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TurboGNN: Improving the End-to-end
Performance for Sampling-based GNN Training

on GPUs
Wenchao Wu, Xuanhua Shi, Senior Member, IEEE, Ligang He, Member, IEEE, Hai Jin, Fellow, IEEE,

Abstract—Graph Neural Networks (GNN) have evolved as powerful models for graph representation learning. Sampling-based
training methods have been introduced to train large graphs without compromising accuracy. However, it is challenging for the existing
GNN systems to effectively utilize multi-core accelerators, especially GPUs, due to a large number of atomic operations and
unbalanced workload originating from the serial execution of multiple GNN processing stages. In this paper, we propose a combination
of optimization techniques to accelerate the end-to-end performance of the sampling-based GNN training process. Specifically, we
propose an adaptive share memory-based sampling technique and a degree-guided thread block scheduling strategy to optimize the
graph sampling. Further, based on the observations of resource demand in different training stages, we propose an asynchronous
pipeline-based scheduling method, which accelerates the GNN training by decoupling different training stages into a pipeline and
therefore improves the GPU resource utilization significantly. The experimental results show that compared with the existing work, the
proposed methods can achieve up to 5.6X performance speedup in the end-to-end performance.

Index Terms—Graph Neural Networks, parallelism optimization, scheduling, GPU

✦

1 INTRODUCTION
Because of the ability to learn both the structure and at-
tributes of the graphs at the same time, Graph neural networks
(GNN) is widely used in many fields such as node clas-
sification and link prediction in recommendation systems
[1], social networks [2], biomedical science [3], knowledge
graph [4], [5]. Since training GNN is a very time- and
resource-consuming task [6], general-purpose graphics pro-
cessing units (GPUs) are often used to accelerate the training
process. Several general GNN learning frameworks have
been developed, such as [7], [8], [9].

The core computations in GNN training come from the
continuous information gathering from neighboring vertices
and updating the vertices’ feature vectors through a neural
network.Multiple such layers can be stacked to aggregate
multiple hop messages. Usually, a GNN has 2-3 layers.
Challenges still remain to train GNN efficiently. First, many
real-world social graphs are of huge size with rich attribute
information. For example, ogbn-paper100M [10] has 111M
vertexes, 1.6B edges with 53GB of vertex feature, while the
memory capacity of commercially available GPUs is usually
tens of GB, (e.g., 16GB for NVIDIA P100 GPU). Second, the
multi-layer stacking structure like a deep learning network
increases the memory footprint of the full graph-based
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training. To solve the scalability problem, the method of
sampling-based training is proposed [11]. In the sampling-
based training, subgraphs are extracted by starting from the
training vertexes and continuously sampling the neighbor-
ing vertices within L-hops. A fixed number of neighbors are
selected (sampled) in each layer based on specific sampling
strategies such as random, weighted, and random walk. The
sampling can reduce both computations and memory re-
quirements in one iteration. Finally, all the training vertices
are processed in mini-batches, and the model parameters
are updated iteratively until the model converges.

In the sampling-based training, the existing systems
such as DGL [7], PYG [9]and PinSage [1] adopt the hybrid
CPU+GPU mode. In this mode, the whole training process
is divided into three stages: i) subgraphs sampling, ii) fea-
ture extraction and transmission, and iii) the actual GNN
training. First, the structure and feature data of the graph
are stored in the CPU memory. The CPU is responsible for
sampling the graph and generating subgraphs for training.
Next, the sampled subgraphs and the collected features
are transferred to the GPU, where the GNN training is
performed. As the CPU memory capacity is usually much
larger than that of GPUs, this mode can support the training
of huge graphs in the single- or multi-GPU setting. How-
ever, the feature transmission and the CPU-based sampling
may become the performance bottleneck due to the low
PCIe bandwidth but fast GPU training, which leads to low
GPU utilization since the GPU may have to wait for sampled
subgraphs.

