (Ex./Em.  350/450  nm)  and  absorbance  detection  (at  218,  254  and 

 280 nm). 
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 Figure  3.6  HPLC  elution  profile  of  ampicillin  and  iAmp  from  a  reverse  phase  C18 
 column  monitored  using  fluorescence  detection  Ex.  350nm/Em.  450  nm.  10  μL  of  10 
 mg/mL  sample  was  injected.  Flow  rate  3  mL/min,  gradient  5-95%  water:methanol. 
 Samples  were  monitored  fluorescently  at  Ex./Em.  350/450  nm,  and  via  absorbance  at  218 
 and 254 nm, which are shown below. 

 When  monitoring  the  separation  using  the  fluorescent  detector  at  Ex.  350  nm,  Em.  450  nm, 

 ampicillin  peaks  are  not  visible,  as  the  ampicillin  is  not  fluorescent  (  Figure  3.6  ).  There  are 

 fluorescent  peaks  at  the  end  of  the  run,  28  to  32  minutes,  and  33  to  36  minutes  (  Figure 

 3.6  ).  The  late  timing  of  these  peaks  suggests  that  the  fluorescent  compounds  have 

 hydrophobic  properties.  The  peaks  were  analysed  by  MS,  the  predominant  species  in  the 

 latest  peak  had  a  m/z  of  349,  the  major  species  in  the  other  peaks  were  not  consistent  with 

 the expected mass of iAmp. 

 HPLC  fractions  were  collected  at  different  wavelengths;  this  allowed  the  separation  of 

 ampicillin  from  iAmp  and  allowed  the  observation  of  different  chemical  characteristics. 

 Double  bonds  or  other  conjugated  systems  have  strong  absorbances  at  218  nm.  Ampicillin 

 demonstrated  two  characteristic  absorbance  peaks  at  218  nm  between  20  and  30  minutes 

 (  Figure  3.7  ),  resolvable  by  HPLC.  The  iAmp  chromatogram  recorded  at  this  wavelength 

 was  more  complex,  with  218  nm  absorbing  species  eluting  within  the  same  time  frame  as 

 the  two  prominent  peaks  in  the  ampicillin  sample  (  Figure  3.7  ).  These  peaks  could  be 

 consistent with the incomplete conversion of ampicillin to iAmp. 
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 Figure  3.7  HPLC  trace  of  iAmp  and  ampicillin  purified  by  reverse  phase  C18 
 monitored at 218 nm.  Sample loading as above. 

 Monitoring  reverse  phase  HPLC  at  254  nm  of  iAmp  allowed  detection  of  more  highly 

 conjugated  chemical  groups  such  as  delocalised  aromatic  species.  Again,  after  30  minutes, 

 large  peaks  eluted,  suggesting  that  the  compound  eluting  at  this  time  was  structurally 

 distinct from and more hydrophobic than ampicillin (  Figure 3.8)  . 

 Figure  3.8  HPLC  trace  of  iAmp  and  ampicillin  purified  by  reverse  phase  C18 
 monitored at 254 nm.  Sample loading as above. 

 The  compound(s)  derived  from  the  synthesis  of  iAmp  from  ampicillin  that  were  observed 

 by  HPLC  appeared  to  have  different  physicochemical  properties  than  ampicillin.  The 
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 fluorescence  emission  spectrum  of  iAmp  following  excitation  at  350  nm  differed  from 

 ampicillin  but  in  addition  to  this,  the  difference  in  absorption  at  254  nm  suggests  that  the 

 fluorescent  compound  possessed  different  characteristics  (  Figure  3.8  ).  The  fluorescent 

 compound  appeared  to  be  more  highly  conjugated  and  less  polar.  Notably,  the  latter 

 characteristic  suggested  a  potential  to  change  how  the  compound  enters  the  cell  relative  to 

 its  ampicillin  progenitor.  Ampicillin  passes  through  porins  which  are  channels  for 

 hydrophilic  compounds  55,166  ,  iAmp  seems  to  be  much  more  hydrophobic.  This  evidence 

 suggested that perhaps iAmp would not pass through the porins  .  

 Samples  were  collected  from  both  runs  according  to  their  peaks  at  254  nm  and  their 

 fluorescence  at  350/450  nm.  Fourteen  samples  from  20  to  38  minutes  were  taken  to  cover 

 the  five  main  peaks  (  Figure  3.8  ).  These  samples  were  taken  for  mass  spectrometric 

 analysis  to  look  at  the  predominant  species  in  each  peak.  Primarily  to  identify  the 

 fluorescent  peaks  for  iAmp  and  other  fluorescent  derivatives,  as  there  have  been  many 

 reports  of  fluorescent  ampicillin  derivatives.  Fluorescent  derivatives  of  ampicillin  were 

 first described by Jusko  et al.  in 1971  167  . 

 Furthermore,  Barbhaiya  and  Turner  in  1976  168  ,  noted  that  fluorescent  derivatives  are 

 formed  from  a  range  of  β-lactams  168  .  Jusko  et  al.  167  proposed  the  fluorescent  compound  to 

 be  diketopiperazine.  Following  this,  Uno  et  al.  169  identified  and  characterised  many 

 fluorescent  derivatives  of  ampicillin,  including  one  with  a  singly  charged  mass:charge  ratio 

 (  m/z  )  of  349.1: 

 2-hydroxy-3-phenyl-6-[aminophenylacetyl)amino]ethylpyrazine(2-hydroxy-3-phenyl-6-pe 

 nillomethyl  pyrazine)  169  .  This  observation  was  further  confirmed  by  Baertschi  et  al.  170  ,  who 

 identified and classified fluorescent compounds using HPLC, NMR, and MS. 

 3.2.3  Electrospray  ionisation  mass  spectrometry  of  key  HPLC 

 Peaks 

 The  HPLC  system's  automated  peak  detection  and  selection  function  led  to  collections 

 spanning  peaks  1  to  5  when  monitored  at  254  nm  (  Figure  3.8  ).  Positive-mode  electrospray 

 time-of-flight  MS  (  Figure  3.9  )  indicated  that  the  predominant  species  in  peaks  1  and  2 

 were  ampicillin,  sodiated  ampicillin,  and  oligomers  of  ampicillin  (  Table  3.1  for  a  list  of 

 masses  for  species)  (Figure  3.9)  .  Ampicillin  forms  oligomeric  species  due  to  a 
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 nucleophilic  attack  on  the  β-lactam  ring;  it  can  form  either  closed-cycle  or  open-cycle 

 oligomers  171,172  .  A  closed-cycle  dimer  is  an  oligomer  of  ampicillin  with  one  species  of 

 ampicillin  that  contains  a  β-lactam  ring,  whereas,  in  an  open-cycle  dimer,  both  rings  are 

 hydrolysed.  Closed-cycle  dimers  and  trimers  were  observed  172  (  Figure  3.9,  3.10  ).  The 

 observed masses in  Table 3.1  were tentatively assigned  based on literature from  172–175  . 

 Predicted monoisotopic 
 mass [M+H]+ 

 MS  2  (  m/z  ) 
 [M+H]+ 

 Structure 

 1  350.1174 
 (Ampicillin) 

 333 [Amp-NH  3  ]  + 

 160 
 192 

 2  324.1382 
 (Ampilloic acid) 

 673.2545 
 (Ampilloic acid dimer) 

 307 

 3  372.1001 
 (Sodiated ampicillin) 

 4  699.2272 

 (Closed-cycle dimer - 1 
 open ring) 

 540.1, 381.1 
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 5  1048.3368 
 (Closed-cycle trimer, 2 

 open rings) 

 524.8 [M+H]  2+ 

 889.29 loss of 
 thiazolidine ring 

 6  721.2091 
 (sodiated closed cycle 

 dimer, 1 open ring) 

 iAmp  Mass originally reported 
 as 348.8. However, 

 predicted [M+H]+ is 
 349.0858 (ChemDraw) 

 Table  3.1  Predicted  monoisotopic  masses  of  ampicillin  and  related  structures. 
 Masses and structures of some of the peaks identified based on  172–175 

 Below  are  time-of-flight  (TOF)  TOF-MS  ESI  spectra  from  the  peaks  collected  by  HPLC  for 

 the  ampicillin  samples.  The  first  spectrum  (  Figure  3.9A  )  is  from  the  earliest  predominant 

 peak  (peak  1).  ESI  MS  demonstrated  that  ampicillin  (  compound  1  in  Table  3.1  )  was  the 

 most  predominant  species  observed  (  Figure  3.9A  ).  The  spectrum  also  contained  peaks  of 

 the  isotope  peaks  351.1225  and  352.1185  (  Figure  3.9  annotated  with  blue  lettering  and 

 (i)  ).  An  ion  with  a  mass  of  333  (  m/z  )  was  present,  which  is  thought  to  be  ampicillin  after 

 an  ammonia  loss  [M  -  NH  3  ]  +  .  There  was  also  evidence  of  methanolysed  ampicillin  173  at  382 

 (  m/z  )  (  Figure  3.9A  1  mh  );  this  species  presence  could  be  due  to  the  methanol.  There  was 

 also  some  evidence  of  oligomerised  ampicillin,  with  an  ion  of  699  (  m/z  )  evident 

 (  compound  4  in  Table  3.1  ),  the  predicted  mass  of  closed-cycle  ampicillin  dimer  (  Figure 

 3.9A  peak  4  ).  There  were  also  peaks  at  700  and  701  due  to  isotopic  distribution  of  the 

 molecule  (  Figure  3.9A  peak  4  i  ).  The  peak  at  1048  is  indicative  of  a  closed-cycle  trimer 

 (  compound  5  in  Table  3.1  ),  supported  by  peaks  at  889  and  524  (  Figure  3.9A  peaks  5, 
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 5  (2)  ).  The  peak  at  889  could  be  a  fragment  ion  of  the  trimer  without  its  thiazolidine  ring, 

 and the peak at 524 is believed to be the doubly charged trimer species (  Figure 3.9A  ). 

 The  second  key  peak  in  the  ampicillin  sample  (  Figure  3.8  HPLC  peak  2  )  analysed  by  MS 

 also  demonstrated  the  presence  of  ampicillin  (  compound  1  Table  3.1  ).  There  was  a 

 sodiated  ampicillin  species  372  (  compound  3  Table  3.1  ).  There  was  evidence  of 

 closed-cycle  dimers  699  (  m/z  )  (  compound  4  in  Table  3.1  )  and  its  isotopic  variants  (  4i 

 Figure  3.9B  ).  There  was  also  evidence  of  closed-cycle  ampicillin  trimers  1048  (  m/z  ) 

 (  compound  5  in  Table  3.1  )  and  its  doubly  charged  species  at  524  (  m/z  )  (  compound  5  in 

 Table  3.1  );  also  present  was  an  ion  at  889,  thought  to  be  a  closed  cycle  dimer  with  a  loss  of 

 thiazolidine  (  Table  3.1  ).  The  second  HPLC  peak  appears  to  have  more  evidence  of 

 oligomerised ampicillin and other degradation products. 
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 Figure  3.9A-B  ESI  TOF  MS+  of  predominant  ampicillin  peaks  from  predominant  two 
 peaks  of  ampicillin  as  detected  in  HPLC  separation.  Key  peaks  labelled  with  an  orange 
 number  which  corresponds  to  a  structure  in  Table  3.1.  The  blue  numbers  represent  either 
 an  isotopic  distribution  of  the  main  peak  (n  i  )  or  a  daughter  ion  (2),  or  in  the  case  of 
 compound  1  (Table  3.1,  ampicillin)  [ampicillin  -  NH  3  ]  (a)  and  a  methanolysed  species  (mh). 
 The  first  spectrum  (A.)  has  a  predominant  peak  at  350.11  (m/z)  as  well  as  smaller  peaks 
 for  other  polymers  of  ampicillin.  Whereas  the  second  peak  (bottom  spectrum)  has  more 
 oligomerised  ampicillin  demonstrated  by  peaks  at  699.2  (m/z),  1048.3  (m/z),  and  their 
 daughter ions. 

 The  early  peaks  (1  and  2)  from  HPLC  (  Figure  3.8  )  of  the  iAmp  sample  are  presumed  to  contain 

 ampicillin  and  oligomers  of  ampicillin  (  Figure  3.10A  ).  MS  analysis  of  the  first  peak  in  the  iAmp 

 sample  showed  a  predominant  ion  at  350.11  (  m/z  )  -  presumed  ampicillin  (  compound  1  Table 

 3.1  )  (  Figure  3.10A  ).  The  second  most  predominant  ion  was  699.22  (  m/z  ),  presumed  to  be  a 

 closed-cycle  dimer  of  ampicillin  (  compound  4  Table  3.1  )(  Figure  3.10  ).  There  was  also 

 evidence  of  closed-cycle  dimers,  with  signals  at  1048.33,  899.3,  and  524.67  (  m/z  )  (  compound 

 5  in  Table  3.1  )  (  Figure  3.10A  ).  There  was  evidence  of  sodiated  species  of  ampicillin, 

 demonstrated  by  a  signal  at  372.1  (  m/z  )  (  compound  3,  Table  3.1  ).  In  conclusion,  the  first  peak 

 of  iAmp  to  come  from  the  HPLC  contains  unconverted  ampicillin,  and  the  patterns 

 demonstrated, in a large part, are similar to that of the ampicillin sample (  Figure 3.10A  ). 
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 Peak  two  of  the  iAmp  HPLC  run  (  Figure  3.8  )  demonstrated  more  products  of  degradation  and 

 oligomerisation  than  that  of  the  second  peak  of  ampicillin  or  that  of  iAmp’s  first  peak  (  Figure 

 3.10B  ).  The  predominant  ion  in  this  peak  appeared  to  be  the  closed-cycle  dimer  of  ampicillin 

 (  compound  4  Table  3.1  )  with  a  (  m/z  )  of  699.22  (  Figure  3.10B  ).  The  sodiated  version  of  the 

 dimer  was  evidenced  by  an  ion  at  721  (  m/z  )  (  compound  6  Table  3.1  )  (  Figure  3.10B  ).  There 

 was  evidence  of  other  oligomers  and  ampilloic  acids  (  compound  2  in  Table  3.1  )  (  Figure 

 3.10B  ).  There  was  still  evidence  of  ampicillin  in  the  second  peak  of  the  iAmp  sample,  as  an  ion 

 on  350.11  (  m/z  )  was  seen  in  Figure  3.10  (compound  1  in  Table  3.1)  .  The  second  peak  in  the 

 iAmp sample had more evidence of dimers and trimers. 

 Figure  3.10A-B  ESI  TOF  MS  of  iAmp  fractions  from  peaks  collected  at  the  first  (A)  and 
 second (B) peak of HPLC purification, observed at 254 nm. 

 As  previously  mentioned,  iAmp  elutes  later  in  the  run  (  Figure  3.6,  3.7  and  3.8  );  MS 

 analysed  these  later  peaks.  The  major  fluorescent  species  were  seen  between  29  to  33 

 minutes  and  between  33  to  36  minutes  when  fluorescent  detectors  were  used  (  Figure 
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 3.6  ).  The  fifth  peak  had  a  predominant  observed  species  (  m/z  )  of  349.1675  (  Figure  3.11 

 below)  .  Peak  number  4  had  a  predominant  ion  at  524.2000,  thus  peak  5  was  assumed  to 

 contain iAmp. 

 Figure  3.11  The  positive  mode  ESI  MS  spectra  of  major  fluorescent  peak  from  HPLC 
 separation  of  iAmp.  Top  spectrum  (A)  range  of  200  -  1200  (m/z),  and  bottom  spectrum 
 (B)  shows  a  range  of  200-400  (m/z).  The  predominant  species  has  a  (m/z)  of  349.1675 
 was  seen  -  annotated  with  “A”  in  orange.  There  was  also  a  peak  at  350.1696  which  could  be 
 an  isotope  of  the  major  species  (A).  There  was  also  a  peak  +  22  from  the  major  species, 
 thus  presumed  to  be  a  sodiated  version  of  the  compound.  There  was  a  peak  -17,  potentially 
 the  molecule  after  an  ammonia  loss.  There  was  also  a  peak  at  699,  speculatively  an 
 oligomeric version of the major species. 

 No  species  in  any  samples  were  observed  with  a  mass  of  348.8,  as  reported  by  Kotagiri  et 

 al.  135  .  The  predicted  mass  of  the  compound  (calculated  from  the  molecular  formula  of 

 iAmp)  should  be  348.0780  and  349.0858  when  protonated.  Here,  the  primary  fluorescent 

 compound  had  an  observed  protonated  mass  of  349.1675  (  m/z  )  (  Figure  3.11  );  this  differs 

 by  0.367  (349.1675-348.8)  relative  to  the  values  reported  by  Kotagiri  et  al.  135  .  This 

 difference  could  be  due  to  different  calibrations  or  sensitivities  of  the  mass  spectrometer. 
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 However,  the  observed  mass  (349)  (  Figure  3.11  )  is  aligned  with  other  literature  that 

 suggests  there  is  a  fluorescent  derivative  with  a  mass  of  349  [M+H]+,  that  demonstrates 

 the  same  fluorescent  properties  169  .  The  sample  collected  in  peak  5  was  presumed  to  be 

 iAmp. 

 3.2.4 Real-time analysis of iAmp synthesis 

 To  visualise  the  synthesis  of  iAmp  in  real-time,  quantitative  Polymerase  Chain  Reaction 

 (RT-qPCR)  equipment  (Agilent  Technologies  Stratagene  Mx3005P)  was  used.  The 

 equipment  can  rapidly  increase  and  sustain  extreme  temperatures  whilst  monitoring  a 

 broad  fluorescence  spectrum.  The  fluorescence  was  monitored  at  Ex.  350  nm  and  Em.  450 

 nm  using  water  as  a  control.  This  study  examined  four  conditions;  previously  synthesised 

 iAmp  (red),  ampicillin  degraded  to  iAmp  (green),  and  amoxicillin  (blue)  (Figure  3.12  ). 

 Amoxicillin  has  a  similar  structure  to  ampicillin  but  with  the  addition  of  a  hydroxyl  group 

 on the phenyl ring. 

 Figure  3.12  The  synthesis  of  iAmp  was  followed  using  RT-qPCR  equipment 
 monitored  at  Ex./Em.  350/450  nm.  In  black  is  the  water  control,  in  blue  is  amoxicillin,  in 
 red  is  already  synthesised  and  purified  iAmp,  and  green  is  the  ampicillin  sample  that 
 becomes iAmp with intense heat treatment. 

 The  Kotagiri  et  al.  135  paper  states  they  synthesised  iAmp  by  treating  ampicillin  at  99  °C  for 

 2  hours;  however,  the  fluorescent  derivative  was  created  within  the  first  30  minutes  of 

 incubation  (  Figure  3.12)  .  In  this  investigation,  after  30  minutes,  the  detector  was  flooded, 

 and  evaporation  occurred,  leading  to  a  drop  in  fluorescence.  This  experiment 
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 demonstrated  that  the  original  iAmp  is  very  heat  stable,  maintaining  fluorescence  despite 

 the  high  temperatures.  Amoxicillin  has  a  similar  structure  to  ampicillin,  except  for  the 

 hydroxyl  group  on  the  phenyl  group,  which  inhibits  the  fluorescent  derivative  from 

 forming.  Amoxicillin  fluorescence  has  been  observed  in  other  research,  but  when 

 salicylaldehyde  was  added,  as  opposed  to  intense  heating  176  .  This  RT-qPCR  heating 

 technique  was  repeated  several  times;  however,  the  prolonged  incubation  at  such  high 

 temperatures  led  to  steam  production,  which  unglued  the  adhesive  film  over  the  PCR  tray 

 leading  to  evaporation.  Attempts  were  made  to  mitigate  this  using  mineral  oil  and  a  heated 

 lid, unfortunately, without success. 

 To  visualise  the  iAmp  creation  over  time,  a  manual  approach  to  the  above  techniques  was 

 attempted.  The  samples  were  incubated  at  99  °C  for  two  hours,  aliquots  were  taken  every 

 10  minutes,  and  the  end-point  fluorescence  was  measured  (excitation  at  350  nm  and 

 emission  at  450  nm).  During  this  incubation,  a  yellow  colour  change  was  observed,  and  it 

 accompanied the production of the fluorescent signal  (Figure 3.13  ). 
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 Figure  3.13A-C  Time  point  investigation  into  the  production  of  iAmp.  3.13A  :  a 
 photograph  of  all  the  time  points  of  the  sample,  note  the  yellow  colour  change.  Below 
 3.13B  shows  the  same  samples  as  above,  but  imaged  on  the  U.V  imager  GelDoc.  In  3.13C 
 Relative fluorescence intensity of iAmp samples over time. 

 Time-point  investigation  of  iAmp  synthesis  confirmed  that  fluorescent  derivatives  were 

 formed  within  the  first  30  minutes  (  Figure  3.13)  .  In  this  experiment,  the  production  of 

 iAmp  increased  over  time  when  no  longer  hampered  by  evaporation  effects  impacting  the 

 RT-PCR  experiment  (  Figure  3.12  ).  This  experiment  showed  that  30  to  90  minutes  might  be 

 the  optimum  incubation  period  for  this  process.  Further  work  could  be  done  using  HPLC, 

 MS,  and  NMR  to  interrogate  the  predominant  species  at  each  time  point.  Furthermore,  the 

 reported  iAmp  could  be  externally  synthesised,  allowing  us  to  probe  the  activity  of  the 

 compound. 
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 3.3 - Investigating the activity of iAmp  

 3.3.1 Minimal Inhibitory Concentration of iAmp  

 The  catalytic  activity  of  ampicillin  is  derived  from  the  β-lactam  ring;  it  is  from  here  that 

 PBPs  are  acylated  and  inactivated.  As  Kotagiri  et  al.  135  report  the  β-lactam  ring  to  be  intact, 

 the  compound  should  retain  its  ability  to  bind  PBPS.  The  original  paper  135  suggests  that  the 

 changes  to  the  amine  may  preclude  its  ability  to  enter  cells  and  bind  PBPs.  To  test  this,  the 

 minimal  inhibitory  concentration  (MICs)  of  iAmp  and  ampicillin  were  performed  with  K12 

 E.  coli  and  with  a  strain  of  E.  coli  with  a  modified  FhuA  channel,  rendering  it  permanently 

 open  33,102  .  With  ampicillin  treatment  K12  E.  coli  had  an  MIC  of  4  μg/mL,  in  comparison  to 

 less  than  0.5  μg/mL  in  the  FhuA  E.  coli  .  With  iAmp  treatment  K12  E.  coli  had  an  MIC  of  64 

 μg/mL  iAmp,  and  E.  coli  with  modified  FhuA  channels  had  an  MIC  of  iAmp  of  16 

 μg/mL. The  decrease  in  the  MICs  in  iAmp  between  the  K12  and  the  FhuA  strain  could  be 

 indicative  of  a  permeability  problem  with  respect  to  penetration  of  iAmp  across  the  outer 

 membrane  of  E.  coli  .  However,  E.  coli  that  are  ‘open’  will  be  more  susceptible  to  any 

 changes,  i.e.  osmotic  changes,  and  thus  can  be  considered  fragile.  The  potential 

 impermeability  of  the  compound  may  negate  its  use  as  a  permeability  marker.  The 

 inactivity of iAmp needs to be better understood to ascertain if it is a helpful compound. 

 3.3.2 iAmp activity investigated using bocillin binding gels 

 Structure  and  activity  assays  of  antibiotics  and  their  targets  frequently  use  fluorescent 

 antibiotics  134,163  .  Bocillin  is  a  bodipy-labelled  penicillin  that  binds  PBPs  if  the  active  site  is 

 available  134  .  This  binding  is  seen  as  a  band  on  an  SDS-PAGE  gel.  Non-fluorescently  labelled 

 β-lactams,  like  ampicillin,  have  a  much  higher  affinity  for  PBPs  than  bocillin  134  .  As  a  result, 

 if  PBPs  are  preincubated  with  β-lactams,  bocillin  cannot  bind,  so  the  fluorescent  band  on 

 an  SDS-PAGE  gel  is  lost  134  .  As  iAmp  reportedly  maintains  its  β-lactam  ring,  it  should 

 prevent  the  binding  of  bocillin.  However,  iAmp  did  not  inhibit  bocillin  from  binding;  as  a 

 result,  there  is  an  observable  band  for  PBP1b-bocillin  (Figure  3.14a)  .  In  contrast,  the 

 ampicillin  sample  inhibited  bocillin  from  binding,  so  a  band  was  not  observed.  This  result 

 suggests  that  iAmp  does  not  bind  to  the  active  site  serine  or  that  if  it  does,  it  is  either  not 

 covalent  or  of  a  very  low  affinity.  The  β-lactam  ring  may  not  be  intact  in  iAmp,  most  likely 

 due to the intense heating that may have broken bonds. 
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 Figure  3.14A-B  SDS-PAGE  gels  used  to  assess  iAmp  binding  to  PBP1b.  On  the  right  is: 
 (A)  coomassie  stained  protein  gel,  containing  a  protein  ladder  on  the  right  (markers  of  96, 
 66,  45,  30,  20,  14  kDa).  Followed  by  PBP1b  E  coli  incubated  with  ampicillin,  then  a  sample 
 incubated  with  iAmp,  followed  by  a  sample  incubated  with  water.  Figure  3.14B  is  a  bocillin 
 gel  of  PBP1b  E.  coli  incubated  with  either  water;  200  μM  iAmp;  or  200  μM  Ampicillin.  Gel 
 was  visualised  at  Ex.  488  nm  and  Em.  530  nm.  Strong  fluorescent  bands  are  visualised  in 
 water and iAmp conditions at 90 kDa, which corresponds to the size of  E. coli  PBP1b. 

 3.3.3  D-ala  release  in  DacB  carboxypeptidation  with  iAmp  and 
 ampicillin 

 To  further  understand  if  iAmp  has  lost  its  β-lactam  functionality,  a  PBP4  (DacB)  activity 

 (carboxypeptidation)  assay  was  used.  The  bocillin  gel  above  (  Figure  3.14  )  is  indicative  of  a 

 loss  of  PBP  binding  but  not  necessarily  activity.  DacB  (PBP4)  is  a  low  molecular  weight 

 PBP  that  can  catalyse  carboxypeptidation  of  UDP  MurNAc  (DAP)  pentapeptide.  As  this 

 carboxypeptidation  occurs,  D-ala  is  released.  D-ala  release  is  followed  through  the 

 combined  activity  of  D-amino  acid  oxidase  and  horseradish  peroxidase  leading  to  resorufin 

 production  from  amplex  red,  which  was  detected  as  an  increase  in  absorbance  at  555 

 nm  136,177,178  .  This  activity  would  be  curtailed  by  ampicillin  (which  is  recognised  by  the  PBP 

 as  a  D-alanyl-D-alanine  mimetic)  which  reacts  covalently  with  the  active  site  serine  of  the 

 PBP,  bringing  about  a  cessation  of  its  activity  178  .  As  it  has  been  previously  shown  that 

 ampicillin  has  no  impact  on  D-amino  acid  oxidase  or  horseradish  peroxide  (Catherwood  et 

 al.  136  2020),  this  constituted  an  assay  to  quantify  any  inhibitory  potency  possessed  by 

 iAmp for PBP activity. 
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 Figure  3.15  D-ala  release  by  PBP4  D-D  carboxypeptidase  activity  in  the  presence  and 
 absence  of  Ampicillin  and  iAmp.  Red  -  in  the  presence  of  20μM  ampicillin.  Blue  -  20μM 
 iAmp.  Black  -  complete  D-Ala  release  assay  with  no  additional  components.  Ampicillin  or 
 iAmp  were  added  at  two  minutes,  followed  by  initiation  of  the  reaction  by  the  addition  of 
 UDP-MurNac  pentapeptide  at  around  4  minutes  (large  spikes  indicate  the  addition  of 
 compound  at  2  minutes  and  UDP-MurNac  at  4  minutes).  Comparison  in  progress  curves  for 
 blue  (iAmp)  and  black  (no  inhibitor)  would  indicate  that  iAmp  had  no  impact  on  the 
 reaction and unlike ampicillin (red) did not inhibit PBP4 (DacB). 

 Figure  3.15  shows  that,  unlike  ampicillin,  iAmp  failed  to  inhibit  DacB  activity  as  monitored 

 by  D-ala  released  on  carboxypeptidation.  Ampicillin  caused  complete  inhibition  of  PBPs 

 (  Figure  3.15  ),  leading  to  no  product  being  produced,  and  as  such,  an  almost  flat  line  was 

 observed.  iAmp  failed  to  inhibit  the  D-ala  release  assay  (  Figure  3.15),  meaning  it  probably 

 could  not  bind  to  the  PBP4  protein.  This  observation  could  be  a  result  of  a  hydrolysed 

 β-lactam  ring,  consistent  with  the  synthesis  of  this  compound  requiring  intense  heat  or 

 loss  of  other  interactions  with  the  ampicillin  amino  group  lost  on  oxidative  deamination  of 

 ampicillin during the formation of iAmp. 

 3.3.4 Imaging iAmp in  E. coli 

 An  important  use  of  fluorescent  antibiotics  is  in  imaging  studies;  for  example,  bocillin  can 

 be  used  to  stain  E.  coli  cells  (  Figure  3.16B  ).  If  iAmp  maintained  its  β-lactam  ring  or  some 

 semblance  of  a  penicillin  structure,  it  should  function  similarly  to  bocillin.  To  investigate 

 82 



 this,  E.  coli  were  treated  with  either  bocillin,  water  or  iAmp.  Cells  were  then  imaged  using 

 fluorescence microscopy  (Figure 3.16)  .  

 Figure  3.16A-D  Staining  E.  coli  with  iAmp,  and  bocillin.  3.16A  E.  coli  cells  that  have 
 been  treated  with  bocillin  without  fluorescence  excitation,  B  is  the  same  cross-section  as 
 3.16A  but  with  fluorescence  visualisation.  3.16C  is  a  view  of  E.  coli  incubated  with  water 
 and excited at 350 nm.  Figure 3.16D  is E coli treated  with iAmp excited at 350 nm. 

 Bocillin  can  effectively  stain  the  cells,  making  them  visible  under  fluorescence  microscopy 

 (  Figures  3.16A-B  ).  In  Figure  3.16C     E.  coli   cells  were  treated  with  water,  and  in  Figure 

 3.16D  .  They  have  been  treated  with  iAmp.  At  this  wavelength  there  was  some  weak 

 intrinsic  fluorescence;  the  gain  had  to  be  set  very  high  to  enable  any  visualisation.  There 

 seemed  to  be  no  observable  difference  between  treating  with  water  versus  treating  with 

 iAmp.  Therefore,  iAmp  is  not  effective  at  staining  cells.  One  possible  explanation  might  be 

 that intrinsic fluorescence was sufficient to obscure iAmp fluorescence. 
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 3.4 Structural Analysis of iAmp 

 3.4.1.1 ESI MS of iAmp 

 The  molecular  weight  of  iAmp,  according  to  Kotagiri  et  al.  135  ,  was  348.8;  however,  in  the 

 mass  spectrum  provided  by  the  authors  in  the  supplemental  information  of  the  paper,  the 

 peak  is  annotated  at  348.8  in  positive  mode  ionisation.  This  suggests  that  the  observed 

 mass  is  [M+H]+  and  that  the  actual  monoisotopic  mass  is  347.7922  Da.  This  chapter  has 

 calculated  the  predicted  monoisotopic  mass  of  iAmp  (based  on  the  mechanism  they 

 suggest)  to  be  348.0780  Da  and  349.0858  [M+H]+.  Demonstrating  that  the  authors 

 observed  masses  differ  from  the  predicted.  These  masses  also  differ  from  the  mass 

 observed  in  this  chapter.  The  predominant  fluorescent  compound  (synthesised  and 

 purified  in  this  chapter)  had  a  mass  of  349.1675  [M+H)  (  m/z  )  on  TOF-ESI  MS  in  positive 

 ionisation mode (  Figure 3.17).    

