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1 Introduction
The aim of this paper is to investigate how news about fundamentals affects price fluctuations
in an asset market populated by boundedly rational agents. The model is set up in such a way
that if all agents have full information regarding fundamentals, the price behaves according to
the ‘classical’ asset pricing model described by Gordon (1962). To allow for possible devi-
ations from this benchmark, we assume that agents do not fully know the parameters of the
dividend process, and allow them to choose between different information sets regarding future
dividends. This leads, among other results, to an explicit model for nonlinear mean reversion.

We are by no means the first to address bounded rationality in this context. Since the dis-
covery of so-called financial anomalies, the validity of the efficient market hypothesis has been
questioned on the basis of empirical evaluation. For instance, markets exhibit excess volatility
as described by Shiller (1981) and LeRoy and Porter (1981), mean reversion of asset prices,
as documented by Poterba and Summers (1988) and Fama and French (1988b), and correlation
between returns and lagged returns or lagged dividend yields, as shown by Shiller (1984) and
Fama and French (1988a). Stimulated by these findings, part of the scientific community has
investigated whether such anomalies can be explained by assuming that the agents operating in
the market are boundedly rational.

One class of models in the asset market literature with boundedly rational agents takes ex-
plicitly into account the role of news on fundamentals in the price dynamics. Early examples
are Bulkley and Tonks (1989) and Barsky and De Long (1993) who investigate the effect of
agents trying to learn the growth rate of dividends from movements in the stock price. More
recent examples are Timmermann (1993), Timmermann (1996) and Barucci et al. (2004), who
assume that agents estimate parameters defining the relationship between prices and dividends.
In all these cases, agents use the rational expectations relationship that would hold between en-
dogenous variables (prices) and exogenous variables (dividends) as if the underlying parameters
were known. When new information about dividends becomes available, it influences returns
not only directly but also indirectly as it affects the estimates of the parameters that the agents
use to forecast future prices and/or dividends. Convergence of the asset price to the present
value of the stream of future dividends is achieved when the agents learn the correct parameters
of the dividend process.

A limitation of these models is that they assume the presence of a representative agent,
so that interaction of agents with different information or expectations does not play a role.
Another class of models with boundedly rational agents does concentrate on the interaction
of agents choosing different expectation schemes or different investment strategies (see e.g.
the survey paper of Hommes, 2006). An early example is Chiarella (1992) where a model of
a stylized financial market with fundamentalists and chartists is shown to generate a number
of dynamic regimes which are compatible with the empirical anomalies reported above. In a
more recent paper, Brock and Hommes (1998) consider a model with agents who do not know
whether it is more profitable to predict prices by relying on fundamental information, or to
extrapolate trends. To choose between these two strategies, agents use a performance measure
such as realized profits. This repetitive re-evaluation of the performance of the strategies leads
to complex price fluctuations. These fluctuations are totally endogenous and they do not require
the presence of exogenous influences such as time-varying fundamentals.

A shortcoming of models in this class is that they typically do not take into account the
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direct effect of news about the economic fundamentals on the agents’ behavior, thus excluding
one of the most trivial behavioral scenarios one might deem important in asset price formation
— the over- or under-reaction of agents, and hence the market, to new information. Generally
speaking, market models that tend to a stable equilibrium state in the absence of news can
still show fluctuations triggered by the arrival of new information. Because a priori we do
not know if market fluctuations are necessarily self-perpetuating as in chaotic dynamics, we
explicitly wish to examine the role of exogenous noise on the price dynamics, thus keeping
open the possibility of scenarios where ongoing market fluctuations require repeated triggering
by exogenous shocks.

In this paper we construct a framework for examining markets with boundedly rational
agents where both the role of news about economic fundamentals and interaction between
agents play a role. Because it is impossible to carry out this exercise under all conceivable be-
havioral assumptions, we limit ourselves to a simple class of models where all agents act upon
the information available to them regarding fundamentals, including that revealed by prices. In
our case the interaction is triggered by different expectations, due to the different degrees of
information regarding future dividends only. This means that agents neither extrapolate price
trends or use other chartist rules per se, nor expect other agents to do so, so that second or
higher-order expectations play no role.

A convenient feature of our model is that it contains two important benchmarks as special
cases. The first benchmark is the classical asset pricing model of Gordon (1962). When one
discards both the role of informational differences and of agents learning the growth rate of
dividends, the equilibrium price we derive coincides with the correct present value price. The
second benchmark is the model developed by Barsky and De Long (1993) who assume that
agents are trying to learn the growth rate of dividends. Our equilibrium price coincides with the
price derived in the model of Barsky and De Long when we discard the role of informational
differences. Our model can thus be seen as an extension of the Barsky and De Long model,
where agents with different information sets are active in the market.

We investigate the extent to which our model is able to explain empirical properties of as-
set prices. As it turns out, our price dynamics driven by exogenous noise leads to a simple
econometric model for prices that can account for several well-documented anomalies such as
autocorrelation of returns and large persistent deviations of the market price from its funda-
mentals value in the short run but convergence to it in the long run. In fact, in line with the
econometric model proposed by Summers (1986), our model leads to a (log) price which is
the sum of a persistent component, proportional to the (log) dividend, and of a transitory com-
ponent, proportional to the (log) dividend yield, which turns out to follow a stationary AR(1)
process with time-varying coefficients. Our analysis shows that, whereas the transitory compo-
nent follows an AR(1) process as a direct consequence of agents’ learning the dividend growth
rate, as already shown by Barsky and De Long (1993), the fact that the process coefficient are
time-varying is due to agents interaction triggered by informational differences. This offers
theoretical support to the empirical evidence that the temporary component in a mean rever-
sion model is nonlinear and switching between regimes with different rates of convergence, as
documented both by Gallagher and Taylor (2001) and by Manzan (2003).

As we consider an asset market where agents have different degrees of information, our
framework is also related to that of Grossman and Stiglitz (1980) (henceforth GS). They in-
vestigate whether the price is informationally efficient in a repeated market for a one period
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living asset, in which agents can decide between two different degrees of information about the
value of the asset return at the end of the period. We follow GS in assuming that agents operat-
ing in the asset market can decide whether or not to be informed about next period’s dividend.
However, as Bray (1982), Hellwig (1982) and Routledge (1999), we consider a dynamic model
rather than a static. Instead of starting off by assuming that agents have rational expectations,
we merely see rational expectations as a possible long run outcome of a learning process of
boundedly rational agents using simpler rules. Failure of the uninformed agents to learn the
relationship between prices and dividends implies deviations of the price from values fully re-
vealing information about fundamentals. Another difference with the framework of GS and the
papers mentioned above is that we model a market for an infinitely living asset rather than of a
sequence of identical markets for a single period asset. This implies that agents need to form
expectations not only about the value of the future dividend but also about the remaining value
of the asset. To our knowledge, Goldbaum (2005) is the first to consider a dynamic multi-period
market in a setting where agents have different degrees of information. Whereas Goldbaum as-
sumes the dividend process to be stationary in differences we assume the asset’s dividend to be
stationary in log-differences.

The impact of news in a financial market, where heterogeneous boundedly rational agents
are operating, has also been investigated by Hong and Stein (1999). Their model reproduces
stock prices that are under-reacting to the arrival of new information in the short run, and over-
reacting in the long run. In contrast to our framework, they assume that the fractions of agents
of each group are constant and that the dividend process is stationary in levels.

Manzan and Westerhoff (2005) conduct another study where the role of news in triggering
deviations with respect to a fundamental level is investigated. They focus on exchange rate
dynamics and develop a model in which boundedly rational agents place their orders depending
on incoming news. Agents over-react to news when past market volatility is high and under-
react to news when past market volatility is low. Their simulations show that, as the arrival of
news affects the demands, persistent deviations of the exchange rate from its fundamental level
can be observed.

This paper unfolds as follows. Section 2 introduces the model in terms of its three founding
elements: the asset market, expectation formation and the evolution of the fractions of informed
and uninformed agents. Section 3 analyzes the co-evolution of the market price and of the
fractions of informed and uninformed agents in a world without uncertainty about future growth
rates of dividends. Section 4 analyzes the full model, i.e. the evolution of the market price and
of fractions of agents when uncertainty about future growth rates of dividends plays a role.
There we also relate the price dynamics generated by our model to the classical asset pricing
model and to the model developed in Barsky and De Long (1993). Section 5 concludes with a
discussion of our main results. The proofs of the propositions can be found in the Appendix.

2 The model

2.1 The asset market
We consider a market where shares of a financial asset are traded repeatedly in discrete time
periods. The market is populated by agents who believe that the discounted sum of expected
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future dividends constitutes a “fair” value of the asset. That is, agents are prepared to sell
the asset at a price above their “fair” value and to buy the asset at a price below it. As in
GS, every agent can decide whether or not to buy information about next period’s dividend.
As a result, in every period the population of agents is divided in two groups with different
degrees of information concerning fundamental variables. The current setting differs from GS
in that the asset represents a claim on an infinite sequence of future dividends rather than on a
single dividend, that is, the asset is infinitely lived and does not perish at the end of the period.
As a consequence, besides forming expectations regarding dividends, agents must also form
expectations about future asset prices. Another important difference with respect to the GS
framework is that in our model agents are boundedly rational. By this we mean that agents are
unable to compute the equilibrium relationship between price and dividends that should hold in
a market where informed and uninformed agents operate.

