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Abstract

Purely affective interaction allows the welfare of an individual to depend
on her own actions and on the profile of welfare levels of others. Under an
assumption on the structure of mutual affection that we interpret as “non-
explosive mutual affection,” we show that equilibria of simultaneous-move
affective interaction are Pareto optimal independently of whether or not an
induced standard game exists. Moreover, if purely affective interaction in-
duces a standard game, then an equilibrium profile of actions is a Nash equi-
librium of the game, and this Nash equilibrium and Pareto optimal profile
of strategies is locally dominant

Key words: purely affective interactions, Pareto optimality.

JEL classification: D62.



1 Introduction

Purely affective interaction allows the welfare of an individual to depend on
her own actions and on the profile of welfare levels of others. Importantly,
actions of others do not affect directly the welfare of an individual. Here,
we provide a concise and general treatment of the class of smooth, purely
affective interaction. Affection can be positive or negative. We focus on
welfare implications.

Ray and Vohra (2020) demonstrated a striking result: if purely affective
interaction induces a standard game, Nash equilibria of the induced game
are Pareto optimal. Which proved a conundrum, since earlier results, no-
tably by Arrow (1981) in gift-giving interaction with three individuals in
a simultaneous-move setting and Pearce (2008) in a cake-eating game in a
sequential-move setting, had concluded that affective interaction is not con-
ducive to optimality. We resolve this conundrum by showing that optimality
emerges in both the simultaneous and sequential settings when interaction
is purely affective. When inefficiency arises, dependence of individual wel-
fare on actions of other individuals lurks in the background either via the
game form, as in Arrow’s gift giving game1 or via aggregate feasibility con-
straints as in Pearce’s cake eating problems or, more generally, competitive
economies. Indeed, in a competitive equilibrium setting, Winter (1969) and
Dufwenberg, Heidhues, Kirchsteiger, Riedel, and Sobel (2011) allowed indi-
viduals to have preferences over their consumption, and, concurrently, over
the profile of utilities. They identified a condition, social monotonicity that,
under assumptions of monotonicity and convexity in own consumption and,
in particular, separability of utilities between own utility and the profile of
utilities of others, implies that Pareto optimal allocations can be supported as
competitive allocations and can be attained with redistributions of revenue.
They also showed by example that social monotonicity does not guarantee
the efficiency of competitive equilibria.

An assumption that we maintain throughout is that a transformation of
the matrix of mutual affection is a P-matrix, as in Gale and Nikaido (1965),
which we interpret as non-explosive mutual affection. Under this assumption,
we show that equilibria of simultaneous-move purely affective interaction are
Pareto optimal independently of whether or not an induced standard game
exists. Moreover, if purely affective interaction induces a standard game,
then an equilibrium profile of actions is a Nash equilibrium of the game, and
this Nash equilibrium and Pareto optimal profile of strategies is locally dom-
inant2. For the sequential setting, Heifetz (2022) defined backward induction

1Bourles, Brammoullé, and Perez-Richet (2017)
2Optimality results indicate that games induced by purely affective interaction form a
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much more simply and directly than in Pearce (2008), and he showed that
backward induction paths of actions and utility levels are Pareto optimal,
again under the assumptions of non-explosive purely affective interaction.

2 Purely affective interaction

Individuals are i ∈ I = {1, ..., n} , profiles of action are

x = (x 1, ..., xn) ∈ X =
n∏
i=1

Xi,

and profiles of utility levels are

u = (u1, ..., un) ∈ Rn3.

Utility functions are

V (x, u) = (Vi (xi, u−i) : i = 1, ...n) ,

and we also write
Vx (u) = V (x, u) .

A profile of actions and utility levels (x, u) is consistent if, for every
individual, ui corresponds to the utility level at (xi, u−i) or

Vx (u) = u.

A parametric equilibrium is a consistent profile of actions and utility lev-
els, (x∗, u∗) that satisfies individual optimization: every individual maximizes
Vi taking u∗−i as given or

Vx (u∗) ≤ Vx∗ (u∗) .