To address the data transfer bottleneck, the GPU-based
feature caching [12] and the UMA (unified virtual memory)-
based feature fetching techniques [13] are proposed. The fea-
ture cache policy takes advantage of different probabilities
that a vertex is sampled. PaGraph [12] proposes the degree-
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guided feature caching policy to cache the nodes with a high
out-degree in the GPU memory in advance, assuming those
vertices are more likely to be frequently sampled. Pytorch-
direct [13] proposed the UMA-based, GPU-oriented com-
munication kernel to fetch the features, which can improve
the transfer efficiency significantly. To relieve the bottleneck
of CPU sampling, the previous work [7] proposed a GPU-
based sampling algorithm based on the fact that the topo-
logical data of a graph only account for a small portion
of the entire graph data (comparing to the feature data
of a graph). Therefore the topological data can be easily
transferred to the GPU, which then utilizes its vast parallel
power to perform fast sampling.

The optimization techniques discussed above aim to
address the problems in the first two stages of the entire
GNN training process, i.e., sub-sampling and data transfer.
However, we found that although the subgraph sampling is
moved from CPU to GPU in the previous work, there is still
big room to improve the efficiency of the GPU sampling (as
an essential stage of the GNN training, the GPU sampling
stage currently occupies 45% of the processing time on
average in an iteration). Moreover, none of the previous
works attempts to improve the end-to-end performance of
the GNN training which is affected by all the processing
stages including sampling, feature extraction, and train-
ing. Our studies show that there exist inefficient operation
scheduling and executions, which affect the end-to-end per-
formance. Specifically, multiple threads often have to save
the sampling results to the same location in global memory.
To avoid data race between threads, the existing GPU sam-
pling algorithms run a large number of atomic operations,
which is very inefficient and expensive [28]. In addition,
it does not take into account the unbalanced distribution in
the degrees of the sampled vertices, which may result in low
bandwidth utilization and severe load imbalance. Moreover,
the existing methods ignore the difference in GPU resource
requirements between the GPU-based subgraph sampling
stage and the actual GNN training stages. They adopt a serial
execution approach to scheduling the relevant operations,
which we found may lead to long end-to-end training time
and low resource utilization.

To address the inefficiency caused by the atomic op-
erations during subgraph sampling, we propose an opti-
mization method to transfer the atomic operations in global
memory to shared memory. However, when the atomic
operations are performed in shared memory, a consequent
problem arises: the shared memory contention may in-
crease, which in turn compromises the concurrency degree
of thread blocks since the shared memory is shared by the
thread blocks running in an SM (Streaming Multiprocessor).
To address this problem, we propose an adaptive, degree-
guided policy when applying the optimization method.
Namely, as the GNN training progresses, only the atomic
operations on the vertices with high degrees, which are
regarded as being more ”valuable”, are transferred to the
shared memory. This novel policy improves the perfor-
mance without compromising the concurrency.

Further, we propose the new scheduling policies to ad-
dress the problem of resource demand imbalance between
the graph sampling stage and the GNN training stage.
The scheduling optimization is two-fold. On the one hand,

we propose a degree-based task assignment policy to run
thread blocks. On the other hand, we propose a novel
asynchronous, pipeline-based GNN training method based
on our observations of the different but complementary na-
ture of resource demands in different GNN training stages
and also workload imbalance within the same stage. The
proposed asynchronous, pipeline-based scheduling method
can fully overlap the executions of different operations (no
matter from different stages or the same stage) by organiz-
ing them into a pipeline-based execution, which improves
the GPU resource utilization significantly. In summary, there
are the following contributions in this paper.

First, we find the inefficiency in the existing GPU-based
sampling method due to the high cost of atomic operations
in global memory and the workload imbalance between
thread blocks. Subsequently, we find the difference in GPU
resource demand between the GPU-based sampling stage
and the GNN training stage. The serial scheduling adopted
by the existing methods does not take into account such a
difference and may cause low GPU resource utilization.

Second, to address the inefficiency of memory access
in the existing GPU-based subgraph sampling, we develop
an optimization method to reduce the atomic operations in
global memory by adaptively selecting the atomic opera-
tions on high-degree nodes and placing them in the shared
memory. This way, the inefficiency of atomic operations is
mitigated while maintaining a high degree of thread block
concurrency.