The aim of this section is to characterize how, in this setting, the market price at time t of an
asset, pt, and the fraction of informed agents, λt, co-evolve given the agents’ expectations and
the dividend process {dt}. In order to arrive at such a relationship we build up our model based
as follows.

We consider a stochastic dividend process, {dt} which, in the benchmark case, is given by a
geometric random walk. The dividend payed at time t, dt, is assumed to be a geometric random
walk with drift:

dt = dt−1(1 + g)ηt, (1)

with ηt := e−σ2
η/2+σηεt , where {εt} represents a sequence of independent standard normal ran-

dom variables. Consequently, {ηt} is a sequence of independent LOGN(−σ2
η/2, σ

2
η) random

variables with mean E(ηt) = 1. The constant g is referred to as the growth rate of dividends.
Agents know that the dividend is growing over time at a certain rate which they estimate

using past dividend realizations. We let ge denote their estimate (belief) of the growth rate
of dividends. We assume that this belief is the same across agents and that agents use it for
predictions “as if” it is the true value in the dividend generating process (1). For the moment
we consider ge as being a known constant. In Subsection 2.2 we will discuss how agents actually
estimate the growth rate g.

All agents are “fundamentalists” in the sense that they follow the present value model in
computing what they consider to be the “fair” value of the asset. The exact relationship between
today’s price and tomorrow’s expected dividend depends on the agent’s information about future
dividends. The information set of agents contains past dividend and price realizations and is
different across groups of agents. We denote the information set at time t for agents of type H
by FH

t . The fair value, i.e. the expected discounted sum of future dividends, conditional on FH
t

is denoted by vH
t :

vH
t =

∞∑

i=1

de,H
t,t+i

(1 + r)i
, (2)

where de,H
t,t+i is the estimate of the dividend to be payed at time t+ i, taken at time t by the agents

of type H . The coefficient (1 + r) is the discount rate or required rate of return. We assume
that the discount rate is the same across agents and time independent. The latter assumption is
made because we want to concentrate on price fluctuations determined by agent interaction and
learning rather than agents changing their discount rate. We also assume that the discount rate
is always bigger than the agents’ estimate of the long run growth rate of dividends.
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At any time t, each agent can decide whether to buy information about the value of dt+1 or
not to buy it and thus remain uninformed. As a result, in every period there are two groups of
agents having a different degree of information regarding the next realization of the dividend
process. At time t, the informed agents, of type I , are fully informed regarding dt+1. This
implies that their current expectation of the t + 1 dividend is

de,I
t,t+1 = dt+1, (3)

We assume that informed agents pay a fixed cost c > 0 per period for this information. The
uninformed agents, of type U , do not know dt+1 but can use public information available in
the form of realized dividends {ds} and realized prices {ps}, s ≤ t, to form their expectations,
de,U

t,t+1, about dt+1. For example, if uninformed agents relied solely on the public belief of the
dividend growth rate, they could use de,U

t,t+1 = (1 + ge)dt. The alternative which we consider
here, is that uninformed agents try to get additional information revealed by the demands of the
informed agents through the current market price pt. We assume that the uninformed agents
consider the relationship between the dividend and the price to be of the form:

de,U
t,t+1 = yept, (4)

where ye is their estimate of the market dividend yield, i.e., the ratio between future dividend
and current price. As for ge, we will initially consider ye to be a publically known constant.
Subsection 2.2 will discuss how agents actually form their beliefs of the market dividend yield.
We let λ denote the fraction of informed agents, so that 1 − λ is the fraction of uninformed
agents. A subscript t is added when we consider a time dependent λ. We use time varying
fractions only from Subsection 2.3 onwards, where we consider a model for the endogenous
evolution of λt.

We assume that, at each time t, the ex-dividend market price of one share, pt, is given by
the following market equilibrium pricing equation:

pt = λvI
t + (1− λ)vU

t , (5)

where vI
t and vU

t denote the “fair” value of the asset conditional on the information of the in-
formed and uninformed respectively, and are derived according to (2). Under (5) the realized
price today is a weighted average, weighted by the fractions of agents of each type, of the agent’s
estimate of the fair share value. Although this market equilibrium pricing equation is admittedly
stylized, various settings have been considered in the literature where such a weighted average
arises. For instance, Brock and Hommes (1998) derive (5) in a context where agents maximize
a CARA mean-variance utility function. Dindo (2007) shows that (5) can be derived from maxi-
mization of a mean-variance CRRA utility function, under the assumption that the discount rate
is equal to the asset return. The fraction λ and (1− λ) should then be interpreted as the relative
fraction of wealth of the informed and uninformed agents respectively, which seems reasonable
if the choice of agents of being informed or not is independent of the wealth agents have accu-
mulated so far. A third possible justification of (5) is obtained by assuming that, for the purpose
of trading, agents are matched randomly. When two agents of the same type meet they trade at
their common “fair” value price. Otherwise, when agents of different types meet, they trade the
asset at the price in the middle between their “fair” values. As two informed agents meet with
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probability λ2, two uninformed agents meet with probability (1 − λ)2, and one informed and
one uninformed agent meet with probability 2(λ)(1 − λ) the average price emerging from this
trading process is

pt = λ2vI
t + 2λ(1− λ)

vI
t + vU

t

2
+ (1− λ)2vU

t = λvI
t + (1− λ)vU

t .

We next wish to derive the implication of the agents’ behavior on the price dynamics in (5). We
first consider (2) to derive the fair value for the informed and the uninformed agents.

Informed agents We have assumed that informed agents, like all other agents, know that the
dividend is growing over time at a certain rate, which they assume to be equal to ge and which
they use for predictions “as if” it is the true value of the growth rate of the dividend process. At
time t the informed agents know the value of dt+1 so that their information set at time t is given
by F I

t = {dt+1, dt, . . . , pt, pt−1, . . . }. Hence their expectations of future dividends are:

de,I
t,t+j = dt+1(1 + ge)j−1, for j ≥ 1. (6)

Notice that since agents treat their estimate ge as if it is the true value of the growth rate of
dividends, they do not take into account possible estimation errors in their dividend predictions.
Plugging expectations (6) into (2) we arrive at the informed agents’ estimate of the value of the
stock,

vI
t =

dt+1

(r − ge)
. (7)

The informed agents’ stock valuation is thus in accordance with the Gordon model (Gordon,
1962). Eq. (7) implies that informed agents behave similarly to so-called fundamentalists in
the interacting agents literature; for recent surveys see Hommes (2006) and LeBaron (2006).
In fact, the informed agents’ fair value of the asset is proportional to the dividend payed at
time t + 1. For this reason, we shall refer to the fair price of the informed agents, vI

t , as the
fundamental price p∗t , that is, we define:

p∗t =
dt+1

(r − ge)
. (8)

Uninformed agents Boundedly rational uninformed agents try to infer the value of dt+1 from
the market clearing price pt. In doing so, they use their model (4) concerning the relationship
between the current realized market price pt and expected future dividends dt+1. Combining
this with agents being fundamentalists, using the estimate ge as if it is the true value of the
growth rate of dividends, we obtain

de,U
t,t+j = yept(1 + ge)j−1, for j ≥ 1, (9)

which, using (2), gives the ‘uninformed’ valuation of the stock:

vU
t =

yept

(r − ge)
. (10)
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Notice that also in this case, as we have seen for informed agents, there is a correspondence
with the literature on interacting agents as summarized by Hommes (2006) and LeBaron (2006).
The “fundamentalists” uninformed agents are behaving “as if” they are chartists, that is, they
use current prices to estimate the value of the asset. In particular, if at time t, ye/(r − ge) is
larger than one, uninformed agents behave “as if” they are trend followers, and can drive prices
well above the fundamental levels. The converse happens when ye/(r − ge) < 1. In this case
the uninformed agents behave “as if” they are contrarian. Summarizing, the uninformed agents
behave “as if” they are chartists but with a different trend coefficient for different values of ge

and ye.

Combining the asset valuation for both types of agents, specified in (7) and (10), and the
market equilibrium pricing equation (5) one obtains,

pt =
dt+1

(r − ge)

λ(r − ge)

(r − ge − (1− λ)ye)
. (11)

This equation shows that the realized price is proportional to the fundamental price p∗t defined
in (8) — a similar result one finds with the Gordon (1962) model — but there is an additional
factor due to the presence of the uninformed agents trying to extract information from the market
price. One can consider this as a generalization of the Gordon equation to a simple setting where
agents do not know the growth rate of dividends and have different degrees of information.
Notice that when λ = 1 (i.e. all agents are informed) the realized prize pt in (11) is equal to
the fundamental price p∗t in (8). On the other hand when λ = 0, i.e. all agents are uninformed,
either pt = 0 or, if ye = r − ge, pt is indeterminate. Thus, if λ = 0 the pricing equation (11) is
not well defined, as the price contains no information to be extracted about future dividends.