At a parametric equilibrium (x∗, u∗) , every individual considers the utility
levels of others, u∗−i as exogenous parameters and ignores the (indirect) effect
her choice xi on u∗−i.

non-generic class within the class of games: Nash equilibria of generic games are subopti-
mal in Dubey (1986), and, likewise, backward-induction paths of generic sequential games
are suboptimal in Heifetz, Minelli, and Polemarchakis (2021).

3We employ the standard notation u ≤ ū for ui ≤ ūi, i = 1, .., n and u < ū for ui ≤ ūi,
i = 1, .., n with at least one strict inequality.
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A profile of actions and utility levels, (x̃, ũ) is a Pareto improvement over
a profile (x, u) if

ũ > u.

A consistent profile of actions and utility levels, (x, u) is Pareto optimal
if it does not permit a consistent Pareto improvement.

Assumption 1. For every individual, Xi is an open subset of Euclidean
space, and the utility function Vi(·, ·) is twice continuously differentiable.

The Jacobian of Vx at u is Jx (u) .

A square matrix is a P-matrix if all its principal minors are positive4.

Assumption 2. For every x ∈ X and u ∈ Rn, the matrix (I − Jx (u)) is a
P-matrix.

To interpret the assumption, we recall a useful characterization that we
use repeatedly.

Gale-Nikaido Lemma [Gale and Nikaido (1965), Theorem 2] A matrix
A is a P-matrix if and only if, for any non-zero y ∈ Rn, there exists i ∈
{1, 2, . . . n}, such that yi(Ay)i > 0.

In words, P-matrices do not fully reverse the sign of any non-zero vector.

In our context, this property allows us to interpret Assumption 2 as an
assumption of non-explosive mutual affection. To see this, notice that the
Gale-Nikaido characterization allows us to rewrite Assumption 2.

For every x and u and all ∆u 6= 0, there exists there exists an i, such that

∆ui > 0 and v∆ui >
∑
j 6=i

∂Vx,i(xi, u)

∂uj
∆uj

or

∆ui < 0 and ∆ui <
∑
j 6=i

∂Vx,i(xi, u)

∂uj
∆uj.

Suppose now that we start from a consistent pair (x̂, û) at which

û− Vx̂(û) = 0.

4A principal minor is obtained by the elimination of rows and corresponding columns,
but, importantly, without transpositions of rows or columns prior to elimination.
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Then, for any exogenous change in utility levels while holding the profile of
actions fixed, ∆u = u− û 6= 0, there is one individual i, for whom

ui > ûi, and Vi(x̂, u) < ui

or
ui < ûi and Vi(x̂, u) > ui.

That is, under Assumption 2, starting from a consistent pair of actions and
utility levels, for any exogenous change in the utility levels there is always one
individual whose resulting utility, after the change, does is not reinforce the
exogenous change. Thus, Assumption 2 allows for a wide array of positive and
negative individual feelings about changes in the well-being of others, but it
prevents explosive affective interaction.We shall come back to the interpreta-
tion of Assumption 2 later, when discussing alternative, stronger restrictions.
Here we record an important implication.

Theorem 1. Under Assumptions 1 and 2, if (x∗, u∗) is a parametric equi-
librium, then the consistent allocation of utility levels, u∗ is Pareto optimal.

Proof. Suppose, by way of contradiction, that (x̃, ũ) Pareto improves on
(x∗, u∗) ,

Vx̃ (ũ) = ũ > u∗. (1)

Let F : Rn → Rn be defined by

F (u) = u− Vx̃ (u) .

Since (x∗, u∗) is a parametric equilibrium,

F (u∗) = u∗ − Vx̃ (u∗) ≥ 0,

and
F (ũ) = ũ− Vx̃ (ũ) = 0 ≤ F (u∗) . (2)

By Assumptions 1 and 2, the matrix (I − Jx̃ (u)), the Jacebean of F , is a
P-matrix and, by Theorem 3 of Gale and Nikaido (1965), the inequalities (1)
and (2) cannot obtain simultaneously for ũ 6= u∗.

The case of linearly separable affection

In a linearly separable purely affective interaction, the individuals’ utility
functions have the form

Vi(xi, u) = fi(xi) +
∑
j 6=i

aijuj. (3)
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At every x = (x1, ..., xn) the Jacibean J of V with respect to u =
(u1, ..., un) has a zero diagonal Jii = 0 and off-diagonal entries Jij = aij.