Third, to address the problem of workload imbalance,
we develop the scheduling policies to i) optimize the task
assignment for thread blocks for the sampling kernel and ii)
organize the operations in different stages into a pipeline
and run the operations simultaneously for the whole it-
eration, which improves the overall resource utilization
significantly.

Finally, we implement the above optimization tech-
niques into DGL and develop an efficient GNN learning
framework called TurboGNN. We have conducted extensive
experiments. The results show that TurboGNN can improve
the end-to-end training performance by up to 5.6x.

The rest of this paper is organized as follows. The
background information related to this work is presented
in Section 2. The proposed optimization techniques as well
as the architecture and implementation of TurboGNN are
detailed in Section 3. The experimental results of TurboGNN
are discussed in Section 4. Related work is discussed in
Section 5. Finally, the conclusions and future work are
presented in Section 6.

2 BACKGROUND
2.1 GNN
For a graph G = (V,E), v ∈ V represents a vertex (node)
in the graph G with the feature set denoted by fv , and
the edge between two vertices represents the relationship
between them. A GNN model learns the high-dimensional
feature representation of each node by gathering the infor-
mation from its neighboring nodes in the previous layer and
updating its feature vector following the topology of the
deep network (such as Multilayer Perceptrons) iteratively.
The core computations in a GNN layer can be divided into
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two stages: message aggregation and feature transforma-
tion, which can be modeled by formula 1, where hk

v is the
feature vector of vertex v in layer k and N (v) is the set
of neighboring vertices of vertex v. The difference between
the GNN models mainly lies in the aggregation and the
updating functions (e.g., AGGREGATE and UPDATE in
formula 1). Many such layers can be stacked to enhance the
distance of information extraction and model accuracy.

a(k)v = AGGREGATE (k)
({

h(k−1)
u | u ∈ N (v)

})
h(k)
v = UPDATE (k)

(
h(k−1)
v , a(k)v

) (1)

2.2 Sampling-based training

In the layer-stacked GNN training model, processing every
node in a graph is not viable for large graphs due to the
large computation and memory footprint. Also, not every
node in a graph is labeled for computing the loss and
the gradient and updating the model parameters. Inspired
by mini-batch-based training in deep learning, sampling-
based training is introduced [11]. At each iteration, the
nodes in a mini-batch are randomly shuffled and selected
as seed nodes in training. Starting from the seed nodes,
a fixed number of neighboring nodes are sampled from
all neighbors. This process iterates for K times in a K-
layer GNN. In each iteration, a subgraph is generated (e.g.,
bipartite graph blocks in DGL). A subgraph consists of the
destination vertices, which are the source vertices from the
last iteration, and their neighbors that are sampled (the
sampled neighbors become the destination vertices of the
subgraph in the next iteration). This way, each vertex has
the same number of edges in the subgraphs, which reduces
the computation complexity in GNN training and improves
the regularity of the message aggregation for the subgraphs.
It has been shown that the sampling-based methods can
achieve accuracy competitive with the training of the full
graph [14], [15], [16].

In the sampling-based training, the hybrid CPU+GPU
computation mode is widely adopted in previous GNN
systems [1], [7], [9]. In this mode, an iteration in the GNN
training can be further divided into three stages: i) CPU
sampling, ii) subgraph and feature transfer; iii) GNN train-
ing. The time spent by the CPU in sampling the subgraphs
and in transferring the high-dimensional vertex features
dominates the entire GNN training process, which forms
a severe performance bottleneck [12], [13]. Usually, a GNN
uses a shallow network structure with less than four layers.
Given the limited bandwidth of PCIe (usually less than
16GB/s) and the large amount of feature data that needs
to be transferred (e.g., 53GB for the ogbn-paer100M graph),
the huge communication cost can hardly be hidden by GNN
computations in such shallow network structures.