Eq. (11) can be rewritten as a relationship between the realized dividend yield yt+1 =
dt+1/pt, the expected growth rate ge and dividend yield ye, and the fraction of informed agents
λ:

yt+1 =
(r − ge)

λ
− (1− λ)

λ
ye := f(ye, ge, λ). (12)

We call the map f an expectational feedback map because, given the fraction of informed agents
λ and common beliefs about the growth rate of dividends ge, it establishes a feedback between
expectations of uninformed agents regarding the dividend yield and dividend yield realizations.
Using the expectational feedback map (12), it can be easily derived that, for any λ ∈ (0, 1], if
ye = r− ge then yt+1 = r− ge. When this is the case, the agents’ belief regarding the dividend
yield is self-fulfilling and r − ge is thus the expectational feedback equilibrium or the rational
expectations dividend yield. Notice that when ye = r − ge, using equation (11), one finds that
the market price equals the fundamental price p∗t , which we have defined in (8) as the fair value
of the informed agents. For this reason we denote

y∗ = r − ge (13)

as the fundamental dividend yield. The rational expectations dividend yield is thus equal to
the fundamental dividend yield and, as we will specify later, it gives approximately the same
price process as derived by Timmermann (1993) or by Barsky and De Long (1993) who also
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consider a model where agents update their estimate of the dividend growth rate g. The novelty
here is that, due to the presence of informed and uninformed agents, yt+1 may deviate from
y∗. In particular the presence of uninformed agents can generate a price that differs from the
fundamental price.

2.2 Expectation formation
In our model agents form expectations about the growth rate of dividends and the dividend
yield. As far as the growth rate of dividends is concerned we have assumed that both informed
and uninformed agents have homogeneous expectations on the dividend growth rate. We follow
Barsky and De Long (1993) in assuming that agents estimate the growth rate using an adaptive
expectations scheme:

ge
t = γge

t−1 + (1− γ)

(
dt

dt−1
− 1

)
, (14)

where ge
t denotes the estimate of the future growth rate based on the dividend information

available up to time t, and where γ is a memory parameter specifying the rate at which agents
discount past information. Naive expectations are obtained in the special case γ = 0, whereas ge

t

is the mean of all past observations if instead of a fixed value of γ one would take γ = (t− 1)/t
for t > 1 with ge

1 = (d1/d0 − 1). Note that we make the simplifying assumption here that
informed and uninformed agents, although they have different information sets, use the same
(publically available) estimate of the growth rate.

If the estimated growth rate is taken to be time-varying, the definition of the fundamental
price and of the fundamental dividend yield should be updated from (8) and (13) to, respectively:

p∗t =
dt+1

r − ge
t

, (15)

y∗t+1 = r − ge
t . (16)

The same expectation used for the estimation of the future growth rate of dividends is assumed
to be used for the estimation of the value of the dividend yield ye. This assumption is consistent
with the existing of a relationship between growth rate of dividends and the dividend yield as
given by the Gordon model or equation (16). Notice that only uninformed agents need to form
expectations about the dividend yield. In fact, only uninformed agents use estimates of the
dividend yield to predict the future dividends as specified in (9). Adaptive expectations for the
dividend yield are specified by:

ye
t = αye

t−1 + (1− α)yt, (17)

where ye
t denotes the belief or estimate of the dividend yield based on the information up to

time t, and the parameter α ∈ [0, 1] is, as γ, the memory parameter, which specifies the rate
at which agents discount past information. With time varying estimates of the growth rate of
dividends and of the dividend yield, the expectational feedback map changes from (12) to:

yt+1 = f(ye
t , g

e
t , λ) =

(r − ge
t )

λ
− (1− λ)

λ
ye

t . (18)

When using adaptive expectations, agents are not strictly using optimal estimators. We are
aware that, given the data generating process of {dt} in (1) and the endogenous dynamics of
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yt in (18), adaptive expectations in (14) and (17) are not minimizing mean squared errors. We
simply assume that agents estimate the value of the growth rate g and of the dividend yield y as
geometrically down-weighted averages of past observations, with memory parameters γ and α
respectively. This discounting of past observations reflects the fact that agents take into account
the possibility that the world they inhabit is nonstationary.

2.3 Evolution of the fraction of informed agents
So far we have assumed that the fractions of informed and uninformed agents are fixed. We next
consider a model for the way fractions change over time. The driving force behind changes in
the fractions of informed and uninformed agents is the trade-off between the costs of informa-
tion and the precision of the dividend yield estimator based on public information. Intuitively,
given the costs of information, the more precise the estimate of the dividend yield, the bigger
the fraction of uninformed agents. Or, given the precision of the dividend yield estimate, the
higher the costs of being informed, the smaller the fraction of informed agents.

The evolution of the fraction of informed agents λ is modeled by the replicator dynamics
mechanism. We recall that the replicator dynamics can be motivated in the context of boundedly
rational agents who are learning and imitating strategies in a strategic environment (see e.g.
Weibull, 1995 and Binmore and Samuelson, 1997). As a measure of success of each strategy
we take the difference between its implementation costs and the squared error of its estimation
of the dividend yield.

Informed agents know the future dividend so that they have zero forecast error. In order to
implement their strategy, they pay a cost c > 0 per time unit. Uninformed agents try to forecast
future dividends by estimating the dividend yield at no cost. At time t the squared forecast error
for the realization of the dividend yield is (ye

t−1 − yt)2, where ye
t−1 is the uninformed agents

estimate of the dividend yield taken at time t− 1 as defined in (18). In addition, we assume that
agents are granted a fixed payoff ρ. As a result, we can define the fitness πH

t of the strategy H
at time t. The fitness of the strategy to buy information is

πI
t = ρ− c, (19)

while the fitness of the strategy of remaining uninformed is

πU
t = ρ−

(
ye

t−1 − yt

y∗t

)2

. (20)

The time-varying fundamental dividend yield y∗t defined in (16) is introduced in the denominator
of πU

t for normalization. Given that dividend yield yt has y∗t as reference value, this choice is
convenient because it implies that the two fitness measures coincide when, given c, a forecasting
error of (100

√
c)% is made. For example, if c = 0.1, the two fitness measures are equal when

errors of approx. 30% around y∗t are made. The fixed payoff ρ assures that both (19) and (20)
remain positive and can be taken as fitnesses in a replicator dynamics framework. In fact, only
when fitnesses are positive, the replicator dynamics produces fractions in the interval [0, 1].
Notice that in the case of (19) a positive fitness requires ρ > c.

10



We can derive a different formulation of πU
t by considering that, in the presence of a time

varying fraction λt, (18) becomes:

yt+1 = f(ye
t , g

e
t , λt) =

r − ge
t

λt
− (1− λt)

λt
ye

t . (21)

Using this relation between yt+1 and ye
t,t+1, we can rewrite the fitness of the uninformed agents

(20) as:

πU
t = ρ−

(
y∗t − ye

t−1

λt−1y∗t

)2

. (22)

Given the fitness measure of both strategies we can now specify the dynamics for λ. Under
replicator dynamics the fraction λt of informed agents evolves according to

λt = (1− δ)
λt−1πI

t

λt−1πI
t + (1− λt−1)πU

t

+
δ

2
, (23)

where the parameter δ is to be interpreted as a mutation or experimentation parameter (see
e.g. Young and Foster, 1991; Droste et al., 2002). The parameter δ is related to what we call
evolutionary (or selection) pressure in the following way. When δ = 0 the updating of the
fractions is determined only by the selection mechanism. On the other hand when δ = 1
the evolutionary pressure reaches its minimum and both fractions are 1/2, independently on the
fitness of the two strategies. Intermediate values of δ result in a convex combination of selection
pressure and experimentation. Based on expressions (19) and (22), the replicator dynamics (23)
gives,

λt = (1− δ)
λt−1(−c + ρ)

λt−1(−c)− (1− λt−1)
(

y∗t−ye
t−1

λt−1y∗t

)2

+ ρ
+

δ

2
. (24)

The fixed payoff ρ regulates the speed of adjustment of the replicator dynamics. When ρ is large
changes in λ are smaller, everything else being equal, than when ρ is small. Moreover, in the
limit ρ → ∞ the trajectories of 24 approach the trajectories of the corresponding continuous
dynamical system (see e.g. Weibull 1995). For this reason we refer to ρ also as to the inverse of
the speed of adjustment.