Consistency in this special takes the form

u = f(x) + Ju. (4)

Under Assumption 2, det (I − J) 6= 0, and we can uniquely solve the system
of equations (4) at every x, thus obtaining the induced game corresponding
to (3),

U(x) = (I − J)−1f(x) = Bf(x).

The utility functions U = (U1, ..., Un) in the induced game are linear com-
binations of the ‘base utilities’ f = (f1, ...fn). The matrix B = (I − J)−1

summarizes the effect of changes in the base utilities f(x) on the final well
being of individuals, taking into account the network of affective interactions
between them.

Under Assumption 2, B = (I − J)−1 is also a P-matrix5. In particular,
the diagonal of B is positive: for every i,

bii =
| (I − J)ii |
Det(I − J)

> 0. (5)

Claim 1. Under Assumption 2, in a situation of linearly separable affection,
, an action profile x∗ is a Nash equilibrium of the induced game U if and only
if (x∗, U(x∗)) is a parametric equilibrium of V .

A planner may try to obtain a Pareto improvement over a Nash equilib-
rium in the induced game U by jointly changing the actions of everybody. In
the case of linearly separable affection, we can say that a Pareto improvement
is a ∆fx such that ∆U = B∆fx > 0, while a Nash deviation in the induced
game is a ∆f ix = (0, . . . , df i, . . . , 0) such that ∆U i = B∆f ix > 0.

If x∗ is a Nash equilibrium of U and y = ∆fx∗ a Pareto improvement, then
By > 0 and y 6= 0. But then, by the Gale-Nikaido Lemma, there must exist
i such that yi = ∆f ix∗ > 0 (also, given (5),B∆f ix∗ > 0), a contradiction with
x∗ being a Parametric equilibrium (also, with x∗ being Nash equilibrium).

Claim 2. Under Assumption 2, in a situation of linearly separable affection,
if x∗ is a Nash equilibrium of the induced game U , then x∗ is Pareto optimal.

For given λ ∈ Rn
+ \ {0}, consider the welfare function

Wλ(x) = λU(x) = λBf(x),

5Horn and Johnson (2013), Theorem 4.3.2
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a linear combination of the ’base utilities’ fi(xi). The maximization of each
fi(xi) thus assures that the first order conditions for the maximization of
Wλ(x) are satisfied.

Let us assume concavity of base utilities.

Assumption 3. For every i, the function fi is concave in xi.

Even under Assumption 3, Wλ need not be concave in x, because As-
sumption 2 does not guarantee that the elements of B are non-negative.

Using Farkas’s Lemma, Gale and Nikaido (1965) (Corollary 2) prove that

B is a P-matrix =⇒ ∃ λ ∈ Rn
++ s.t. λB >> 0.

Therefore, under Assumptions 2 and 3, there exist welfare weights λ such that
for those weights Wλ is a sum of concave functions, and therefore concave.

Claim 3. Under Assumptions 1, 2 and 3, in a situation of linearly separable
affection, if x∗ is a Nash equilibrium of the induced game U , there exists
λ ∈ Rn

++ such that x∗ is a global maximum of Wλ.

Note that this is alternative proof of Pareto optimality of Nash equilib-
rium.

Locally induced game

In the general, non additively separable case, Assumption 2 does not guar-
antee that at any given x the system of equations

Fx(u) = u− Vx(u) = 0 (6)

has a solution, so the induced game U(x) need not be well defined everywhere
on X.

Still, under Assumption 2, another result of Gale and Nikaido (1965),
Theorem 4, implies that if a solution ux of (6) exists, then it is unique.