    Figure  3.17  This  is  the  observed  mass  spectrum  for  iAmp.  The  predominant 
 fluorescent sample from heat degradation of ampicillin, isolated from peak 5. 

 In  the  original  iAmp  paper,  Kotagiri  et  al.  had  appended  the  positive  ion  mass  spectrum  of 

 ampicillin,  with  a  peak  at  349.7  reported  as  the  molecular  weight  and  had  annotated  the 

 spectrum  with  350  as  [M+H]+  (  m/z  ).  The  monoisotopic  mass  of  ampicillin  is  349.1096  Da, 

 and  the  positively  charged  species  will  be  observed  at  350.11742.  As  with  the  iAmp  mass 

 spectra,  the  masses  reported  by  Kotagiri  et  al.  are  inaccurate.  This  could  suggest  that 

 Kotagiri  et  al.  135  failed  to  correctly  calibrate  their  mass  spectrometer,  meaning  that  their 

 synthesised  compound  may  be  miss-reported  in  size.  The  mass  difference  between  the 
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 predicted  size  of  ampicillin  and  that  previously  reported  in  135  is  1  (  m/z  ).  Kotagiri  et  al.  ’s  ESI 

 ion  trap  MS  of  the  compound  is  complex,  and  the  software  seems  to  have  not  picked  up  on 

 the  peak  they  have  suggested  as  iAmp,  as  it  is  not  a  predominant  peak  and  sits  within  the 

 range  that  could  be  deemed  as  ‘noise’,  whereas  in  Figure  3.17  iAmp  is  the  predominant 

 peak (  Figure 3.17  ). 

 Figure  3.18  Ampicillin  sample  ESI+  TOF  MS  .  The  predominant  species  (A)  has  a  (m/z) 
 of  350.1194.  There  are  also  other  isotopes  of  ampicillin  present  (351.1224,  and  352.1188). 
 There is also an ampicillin ion that has lost an ammonia ion (333.0929). 

 Thus  far,  this  chapter  has  demonstrated  that  iAmp  forgoes  β-lactam  functionality  and  that 

 chemical  properties  differ  from  those  reported  by  Kotagiri  et  al.  135  .  Therefore,  we  believe 

 that  the  structure  they  published  is  incorrect.  This  chapter  reports  an  alternative  structure 

 and  proposes  a  synthesis  pathway  for  this  new  structure.  From  here  onwards,  the 

 structure  reported  by  Kotagiri   et  al.  135   will  be  known  as  KiAmp,  and  the  structure  reported 

 in this chapter will be termed Compound 8. 

 3.4.1.2 NMR Structural Analysis 

 1  H  NMR  and  13  C  NMR  was  performed  and  the  structure  of  the  compound  was  solved  by  R. 

 Reinbold,  (Chemistry  Department,  Oxford  (personal  communication)).  The  formula  of 

 Compound  8  was  revealed  to  be  C  20  H  20  N  4  O  2  ,  with  an  expected  m/z  of  consistent  with  the 

 MS  spectrum  collected.  The  13  C  NMR  and  ESI  MS  performed  by  R.  Reinbold  is  available  in 

 Appendix 9.1  and  9.2  . 
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 3.4.2 Solved structure of Compound 8 

 The  proposed  fluorescent  compound  from  this  investigation  is 

 2-amino-  N  -(2-(6-oxo-5-phenyl-1,6,dihydropyrazin-2-yl)ethy)-2-phenylacetamide  (  Figure 

 3.19).  The chemical formula is C  20  H  20  N  4  O  2  , which has  an exact mass of 348.16. 

 Figure  3.19  The  chemical  structure  of  Compound  8.  Derived  from  NMR  analysis,  MS,  and 
 supporting literature. 

 A  pathway  accounting  for  the  production  of  Compound  8  from  ampicillin  is  presented 

 below.  This  mechanism  was  proposed  by  J.  Deering  (personal  communication,  University 

 of  Warwick)(  Figure  3.21  ).  The  new  Compound  8  structure  is  more  conjugated  than  that  of 

 KiAmp.  This  is  consistent  with  the  observation  that  Compound  8  absorbed  more  light  at 

 254  nm  than  ampicillin  (in  later  peaks).  Notably,  Compound  8  is  missing  the  β-lactam  ring, 

 consistent  with  the  observation  that  it  can  no  longer  inhibit  PBPs.  The  β-lactam  ring  is  a 

 highly  strained  chemical  group,  and  therefore  one  could  presume  that  under  the  intense 

 conditions  (heating  to  99°C),  it  would  break.  This  is  supported  by  studies  that  demonstrate 

 that  the  hydrolysis  of  the  β-lactam  ring  is  observed  at  ambient  temperatures  179  .  The 

 breaking  of  the  β-lactam  ring  is  often  seen  as  an  observation  in  MS  172  ,  and  it  is  a 

 fragmentation  pattern  used  to  identify  β-lactams  172,174  .  Therefore,  the  lysis  of  the  β-lactam 

 ring  on  the  formation  of  Compound  8  reported  here  is  likely.  Full  structural  analysis  of 

 each  HPLC  peak  and  their  resultant  compounds  is  warranted  to  fully  confirm  the  absence 

 of KiAmp. 

 3.4.3 Proposed Mechanism of Compound 8 synthesis 

 Below  is  the  proposed  mechanism  for  the  synthesis  of  Compound  8  from  heat  degraded 

 ampicillin  (  Figure  3.20)  .  It  is  based  on  similar  mechanisms  that  have  been  proposed 

 for other degradative pathways  174  . 
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 Figure  3.20  Proposed  mechanism  for  the  formation  of  Compound  8  (8)  from  ampicillin 
 (1).  First,  the  β-lactam  ring  is  hydrolysed  to  give  2.  Schiff  base  formation  drives  the  opening  of 
 the  thiazolidine  ring  to  give  3  which  is  hydrolysed  to  give  the  aldehyde  4.  The  carboxylic  acid 
 then  undergoes  decarboxylation  giving  5  and  CO  2  .  Two  molecules  of  5  then  react  via  Aldol 
 condensation  to  give  6.  An  intramolecular  cyclisation  followed  by  Schiff  base  formation  and 
 dehydration  gives  7  which  undergoes  proton  transfer  giving  the  highly  conjugated  compound  8 
 (8). 
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 Importantly,  this  proposed  mechanism  (  Figure  3.20)  has  the  hydrolysis  of  the  β-lactam 

 ring  as  the  initial  step  in  the  production  of  compound  8.  Biological  assays  in  this 

 chapter  demonstrated  that  the  β-lactam  ring  was  likely  hydrolysed.  To  further  establish 

 and  support  this  proposed  mechanism,  ampicillin  could  be  treated  with  β-lactamases  to 

 hydrolyse  the  ring  and  see  if  compound  8  is  formed  when  heat-treated.  Alternatively, 

 ampicillin  could  have  been  dissolved  in  an  alternative,  anhydrous  solvent  to  investigate 

 the  acid  water  hydrolysis  of  the  ring.  Finally,  this  proposed  mechanism  implies  that  the 

 production  of  compound  8  requires  2  mols  of  ampicillin;  this  could  be  quantified  by 

 HPLC. 

 Richter   et  al.  89  identified  some  key  rules  that  predict  compound  accumulation  in 

 Gram-negative  cells  (eNTRy-way).  Richter  et  al.  89  proposed  that  primary  amines  are 

 indispensable  in  facilitating  compound  accumulation.  The  authors  also  suggested  that 

 rigid  compounds  (they  define  rigidity  as  less  than  5  rotatable  bonds)  are  better  at 

 accumulating  within  bacteria.  They  also  stated  globularity  is  another  key  determinant 

 in  this  process,  categorising  globularity  of  less  than  0.25  as  ideal,  meaning  low 

 globularity is important for permeability. 

 Attribute  KiAmp   Compound 8   Ampicillin 

 Number of amide bonds  2  1  2 

 Number of aromatic rings  1  3  1 

 Number of rotatable bonds  4  6  4 

 Hydrogen bond acceptors  5  4  5 

 Hydrogen bond donors  2  3  3 

 Number of primary amines  0  1  1 

 Globularity  0.045  0.023  0.102 

 Plane of Best Fit (PBF)  0.738  0.63  1.091 

 LogP  0.5010  1.7956  0.3181 

 Topological  polar  surface  area 
 (TPSA) 

 103.78  100.87  112.73 

 Table  3.2  Permeability  properties  of  KiAmp,  Compound  8  and  ampicillin. 
 Comparing  the  permeability  properties  of  KiAmp,  Compound  8,  and  ampicillin.  RDKit 
 library  was  used  to  calculate  the  values  in  this  table,  apart  from  globularity,  this  was 
 calculated  using  the  Richter  et  al.  eNTRy-way  calculator  180  .  PBF  is  used  to  characterise 
 the 3D structure of the model, it is based on work by Firth, Brown and Blagg 2012  181  . 
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 Ampicillin  satisfies  all  of  the  eNTRy-way  rules;  it  has  low  globularity,  is  rigid  (4 

 rotatable  bonds)  and  has  a  primary  amine  (  Table  3.2  ).  Ampicillin  has  a  low  LogP, 

 suggesting  it  is  hydrophilic,  supporting  its  passage  through  porins.  KiAmp  also  has  low 

 globularity  and  is  rigid.  KiAmp  and  ampicillin  have  the  same  number  of  rotatable  bonds 

 (  Figure  3.21  of  rotatable  bonds).  However,  KiAmp  is  predicted  to  lose  its  primary 

 amine  in  the  oxidative  deamination  that  forms  it.  Richter  et  al.  89  stated  that  the 

 non-sterically  encumbered  amine  is  the  most  important  determinant  of  accumulation  89  . 

 The  lack  of  the  primary  amine  caused  Kotagiri   et  al.  135     to  believe  that  the  compound  is 

 an  ineffective  antimicrobial  135  .  Compound  8  has  the  lowest  globularity  score  of  the 

 three  compounds  and  has  a  primary  amine.  It  is,  however,  more  flexible.  Compound  8 

 has  a  much  higher  LogP  value  implying  it  is  more  lipophilic,  which  was  demonstrated 

 by HPLC (  Figure 3.6, 3.7, 3.8  ).  

 Figure  3.21  Comparing  the  structures  of;  KiAmp,  Compound  8,  ampicillin.  Across 
 the  top  row  are  3D  stick  and  ball  interpretations  of  each  molecule.  The  second  row  has 
 an  overlayed  space  filling  model.  The  bottom  row  has  the  rotatable  bonds  of  the 
 molecule highlighted in red circles. 

 It  is  important  to  note  that  the  Richter  et  al.  89   study  was  on  non-β-lactam  compounds  89  . 

 β-lactam  compounds  were  used  as  a  non-accumulating  control  because  they  bind 

 covalently  to  penicillin-binding  proteins,  meaning  they  did  not  accumulate  the  same 

 way  as  other  compounds  89  .  The  chemical  predictors  of  this  study  might  differ  from 

 what  is  seen   in  vivo   as  β-lactams  do  accumulate  in  Gram-negative  bacteria  and  are  one 

 of the most commonly prescribed antibiotics for Gram-negative infections.  
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 3.5.1  Modelling  the  binding  of  Compound  8  and  ampicillin  in 

 porins 

 Interactions  of  β-lactams  such  as  ampicillin  with  porins  have  been  investigated  by 

 techniques  such  as  X-ray  crystallography  and  molecular  dynamics  studies  57,61,182  .  It  is 

 believed  that  fundamental  interactions  occur  during  passage  through  the  porin,  where 

 β-lactams  make  contact  with  different  residues  in  the  constriction  zone  of  the  channel. 

 Many  of  the  interactions  come  from  the  third  position  carboxylic  group  of  β-lactams. 

 The  compound  proposed  by  Kotagiri  et  al.  135  would  cause  some  changes  to  the 

 interactions,  the  ketone  group  could  modify  hydrogen  bonding  interactions  along  the 

 channel,  but  because  they  suggest  that  the  β  lactam  ring  is  still  intact  and  that  the 

 carboxylic  acid  is  still  present,  this  would  perhaps  conserve  some  of  the  interactions. 

 Some  important  residues  in  the  pore  –  concerning  ampicillin,  in  particular,  are  four 

 basic  residues:  R42,  R82,  R132  and  K16  162  .  Compound  8  lacks  this  carboxylic  acid  and 

 therefore  may  not  interact  with  arginines  or  lysines  in  the  same  way.  However,  this 

 would  require  further  investigation  by  X-ray  crystallography,  molecular  dynamics  or 

 docking  studies,  all  of  which  is  not  necessary  given  the  resolved  structure  of  Compound 

 8. 

 3.6 Future work 

 Previously  fluorescent  antibiotics  have  been  used  to  quantify  intracellular  permeability, 

 usually  using  fluorescent  imaging  to  observe  the  process  86  and  flow  cytometry  to 

 quantify  accumulation  183  .  Stone  et  al.  86  made  fluorescent  fluoroquinolone  probes  and 

 investigated  their  accumulation  via  fluorescence  microscopy.  They  noted  that 

 antimicrobial  efficacy  was  lower  for  their  fluorescent  compounds  and  that  controlling 

 efflux  was  critical  in  observing  accumulation.  As  mentioned  previously, 

 auto-fluorescent  antibiotic  accumulation  has  been  quantified  via  microfluidic 

 approaches  83  .  If  Compound  8  had  retained  antimicrobial  activity  and  permeability 

 properties  more  akin  to  ampicillin,  these  techniques  could  have  been  applied.  However, 

 the  microfluidic  techniques  are  specialised  and  would  require  access  to  the  equipment 

 and  specialist  training.  Dumont  et  al.  97  outline  a  method  of  measuring  the  permeability 

 of  fleroxacin  and  ciprofloxacin  using  spectrophotometric  techniques  combined  with 

 mass spectrometry  97  . 
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 If  Compound  8  was  as  reported,  an  approach  similar  to  Dumont  et  al.  97  could  have  been 

 established,  which  would  have  allowed  an  investigation  into  permeability,  efflux,  and 

 β-lactamases.  The  relationship  between  permeability  and  efflux  is  synergistic  33,184  thus 

 an  important  consideration.  As  efflux  should  be  controlled,  accumulation  of  Compound 

 8  in  bacteria  with  efflux  pumps  knocked  out  would  have  been  studied.  Alternatively,  an 

 efflux  pump  like  phenylalanine-arginine-β-naphthylamide  could  have  been  added  to 

 block efflux. 

 Again,  if  Compound  8  functioned  as  a  β-lactam,  then  further  characterisation  of 

 permeability  could  have  been  achieved  by  using  strains  that  have  altered  permeability 

 profiles.  Zgurskaya  et  al.  102  FhuA  strains  or  strains  with  porin  mutations,  or  strains  with 

 porins  knock  out,  all  provide  an  insight  into  permeability.  Compound  8  could  have  been 

 added  to  each  of  these  strains  and  accumulation  quantified  by  spectrophotometry  or 

 MS  to  build  a  better  picture  of  β-lactam  permeability.  To  assess  lipid-mediated  uptake 

 of  β-lactams  strains  with  compromised  lipid  layers  could  also  have  been  used.  The  lipid 

 layer  is  adaptable  to  the  environment,  and  its  fluidity  changes  in  response  to 

 stressors  185  .  It  has  been  shown  that  E.  coli  grown  at  low  temperatures  become 

 susceptible  to  vancomycin  185  .  These  conditions  could  have  allowed  the  exploration  of 

 the  impact  of  these  critical  factors  on  β-lactam  permeability  using  Compound  8  as  a 

 fluorescent analogue of ampicillin. 

 However,  the  contributions  of  porins,  lipid  changes,  efflux,  and  β-lactamases  on 

 β-lactams  could  still  be  explored  by  other  methods.  Rosselet  et  al.  70  established  a 

 method  to  measure  permeability  based  on  starch-iodine  reaction  monitoring 

 β-lactamase  activity  70  .  Similarly,  Ross  et  al.  186  established  a  β-lactamase  assay  using  the 

 hydrolysis  of  cephalosporins  using  UV  detection  186  .  Hydrolysis  of  cephalosporins  such 

 as  ceftazidime  has  been  a  popular  method  for  measuring  permeability  84,187  .  This 

 technique could be used to investigate the initial aims of Compound 8 work. 

 Furthermore,  label-free  methods  such  as  MS  would  be  beneficial  in  monitoring 

 β-lactam  permeability.  The  hydrolysis  of  β-lactams  is  used  to  identify  β-lactamase 

 genes  in  clinical  isolates.  The  use  of  MS  as  a  label-free  method  to  measure  permeability 

 will be discussed in the following chapter. 
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 3.7 Conclusions    

    Compound  8  has  lost  the  β-lactam  ring,  which  is  essential  for  interactions  with  PBPs. 

 The  structure  of  Compound  8  was  misreported.  Therefore,  it  is  not  a  good  indicator  of 

 permeability.  It  is  also  unaffected  by  β-lactamases,  which  are  essential  to  the  in  vivo 

 environment.  Modelling  of  Compound  8  through  OmpF  could  determine  if  Compound  8 

 can  be  used  to  measure  the  ingress  of  this  small  molecule  through  OmpF.  Molecular 

 dynamics  or  other  modelling  techniques  would  probably  demonstrate  the  lipophilic 

 qualities  of  Compound  8  compared  to  ampicillin.  Ultimately,  an  alternative  to  this 

 compound should be used to achieve the initial aims of this study. 

 92 



 Chapter 4. Monitoring β-Lactam acylation 

 using mass spectrometry techniques 

 4.1 Background 

 4.1.1 Penicillin-Binding Proteins 

 Penicillin-binding  proteins  (PBPs)  are  essential  for  producing  and  maintaining 

 peptidoglycan,  which  is  a  major  constituent  in  the  cell  wall.  There  are  three  classes  (A, 

 B,  C)  that  group  PBPs  by  their  function  188  .  Class  A  PBPs  contain  bifunctional  N-terminal 

 glycosyltransferase  and  C-terminal  D,D-transpeptidase  domains  188  .  Class  B  PBPs  are 

 monofunctional  D,D-transpeptidases  and  Class  C  PBPs  include;  monofunctional 

 carboxypeptidases,  endopeptidases  and  L,D-transpeptidases  188  .  PBPs  are  conserved 

 across  bacterial  species.  Three  specific  motifs  involving  the 

 transpeptidation/carboxypeptidation  are  well  conserved:  S  xxK  ,  S  xN  ,  and  KTG  189  .  The 

 serine  of  the  S  xxK  motif  provides  the  active  site  nucleophile  that  is  central  to  catalytic 

 activity  189  .  The  other  two  motifs  are  near  to  the  active  site  and  are  thought  to 

 potentially play a role in supporting the substrate binding and activation  190  . 

 PBPs  polymerise  lipid  II,  which  results  in  a  supportive  mesh  around  the  cell,  providing 

 structural  integrity,  shape  and  protection  of  the  cytoplasmic  membrane  from  physical 

 (for  example,  osmotic)  stresses  191  .  β-lactams  target  PBPs  192  .  The  β-lactam  ring  mimics 

 the  transpeptidation  substrate,  which  prevents  the  natural  substrate  from  binding,  as 

 the  β-lactam  ring  is  subject  to  nucleophilic  attack  by  the  catalytic  serine  in  the  active 

 site  of  PBPs  190,192  .  This  leads  to  the  opening  of  the  β-lactam  ring  and  the  formation  of  a 

 covalent  β-lactam  adduct  (  Figure  4.1  )  193  .  The  covalent  interaction  between  the 

 β-lactam  ring  and  the  serine  in  the  S  xxK  of  the  PBP  is  specific  189  .  The  inability  to 

 catalyse  transpeptidation  compromises  peptidoglycan  synthesis,  which  leads  to  a 

 weaker cell wall and eventually lysis  192  . 

 93 

https://www.zotero.org/google-docs/?G8iku9
https://www.zotero.org/google-docs/?th3Wom
https://www.zotero.org/google-docs/?paGN8V
https://www.zotero.org/google-docs/?NgG3ho
https://www.zotero.org/google-docs/?l4gdX8
https://www.zotero.org/google-docs/?l2MkHw
https://www.zotero.org/google-docs/?EaxTma
https://www.zotero.org/google-docs/?DN87OT
https://www.zotero.org/google-docs/?AcgmXN
https://www.zotero.org/google-docs/?74bB2w
https://www.zotero.org/google-docs/?ieTa4c
https://www.zotero.org/google-docs/?Bd3RIz


 Figure  4.1  Penicillin  covalently  acylating  PBP  inhibiting  the  polymerisation  of 
 lipid  II.  Antibiotic  adducts  inhibit  the  polymerisation  of  lipid  II,  preventing  the  creation 
 and  preservation  of  peptidoglycan,  weakening  the  cell  wall.  Figure  4.1  made  using 
 Biorender. 

 The  covalent  interaction  between  PBPs  and  β−lactams  is  stable  enough  to  be  monitored 

 using  mass  spectrometry  (MS)  194  .  Mass  spectrometry  is  an  analytical  technique  that 

 uses  ionised  atoms  to  establish  the  mass-to-charge  ratio  of  a  compound  and  possibly  its 

 structure and quantity  195  (  Figure 4.2 mass spectrometry  workflow  ). 

 4.1.2  Mass Spectrometry 

 MS  works  by  ionising  molecules  and  analysing  the  resultant  masses.  Molecules  can  be 

 ionised  by  methods  such  as  electrospray  ionisation  or  MALDI  (  Figure  4.2  )  195  .  The 

 ionisation  can  cause  a  compound  to  fragment  in  a  characteristic  way  195  .  For  example, 

 when  looking  at  β-lactams,  the  breaking  of  the  β-lactam  ring  is  a  characteristic 

 fragment  196,197  .  The  charged  compounds  and  their  accompanying  fragments  are 

 separated  via  their  mass  to  charge  ratios  198  .  This  process  takes  place  in  a  vacuum  to 

 minimise  collision-induced  fragmentation  195  .  The  final  step  of  MS  involves  measuring 

 the  current  of  the  separated  ions;  this  is  displayed  as  a  graph  (mass  spectrum),  where 

 m/z  is along the X-axis, and relative abundance is  along the  y  axis  198  . 
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 Figure  4.2  The  workflow  of  mass  spectrometry.  The  inlet  transfers  the  sample  to 
 ionisation  source,  for  example  via  needle.  The  ion  source  is  responsible  for  ionising 
 samples  into  gas-phase.  The  mass  analyser  is  the  means  of  separating  the  ions.  The 
 detector  measures  the  current  of  ions  and  amplifies  this  signal.  The  data  collection  step 
 is  the  computation  front-end  of  the  system  showing  the  raw  data,  which  can 
 subsequently  be  manipulated  and  interpreted  via  correct  software.  Figure  adapted 
 from Chabliss Fundamentals of Contemporary Mass Spectrometry  195  . 

 4.1.3 Ionisation 

 Ionisation  can  be  performed  in  negative  mode,  i.e  .,  on  molecules  that  have  gained  a 

 negative  charge  through,  or  positive  mode  on  molecules  that  have  gained  a  positive 

 charge  199  .  Choosing  negative  or  positive  mode  ionisation  depends  on  the  molecule 

 being  analysed.  For  example,  β-lactams  have  amine  groups  suitable  for  positive 

 ionisation, but they also contain a carboxylic acid that can be analysed negatively. 

 As  alluded  to  in  Figure  4.2  there  are  many  methods  of  ionisation  suited  for  different 

 molecules  195,199  .  The  following  ionisation  sources  were  used  in  this  work:  electrospray 

 ionisation  (ESI)  and  matrix-assisted  laser  desorption  ionisation  (MALDI).  ESI  is  a  form 

 of  liquid  phase  atmospheric  pressure  ionisation  195,199  .  ESI  requires  volatile  samples  and 

 samples  of  a  smaller  size.  In  contrast,  MALDI  (a  solid  phase  ionisation  technique)  can 

 be used to look at large non-volatile compounds  195,199  . 

 The  mass  analysers  in  the  following  work  were;  time  of  flight  (TOF),  Fourier  Transform 

 Ion  Cyclotron  Resonance  (FT-ICR),  and  an  Orbitrap.  TOF  analysers  work  by  separating 

 ions  based  on  their  velocity  through  the  tube  analyser  195  .  Smaller  ions  travel  to  the 
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 detector  faster  than  larger  ones.  This  type  of  analyser  resolves  information  very 

 quickly  195  . MALDI is often coupled with a TOF analyser  199  . 

 4.1.5 FT-ICR MS 

 In  FT-ICR  MS  mass  analysers,  the  ions  enter  a  cell  -  also  known  as  a  Penning  trap,  where 

 there  are  two  detector  plates,  two  excitation  plates,  and  trapping  plates  200  .  The  cell  has 

 a  strong  magnetic  field  195,201  .  The  ions  rotate  due  to  the  magnetic  force  195  . 

 Radiofrequency  pulses  generated  by  excitation  plates  amplify  this  rotation  195  .  When  the 

 charge  is  removed,  the  ions  rotate  at  their  cyclotron  frequencies,  detected  by  the 

 detector  plates  195  .  The  observed  rotation  of  the  ions  is  characteristic  of  their  m/z  ratio. 

 A  convoluted  frequency  spectrum  is  generated,  which  via  Fourier  transform  is  then 

 converted into a mass spectrum  195  . 

 4.1.6 Orbitrap Mass Analyser 

 Like  FT-ICR  MS,  the  Orbitrap  analyser  uses  fourier  transform  to  deconvolute  oscillation 

 data  to  a  mass  spectrum  202  .  It  forgoes  the  use  of  ICR  and  instead  uses  a  thin  capillary 

 wire  around  a  cylindrical  electrode  195  .  The  ions  are  trapped  in  oscillation  around  the 

 electrode,  and  again  like  in  FT-ICR,  a  radiofrequency  pulse  is  applied  195  .  Both  orbitrap 

 analysers and FT-ICR analysers are frequently used in proteomics  201,203  . 

 4.1.7 MS permeability studies 

 Mass  spectrometry  has  been  used  to  look  at  the  permeability  of  antibiotics  for 

 years  77,89,92,204  .  Most  mass  spectrometry  permeability  studies  focus  on  small  compound 

 accumulation  89  .  This  method  is  unsuitable  for  some  compounds,  such  as  β-lactams,  as 

 they  covalently  bind  to  PBPs.  When  the  small  compound  binds  to  a  large  molecule, 

 there  is  a  significant  mass  shift.  The  mass  spectrometer  may  not  be  calibrated  to  this 

 scale,  and  it  would  require  optimisation,  reducing  the  throughput  of  the  process.  To 

 monitor  covalent  modifications  of  proteins  resulting  from  compound  permeability, 

 proteomic  techniques  could  be  used  as  they  regularly  measure  the  mass  of  large 

 molecules. 
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 4.1.8 Proteomics 

 Proteomics  is  the  large-scale  study  of  the  proteins  in  an  organism  by 

 mass-spectrometry  205  .  There  are  two  approaches:  top-down  and  bottom-up 

 proteomics  206  .  The  most  widely  used  form  of  proteomics  is  bottom-up  207  ,  whereby  the 

 proteins  are  extracted  from  an  organism  and  then  tryptically  digested  into  peptides  206  . 

 These  peptide  fragments  are  sequenced  to  identify  proteins  208  .  Top-down  proteomics 

 separates  and  analyses  intact  proteins  209  .  In  bottom-up  proteomics  the  digestion  of 

 peptides  increases  the  sample  complexity,  the  increase  of  complexity  coupled  with  the 

 low  abundance  of  the  modified  peptide  makes  isolating  modified  peptides  (e.g.  a 

 phosphorylated  peptide)  harder  206  .  This  is  because  these  factors  increase  the  error  rate 

 in  fitting  the  observed  masses  to  the  calculated  masses.  This  makes  identifying 

 modified  peptides  in  bottom-up  proteomics  more  difficult,  especially  with  labile 

 modifications  206  .  As  β−lactams  are  covalently  bound  to  the  active  site  serine,  the  adduct 

 should  be  relatively  stable,  meaning  there  should  be  a  high  abundance  of  the  modified 

 peptide  (peptide  containing  the  active-site  serine  with  a  covalently  bound  β−lactam), 

 meaning bottom-up proteomics should be applicable. 

 This  work  proposes  that  bottom-up  proteomic  peptide  mapping  techniques  could  study 

 the  covalent  interaction  between  β-lactams  and  PBPs.  Bottom-up  proteomics 

 techniques  could  quantify  the  binding  of  PBPs  to  β−lactams  in  conjunction  with 

 isotopically  heavy  labelled  β-lactams.  This  study  begins  using  purified  proteins  and 

 then  progresses  to  complex  cellular  extracts.  This  chapter  Aims  to  use  resistant  strains 

 or modified strains to quantify i  n vivo  permeability  of β−lactams eventually. 

 4.1.9 Research aims 

 ●  To  use  MS  to  accurately  quantify  β-lactam  binding  to  PBPs.  Providing  a 

 label-free method. 

 ●  Applications  of  which  could  include,  using  β−lactam-PBP3  binding  as  a 

 permeability readout, or to identify the affinity of PBPs for various β−lactams. 
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 4.2 Results 

 4.2.1 Protein purifications 

 Ideally,  this  work  would  look  at  the  naturally  abundant  proteins  in  E.  coli  and  monitor 

 the  active  site  of  PBPs  and  their  acylation  by  β-lactams.  To  begin  with,  however,  this 

 work  started  with  purified  proteins.  A  selection  of  the  proteins  mentioned  were  kind 

 gifts  from  other  researchers  in  the  group  (  E.  coli  PBP1a,  PBP1b  and  P.  aeruginosa  and 

 Burkholderia  pseudomallei  (B.  pseudomallei)  PBP3).  The  others  (  E.  coli  PBP3  and  PBP4) 

 were  purified  by  IMAC  chromatography,  with  further  purification  steps  taken  when 

 required.  Figure 4.3  shows the purified  E. coli  PBPs  used in this work. 

 Figure  4.3-  SDS-PAGE  of  E.  coli  PBPs  used  in  this  chapter.  On  the  left  hand  side  is  a 
 protein  standard  ladder  (NEB)  with  marker  sizes  of;  245,  190,  135,  100,  80,  58,  46,  32, 
 25,  22,  17  and  11kDa.  From  left  to  right  the  lanes  are;  PBP1a  (93.6  kDa),  PBP1b  (83.7 
 kDa),  PBP3  (59  kDa),  and  PBP4  (52  kDa).  8  µg  of  protein  was  loaded  into  each  lane  of 
 this  12%  SDS  PAGE  protein  gel.  PBP1a  and  1b  were  kind  gifts  from  Dr  A.  O’Reilly  and  Dr 
 K. Smart. 

 4.2.2 Proteomic Results 

 The bottom-up proteomics workflow used is outlined below: 

 1.  Proteins were purified. 

 2.  Proteins were treated with β-lactams. 
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 3.  The  resulting  samples  were  prepared  for  bottom-up  proteomics  by  either  in-gel 

 digestion  or  in-solution  digestion  following  the  filter-aided  sample  preparation 

 (FASP) protocol. 

 a.  Trypsin was added to digest proteins. 

 b.  Peptides were collected. 