It is beyond the scope of this paper to consider other specifications for the dynamics of λ,
or other formulations for the fitness measures πH . Although it would be interesting to consider
other definitions, we leave this analysis for future research. Concerning the fitness measure, in
particular, one could argue that it should be based on total returns, given by both dividend yields
and capital gains, and not on dividend yields forecast errors as we do here. At this first level of
investigation, we have not made this choice to avoid complications in the analysis of the model,
which should then be re-expressed in terms of capital gains other than dividend yields. Notice,
however, that as stock returns from capital gains would equally affect the fitness of both the
informed and uninformed agent we can conjecture what can happen if one incorporates capital
gains in the fitnesses. This would be equivalent to considering a time varying, instead of a fixed,
payoff ρ. For the replicator dynamics (23) this would imply a time varying speed of adjustment.
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2.4 Market returns
To summarize, for lognormal shock ηt such that dt = dt−1(1+g)ηt with g as the long run growth
rate of dividends, the dynamics of the full model developed so far is given by the following three
equations:

ge
t = γge

t−1 + (1− γ) ((1 + g)ηt − 1) , (25)

ye
t =

(1− α)(r − ge
t−1)

λt−1
+

α + λt−1 − 1

λt−1
ye

t−1, (26)

λt = (1− δ)
λt−1(−c + ρ)

λt−1(−c)− (1− λt−1)
(

r−ge
t−1−ye

t−1

λt−1(r−ge
t−1)

)2

+ ρ
+

δ

2
. (27)

Equation (25) gives the common expectation formation regarding the growth rate of dividends
ge as defined in (14) with γ as the memory parameter. Equation (26) is obtained by putting
together the expectation formation of the dividend yield ye by the uninformed traders as defined
in (17) and the time varying expectational feedback map (21). The parameter α is a memory and
r is the agents’ discount rate. Equation (27) expresses the dynamics of the fraction of informed
agents λ as in (24) with c being the cost of information per time step, ρ the fixed payoff, and δ the
experimentation rate. At every point in time the three state variables (ge

t , y
e
t , λt) are a function

of their lagged values, (ge
t−1, y

e
t−1, λt−1), and of the shock ηt. The dividend yield dynamics is

given by the evolution of the three state variables through the feedback equation (21).
Before presenting a formal analysis of the system above, notice that whenever yt converges

to its steady state value, that is, whenever ye
t converges to the rational expectations value y∗t+1 =

r− ge
t as in (16), the price follows p∗t = dt+1/r− ge

t as in (15). The fundamental price depends
on the changing estimates of the growth rate of dividends. This is the same price as derived by
Barsky and De Long (1993). If, moreover, ge

t → g, i.e. if the expected dividend growth rate
converges to its true value, the fundamental price converges to the “correct” present value price:
y∗t → r−g and p∗t → dt+1/(r−g). In this case the price follows a geometric random walk. If yt

fails to converge to r − g, deviations of the price from fundamental price can have two origins.
The first is the failure of the deterministic skeleton of the system (25–27) to converge to its
fixed point, in which case the adaptive expectations do not converge to rational expectations.
When this is the case, prices are not fully informative. The second possible reason is that, even
if the system converges to the fixed point, it could approach an equilibrium where ge )= g.
This is a situation where the fundamental price p∗ is not equal to the “correct” present value
price dt+1/(r − g). This is specifically relevant when the system (25-27) is stochastic, and
the estimate ge is time varying. In what follows, we analyze these effects separately as well
as their interplay. First, in Section 3, we concentrate on the role of informational differences
and analyze the conditions of convergence of the deterministic dynamics of y and λ to their
equilibrium values. In Section 4 we complement this analysis by investigating the effect of a
time varying estimate of the growth rate of dividends ge.
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3 Informational differences
In this section we analyze the impact of informational differences alone on the dynamics of asset
prices without the learning of the divided growth rate. That is, we take ge

t ≡ ge. Technically,
we analyze the system of equations (25–27) when the memory parameter γ = 1. Without loss
of generality we consider only the case ge = g. The generalization to ge = g′, where g′ is a
constant strictly smaller than r, is straightforward and implies only a shift of the level of the
steady state dividend yield from r − g to r − g′.

If ge
t = g, the system (25–27) reduces to a two dimensional (2-D) system in the variables ye

t

and λt:

ye
t =

(1− α)(r − g)

λt−1
+

α + λt−1 − 1

λt−1
ye

t−1, (28)

λt = (1− δ)
λt−1(−c + ρ)

λt−1(−c)− (1− λt−1)
(

r−g−ye
t−1

λt−1(r−g)

)2

+ ρ
+

δ

2
. (29)

The model parameters are α, the memory of uninformed agents for their estimation of the
future dividend yield; r, the required rate of return; g, the growth rate of dividends; δ, the
experimentation level; c, the cost of information per time step; ρ, the fixed payoff. Notice that,
given the dynamics of (ye

t , λt) specified by (28–29), the dynamics of the dividend yield yt+1 can
be derived by using the expectational feedback map f defined in (21). Before investigating the
full dynamics of (28–29) it is instructive to consider the 1-D system obtained when the fraction
λt of informed agents is fixed at a constant value λ.

3.1 Dividend yield dynamics
Taking λt ≡ λ, Eq. (28) becomes:

ye
t =

(1− α)(r − g)

λ
+

α + λ− 1

λ
ye

t−1. (30)

Given the linearity of (30), the analysis of the dynamics is straightforward and it is possible to
compute the general solution of the difference equation. That is, given ye

0 one can analytically
express the value of ye

t , for all t. The following proposition summarizes this.

Proposition 1. Given the memory parameter α ∈ (0, 1), the fraction of informed agents λ ∈
(0, 1], and the required rate of return r > g, the solution of the difference equation (30) with
initial condition ye

0 is given by:

ye
t = (ye

0 − y∗)

(
α + λ− 1

λ

)t

+ y∗,

where
y∗ = r − g.

If

λ > λ̄ ≡ 1− α

2
, (31)

ye
t converges to the steady state y∗, otherwise ye

t diverges to ±∞.
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Notice that whenever the expected dividend yield ye
t converges to its steady state y∗, also the

realized dividend yield yt converges to y∗ through the feedback map (21). At the steady state y∗

the price equals the fundamental price p∗t in (8) and thus fully reveals the information concerning
the next dividend. The shaded area in Fig. 1 shows the stability region of (30) in the parameter
space, (α, λ), whereas the white area shows the unstable region. The shaded area is divided
in two gray scales. In the lighter region, the convergence of the expected dividend yield to the
steady state y∗ is oscillatory, whereas in the darker, the convergence is monotone. Notice that
the border between the stable and unstable regions is characterized by oscillatory behavior of
the expected dividend yield ye

t , and thus of the realized dividend yield yt. This implies that
failure of the price to fully reveal the fundamental information should be characterized by price
fluctuations with negative autocorrelation. Already from this analysis it appears that, in the
long run, only when the fraction of informed agents is above a certain threshold, the learning
of uninformed agents leads to a fully informative price. If there are too few informed agents,
the price diverges from its steady state (fundamental) value and does not reflect all available
information.

INSERT FIGURE 1 HERE

3.2 Dividend yield and fractions dynamics
In the more general case the fraction of informed agents, λt, is time dependent. In this case the
dynamics of the dividend yield and of the fraction of informed agents is given by the nonlinear
system (28–29). We use local stability analysis to characterize the behavior of the state variables
(ye

t , λt) near the steady state of the system.
First consider the case of zero information costs. The following proposition characterizes

the steady states of the system and their local stability.

Proposition 2. Consider zero information costs, c = 0. Given the memory parameter α ∈
(0, 1), the fixed payoff ρ > 0 and the required rate of return r > g, one has:
(i) If the experimentation rate δ = 0, every point (y∗, λ∗) with y∗ = r − g and λ∗ ∈ (0, 1] is a
steady state. For a given α ∈ (0, 1) the set of steady states such that λ∗ > λ̄ = (1− α)/2, as in
(31), is globally stable.
(ii) If the experimentation rate δ ∈ (0, 1), the unique steady state of the system (28–29) is the
point (y∗, λ∗), where

y∗ = r − g and λ∗ =
1

2
.

This steady state is globally stable for every parameter combination.

Thus, with zero information costs, the expected dividend yield ye
t always converges to the fun-

damental value y∗ defined in (13) and the fraction of informed agents is either 1/2, when δ > 0,
or any value satisfying (31) when δ = 0. As a consequence, the expectational feedback map
(21) converges to the rational expectations equilibrium and prices are fully informative in the
long run. This is not always true for positive information costs, in which case the following
proposition applies.