Also, again by Assumption 2, det(I − Jx(ux) 6= 0, and we can apply
the implicit function theorem to F : X × Rn → Rn at (x, ux) to obtain
the existence of smooth real-valued utility functions Ux (·) = (Ui (·))i=1,...,n

defined on some neighborhood Ox of x with

Ux (x) = ux,

and
∂Ui (x)

∂xj
=
∂Vj (xi, ux−i)

∂xj

(
(I − Jx (ux))

−1)
ij
. (7)

We call Ux : Ox → Rn the locally induced game of V at x.
We now derive analogs of Claims 1 and 2 for the general case of purely

affective interactions.
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Theorem 2. Under Assumptions 1 and 2, if (x∗, u∗) is a parametric equi-
librium of V , then x∗ is a Nash equilibrium of the locally induced game Ux∗.

Proof. Suppose, by way of contradiction, that x∗ is not a Nash equilibrium
of the locally induced game. Then, for some individual i, there exists an
alternative choice x̃i ∈ Xi for which the locally induced game is defined at

x =
(
x̃i, x

∗
−i
)
,

and
ũi = Ui (x) > Ui (x

∗) = u∗i

Where, to simplify notation, use U for the locally induced game Ux∗ .
Let

ũ = U (x) = (Vj (xj, ũ−j))
n
j=1 ,

and let F : Rn → Rn be defined by

F (u) = u− Vx (u) .

By the definition of ũ,
F (ũ) = 0.

Also, for j 6= i, since xj = x∗j ,

Fj (u∗) = 0.

At the same time, since (x∗, u∗) is a parametric equilibrium and xi 6= x∗i ,

Fi (u
∗) ≥ 0.

Altogether,

(u∗k − ũk) (Fk (u∗)− Fk (ũ)) ≤ 0, k = 1, ..., n.

However, since by Assumption 2 the Jacibean I−Jx (u) of F (u) is a P-matrix
for every u ∈ Rn, by theorem 20.5 in Nikaido (1968), this set of inequalities
cannot obtain for ũ 6= u∗.

If the induced game is well defined everywhere, the converse of Theorem
2 holds as well:
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Theorem 3. Suppose the induced game U is defined on the entirety of X.
Under Assumptions 1 and 2, if x∗ is a Nash equilibrium of the induced game,
then (x∗, U (x∗)) is a parametric equilibrium.

Proof. Denote u∗ = U (x∗) and suppose, by way of contradiction, that
(x∗, u∗) is not a parametric equilibrium. Then, for some individual i, there
exists an alternative choice x̂i ∈ X with

ûi = Vi
(
x̂i, u

∗
−i
)
> Vi

(
x∗i , u

∗
−i
)

= u∗i .

By assumption, the induced game is defined at

x =
(
x̂i, x

∗
−i
)
.

Let
û = U (x) = (Vj (xj, û−j))

n
j=1

and let F : Rn → Rn be defined by

F (u) = u− Vx (u) .

By the definition of û,
F (û) = 0.

For j 6= i, since xj = x∗j ,
Fj (u∗) = 0.

At the same time, since (x∗, u∗) is a parametric equilibrium, and xi 6= x∗i ,

Fi (u
∗) ≥ 0.

Altogether,

(u∗k − ûk) (Fk (u∗)− Fk (û)) ≤ 0, k = 1, ..., n.

However, since by proposition 0 the Jacibean I−Jx (u) of F (u) is a P-matrix
for every u ∈ Rn, by theorem 20.5 in Nikaido (1968) this set of inequalities
cannot obtain for û 6= u∗.

Theorems 1 and 3 imply the analog of Claim 2:

Corollary 1. Suppose the induced game U is defined on the entirety of X.
Under Assumptions 1 and 2, if x∗ is a Nash equilibrium of the induced game
U , then it is Pareto optimal.
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As a last remark on the special structure of purely affective interaction,
while in the linearly separable case parametric equilibrium strategies are
by construction dominant strategies, even in the general case parametric
equilibrium strategies are locally dominant.

Theorem 4. At a parametric equilibrium (x∗, u∗) , each individual’s action
is locally dominant in the locally induced game Ux∗.