 4.  Samples were analysed by LC-MS/MS using an Orbitrap mass spectrometer. 

 5.  The  raw  data  was  searched  using  MaxQuant,  and  Scaffold  visualised  and 

 processed data. 

 The  PBPs  were  treated  with  trypsin;  trypsin  cleaves  at  the  carboxy  terminus  of  arginine 

 and  lysines  210  .  Consequently,  the  peptide  fragments  from  the  tryptic  cleavage  of  purified 

 proteins  were  predictable.  To  calculate  the  peptides,  ExPasy  PeptideMass  211  was  used. 

 To  calculate  the  m/z  of  these  species  and  their  fragments,  proteomics  tools  by  SPC  were 

 utilised  212  .  MaxQuant  138  searched  and  assigned  the  raw  data,  and  Scaffold  139  visualised 

 the results. 

 4.2.3  E. coli  PBP4 acylated with ampicillin 

 The  first  PBP  tested  was  DacB  PBP4  from  E.  coli,  a  Class  C  PBP  function  as 

 D,D-carboxypeptidase  213  .  PBP4  was  treated  with  ampicillin  and  then  prepared 

 according  to  the  in-gel  digest  method  (  Appendix  9.3A  ).  Below  (  Table  4.1  )  are  the 

 potential  parent  ions  of  the  active  site  of  PBP4.  The  m/z  is  calculated  for  a  range  of 

 charged states and with ampicillin (monoisotopic mass of ampicillin is 349.1096). 

 Main active site SXXK 

 Peptide sequence  VGASAPAIDYHSQQMALPASTQK 

 Oxidised methionine +16 

 [M+H]  +  2371.1711 

 [M+H]  +  with ampicillin  2720.2807 

 [M+2H]  2+  with ampicillin  1360.6440 

 [M+3H]  3+ 

 Drug with ampicillin 

 907.4318 

 Table  4.1  Predicted  peptide  mass  of  active  site  serine  of  E.  coli  PBP4,  with  and 
 without  ampicillin  treatment.  MaxQuant  software  also  calculated  the  masses  for  each 
 peptide  with  other  modifications  such  as  methylations  and  oxidations.  It  also  calculates 
 the masses of misscleaved peptides  . 
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 In  the  PBP4  ampicillin  sample,  only  one  peptide  containing  the  ampicillin  adduct  was 

 observed.  This  peptide  was  tentatively  identified  in  its  triply  charged  state,  and  it  was 

 observed  only  once  (  Figure  4.4  ).  The  predicted  m/z  of  this  peptide  was  907.4318,  and 

 a  unique  peak  of  907.10  m/z  was  observed.  These  results  demonstrated  that  the 

 technique  could  be  used  to  identify  antibiotic  acyl  adducts  in  PBP4  E.  coli  .  However,  due 

 to  the  infrequent  observations  of  the  acylated  peptide,  modifications  need  to  be  made 

 to the technique. 

 Figure  4.4  E.  coli  PBP4  treated  with  ampicillin.  The  mass  spectrum  of  PBP4  treated 
 with  ampicillin  demonstrates  an  ampicillin  adduct  at  the  first  active-site  serine  (SxxK). 
 The intensity is low, and there is some error observed. 

 4.2.4  E. coli  PBP1a acylated with Ampicillin 

 To  investigate  whether  this  technique  applies  to  a  range  of  PBPs,  full-length  E.  coli 

 PBP1a  was  used.  PBP1a  has  both  transglycosylase  and  transpeptidase  activity.  PBP1a 

 was  treated  with  ampicillin,  before  being  prepared  using  the  in-gel  digest  method 

 (  Appendix  9.3B  ).  However,  no  active  site  peptides  containing  ampicillin  peptides  were 

 observed.  Further  research  into  Class  A  PBPs  is  needed  to  assess  why  this  did  not  work, 

 perhaps  in  the  form  of  biochemical  assays  to  monitor  acylation  rates  165  .  Therefore, 

 tailoring  the  antibiotic  to  the  PBP  may  be  necessary;  a  range  of  Class  A  PBPs  should  be 

 screened against a few different classes of β-lactams. 

 4.2.5 Method Development 

 Due  to  the  limited  success  of  bottom-up  proteomic  techniques  in  mapping  acylated 

 active  site  serines,  amendments  to  the  protocol  were  then  investigated.  Method 

 development  aimed  to  increase  the  peptide  coverage  and  preserve  the  β−lactam  PBP 

 bond.  PBPs  and  β-lactams  form  a  covalent  ester  bond,  which  in  theory  should  be 
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 resistant  to  sample  preparation.  However,  when  monitoring  the  acylation  of  the  active 

 site serine of PBPs, some instability of the adduct was observed. 

 There  are  two  approaches  to  preparing  peptides  for  proteomics;  in-gel  preparation  and 

 in-solution  preparation  (peptides  prepared  in-solution  are  further  processed  by  FASP 

 protocol).  Both  techniques  prepare  the  samples  using  overnight  incubations  with 

 trypsin  at  37°C.  Bocillin  gels  were  used  to  assess  the  stability  of  the  β-lactam  PBP  bond 

 over  a  range  of  conditions.  PBPs  were  incubated  with  ampicillin  for  15  minutes  at 

 ambient  temperatures  and  then  exposed  to  a  range  of  temperatures  for  overnight 

 incubation.  The  temperatures  investigated  are  as  follows;  -20°C,  4°C,  21°C,  37°C,  42°C. 

 The  following  day  (16  hours),  the  samples  were  incubated  with  bocillin,  as  per  the 

 protocol and visualised on a bocillin and SDS-PAGE Gel  134  . 

 Figure  4.5  The  Effect  of  heat  degradation  on  PBP-antibiotic  adduct  stability. 
 Protein  gel  on  left,  Bocillin  gel  on  right;  of  temperature  investigation.  On  the  left  of  both 
 gels  is  the  fluorescent  protein  ladder  (Invitrogen)  which  is  only  (clearly)  visible  in  the 
 bocillin  gel.  Fluorescent  ladder  (FL)  has  band  sizes  of;  158,  98,  63,  40,  32,  21,  and  11 
 kDa.  The  prestained  protein  ladder  (on  the  right  of  both  images)  has  ladder  sizes  of  96, 
 66,  45,  30,  20,  and  14  kDa.  All  lanes  contain  16µg  of  protein.  In  lane  10  is  the  PBP4  and 
 ampicillin  incubated  at  -20°C  then  incubated  with  bocillin,  and  the  control  for  this 
 reaction  is  in  lane  9  which  is  PBP4  incubated  at  -20°C  then  treated  with  Bocillin.  In  lane 
 8  is  the  4°C  condition,  and  its  control  in  lane  7.  In  lane  6  is  22°C  with  its  control  in  lane 
 5.  In  lane  4  is  a  37°C  incubation,  lane  3  is  the  control.  In  lane  2  is  the  42°C  incubation, 
 and the control is in lane 1. 

 The  covalent  bond  was  intact  for  the  -20°C  and  4°C  incubation  step,  evidenced  by  the 

 lack  of  band  present,  as  the  bocillin  was  unable  to  bind  to  the  PBP  (  Figure  4.5  ).  For  the 

 room  temperature  incubations,  there  seems  to  be  some  binding  of  bocillin,  indicating 

 that  some  of  the  covalent  bonds  were  broken.  Clear  bocillin  bands  were  present  in  the 
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 37°C  and  42°C  conditions.  These  results  suggest  there  are  no  intact  PBP4-ampicillin 

 bonds  and  that,  therefore,  prolonged  incubations  at  high  temperatures  are  unsuitable. 

 As  a  result,  samples  were  incubated  at  ambient  temperatures  as  opposed  to  37°C.  To 

 further  probe  the  stability  of  the  ester  bond  between  PBP4  and  ampicillin,  the  protein's 

 melting temperature could have been investigated using RT-qPCR equipment. 

 4.2.6 PBP3s 

 PBP3  proteins  are  Class  B  high  molecular  weight  PBPs;  involved  in  cellular  division  190  . 

 The  following  work  used  truncated  mutants  of  PBP3  proteins  lacking  the 

 transmembrane  domain.  Soluble  PBP3s  were  used,  as  membrane  proteins  require 

 detergent  solubilisation,  and  detergents  can  interfere  with  mass  spectrometry;  as  a 

 result, removal of the detergent is complicated  208  . 

 4.2.7 Nitrocefin and PBP3s 

 Nitrocefin  is  a  chromogenic  cephalosporin  β-lactam;  it  is  not  a  clinically  used  antibiotic 

 but  an  essential  tool  for  investigating  β-lactamase  and  PBP  activity  214  .  Nitrocefin  has  an 

 interesting  acylation  mechanism  involving  a  second  serine  (Newman  2021  215  ).  There 

 are  two  proposed  active  sites  for  PBPs.  First,  the  primary  active-site  serine  is  in  the 

 conserved  SXXK  sequence,  and  the  second  active-site  serine  implicated  in  nitrocefin 

 acylation  is  in  the  conserved  SXN  sequence  215  .  The  monoisotopic  mass  of  nitrocefin  is 

 516.04096  Da.  Therefore,  the  aim  was  to  identify  a  mass  of  approximately  this  size 

 localised to both serines. 

 4.2.8  E. coli  PBP3 acylated with nitrocefin 

 His-tagged  E.  coli  PBP3  was  purified  by  IMAC;  it  was  then  treated  with  nitrocefin  for  15 

 minutes  before  being  prepared  by  in-gel  preparation  (  Appendix  9.3C  ).  Below  (  Table 

 4.2  ) are the predicted sizes of the peptide fragment  parent ion. 
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 Main active site SxxK  Second active site 
 SxN 

 Peptide sequence  TITDVFEPGSTVKPMVVMTA LQR 

 Oxidised methionine +16 

 SSNVGVSK 

 [M+H]  +  2520.3200  777.41015 

 [M+H]  +  Nitrocefin  3036.3610  1293.4511 

 [M+2H]  2+ 

 Nitrocefin 
 1518.6841  647.2292 

 [M+3H]  3+ 

 Nitrocefin 
 1012.7919  431.8219 

 Table  4.2  Predicted  masses  of  E.  coli  PBP3  active-site  serines  with  nitrocefin 
 adducts 

 The  first  active-site  serine  (  S  xxK  )  in  E.  coli  PBP3  was  acylated  by  nitrocefin.  This 

 acylated  peptide  was  observed  in  its  triply  charged  species.  The  acylated  E.  coli  S  xxK 

 peptide  had  a  predicted  m/z  of  1012.7919,  and  this  exact  mass  was  observed  (  Table 

 4.2  );  this  species  had  a  relative  intensity  of  14,943,000  (  Figure  4.6  ).  The  active  site 

 serine  in  this  peptide  is  at  position  10;  it  would  be  identified  in  b  10  of  the  peptide  or 

 y  14  upwards.  The  actual  peptide  containing  the  active  site  serine  was  not  identified, 

 but other fragments of the peptide were identified. 

 Figure  4.6  The  active-site  serine  of  E.  coli  PBP3  treated  with  nitrocefin.  MS  spectra 
 demonstrates nitrocefin adduct on the first active-site serine (SxxK). 

 The  spectrum  (  Figure  4.6  )  shows  many  of  the  associated  fragment  ions  of  the  parental 

 peptide.  However,  the  fragment  ions  containing  the  active-site  serine  are  not  observed. 

 The  largest  y  ion  is  y13  ;  it  contains  the  amino  acids  from  the  C  terminus  up  to  the 

 serine;  it  (  y13  )  has  a  monoisotopic  mass  of  1473.82805  Da,  it  has  a  very  low  intensity. 

 The  y  fragment  ion  containing  the  active  site  serine  has  a  mass  of  2076.90103  Da, 

 significantly  higher  than  other  observed  peaks.  In  this  preliminary  investigation,  there 

 is some evidence of acylation of active site serine. 
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 4.2.9  Burkholderia pseudomallei  PBP3 acylated with nitrocefin 

 B.  pseudomallei  is  the  causative  agent  of  melioidosis  infections  which  have  high 

 mortality  rates  216  .  B.  pseudomallei  is  also  known  to  have  high  levels  of  intrinsic 

 resistance  216  .  Therefore,  developing  drugs  that  can  treat  B.  pseudomallei  is  essential  for 

 antibiotic  drug  discovery.  The  truncated  B.  pseudomallei  PBP3  was  a  gift  from  Dr  D. 

 Bellini.  The  predicted  peptides  of  B.  pseudomallei  active  sites,  acylated  with  nitrocefin, 

 are outlined in  Table 4.3  . 

 Main active site SxxK  Second active site 
 SxN 

 Peptide sequence  VLTDVFEPGSIMKPFTVSLALDLHR 
 Oxidised methionine +16 

 (K)SSNIGATK(I) 

 [M+H]  +  2784.4780  776.3920 

 [M+H]  +  with 
 nitrocefin 

 3300.5189  1,292.4330 

 [M+2H]  2+ 
 with nitrocefin 

 1650.2594  647.2243 

 [M+3H]  3+ 
 with nitrocefin 

 1101.1808  431.8211 

 Table  4.3  The  predicted  masses  of  B.  pseudomallei  PBP3  active  site  peptides 
 acylated by nitrocefin. 

 No  acylation  of  the  first  active-site  serine  (  S  xxK  )  in  B.  pseudomallei  PBP3  was  observed. 

 However,  nitrocefin's  acylation  of  the  second  active-site  serine  (  S  xN  )  was  observed  at 

 the  predicted  mass:charge  ratios  (  Table  4.3,  Figure  4.7A  ).  The  parent  ion  of  doubly 

 charged  species  of  S  xN  -nitrocefin  was  the  most  abundant  species  in  the  spectrum  with 

 an  m/z  of  647.23;  it  also  had  a  low  error  score.  Evidence  of  S  xN  -nitrocefin  was 

 supported  by  broad  coverage  of  y  and  b  ions  that  contained  the  serine  of  the 

 fragmented  peptide  with  the  nitrocefin  adduct.  In  addition,  there  was  also  a  signal  from 

 free  nitrocefin  517  [M+H]+,  further  corroborating  nitrocefin's  interactions  with  the 

 second active-site serine (  S  xN  ) in  B. pseudomallei  PBP3 (  Figure 4.7B  ). 
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 Figure  4.7  B.  pseudomallei  PBP3  treated  with  nitrocefin.  Acylation  of  the 
 second-active  site  serine  (SxN)  was  observed  in  A  .  In  A  the  full  spectrum  of  the 
 identified  peptide  is  shown,  with  good  coverage  from  fragment  ions.  In  B  a  peak  at  517 
 is observed, most likely due to dissociated nitrocefin. 

 4.2.10 Pseudomonas aeruginosa  PBP3 acylated with a  range of β-lactams 

 Pseudomonas  species  are  particularly  impenetrable  to  antibiotics  and  are  also  clinically 

 significant,  particularly  for  patients  with  cystic  fibrosis,  due  to  their  rising  antibiotic 

 resistance  exhibited  by  this  pathogen  217  .  P.  aeruginosa  PBP3  was  purified  and  gifted  by 

 Dr  H.  Newman.  Below  (  Table  4.4  )  are  the  calculated  masses  of  the  active-site  peptide 

 fragments  containing  the  conserved  serines,  with  adducts  of  nitrocefin,  aztreonam,  and 

 ceftazidime. 
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 Main active site 

 SXXK 

 Second site 

 SXN 

 Peptide sequence  AMIDVFEPG  S  TVKPFSMSAA LASGR  S  SNVGISK 

 [M+H]  +  m/z  2569.2788  790.4257 

 [M with nitrocefin +H]  +  m/z  3085.3199  1306.4657 

 [M with nitrocefin +2H]  2+  m/z  1543.1636  654.2401 

 [M with nitrocefin +3H]  3+  m/z  1029.1115  435.4886 

 [M with aztreonam +H]  +  m/z 
 3004.3308  1226.4777 

 [M with aztreonam +2H]  2+  m/z 
 1502.6690  613.7425 

 [M with aztreonam +3H]  3+  m/z 
 1002.1151  409.4974 

 [M with ceftazidime +H]  +  m/z  3115.3780  1337.5249 

 [M with ceftazidime +2H  ]2+  m/z 
 1558.1926  669.2661 

 [M with ceftazidime +3H]  3+  m/z 
 1039.1309  446.5132 

 Table  4.4  The  predicted  m/z  ratios  of  P.  aeruginosa  PBP3  peptide  fragments  with 
 the  antibiotics;  nitrocefin,  aztreonam,  and  ceftazidime.  The  monoisotopic  masses 
 of  nitrocefin,  aztreonam  and  ceftazidime  (M)  are  516.0410,  435.0519  and  546.0991, 
 respectively. 

 4.2.11  Pseudomonas aeruginosa  PBP3 acylated with Nitrocefin 

 In  Pseudomonas  PBP3,  acylated  peptides  containing  the  second  active-site  serine  S  xN 

 were  observed  (  Figure  4.8  ).  The  peptide  containing  this  serine  was  observed  in  a 

 doubly  charged  state  at  the  predicted  m/z  of  654.24  (  Table  4.4  ).  The  peptide  has  many 

 supporting  y  and  b  ions,  suggesting  good  evidence  of  nitrocefin  localisation.  This  SxN 

 fragment  also  contained  a  peak  at  517.17,  suggesting  some  unbound  nitrocefin  (  Figure 

 4.8  ).  It  may  have  dissociated  due  to  the  collision  energy.  The  preparation  steps  involve 

 several  ultrafiltration  steps  with  10  kDa  membranes,  so  molecules  with  a  mass  less 

 than that should have been removed. 
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 Figure  4.8  MS  spectrum  of  P.  aeruginosa  PBP3  acylated  by  nitrocefin  ,  acylation  at 
 second-active  site  serine  SXN.  There  is  also  a  peak  at  517.17,  the  mass  of  unbound 
 nitrocefin. 

 A  non-specific  acylated  serine  was  identified  in  the  P.  aeruginosa  PB3  nitrocefin  sample. 

 The  non-specific  serine  was  identified  in  this  peptide:  WKP  S  DIVDVYPGTLQIGR  (  Figure 

 4.9  ).  The  unexpected  acylation  of  this  serine  in  this  peptide  suggests  issues  in  this 

 method.  A  crystal  structure  of  PBP3  in  a  complex  with  ceftriaxone  is  shown  below 

 (  Figure  4.10  ).  It  demonstrates  the  proximity  of  ceftriaxone  to  S  xN  and  S  xxK  ,  whereas 

 the third serine is some distance from the active site (  Figure 4.10  ). 

 Figure  4.9  MS  spectrum  of  P.  aeruginosa  PBP3  treated  with  nitrocefin,  acylation 
 observed  on  an  unexpected  serine.  The  y  ions  here  cover  up  to  y13  which  is  up  until 
 the serine. 
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 Figure  4.10  P.  aeruginosa  PBP3  in  complex  with  ceftriaxone,  with  SxxK  and  SxN 
 sites  highlighted.  Created  on  Chimera  PDB  3OCN  218  of  PAO1  PBP3  in  complex  with 
 ceftriaxone.  Ceftriaxone  in  royal  blue  colour  space-fill  representation  is  shown.  The  red 
 portion  of  the  alpha  helix  is  the  active  site  serine  SxxK,  it  is  in  contact  with  the  drug. 
 The  pink  portion  is  the  SxN  second  conserved  serine,  thought  to  be  involved  in 
 orientating  or  binding  the  drug.  The  yellow  region  is  the  mis-acylated  serine  on  a  linker 
 region, far from the active site. 

 4.2.12  P. aeruginosa  PBP3 acylated with aztreonam 

 PBP3s  from  E.  coli  ,  B.  pseudomallei  and  P.  aeruginosa  were  treated  with  aztreonam  and 

 ceftazidime  before  being  prepared  for  proteomics  using  the  in-gel  digestion  method 

 (  Appendix  9.3  ).  Unfortunately,  aztreonam  and  ceftazidime  adducts  were  only  observed 

 in  P. aeruginosa  PBP3. 

 Aztreonam  acyl-adducts  were  found  in  the  first  active-site  serine  (  S  xxK  )  of  PBP3  P. 

 aeruginosa  .  The  aztreonam  acyl-adduct  was  found  in  the  peptide: 

 AAMRNRAMIDVFEPG  S  TV  K  PFSMSAALASGR  (  Figure  4.11  ).  In  this  peptide,  all  three 

 methionines  were  oxidised;  this  is  due  to  the  in-gel  protocol.  The  peptide  was  observed 

 in its triply charged state, at the predicted  m/z  of 1002.12 (  Table 4.4  ). 
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 Figure  4.11  P.  aeruginosa  PBP3  treated  with  aztreonam  .  An  aztreonam  adduct  was 
 localised to the first active-site serine SxxK. 

 4.2.13 Ceftazidime PBP3 adducts  P. aeruginosa 

 Ceftazidime  adducts  were  located  on  the  SxxK  active  site  serine  of  P.  aeruginosa  PBP3 

 and  were  observable  with  high  intensity.  Many  of  the  predicted  fragments  ions  (  b  and 

 y  )  were  located.  The  calculated  mass  of  the  peptide  was  3130  m/z  ,  and  it  was  found  in 

 its  doubly  charged  form  (  Figure  4.12  ).  Ceftazidime  has  a  monoisotopic  mass  of 

 546.0099  Da;  ceftazidime  contains  a  3’-methyl  pyridine  ring  that  acts  as  a  leaving  group 

 due  to  the  electron  shift  upon  acylation,  causing  the  loss  of  the  group.  The  mass  of 

 ceftazidime  bound  to  the  serine  should  mean  the  acyl  adduct  should  have  a  mass  of 

 452. An adduct of this size was not identified in any peptides. 

 Figure  4.12  P.  aeruginosa  PBP3  treated  with  ceftazidime.  Ceftazidime  has  acylated 
 the first active-site serine (SxxK). 

 4.3 Acylation of  E. coli  PBPs by ampicillin 

 4.3.1  E. coli  PBPs mixture treated with ampicillin 

 To  investigate  how  the  bottom-up  proteomic  technique  fairs  when  the  sample 

 complexity  increases,  four  PBPs  from  E.  coli  were  used;  PBP1a,  PBP1b,  PBP3,  and  PBP4. 
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 The  purified  proteins  were  mixed,  treated  with  ampicillin  and  aztreonam.  These 

 proteomic  samples  were  prepared  using  the  in-gel  method  (  Appendix  9.3D  ).  There  was 

 no evidence of acylation with aztreonam treatments in any of the samples. 

 4.3.2  E. coli  PBP1b with ampicillin 

 The  predicted  E.  coli  PBP1b  peptide  mass  to  charge  ratio,  when  cut  with  trypsin,  is 

 1946.0957  m/z  +H.  When  treated  with  ampicillin  a  mass  of  +349  should  be  localised  to 

 the  serine.  The  peptide  sequence  in  PBP1b  containing  the  active-site  serine  (SxxK)  is; 

 SIG  S  LAK  PATYLTALSQPK.  The  ampicillin  adduct  should  be  on  this  peptide's  second 

 serine  (SLAK).  However,  the  software  localised  the  acylation  to  the  N-terminal  serine 

 (SIG)  (  Figure  4.13  ).  This  could  be  a  mislocalisation  by  the  software;  this  demonstrates 

 the potential drawbacks of this technique. 

 Figure  4.13  E.  coli  PBP1b  treated  with  ampicillin.  An  ampicillin  acylated  serined  is 
 observed however it is mislocalised. 

 In  the  E.  coli  PBP1b-ampicillin  sample,  there  was  another  unexpected  observation  of 

 ampicillin  bound  to  the  S  xN  active-site  serine  (  Figure  4.14  ).  This  was  unexpected  as 

 the  second  active-site  serine  is  thought  to  be  involved  in  nitrocefin  acylation 

 predominantly and not inclusive of other β-lactams. 

 Figure  4.14  E.  coli  PBP1b  treated  with  ampicillin,  a  serine  with  an  ampicillin 
 adduct is located in the second conserved serine of PBPs at SxN. 
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 4.3.3  E. coli  PBP1a treated with ampicillin 

 By  treating  E.  coli  PBP1a  with  ampicillin,  an  acylated  first  active-site  serine  (SxxK) 

 should  be  observed.  The  peptide  in  PBP1a  containing  the  first  active-site  serine  is 

 QVG  S  NIK  PFLYTAAMDK.  This  peptide  has  a  predicted  singly  charged  m/z  ratio  of 

 1882.9731,  which,  when  acylated  with  a  molecule  of  ampicillin,  rises  to  2232.0827  m/z  . 

 This  peptide  was  not  identified  using  the  usual  Scaffold  parameters,  whereby  the 

 threshold  for  results  is  95%  confidence.  However,  when  this  threshold  was  lowered  to 

 80%,  peptides  with  an  acylated  S  xxK  active  site  serine  were  observed  (  Figure  4.15  ).  As 

 expected,  there  are  fewer  b  and  y  ions  to  support  the  evidence  of  this  peptide,  including 

 a lack of  b  and  y  ions that contain the active site  serine. 

 Figure  4.15  E.  coli  PBP1b  treated  with  ampicillin,  an  ampicillin  adduct  is  located 

 on the SxxK active-site serine. 

 4.3.4  E. coli  PBP4 and ampicillin 

 In  earlier  experiments  using  PBP4  with  ampicillin,  there  was  evidence  of  ampicillin 

 acylating  the  active  site  serine  (  S  xxK  )(  Figure  4.6  ).  However,  in  this  mixture  of  PBPs,  the 

 adduct  was  not  located.  The  adduct  observed  earlier  was  of  lower  certainty,  and  the 

 lack  of  an  adduct  in  this  experiment  suggests  the  technique  is  unreliable.  It  also  may 

 not have been observed as one of the other PBPs may have sequestered the ampicillin. 
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 4.3.5  E. coli  PBP3 ampicillin 

 PBP3  from  E.  coli  also  did  not  show  any  ampicillin  adducts.  It  has  previously  reliably 

 shown  nitrocefin  adducts  across  multiple  species.  However,  the  E.  coli  PBP3  was  also 

 unable to demonstrate adducts with aztreonam of ceftazidime. 

 4.3.2 Discussion of bottom-up approach 

 As  complexity  increased  in  this  experiment,  accuracy  and  reliability  were  lost.  When  a 

 mixture  of  proteins  was  treated,  the  acetylated  adduct  was  lost  on  half  of  the  proteins. 

 Ampicillin  adducts  were  seen  in  E.  coli  PBP1a  and  PBP1b,  but  not  PBP3,  PBP4.  The  lack 

 of  acyl-adducts  in  all  proteins  could  be  because  either  not  enough  antibiotic  was  added 

 or  because  the  sample  is  too  complex  for  the  software  to  interpret,  and  with  increased 

 searches  of  modifications,  the  error  rate  also  increases.  Alternatively,  potentially  one 

 PBP  had  a  stronger  interaction  with  ampicillin  and  sequestered  it,  preventing  other 

 PBPs  from  binding  to  it.  Ampicillin  should  have  had  the  most  prominent  reaction  to 

 PBP4  219  ,  so,  surprisingly,  it  did  not  show  any  adducts.  This  demonstrates  the  need  to 

 focus  on  one  PBP  to  capture  the  signal  for  permeability,  preferably  a  soluble  PBP  such 

 as  4  or  5,  as  it  is  quicker  to  prepare  an  extract  from  these  proteins.  However,  PBP3 

 seemed  to  be  a  good  target  for  most  species  tested.  The  original  goal  for  this  work  was 

 to  work  with  crude  lysates  (not  purified  proteins)  to  investigate  β-lactam  binding  on 

 each PBP as a measure of permeability. 

 This  proteomic  approach  provides  a  sensitive  means  of  identifying  antibiotic-acylated 

 PBP  peptides  of  interest.  The  control  samples  for  each  protein  never  demonstrated 

 active  sites  acylated  by  β-lactams.  However,  occasionally  non-specific  acylation  sites 

 were  observed.  Either  due  to  over-saturation  with  β-lactam  causing  spontaneous 

 acylation  or  mislocalisation  via  software.  These  discrepancies  raise  issues  about  the 

 efficacy  of  this  technique.  Reproducibility  issues  further  this  frequently  just  one 

 modified  peptide  or  a  few  modified  peptides  were  observed,  demonstrating  it  is  not  a 

 reliable method. 

 As  specificity  was  lost  when  complexity  increased,  the  experiment  needed  to  be 

 simplified  or  higher  specification  equipment  employed.  Firstly,  to  reduce  complexity, 
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 the  focus  was  switched  to  one  PBP,  E.  coli  PBP3.  To  resolve  complexity,  FT-ICR  MS  was 

 used. FT-ICR MS has advanced resolving power and is used in top-down proteomics. 

 4.4 Top-Down Proteomics MS 

 Due  to  the  limited  reproducibility  achieved  by  bottom-up  proteomic  peptide  mapping 

 for  PBPs  and  β−lactams,  a  top-down  approach  using  FT-ICR  MS  was  attempted.  FT-ICR 

 MS  can  achieve  up  to  femtomole  accuracy;  it  is  instrumental  in  resolving 

 post-translational  modifications  195,201  .  FT-ICR  MS  can  employ  electron  capture 

 dissociation and collision-induced energy to extract structural information  195,208  . 

 For  the  FTI-CR  MS  work,  E.  coli  PBP3  was  treated  with  ceftriaxone.  Ceftriaxone  also  has 

 a  leaving  group,  meaning  when  it  binds  PBPs  and  the  β-lactam  ring  3’  leaving  group 

 (3-mercapto-2-methyl-1,2-dihydro-1,2,4-triazine-5,6-dione)  is  displaced  concurrent 

 with  acylation  of  the  PBP  serine  by  the  drug  (  Figure  4.16  ).  The  acylation  of  the  active 

 site  serine  causes  a  mass  shift  from  554  to  395.  The  truncated  version  of  the  protein 

 used  in  this  work  had  a  predicted  molecular  weight  59847  Da.  The  table  of  the 

 predicted  masses  is  shown  below  (  Table  4.5  ).  The  FT-ICR  MS  work  was  carried  out  and 

 analysed by Dr Y. Lam (University of Warwick). 
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 Figure  4.16  Mechanism  of  ceftriaxone  acylating  the  active  site  serine  of  PBPs.  (1.) 
 The  hydroxyl  group  of  the  active  site  serine  is  brought  into  proximity  to  ceftriaxone.  (2.) 
 Nucleophilic  reaction  of  the  β-lactam  ring  with  the  serine  hydroxyl  group  leads  to  the 
 opening  of  the  β  lactam  ring.  The  rearrangement  of  electrons  expels  the  R  group  – 
 Dioxo-triazine  group.  (3.)  A  covalent  bond  is  formed  between  the  ceftriaxone  derivative 
 and  the  active  site  serine.  (4.)  Deacylation  reaction.  Figure  is  adapted  from  Edoo  et  al 
 2018  220  . 

 Predicted molecular weigh  t 
 Predicted molecular mass of  E. coli  PBP3  59847.6263 

 Molecular weight of ceftriaxone  554.5710 

 Predicted molecular weight of ceftriaxone without 
 the leaving group 

 395.4080 

 Predicted molecular weight of  E. coli  PBP3 with 
 ceftriaxone bound [M with ceftriaxone +H]+ 

 60403.2263 

 Predicted monoisotopic mass of  E. coli  PBP3 with 
 ceftriaxone bound and leaving group gone 

 60243.32 

 Table 4.5 Predicted masses of E. coli PBP3 treated with ceftriaxone. 
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 Figure  4.17A-B  The  FT-ICR  MS  spectrum  of  E.  coli  PBP3.  The  top  spectrum  is  the 
 untreated  E.  coli  PBP3  (no  antibiotic).  And  the  bottom  spectrum  (red)  is  E.  coli  PBP3 
 with  ceftriaxone  treatment.  The  red  and  blue  circles  over  peaks  annotate  the  observed 
 charged states of the protein (19+ to 15+). 