Proposition 3. Consider positive information costs, c > 0. Given the memory parameter
α ∈ (0, 1), the ratio between the fixed payoff and the cost of being informed, k, such that
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k = ρ/c > 1 and the required rate of return r > g, one has:
(i) If the experimentation rate δ = 0, no steady state is well defined.
(ii) If the experimentation rate δ ∈ (0, 1), the unique steady state of the system (28–29) is the
point (y∗, λ∗) where

y∗ = r − g

and

λ∗ =
2− δ + 2kδ −

√
−8kδ + (2− δ + 2kδ)2

4
. (32)

Moreover, λ∗ ∈ (0, 1/2). The Jacobian of (28–29) at the steady state is diagonal and given by

J|(y∗,λ∗) =





α + λ∗ − 1

λ∗
0

0 (1− δ)
k(k − 1)

(k − λ∗)2



 . (33)

If

δ > δ̄ ≡ (1 + α)

1 + 2αk
(1−α)

=
(1 + α)

1 + 2αρ
(1−α)c

, (34)

the steady state (y∗, λ∗) is locally stable. This condition corresponds to the stability condition
(31) of the 1-D dynamical system (30). That is, the condition δ > δ̄, and λ∗ > λ̄ are equivalent.

The local stability condition (34) is represented in terms of the parameters (α, δ) in the right
panel of Fig. 1 for k = ρ/c = 10. In the white area the steady state (y∗, λ∗) is unstable, while
in the shaded area the steady state is stable. Recall that when the expected dividend yield ye

t

converges to y∗, the realized dividend yield yt also converges to y∗. Therefore, stability of the
steady state (y∗, λ∗) implies convergence of the price to the fundamental price p∗t in (8) and thus
to a fully informative price.

INSERT FIGURE 2 HERE

In a repeated single period model with rational agents, GS show that no equilibrium value
of the fraction of informed agents exists for which the price fully reveals the information about
future dividends. In such an equilibrium, if it existed, nobody would be willing to pay for the
information, hence prices could not possibly reveal any information. In our model, which has a
long living asset and boundedly rational agents, the analogue of the paradox described by GS is
part (i) of Proposition 3 which states that for positive information costs and no experimentation,
no steady state equilibrium dividend yield (and thus price) exists.

The correspondence of our results with those of GS holds also if we add some form of noise
or experimentation. Part (ii) of Proposition 3 shows that if the experimentation level is positive,
a steady state dividend yield (and thus price) does exist. At the steady state uninformed agents
do learn to extract information, and the system is well defined because, due to experimentation
the fraction of informed agents is “artificially” kept above zero, and prices converge to being
fully informative — the conditions for the paradox no longer exist due to experimentation. In
this respect, experimentation in our model has a similar effect as the introduction of noise on
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the price equation, considered by GS in their model, which also removes the conditions for the
paradox to arise.

It is important to notice that even if a steady state dividend yield is well defined in our
model, the learning of boundedly rational agents need not always converge to it. In fact, the
second part of statement (ii) in Proposition 3 shows that the equilibrium is (locally) stable only
if the experimentation rate is sufficiently large (δ > δ̄). If, instead δ < δ̄, small perturbations
destabilize the system and fluctuations around the fully informative equilibrium price arise. In
particular, the definition of δ̄ in Eq. (34) of Proposition 3 shows that, for a given α, the stability
region of the system (28–29) shrinks, if the cost of information c increases, and expands if the
fixed payoff ρ increases.

Summarizing, for a positive information cost, prices are not always fully informative in the
long run, depending on the experimentation rate as compared to δ̄ in (34). Moreover, prices are
never fully informative if the experimentation rate δ is zero.

What happens to the dynamics of the expected dividend yield and the fraction of informed
agents if the steady state is unstable and prices do not converge to being fully informative? To
answer this question we analyze the global dynamics of the system (28–29) for small experi-
mentation levels, δ < δ̄. If the stability conditions (31) and (34) do not hold, whereas in the 1-D
system the expected and realized dividend yield diverge unboundedly and unrealistically, in the
2-D system our simulations show the emergence of bounded aperiodic cycles. The top left and
top right panels of Fig. 2 show a typical evolution of the uninformed agents’ expected dividend
yield, ye

t , and of the fraction of informed agents, λt, respectively. At time t = 0, the fraction of
informed agents is above the dotted line, which marks the value λ̄ in (31) and gives the stability
condition for the steady state of the ye

t dynamics. As a result, at t = 0 both the value of ye
t

and, through (21), the value of yt, are close to their steady state value, y∗. This implies that
the price is close to being fully informative, there is no advantage in buying information so that
the fraction of informed agents decreases. This process continues until the fraction of informed
agents is smaller than the value λ̄. At this moment there are so few informed agents that the
asset price starts to diverge from the fundamental. The dynamics of the expected dividend yield
ye

t is unstable and ye
t starts to diverge from the steady state y∗. The fraction of informed agents

continues to decrease until the price carries so little information about p∗t that informed agents
are better off. Eventually, paying the cost of being informed leads to a higher fitness than using
a freely available estimate with a large error. As a result, the fraction of informed agents λt

grows sharply, see e.g. the top right plot of Fig. 2 around period t = 50. The fraction of in-
formed agents reverts to a region where the price is sufficiently informative so that ye

t returns to
values close to y∗. As time progresses this sequence of events repeats itself, with λt decreasing
again, and so on and so forth. The left and right bottom panels of Fig. 2 show, respectively, the
dynamics we have just illustrated in the (ye

t , λt) space and the corresponding dynamics of the
log price compared to the log fundamental price.

INSERT FIGURE 3 HERE

Fig. 3 shows phase plots of the system for decreasing values of the experimentation rate
δ. The typical concentration of points for smaller values of δ, along lines stretching away in
two directions from the fixed point, suggest that the fluctuations of ye

t and λt, are associated
with a so-called homoclinic bifurcation. Similar phenomena are encountered in other multi-
dimensional nonlinear systems and emerge from the interplay between local instability of the
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steady state and global stability of the dynamics. Brock and Hommes (1997) and Droste et
al. (2002) present other economic frameworks where homoclinic bifurcations arise. They also
offer detailed discussions of the mathematical aspects of these interesting phenomena.

If the experimentation rate δ is sufficiently small, by assuming that agents are boundedly
rational and that fractions are endogenously determined, our model offers another mechanism
for balancing the cost of information and the informational content of the price: the learning
process of the uninformed agents. In our framework we thus obtain a “dynamic equilibrium
degree of disequilibrium” due to endogenous price fluctuations produced by the interaction of
boundedly rational agents. With the insight given by the simulations shown in Fig. 3, we con-
jecture that these type of price fluctuations also characterize the case of a zero experimentation
rate (δ = 0), even if an equilibrium does not exist.

Before turning to the analysis of the full model it is instructive to characterize the conver-
gence of the fraction of informed agents in the stability region. Close to the equilibrium, λt

turns out to change very slowly.

Proposition 4. Given a memory parameter α ∈ (0, 1), an experimentation rate δ ∈ (0, 1) and
a speed of adjustment ρ larger than the cost of information, ρ > c, if we call ν2 the eigenvalue
characterizing the dynamics of λt in a neighborhood of (y∗, λ∗), we have

1 > ν2 > (1− δ)

(
1− c

ρ

)
.

This proposition shows that if the experimentation rate δ is small and the ratio between the
speed of adjustment and the cost of information, k, is large, ν2 is very close to one. As a result,
if the system is stable, changes in the value of the fraction of informed agents λt are very slow,
and hence λt is very persistent. This will be confirmed in the next section, where we appraise
the effect of agents learning the growth rate of dividends on the dynamics.

4 Informational differences and parameter learning
In the previous section we have assumed that the agents’ estimate of the growth rate of dividends
is constant. As a result, the equation for the dividend yield was fully deterministic. In this sec-
tion we analyze the simultaneous impact of informational differences and of agents’ learning of
the growth rate of dividends as new information about the fundamentals becomes available. In
this case the stochastic dividends affect the state variables, and the dynamical system becomes
stochastic.

Recalling the results from Section 2, the learning of the long run growth rate of dividends is
specified by (14) which, when the dividend follows the process specified in (1), gives:

ge
t = γge

t−1 + (1− γ) ((1 + g)ηt − 1) .

This stochastic equation, together with the evolution of the dividend yield, its expectations, and
the fraction of informed agents, lead to a stochastic version of the deterministic model (28–29),
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that is, to the equations (25–27) which we rewrite here for convenience:

ge
t = γge

t−1 + (1− γ) ((1 + g)ηt − 1) , (35)

ye
t =

(1− α)(r − ge
t−1)

λt−1
+

α + λt−1 − 1

λt−1
ye

t−1, (36)

λt = (1− δ)
λt−1(−c + ρ)

λt−1(−c)− (1− λt−1)
(

r−ge
t−1−ye

t−1

λt−1(r−ge
t−1)

)2

+ ρ
+

δ

2
. (37)

The shocks {ηt} on the growth rate of dividends drives the co-evolution of the state variables,
consisting of the agents’ estimate ge

t of the growth rate of dividends, the expected dividend yield
ye

t , and the fraction of informed agents λt. Given the expected growth rate of dividends, ge
t , the

expected dividend yield, ye
t , and the fraction of informed agents, λt, the dividend yield itself,

yt+1, is determined by the feedback map (21). Before we numerically analyze the impact of
shocks on the dynamics of (35–37), we show that our model contains two important benchmarks
as special cases.