Proof. At a parametric equilibrium, for each individual, a(x∗, u∗)

∂Vi
(
x∗i , u

∗
−i
)

∂xi
= 0, (8)

and therefore, by (7) with j = i, the induced utility function Ui is flat as a
function of xi at x∗. Moreover, for j 6= i, it follows, again from (7), that

∂Ui(x
∗)

∂xi∂xj
=

∂

(
∂Ui(x

∗)
∂xi

)
∂xj

=
∂

((
∂Vi(x∗i ,u

∗
−i)

∂xi

)
((I−Jx∗ (u∗))−1)

ii

)
∂xj

=

∂Vi(x∗i ,u∗−i)
∂xi

∂(((I−Jx∗ (u∗))−1)
ii
)

∂xj
+

∂Vi(x∗i ,u∗−i)
∂xi∂xj

(
(I − Jx∗ (u∗))−1)

ii
= 0,

where the last equality is due to the first order condition (8) coupled with
the fact that

∂Vi
(
x∗i , u

∗
−i
)

∂xi∂xj
= 0

since Vi does not depend on xj. With a marginal change in xj from x∗, the
function Ui remains constant as as a function of xi, and x∗i therefore remains
a local maximizer of Ui.

Stronger conditions

Stronger conditions imply that (I − Jx (u)) is a P-matrix.

Spectral radius less than one

If the induced game U is defined at x, i.e. if (x, U (x)) is consistent, then,
by definition, U (x) = Vx (U (x)) , and therefore also U (x) = V k

x (U (x)) for
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every k ≥ 16. Moreover, given Assumption 2, the first equality holds only for
U (x) .By Gale and Nikaido (1965)Theorem 4, if u 6= U (x) then Vx (u) 6= u.

Now, if u is some small perturbation of U (x), representing a slight mis-
assessment of the players regarding each other’s utility levels with the action
profile x, would the repeated re-assessments Vx (u) , Vx (Vx (u)) , ..., V k

x (u) , ...
converge back towards U (x)? This is a plausible requirement, because
otherwise U (x) is an unstable rest-point of Vx, and the definition of the
induced game U is not robust to slight misperceptions.

The required convergence

V k
x (u) →

k→∞
U (x)

is guaranteed in some small enough neighborhood of U (x) . That is, U (x) is
an asymptotically stable fixed point of Vx, if the spectral radius of Jx (U (x))
(the largest of the absolute values of its eigenvalues), denoted ρ (Jx (U (x))) ,
satisfies7

ρ (Jx (U (x))) < 1,

whereas if, in contrast, ρ (Jx (U (x))) > 1 and no eigenvalue of Jx (U (x)) has
absolute value equal to 1, then Vx is not asymptotically stable, and diverges
away from arbitrarily small perturbations of U (x) .

In fact, the above re-assessments may take place among any subset I0 ⊆ I
of the individuals, for fixed utility levels ū = (ūj)j∈I\I0 of the remaining
individuals. The purely affective interaction V defines a purely affective sub-
interaction V ū among the individuals in I0,

V ū (x, u) = (Vi (x, u, ū) , )i∈I0 ,

where x = (xi)i∈I0 and u = (ui)i∈I0 . The set of purely affective sub-
interactions of V is thus defined by ranging over all the non-empty subsets of
individuals I0 ⊆ I and utility levels ū = (ūj)j∈I\I0 of the other individuals.

Assumption 4: For every x ∈ X and u ∈ Rn,

ρ (Jx (u)) < 1,

and the same holds for all the sub-interactions of V .

6V k
x is defined inductively by

V 1
x (u) = Vx (u) , V k

x (u) = Vx
(
V k−1
x (u)

)
for k > 1.

7Galor (2007), Theorem 4.8
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This assumption implies our Assumption 2.

Proposition 1. Under Assumption 4, for every x ∈ X and u ∈ Rn,
(I − Jx (u)) is a P-matrix.

Proof. ρ (Jx (u)) < 1 implies that all the eigenvalues λ1, ..., λn of Jx (u) are
within the open unit disk around the origin of the complex plane, and there-
fore that so are −λ1, ...,−λn, which are the eigenvalues of −Jx (u). Hence
1 − λ1, ..., 1 − λn, which are the eigenvalues of I − Jx (u) , all have positive
real parts. These eigenvalues are the roots of the characteristic polynomial
of I − Jx (u). This characteristic polynomial has positive coefficients, and
therefore its roots are all either real, and therefore positive by the above,
and/or come in conjugate pairs of the form c+ di and c− di whose product
c2 + d2 is also positive. Hence the determinant of I − Jx (u) , which is the
product of its eigenvalues, is positive.