 The  most  abundant  peak  has  an  m/z  of  3743.948356  ([M+16H+]/16),  giving  an  average 

 protein  molecular  mass  of  ~59,887.1737.  In  Figure  4.17A  ,  dimers  and  trimers  are  seen 

 and  denoted  by  the  squares  (estimated  Mr  121,846.977)  and  triangle  (estimated  Mr 

 189,641.9866),  respectively.  The  bottom  spectrum  shows  the  protein  with  ceftriaxone 

 treatment;  it  has  an  estimated  molecular  mass  of  ~60,438.24677  (  Figure  4.17  ).  The 

 observed  masses  of  the  ceftriaxone  treated  and  untreated  proteins  have  larger  masses 

 than  expected  (  Table  4.5  ).  The  predicted  molecular  mass  of  E.  coli  PBP3  is  59847.6263, 

 and  the  observed  was  59,887.1737;  this  is  a  mass  difference  of  39.5474  Da,  this  could 

 potentially  be  the  mass  of  a  potassium  adduct  (  Table  4.5  ).  The  predicted  mass  of  E.  coli 

 ceftriaxone  and  PBP3  is  60242.6263,  as  the  leaving  group  should  not  be  present  (  Table 

 4.5  ).  The  observed  molecular  mass  of  the  ceftriaxone  treated  PBP3  was  60,438.24677. 

 The observed mass was 195.62047, greater than expected. 

 The  difference  between  the  observed  PBP3  and  ceftriaxone  treated  PBP3  was  551, 

 smaller  than  the  expected  mass  of  ceftriaxone  in  its  complete  form  and  larger  than  the 

 expected  mass  in  its  acylated  form.  The  mass  differences  observed  between  the 

 ceftriaxone  treated  and  untreated  PBP3  and  the  differences  between  observed  and 

 expected  are  not  consistent  with  the  loss  or  mutation  of  an  amino  acid.  The  construct 
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 for  the  expression  of  the  PBP3  was  sequenced  and  showed  no  mutations  (  Appendix 

 9.4  ).  Furthermore  this  experiment  was  undertaken  using  the  same  E.  coli  PBP3  stocks 

 used  in  earlier  proteomic  experiments  for  which  there  was  broad  spectrum  sequence 

 coverage.  The  mass  shift  with  ceftriaxone  should  have  been  395  Da,  as  the  leaving 

 group should have left following the interactions with the active-site serine (  Table 4.5  ). 

 The  monoisotopic  mass  of  ceftriaxone  sodium  salt  is  576.028;  when  protonated,  this 

 rises  to  577.0358;  if  the  compound  were  hydrolysed,  a  mass  increase  of  +18  would  be 

 observed,  and  if  the  compound  were  decarboxylated,  a  mass  decrease  of  -44  would  be 

 expected.  These  changes  would  result  in  a  predicted  mass  of  551.035.  This  mass  is 

 consistent  with  the  observed  mass  difference  between  the  treated  and  untreated  PBP3. 

 This  hydrolysed  and  slightly  degraded  version  of  ceftriaxone  could  interact  with  the 

 PBP3  in  a  non-covalent  way.  Using  the  observed  mass  difference  of  551.035  and 

 accounting  for  a  potassium  adduct  with  a  mass  of  39,  the  new  predicted  mass  of  the 

 ceftriaxone treated PBP3 rises to 60,437.66 which is 0.5855 less than the observed. 

 FT-ICR  MS  can  trap  charge  and  reanalyse  molecules  using  fragmentation  195  . 

 Fragmentation  techniques  were  used  to  analyse  these  proteins  further; 

 collision-induced dissociation (CID) and electron capture dissociation (ECD). 

 4.4.1 CID of PBP3-ceftriaxone acyl enzyme 

 For  CID  of  E.  coli  PBP3,  the  samples  were  treated  with  22eV  (  Figure  4.18  ).  Before  being 

 trapped,  the  parent  ion  had  a  molecular  mass  of  =  59,887.1737;  after  trapping  with  22 

 eV  CID,  the  molecular  mass  dropped  to  59,810.04666,  a  difference  of  77.12704  (  Figure 

 4.18  ).  The  ceftriaxone  treated  PBP3  lost  a  mass  of  245,  going  from  60,438.24677  to 

 60,193.03962 (  Figure 4.18  ). 
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 Figure  4.18  The  FT-ICR  MS  CID  spectrum  of  E.  coli  PBP3.  The  top  spectrum  (in 
 black)  is  the  untreated  PBP3  control,  and  the  bottom  spectrum  (in  red)  is  E.  coli  PBP3 
 treated with ceftriaxone. The circles indicate the charge states of the protein. 

 The  difference  between  the  parent  ion  of  E.  coli  PBP3  treated  with  ceftriaxone  and  the 

 resulting  fragment  ion  is  245  Da  (  Figure  4.18  ).  245  is  not  the  size  of  the  adduct.  The 

 untreated  parental  ion  decreased  to  77  Da  (  Figure  4.18  ).  The  expected  mass  loss  was 

 not  observed,  perhaps  due  to  the  stability  of  the  covalent  bond  between  the  protein  and 

 the β-lactam. 

 4.4.2 CID ECD of PBP3-ceftriaxone acyl enzyme 

 Electron  capture  dissociation  is  used  by  FT-ICR  MS  as  a  fragmentation  technique  195  .  It  is 

 particularly  useful  in  protein  analysis,  as  it  fragments  across  the  peptide  backbone, 

 whilst  maintaining  labile  modifications  195  .  As  previous  work  has  demonstrated  some 

 lability  in  the  β-lactam-PBP3  ester  bond,  ECD  was  an  attractive  option.  Below  is  the 

 observed  CID  ECD  spectrum  of  PBP3  treated  with  ceftriaxone,  trapped,  and  exposed  to 

 CID ECD at 20eV(  Figure 4.19  ). 
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 Figure  4.19  FT-ICR  MS  spectra  of  ECD  CID  PBP3-ceftriaxone  sample.  Again,  blue 
 circles indicate charge states of protein. 

 The  observed  mass  of  the  protein  after  this  treatment  was  60,201.40196  Da.  A 

 236.84481  Da  change  from  the  parental  ion  (60,438.24677)(  Figure  4.19  ).  This  is  not 

 the  mass  expected  of  bound  ceftriaxone  (395  Da).  This  result  was  similar  to  the  CID 

 spectrum.  It  suggests  that  the  adduct  is  stable  under  CID  and  ECD  CID.  Using  CFM-ID 

 4.0  221  ,  potential  fragments  of  ceftriaxone  were  generated  to  search  for  any  potential 

 fragments  of  236  or  77  that  fit  a  plausible  explanation  of  the  results.  Unfortunately, 

 none  of  the  fragments  explained  the  mass  difference  observed  in  this  work.  As  a  result, 

 this technique is not beneficial to the goals of this project. 

 4.5  Using  MALDI-TOF  MS  to  monitor  the  acylation  of 

 PBPs 

 Due  to  equipment  availability  and  increased  throughput,  a  new  MS  technique  was 

 picked.  MALDI  has  been  extensively  used  for  complex  biological  samples  due  to  its 

 inherent  ability  to  resolve  complex  mixtures  199,222  .  MALDI-TOF  had  a  lower  resolution 

 than  other  mass  spectra  used  in  this  work,  so  mass  is  calculated  from  the  average  m/z 

 of  triplicates.  MALDI  MS  tolerates  salts  much  better  than  in  FT-ICR  MS  or  Orbitrap 

 MS  199,222  . As a result, the proteins were not desalted  before analysis. 
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 Figure  4.20  MALDI  spectrum  of  E.  coli  PBP3  treated  with  ceftriaxone.  The  top  three 
 spectra  in  black  are  E.  coli  PBP3  control  samples,  and  the  bottom  three  spectra  are  with 
 E.  coli  PBP3  with  ceftriaxone  treatment.  The  average  m/z  of  the  control  samples  was 
 taken  from  the  predominant  peaks.  The  average  mass  of  the  untreated  protein  is 
 59480.95,  and  the  average  of  the  treated  protein  is  59879.52.  The  mass  difference 
 between the two averages is 398.56. 

 The  predicted  masses  of  E.  coli  PBP3  were  as  before  (  Table  4.5  ).  The  observed  mass  of 

 E.  coli  PBP3  was  59480.95,  366.67  Da  less  than  predicted  (  Figure  4.20  ).  The  mass  of 

 PBP3  ceftazidime  acyl  enzyme  was  59879.52,  this  is  363.8  Da  less  than  predicted 

 (  Table 4.5  ). 

 The  difference  between  the  observed  masses  of  the  two  samples  was  398  Da  (  Figure 

 4.20  ).  This  mass  is  close  to  the  predicted  mass  of  the  ceftazidime  PBP3  acyl-enzyme. 

 The  MALDI  mass  spectra  have  two  peaks  for  the  proteins  and  a  broad  shoulder  on  all 

 the  primary  peaks  (  Figure  4.20  ).  The  presence  of  two  peaks  and  a  broad  shoulder 

 makes  the  deconvolution  of  the  spectra  more  complex  and  increases  the  likelihood  of 

 inaccurate  masses.  This  may  explain  why  the  mass  difference  was  out  by  3  Da.  There 

 are  also  doubly  and  triply  charged  species  of  the  protein  present  at  peaks  around  26 

 kDa and 19 kDa. 

 4.5.1 MALDI-TOF of other PBP4 

 The  interaction  of  PBP4  with  ceftriaxone  could  not  be  observed.  Some  literature 

 suggests  the  ionisation  of  ceftriaxone  is  more  difficult  than  other  cephalosporins  due  to 
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 ‘weak  molecular  polarity’  223  .  There  is  also  literature  that  suggests  that  ceftriaxone  is 

 ‘highly  protein  bound’  196  .  Both  of  these  factors  suggest  that  another  cephalosporin  may 

 have  been  more  appropriate.  Nitrocefin  seemed  to  provide  more  reliable  adducts,  so  it 

 should  have  been  used,  although  the  acylation  method  is  reportedly  different  from 

 other cepahlosporins  215  . 

 Furthermore,  the  sample  preparation  conditions  for  the  MALDI  may  have  been 

 suboptimal.  In  general,  when  PBPs  were  mixed  with  ceftriaxone  the  proteins  appeared 

 to  precipitate.  This  observation  was  echoed  by  other  researchers  who  observed 

 precipitation  of  PBP2a  when  treated  with  β-lactams  224  .  Despite  attempting  to  optimise 

 this  with  different  buffers  and  concentrations,  it  was  still  observed,  and  could  have 

 impeded  this  experiment.  It  is  believed  that  the  acylation  of  PBPs  leads  to  a 

 conformational change that may encourage precipitation  224  . 

 4.6 Discussion and Future prospects 

 Each  protein  and  each  peptide  extracted  from  a  protein  (when  we  look  bottom-up) 

 upon  acylation  ionises  to  a  greater  or  lesser  extent  dependent  on  many  factors.  This  is 

 true  for  different  β-lactams.  Meaning  despite  how  much  optimisation  could  be  done  for 

 each protein, the favourable outcome could suppress the ions of another sample  208  . 

 According  to  Fontana  et  al  .  (2000)  219  ,  relative  affinities  of  E.  coli  PBPs  for  various 

 β-lactams  varies  (  Table  4.6  )  219  .  Fontana  et  al.  reported  PBP1  has  marked  affinity  to 

 cephalosporins,  PBP2  has  an  affinity  to  mecillinam  and  imipenem,  PBP3  has  an  affinity 

 for  some  cephalosporins,  piperacillin  band  aztreonam,  and  PBP4  has  affinity  for 

 benzylpenicillin,  ampicillin  and  imipenem.  Idealistically,  this  would  have  been  proved  in 

 this work. 

 This  work  has  focused  on  narrowing  the  complexity  of  resolving  mass  spectra  of  PBPs 

 when  treated  with  β-lactams.  The  Orbitrap  and  FT-ICR  MS  are  substantially  more 

 resource-heavy  without  yielding  better  results.  The  goal  of  using  these  high-resolution 

 mass  spectrometers  was  general  accuracy  and  accurate  quantification.  13  C  isotopically 

 labelled  β-lactams  would  have  been  used  for  quantification  after  establishing  a 

 calibration  curve  225  .  The  method  would  have  been  based  on  this  paper’s  225  calibration 

 curves,  and  enzyme  assays  and  MICs  would  have  supported  the  results.  However,  the 
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 reproducibility  and  the  lack  of  resources  prohibited  achieving  this.  Therefore,  high 

 throughput, low-resolution MALDI-TOF was tested. 

 A  more  straightforward  MALDI  method  to  quantify  β-lactams  would  be  to  analyse  the 

 shift  between  the  intact  and  the  hydrolysed  version  of  β-lactams  226  .  Some  authors 

 looking  at  β-lactam  resistance/β-lactams,  in  general,  quantify  the  proportion  of  the 

 hydrolysed  β-lactam  226,227  .  For  example,  when  ampicillin  is  hydrolysed,  a  mass  shift  of 

 +18  is  observed  226  .  This  method  was  not  used  as  it  would  not  be  sensitive  enough  for 

 quantification  due  to  the  proclivity  of  the  β−lactam  ring  to  break.  Furthermore,  the 

 focus of this work was to use β-lactam binding to PBPs to quantify permeability. 

 The  MALDI  allowed  us  to  visualise  the  shift  between  untreated  and  treated  PBPs, 

 however,  the  results  are  essentially  approximations.  The  next  steps  of  this  work  could 

 have  been;  developing  a  calibration  curve  with  PBP3  and  ceftriaxone  on  MALDI.  This 

 would  have  consisted  of  measuring  the  area  under  the  curve  of  the  peaks.  This  would 

 have  been  confirmed  by  a  higher  sensitivity  MS  like  FT-ICR-MS  or  Orbitrap  using  a 

 heavy  isotope  labelled  ceftriaxone  225  .  The  binding  of  PBP3  and  ceftriaxone  measured  by 

 MS  would  have  been  confirmed  by  concurrent  enzyme  assays.  To  move  on  to  a  more 

 complex  system,  soluble  His-PBP3  is  over-expressed  in  E.  coli  cells,  and  then  the 

 binding  is  quantified  by  MS  methods.  This  is  built  upon  porin  knockout  strains,  that  are 

 made chemically competent to express the protein. 

 4.7 Conclusion 

 The  results  from  this  chapter  were  not  compelling  enough  to  pursue  this  work  further. 

 The  time  and  expertise  needed  to  optimise  an  MS  protocol  for  each  β-lactam  and  PBP 

 were  unachievable.  Furthermore,  there  are  alternative  methods  to  investigating 

 β-lactam  permeability,  such  as  the  micro-iodometric  assay.  The  subsequent  chapters 

 focus on developing general assays and tools to investigate permeability. 
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 Chapter 5. Creating synthetic cells to 

 observe antibiotic permeability 

 5.1 Background 

 5.1.1 Liposomes 

 Historically,  methods  of  measuring  permeability  have  included  techniques  such  as 

 liposome  swelling  assays  66  .  Liposomes  are  unilamellar  vesicles  formed  of  a 

 phospholipid  bilayer,  and  they  can  be  made  in  a  range  of  sizes  (  Figure  5.1  )  228  .  Small 

 unilamellar  vesicles  (SUVs)  are  20  to  100  nm  in  diameter,  large  vesicles  (LUVs)  are  100 

 to  1000  nm,  and  giant  unilamellar  vesicles  (GUVs)  are  1  to  200  μm  (  Figure  5.1  )  228  . 

 Liposomes  are  heavily  used  in  biological  assays  due  to  liposomes'  adaptability;  the 

 internal  environment  can  hold  targets  or  reporters  for  assays,  the  phospholipid 

 composition  can  be  altered,  and  membrane  proteins  can  be  integrated.  Liposome 

 assays  have  been  used  to  monitor  radioactive,  fluorometric  and  spectroscopic 

 reaction  229  .  As  a  result  of  the  number  of  controllable  variables,  the  application  of 

 liposomal assays is vast  229  . 

 Figure  5.1  Size  range  of  liposomes  228  .  They  are  formed  of  a  phospholipid  bilayer,  and 
 are  unilamellar  (in  this  work).  Membrane  proteins  can  be  integrated  into  the 
 membrane  of  phospholipids  during  rehydration  and  with  the  use  of  BioBeads.  The 
 internal volume of liposomes can hold the components of the reporter. 

 122 

https://www.zotero.org/google-docs/?yDB2TK
https://www.zotero.org/google-docs/?34WpUP
https://www.zotero.org/google-docs/?LAHhZI
https://www.zotero.org/google-docs/?1cIDfJ
https://www.zotero.org/google-docs/?UnGP4D
https://www.zotero.org/google-docs/?07feio


 Liposomes  are  a  good  model  for  the  study  of  antibiotic  permeability  as  both  movement 

 of  compounds  through  the  lipid  layer  and  porins  can  be  monitored  230  and  have  been 

 used  extensively  in  this  manner.  Monitoring  permeability  through  liposomes  has 

 usually  required  either  a  fluorescent  reporter  or  fluorescent  antibiotics.  The  necessity 

 of fluorescence limits the broader application of the techniques to drug discovery. 

 Both  small  and  large  vesicles  can  be  formed  using  rehydration  and  freeze-thaw  cycles, 

 followed  by  extrusion  228,231  .  Historically  GUVs  were  made  using  a  ‘gentle  hydration’ 

 technique  or,  more  recently,  GUVs  have  been  made  using  the  inverted  emulsion  transfer 

 technique  (used  in  this  work)  or  electro-swelling  formation  228,231  .  However, 

 microfluidics is the most current and precise method to form homologous GUVs  67,79,232  . 

 Liposomes  have  long  been  used  as  cell  models.  However,  liposome  models  are 

 reductive.  The  aim  of  this  work  is  that  by  combining  liposome  technology  with 

 synthetic biology techniques, a more complex model of  E. coli  can be built. 

 5.1.2 Synthetic cells  

 Synthetic  biology  aims  to  study  and  imitate  biological  phenomena  and  utilise  them  to 

 expand  the  contemporary  edge  of  science  233  .  Synthetic  cells  are  a  goal  of  biological 

 research.  There  are  two  critical  approaches  to  this  goal:  a  top-down  approach  and  the 

 second  being  a  bottom-up  approach  233  .  Top-down  approaches  aim  to  knock  out  all  but 

 the  essential  genes  in  organisms  to  rebuild  and  programme  them  with  specific 

 functions  233,234  .  The  bottom-up  approach  is  centred  around  building  up  an  artificial  cell 

 system  from  individual  components  142  .  The  following  chapter  outlines  the  use  of  the 

 later approach to building a system to measure permeability and aid in drug discovery. 

 Bottom-up  synthetic  cells  are  formed  of  four  key  components;  a  liposome,  a  cell-free 

 transcription/translation  system,  energy  sources,  and  the  target  DNA.  Cell-free 

 expression  systems  have  been  used  to  create  proteins  and  nucleic  acid  235–237  .  There  are 

 two  main  categories  of  cell-free  protein  synthesis  systems  (CFPSs);  either  a  'PURE' 

 expression  system  238  or  a  cell-free  lysate  system.  PURE  based  expression  systems  are 

 composed  of  purified  proteins  238,239  .  In  comparison,  lysate  based  methods  use 

 concentrated  cell-lysate  to  synthesise  proteins  (  Figure  5.2  )  240–242  .  The  lysate  system  can 

 be  made  using  different  species'  machinery.  The  main  species  used  to  make  lysate 

 based  CFPS  are;  Saccharomyces  cerevisia  e,  E.  coli  ,  rabbit  reticulocyte  lysate,  Chinese 
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 hamster  ovary,  and  wheat  germ  241  .  Each  system  comes  with  its  own  advantages  and 

 disadvantages,  and  are  useful  in  different  applications.  The  system  used  in  this  chapter 

 is  an  E.  coli  lysate  system  based  on  the  work  of  Noireaux  et  al.  129,142,143  (  Figure  5.2  )  . 

 Noireaux  et  al.  have  done  extensive  work  developing  their  system,  and  have  explored 

 the  efficacy  in  an  interdisciplinary  manner,  looking  at  proteomics  243  ,  modelling  244  ,  and 

 microfluidics  245  . 

 Figure  5.2  Components  of  CFPS.  The  E.  coli  lysate  should  contain  the  key  transcription 
 and  translation  machinery  like  RNA  polymerase,  ribosomes,  elongation  factors  246  .  This 
 is  supplemented  with  an  energy  solution  which  contains  ATP  but  also 
 3-Phosphoglyceric  acid  to  regenerate  ATP.  The  energy  solution  also  contains 
 nucleotides  and  tRNA  as  building  blocks  for  transcription  and  translation.  This  is 
 supplemented  with  amino  acids.  The  plasmid  of  interest  is  supplied,  and  this  results  in 
 protein synthesis. 

 Synthetic  cells  allow  for  much  greater  experimental  control  of  variables,  and  more 

 manipulation,  allowing  more  modifications  of  the  platform  for  this  or  other 

 applications.  Synthetic  cells  also  allow  us  to  create  complex  and  dynamic  systems 

 compared  to  proteoliposomes  whilst  still  maintaining  control.  Using  synthetic  cells  as  a 

 platform  allows  us  to  investigate  the  effect  of  different  lipid  layers,  be  it  artificial  or 

 native.  It  could  also  allow  for  the  integration  of  membrane  proteins  247,248  .  Synthetic  cell 

 systems  allow  for  the  introduction  of  multiple  plasmids,  which  means  multiple  proteins 

 can  be  expressed.  In  this  work,  synthetic  cells  will  be  created  to  mimic  E.  coli,  in  order 

 to develop a new permeability assay. 
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 5.1.3 Outline of work 

 The  inverted  emulsion  transfer  technique  was  used  to  create  the  GUVs  that 

 encapsulated  the  CFPS  reaction  (  Figure  5.3  for  a  visual  representation  of  the 

 technique)  228,249,250  .  Two  versions  of  the  inverted  emulsion  transfer  technique  were 

 trialled,  one  using  an  Eppendorf  tube  249  and  the  second  using  a  96-well  plate  146,147  . 

 There  were  three  key  components,  outer  solution,  interface,  and  emulsion.  The  outer 

 solution  was  an  aqueous  solution  that,  in  this  application,  was  used  as  a  'feeding 

 solution'  for  liposomes  141  .  Noireaux  et  al.  defined  'feeding  solutions'  as  the  aqueous 

 solution  used  to  encapsulate  and  maintain  protein  synthesis  141  .  There  are  three 

 feedings  solutions,  F1,  F2,  and  F3  141  .  F1  consists  of  phosphate-buffered  saline  and 

 200-400  mM  glucose  141  .  F2  is  Tris-buffered  magnesium  glutamate,  potassium 

 glutamate,  PEG,  and  maltodextrin  to  feed  liposomes  and  maintain  osmotic  balance  141  . 

 F3  is  the  most  complex  and  expensive  feeding  solution  formed  of  all  of  the  components 

 of  the  CFPS  system,  without  the  lysate,  meaning  the  energy  solution,  the  ATP,  the 

 magnesium and potassium glutamate, PEG and maltodextrin  141  . 

 Forming  liposomes  in  the  inverted  emulsion  technique  involves  layering  phospholipids 

 on  top  of  a  feeding  solution  (also  known  as  the  outer  solution),  creating  an  interphase 

 layer.  The  interface  is  a  thin  layer  of  phospholipids  dissolved  in  oil;  this  is  layered  on  the 

 outer  solution  and  left  for  at  least  thirty  minutes  to  form  an  interface  146,147,249  .  The 

 emulsion  is  composed  of  phospholipids  and  an  inner  solution;  the  inner  solution  (in 

 this  application)  is  formed  from  a  CFPS  reaction.  The  emulsion  is  formed  either  by 

 vortexing  (Eppendorf)  145,249  or  by  mechanical  agitation  (96-well  plate)  146,147  ,  creating 

 inverted  micelles  of  inner  solution  surrounded  in  phospholipid.  This  emulsion  is  added 

 on  top  of  the  interphase  layer.  The  encapsulation  happens  when  the  solution  is 

 centrifuged,  creating  GUVs  in  the  outer  solution  145,146,249  .  In  the  Eppendorf  approach, 

 GUVs  need  to  be  extracted;  this  requires  puncturing  the  tube  with  a  needle  and 

 collecting  a  droplet  of  GUVs.  In  contrast,  the  GUVs  formed  in  the  96-well  microplate  are 

 not extracted for visualisation. 
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 Figure  5.3  The  inverted  emulsion  transfer  technique  used  to  form  GUVs.  In  the 
 bottom  of  the  wells  is  the  outer  solution  which  in  this  case  was  either  F1,  or  F2  141  . 
 Followed  by  a  layer  of  lipid  in  oil  forming  the  interface.  The  lipid  at  the  interface  layer 
 will  form  the  outer  leaflet  of  the  bilayer.  After  this  interface  has  formed,  the  inner 
 solution  is  mixed  with  lipid  and  oil  to  form  inverted  emulsions  which  are  layered  over 
 the interface. 

 Using  96-well  plates  to  create  synthetic  cells  will  result  in  synthetic  cells  being  available 

 in  a  high-throughput  format.  By  having  the  CFPS  produce  a  fluorescent  protein,  any 

 drugs  that  inhibit  transcription  or  translation  should  reduce  the  amount  of  fluorescent 

 reporter  created.  The  aim  is  to  gradually  increase  the  complexity  of  the  GUV  until  it  is 

 an  accurate  model  of  the  E.  coli  outer  membrane.  Therefore,  the  platform  is  not  only  set 

 up  to  screen  new  drugs  but  also,  it  can  monitor  permeability  across  the  outer 

 membrane.  Thus,  creating  an  activity  screening  platform  that  can  be  used  in  tandem 

 with a permeability screen. 

 5.1.4 Research aims 

 ●  Create an in-house CFPS system 

 ●  Encapsulate this CFPS system in GUVs 

 ●  Scale  up  these  synthetic  cells  to  a  96-well  format  for  antimicrobial  activity 

 screens 
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 5.2 Results 

 5.2.1 Creating cell free protein synthesis system 

 The  first  step  of  work  was  to  establish  a  CFPS  system.  Working  from  the  literature  of 

 Noireaux  et  al.  129,140,141,251  and  Levine  et  al.  2020  124  ,  an  in-house  E.  coli  cell-free 

 expression  system  was  implemented.  E.  coli  Rosetta  (DE3)  were  grown  in  cell-free 

 auto-induction  media  124  ,  harvested  and  lysed  as  reported  by  Levine  et  al.  124  .  This  lysate 

 was  used  in  conjunction  with  amino  acids  (biotech  rabbit)  made  up  to  1.5  mM,  with  an 

 energy  source  consisting  of  an  ATP  regeneration  system.  Reactions  were  made  up  to  a 

 volume  of  20  μL,  whereby  the  production  of  a  green  fluorescent  protein  (deGFP)  was 

 monitored  in  the  PHERAstar  plate  reader  in  384-well  (Greiner)  plates  at  Ex./Em. 

 488/510  nm,  a  temperature  of  30°C.  deGFP  construct  from  Noireaux  et  al.  143  was 

 chosen  due  to  its  supporting  literature  and  evidence  that  it  is  more  translatable  than 

 other  forms  of  GFP.  The  deGFP  construct  was  expressed  from  a  p70a  plasmid  that  uses 

 endogenous  E. coli  RNA polymerase and sigma factor  70  140,143  . 

 Many  components  of  the  energy  solution  require  optimisation;  DTT,  ATP,  energy 

 sources,  and  magnesium  glutamate  concentrations.  The  concentration  and  preparation 

 of  the  DNA  can  influence  protein  synthesis.  DNA  was  prepared  using  a  MAXIprep 

 (Qiagen) kit to ensure the removal of any contaminating RNase. 

 5.2.2 Optimising CFPS system 

 Setting  up  a  CFPS  was  an  iterative  process.  As  the  reaction  had  many  constituents,  there 

 were  many  potential  points  of  failure;  it  is  also  not  the  most  robust  process.  The 

 system's  activity  was  impacted  by  a  range  of  factors  such  as  DNA  concentration  252  and 

 preparation  and  magnesium  concentrations.  Characterisation  of  each  lysate 

 preparation  is  necessary  for  an  effective  CFPS  system  251  .  To  assess  the  system's  efficacy, 

 a  collaborator  kindly  gifted  their  CFPS  components  for  comparison  (S.  Liyanagedera, 

 University  of  Warwick).  The  CFPS  was  given  the  same  deGFP  (15  nM)  plasmids 

 incubated  at  30°C  in  parallel,  and  the  relative  fluorescent  intensity  of  deGFP  values  was 

 read after 2 hours (  Figure 5.4  ). 
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 Figure  5.4  Troubleshooting  CFPS.  In-house  set-up  was  compared  to  collaborators  (S. 
 Liyanagedera)  set-up.  15nM  deGFP  plasmid  was  maintained  across  reactions.  Amino 
 acids  have  been  abbreviated  to  AA  and  the  energy  solution  was  abbreviated  to  ES.  On 
 the  left  of  the  bar  chart  is  the  in-house  CFPS  and  next  to  this  is  the  in-house  amino  acids 
 and  energy  solution  used  with  control  lysate.  In  the  third  bar  (blue)  is  the  control 
 amino  acids  and  energy  solution  used  in  conjunction  with  the  in-house  lysate.  On  the 
 right hand side (green) is the control CFPS reaction. 

 The  first  test  on  the  lysates  functionality  appeared  to  be  25%  less  active  than  the 

 control  reaction  (  Figure  5.4  ).  However,  the  main  issue  appeared  to  be  with  the  rest  of 

 the  CFPS  reaction  components.  As  a  result,  different  concentrations  of  DTT,  amino 

 acids,  magnesium-glutamate,  DNA  and  ATP  were  tested.  Additional  ATP  (additional 

 1mM)  significantly  boosted  the  reaction.  Supplementing  the  other  key  components  in 

 the  energy  solution,  such  as  folinic  acid,  cAMP,  and  NAD,  also  increased  deGFP 

 productions.  By  adjusting  the  energy  solution,  deGFP  was  produced  to  the  same  levels 

 as when using the control energy solution. 

 5.2.3 Purifying deGFP 

 The  deGFP  used  in  the  CFPS  reaction  was  purified  using  traditional  E.  coli  cell-based 

 methods,  to  compare  to  the  CFPS  reaction.  The  deGFP  was  expressed  and  purified  by 

 nickel  IMAC  affinity  chromatography.  The  protein  concentration  was  quantified  using 

 the  nanodrop  at  488  nm,  extinction  coefficient  55,000  (  cm  -1  M  -1  )  .  A  dilution  series  of 

 these  values  was  used  to  create  a  calibration  curve  to  convert  relative  fluorescence 

 units (RFU) to concentration (  Figure 5.5  ). 
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 Figure  5.5AB  Purified  deGFP  and  the  accompanying  concentration  curve  created. 
 A  Left;  SDS-PAGE  gel  of  purified  deGFP.  On  the  left  of  the  gel  is  the  purified  protein,  and 
 on  the  right  is  the  protein  ladder  (NEB  prestained  protein  ladder).  Figure  5.5B  ;  right  is 
 the  calibration  curve  constructed  of  purified  protein.  1  mg/mL  deGFP  (29.  kDa)  is  34.5 
 μM  . 