Classical Asset Pricing model The first benchmark is the classical asset pricing model, based
on the assumption that all agents know the dividend growth rate g, that agents use rational
expectations, and that information costs can be neglected. In this case, if only a few agents are
informed about dt+1, the other can correctly extract this information from prices. The market
price and the market dividend yield are then given by:

p∗∗t =
dt+1

r − g
, y∗∗t+1 = r − g. (38)

where p∗∗t denotes the “correct” present value price and y∗∗t the “correct” dividend yield. Our
model boils down to the classical asset pricing model if we put the cost of information at c = 0
and assume agents know the growth rate of dividends: ge

t = g. As noted in Section 3, in this
case the system is deterministic and Proposition 2 applies. In case (i) (δ = 0) as well as (ii)
(δ ∈ (0, 1)) there are fixed points, at any of which which ye

t = r − g. Substituting this in (36)
and using the feedback map (21) to transform the expected dividend yield ye

t+1 into realized
dividend yield yt+1, gives yt+1 = r − g which corresponds to y∗∗t+1 given in (38). The classical
asset price model is also obtained if the cost of information is nonzero, provided that the fraction
of informed agents is one (λt = 1). Substituting ge

t = g and λt = 1 into (21) immediately gives
yt+1 = r − g, irrespective of the expected dividend yield (which would usually govern the
behavior of the uninformed agents, but these have a fraction zero now).

Barsky and De Long model The second benchmark is the model proposed by Barsky and
De Long (1993). They consider agents without informational differences who have to form
expectations about the growth rate g. In their case the price and the dividend yield are given by:

p∗t =
dt+1

r − ge
t

, y∗t+1 = r − ge
t , (39)
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where ge
t is given by adaptive expectations as in (35). These are respectively what we have

defined as the fundamental price and the fundamental dividend yield in (15) and (16). Our
model corresponds to the model of Barsky and De Long (1993) under the assumptions that
agents fractions are fixed and all agents are informed (λt = 1). In fact, by substituting λt = 1
in (36) and using the feedback map (21) one retrieves yt+1 = r − ge

t , with ge
t defined in (35),

which corresponds to y∗t+1 defined in (39).

A way of evaluating the differences between our model and the two benchmarks is to write,
for all the three models, the evolution equation for the dividend yield as a function of lagged div-
idend yields and shocks on the growth rate of dividends and compare the resulting expressions.
In the classical asset pricing model the dividend yield is constant and given by y∗∗ = r − g. In
the Barsky and De Long model, one can use y∗t+1 = r − ge

t to rewrite (35) as:

y∗t+1 = (1− γ)(1 + r) + γy∗t − (1− γ)(1 + g)ηt. (40)

That is, the dividend yield follows an AR(1) process driven by the shocks {ηt} on the growth
rate of dividends. The memory parameter γ determines the AR(1) coefficient and affects the
variance of the innovations, (1− γ)2(1 + g)2σ2

η . The mean of the process is independent of the
memory parameter and equal to the classical asset pricing dividend yield y∗∗ = r − g.

In our model, fixing for the moment the value of λ, the dynamic equation (36) for the ex-
pected dividend yield ye

t rewritten in terms of the realized dividend yield yt+1 using the feedback
map (21), gives:

yt+1 =
(r − ge

t )− α(rt−1 − ge
t−1)

λ
+

α + λ− 1

λ
yt. (41)

This equation expresses that, when the fraction of informed agents is fixed at λ, the dividend
yield follows an AR(1) process with shocks that are correlated (via the estimated growth rates
ge

s) with the shocks of the growth rate of dividends. As for the dividend process implied by
the Barsky and De Long model in (41), the long run mean of the dividend process implied by
our model is given by the classical asset pricing dividend yield y∗∗ = r − g. If γ = α, that
is, if agents use the same memory parameter to estimate the growth rate of dividends and the
dividend yield, the quantity ge

t − αge
t−1 reduces to (1 − γ)((1 + g)ηt − 1), depending on the

latest innovation only, and Eq. (41) takes the following appealing form:

yt+1 =
(1− γ)((1 + r)− (1 + g)ηt)

λ
+

γ + λ− 1

λ
yt.

Furthermore, if we define

γ̃ = γ̃(λ) ≡ 1− (1− γ)/λ = γ − (1− γ)
1− λ

λ
, (42)

we can rewrite (41) as

yt+1 = (1− γ̃(λ))(1 + r) + γ̃(λ)yt − (1− γ̃(λ))(1 + g)ηt. (43)

The result is that, when γ = α, our model specified by Eq. (43) and the model of Barsky
and De Long (1993) specified by Eq. (40) differ only in the value of the memory parameter γ.
Since γ is the real memory agents use to discount new information, we can refer to γ̃(λ) as the

19



effective memory. Eq. (42) shows that the effective memory has two components, one given
by the real memory and the other related to the presence of uninformed agents. This second
effect becomes less important as more informed agents are present in the market. The general
result is that γ̃(λ) in (42) is an increasing function of λ with γ̃(λ) ≤ γ for all λ, and γ̃(1) = γ.
That is, the presence of uninformed agents is equivalent to all agents being informed and using
an effective memory which is lower then the real memory. The value of γ̃ determines both the
AR(1) coefficients and the variance of the shocks but not the long run mean which is always
y∗∗ = r− g. Notice that the lower the effective memory, the higher the impact of the shocks on
the dynamics of the dividend yield and the faster the reversion of the process to its mean. That
is, a lower effective memory creates a larger short run effect and a smaller long run effect. Also,
since the effective memory γ̃ is a function of λ, our model allows for variation of the memory
parameter with the fraction of informed agents λ. Changes in λ thus have an impact, through
γ̃, on the variance of shocks and on the speed of convergence. In what follows we explore the
importance of both the effective memory being lower than the real memory and the effective
memory being time varying on the dynamics of the dividend yield implied by our model (43)
compared to the two benchmarks in (38) and (40).

4.1 Nonlinear mean reversion
Our model (43) clearly differs, both structurally and regarding parameter values, from that of
Barsky and De Long in (40) if the fraction of informed agents is time varying. In this case, our
model implies an AR(1) process for the dividend yield where both the rate of convergence of
the dividend yield to its mean and the variance of shocks are time varying. This consideration
links our model to the econometric analysis of nonlinear mean reversion recently proposed to
characterize fluctuations of stock indices. By using the fact that p∗∗t ≡ dt+1/(r − g), i.e. the
price implied by model (38), and defining xt = yt+1/(r−g), given the definition of the dividend
yield one can write:

log(pt) = log(dt+1)− log(yt+1) = log(p∗∗t )− log(xt).

If xt is close to its long run average of 1 one can rewrite the previous expression and expand the
logarithm around one. Using the variable zt = 1− xt one gets:

log(pt) ≈ log(p∗∗t ) + zt, (44)

The dynamics of zt can be easily derived using its definition in terms of xt, the definition of xt

and Eq. (43) and is given by:

zt = γ̃(λt)zt−1 +
(1− γ̃(λt))(1 + g)

(r − g)
(ηt−1 − 1). (45)

This equation shows that we have a model whose realized log price in (44) is the sum of the
persistent component log(p∗∗t ), which follows a random walk with drift, and of the tempo-
rary component, zt, which follows a stationary autoregressive process (45) with a time-varying
AR(1) coefficient γ̃(λt). Empirical investigation of the properties of stock prices are in accor-
dance with this statement. Both Gallagher and Taylor (2001) and Manzan (2003) reject the
null hypothesis that the temporary component in a mean reversion model follows a stationary
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process as would be predicted by the model of Barsky and De Long. In particular Gallagher
and Taylor (2001) show that quarterly data of the logarithm of the dividend yield of the index
SP500 are well fitted by an ESTAR(4) (Exponentially Smooth Transition AR) ARCH(1) model
whose two regimes have AR(1) coefficients equal to 0.72 and 0.20 respectively. As the model of
Barsky and De Long (1993) suggests, the fact that the dividend yield follows an autoregressive
process might be related to the agents’ learning of the model parameters. In addition to this
effect, our model suggests that changing autoregressive coefficients and heteroskedasticity can
be related to agent interaction triggered by informational differences. In fact, both the AR(1)
coefficient and the shocks variance in (45) are a function of γ̃(λt) which is a nonlinear function
of the time varying fraction of informed agents λt.

4.2 Simulation study
To illustrate the qualitative effect of the shocks on the growth rate of dividends on the dividend
yield and the dynamics of fractions, we first analyze the impact of a single shock ηt, and then
by analyzing the cumulative impact of a sequence of shocks {ηt}. We present results not only
for dividend yields and prices generated by our model, but also for dividend yields and prices
generated by the classical asset pricing model (38) and by the model of Barsky and De Long
(40). In addition, we also present results for a model similar to that of Barsky and De Long
with the difference that the real memory is taken as the average memory of the time varying
effective memory generated by our model. We refer to this model as the “modified” Barsky and
De Long model and its series of prices and dividend yields by p∗γ̃ and y∗γ̃ . We use the “modified”
Barsky and De Long model to appraise the role of time variability of effective memory. Notice
that when different models are compared, they are simulated with the same realization of the
dividend process.