All the above is true also for every sub-interaction involving only the
subset I0 of individuals, implying the positivity of the determinant of the
principal submatrix of I − Jx (u) with rows and columns in I0, i.e. the
positivity of the principal minor with rows and columns in I0. We thus
conclude that I − Jx (u) is a P-matrix.

Remark. The conclusion of proposition 1, i.e. Assumption 2, is weaker
than its premise, Assumption 4. For example, in the case of two individuals,
denoting

Jx (U (x)) =

(
0 a
b 0

)
(I − Jx (U (x))) being a P-matrix means ab < 1, whereas ρ (Jx (U (x))) < 1
means the more stringent requirement |ab| < 1.

If ab < −1 then Assumption 2 holds, but Assumption 4 does not. In this
case the eigenvalues of Jx (U (x)) are ±

√
ab, whose absolute values are both

larger than 1, and therefore Vx diverges away from U (x) from arbitrarily
small neighborhoods of U (x).

Dominant Diagonal

Another property of the matrix (I − Jx(u) that we may consider is that the
matrix is dominant diagonal :

11



Assumption 4. For every x and u, the matrix (I − Jx(u)) is dominant
diagonal: there exists h(u) ∈ Rn, such that, for any i = 1, . . . n,

hi(u) >
∑
j 6=i

hj(u) | −∂Vx,i
∂uj

| .

That is, there is a way to rescale utilities at u, such that marginal changes
in uj, for j 6= i, have a total effect on Vx,i less than 1.

Proposition 2. Under Assumption 5, for every x ∈ X and u ∈ Rn,
(I − Jx(u)) is a P-matrix8.

3 Examples

Examples illustrate the results and their implications.

Example 1 (Two person linearly separable affection). Consider the two per-
son purely affective interaction where

V1 (x, u2) = f (x) + au2,

V2 (y, u1) = g (y) + bu1,

with
ab < 1.

That is, the two individuals can have positive or negative feelings towards
each other, and these feelings may even be strong, but they satisfy the as-
sumption of moderate reciprocal affection: if feelings go in the same direction
(both love or both spite) they cannot be too strong.

For each (x, y) the Jacobian of the map V(x,y) : R2 → R2 is

J(x,y) =

(
0 a
b 0

)
,

and the matrix (I − J(x,y)) has a unitary diagonal and determinant det(I −
J(x,y)) = 1− ab >, and therefore it is a P-matrix9.

8Moylan (1977)
9Such separable interactions in which |a| > 1 (and |b| < 1

|a| ) do not induce “a game

of love and hate” in the sense of Ray and Vohra (2020), and therefore are not covered by
their analysis, because their boundedness condition (i) is not satisfied – for every (x, y)
and every function B (x, y) <∞, whenever |u2| > B (x, y) + |f (x)|, in the sup norm ‖·‖ ,

‖U ((x, y) , (u1, u2))‖ ≥ |f (x) + au2| ≥ |u2| − |f (x)| > B (x, y) .
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The induced game is

U1 (x, y) =
f (x) + ag (y)

1− ab
,

U2 (x, y) =
g (y) + bf (x)

1− ab
,

whose Nash equilibria (if there are any) are (x∗, y∗) where

x∗ ∈ arg max f (x) , y∗ ∈ arg max g (y) .

That is, every Nash equilibrium is in dominant strategies.
In particular, if f and g are concave then there exists at most one Nash

equilibrium (x∗, y∗). A social welfare function of the form

W (x, y) = λ1U1 (x, y) + λ2U2 (x, y) ,

where (λ1, λ2) > 0, is then concave and maximized at the unique Nash equi-
librium (x∗, y∗) if and only if

1

1− ab
(
λ1 λ2

)( 1 a
b 1

)
> 0.