 The  purification  of  deGFP  and  the  calibration  curve  allows  for  the  estimation  of  deGFP 

 production  (  Figure  5.5B  ).  deGFP  production  by  the  CFPS  was  monitored  over  three 

 hours  at  30°C,  where  fluorescent  readings  were  taken  every  three  minutes  (Ex./Em. 

 488  nm/510  nm).  The  monitoring  of  the  fluorescence  in  this  way  allows  us  to 

 understand  the  kinetics  of  the  process,  which  would  be  necessary  for  the  analysis  of  the 

 impact of antibiotics on encapsulated CFPS. 

 Figure  5.6  The  CFPS  deGFP  production  over  time.  deGFP  production  was  monitored 
 using  fluorescence  intensity  readings  over  time  on  the  PHERAstar  plate  reader  (BMG) 
 Ex./Em. 488/510 nm 
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 Over  three  hours  the  reaction  produced  20  μM  of  deGFP  (  Figure  5.6  ).  10  μL  of  one  of 

 the  reactions  was  mixed  with  a  protein  loading  buffer  and  analysed  by  SDS-PAGE 

 alongside  the  control  (  Figure  5.7  ).  The  SDS-PAGE  gel  offered  little  information  about 

 GFP  synthesis  as  the  CFPS  reaction  was  rich  in  proteins,  and  the  abundance  of  deGFP 

 was  comparatively  low.  However,  the  gel  was  imaged  fluorescently  prior  to  stains  to 

 allow for clear visualisation of GFP. 

 Figure  5.7  Visualising  deGFP  produced  from  CFPS  reactions.  5.7A  :  Coomasie 
 stained  SDS-PAGE  Gel  of  CFPS  reaction.  The  prestained  protein  ladder  had  band  sizes  of 
 96,  66,  45,  30,  20  and  14  kDa.  The  fluorescent  ladder  had  band  sizes  of  155,  98,  63,  40, 
 32,  21  kDa.  5.7B  Fluorescent  image  of  the  SDS-PAGE  gel.  5.7A  order;  protein  ladder, 
 CFPS  no  DNA,  CFPS  deGFP  plasmid,  fluorescent  ladder.  5.7B  ;  LtoR,  Protein  ladder  not 
 seen,  then  no  bands  in  control  lane,  the  CFPS  lane,  then  fluorescent  ladder,  deGFP  has  a 
 mass of 29 kDa. 

 Noireaux's  paper  demonstrates  that  deGFP  production  continues  for  up  to  12  hours, 

 whereas  this  gel  (  Figure  5.7  )  was  visualised  after  a  two-hour  incubation  140,143  .  Noireaux 

 et  al.  state  that  deGFP  production  in  their  transcription/  translation  (TXTL)  system 

 began  after  1  hour  of  incubation,  and  there  was  linear  production  of  deGFP  for  8 

 hours  244,253  .  Perhaps  a  longer  incubation  period  is  needed  to  produce  a  clear  band  on 

 SDS-PAGE  gels.  When  the  protein  gel  was  imaged  fluorescently,  deGFP  was  clearly 

 visualised. 

 5.2.4 Inhibiting CFPS with antibiotics 

 Researchers  using  CFPS  often  employ  antibiotics  that  inhibit  protein  synthesis,  such  as 

 rifampicin  or  gentamicin,  as  negative  controls.  To  further  confirm  the  establishment  of 
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 a  CFPS,  the  response  of  deGFP  synthesis  to  50  μM  gentamicin  (a  protein  synthesis 

 inhibitor) was analysed. 

 Figure  5.8.  The  deGFP  produced  by  CFPS  reaction  in  the  presence  of  different 
 antibiotics.  The  CFPS  was  set  up  with  either:  no  antibiotics  -  regular  set-up  (orange), 
 ampicillin  (red),  gentamicin  (blue),  no  antibiotics  and  no  DNA  -  negative  control 
 (black). The reaction was monitored in the PHERAstar for three hours at 30°C. 

 The  antibiotic  study  showed  that  gentamicin  inhibited  deGFP  production, 

 demonstrating  fluorescence  rates  in  line  with  the  negative  control  (no  DNA)  (  Figure 

 5.8)  .  Ampicillin  and  the  positive  control  produced  fluorescent  deGFP  (  Figure  5.8  ). 

 Ampicillin  should  not  interfere  with  deGFP  production  in  general  as  it  targets  cell  wall 

 synthesis  and  because  it  is  the  selection  marker  on  the  plasmid.  In  conclusion,  the  CFPS 

 system is working as expected, and it can make deGFP (  Figure 5.8  ). 

 5.3 Creating Synthetic Cells 

 5.3.1 Creating Synthetic Cells using Eppendorf technique 

 As  the  CFPS  platform  was  producing  protein,  this  reaction  was  encapsulated  in  POPC 

 lipid  to  create  ‘synthetic  cells’.  To  create  synthetic  cells,  a  bottom-up  approach  was 

 trialled.  Here  the  cell-free  extract  was  encapsulated  in  POPC  lipid  using  a  technique 

 adapted  from  Matsuura  et  al.  145  and  Noireaux  et  al.  141  .  This  involved  encapsulating 

 cell-free  extract  in  lipids  surrounded  by  an  energy  solution,  using  the  emulsion  transfer 

 method.  This  technique  was  done  in  small  volumes  in  an  Eppendorf  tube.  After  the 

 synthetic  cells  were  created,  they  were  incubated  at  30  °  C  and  visualised.  The  protocol 

 yielded some GUVs that synthesised deGFP. 
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 Figure  5.9A-C  A  synthetic  cell  synthesised  using  Eppendorf  technique.  5.9A  GUV 
 under  brightfield  microscopy.  5.9B  (same)  GUV  visualised  using  fluorescence 
 microscopy  Ex./Em.:  488nm  /510  nm.  In  5.9C  both  images  overlaid  using  Imagej  Fiji. 
 Images  were  taken  at  100x  magnification  under  oil  immersion  on  ZEIS  880  microscope 
 argon  laser.  This  work  arose  from  a  collaboration  with  S.  Liyanagedera  (University  of 
 Warwick), methods were developed collaboratively and reagents were shared. 

 This  technique  created  the  synthetic  cells;  however,  they  were  small  (for  GUVs  -  which 

 can  be  up  to  200  μm),  with  sizes  around  6  to  8  μm  (  Figure  5.9  ).  The  yield  using  this 

 method  was  repeatedly  low;  on  average,  only  10  GUVs  per  Eppendorf  preparation  were 

 observed.  Although  this  technique  created  GUVs  that  synthesised  deGFP,  it  was  labour 

 intensive,  slow,  and  had  poor  yields.  Therefore,  this  method  would  not  be  applicable  to 

 drug  screening  methods.  As  a  result,  a  new  method  of  creating  synthetic  cells  was 

 investigated  to  lead  to  a  higher  yield  and  provide  a  more  amenable  format  for  drug 

 discovery  platforms.  It  was  also  anticipated  that  adding  a  membrane  stain  would  also 

 improve visualisation. 

 5.3.2 Creating GUVs using the microplate technique 

 A  new  technique  described  by  Litschel  et  al.  146  was  used  to  create  synthetic  cells  using 

 the  96-well  plate  method  (  Figure  5.3  ).  A  lipophilic  membrane  dye  (Dil  iodide)  was 

 added  to  aid  in  visualising  GUVs.  To  begin  with,  the  microplate  technique  was  used  to 

 make  POPC  GUVs  that  encapsulated  purified  deGFP  as  opposed  to  the  cell-free  reaction. 

 Purified  deGFP  was  encapsulated  before  CFPS  because  the  CFPS  reaction  is  more 

 challenging to encapsulate than purified protein  141  . 
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 Figure  5.10A-B  GUVs  created  by  the  microplate  method  that  encapsulates  deGFP. 
 5.10A  is  an  image  of  the  microplate  containing  GUVs  taken  at  5x  magnification;  the 
 image  was  created  from  a  series  of  tile  scans  of  the  well.  In  5.10B  is  an  image  of  the 
 vesicles  at  40x  magnification.  The  deGFP  and  Dil  fluorescence  were  observed  on 
 different  channels,  which  were  merged.  Images  were  taken  on  the  ZEIS-LSM  880,  both 
 images had the brightness and contrast autocorrected on FIJI ImageJ. 

 From  a  tile  scan  of  the  wells,  there  are  more  than  ten  vesicles  visualised  (  Figure  5.10  ). 

 The  number  of  deGFP-containing  vesicles  could  be  quantified  adequately  by  either 

 particle  counting  programs  254  or  flow  cytometry  249,255  .  An  enhanced  magnification  of  the 

 vesicles  shows  that  the  deGFP  has  been  encapsulated  and  that  the  use  of  a  membrane 

 dye  (DIL)  has  enhanced  the  GUV  images  (  Figure  5.10  ).  The  microplate  technique  has 

 allowed  the  creation  of  more  vesicles,  and  these  vesicles  are  in  a  format  that  is  more 

 permissible  for  drug  screening  (  i.e.  96-well  plate  for  assays).  As  a  result,  this  technique 

 was trialled for encapsulation of cell-free extract. 

 5.3.3 Creating synthetic cells using the microplate technique 

 The  96-well  microplate  method  to  generate  GUVs  worked  well  with  purified  deGFP.  As  a 

 result,  this  technique  encapsulated  the  CFPS  reaction  to  form  synthetic  cells.  The 

 cell-free  reaction  was  encapsulated  and  incubated  at  30°C  for  two  hours  before 

 visualisation. 
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 Figure  5.11  Synthetic  cells  formed  using  96-well  microplate  method.  5.11 
 top-row:  Z-stack  of  GUVs  making  deGFP,  40x  magnification.  5.11  bottom-row  GUVs  that 
 had  not  encapsulated  the  plasmid  (control),  40x  magnification,  and  as  a  result  did  not 
 make  deGFP.  Again,  images  were  taken  on  the  ZEISS-LSM  880,  and  the  figure  was 
 produced  with  FIJI  ImageJ.  This  work  arose  from  a  collaboration  with  S.  Liyanagedera 
 (University  of  Warwick),  methods  were  developed  collaboratively  and  reagents  were 
 shared. 

 Using  the  microplate  method,  GUVs  were  created  that  produce  deGFP  (  Figure  5.11  ). 

 However,  the  intensity  of  the  deGFP  is  much  lower  than  that  of  purified  deGFP.  In 

 addition,  there  are  some  empty  vesicles  and  fewer  vesicles  in  general,  suggesting  that 

 perhaps  the  encapsulation  efficiency  of  the  CFPS  is  lower,  so  it  has  lost  some  of  the 

 essential  transcription-translation  machinery.  Another  quantitative  technique  should 

 have  been  used  to  differentiate  the  functioning  synthetic  cells  from  the  control  well. 

 Ultimately,  this  technique  did  work,  synthetic  cells  were  created,  and  they  were  in  a 

 96-well plate format. The following steps for this work were to optimise the process. 
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 5.3.4 Monitoring the synthetic cells creating deGFP over time 

 A  time-course  study  of  deGFP  expression  was  undertaken  to  monitor  the  production  of 

 the  protein  over  time.  The  CFPS  reaction  was  encapsulated  by  POPC  lipid  forming  GUVs 

 as  before,  but  this  time  the  incubation  period  took  place  within  the  incubation  chamber 

 of  the  microscope.  Over  two  hours,  pictures  of  the  vesicles  were  taken  every  three 

 minutes to visualise deGFP production (  Figure 5.12  ). 

 Figure  5.12A-C  Synthetic  cells  producing  deGFP  over  two  hours.  In  5.12A  a  single 
 image  (single  z  plane)  at  time  point  zero,  and  in  5.12B  an  image  (single  z  plane)  taken 
 after  two  hours  of  incubation.  5.12C  is  a  Z-stack  of  the  vesicles  at  the  end  of  the 
 incubation  just  the  deGFP  channel  is  shown.  Images  were  captured  on  the  ZEISS-LSM 
 880, and the figure was produced with FIJI ImageJ. 

 The  time-course  experiment  captured  some  deGFP  production  over  time;  however,  the 

 amount  of  deGFP  produced  seemed  low  (  Figure  5.12  ).  There  were  also  many  empty 

 cells  (  Figure  5.12  ).  Interestingly  cells  seemed  to  coalesce,  and  budding  was  observed. 

 The  cause  of  this  could  be  due  to  phase  separation  of  the  lipid  256  .  It  could  also  be  due  to 

 osmolarity  imbalances  257  .  The  blebbing  and  coalescing  of  vesicles  could  be  impacting 

 the  production  of  deGFP  and  could  impact  future  experiments.  This  experiment  showed 

 that  deGFP  production  can  be  monitored  over  time,  however  it  reinforced  the 

 complexities  of  the  goal  of  generating  synthetic  cells.  The  main  pitfalls  of  low  numbers 

 and inconsistent deGFP production are still present. 

 5.3.5 Using antibiotics to inhibit synthetic cells producing deGFP 

 Gentamicin  was  added  to  the  outer  solution  so  that  after  GUV  formation,  the  inhibitor 

 surrounds  them.  The  gentamicin  should  permeate  across  the  lipid  layer  and  inhibit  the 
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 production  of  deGFP.  To  better  mimic  E.  coli  ,  E.  coli  polar  lipid  extract  (Avanti)  was  used 

 to form the vesicles. 

 Figure  5.13A-B  Gentamicin  inhibiting  deGFP  produced  by  synthetic  cells  5.13A  on 
 the  left  are  uninhibited  GUVs,  they  have  produced  deGFP.  5.13B  On  the  right  are  GUVs 
 that are surrounded in 50 μM gentamicin. 

 The  microplate  method  was  used  to  encapsulate  CFPS  and  create  synthetic  cells  made 

 of  E.  coli  phospholipid  (  Figure  5.13  ).  The  E.  coli  polar  lipid  extract  is  not  an  exact 

 mimetic  for  the  outer  membrane.  However,  it  is  a  complex  of  natural  phospholipids  and 

 provides  a  good  starting  point  for  increasing  complexity.  The  gentamicin  appeared  to 

 suppress  deGFP  fluorescence,  as  predicted,  but  the  low  vesicle  production  rate 

 suggested  there  was  room  for  improvement.  Furthermore,  the  inhibition  of  deGFP  in 

 synthetic  cells  by  gentamicin  should  have  been  further  investigated  to  ensure  the 

 inhibition was coming from the gentamicin and not empty vesicles. 

 The  synthetic  cells  in  5.13  were  made  with  an  F2  feeding  solution  as  outlined  by 

 Noireaux  et  al.  141  .  Perhaps  the  lack  of  an  energy  solution  prevented  effective  CFPS. 

 Noireaux  et  al.  suggested  that  F3  as  an  outer  solution  will  lead  to  increased  deGFP 

 production  but  decreased  vesicle  numbers  141  .  Whereas  F1,  the  simplest  of  the  outer 

 solutions,  would  lead  to  more  vesicles  but  decreased  protein  production  141  .  As  the  F2 

 feeding  solution  was  a  compromise  between  the  two,  it  was  used  here  141  .  The  ionic 

 strength  of  the  buffer  greatly  influences  GUV  yield  256  .  Buffers  with  high  ionic  strength 

 lead  to  lower  yields  of  GUVs  256  .  The  protocol  was  optimised  since  both  the  vesicle 

 numbers and the deGFP production were consistently low. 
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 5.3.6 Optimisation of microplate method 

 As  the  production  of  GUVs  was  low  in  general,  the  microplate  method  was  optimised 

 following  Moga  et  al.  147  .  Firstly,  the  volume  of  the  outer  solution  was  decreased  from 

 100  to  50  μL,  and  the  interface  volume  (400  μM  lipid  in  oil)  was  halved  to  20  μL.  The 

 interface  was  incubated  for  the  same  period  (30  minutes).  The  emulsion  was  made  of  5 

 μL  inner  solution  in  250  μL  of  lipid  in  oil,  which  was  mechanically  agitated  (as  before). 

 This  time  50  μL  of  the  emulsion  was  added  over  the  interface  as  opposed  to  40  μL.  As  in 

 previous  experiments,  the  protocol  was  completed  in  an  ATMOS  bag  filled  with 

 nitrogen  to  ensure  water  was  not  absorbed  by  the  mineral  oil  146,147  .  As  always, 

 particular  care  was  taken  in  preparing  and  drying  the  lipids  to  prevent  oxidation.  These 

 amendments  were  made  with  an  inner  solution  either  consisting  of  20  μM  deGFP  or 

 BSA, or CFPS reaction. 

 The  lipid  composition  of  bacteria  plays  a  role  in  permeability  54,55  .  Bacteria  adapt  their 

 lipid  composition  to  their  environment  (temperature  and  pH),  which  can  increase  or 

 decrease  membrane  permeability  54  .  Antibiotic  exposure  can  cause  bacteria  to  change 

 the  composition  of  their  phospholipids  to  become  antibiotic-resistant  258  .  As  a  result,  it 

 is  essential  to  build  representative  models  of  bacterial  membranes.  A  feature  of  the 

 emulsion  transfer  approach  is  that  an  asymmetrical  bilayer  can  be  formed  by  having 

 two  different  lipid  compositions,  one  at  the  interface  and  one  mixed  with  the  inner 

 solution  259  .  The  E.  coli  outer  membrane  is  asymmetric;  the  inner  layer  contains  roughly 

 70-80%  PE,  10-20%  PG  and  2-10%  CL.  The  outer  leaflet  of  the  outer  membrane  is 

 mainly  composed  of  lipopolysaccharide  (LPS).  E.  coli  polar  phospholipid  was  used  for 

 the  inner  leaflet  and  was  mixed  with  the  inner  solution.  For  the  outer  leaflet, 

 KDO2-Lipid A was used; this is the lipid A and core sugars of LPS. 

 137 

https://www.zotero.org/google-docs/?cdz5Oo
https://www.zotero.org/google-docs/?P1YG4V
https://www.zotero.org/google-docs/?7jOMrd
https://www.zotero.org/google-docs/?SFCqra
https://www.zotero.org/google-docs/?g39naw
https://www.zotero.org/google-docs/?71EAkD


 Figure  5.14A-D  Tile  scans  from  the  optimised  microplate  method.  Top  left:  GUVs 
 with  pure  deGFP,  top  right:  pure  BSA  GUVs.  Bottom  left  is  CFPS  with  deGFP  plasmid. 
 Bottom right is CFPS with no plasmid. 

 The  optimised  protocol  resulted  in  a  significant  increase  in  GUV  creation  in  deGFP,  BSA 

 and  CFPSs  GUVs  (  Figure  5.14  ).  The  tile  scans  (5x)  of  the  wells  show  a  difference 

 between  the  GUVs  containing  pure  protein  and  CFPS  (  Figure  5.14  ).  The  GUVs 

 containing  purified  proteins  were  larger  and  distinguished  vesicles,  whereas  the  CFPS 

 GUVs  were  smaller  in  size.  The  difference  between  the  deGFP  and  BSA  in  terms  of 

 fluorescence  was  clear.  This  means  the  fluorescence  difference  will  be  significant 

 enough  to  differentiate  on  a  plate  reader,  increasing  this  technique's  amiability  to  drug 

 discovery.  Unfortunately,  the  CFPS  reaction  failed  in  the  vesicles  and  failed  when  in  a 

 plate  reader.  The  CFPS  has  many  fragile  components  with  a  limited  life  span.  By  the 

 time  this  experiment  was  undertaken,  the  reaction  components  were  ~two  years  older 
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 than  from  the  initial  preparation.  Due  to  the  limited  time  and  financial  constraints, 

 more  lysate  was  not  purified,  and  the  components  were  not  repurchased.  Instead,  the 

 focus of this work shifted towards creating GUVs with asymmetric lipid bilayers. 

 Figure  5.15A-C  The  vesicles  formed  from  the  optimised  protocol  at  10x 
 magnification.  5.15A  (left)  GUVs  containing  purified  deGFP,  5.15B  (middle)  GUVs 
 containing BSA,  5.15C  (right) GUVs containing CFPS  reaction 

 Upon  a  greater  magnification,  the  degree  of  variability  in  the  vesicles  of  CFPS  versus 

 pure  protein  is  evident  (  Figure  5.15  ).  There  also  appears  to  be  some  variation  between 

 the  BSA  and  the  deGFP  GUVs.  Ultimately,  the  optimisation  of  the  protocol  (guided  by  147 

 paper) has resulted in a much greater number of vesicles. 

 The  optimised  technique  resulted  in  many  liposomes.  Most  importantly,  these 

 liposomes  contained  an  asymmetrical  bilayer  that  mimicked  E.  coli.  The  outer  leaflet 

 was  composed  of  KDO2-Lipid  A,  and  the  inner  leaflet  contained  the  E.  coli  polar  lipid 

 extract.  The  creation  of  an  asymmetric  bilayer  is  an  improvement  on  POPC  lipid. 

 However,  the  ratio  used  is  only  a  snapshot  of  phospholipid  compositions  that  E.  coli 

 could have. 

 Furthermore,  the  diversity  of  phospholipid  composition  in  the  outer  membrane 

 between  Gram-negative  bacteria  species  is  huge  and  has  not  been  addressed  by  this 

 work  52  .  In  addition,  the  lack  of  membrane  proteins  will  also  affect  the  interactions  in 

 the  membrane.  In  the  future  work,  it  is  hoped  that  membrane  proteins  can  be 

 expressed,  therefore  better  modelling  the  outer  membrane  of  E.  coli.  The  asymmetry  of 

 this  bilayer  may  not  have  been  maintained  throughout  this  experiment.  In  bacteria, 

 there  are  flip/floppases  that  maintain  lipid  asymmetry  259  .  To  better  understand  the 

 asymmetry this should be explored with fluorescent lipids. 
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 5.3.7 Creating GUVs with asymmetric bilayers 

 Fluorescently  labelled  phospholipids  NBD-PG  and  marina  blue-PE  (1%)  were  added  to 

 the  inner  and  outer  leaflet.  The  aim  was  to  form  biologically  relevant  GUVs  and  use  the 

 fluorescent groups to visualise the interface of the asymmetric bilayer. 

 Figure  5.16A-B  GUVs  that  have  fluorescent  lipids  integrated  into  the  asymmetric 
 bilayer.  5.16A  (left)  is  a  5x  magnification  tile  scan  of  GUVs  containing  mPlum  and 
 encapsulated  in  a  complex  phospholipid  mix  .  5.16B  (right)  is  a  10x  magnification 
 image on the lipid aggregation seen on the bottom right of  5.16A. 

 As  NBD-PG  was  used,  the  fluorescent  wavelengths  would  interfere  with  deGFP,  so 

 mPlum  was  encapsulated  instead  (kind  gift  from  M.  Sambrook).  The  GUVs  formed  were 

 smaller,  and  more  lipid  aggregation  was  seen  (  Figure  5.16  ).  Giant  aggregated  and 

 distorted  GUVs  formed  260  (  Figure  5.16  ),  whereby  the  phase  separation  of  lipids  occurs 

 due  to  charge  and  osmosis,  leading  to  remodelling  of  the  membrane.  These  misshapen 

 vesicles  could  be  due  to  the  charge  of  the  lipid;  the  system  could  be  optimised  to  adapt 

 to  combat  this  with  pH  and  salt  –  since  the  technique  can  withstand  changes  to  these 

 variables,  however,  CFPS  will  not  be  able  to  withstand  these  adaptations  147  .  It  has  been 

 suggested  that  more  lipid  aggregation  occurs  due  to  centrifugation  at  higher  speeds;  by 

 reducing the g force, lipid aggregation could be reduced. 
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 Figure  5.17A-C  A  closer  look  at  GUVs  that  have  fluorescent  lipids  integrated  into 
 the  asymmetric  bilayer.  5.17A  (left)  A  10x  magnification  demonstrating  only  one 
 vesicle  containing  marina  blue  PE.  5.17B  (middle)  GUVs  contain  marina  blue  and 
 marina blue aggregation. In  5.17C  (right) no marina  blue PE appears in the membrane. 

 GUVs  containing  E.  coli  phospholipids  in  a  realistic  composition  can  be  formed  (  Figure 

 5.17  ).  Using  fluorescent  phospholipids  to  visualise  GUVs  resulted  in  aggregation.  To  use 

 these  phospholipids,  more  investigations  into  aggregation  and  blebbing  of  the  GUVs  are 

 warranted.  The  CFPS  reaction  contains  magnesium  ions  which  may  interact  with  the 

 anionic  phospholipids  PG  and  CL  in  the  membrane,  causing  fusion  261  .  The  fluorescent 

 lipids  may  have  different  transition  temperatures;  this  may  have  caused  phase 

 separation leading to aggregation. 

 5.3.8 GUV calcein leakage 

 As  the  96-well  microplate,  the  inverted  emulsion  method  can  form  GUVs  that  have  an 

 outer  membrane  mimetic;  this  platform  was  used  to  look  at  antimicrobial  peptides 

 (AMP).  The  calcein  quenching  assay  has  frequently  been  used  to  study  AMPs  and 

 leakage  from  vesicles  in  general.  Calcein  is  fluorescent  at  Ex./Em.  495/515  nm  is 

 self-quenched  at  concentrations  greater  than  70  mM  262  .  Some  researchers  have 

 performed  experiments  where  the  calcein  is  self  quenched  inside  vesicles,  and  then  as 

 it  permeates  out  (via  membrane  disruption  or  pores),  it  fluoresces  outside  the 

 vesicle  262  .  Others  have  used  lower  concentrations  of  calcein  (1  mM)  and  observed  the 

 loss  of  fluorescence  as  calcein  leaks  from  the  GUVs  148,149  .  The  latter  approach  was 

 trialled in this work. 
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 Figure  5.18  Calcein  leakage  assay  performed  on  GUVs  created  using  the  96-well 
 microplate  method.  Both  5.18A  and  B  are  composed  of  a  tile  scan  created  from  a  6 
 image  Z-stack  of  each  tile  stitched.  The  yellow  in  this  work  is  from  calcein  fluorescence 
 (recoloured  to  yellow  for  figure).  Dil  iodide  membrane  stain  was  used  as  before.  5.18A 
 (left):  GUVs  formed  from  E.  coli  phospholipid  on  the  inner  leaflet,  and  KDO2-lipid  A  on 
 the  outer  leaflet  of  the  bilayer,  encapsulating  1  mM  calcein.  5.18B  (right)  On  the  right: 
 GUVs  of  the  same  composition,  also  encapsulating  1  mM  calcein,  but  the  outer  solution 
 (surrounding the GUVs) contained 50 μM polymyxi  n. 

 The  E.  coli  outer  membrane  GUVs  demonstrated  good  encapsulation  of  calcein, 

 suggesting  this  technique  can  be  used  with  a  range  of  reporters  (  Figure  5.18  ).  The 

 vesicles  on  the  right  (  Figure  5.18  )  contained  50  μM  polymyxin  B,  a  cationic 

 antimicrobial  peptide  that  disrupts  the  outer  membrane  of  Gram-negative  bacteria.  The 

 concentration  of  polymyxin  was  chosen  to  be  consistent  with  previous  work  (  Figure 

 5.13  ).  In  this  experiment,  there  seemed  to  be  significantly  fewer  GUVs.  The  results 

 suggest  that  polymyxin  has  disrupted  the  GUVs  resulting  in  the  lack  of  liposomes.  This 

 initial  work  suggests  that  this  technique  could  be  used  to  screen  AMPs  for  activity.  The 

 lipid  composition  could  be  altered  to  mimic  other  bacteria  or  the  inner  membrane  to 

 expand  this  work.  This  technique  could  be  applied  to  CFPS,  and  the  synthetic  cells  could 

 produce  the  AMP,  and  if  it  were  effective,  there  would  be  fewer  vesicles  and  calcein 

 fluorescence. 

 5.4 Discussion and Future Prospects 

 The  work  in  this  chapter  has  met  some  of  the  outlined  aims  of  this  work.  A  bottom-up 

 approach  to  forming  synthetic  cells  has  been  established  in  a  96-well  plate.  These 
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 synthetic  cells  can  transcribe  and  translate  genes  to  synthesise  proteins,  and 

 protein-synthesis  directed  antibiotics  inhibit  this  process.  The  technique,  in  general, 

 can  be  optimised  and  adapted  to  analyse  the  impact  of  variation  of  several  cellular 

 parameters.  For  instance,  the  lipid  layer  was  adjusted  to  make  an  outer  membrane 

 mimetic,  or  other  proteins  can  be  synthesised.  The  adjustable  nature  of  this  technique 

 means there are many potential uses. 

 However,  the  generation  of  synthetic  cells  needs  optimisation.  Currently,  the 

 encapsulation  of  the  CFPS  reaction  is  lower  than  that  of  purified  proteins.  The  poor 

 encapsulation  of  CFPS  is  most  likely  due  to  osmolarity  imbalances;  therefore,  using  an 

 osmometer  to  balance  the  inner  and  outer  solution  properly  would  improve 

 encapsulation(31). And therefore, the reliability of this technique. 

 In  general,  the  variation  of  vesicles  is  considerable,  and  this  is  where  microfluidic 

 techniques  are  advantageous  as  they  can  control  the  creation  of  GUVs.  In  addition  to 

 this,  microfluidic  devices  have  been  able  to  move  away  from  the  use  of  mineral  oil  due 

 to  the  design  of  the  chips  and  can  now  use  other  carriers.  The  96-well  plate  technique 

 still  uses  oil,  which  could  have  biological  implications,  resulting  in  artefacts  such  as  oil 

 in the membrane  263,264  . 

 A  microfluidic  platform  was  created  that  encapsulated  fluorescent  dye  in  vesicles, 

 which  was  released  and  quenched  when  exposed  to  antimicrobial  peptides  (AMPs)  232  . 

 A  similar  approach  could  be  taken  by  using  the  synthetic  cells  created  by  the  microplate 

 method.  The  synthetic  cells  could  either  encapsulate  AMPs  or  the  DNA  sequence  for  the 

 AMPs,  which,  when  expressed,  would  cause  the  disruption  of  the  vesicles  and  then 

 leakage  and  a  subsequent  change  in  fluorescence.  This  adaptation  would  allow  the 

 investigation  of  potential  AMPs.  However,  the  microplate  method  of  generating  GUVs 

 cannot  control  the  size  of  GUVs  or  the  ability  to  monitor  individual  vesicles,  whereas 

 microfluidic  methods  can  create  homogenous  vesicles  and  monitor  individual  GUVs 
 265,266  . 

 If  more  time  and  resources  were  available,  more  work  on  quantifying  the  permeability 

 of  antibiotics  into  synthetic  cells  would  have  been  done.  The  original  plan  for 

 quantification  was  to  use  software  that  analyses  microscopy  images  using  machine 

 learning  algorithms,  such  as  “Vesicle  analyser  pro”  software  published  by  Hjartarson 

 2019  267  or  Lee  2022  254  .  Flow  cytometry  would  also  have  been  a  good  option.  Flow 
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 cytometry  would  have  allowed  the  number  of  cells  and  fluorescence  to  be  quantified. 

 Flow  cytometry  would  be  able  to  distinguish  and  count  the  number  of  empty 

 vesicles  249,255  .  Flow  cytometry  could  allow  us  to  better  understand  to  what  degree 

 protein synthesis occurs and its inhibition. 

 Initially,  there  was  an  aim  of  incorporating  outer  membrane  proteins.  The  initial  idea 

 had  intended  to  use  multiple  plasmids.  However,  there  were  many  obstructions  to  this. 