To reduce the communication cost, the GPU-based
caching technique is proposed in a system called PaGraph
[12]. PaGraph caches as many features of the high-degree
vertices as possible in the GPU memory.The caching tech-
nique has been shown to be effective, especially on large
graphs where the node degree follows the power-law distri-
bution [17].
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Fig. 1: The proportion of sampling time in the overall time
of an iteration. The X-axis is different models, batch size
(denoted by B), and datasets, and the Y-axis is the ratio of
the GPU sampling time to the overall iteration time.

2.3 GPU based sampling

Since the CPU-based subgraph sampling (the supply of the
subgraphs) cannot keep up with the consumption of sub-
graphs in GPU training, especially in multiple GPU settings,
the GPU-based sampling is introduced in the GNN systems
such as in the latest version of DGL [7]. The data describing
the graph structure will be loaded into the GPU memory
before training. In each iteration, a mini-batch is sampled on
the GPU. Next, the CPU extracts the features of the sampled
vertices and transfers them to the GPU memory. Finally, the
GPU trains a GNN model with the sampled vertices and
features. Usually, the graph structure data is much less than
the vertex feature data, and therefore can be easily stored in
the GPU memory, while the feature data are cached in the
rest of the GPU memory as much as possible.

3 METHODOLOGY
As discussed in the introduction, the end-to-end GNN train-
ing process include three stages: sampling, feature transfer
and training. In this section, we first elaborate on the prob-
lems in the end-to-end training process, which are also the
motivation of this work. Then we propose a combination of
optimization methods for improving the end-to-end perfor-
mance of GNN training.

3.1 Motivation

To demonstrate the problems in the existing GNN train-
ing systems, we integrate the GPU-based sampling and
graph caching technique proposed by PaGraph [12] into
DGL(V0.8.1) [7] to build a state-of-the-art system (called
DGL-SOTA in this paper).

We conducted the experiments with two typical GNN
networks (GCN [18] and GraphSage [11]) on four datasets
(Reddit [19], ogbn-products [10], ognb-arxiv [10], ogbn-
paper100M [10]). More detailed configurations are pre-
sented in section 4. Though DGL-SOTA achieves significant
performance improvement compared with DGL equipped
with GPU-based sampling when the feature cannot be fully
stored in GPU memory (e.g., an average of 2.5X speedup
on the above two models and the ogbn-paper100M dataset),
we still found the following issues.

Inefficient GPU-based sampling stage due to load
imbalance and a large number of global atomic operations.
Fig. 1 shows the experimental results with regard to GPU-
based sampling. It can be seen that the sampling time
occupies 28%-65% of the whole iteration time. We examined
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the sampling implementation on DGL(V0.8.1) in detail. It
is based on the Reservoir algorithm [20] to select the k-
hop random neighboring vertices. The sampling process is
illustrated in Fig. 2. The sampling task for each vertex (such
as vertices 1, 5 and 9) is assigned to a GPU warp to increase
the efficiency of the memory access to the edge lists and
reduce the thread divergence. The 32 threads in a warp
sample a fixed number of edges (the number is 3 in Fig.
2) for the sampled vertex. The complexity of the sampling
task for each warp is related to the degree of the sampled
vertex being assigned, which may cause a severe load imbal-
ance when a power-law graph is processed. Moreover, the
threads in a warp need to concurrently modify a global ar-
ray that stores the sampling results. This introduces a large
number of global atomic operations in order to maintain the
data consistency, which is expensive and inefficient [28]. As
the NVIDIA Visual Profiler [21] shows in our experiments,
the average memory bandwidth is only 40% of the peak
value. Therefore, it is critical to avoid the overhead of
global atomic operators and achieve workload balance in a
sampling kernel. We propose three optimization techniques
in section 3.2 to address these issues.