With ab < 1 and therefore 1
1−ab > 0, such (λ1, λ2) > 0 indeed exists since

(i) if both a ≥ 0 and b ≥ 0 (mutual sympathy) then U1 and U2 are already
concave themselves, the Nash equilibrium (x∗, y∗) is their global maximum,
and any (λ1, λ2) > 0 will do,

(ii) if a ≥ 0 but b < 0 (individual 1 is sympathetic and individual 2 is
spiteful) then U1 is concave and the Nash equilibrium (x∗, y∗) is its global
maximum, while U2 is not concave, and (x∗, y∗) is a saddle point of it. One
can then choose λ1 > 0 and λ2 = 0 to get a concave welfare function W
which is maximized at (x∗, y∗) ,

(iii) similarly, if b ≥ 0 but a < 0 one can choose λ2 > 0 and λ1 = 0 to
the desired effect, and

(iv) finally, if both a < 0 and b < 0 (mutual spite) then both U1 and
U2 are not concave, and the Nash equilibrium (x∗, y∗) is a saddle point of
each of them. Nevertheless, since ab < 1 (the reciprocal extent of spite is
moderate), the vectors (1, b) and (a, 1) are within a half-plane containing the
positive orthant, and therefore both (1, b) and (a, 1) form an acute angle with
vectors (λ1, λ2) > 0 in some positive cone10.

10This cone becomes narrower as ab↗ 1. The weights (λ1, λ2) > 0 in this cone ‘strike
the right balance’ between the curvatures of U1 and U2 at (x∗, y∗) – between the concavity
of U1 in x and the convexity of U2 in x so that the linear combination W – the social
welfare function – is concave in x, and at the same time also between the convexity of U1

in y and the concavity of U2 in y, so that the linear combination W is concave also in y.
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We therefore conclude that in all cases, the Nash equilibrium (x∗, y∗) is
Pareto optimal.

Example 2 (Non-separable affection). Now let

V1 (x, u2) = x (1− x)− 2xu2,

V2 (y, u1) = y (1− y) +
1

8
yu1,

where x, y ∈ (0, 1). In this example, individual 1 is rather spiteful towards
individual 2, and individual 2 is mildly sympathetic towards individual 1.
For each x, y ∈ (0, 1) the Jacobian of V is

J(x,y) =

(
0 −2x
1
8
y 0

)
,

whose eigenvalues are ±1
2
i
√
xy, and its spectral radius is therefore 1

2

√
xy < 1.

The induced game is

U1 (x, y) =
8x ((1− x)− 2y (1− y))

8 + 2xy
,

U2 (x, y) =
y (8(1− y) + x (1− x))

8 + 2xy
,

with the best reply functions

β1 (y) =
2
√

2y3 − 2y2 + y + 4− 4

y
,

β2 (x) =

√
−2x3 + 2x2 + 16x+ 64− 8

2x
,

whose intersection is the Nash equilibrium

x = 0.246 20, y = 0.503 79,

where the reaction curves are locally flat.

14



For the spiteful individual 1, the Nash equilibrium is at a saddle point of
his utility function.

For the sympathetic individual 2, the Nash equilibrium is at a hilltop of her
utility function.

Example 3 (Shifting attitudes). Next,

V1 (x, u2) = x2
(
1− x2

)
+

1

2
xu2,

V2 (y, u1) = y2
(
1− y2

)
+

1

2
yu1,

for x, y ∈ (−1, 1) , so that each individual is sympathetic/spiteful with posi-
tive/negative actions respectively. The Jacobian of V at (x, y) is

J(x,y) =

(
0 1

2
x

1
2
y 0

,

)
,

whose eigenvalues are ±1
2

√
xy. This implies that that the spectral radius of

the Jacobian is smaller than 1
2
.

The induced game is

U1 (x, y) =
4x2 (1− x2) + 2xy2 (1− y2)

4− xy
,

U2 (x, y) =
4y2 (1− y2) + 2yx2 (1− x2)

4− xy
.

The graphs of U1 (left) and U2 (right) are
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and

The unique Nash equilibrium is

x = y = 0.751 97.

Both individuals are sympathetic and the Nash equilibrium is at the peak
of their utility functions. The Nash equilibrium is Pareto optimal, and it
maximizes the average of their utilities.