 Firstly,  the  insertion  of  OmpF  into  membranes  is  still  widely  discussed.  Due  to  its 

 stability,  some  believe  it  could  self-insert  into  the  vesicle  membrane  268  .  However,  others 

 believe  many  proteins,  such  as  the  BAM  complex,  are  involved  in  its  insertion  269  .  The 

 expression  of  OmpF  within  cells  is  further  complicated  by  the  capacity  of  E.  coli  based 

 systems  to  fold  membrane  proteins  270  .  OmpF  in  its  natural  state  has  a  membrane  tag  269  , 

 which  is  cleaved.  However,  the  CFPS  system  cannot  cleave  the  tag.  The  tag  could  have 

 been  omitted  in  cloning,  but  this  may  have  inhibited  membrane  insertion  via  BAM  271  . 

 Moreover,  the  inclusion  of  BAM  brings  about  more  questions;  some  of  the  complex  is 

 reportedly  present  in  CFPS  lysate;  however,  to  what  degree  is  uncertain.  In  general,  E. 

 coli  lysate  contains  many  chaperones  that  enable  protein  folding  of  soluble  proteins  270  . 

 However,  large  membrane  proteins  are  more  difficult  to  express;  for  example,  YiaD  an 

 outer  membrane  protein  failed  to  be  expressed  in  CFPS  but  was  expressed  in  C43  cells 

 using traditional recombinant protein expression purification techniques  272  . 

 There  has  been  some  success  in  membrane  protein  purification  by  expressing  the 

 protein  in  the  CFPS  and  then  diluting  the  purified  protein  into  liposomes  273  ;  this 

 technique  has  allowed  for  the  refolding  of  tetrameric  channels  into  liposomes  273  .  To 

 apply  this  technique  to  OmpF  optimisation  surrounding  OmpF  purification,  refolding 

 and  dilution  into  membranes  would  be  required.  The  use  of  a  purified  recombinant 

 protein  was  planned,  and  recombinant  OmpF  was  expressed  and  purified.  However,  as 

 OmpF  is  a  membrane  protein,  a  detergent  would  be  necessitated,  further  complicating 

 the technique. Unfortunately, as time was limited, this was not started. 

 The  reporter  used  in  this  work  was  deGFP,  and  deGFP  is  a  stable  protein,  especially  in 

 this  cell-free  system  which  should  lack  some  proteases  like  OmpT.  Therefore,  using  a 

 deGFP  with  a  degradation  tag  such  as  SSrA  253  would  have  been  helpful  at  the 

 quantification  stage,  as  it  would  indicate  real-time  expression.  The  creators  of  the 

 p70a-deGFP  plasmid  have  done  extensive  work  looking  at  the  system's  kinetics  244  and 
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 deGFP  production,  and  calculating  degradation  253  .  Based  on  their  extensive  body  of 

 work, mathematical modelling of protein synthesis inhibition would be possible. 

 Alternatively,  plasmids  encoding  the  reporters  of  assays  such  as  the  luciferase  assay 

 could  be  expressed.  If  the  luciferase  enzyme  is  expressed,  it  should  be  able  to  convert 

 D-luciferin  to  oxyluciferin,  which  is  luminescent  274  .  Dihydrofolate  reductase  is  another 

 reporter  that  could  have  been  expressed.  Dihydrofolate  reductase  catalyses  the 

 reduction  of  dihydrofolate  into  tetrahydrofolate  using  the  oxidation  of  NADPH, 

 resulting  in  increasing  levels  of  NADP+  275  .  The  increase  in  NADP+  levels  decreases  the 

 signal  at  340  nm,  meaning  the  enzyme's  activity  can  be  followed 

 spectrophotometrically  275  .  Therefore,  compounds  that  reduce  the  expression  of 

 dihydrofolate  reductase  or  inhibit  the  enzyme's  activity  -  like  trimethoprim  can  be 

 screened  for  in  a  spectrophotometric  assay.  Ultimately,  this  reiterates  the  critical 

 benefits of this system; the target can be adapted based on the drug screen. 

 5.5 Conclusion 

 Although  there  is  a  great  deal  more  optimisation  necessary,  the  potential  applications 

 of  synthetic  cells  in  drug  discovery  are  enormous.  The  lipid  layer  can  be  altered  to 

 mimic  the  compositions  of  different  membranes.  Hopefully,  protein  channels  can  be 

 introduced.  Perhaps  even  peptidoglycan  could  be  made  by  the  cell  if  lipid  II  was 

 generated  by  either  the  encapsulated  pathways  responsible  for  its  synthesis  or  if  lipid  II 

 itself  was  incorporated  into  GUV  construction  and  CFPS  encapsulation.  Many  potential 

 avenues  of  bacterial  cell  walls  could  be  explored.  More  optimisation  into  building  a 

 robust  CFPS  system  would  allow  this  technique  to  be  used  as  a  screening  method.  The 

 use  of  flow  cytometry  would  give  us  a  better  indication  of  quantification,  which  is 

 crucial  for  permeation.  Nevertheless,  if  this  technique  was  optimised,  it  could  provide  a 

 tandem  permeability  activity  screen  which  is  desperately  needed  to  save  money  and 

 streamline  the  antimicrobial  drug  discovery  pathway.  Unlike  the  previous  two  chapters, 

 this  chapter  is  a  broad  spectrum  approach  to  permeability.  The  aim  of  this  work  was  to 

 create  a  permeability  chapter  that  could  be  applied  to  all  antibiotics  -  not  just 

 β-lactams.  
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 Chapter 6. Machine learning to predict 
 antibiotic permeability 

 6.1 Background 

 6.1.1 Machine learning in medicinal chemistry 

 Modern  drug  discovery  is  hugely  expensive,  meaning  new  drugs  that  do  not 

 demonstrate  long-term  profitability  are  not  developed  276  .  The  lack  of  investment  has 

 led  to  the  antimicrobial  drug  pipelines  “drying  up”.  Novel  approaches  to  drug  discovery 

 are  necessary  to  reinvigorate  the  drug  development  pipeline.  Artificial  intelligence  (AI) 

 infiltrates  all  scientific  exploration  and  exploitation,  innovating  how  we  approach  many 

 problems  such  as  speech  recognition,  recommendation  engines  and  self-driving  cars. 

 Furthermore,  machine  learning  is  more  recently  and  frequently  being  used  to  aid  in 

 drug  discovery.  The  surge  in  using  machine  learning  algorithms  in  this  application  is 

 revolutionising  medicinal  chemistry  (MedChem)  277  .  Previous  attempts  at  integrating  AI, 

 in  the  form  of  deep  neural  networks  to  the  field  of  MedChem,  had  failed  278,279  . 

 Nevertheless,  with  the  advent  of  more  complex  algorithms,  large  open-source 

 databases,  and  advanced  technology  277,279,280  ,  AI  offers  the  hope  of  reinvigorating 

 MedChem  279  . 

 Machine  learning  is  a  form  of  artificial  intelligence  that  uses  large  datasets  and 

 mathematical  algorithms  to  tackle  previously  unsolved  problems  281,282  .  It  encompasses 

 a  broad  range  of  algorithms;  it  also  includes  the  field  of  deep  learning.  Machine  learning 

 is  being  employed  in  many  areas  of  drug  development,  including  antibiotic  research  282 

 (  Figure  6.1  ).  Recently  a  deep  learning  technique  was  utilised  to  discover  a  novel 

 antibiotic  called  Halicin  by  Stokes  et  al.  2020  111  .  Many  other  groups  use  machine 

 learning  algorithms  to  identify  and  find  novel  antimicrobials  283,284  .  In  particular,  many 

 researchers  are  looking  at  antimicrobial  peptides  285  .  Groups  use  machine  learning 

 models  to  predict  antimicrobial  resistance  genes  from  whole-genome  sequencing  and 

 metagenomics  286,287  alongside  work  to  predict  the  mechanism  of  action  of 
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 antimicrobials  288  .  Moreover,  most  relevantly,  groups  have  used  various  forms  of 

 machine learning to look at the permeability and accumulation of antibiotics  89,103,104  . 

 Figure  6.1  The  boom  of  machine  learning  in  relation  to  antibiotics.  PubMed  search 
 “machine  learning  antibiotic”  returned  262   articles  on  the  10th  of  August  2021, 
 demonstrating a recent boom in the field  . 

 6.1.2 Key concepts in machine learning 

 In  this  chapter,  machine  learning  techniques  aid  in  antimicrobial  drug  discovery  and 

 the  elucidation  of  permeability  patterns.  To  better  describe  the  specifics  of  machine 

 learning,  some  definitions  will  be  briefly  described  in  Table  6.1  ,  and  these  terms  are 

 contextualised  in  Figure  6.2  .  Following  that  is  an  overview  of  crucial  concepts  in 

 machine  learning.  In-depth  descriptions  of  the  algorithms,  particularly  the  equations, 

 have been omitted. 

 There  are  two  main  learning  techniques  in  machine  learning:  supervised  and 

 unsupervised  learning  281  . 

 Supervised  learning  techniques  tend  to  be  used  to  fit  predictive/classification  models. 

 This  technique  requires  labelled  data  as  the  input;  techniques  in  this  category  model 

 the  interconnections  between  the  features  of  the  dataset  and  the  output  target,  i.e.  the 

 class  281  .  Unsupervised  learning  is  used  to  identify  patterns  in  data.  It  does  not  require 

 labels  as  these  techniques  are  not  used  to  classify  data,  but  to  cluster  it.  Unsupervised 

 learning  discerns  the  concealed  patterns  of  a  dataset  without  labels.  Unsupervised 

 learning is mainly involved in pattern recognition  281  . 
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 Within  these  different  learning  techniques,  there  are  hybrid  problem  solvers  such  as 

 semi-supervised  learning  ,  a  combination  of  supervised  and  unsupervised  learning, 

 using  unsupervised  methods  to  fill  in  for  missing  labels  to  complete  supervised 

 learning algorithms. 

 Term  Definition  Example 

 Model  The  output  of  an  algorithm 
 trained  on  a  dataset.  It  contains 
 both  the  information  on 
 processing and the data itself 

 Target  The  final  output  or  ‘answer’  for 
 models  to  learn  (in  supervised 
 models).  In  unsupervised  models 
 the target could be a label. 

 In  drug  discovery  the  final 
 output  could  be  ‘Active’  or 
 ‘Inactive’  in  a  classification 
 problem.  When  predicting 
 solubility  –  a  regression 
 problem,  the  target  is  a 
 continuous value. 

 Feature  These  are  the  variables  from 
 which  the  model  learns,  and  uses 
 them  to  make  predictions.  These 
 are also known as ‘attributes’. 
 These  can  be  considered  the 
 independent variables. 

 In  drug  discovery  the  features  of 
 the  dataset  of  drugs  might 
 include;  hydrophobicity,  charge, 
 and  other  physicochemical 
 descriptors. 

 Algorithm  The  process  used  to  solve  the 
 question  at  hand.  Used  to  ‘learn’ 
 and ‘fit’ data. 

 Examples  of  algorithms  include; 
 Linear  Regression,  Decision 
 Trees, K-nearest Neighbours. 

 Hyperparameter 

 optimisation 

 The  process  of  testing  a  range  of 
 parameters  on  the  efficacy  of 
 model using a validation dataset 

 Parameters  can  include  number 
 of  neural  layers,  learning  rates, 
 and momentum. 

 Table  6.1  A  Glossary  of  key  terms.  These  key  terms  are  further  elaborated  upon 
 below in Figure 6.2 
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 Figure  6.2  Contextualising  the  glossary  terms  used  in  ML.  At  the  top  is  a  rectangle 
 of  shapes  -  this  is  the  dataset.  This  dataset  contains  different  features  used  to  train  a 
 binary  classification.  In  the  bottom  half  of  the  figure  is  a  general  workflow  used  in 
 machine learning. 

 6.1.3 Algorithms 

 Different  machine  learning  algorithms  have  different  uses  based  on  input,  output,  and 

 function. Briefly, some of the key algorithms used in this work are discussed below: 

 1.  Decision  trees  have  been  around  since  the  1960s;  they  are  sequential 

 algorithms,  akin  to  flowcharts,  composed  of  nodes,  branches,  and  leaves  289,290  . 

 The  model  splits  and  tests  data  on  various  attributes  at  nodes,  and  the 

 threshold  at  each  node  determines  the  outcome  and  whether  the  attribute 

 tested will lead to further branching and tests or return a classification. 
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 2.  Random  forest  (RF)  models  were  first  described  by  Breiman  in  2001  291  .  They 

 are  similar  in  structure  to  decision  trees,  but  are  an  ensemble  approach,  so 

 instead  of  having  one  decision  tree  it  is  a  collection  of  decision  trees  291  (  Figure 

 6.3.A  ).  They  are  an  improvement  upon  decision  trees  as  they  offer  more 

 variability,  creating  models  that  tend  to  learn  better  on  new  data  292  .  The  initial 

 input  data  is  then  randomly  selected  to  make  ‘bootstrap’  datasets  292  .  A  decision 

 tree  is  built  using  a  random  selection  of  the  features  of  a  dataset  (usually,  the 

 number  of  features  selected  is  derived  from  the  square  root  of  the  total  number 

 of  features  in  the  dataset)  292  .  The  bootstrapped  data  is  fed  into  the  decision  tree; 

 this  process  is  repeated  for  each  tree  in  the  forest  292  .  In  this  chapter,  the  random 

 forest  was  built  from  100  decision  trees.  The  predictions  used  in  the  final 

 classification  come  from  the  majority  results  of  all  the  trees  in  the  forest  292  .  The 

 accuracy  of  the  prediction  is  assessed  by  monitoring  if  the  decision  tree  can 

 correctly  predict  the  data  left  out  of  the  bootstrap  dataset  (the  ‘out-of-bag’) 

 data  292  . 

 3.  Artificial  Neural  networks  were  created  to  mimic  the  way  the  brain  works,  with 

 a  series  of  neurons  that  feed  into  each  other.  There  are  a  few  different  types  of 

 neural  networks,  the  main  one  being  the  multilayer  perceptron  (MLP)  293,294  .  In 

 the  MLP,  the  input  value  is  entered  into  an  input  layer  of  neurons  (the  number 

 of  neurons  corresponds  to  the  number  of  features)  292  .  The  input  value  is 

 transformed  through  a  series  of  weights  and  biases  292  .  After  the  input  has  been 

 multiplied  by  a  weight  value  and  has  a  bias  value  added,  it  is  fed  into  a  hidden 

 layer  with  an  activation  energy  292  .  The  activation  energy  transforms  the  value 

 based  on  the  activation  function  292  .  In  this  work,  the  activation  functions  used 

 were  rectified  linear  unit  (ReLu)  and  the  hyperbolic  tangent  activation  function 

 (tahn).  The  sum  of  the  outputs  from  the  activation  functions  of  all  the  neurons 

 in  hidden  layers  is  calculated,  and  another  bias  function  is  applied  before  the 

 value  is  fit  and  the  output  is  generated  292  .  The  weights  and  biases  are  iteratively 

 adjusted  (backpropagation)  to  best  fit  the  data  by  measuring  and  reducing  loss 

 in a process called gradient descent (  Figure 6.3B  )  292  . 

 In  this  chapter,  two  of  the  above  mentioned  algorithms  (RF  and  MLP)  and  a  deep 

 learning algorithm (discussed later) were used. 
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 Figure  6.3A-B  An  overview  of  two  of  the  machine  learning  algorithms  used  in  this 
 chapter.  (A)  -  Random  forest  model,  In  this  example  there  are  3  decision  trees 
 calculating  the  probability  of  each  class,  the  majority  of  these  decision  trees  output  is 
 taken  as  the  final  classification.  Figure  6.3B  demonstrates  the  architecture  of  a  simple 
 neural  network.  This  neural  network  has  1  input  neuron  fed  into  a  hidden  layer  that 
 contains  3  neurons.  Each  neuron  here  has  a  Rectified  Linear  unit  (ReLu)  activation 
 function.  The  sum  of  the  outputs  of  the  three  neurons  in  the  hidden  layer  feedforward 
 to  the  output.  The  input  value  is  transformed  by  a  series  of  weight  and  bias 
 transformations  throughout  the  learning  process;  these  weights  and  biases  are  altered 
 throughout the process to better fit the data using gradient descent function. 
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 6.1.4 Deep learning 

 Deep  learning  is  a  form  of  neural  networks  that  uses  larger  datasets,  and  larger 

 numbers  of  neural  layers  in  order  to  decipher  and  solve  problems.  Deep  learning  can 

 encompass  the  use  of  the  MLP,  but  also  more  complicated  models  such  as  recurrent 

 neural  networks  (RNN),  convolutional  neural  networks  (CNN),  Generative  adversarial 

 networks  (GAN),  and  graph  convolutional  networks  (GCN)  281  .  The  use  of  Deep  Learning 

 is  having  a  renaissance  due  to  increased  datasets,  data  sharing,  and  increased 

 computational power, allowing better models to be created and used  278  . 

 6.1.4.1 Graph Convolutional Networks (GCN) 

 Graph  convolutional  networks  use  the  architecture  of  convolutional  neural  networks, 

 meaning  that  instead  of  the  traditional  layers  of  an  MLP,  there  are  layers  of  convolution 

 and  pooling  to  reach  classification  at  a  gathering  layer  152,295  .  GCNs  have  a  significant  and 

 emerging  role  in  drug  discovery  as  they  are  well  suited  to  embed  molecular 

 information  279,282  .  In  a  molecule,  the  atoms  will  become  the  'nodes'  of  the  graph,  and  the 

 bonds  will  be  the  'edges'  152,280,296  .  'Feature  matrices'  are  generated  based  on  the 

 chemical  structure  of  the  compound  280  .  These  'feature  matrices'  are  based  on 

 molecules'  atomic  features  and  spacing.  The  information  on  spacing  is  generated  by 

 convolutional  layers  that  aggregate  information  on  neighbouring  atoms  295  .  The  feature 

 matrices  generated  can  be  huge,  and  thus  a  pooling  layer  is  applied  to  pull  out  the  most 

 prominent  features  280  .  Through  aggregating  and  pooling  information,  the  data 

 dimensionality is reduced to critical points to inform classification  282  . 

 6.1.5 Data engineering 

 Before  a  model  can  learn  and  make  predictions  on  a  dataset,  a  data  engineering  step 

 has  to  occur.  Data  engineering  can  involve  two  main  categories  of  work,  data 

 preprocessing  and  feature  engineering.  Data  preprocessing  can  involve  steps  such  as: 

 reformatting  the  dataset  into  a  comprehensible  format,  removing  null  data,  and 

 removing  unnecessary  data  (de-noising).  Dimensionality  reduction  algorithms  like 
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 Principle  Component  Analysis  (PCA)  can  be  used  to  investigate  the  dataset's  variability 

 and reduce some features  297  . 

 6.1.5.1 Feature engineering 

 Feature  engineering  is  the  process  of  translating  the  input  into  a  readable  format;  for 

 example,  if  the  model's  input  is  a  picture,  then  the  picture  is  converted  into  a  numerical 

 matrix,  where  each  pixel  has  a  value  279  .  Feature  engineering  can  also  be  broadly 

 categorised  into  two  forms;  user  picked  features  and  learnt  features  (learnt  via  deep 

 learning algorithms)  279  . 

 To  embed  chemical  structures  with  some  molecular  representations  for  machine 

 learning,  two  essential  libraries  were  used;  RDKit  154  and  DeepChem  111  .  RDKit  can 

 embed  meaning  from  general  chemical  inputs  like  SMILES  codes,  translating  them  to  a 

 “mol”  object,  from  which  features  can  be  interpreted  154  .  There  are  many  functions  in  the 

 library  that  allow  user-defined  features  to  be  pulled-out,  such  as:  the  number  of 

 different  chemical  groups,  the  number  of  rings  and  the  quality  of  the  fit  to  Lipinski’s 

 rule  of  5  298  .  These  physicochemical  descriptors  can  be  used  as  the  input  features  to 

 train  a  model,  this  method  was  used  by  both  Richter  et  al  .  89  and  Zgurskaya  et  al.  103  ,  who 

 created models to establish rules surrounding permeability. 

 Although  user-defined  features  were  used  in  this  work,  the  primary  way  molecular 

 representations  were  derived  was  by  using  learnt  features  in  three  ways:  Extended 

 Connectivity Fingerprints  151  (  ECFP  s),  Mol2Ve  c  150  ,  and  Graph representations  152,279,296  . 
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 Figure  6.4  a  β-lactam  ring  featurised  using  ECFP.  In  the  blue  box  using  a  radius  of 
 one,  and  in  the  red  box  with  a  radius  of  2  .  These  substructures  are  given  a  calculated 
 value,  which  is  then  embedded  into  a  bit  vector  (at  the  bottom).  The  bit  vector  length 
 used  in  this  work  was  1024  and  the  radius  used  was  3.  By  increasing  the  radius  around 
 each  atom  it  increases  the  computational  permutations  of  the  substructures,  meaning 
 there is more embedded information of the compound. 

 The  RDKit  program  can  also  generate  ‘fingerprints’  for  molecules.  ECFP  molecular 

 representations  are  known  as  “bag-of-fragments”  as  the  key  substructures  of  a 

 molecule  are  encoded  based  on  a  defined  radius,  generating  fragments  of  a 

 molecule  151,279  .  To  summarise  the  generation  of  ECFP  s,  firstly,  the  user  defines  the 

 radius  (from  an  atom)  used  to  define  substructures,  then  each  substructure  is  identified 

 and  given  an  identifier  (numerical  value)  151,279  .  These  identifiers  are  based  on  a  number 

 of  properties  such  as  valency,  hydrogen  bonding,  atomic  number,  atomic  mass,  atomic 

 charge,  and  whether  the  atom  is  aromatic  151  .  These  identifiers  are  iterated  (updated 

 over  the  search)  based  on  other  substructures  279  .  From  the  list  of  identifiers  generated, 

 the  repeated  values  are  removed  151  .  The  list  of  identifiers  is  then  converted  into  a  bit 

 vector  (a  string  of  1s  and  0s),  and  the  length  of  this  vector  is  usually  1024  or  2048 

 bits  151  .  ECFP  s are frequently used in MedChem, particularly  in similarity searches. 
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 Figure  6.5  Mol2Vec  featurisation  of  the  β-lactam  ring.  In  this  example,  the  β-lactam 
 is  converted  into  a  series  of  substructures  using  Morgan  Fingerprints  with  a  radius  of  1. 
 In  this  example  three  ‘chemical  words’  are  generated  and  each  has  an  identifier  (green 
 number).  These  identifiers  are  fed  into  a  pre-trained  Mol2Vec  Model,  based  on  the 
 identifiers  the  model  returns  a  compound  vector  (3,300),  in  this  case  it  is  a  molecular 
 sentence  made  of  3  “chemical  words”,  and  these  words  have  been  embedded  in  a  300 
 dimension vector. 

 Another  molecular  representation  used  in  this  work  was  the  Mol2Vec  algorithm 

 (  Figure  6.5)  .  Mol2Vec  is  a  model-based  natural  language  processing  (NLP)  technique 

 based  on  the  Word2Vec  algorithm  150  .  Mol2Vec  algorithm  was  trained  on  the  Morgan 

 Fingerprints  155  ,  as  these  are  very  similar  to  ECFPs  (ECFPs  are  derived  from  Morgan 

 Fingerprints)  151  .  The  substructures  generated  from  the  Morgan  fingerprints  are  known 

 (in  this  application)  as  ‘chemical  words’,  and  the  compounds  are  known  as  ‘chemical 

 sentences’  150  .  These  ‘chemical  sentences’  are  trained  on  the  Mol2Vec  algorithm,  which 

 groups  ‘chemical  words’  together  based  on  the  distance  between  the  embeddings  and 

 returns  a  300  dimension  vector,  embedding  the  chemical  structure  of  a  compound  150  . 

 The  vector  is  the  molecular  representation  of  the  whole  molecule.  The  Mol2Vec 

 ‘corpus’  (model)  has  been  trained  on  twenty  million  compounds  and  has  learnt  the 

 similarities  and  differences  between  each  substructure  based  on  the  distances  between 

 the  ‘chemical  sentences’  150  .  The  user  has  the  Mol2Vec  model  create  ‘chemical 

 sentences’  for  the  compounds  in  their  dataset  and  uses  these  representations  to  train 

 their  model  150  .  The  advantage  of  this  embedding  over  traditional  fingerprints  is  that  the 

 model  has  learnt  more  about  the  similarities  and  differences  of  substructures  so  that  it 

 may have more information embedded. 
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 Figure  6.6  Graph  featurisation  of  a  benzene  ring.  The  atoms  become  nodes,  and  the 
 bonds  become  edges.  As  the  model  trains,  it  learns  about  the  structure  of  the  molecule 
 by  aggregating  information  about  the  neighbouring  atoms,  eventually  resulting  in  a 
 final matrix. 

 Finally  Graph  representations  were  also  used  to  generate  molecular  representations 

 from  SMILES  of  compounds  in  the  dataset.  Graph  representations  were  generated  for  a 

 Graph  Convolutional  Neural  Network,  by  the  program  DeepChem  153  ,  based  on 

 Duvenald  et  al.  2015  152  .  Graphs  in  GCNs  are  composed  of  edges  and  nodes  152,279,280  . 

 Molecules  can  be  translated  into  graphs  by  using  the  atoms  as  nodes  and  bonds  as 

 edges  (  Figure  6.6  )  280  .  These  graph  representations  are  learnt  during  model 

 training  152,279,280  .  In  the  GCN  model,  the  nodes  and  edges  of  the  molecule  are  then 

 embedded  in  two  ways,  first  as  a  ‘feature  matrix’  and  an  ‘adjacency  matrix’  280  .  The 

 features  identified  are  based  on  75  features  involving  atom  type,  number  of  bonds, 

 number  of  valencies,  charge,  hybridization  and  aromaticity  299  .  The  adjacency  matrix 

 encodes  the  spatial  information  learnt  from  the  graph.  In  both  of  these  matrices,  the 

 details  are  usually  “one-hot-encoded”  -  if  the  feature  is  present,  a  value  of  1  is  awarded, 

 and  if  it  is  absent,  a  value  of  0  is  given.  The  two  matrices  containing  information  about 

 the molecule and its spacing are combined. 

 6.1.6 Evaluating models 

 One  of  the  first  stages  of  any  model  learning  is  the  splitting  of  the  data  (  Figure  6.2  ), 

 occurring  after  null  data  is  removed  but  before  feature  engineering  and  any  data 
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 normalisation.  Datasets  are  split  into  training,  test  and  validate  datasets.  In  the  learning 

 process,  the  model  is  fitted  on  the  training  dataset  and  evaluated  on  the  test  dataset  300  . 

 The  test  set  scores  help  assess  how  generalisable  a  model  will  be  on  a  new  dataset  300  . 

 However,  to  optimise  a  model  (hyperparameter  optimisation),  a  validation  set  is  also 

 needed  300  .  Validation  scores  are  more  indicative  of  the  model's  generalisability  300  .  If  the 

 training  dataset  is  small,  a  method  of  cross-validation  known  as  k-folds  can  be  used, 

 where  data  is  divided  into  k  non-overlapping  sets,  trained  on  (  k  -1)  sets,  evaluated  on 

 the  remaining  set,  and  then  repeated  for  each  of  the  k  sets  300  .  K  -fold  cross-validation 

 generally reduces bias  301  . 

 6.1.6.1 Metrics 

 To  evaluate  the  function  of  machine  learning  models  there  are  different  approaches 

 suited  for  different  algorithms,  due  to  output  differences  281  .  Key  evaluation  metrics  for 

 classification  problems  include  accuracy,  F-scores,  recall,  confusion  matrices,  and 

 receiver operator curve – area under curve (ROC-AUC). 

 -  Accuracy  is  the  percentage  of  correct  predictions  out  of  all  predictions,  this  is  a 

 useful metric when assessing a dataset with balanced targets  302  . 

 -  Precision  measures  the  number  of  times  the  model  correctly  predicts  a  positive 

 outcome  302  .  It  reports  how  many  positive  results  are  actually  positive  results.  It 

 is  calculated  by  dividing  the  true  positive  rate  by  the  sum  of  false  positives  and 

 true positives. 

 -  Recall  calculates  the  number  of  positive  predictions  that  were  correctly 

 assigned  302  .  It  is  also  known  as  the  true  positive  rate,  it  is  calculated  by  dividing 

 the  number  of  true  positives,  by  the  sum  of  the  true  positives  and  false 

 negatives. 

 -  The F1-score is the harmonic mean of precision and recall scores  302  . 

 -  ROC-AUC  demonstrates  the  sensitivity  of  the  binary  classification  model.  Plots 

 the  rate  of  true  positives  against  the  rate  of  false  positives  302  .  This  metric  can  be 

 plotted and visualised as ROC-AUC curves.(  Figure 6.7b  ) 

 -  Confusion  matrices  summarise  the  predicted  results  of  a  classification  problem 

 (  Figure 6.7a  ). They allow easy, class-by-class visualisation  of predictions. 
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 Figure  6.7  Overview  of  Confusion  matrices  and  ROC-AUC  curves.  In  6.7A  ;  an 
 example  of  a  multiclass  confusion  matrix.  In  the  confusion  matrix,  the  true  positive  – 
 accurate  labels  are  along  the  diagonal  (darkest  blue)  and  the  other  misclassified  classes 
 are  in  other  boxes  In  6.7B  ;  is  an  ROC-AUC  curve  that  is  comparing  two  models.  Model  1 
 is performing better than model 2 but both are better than randomly assigning classes. 

 6.1.6.2 Bias – Variance Trade off 

 Machine  learning  algorithms  aim  to  achieve  ‘generalisability’,  meaning  a  model  scores 

 highly  on  both  the  training  data,  and  on  new  unseen  data  297,300  .  A  generalisable  model 

 needs to find a balance between  bias  and  variance  300,303,304  (  Figure 6.8  ). 

 Figure  6.8  Building  a  generalisable  mode.  Figure  6.8  is  adapted  from  Kocak  et  al. 
 2021  297  .  To  build  a  generalisable  model,  a  balance  between  bias  and  complexity  is 
 sought.  This  figure  illustrates  the  tradeoff  between  the  two.  The  ideal  balance  between 
 error and complexity is in the white box. 
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 Bias  is  how  many  incorrect  predictions  are  made;  models  with  high  bias  will 

 frequently  misclassify  predictions  304  .  As  a  result,  the  accuracy  for  the  training  and  test 

 datasets  (unseen  data)  is  low  284,297  .  In  contrast,  variance  is  the  amount  of  complexity  or 

 noise  in  a  class  304  .  Models  can  become  overly  biased  and  underfit  the  data,  meaning  the 

 pattern  detected  to  fit  the  data  is  oversimplified  and  imposes  an  overly  simplistic  and 

 inaccurate  trend  (  Figure  6.9  )  303–305  .  High  variance  can  occur  when  not  enough  features 

 or  data,  in  general,  is  provided  for  the  model.  As  a  result,  the  model  has  to  solve  a 

 problem  with  insufficient  information  to  discern  the  whole  picture.  The  degree  of  bias 

 in a model is visualised nicely by a learning curve (  Figure 6.10  )  297  . 

 Figure  6.9A-C  Model  Underfitting  vs  overfitting.  Figure  6.9  is  adapted  from 
 reference  300  .  In  6.9A  the  model  is  underfitting,  the  trend  line  (blue)  used  to  make 
 predictions  does  not  account  for  the  nuances  of  the  dataset.  In  6.9B  the  model  has 
 established  a  general  trend  and  should  make  accurate  predictions  on  new  data.  In  6.9C 
 The  model  is  overfitting,  each  datapoint  is  explicitly  fit,  meaning  it  has  not  learned  a 
 general trend and therefore will struggle with new data. 