Low GPU resource utilization in the end-to-end train-
ing process due to serial executions of the three GNN
stages in the same iteration. We used the NVIDIA Visual
Profiler [21] to obtain the resource usage of GPUs in a whole
training epoch. The results show that the GPU resource
utilization is low (the detailed experimental results are
presented in section 4). For example, in the experiments
with the GraphSage on the ogbn-paper100M dataset with
a batch size of 4000, the average GPU utilization is no
greater than 53%, while on the ogbn-products dataset it
is less than 63%. Note that for the ogbn-products dataset,
the entire graph and features can be cached in the GPU
memory, which eliminates the data transferring cost com-
pletely. Even so, the GPU utilization is still unsatisfactory.
Increasing the batch size cannot solve this problem, but
may even reduce the convergence speed [22]. Therefore,
we try to tackle this issue from another direction, which
is to optimize the scheduling policies of GPU operations
to achieve the objective of improving the average GPU
utilization in the whole GNN training process without com-
promising the training accuracy. In particular, we propose
an asynchronous pipeline scheme to schedule and execute
multiple stages concurrently (in section 3.3).

In summary, in this paper we aim to improve the per-
formance of the end-to-end GNN training process, which
includes the sampling stage, feature transfer stage and the
training stage. We identified two causes in the existing

GNN systems that affect the end-to-end performance: i)
inefficient sampling stage itself due to expensive atomic
operations and workload imbalance among threads, and
ii) the inefficient serial executions of the three stages. To
improve the performance of the sampling stage, we propose
a share memory-based data placement policy to address the
problem brought by atomic operations. However, we found
that using too much shared memory will affect the concur-
rency of threads. To address this issue, we further propose
the degree-guided adaptive shared memory optimization
technique. Moreover, to address the problem of workload
imbalance among threads, we propose the degree-guided
thread block scheduling method. To overcome the ineffi-
ciency caused by the serial executions of the three stages,
we propose an asynchronous pipeline-based scheduling
method to process different stages in different iterations
concurrently. In the following sections, we will present each
optimization technique in detail.

3.2 Adaptive Shared Memory-based Sampling

Share Memory-based Data Placement. The existing sam-
pling algorithm incurs a large number of atomic operators
in the global memory to avoid the data race among threads.
Specifically, to prevent the threads from producing repeated
sampling results, the threads in a warp first generate a
random number modulo edge index to get a position in-
dex, num, if num is less than the fanout (the number of
neighbors to be sampled for each vertex), then the edge
is chosen to insert to the result array indexed by num.
Since different threads in the warp may get the same index,
the AtomicMax function is required to ensure consistency
when multiple threads write the data concurrently at the
same location in global memory. However, the atomic op-
erators in global memory are costly [28]. The number of
such operations is related to the number of iterations in the
innermost loop for the edges of nodes, which is further
proportional to the degree of the nodes. Even worse, a
power-law graph has a skewed degree distribution, and
the high-degree vertices can introduce high costs of atomic
operations on the global memory, which leads to low utiliza-
tion of memory bandwidth and severe workload imbalance.

To reduce the amount of global atomic operations, we
propose a shared memory-based data placement policy.
Specifically, we use the shared memory, which is software-
controlled and has much higher bandwidth and lower la-
tency, as the cache for the threads to store the sampling re-
sults. The pseudo-code of the optimized kernel is presented
in Algorithm 1. Before a warp samples a vertex, we use all
the threads in a warp (thread cooperation) to write the initial
sample results (lines 9-11 in Algorithm 1). This process
is efficient since the threads in a warp read consecutive
addresses in the global memory and write the results to
the consecutive addresses in shared memory. The coalesced
global access can combine multiple global memory accesses
into a single memory transaction, while the consecutive
writes in share memory also avoid the bank conflict. Then,
a warp synchronization instruction (instead of a block syn-
chronization instruction), syncwarp(), is used to ensure the
data dependency of the writes from the whole warp with
the minimal synchronization overhead (line 12). Next, the
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warp travels all the edges for the sampled vertex iteratively
and uses the AtomicMax function to concurrently write
the results to the shared memory (lines 16-18). Note that an
atomic operator in SM is much cheaper than that in global
memory [28]. Last, the sampling results are written back to
the consecutive addresses in global memory by the threads
in a warp, which is once again the coalesced access to global
memory (lines 23-28).