If, instead, the individuals were confined to negative actions
x, y ∈ (−1, 0) , the unique Nash equilibrium would be

x = y = −0.68266

that is at a saddle point of U1 and of U2, and maximizes the individuals’
average utility in that quadrant but not globally.
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Similarly, if individual 1 were confined to positive actions (and thus sym-
pathy) while individual 2 to negative actions (spite), there would be a unique
Nash equilibrium within that quadrant

x = 0.724 71, y = −0.665 76

with individual 1 at a hilltop and individual 2 at a saddle point, maximizing
the average utility within that quadrant, but not globally.

4 Economies with affective interaction

Pearce (2008) showed that, in cake-eating games with positive interdependent
affect, the subgame perfect path is not Pareto optimal. This is not in contrast
with Corollary 1, though, because in cake-eating games, the available choices
of subsequent individuals are restricted by those of the preceding ones. Put
differently, if an individual was to be assigned a very negative utility if she
tried to consume more than the remainder of the cake, the utility functions
Vi would depend on the actions of other players (and cease to be smooth).
In yet other words, cake-eating games are not genuine games, but rather
economies with sequential consumption.

To understand the nature of the problem induced by the presence of a
feasibility constraint, we consider a slightly modified version of Bergstrom
(1989) ‘Love and Spaghetti’ example.

Romeo and Juliet both care about good x, spaghetti, and the other’s
happiness, and

V1(x1, u2) =
√
x1 + au2,

V2(x2, u1) =
√
x2 + bu1.

Differently from Bergstrom, we allow for negative a and b. As in the
general model, we assume that ab < 1 (so here Romeo and Julliet do not
necessarily love each other, but their affective interdependence, positive or
negative, is moderate).

We also add a second good, money, entering quasi-linearly in the utility
function, and assume each member of the couple has an initial endowment
ei = (1,M).

We can solve for the induced utilities U1(x,m) and U2(x,m), and

U1(x,m) = 1
1−ab (

√
x1 +m1) + a

1−ab (
√
x2 +m2),

U2(x,m) = b
1−ab (

√
x1 +m1) + 1

1−ab (
√
x2 +m2).
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At a competitive equilibrium of an economy with affective interaction, each
individual chooses (xi,mi) to maximize Ui taking (xj,mj) as given, under the
budget constraint: pxxi + pmmi = px + pmM , and prices adjust to guarantee
feasibility.

If we fix pm = 1 (and M is large enough), at the unique competitive
equilibrium,

p̂x = 1,

x̂i = ei = 1, i = 1, 2.

A benevolent non-myopic social planner chooses the allocation (x1, x2) of
spaghetti to solve

max
x1,x2

Wλ(x1, x2,m) =
∑
i

λiUi(x1, x2,m),

under the constraint
x1 + x2 = 2,

leading to the first order condition
√
x1√

2− x1

=
λ1 + λ2b

λ1a+ λ2

. (9)

We see that, in an economy, moderate reciprocal affection, ab < 1 does not
guarantee that there exist (λ1, λ2) > 0 such that the equilibrium allocation
x̂1 = 1 solves the planner problem.

For example, if a = 2 and b = 1/4, at x̂1 = 1, (9) becomes λ1 = −3
4
λ2.

Indeed, the equilibrium allocation of good, x̂1 = x̂2 = 1, generates utilities
û1 = 2

√
x̂1 + 4

√
x̂2 = 6, û2 = 1

2

√
x̂1 + 2

√
x̂2 = 2.5, while a planner solving

(9) with λ1 = λ2 = 1 would rather choose x̃1 = 0.29, x̃2 = 2 − x̃1 = 1.71,
generating utilities ũ1 = 2

√
x̃1 + 4

√
x̃2 = 6.28 and ũ2 = 1

2

√
x̃1 + 2

√
x̃2 =

2.87, a Pareto improvement: the planner reallocates the good taking into
account the strong love of individual 1 towards individual 2. In this example,
positive welfare weights such that the competitive equilibrium maximizes
social welfare, and is therefore Pareto efficient, do exist under the stronger
condition: ab < 1 and a < 1, b < 1. This suggests the question of a general
characterization economies with affective interaction in which competitive
equilibria are Pareto efficient.
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