It is instructive to start the analysis by comparing the effect of a single shock on g and on the
realized price that is respectively on the price pt implied by our model, on the fundamental price
p∗t implied by the model of Barsky and De Long, and on p∗∗t , the price implied by the classical
asset pricing model. Fig. 4 shows that in both cases there is an initial over-reaction followed by
convergence to the equilibrium value, which is given by p∗∗t .

INSERT FIGURE 4 HERE

Since, for λ < 1, the effective memory γ̃ is lower than the real memory γ, the variance of the
shocks is larger in our model than in the model of Barsky and De Long, so that the over-reaction
is more pronounced. At the same time, when γ̃ < γ, the value of the autoregressive coefficient
is closer to zero so that convergence is faster. The overall effect is that the shock has a higher
short run impact but a shorter half life for p than for p∗. The right panel of Fig. 4 shows the
response of the effective memory γ̃ to changes in λ. From the Jacobian of the 2-D system (see
Proposition 3) we know that changes in y only have second order effects on λ, and as a result
changes in λ are negligible in the short run. But, from Proposition 4, we also know that the
eigenvalue ν2 is close to one so that changes in λ are very persistent. Both results are confirmed
by the changes in γ̃ shown in the right panel. A confirmation of the fact that one shock has no
considerable consequence on changes of γ̃ comes from the time series for p∗γ̃ shown in the left
panel. The price p∗γ̃ is the price obtained using the “modified” Barsky and De Long model, that
is equation (40) with γ = γ̃(λ0), where λ0 is the value of the fraction of informed agents before
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the shock. The overall comparison of the dynamics of p, p∗ and p∗γ̃ shows that in the single
shock case the fact that the effective memory is lower than the real memory plays an important
role whereas the fact that the effective memory is time varying is negligible, i.e. p is close to
p∗γ̃ . Notice also that with informed agents in the market, the price anticipates the shock on the
dividend, i.e. the price takes into account the change in the dividend before such a change is
realized and long before such a change has an effect on the value of the effective memory.

INSERT FIGURE 5 HERE

We now turn to investigating the effect of a sequence of shocks. The dividends are generated as
a geometric random walk with drift, as described just after (1). In particular {ηt} is a sequence
of i.i.d. log-normal shocks. Figure 5 shows the impact of a sequence of 500 i.i.d. shocks {ηt}.
The growth rate of dividends, g, and the variance of the growth rate shocks, σ2

η , are taken
in accordance with historical quarterly data of the S&P500 index for the period 1880-2005
(source: Shiller database available from R. J. Shiller’s homepage). The discount rate r is taken
such that y∗∗ = 0.05, which for the present value model would imply a price of 20 times the the
value of the dividend. In our simulations r is always larger than (1 + g)ηt so that the stochastic
system (35–37) is always well defined. Since dividends are paid quarterly, 500 consecutive
dividends correspond to 125 years. The top left panel shows the time series of the dividend yield
y generated by our model whereas the top right panel shows the time series of y∗ generated by
the model of Barsky and De Long. In both cases the horizontal line represents the long run
mean y∗∗ = r− g. The same results as for a single shock emerge: the dynamics of the dividend
yield is less persistent in our model, where the fraction of informed agents is time varying, than
in the model of Barsky and De Long (1993). Also, deviations from y∗∗ are larger. The central
and bottom rows offer a comparison of the systems in terms of log prices.

INSERT FIGURE 6 HERE

How important is the fact that the effective memory is time varying? The right panel of Fig. 6
shows the changes in the effective memory for the same simulation run. These changes are due
to changes in the fraction of informed agents λ via the transformation (42). As a confirmation
of our previous results and of our theoretical analysis in Proposition 4, changes in γ̃ (through
changes in λ) are rather persistent. The left panel of the same figure shows deviations of log
prices generated by our model and log prices generated by the “modified” Barsky and De Long
model. We call this last series y∗γ̃ . Notice that deviations of up to more than ten percent arise.
Our conclusion is that when subsequent shocks are present, both the fact that the effective
memory is lower than the real memory and that the effective memory is time varying play an
important role. Naturally, these properties are dependent on the choice of updating mechanism
for λt and hence of the fitness measures as presented in Subsection 2.3. We do not claim that
the mechanism we propose here to characterize the changes in the fraction of informed agents
is more realistic than others. We merely offer a qualitative argument to show that time varying
informational differences, and more generally agents interaction, might explain the nonlinearity
in the mean reversion that has been shown to exist in the empirical literature.

INSERT FIGURE 7 HERE
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Another way of comparing the various models is to check for correlation in the time series of
returns produced by the evolution of y∗ and y. The left panel of Fig. 7 shows the autocorrelation
of the asset log return series qt,

qt = log(pt + dt)− log(pt−1), (46)

for a typical run of our model (35–37). The autocorrelation of returns shows that our model and
the “modified” Barsky and De Long model have higher short term autocorrelation and lower
long term autocorrelation. Such results are in accordance with the results shown in the left
panel of Fig. 4: if the effective memory is lower than the real memory, shocks have a higher
short run impact but a shorter half life for p then for p∗.

A test that has been used in the literature to evaluate the statistical importance of departure
of the models from a random walk with drift is the variance ratio test. The variance ratio has
been used by Poterba and Summers (1988) to appraise the mean reversion properties of stock
prices. Under the null hypothesis that log prices follows a random walk (possibly with drift) the
variance of the series of returns in (46) is a linear function of the return time span. Results of
the variance ratio test for our model and for its restrictions are given in the right panel of Fig.
7. The results suggest that not only the fact that the effective memory is lower than the real
memory affects the statistical time series properties of lagged returns, but also that the effective
memory γ̃(λ) is time varying. Further research is required to investigate these issues in greater
detail and relate them to the statistical properties of empirical market returns.

5 Discussion and conclusion
We have investigated the combined effect of informational differences and learning in a stylized
asset market model where agents are boundedly rational. As far as the theoretical guidelines
behind our model are concerned, we have shown that our model naturally and parsimoniously
extends and links many other contributions in this fields. In particular, we refer to papers that
concentrate on informational differences, such as Grossman and Stiglitz (1980), that analyze
the impact of learning, such as Barsky and De Long (1993), and that investigate the interaction
of agents who are using different predictor schemes or different strategies, such as Brock and
Hommes (1998).

We have developed a model where fluctuations of prices are driven by agents learning the
growth rate of dividends while the less informed agents among them try to extract information
form the price. We have shown that the first effect is responsible for an autoregressive dynamics
of the dividend yield and that the second effect is responsible for time-varying coefficients of
the parameters regulating this process. These variations are driven by the time-varying informa-
tional content of the price which, due to the learning of uninformed agents, switches repeatedly
between being nearly fully informative and hardly informative. As a result, our model has the
same features of recent empirical investigations of mean reversion conditions for stock prices,
such as Gallagher and Taylor (2001) and Manzan (2003) where time-varying parameters of the
transitory component have been detected.

It is beyond the scope of this paper to calibrate our model to reproduce the stock price evo-
lution given the historical dividend process. Our theoretical model is based on several simplify-
ing assumptions and in particular on an admittedly ad hoc dynamics of the fraction of informed
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agents, λ. Nevertheless it is instructive to note that time-varying parameters in a mean reversion
model can be related to what in general may be referred to as interaction of agents, which in our
case is triggered by informational differences. The fact that agent interaction can be responsible
for nonlinearity in the behavior of stock prices is also argued by Boswijk et al. (2007), who
estimate a modified version of the model of Brock and Hommes (1998) using yearly data of the
index SP500. Further efforts to characterize the effect of informational differences, for exam-
ple by linking it to other observable characteristics such as the volume of transactions, might
provide a basis for the design of new econometric tests for structure in financial time series.

24



Appendix

A Proofs
Proof of Proposition 1 Consider the linear difference equation (30) given by

ye
t =

r − g

λ
+

α + λ− 1

λ
ye

t−1,

and initial condition ye
0. From the theory of linear dynamical systems it follows that

ye
t = (ye

0 − (r − g))

(
α + λ− 1

λ

)t

+ (r − g)

is the unique solution. The solution converges to y∗ = r − g as long as λ > (1 − α)/2, and
otherwise diverges to ±∞. !