Degree-guided Adaptive Shared Memory Optimiza-
tions. Usually, exploiting the shared memory in GPU can
improve the data access efficiency, especially when the data
have to be frequently reused. However, the shared memory
is very limited (e.g., 3.6MB in NVIDIA P100 while the aver-
age memory demand of training the ogbn-products dataset
is as high as 48MB when batchsize=200000, fanout=30).
Moreover, allocating large shared memory space to a thread
block will affect the concurrency degree of the thread blocks,
which has been demonstrated by the experiments in 4.
Therefore, simply transferring the atomic operations from
the global memory to the shared memory may not bring
significant performance gain if the fanout is large (the
shared memory demand is proportional to the value of
the fanout). As mentioned before, the number of atomic
operators is related to the degree of the sampled vertex.
This means that the benefit brought by caching the sampling
results in the shared memory is determined by the degree
of a vertex. Since a real graph usually follows the power-
law distribution, i.e., only a small number of vertices in the
graph have very high degrees. Therefore, we only need to
cache a few high-degree vertices, which not only reduces
the global atomic operations effectively but also reduces the
consumption of the scarce shared memory resource.

Inspired by this idea, we propose a degree-guided, adap-
tive method to optimize the usage of shared memory. In
this method, we first sort the sampling vertices by their
degree and then divide the vertices into two partitions based
on a threshold (denoted by Dthreshold, the value of which
is determined by the GPU hardware resource, the graph
structure, and the number of samples). One partition (called
high degree partition) holds the vertices whose degree is
equal to or greater than Dthreshold, while the other partition
holds the rest vertices. The sampling results obtained for the
vertices in the high-degree partition are cached in the shared
memory, while the results for other vertices are written
using the native algorithm (written into the global mem-
ory). Finally, the sampled results from the two partitions
are merged. Both partitions use a thread block scheduling
strategy, which is to be presented next. As illustrated in Fig.
2, the sampling process for vertex 9 from the high-degree
partition is conducted in the shared memory, while it is
performed in the global memory for vertices 1 and 5 from
the low-degree partition.

Degree-guided Thread Block Scheduling. In addition
to the aforementioned optimization for memory access,
we design an efficient task assignment policy dedicated to
the hardware scheduling mechanism of GPU. Because real
graphs usually obey the power-law distribution, the sam-
pling vertices produced by the random shuffling of training
sets will also have such a distribution. The latest sampling
algorithm in DGL (V0.8.1) assigns the consecutive sampled
vertices to the consecutive warps without considering the

degree of the vertices. Since the complexity of sampling
each vertex is proportional to its degree, we found that
this algorithm caused a severe load imbalance among the
warps and the thread blocks. In view of this, we propose a
task reassignment strategy to balance the workload for each
warp in a thread block. It can also prioritize the execution
of thread blocks with high workloads and overlap the exe-
cution of high-workload thread blocks with low-workload
ones.

Specifically, the proposed task reassignment strategy first
sorts the sampled vertices in decreasing order by their
degree. If the number of sampled vertices is small (e.g., for
low layers in a GNN model), the number of thread blocks
required is also small. The sorted vertices are then assigned
to each thread block in an interleaved way. For example,
assuming that there are m thread blocks and m× k vertices,
Vertices 1 to m are assigned to thread blocks 1 to m; then
vertices m + 1 to 2m are assigned to thread blocks m to 1.
The assignment goes on in an interleaved manner until all
vertices are assigned to the thread blocks. This interleaved
assignment can help balance the workload among thread
blocks.