 6.1.6.3 Overfitting 

 Conversely,  the  opposite,  overfitting  can  also  occur  when  a  model  has  a  high  degree  of 

 variance  (  Figure  6.9  )  305  .  Here  the  model  does  not  fit  the  general  trend  of  the  data;  in 

 fact,  it  fits  the  explicit  points  of  a  dataset  and  therefore  performs  well  on  the  training 

 dataset  but  performs  poorly  on  new  data  (  Figure  6.9  )  303  .  A  generalisable  model  has  an 

 adequate balance of the two (  Figure 6.8  )  303 

 In  order  to  assess  whether  a  model  is  underfitting  or  overfitting,  two  techniques  can  be 

 used;  validation  curves  and  learning  curves  300  .  Validation  curves  allow  us  to 
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 visualise  the  difference  between  training  and  validation  scores;  it  allows  us  to  identify 

 whether  a  model  is  overfitting  (  Figure  6.10  )  225  .  Learning  curves  allow  us  to  visualise  if 

 a model is receiving adequate data so as not to become overly biased (  Figure 6.10  )  300  . 

 Figure  6.10A-B:  Validation  curves  and  learning  curves.  Adapted  from  reference  300  In 
 6.10A  is  an  illustration  of  a  validation  curve,  and  6.10B  (right)  is  an  illustration  of  a 
 learning  curve.  6.10A  Validation  curve-  As  complexity  increases,  bias  is  reduced  and 
 scores  increase  to  a  certain  degree.  As  a  problem  becomes  too  complex  and  there  is  a 
 high  degree  of  variance,  the  validation  scores  drop-off  whilst  training  scores  remain 
 high  (as  the  model  is  overfit).  6.10B  Learning  curve  -  For  large  datasets,  the  validation 
 scores  and  training  scores  should  converge.  If  the  dataset  is  too  small  there  is  a  high 
 degree  of  variance,  so  the  model  can  not  identify  patterns.  However  once  the  two 
 scores  align  in  a  learning  curve,  other  variables  besides  dataset  size  must  be 
 investigated. 

 Several  methods  prevent  overfitting,  such  as  validation  call-backs  300  ,  where  the  model 

 is  trained  over  many  ‘epochs’  of  a  dataset  and  assessed  after  each  epoch  using  loss 

 measures  (e.g.  accuracy).  If  the  loss  increases  after  a  certain  point,  the  model  will  cease 

 training  to  prevent  overfitting.  Dropout  layers  can  also  be  implemented  in  neural 

 networks; here, the model can drop a percentage of the neurons after each layer. 

 6.1.7 Research aims 

 ●  Create a dataset to predict permeability 

 ●  Build a model that predicts permeability 

 ●  Predict permeability of new compounds 
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 Figure  6.11  An  overview  of  the  general  workflow  of  this  chapter.  A  dataset  was 
 created  using  MIC  data  of  compounds.  The  physicochemical  features  of  compounds 
 were  derived  from  both  user  based  features  and  learnt  molecular  representations. 
 These  features  were  used  in  a  range  of  models  to  learn  which  future  compounds  may 
 encounter permeability issues. 

 6.2 Results and discussions 

 6.2.1 Using MICs as a permeability indicator 

 Machine  learning  uses  existing  data  to  predict  an  unknown  event.  In  the  current 

 context,  permeability  data  is  needed  to  predict  permeability  issues.  Minimal  inhibitory 

 concentrations  (MICs)  were  calculated  for  a  range  of  antibiotics  against  a  collection  of 

 bacterial  strains  and  species.  Importantly,  different  strains  of  E.  coli  that  demonstrate 

 different  characteristics  were  used,  primarily  strains  with  mutations  to  porins.  The 

 strains used: 

 -  E. coli  ∆  OmpF  (keio collection 8925)  125 

 -  E. coli  ∆  OmpC  (keio collection 9781)  125 

 -  E. coli  ∆  OmpA  (keio collection 8942)  125 

 -  E. coli  ∆  OmpF  CAB (strain #102270)  121 

 -  E. coli  ∆  OmpF  CA(strain #102268)  121 

 -  E. coli  supplemented with sub-inhibitory amounts of  polymyxin 
 -  S. aureus ATCC 29213 
 -  P. aeruginosa PAO1 

 These  different  strains  were  used  to  test  the  MICs  of  almost  70  antibiotics,  spanning  the 

 most  widely  used  classes  in  treating  bacterial  infections  (  full  MIC  results  available  in 
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 Appendix  9.5  ).  Some  non-antimicrobial  compounds  were  included  to  diversify  the 

 chemistry  in  the  dataset  and  provide  more  variation  for  the  model.  These  decoy 

 compounds  were  included  as  machine  learning  classification  models  improve 

 predictions  when  inactive  compounds  are  included  299,306  .  It  was  anticipated  that  the 

 differences  in  MICs  between  certain  strains  coupled  with  the  molecular  representations 

 of the drug would inform future predictions of permeability. 

 Figure  6.12  MIC  results  of  nine  bacteria  against  a  broad  spectrum  of  bacteria.  A 
 heatmap  of  MICs,  compounds  tested  along  the  y  axis,  and  against  strains  along  the 
 x-axis.  The  lighter  colours  (beiges  and  pinks),  are  higher  values.  Darkest  colours  (black) 
 represent  lowest  MIC  values.  There  are  some  significant  differences  between  OmpF 
 knockout  strains  and  the  BL21  E.  coli.  E.  coli  permeabilised  with  polymyxin  behaves 
 similarly  to  the  Staphylococcus  aureus  control.  The  strain  with  the  highest  MICs  is  P. 
 aeruginosa  .  The  total  porin  knockout  (  E.  coli  ∆OmpFCAB  (strain  #102270)  121  )  also  has 
 higher MICs. 

 162 

https://www.zotero.org/google-docs/?nst2jQ
https://www.zotero.org/google-docs/?cPEblA


 Porins  are  the  main  entry  point  for  many  antibiotics;  hence  knocking  them  out  should 

 affect  MIC  results.  There  seemed  to  be  similar  compounds  affected  by  the  loss  of  porins. 

 In  particular,  β-lactams  (cefoperazone,  cefoxitin,  cephalexin,  aztreonam,  cefotetan),  and 

 non-β-lactams  (fleroxacin,  minocycline,  nitrofurantoin)  were  affected  (  Figure  6.12  ). 

 The  ompF  knockouts  strain  is  less  susceptible  to  antibiotic  treatment  than  Δ  ompC  and 

 Δ  ompA  strains  (  Figure  6.12  ).  There  were  two  strains  (ΔACF  and  ΔACFB  E.  coli  )  with  all 

 porins  knocked  out,  with  one  of  these  strains  also  lacking  lamB  .  These  two  strains 

 shared  the  same  pattern  of  intrinsic  resistance  to  the  drugs  above  but  had  even  higher 

 MICs  than  the  single  knockouts  (  Figure  6.12  ).  This  work  reiterated  that  porins  are  the 

 key  pathway  for  many  antibiotics,  and  changes  to  the  porin  or  their  expression  could 

 result  in  resistance  to  some  compounds.  It  also  demonstrated  that  certain  compounds 

 favour  different  pathways.  For  example,  the  phosphomycin  MIC  in  the  ΔompA  strain 

 was higher than the OmpF and OmpC knockouts (  Figure  6.12  ). 

 MICs  were  also  tested  in  Pseudomonas  aeruginosa  strain  PAO1  and  Staphylococcus 

 aureus  ATCC29213.  P.  aeruginosa  have  a  more  impermeable  membrane  than  E.  coli  ,  and 

 instead  of  having  porins  that  are  homotrimers,  they  have  porins  that  are  single 

 channels  such  as  OprD  307–309  .  As  a  result,  Pseudomonas  aeruginosa  are  more  selective  in 

 their  sensitivity  to  antibiotics,  and  infections  are  harder  to  treat  308,309,309  .  Therefore, 

 using  PAO1  should  give  us  an  indication  of  which  drugs  have  more  challenges  to 

 permeability. 

 PAO1  demonstrated  a  marked  increase  in  resistance  to  some  cephalosporins  such  as 

 cephalothin,  cefotetan,  and  cefixime  compared  to  BL21  E.  coli  and  the  porin  knockout 

 derivatives  (  Figure  6.12  ).  Conversely,  S.  aureus  was  used  as  an  outer  membrane  absent 

 control,  with  this  strain  demonstrating  similarities  to  the  BL21  E.  coli  treated  with 

 polymyxin  (  Figure  6.12  ).  The  Staph  strain  was  more  sensitive  (in  general)  when 

 compared to the Gram-negative strains (  Figure 6.12  ). 

 An  additional  condition  was  BL21  E.  coli  treated  with  sub-inhibitory  concentrations  of 

 polymyxin  B  (0.0625  μg/mL).  Polymyxin  B  is  a  cationic  peptide  which  acts  as  a 

 membrane  permeabilising  agent.  Therefore,  its  use  could  negate  the  effect  of  the  outer 

 membrane  as  a  limit  of  antibiotics.  When  the  polymyxin  treated  E.  coli  was  exposed  to 

 vancomycin,  the  MIC  dropped  to  2  μg/mL  (  Figure  6.12  ).  This  low  MIC  demonstrated 

 that  the  outer  membrane  is  no  longer  a  limiting  factor  for  permeability  as  vancomycin 

 is a large compound (1447 Da) that cannot cross the Gram-negative outer membrane. 

 163 

https://www.zotero.org/google-docs/?9p5XQF
https://www.zotero.org/google-docs/?pUbJFr


 The  permeability  control  used  in  this  experiment  was  not  necessarily  ideal,  as  the 

 potential  synergistic  effects  of  polymyxin  B  have  not  been  controlled.  Other  controls 

 that  could  have  been  used  for  this  and  have  been  used  in  the  other  work  include; 

 spheroplasts  and  Zgurskaya’s  Δ  fhuA  strains  33,310  .  Spheroplasts  are  formed  from  E.  coli 

 treated  with  a  combination  of  lysozyme  and  osmotic  gradients  that  cause  E.  coli  to  shed 

 their  outer  membrane  311  .  Spheroplasts  were  not  used  here  as  β-lactams  were  included 

 in  this  study,  and  the  process  of  forming  spheroplasts  could  have  damaged  the  targets, 

 impacting  the  results.  In  addition  to  this,  spheroplasts  are  fragile  so  cell  death  may  be 

 attributed  to  fragility  as  opposed  to  antibiotics.  Zgurskaya’s  strains  have  a  modified 

 iron  channel  (FhuA)  that  is  rendered  permanently  open  33,310  .  Using  these  strains  in  this 

 work resulted in an excessive variation between repeats and thus excluded. 

 6.2.2  Feature  engineering  and  extraction  of  compounds  in 

 permeability dataset 

 Relative  changes  in  MIC  values  between  E.  coli  and  permeabilised  E.  coli  were 

 calculated.  The  calculated  relative  changes  informed  the  creation  of  4  permeability 

 outputs,  shown  in  Figure  6.13  .  In  Class  0,  the  relative  change  between  the  two 

 conditions  was  0,  meaning  there  was  no  decrease  in  MICs  in  permeabilised  E.  coli  ;  this 

 class  included  drugs  like  aztreonam  and  cefoxitin.  In  Class  1,  there  was  a  50%  reduction 

 in  MICs  in  permeabilised  E.  coli;  for  example,  the  doxycycline  MIC  decreased  from  1  to 

 0.5  μg/mL.  Class  3  contained  compounds  with  a  75%  reduction  in  MICs  in 

 permeabilised  E.  coli  ;  for  example,  the  MIC  of  azlocillin  decreased  from  8  to  2  μg/mL. 

 Class  3  contained  compounds  that  had  a  more  than  75%  reduction  in  MICs,  compounds 

 in  this  category  included  rifampicin  and  clarithromycin.  For  compounds  in  Class  3,  the 

 outer membrane is a significant barrier. 
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 Figure  6.13  Distribution  of  classes  in  the  MIC  dataset.  Classes  were  determined 
 based  on  relative  change.  Relative  change  was  calculated  using  the  difference  between 
 wildtype (BL21) MICs and permeable MICs (BL21 supplemented with polymyxin). 

 With  the  initial  MIC  dataset,  RDKit  was  used  to  calculate  a  number  of  chemical  features 

 from  the  SMILES  of  the  compounds.  The  features  input  to  help  the  model  distinguish 

 chemical features were as followed: 

 ●  Number of rotatable bonds 
 ●  Molecular weight 
 ●  Number of carboxylic acids 
 ●  Number of amines 
 ●  Number of Hydrogen bond acceptors 
 ●  Number of Hydrogen bond donors 
 ●  LogP 
 ●  Globularity 
 ●  Number of heterocycles 
 ●  Number of pyridines 

 These  features  were  chosen  based  loosely  on  Richter  et  al.  89  rules  for  predicting 

 permeability. 

 The  dataset  for  predicting  permeability  consisted  of  the  above  features  calculated  by 

 RDKit,  the  compounds,  and  the  classes  for  predictions  (based  on  the  relative  change 

 between  E.  coli  and  hyperpermeable  E.  coli  ).  A  small  neural  network  based  on  this 

 dataset  was  built.  The  neural  network  was  a  simple  MLP  consisting  of  an  input  layer  of 

 10  neurons,  feeding  into  two  fully  connected  hidden  layers  that  led  to  4  potential 

 outputs. 

 6.2.3 Results of permeability dataset 
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 The  initial  results  of  this  model  were  poor,  with  no  predictions  being  made  for  classes 

 other  than  Class  three  (  results  Table  6.3  ).  Class  three  are  compounds  hindered  by 

 permeability  and  have  a  higher  efficacy  when  the  outer  membrane  has  been  removed. 

 This  model  is  biased  to  this  Class;  as  a  result,  showing  the  model  new  compounds  will 

 result in the model predicting the compound as Class 3. 

 Metric  Score 
 Weighted F1 score  33% 

 Accuracy  50% 

 Precision weighted average  12% 

 Recall weighted average  50% 

 Table  6.2  Metric  scores  from  the  MLP  MIC  model  predicting  permeability.  Poor 
 scores  across  all  metrics.  The  weighted  F1  is  calculated  for  each  class  then  a  weight  is 
 multiplied  to  each  class  depending  on  the  number  of  true  labels  of  each  class,  then  all 
 the F1s for each class are added together. 

 Figure  6.14A-B  Training  curves  of  the  permeability  prediction  made  by  the  MLP 
 model  of  permeability.  Training  curves  over  20  epochs  (A)  and  400  epochs  (B).  In  A 
 there  is  no  convergence  of  loss,  but  in  (B)  there  is  some,  but  the  training  loss  rapidly 
 drops suggesting overfitting, in addition the validation loss is high, suggesting high bias. 

 This  early  model  failed  to  identify  any  relevant  patterns  from  the  dataset. 

 Hyperparameter  optimisation  was  carried  out  on  the  model  to  improve  metrics.  In 

 hyperparameter  optimisation,  changes  to  several  qualities  were  investigated,  such  as 

 learning  rates,  optimisers,  number  of  neurons,  and  number  of  hidden  layers.  Despite 

 the  hyperparameter  optimisation,  no  significant  improvements  were  made.  The 

 training  and  validation  losses  were  plotted  (  Figure  6.14  ).  The  training  curves  indicate 

 that  there  is  a  high  degree  of  bias  in  the  model  and  that  when  the  model  is  over  trained 

 (validation  callbacks  removed)  the  model  overfits.  This  early  attempt  demonstrates  the 
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 initial  issues  of  implementing  deep  learning  in  drug  discovery,  the  model  is  trying  to 

 resolve  a  complex  issue  with  a  small  and  varied  dataset.  The  results  using  user-picked 

 features  have  not  been  able  to  solve  the  complex  issue  of  predicting  permeability.  This 

 is  likely  due  to  the  complex  problem  and  the  small  sample  size,  which  has  created  a 

 high  degree  of  bias.  To  improve  this  many  more  compounds  are  necessary,  ideally,  tens 

 of thousands of compounds. 

 6.3 Creating a new dataset from SPARK database 

 6.3.1 Data preprocessing of new SPARK derived database 

 Ultimately,  this  model  does  not  have  enough  data  to  identify  patterns  that  lead  to 

 permeability  issues;  more  data  was  sought  to  solve  this  issue.  The  PEW  trust  partnered 

 with  the  technology  of  the  Collaborative  Drug  Discovery  Inc.  (CDD)  and  created  the 

 Community  for  Open  Antimicrobial  Drug  Discovery  Shared  Platform  for  Antibiotic 

 Research  and  Knowledge  (CO-ADD  SPARK),  a  centralised  data  sharing  resource 

 providing  access  to  a  wealth  of  antimicrobial  research  312  .  A  new  database  of  750 

 compounds  was  constructed  by  utilising  the  CO-ADD  SPARK  database.  Compounds  with 

 MICs  for  wild  type  E.  coli  (ATCC  25922)  and  hyperpermeable  E.  coli  were  used.  A  large 

 amount  of  data  engineering  was  necessary  to  create  a  new  dataset  from  the  CO-ADD 

 SPARK  database.  This  feature  engineering  involved  removing  compounds  from  the 

 released  SPARK  data  without  relevant  MICs  or  repeated  data,  any  that  did  not  fit  the 

 patterns  of  standard  MICs  (  Figure  6.15)  .  The  released  SPARK  data  contained  many 

 MICs  for  other  bacteria  like  Pseudomonas  aeruginosa  and  Staphylococcus  aureus.  It  also 

 contained data on efflux. 

 Figure  6.15  Feature  engineering  of  the  SPARK  derived  dataset.  Three  compounds 
 that  were  removed  during  the  data  engineering  stage  as  their  MICs  reportedly  changed 
 by less than 50%. Therefore not a whole dilution step as per CLSI guidelines  128  . 
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 The  compounds  were  classified  into  three  groups  (  Figure  6.16  ),  where  Class  0 

 contained  compounds  that  had  no  relative  change;  these  are  compounds  that  do  not 

 have  a  permeability  barrier.  Class  2  contains  compounds  with  50%  relative  change  in 

 MICs;  they  exhibit  potential  permeability  issues.  Class  3  contains  more  than  50% 

 relative  change  compounds,  meaning  the  compounds  most  affected  by  permeability. 

 The  dataset  was  imbalanced  in  terms  of  classes,  with  the  number  of  compounds  in 

 Class  3  being  much  larger.  Class  0  had  146  compounds,  Class  1  contained  98 

 compounds, and Class 2 contained 505 compounds. 

 Figure  6.16  Class  distribution  in  the  new  SPARK  derived  dataset.  In  this  GCN  model 
 the  number  of  outputs  was  three  -  as  opposed  to  earlier  models.  The  classes,  however, 
 are still imbalanced. 

 6.3.2 Featurising the SPARK derived dataset using Mol2Vec 

 The  initial  permeability  investigation  that  used  a  small  MIC  dataset  did  not  yield 

 accurate  permeability  predictions  (  Table  6.3)  .  The  new  dataset  used  to  predict 

 permeability  contains  750  compounds.  Unlike  the  previous  investigation  that  used 

 user-defined  features,  this  study  used  a  different  type  of  molecular  embedding  created 

 using  Mol2Vec  (  Figure  6.5  )  150  .  The  result  of  compounds  featurised  with  Mol2Vec  was  a 

 300  dimension  vector  for  each  compound  150  .  The  Mol2Vec  featurisation  resulted  in 

 more  input  features,  and  therefore  more  input  neurons  were  needed  in  the  MLP.  The 

 data  was  split  into  training  and  test  datasets,  and  the  test  dataset  was  further  split  into 

 five cross-validations. 
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 6.3.3 Results of new dataset 

 The  MLP  model  prediction  permeability  using  Mol2Vec  molecular  representations  had 

 accuracy  scores  of  70.8%  (average  over  5  k  -folds)  on  the  training  dataset  and  64.4% 

 (average  over  5  k  -folds)  on  the  test  dataset.  There  was  a  reasonable  difference  between 

 the  test  dataset  and  the  training  dataset  in  terms  of  accuracy;  this  could  mean  the 

 model  is  not  overfitting.  However,  most  compounds  were  assigned  as  false  negatives 

 due  to  the  class  imbalance.  As  a  result,  a  balanced  F1  score  (across  classes)  was  much 

 lower,  <40%.  This  model  struggled  to  fit  compounds  in  Class  1.  More  work  could  have 

 been  done  in  investigating  the  permeability  classes  and  distributions.  In  addition, 

 different  algorithms,  like  a  random  forest  model,  could  have  been  utilised  to  improve 

 scores. 

 6.4 Using learnt molecular representations 

 6.4.1 Featurising the new SPARK derived dataset 

 More  complex  algorithms,  namely,  graph  convolutional  neural  networks,  were 

 implemented  to  improve  upon  this  work,  as  they  have  had  success  in  MedChem 

 applications  280,313  .  GCN  models  learn  molecular  representations  of  molecules  during 

 training  and  are  therefore  believed  to  be  better  at  distinguishing  smaller  changes.  To 

 achieve  this,  the  DeepChem  153  python  package  library  was  used,  which  contains  an 

 inbuilt  graph  convolutional  neural  network  that  ‘featurises’  and  transforms  the  data  in 

 a self-contained way (  2.6.5  ). 

 6.4.2  Results  of  GCN  model  predicting  permeability  from  SPARK 

 derived dataset 

 The  GCN  model  was  trained  on  the  SPARK  derived  dataset,  composed  of  MIC  data  of 

 750  compounds.  This  was  split  80:10:10  into  training,  test  and  validation  datasets.  The 

 training  dataset  had  600  compounds  with  three  outputs  (determined  by  relative 
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 change  in  MICSs).  This  multiclass  GCN  model  returned  scores  of  75%  for  the  training 

 dataset  and  65%  for  the  test  set  (  Figure  6.16)  .  Hyperparameter  optimisation  of  the 

 model  was  carried  out;  this  returned  the  following  best  parameters;  learning  rate 

 0.0001,  dropout  rates  of  0.2,  and  a  dense  layer  size  of  128.  With  optimisation,  the 

 training  dataset  ROC-AUC  was  improved  to  95%  (  Table  6.4  ),  and  the  test  dataset 

 ROC-AUC  was  improved  to  72%.  These  scores  indicate  a  considerable  improvement  in 

 the  prediction  efficacy.  However,  the  difference  between  training  and  test  datasets 

 suggests the model is overfitting. 

 Figure  6.17A-D  Results  of  the  multiclass  GCN  model  predicting  permeability  (A)  a 
 plot  of  the  mean  ROC-AUC  curve  scores  over  iterations  of  training.  (B)  the  confusion 
 matrix  generated  for  the  predictions  of  the  multiclass  GCN  model.  (C)  the  training  over 
 loss  plot  over  iterations  of  training.  (D)  the  mean  F1  score  of  the  multiclass  GCN  over 
 time. The figures in 6.17A-D were generated using the WandB program. 

 Class 0  Class 1  Class 2  Overall 

 Recall  57%  10%  84%  50% 

 Precision  44%  25%  84%  51% 

 Accuracy  70% 

 ROC-AUC  Training = 95% 
 Test = 72% 

 Table  6.3  Metric  results  from  the  multiclass  GCN  model  predicting  permeability 
 barriers.  The precision and recall scores were calculated  from the confusion matrices. 
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 As  mentioned,  accuracy  scores  used  previously  have  returned  high  scores  in  prior 

 work.  ROC-AUC  scores  are  better  at  accounting  for  false  positives  and  true  positives  302  . 

 Ultimately,  for  a  classification  problem,  a  confusion  matrix  is  best  at  allowing  us  to 

 visualise  the  class  predictions  (  Figure  6.17B)  .  The  model  excels  in  predicting  Class  2; 

 these  compounds  are  affected  by  permeability  (  Figure  6.17B  and  Table  6.3)  .  It  is  less 

 accurate  at  predicting  Class  0  than  the  least  accurate  at  predicting  Class  1  (  Figure 

 6.17B  and  Table  6.3)  .  The  metrics  for  each  class  are  also  calculated  (  Table  6.3  ).  They 

 demonstrate  that  Class  1  predictions  have  poor  recall  scores  at  10%  (  Table  6.3  )  and 

 poor  precision  at  25%.  These  scores  are  both  worse  than  randomly  assigning 

 compounds  to  this  Class.  The  low  precision  and  recall  scores  demonstrate  a  failure  to 

 assign compounds to Class 1 accurately. 

 At  this  point,  the  model's  output  was  debated;  although  previous  work  had  used 

 multiple  outputs  104  ,  perhaps  binary  classification  would  give  better  results.  Binary 

 classification  may  be  an  overgeneralization  of  permeability  barriers.  However,  Class  1 

 contains  molecules  that  have  halved  in  MICs,  in  the  scale  of  MICs,  this  is  not  a 

 necessarily  significant  change.  MICs  are  done  as  a  serial  dilution,  with  the  range 

 typically  being  256,  128,  64,  32,  16,  8  4,  2,  1,  0.5…μg/mL.  A  change  of  1  to  0.5  could  be 

 due to error, and in drug testing, it would not usually be considered that significant. 

 6.5  Comparing  graph  convolutional  model  to  a  random 

 forest model 

 6.5.1  Creating  random  forest  model  to  predict  permeability 
 barriers 

 Currently,  there  is  debate  in  the  literature  as  to  whether  GCNs  are  that  advantageous  in 

 contrast  to  ‘simpler’  methods  296  .  GCN  can  perform  excellently;  however,  they  require  a 

 great  deal  of  fine-tuning  to  reach  this  point;  there  are  many  factors  in  the  model  that 

 could  be  optimised.  In  contrast,  random  forest  classifiers  that  are  learning  from  ECFPs 

 can  outperform  GCN  models  279,296  .  Random  forest  models  have  been  used  by  other 

 researchers  investigating  the  rules  around  permeability  89,103  .  A  random  forest  classifier 

 was  built  using  the  same  library  (DeepChem)  as  before,  but  this  time  a  SKlearn 
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 (library)  algorithm  was  used  through  Deepchem  (as  a  wrapper).  In  this  instance,  three 

 outputs were used for comparison to GCN, later two outputs will be compared. 

 For  the  random  forest  model,  the  SMILES  of  compounds  were  transformed  into  ECFP 

 vectors.  These  vectors  map  out  the  atomic  spacing  of  the  molecule  19  .  A  radius  of  3  was 

 used to generate identifiers of the atoms, and a bit length of 1024 was used. 

 6.5.2 Random forest prediction results on SPARK derived dataset 

 The  RF  model  created  could  not  predict  multiple  outputs  simultaneously,  as  a  result 

 each  class  was  predicted  sequentially.  The  random  forest  model  has  good  ROC-AUC 

 scores  across  all  classes  (  Figure  6.18)  .  However  it  demonstrated  low  precision  (16.7%) 

 and recall (10% scores) (  Table 6.4)  as the GCN model  did (  Figure 6.18 and Table 6.3)  . 
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 Figure  6.18  Confusion  matrices  and  ROC  curve  scores  for  each  class  output  of  RF 
 model.  First  row  is  Class  0  -  compounds  without  permeability  issues.  In  the  middle  row 
 is  Class  1.  The  bottom  row  is  Class  2,  these  are  compounds  affected  by  permeability. 
 Table 6.4 contains the metrics for this model. 

 Class 0  Class 1  Class 2  Overall 

 Recall  14%  10%  88%  37.3% 

 Precision  66.7%  16.7%  75.8%  53% 

 Mean 
 ROC-AUC 

 Training – 99% 
 Test - 78% 

 Valid – 73% 

 Training – 99% 
 Test - 69% 

 Valid – 72% 

 Training – 99% 
 Test - 80.1% 

 Valid – 86.4% 

 Training - 99% 
 Tesus - 75.7% 
 Valid = 77% 

 Table  6.4  Metrics  calculated  for  each  output  of  the  random  forest  model 
 generating predictions for three permeability outputs. 
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 The  random  forest  model  had  high  mean  ROC-AUC  scores  and  nice  ROC-AUC  curves, 

 particularly  for  Class  2.  However,  the  recall  and  precision  scores  were  poor  for  Classes  0 

 and  1  (  Table  6.4)  .  These  low  precision  and  recall  scores  indicate  that  samples  that 

 should  be  classified  as  Class  0  or  1  are  misclassified.  Class  1  has  a  low  precision  rate, 

 suggesting  that  many  of  the  compounds  classified  as  Class  1  are  false  positives.  This 

 failure  could  be  attributed  to  the  smaller  size  of  Class  1.  The  results  from  the  training 

 datasets  are  much  higher  than  on  the  test  datasets  -  particularly  for  class  1,  indicating 

 the model is overfitting. 

 6.5.3  Approaching  permeability  predictions  from  a  binary 

 perspective 

 A  recurring  theme  of  the  models  above  is  that  the  ‘middle’  classes  perform  much  worse, 

 so  this  multiclass  problem  was  converted  into  a  binary  classification.  Class  1  and  Class 

 0  were  merged.  This  reclassification  meant  that  compounds  in  Class  0  contained 

 compounds  with  no  relative  change  and  compounds  with  up  to  50%  decrease  in  MICs. 

 Class  0  are  compounds  not  impeded  by  a  permeability  barrier.  In  contrast,  Class  1 

 (now)  contains  compounds  that  experience  more  than  50%  reduction  in  MICs  when 

 permeabilised. Class 1 are compounds affected by a permeability barrier. 

 The  first  binary  model  tested  was  the  GCN  model;  after  hyperparameter  optimisation, 

 good  ROC-AUC  scores  were  found  (  Table  6.5  ).  The  binary  GCN  model  returned 

 ROC-AUC  scores  of  94%  on  the  training  dataset,  82%  on  the  test  dataset,  and  82%  on 

 the  validation  training  set.  This  model  is  performing  much  better  than  previously,  but  it 

 is  still  overfitting  (based  on  the  difference  between  training  and  test  results)  (  Table  6.4 

 for  metrics  of  multi-output  GCN  ).  The  precision  and  recall  scores  have  significantly 

 improved  for  both  outcomes  and  are  better  than  random  assignment.  (  Table  6.6  for 

 results  of  the  binary  model  ).  The  confusion  matrix  (  Figure  6.19  )  demonstrates  the 

 amount of correctly classified compounds. 
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 Figure  6.19  Confusion  matrix  of  results  from  binary  GCN  model  predicting 
 permeability  issues  on  the  SPARK  derived  dataset.  These  are  the  classification 
 results  from  the  binary  GCNs  predictions  on  the  the  test  dataset,  which  is  composed  of 
 75  randomly  assigned  compounds.  The  dataset  is  unbalanced,  with  more  Class  1 
 compounds. 

 Class 0  Class 1  Overall 

 Recall  69%  71%  70% 

 Precision  56%  81%  68.5% 

 Mean ROC-AUC  Train: 94% 
 Test: 82% 
 Valid: 82% 

 Table  6.5  Metric  scores  of  binary  GCN  model  of  predicting  permeability  issues  of 
 the SPARK derived dataset. 

 The  random  forest  model  for  predicting  permeability  also  performed  much  better 

 when  a  binary  output  was  used  (  Figure  6.20  ).  The  random  forest  model  returned 

 scores  of  99%  on  the  training  dataset,  86%  on  the  test  dataset,  and  80%  on  the  valid 

 dataset  (  Table  6.6  ).  The  results  are  comparable  to  the  GCN  binary  model  (  Figure  6.19  ). 