Proof of Proposition 2 (i) When both c = 0 and δ = 0, solving for the fixed point (y∗, λ∗)
of (28–29) leads to y∗ = r − g and to any λ∗ ∈ (0, 1]. For global stability we proceed by
showing that for every initial condition the dynamics converges to (y∗, λ∗). Rewriting (28) in
terms of deviations from the fixed point y∗ = r − g leads to

ye
t − y∗ =

α + λt−1 − 1

λt−1
(ye

t−1 − y∗). (47)

Whenever λt−1 > (1 − α)/2 = λ̄, ye → y∗ as the linear coefficient of equation (47) is always
lower than one. Since α ∈ (0, 1), the condition λ > λ̄ is always satisfied when λt−1 ≥ 1/2. We
show that, in the long run λ ≥ 1/2 always holds. First consider λt−1 ≥ 1/2. Using (29) one
can derive that it holds

λt −
1

2
= (1− δ)

λt−1ρ− (1− λt−1)

(
ρ−

(
(r−g)−ye

t−1

λt−1(r−g)

)2
)

2

(
−(1− λt−1)

(
(r−g)−ye

t−1

λt−1(r−g)

)2

+ ρ

) ≥ 0 (48)

if one assumes that fractions are always positive, i.e.

ρ−
(

(r − g)− ye
t−1

λt−1(r − g)

)2

> 0.

As a consequence when λt−1 ≥ 1/2 also λt ≥ 1/2. If, on the other hand, λt−1 < 1/2, one can
similarly show that the condition (λt− λt−1) > 0 holds, implying that λ converges to one point
of the set [1/2, 1]. As a consequence also when λt−1 < 1/2, then λ ≥ 1/2 in the long run. To
conclude the proof of global stability notice that when ye → y∗ also λ→ λ∗ via equation (29).
(ii) When c = 0 and δ > 0 solving for the fixed point of (28-29) leads to y∗ = r − g and to
λ∗ = 1/2. Global stability can be shown along the same lines of the proof in (i). !
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Proof of Proposition 3 (ii) For c > 0 and δ ∈ (0, 1), solving for the fixed point (y∗, λ∗)
of (28–29) leads to y∗ = r − g and to λ∗ being the solution to the following second order
equation

cλ2 + (cδ/2− c− δρ)λ + δρ/2 = 0,

which can be shown to have two real roots. Take α ∈ (0, 1), δ ∈ (0, 1) and k = ρ/c > 1. From

2− δ + 2kδ − 1 > 0,

it follows that
2− δ + 2kδ +

√
(2− δ + 2kδ)2 − 8kδ

4
> 1.

That is, one real root is always larger then 1 and thus not in the co-domain of our state variable
λ. The other solution can be shown to be always in the interval [0, 1/2]. In fact the condition

0 < λ∗ =
2− δ + 2kδ −

√
(2− δ + 2kδ)2 − 8kδ

4
<

1

2
,

reduces to
0 < 8kδ and − 4(1− δ) < 0.

Both inequalities ara always satisfied. The Jacobian is obtained by evaluating the derivatives of
(28-29) at the fixed point (y∗, λ∗). Let νi, i = 1, 2 denote the eigenvalues of the Jacobian. For
the stability condition notice that the matrix is diagonal and the second eigenvalue, ν2 ∈ (0, 1).
Since δ < 1, k > 1 > 0.5 > λ∗ one has

0 < ν2 = (1− δ)
k(k − 1)

(k − λ∗)2
<

k(k − 1)

k(k − 1) + (0.5)2
< 1. (49)

The first eigenvalue, ν1, depends on λ∗, and is the same as the linear coefficient of equation
(30), that is, it is ν1 < 1 given α ∈ (0, 1) and λ∗ ∈ (0, 1), and ν1 > −1 as long as

λ∗ >
(1− α)

2
.

Given the value of λ∗ one can check that the previous inequality is satisfied if and only if

δ >
(1 + α)

1 + 2αk
(1−α)

.

(i) For c > 0 and δ = 0, notice that the equation for λ∗ gives λ∗ = 0 as a solution. The
dynamical system, and in particular (28), is not defined for this value of λ. Thus no steady state
is well defined. !

Proof of Proposition 4 The matrix J|(y∗,λ∗) in (33) is diagonal. As a result, the dynamics of
y and λ around (y∗, λ∗) can be linearized along the orthogonal basis with eigenvalues given by
the diagonal entries of the matrix. Thus the eigenvalue that governs the dynamics of λ, is given
by the entry (2, 2) of the Jacobian (33). We recall from the previous proof that

ν2 = (1− δ)
k(k − 1)

(k − λ∗)2
,

and we have already shown that ν2 < 1. The lower bound, ν2 > (1− δ)(1− 1/k), follows from
the previous expression and λ∗ > 0 for all δ > 0 and for all α. !
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Figure 1: Left panel: Stability region for the 1-D dynamical system (30). The expected dividend
yield converges to the steady state y∗ = r−g only for values of (α, λ) in the shaded area. In the
darker region the convergence to y∗ is monotone, whereas in the lighter region the convergence
is oscillatory. Right panel: Stability region for the 2-D dynamical system (28–29) as a function
of the mutation rate δ and memory parameter α, for k = ρ/c = 10. As in the left panel, the
solid line marks the border of the stability region, while the dotted line marks the border of the
region where the convergence of the expected dividend yield to y∗ is monotone (darker region)
or oscillatory (lighter region).
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Figure 2: Top panels: time series for the expected dividend yield ye
t (left panel) and the frac-

tion of informed agents λt (right panel) from (28–29). In the top right panel the dotted line
corresponds to λ̄ in (31) (the critical stability border) whereas the solid line corresponds to the
steady state λ∗ in (32). The bottom left panel shows the state space representation (ye

t , λt). In
the bottom right panel, the log price dynamics derived from the dynamics of ye

t and λt is shown.
Fundamental prices are given by the dotted line and realized prices by the continuous line. No-
tice that the two price series levels should be read using two different scales. The left scale gives
the value of log prices whereas the right scale gives the value of fundamental log prices. The
dividend process is characterized by ση = 0.02. Parameter values: α = 0.99, c = 0.1, ρ = 1
(so that k = ρ/c = 10), r = 0.1, g = 0 and δ = 0.000575.
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Figure 3: Phase plots of the expected dividend yield ye
t and the fraction of informed agents λt

produced by the system of difference equations (28–29). Parameter values: α = 0.99, c = 0.1,
ρ = 1 (so that k = ρ/c = 10), r = 0.1 and g = 0. Top left panel: δ = 0.000675, top right
panel: δ = 0.00066. Bottom left panel: δ = 0.000625, bottom right panel: δ = 0.000575.
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Figure 4: Effect of a single shock on the growth rate g (before and after the shock, g = 0). The
shock is η31 = 0.01. Left panel: log prices as a function of time. Time series {p∗∗t } corresponds
to the log price implied by the classical asset pricing model (38); {p∗t} and {pt} represent,
respectively, the value of the log price given by Barsky and De Long model (40) and by our
model (35–37), and {p∗γ̃,t} represents the log price implied by the “modified” Barsky and De
Long model (40) with γ = γ̃(λ0), where λ0 is the fraction of informed agents before the shock.
Right panel: evolution of the effective memory γ̃. Parameter values: γ = α = 0.99, δ = 0.02,
c = 0.1 and ρ = 1.0.
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Figure 5: Top left panel: time series of the dividend yield yt generated by our model (35–37)
(solid line) compared with the benchmark y∗∗ (38) (horizontal dotted line). Top right panel: time
series of the dividend yield y∗ as in Barsky and De long (40) (solid line) compared with y∗∗.
Middle left panel: logarithm of price corresponding to y, log(p) (solid line), and logarithm of the
price corresponding to y∗∗, log(p∗∗) (dotted line). Middle right panel: logarithm of price implied
corresponding to y∗, log(p∗) (solid line), and logarithm of the price implied corresponding to
y∗∗. Bottom panels gives the deviations of the log prices series shown in the middle panels.
Parameter values: α = γ = 0.99, ρ = 1, c = 0.1, δ = 0.02 (these three parameters imply
λ∗ ≈ 0.09), ση = 0.04, g = 0.003. The discount rate is r = 0.05+g. All the simulations shown
are obtained with the same realization of the dividend process after a transient of 500 iterations.
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Figure 6: Left panel: values of the effective memory γ̃. Right panel: deviations of the two series
of log prices generated by our model y and by the ”modified” Barsky and De Long model y∗γ̃ ,
arising due to fluctuations in our model of γ̃ around its mean value 0.9644. Other parameters as
in Fig. 5, in particular the real memory parameter is γ = 0.99.
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Figure 7: Left panel: autocorrelation of the log return time series for a typical run of our model
(35–37). Right Panel, variance test of log lagged returns. v(∆t) = (σ2(q∆t)/∆t)/(σ2(q4

y)/4)
where σ2(q4

y) = 0.00355) and q∆t is the total return over a period ∆t generated by the model in
system (35–37). In both plots three lines refer to data generated with our model, y, to the model
of Barsky and De Long (40), y∗, and to the “modified” Barsky and De Long model. Parameters
are the same as for Fig. 5. Both panels refer to a simulation of 200, 000 periods.
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