When the number of the sampled vertices is large (for
the higher layers in GNN), a block of consecutive vertices is
assigned to a thread block in a round-robin manner. In a ver-
tex block, the vertices are assigned to the warps in a thread
block in the interleaved manner described above. In this
way, the workload within the same thread block is balanced
among multiple warps (within a vertex block, the degree of
vertices changes more evenly, and the interleaved vertices
assignment makes it easier to achieve load balance among
warps). Although the workload may not be balanced among
different thread blocks, this assignment is still effective for
two reasons. First, the workload of each warp in a thread
block is balanced due to the interleaved assignment. Thus,
the warps can complete the task at almost the same time.
Consequently, the entire block can retire timely, releasing
the occupied resources to other thread blocks. Second, Our
experiments show that (and also noted by [36] ) the hard-
ware scheduling unit 1 appears to schedule the thread blocks
in the order of the thread block ID (the thread blocks with
lower IDs are scheduled first). Our task assignment policy
sorts the vertices in the descending order of their degree and
assigns the processing of vertices to each thread block in the
descending order of vertex degree. The thread blocks with
low IDs get the heavy-load task (high-degree vertexes). This
means that the priority is given to the heavy-loaded thread
blocks inexplicitly and they will be scheduled to run first.
Moreover, since the number of the sampled vertices is large,
a large number of thread blocks are used to run the above
vertex blocks. Consequently, even if a heavy-loaded thread
block has not completed the task, GPU can always find other
thread blocks to run. As the result, other more lightly-loaded
thread blocks are more likely to run concurrently with the
heavy-load thread blocks, which can improve GPU resource
utilization.

The pseudo-code for the entire sampling scheduling

1. The schedule of the thread blocks can hardly be changed via soft-
ware, but is controlled by hardware, and little information is released
to the public.
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procedure is presented in Algorithm 2. The sampled ver-
tices are first sorted in decreasing order by their degrees
(line 1). The vertices are then divided into two partitions:
the high-degree and the low-degree partitions (line 2). For
each partition, if the number of thread blocks needed for
processing the partition is small, the interleaved vertices
assignment is applied for each thread block (lines 4-6).
Otherwise, the blocks of consecutive vertices are assigned
to the thread blocks while within each vertices block, the
vertices are assigned to the warps in the interleaved manner
(lines 7-14). Next, the high-degree partition uses the shared
memory-based sampling kernel (line 16) while the low-
degree partition uses a native sampling kernel (line 17).
Finally, the results obtained from the two partitions are
merged (line 18).

algorithm 1 Atomic operator optimized sampling algorithm

Input: G: the graph CSR, N : the number of vertices to
be sampled, T : the number of tasks per thread block
fanout: the number of neighbors to be sampled for each
vertex.

Ouput: result: the sampled graph.
1: extern shared intsm sample result[]
2: startV← blockIdx.x*T+threadIdx.y
3: endV← min((blockIdx.x+1)*T, num rows)
4: index←threadIdx.y*fanout
5: while startV < endV do
6: degree← compute degree of startV .
7: if degree > fanout then
8: idx← threadIdx.x
9: for idx = threadIdx.x; idx < fanout; idx+=32 do

10: sm sample result[index+idx] = idx
11: end for
12: syncwarp()
13: idx← fanout+threadIdx.x
14: while idx < deg do
15: generate rand number number
16: if num < fanout then
17: AtomicMax(sm sample result+index+num,

idx)
18: end if
19: idx+=32
20: end while
21: syncwarp()
22: idx← threadIdx.x
23: while idx < fanout do
24: position=sm sample result[idx+index]+G.inptr[startV]
25: result.rows[index+idx] = row
26: result.cols[index+idx] = G.index[position];
27: idx += 32
28: end while
29: end if
30: startV += WarpPerBlock
31: end while

3.3 Asynchronous pipeline-based scheduling
The GPU-based sampling training can be divided into three
stages. We first analyze the resource requirements of differ-
ent stages, which motivate us to design the asynchronous
pipeline-based scheduling technique.

algorithm 2 The whole sampling process

Input: G: the graph to be sampled; fanout: the number of
neighbor to be sampled; vertex: the array of sampled
vertices; N : the number of sampled vertices; Dthread:
degree threshold;

Ouput: result graph: the sampled subgraph.
1: sorting the vertex by degree decreasing
2: divide vertex sorted array int two array P1 and P2 with

Dthread.
3: for (p∈ p1,p2) do
4: if (size(p)<Nthreshold) then
5: Map interleaved vertex to different thread blocks
6: end if
7: if (size(P)>=Nthreshold) then
8: Map consecutive vertex to different thread blocks
9: for block ∈ threadblocks do