 The  cohesion  in  results  across  both  models  (when  using  a  binary  output)  suggests  that 

 the  use  of  a  more  complex  model  (GCN)  may  not  be  advantageous.  Removing  the  other 

 classes  means  this  model  now  lacks  the  distinctions  in  different  permeability  classes; 

 that  other  researchers  have  demonstrated  104  .  However,  the  models  both  meet  the  aims 

 of  the  work  -  they  can  predict  if  permeability  issues  will  hinder  a  compound.  The 

 dataset  size  could  be  increased  to  improve  accuracy,  or  the  root  of  the  dataset  (MICs  in 

 this  case)  could  be  changed  to  a  different  measure  of  accumulation.  For  example,  the 

 amount  of  intracellular  accumulation  could  be  quantified  by  MS  techniques.  Using 
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 different  data  to  inform  permeability  predictions  could  reduce  the  emphasis  on 

 compounds  with  effective  antimicrobial  activity,  leaving  the  predictions  more  open  to 

 different permeability properties. 

 Figure  6.20  Confusion  matrix  of  the  results  from  the  binary  random  forest  model 
 used  to  predict  permeability  barriers  on  the  SPARK  derived  dataset.  These  are  the 
 classification  results  from  the  binary  RFs  predictions  on  the  the  test  dataset,  which  is 
 the same 75 randomly assigned compounds as was tested against the binary GCN. 

 Class 0  Class 1  Overall 

 Recall  56%  88%  72% 

 Precision  70%  80%  75% 

 Mean ROC-AUC  Train: 99% 
 Test: 86% 
 Valid: 80% 

 Table  6.6  The  metric  results  of  the  binary  random  forest  model  predicting 
 permeability barriers of compounds. 

 6.6 Predictions and atomic contributions 

 Nine  compounds  were  randomly  removed  from  the  dataset  when  this  dataset  was 

 established.  This  small  selection  of  compounds  was  used  to  test  the  efficacy  of  the 

 binary  RF  and  binary  GCN  model.  This  was  a  preliminary  investigation  into  the  efficacy 

 of  the  models  on  unseen  compounds.  The  nine  compounds  were  translated  into 

 convolutional  molecules  for  the  GCN  model  and  ECFPs  with  a  radius  of  3  for  the  RF 

 model. 
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 Class 0  Class 1 

 Binary GCN recall  60%  75% 
 Binary GCN 
 precision  75%  60% 

 Binary RF recall  40%  100% 
 Binary RF 
 precision  100%  57% 

 Table 6.7 The results of the predictions of binary GCN and binary RF model on 
 nine unseen compounds. 

 Both  the  binary  versions  of  the  models  perform  well.  The  binary  GCN  model  was  able  to 

 correctly  predict  7  out  of  9  compounds  and  maintained  a  high  balance  of  precision  and 

 recall  (  Table  6.7  ).  The  compound  failed  to  correctly  predict  compound  #5  as  having 

 permeability  issues  and  failed  to  predict  compound  #9  as  not  having  permeability 

 issues  (  Figure  6.21  ).  Meaning  the  binary  GCN  misclassified  compounds  in  both  classes. 

 The  RF  model  predicted  6  out  9  compounds  correctly.  The  model  was  more  biased  to 

 predicting  permeability  issues  for  compounds  and  predicted  compounds  #8,  #9  and  #3 

 as  having  permeability  issues  (  Figure  6.21  ).  Both  models  incorrectly  assigned  #9  as 

 being  impermeable,  suggesting  the  models  could  have  learnt  similar  rules  around 

 impermeability.  These  nine  compounds  have  come  from  the  same  compiled  database  as 

 the  other  compounds,  and  as  antibiotics  make  up  one  of  the  most  chemically  diverse 

 drug  groups,  the  models  may  perform  poorly  on  compounds  from  outside  of  this 

 dataset.  Moreover,  nine  compounds  are  a  small  percentage  of  this  dataset  and  a 

 negligible  fraction  in  drug  discovery  screens  that  often  begin  with  thousands  of 

 compounds.  These  models  ideally  need  to  be  tested  on  a  new  database  to  assess  the 

 permeability  of  new  compounds,  to  establish  the  efficacy  of  both  models.  By  testing  the 

 models on new compounds it would help establish which model is better. 

 The  atomic  contributions  of  the  predictions  made  by  the  binary  GCN  model  were 

 investigated.  Code  adapted  by  DeepChem  153  based  on  the  work  of  Riniker  and  Landrum 

 2013  314  was  used  to  investigate  these  atomic  contributions  31–33  .  It  assesses  the  atomic 

 contribution  of  each  atom  of  a  molecule  by  comparing  the  model's  efficacy  with  and 

 without  each  atom  314  .  The  code  returns  the  contribution  of  the  atoms  used  to  make 

 predictions  of  classes  314  .  In  Figure  6.21  ,  the  atomic  mappings  of  each  compound  are 

 presented  alongside  the  class  assigned  by  GCN  and  RF  and  the  correct  class.  The  red,  in 

 this  case,  means  the  atoms  would  contribute  to  permeability  issues  (  Figure  6.21  ), 

 whereas  the  blue  indicates  that  the  atom  does  not  cause  permeability  issues  (  Figure 

 6.21  ). 
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 As  mentioned,  on  this  limited  dataset,  the  binary  GCN  model  predicted  correctly  7/9 

 times.  In  the  first  column  on  the  left  (  Figure  6.21  ),  the  three  compounds  are  quite 

 similar  in  their  structure,  the  top  two  differing  by  one  nitrogen.  These  small  changes 

 are  typical  in  drug  discovery  screens  and  can  significantly  affect  activity.  In  this  limited 

 application,  the  change  did  not  alter  the  permeability  of  the  compound,  but  the  binary 

 GCN  model  did  detect  these  changes  (based  on  the  returned  atomic  predictions).  The 

 alteration  of  a  lead  compound  to  produce  many  potential  hits  is  common  in  drug 

 discovery  but  it  poses  an  issue  for  the  implementation  of  machine  learning  methods  in 

 drug  discovery.  Usually  in  machine  learning  applications  the  data  points  are 

 independent  of  each  other,  independent  data  that  is  distinct  is  easier  to  separate  and 

 therefore classify into groups  279  . 

 Figure  6.21  Nine  unseen  compounds  used  to  test  the  efficacy  of  binary  models. 
 The  correct  and  predicted  labels  are  shown.  The  red  indicates  which  atoms  may  cause 
 permeability  issues.  This  figure  demonstrates  the  atomic  contributions  that  resulted  in 
 the classification from the binary GCN model. 
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 Both  models  were  then  used  to  predict  whether  two  compounds  from  Tomassi  et  al.  101 

 had  permeability  issues.  These  compounds  were  designed  as  derivatives  of  avibactam 

 but  manipulated  to  achieve  better  permeability  in  Pseudomonas  aeruginosa  using  their 

 permeability  assay,  crystallography,  molecular  dynamics  and  MICs.  The  initial 

 compound  (compound  2)  had  changes  made  to  R1  to  optimise  translocation  through 

 porins,  whilst  functionality  (  Figure  6.22  )  was  maintained  with  the  carboxylic  acid, 

 leading  to  compound  EX0462.  The  resultant  molecule  (EX0462)  achieved  target 

 specificity and permeated into a range of Gram-negative organisms  101  . 

 Figure  6.22A-D  Two  compounds  used  to  probe  the  accuracy  of  permeability 
 predictions.  6.22A  the  structure  of  compound  2,  with  R1  and  the  active  site  labelled. 
 (  B  )  the  returned  atomic  contributions  resulting  in  the  predictions  of  this  class.  On  the 
 right  in  the  purple  box  is  EX0462,  the  compounds  modified  to  increase  permeability  in 
 Pseudomonas  by  altering  R1  whilst  maintaining  activity  at  the  active  site.  (  C  )  the 
 labelled  structure  of  EX0462,  and  (  D  )  the  atomic  contributions  on  the  classification  of 
 this structure. 

 Tomassi  et  al.  101  report  that  the  MIC  of  compound  2  in  the  PAO1  strain  is  4  μg/mL  and 

 32  μg/mL  in  clinical  isolates  101  .  In  E.  coli  ATCC  25922,  the  MIC  of  compound  2  was  2 

 μg/mL  and  1-8  μg/mL  in  clinical  isolates.  ETX0462  had  a  MIC  of  0.5  μg/mL  in  both 

 reference  strains;  25922  (  E.  coli  )  and  PAO1  (  P.  aeruginosa  ).  This  MIC  increased  to  2 

 μg/ml  for  clinical  isolates  of  P.  aeruginosa  and  1μg/mL  for  E.  coli  clinical  isolates.  When 
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 these  compounds  (compound  2  and  ETX0462)  were  tested  in  both  models  (binary  RF 

 and GCN), they predicted that both compounds would not have permeability issues. 

 The  atomic  contributions  of  permeability  predictions  were  visualised  (  Figure  6.22  ). 

 The  changes  at  R1  of  ETX0462  appeared  to  have  a  negative  contribution  to 

 permeability.  This  is  in  contrast  to  the  design  of  the  molecule.  There  were  some 

 similarities  in  atomic  contributions  between  the  two  molecules,  in  particular  the  core 

 ring  of  the  molecules  was  predicted  to  be  a  permeability  barrier  to  both  compounds. 

 EX0462  should  be  more  permeable  than  compound  2  because  of  the  alterations  at  R1 

 (this  is  a  distinction  the  binary  GCN  model  was  not  able  to  make)  101  .  However,  both 

 compounds  have  reportedly  low  MICs  in  E.  coli  .  Compound  2  was  deemed  as  having 

 permeability  issues  in  the  Tomassi  et  al.  101  paper  for  two  key  reasons.  Firstly,  when 

 modelling  the  interactions  of  the  compound  with  the  predominant  porin  (OprD)  in 

 Pseudomonas  aeruginosa,  and  secondly  from  MIC  values.  OprD  is  different  from  OmpF; 

 it  has  more  selectivity  of  its  substrates;  it  is  generally  narrower  and  is  a  monomer,  not  a 

 homotrimer.  This  work  used  E.  coli  as  the  model  organism  instead  of  Pseudomonas 

 aeruginosa  ,  which  may  be  why  the  compounds  were  both  predicted  as  not  having 

 permeability issues. 

 6.7 Discussion and Future Prospects 

 The  final  binary  models  (GCN  and  RF)  were  built  through  many  iterations  of  algorithms 

 and  datasets,  resulting  in  accurate  and  useful  predictions  of  new  molecules.  The  atomic 

 contributions  of  the  binary  GCN  model  indicated  it  identified  small  changes  to 

 compounds  (  Figure  6.21  ).  The  binary  RF  and  GCN  both  demonstrated  high  ROC-AUC 

 scores,  however  they  demonstrated  differences  in  predictions  on  new  compounds.  The 

 binary  RF  appeared  to  be  more  biased  in  predicting  Class  1  so  compounds  that  have  a 

 permeability  issue.  To  further  this  work,  three  approaches  could  be  taken,  firstly,  to 

 explore  more  algorithms  to  comprehensively  compare  different  algorithms'  success  in 

 predicting  permeability  and  use  this  to  better  weigh  in  on  the  current  literature  in  this 

 field. 

 Secondly,  the  models  could  have  been  improved  with  a  more  complex  dataset  and  may 

 have  elucidated  more  information  on  permeability,  especially  without  reliance  on  MICs. 
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 Diverging  from  MICs  would  have  reduced  the  selectivity  for  antimicrobial  activity  and 

 narrowed  the  scope  to  permeability.  The  SPARK  database  would  contain  more  data  for 

 each  compound  available  in  an  ideal  scenario.  Ideally,  the  results  would  be  generated 

 from  a  range  of  assays  and  modelling  studies,  including  some  of  the  following 

 examples:  TOMAS  100,101  permeability  assay,  OMV  swelling  assay  105  ,  MICs,  molecular 

 dynamic  studies,  and  docking  studies  of  the  compounds  in  porins.  Many  more 

 permeability  assays  have  been  used,  but  they  have  been  created  to  quantify  specific 

 chemicals  such  as  fluoroquinolone  fluorescence  79  ,  β-lactam  iodometric  assay  70  ,  and 

 specific  fluorescent  bacterial  probes  318  .  By  using  permeability  results  from  a  range  of 

 assays,  a  permeability  score  could  be  generated  for  each  compound.  This  system  might 

 create  a  better  picture  of  permeability,  thus  making  it  easier  for  a  model  to  predict 

 permeability  issues.  The  SPARK  database  is  a  good  starting  point  for  this  sort  of 

 complex library, owing to the platform's open-source nature. 

 Thirdly,  the  models  could  have  been  improved  by  using  more  data.  Predicting 

 permeability  is  a  complex  problem  that  needs  extensive  data  to  inform  classification.  AI 

 helps  solve  complex  issues  but  requires  extensive  datasets;  for  example,  a  computer 

 vision  problem  may  involve  many  hours  of  videos,  and  from  each  frame  of  the  video, 

 each  pixel  could  be  used  to  inform  the  model.  This  is  a  much  greater  wealth  of 

 information  than  used  in  this  study  279  .  However,  with  more  data  comes  more  noise,  so  a 

 greater  effort  to  denoise  the  data  should  be  made  if  using  the  random  forest  model  that 

 uses  ECFP  molecular  representations  319  .  Noise  reduction  could  be  achieved  using 

 dimensionality reduction techniques such as principal component analysis. 

 The  final  binary  models  from  this  work  should  have  been  applied  to  a  more  extensive 

 database  such  as  the  ZINC15  database  or  the  drug  repurposing  hub.  The  predictions 

 generated  from  these  databases  should  then  have  been  purchased  and  tested  for 

 permeability  issues.  The  compounds  with  and  without  permeability  barriers  should 

 then  have  had  their  physicochemical  properties  probed  to  discover  any  underlying 

 permeability  rules.  The  results  of  this  larger  screen  could  then  have  been  used  to 

 inform antimicrobial drug design. 

 The  aim  of  having  a  model  that  predicts  permeability  issues  is  to  apply  it  to  compounds 

 before  drug  screening  to  assess  which  molecules  may  have  issues.  The  binary  RF  and 

 GCN  models  were  used  to  predict  when  compounds  may  have  permeability  issues.  This 

 is  an  essential  consideration  for  drug  discovery.  However,  compound  accumulation  is 
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 not  just  dependent  on  permeability  but  also  on  active  efflux.  The  SPARK  database  does 

 contain  efflux  data,  so  a  model  could  be  built  based  on  efflux  or  accumulation  by 

 combining  data  on  permeability  and  efflux.  Zgurskaya  et  al.  33  have  done  some  work  on 

 predicting permeability and have included efflux as a consideration. 

 Furthermore,  this  work  focused  mainly  on  E.  coli  as  opposed  to  other  more 

 impermeable  bacteria.  Different  compounds  may  have  been  restricted  by  building  a 

 different  model  based  on  the  permeability  of  other  bacteria  such  as  Pseudomonas  . 

 Pseudomonas  aeruginosa  in  particular  has  been  used  frequently  in  accumulation 

 studies  due  to  its  impermeable  outer  membrane  307–309  .  Perhaps  a  myriad  of  MICs  from  a 

 range  of  bacteria  could  also  be  used  to  build  a  more  comprehensive  model  of 

 permeability. 

 Conversely,  precise  models  could  be  built  based  on  individual  species'  porin  or  lipid 

 permeability.  This  was  an  initial  aim  of  the  early  iterations  of  this  work.  The  role  of 

 different  porins  in  different  compound  permeability  was  going  to  be  used  to  predict 

 permeability  (using  the  knockout  strains).  However,  as  more  data  was  needed  to 

 predict  permeability  accurately  and  the  SPARK  database  was  utilised,  the  investigation 

 into  porins  was  lost.  In  future  applications  of  this  work,  perhaps  the  compounds  in  the 

 final  database  could  have  been  purchased,  and  a  permeability  database  around  porins 

 could  have  been  built.  These  compounds  could  have  had  MIC  with  the  knockout  strains 

 to  build  a  specific  role  of  each  porin  in  permeability.  They  also  could  have  been 

 screened  with  a  library  of  resistant  mutants  whose  permeability  phenotype  was 

 elucidated  by  genomic  and  proteomic  studies.  This  would  result  in  a  precise  database 

 that may be able to illuminate more of the rules guiding model predictions. 

 AI  offers  many  exciting  avenues  for  the  field  of  MedChem.  However,  AI  comes  with 

 drawbacks  and  errors,  particularly  when  looking  at  molecules.  In  most  other  fields 

 where  AI  is  used,  there  is  an  assumption  that  each  data  point  is  independent  of  another 

 (commonly  known  as  independent  and  identically  distributed  data  (IID))  279  .  This  is  not 

 the  case  in  MedChem,  as  many  small  changes  made  to  a  parent  compound  can  result  in 

 chemically  similar  compounds  that  may  have  vastly  different  functions,  resulting  in 

 compounds  not  being  independent  of  each  other  279  ,  which  can  impact  the 

 distinguishability  of  classes.  However,  such  an  issue  could  be  tackled  by  good  molecular 

 representations  of  compounds  that  can  sensitively  comprehend  and  distinguish  small 

 changes  to  molecules  279  .  This  is  where  learnt  representations,  such  as  the  ones  used  in 
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 the  binary  GCN  model  are  useful.  Alternatively,  the  data  can  be  split  by  using  a  scaffold 

 splitter,  separating  the  dataset  based  on  different  chemical  structures,  this 

 differentiation based on chemistry may aid in classification. 

 Additionally,  interpretability  can  become  an  issue,  especially  when  using  deep-learning 

 representations  to  'featurise'  compounds  instead  of  user-defined  feature  engineering 

 (the  GCN  uses  deep  learning  representations)  279,320  .  Indeed,  understanding  what  is 

 going  on  'under  the  hood'  is  a  key  issue.  There  has  been  a  push  towards  explainable 

 artificial  intelligence  approaches  320  .  Explainable  AI  aims  to  address  critical  questions 

 such  as  why  the  model  predicted  the  way  it  did,  why  the  prediction  is  correct,  what 

 rules  have  been  learnt  from  the  model,  and  how  certain  the  prediction  is  320  .  In  this 

 chapter,  some  interpretations  were  gleaned  from  the  model  by  looking  at  atomic 

 contributions.  Much  more  work  should  have  been  done  to  understand  the  model  better 

 and whether its predictions could be extrapolated  320  . 

 The  DeepChem  153  library  was  essential  for  this  work,  as  it  made  the  field  and  the 

 techniques  approachable  and  provided  many  avenues  to  explore  (such  as  atomic 

 contributions).  DeepChem  153  ,  in  particular,  has  allowed  biologists  and  chemists  an 

 accessible  avenue  into  the  field  of  machine  learning,  allowing  interdisciplinary 

 development, which has proven essential to the discovery of new antibiotics. 

 6.8 Conclusions 

 The  future  of  novel  antimicrobial  discovery  is  an  interdisciplinary  endeavour.  It  is  a 

 global  health  issue  requiring  attention  from  all  angles.  AI  could  streamline  the 

 expensive  task  of  drug  discovery,  enabling  far  more  research  to  be  done  by  start-ups 

 and  academic  institutions.  AI  could  generate  new  compounds,  predict  which 

 compounds  could  be  ‘hit’,  and  predict  which  compounds  are  experiencing  permeability 

 issues.  It  could  also  be  used  more  broadly  to  tackle  themes  of  AMR.  This  chapter  has 

 demonstrated  some  success  in  predicting  permeability  issues  in  potential 

 antimicrobials. 
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 7. Conclusions and future work 

 This  thesis  approached  the  theme  of  Gram-negative  permeability  in  an  interdisciplinary 

 manner,  aiming  to  develop  tools  to  measure  the  accumulation  of  β-lactams  and  create  a 

 broader  high-throughput  method  of  measuring  accumulation.  Each  of  these  chapters 

 will  be  briefly  summarised  before  contextualising  the  results  in  relation  to  the  current 

 state of antimicrobial drug development. 

 A  paper  in  2016  by  Kotagiri  et  al.  135  reported  that  the  heat  degradation  of  ampicillin 

 creates  a  fluorescent  compound  that  maintains  its  β-lactam  ring  (Compound  8)  135  .  The 

 paper  states  that  heating  ampicillin  to  high  temperatures  results  in  the  oxidative 

 deamination  of  ampicillin’s  primary  amine,  giving  the  β-lactam  derivative  fluorescent 

 properties  135  .  The  compound  reported  in  this  paper  is  a  fluorescent  β-lactam  created 

 without  modification  by  a  fluorophore.  Therefore,  it  could  have  been  used  as 

 intrinsically  fluorescent  antibiotics,  like  fluoroquinolones  are,  in  permeability 

 studies  68,79  .  Given  the  potential  of  Compound  8  ,  the  compound  was  therefore  chosen  as 

 a  potential  candidate  to  study  β-lactam  permeability  in  this  thesis.  Chapter  three 

 investigated  the  structure  and  function  of  Compound  8,  and,  ultimately,  found  that  the 

 structure  reported  was  inaccurate.  The  new  structure  described  in  Chapter  three  does 

 not  have  a  β-lactam  ring  and  will  not  be  a  good  indicator  of  β-lactam  permeability  due 

 to  its  differing  chemical  properties.  Further  experiments  could  have  further  evidenced 

 the  results  in  this  chapter,  but  ultimately,  they  were  not  necessary.  There  are  other 

 studies  of  β-lactam  permeability  using  micro-iodometric  assay  70  ,  radiolabelled 

 β-lactams  55  and  MS  109  .  The  use  of  MS  to  quantify  permeability  is  explored  in  Chapter 

 four. 

 Chapter  4  aimed  to  develop  a  label-free  tool  to  measure  β-lactam  permeability  through 

 the  covalent  acylation  of  PBPs.  This  chapter  used  three  mass  spectrometers;  Orbitrap, 

 FT-ICR  MS,  and  MALDI.  The  chapter  began  by  looking  at  the  binding  of;  ampicillin, 

 nitrocefin,  aztreonam  and  ceftazidime  to  PBPs  from  various  species,  using  a  bottom-up 

 proteomic  technique.  The  acylation  of  the  active-site  serine  of  PBPs  by  β-lactams  was 

 observed.  However,  results  varied  depending  on  PBP,  β-lactam  and  bacteria,  creating 

 variability  and  unreliability  in  results.  A  top-down  proteomic  technique  was  attempted 

 with  FT-ICR  MS  to  look  specifically  at  ceftriaxone  and  E.  coli  PBP3.  The  results  from  this 

 experiment  resulted  in  masses  that  were  inconsistent  with  calculations.  Subsequently  a 

 more  straightforward  approach  was  taken  using  MALDI-TOF;  this  was  more  successful 
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 than  FT-ICR-MS.  Ultimately,  this  chapter  was  not  progressed  due  to  the  limited  results 

 and  the  availability  of  other  assays  to  measure  β-lactam  permeability.  Ultimately,  it  was 

 clear  from  this  chapter  that  MS  is  not  an  appropriate  method  of  measuring  β-lactam 

 permeability,  in  this  case.  The  direction  of  this  thesis  then  shifted  to  looking  at  general 

 permeability assays and predicting permeability. 

 In  Chapter  five,  the  work  shifted  from  attempting  to  monitor  the  permeability  of  just 

 β-lactam  antibiotics,  to  establishing  a  method  to  measure  permeability  across  many 

 classes.  Liposome  based  permeability  assays  have  been  a  mainstay  of  the  field  for  many 

 years.  This  chapter  sought  to  build  on  this  foundation  to  create  a  better  model  of  E.  coli 

 for  permeability  assays  and  establish  a  universal  permeability  screen.  To  do  this, 

 techniques  from  synthetic  biology  were  applied  to  build  synthetic  cells  in  96-well 

 microplates.  This  chapter  laid  the  groundwork  for  using  this  assay  for  drug  screening 

 uses.  Preliminary  data  from  this  chapter  suggest  that  synthetic  cells  could  be  a  good 

 model  for  permeability  studies,  the  assay  is  highly  adaptable  and  broadly  applicable. 

 Unfortunately,  further  development  fell  outside  of  the  time  frame  of  this  project.  But  the 

 prospects  of  this  study  are  huge,  from  monitoring  porins  to  altering  lipid  composition 

 to  mimic  the  membrane  of  a  variety  of  bacteria,  adapting  the  target  of  the  screen,  and 

 creating a tandem activity-permeability screen, essential for drug discovery purposes. 

 Chapter  six  sought  to  establish  whether  machine  learning  techniques  could  be  used  to 

 predict  permeability.  By  having  tools  to  predict  permeability  into  E.  coli  ,  the  process  of 

 drug  development  could  be  streamlined.  The  results  from  this  chapter  demonstrated 

 the  efficacy  of  two  models  (binary  RF  and  GCN)  in  predicting  whether  a  compound  will 

 face  permeability  barriers.  The  complex  nature  of  the  permeability  barrier  means 

 fitting  a  model  to  this  dataset  is  challenging,  there  is  certainly  room  for  improvement. 

 Future  work  from  this  chapter  includes;  applying  the  model  to  large  datasets  to  see  if  it 

 can  predict  permeability  from  more  diverse  screens,  training  a  model  on  different 

 bacteria  or  different  permeability  characteristics,  and  training  a  model  on 

 accumulation,  including  efflux  data.  More  work  developing  the  model  and  applying  this 

 model  are  necessary.  However,  this  work  could  be  used  prior  to  drug  development 

 screens to save time and money which is desperately necessary. 

 This  thesis  has  approached  Gram-negative  permeability  from  an  interdisciplinary 

 standpoint.  Techniques  from  microbiology,  biochemistry,  chemistry  and  computer 

 science  have  been  used.  The  breadth  of  the  project  was  vast,  perhaps  preventing  the 
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 explanation  of  the  rules  around  permeability.  Several  tools  enabled  this 

 interdisciplinary  effort  in  the  name  of  ‘open-source  science’;  in  the  form  of  shared 

 protocols  (https://bio-protocol.org/),  databases  (SPARK  312  )  and  tutorials  for  machine 

 learning  (GoogleColab  notebooks,  DeepChem  321  and  https://www.kaggle.com/),  that 

 has  enabled  this  project.  The  expansion  of  the  SPARK  database  or  the  establishment  of 

 a  similar  database  could  generate  the  wealth  of  information  needed  to  predict 

 permeability  issues  for  compounds  resulting  in  the  creation  of  effective  antimicrobials. 

 Both  target  and  phenotypic  screens  would  benefit  from  assays,  models,  and  rules 

 informing drug design. 

 Open-source  science  could  be  used  to  fill  the  knowledge  gap  left  by  big  pharma  exiting 

 antimicrobial  drug  discovery.  Open-source  science  allows  small  pharmaceutical 

 companies  and  academic  institutions  to  reinvigorate  the  drug  discovery  pipeline. 

 Previous  open-source  science  projects  identified  antimalarial  compounds;  one  of  the 

 winners  of  this  project  used  the  DeepChem  library  322  .  A  new  open-source  project  has 

 been  started  to  search  for  novel  antimicrobial  compounds  that  inhibit  the  Mur  Ligases 

 (https://github.com/opensourceantibiotics/murligase).  The  Mur  ligase  project  asks 

 contributors  to  use  generative  adversarial  models  to  create  compounds  predicted  to 

 inhibit  Mur  ligases.  Organisers  of  the  project  are  willing  to  synthesise  the  hits  from  the 

 screens  and  assay  the  hits  for  activity.  The  nature  of  this  project  enables  experts  from 

 around  the  world  to  use  their  knowledge  to  find  new  antibiotics.  However,  this  project 

 is  still  affected  by  the  same  economic  constraints  that  have  burdened  drug  discovery. 

 The  compounds  discovered  in  this  project  are  patent-free,  meaning  the  drug  will  be 

 off-label  immediately,  limiting  any  financial  returns.  This  means  pharmaceutical 

 companies  are  unlikely  to  fund  the  expensive  clinical  trial  process  for  a  drug  that  will 

 not make them money. 

 Ultimately,  antibiotic  development  will  continue  to  be  impeded  due  to  economic 

 reasons.  Until  the  threat  of  AMR  is  appropriately  acknowledged,  the  discovery  of 

 antibiotics  will  continue  to  suffer.  The  process  of  developing  antimicrobials  needs  to  be 

 de-risked  to  entice  businesses  into  antimicrobial  drug  discovery.  In  the  meantime, 

 small  teams  will  continue  to  attempt  to  bridge  the  gap.  Having  tools  such  as 

 permeability  assays  will  allow  for  a  streamlined  approach  to  developing  antimicrobials. 

 Better  still,  having  rules  or  models  that  can  guide  the  rational  drug  design  of 

 compounds  will  remove  a  great  deal  of  screening.  The  preliminary  data  in  the  synthetic 

 cell  chapter  suggests  it  could  be  used  as  a  platform  for  permeability  screening.  It  could 
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 have  broad  applicability  with  some  adaptations  like  standardised  CFPS  reactions  and  a 

 microfluidic  platform.  The  results  from  the  machine  learning  chapter  suggest  that  with 

 more  data,  a  model  that  predicts  permeability  barriers  to  compounds  could  be 

 established.  With  more  expertise,  the  rules  surrounding  permeability  barriers  could  be 

 better  explained.  To  conclude,  this  thesis  has  explored  both  specific  and  general 

 permeability  assays  from  an  interdisciplinary  standpoint,  with  some  chapters 

 demonstrating promising applications with further development. 
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 9. Appendix 

 9.1 Compound 8 NMR 

 Figure  9.1  NMR  analysis  of  Compound  8.  1.2  mg  of  Compound  8  in  deuterated  DMSO 
 was analysed by C-13 NMR (AVC500) by R. Reinbold (University of Oxford) 
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 9.2 Compound 8 MS 

 Figure  9.2  ESI+  MS  spectra  of  Compound  8  -  theoretical  and  measured.  MS  spectra 
 from  collaborators  R.  Reinbold.  In  spectra  (A)  is  the  measure  MS  of  Compound  8,  in  (B) 
 is the theoretical MS of Compound 8. 
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 9.3  SDS-PAGE  gels  used  in  in-gel  digest  proteomic 
 preparations 

 Figure  9.3A-D  SDS-PAGE  gels  of  the  proteins  used  in  proteomic  experiments.  The 
 protein  gels  are  used  for  in-gel  digest  proteomic  preparations.  20  μg  of  PBPs  were 
 incubated  with  1  mM  antibiotics  before  being  mixed  with  a  4x  protein  loading  dye.  The 
 bands  were  excised  and  the  proteins  were  extracted  and  digested  with  trypsin.  (A)  E. 
 coli  PBP4  acylated  with  ampicillin.  (B)  E.  coli  PBP1a  acylated  with  ampicillin.  (C.)  PBP3 
 from  three  organisms  acylated  with  nitrocefin.  (D)  Mixture  of  E.  coli  PBPs  (PBP1a, 
 PBP1b, PBP3, PBP4). 
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 9.4 Sequenced  E. coli  PBP3 

 Figure  9.4A-C  Sequencing  alignment  of  E.  coli  PBP3.  (A)  The  translated  protein 
 sequence  of  the  PBP3  pet47b  vector  used  in  this  work.  The  24  vector  residues  including 
 the  His-tag  are  highlighted  in  red  lettering.  The  first  active-site  serine  in  PBP3  is  STVK 
 which  is  underlined  and  highlighted  in  yellow.  The  second  active-site  serine  is  SSN 
 which  is  also  underlined  and  highlighted  in  blue.  (B)  The  blast  alignment  of  the 
 translated  sequencing  results.  The  sequence  demonstrated  100%  alignment  to  E.  coli 
 K12  FTSI  (PBP3).  (C.)  Proteomic  sequencing  of  E.  coli  PBP3,  highlighted  in  yellow,  is  the 
 peptide  coverage.  The  construct  used  in  this  work  was  missing  the  transmembrane 
 domain - residues 60-588. 
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