10: for warp ∈ block do
11: map interleaved vertex for warp
12: end for
13: end for
14: end if
15: end for
16: sample1←apply memory-optimized kernel to p1
17: sample2←apply original kernel to p2
18: result graph←merge(sample1, sample2)

GPU sampling stage. The sampling stage mainly tra-
verses the edges. Like traditional graph computation tasks
(e.g., PageRank, BFS), the sampling stage has a low compu-
tation/memory ratio. Therefore the memory bandwidth is
the major performance bottleneck.

Feature extraction and transfer stage. This stage is con-
ducted on the CPU. In this stage, the feature rows missing in
the GPU cache are collected from the CPU’s main memory.
Those features are scattered over different locations in the
feature array. The collected features are then transferred
to the GPU memory through PCIe. Usually, this stage is
memory- and communication-hungry [13]. The workloads
(i.e., the features that are missing in the cache and have to be
collected) depend on the size of the GPU cache, cache policy
[12], and the structural properties (e.g., degree distribution)
of the graph. If all the feature data can be cached in the GPU
or the cache mechanism works well for the graph structure
and the access pattern, this stage incurs low cost or even no
cost at all if all the feature data can be cached in GPU.

Model training stages. Unlike full-graph-based train-
ing, whose computations in the training are dominated by
sparse matrix multiplication, the core kernels for sampling-
based training are dense matrix multiplication.These kernels
have been actively optimized in the GPU libraries imple-
mented by the hardware manufacturers (such as CuBlas
[23], CuDNN [24]) and the academic community (such as
[25]). The core mechanisms are data tiling, share memory
reuse, register optimization, and instruction scheduling [24],
[25]. Based on these optimizations, the dense matrix multi-
plication is computation hungry due to its high computa-
tional intensity, very friendly data access pattern and large
data reuse in the cache (such as share memory and registers)
[25]. Also, it can be effectively accelerated by the Tensor
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Fig. 3: Workload distribution between different stages and
inside a stage in an iteration (model: GCN, dataset: ogbn-
products, batch size: 8000). The number above the bar
stands for the number of source or destination vertices in
a subgraph in a layer.

cores from the new generation GPU.
Based on the above analysis, we made the following ob-

servations. On the one hand, different stages have markedly
different resource requirements, and the resource demands
between different stages are often complementary. On the
other hand, the computation inside a stage is not balanced
between different layers (steps), which is illustrated in Fig.
3. As mentioned in Subsection 2.2, K subgraphs are sam-
pled for a K-layer GNN over iterations. The number of
vertices in the subgraphs sampled in each iteration (hence
the workload) increases exponentially. The increase rate
is determined by the fanout. Namely, the number of the
sampled vertices for the i-th layer in a mini-batch is nearly
fanout times that of the (i− 1)-th layer. These K subgraphs
are the input of the next forward propagation stage. But
the K subgraphs are processed in the forward stage in the
reverse order. Namely, the subgraph sampled in the last
iteration of the sampling stage will be processed first by
the first layer of the GNN model. Therefore, the workload
between different layers in the forward stage decreases
exponentially. Moreover, the workloads of different layers
in a stage have to be run strictly in sequence due to data
dependency. Therefore, GPU utilization tends to increase or
decrease greatly in a stage.

Therefore, we propose an asynchronous pipeline-based
scheduling technique to accelerate the execution process.
We decouple different stages and run them in different
processes. These processes communicate via the queues, and
the processes and the queues form a pipeline. This way, dif-
ferent processes can execute different stages concurrently in
the same GPU. More specifically, the sampling process fetches
a mini-batch of vertices as the seed vertices, conducts the
sampling in the GPU, and pushes the sampled subgraphs
into the sampling queue. At the same time, the feature extrac-
tion process fetches the subgraphs from the sampling queue,
performs the feature extraction, and pushes the extracted
feature into the GPU. It then puts the subgraphs that are
ready to be trained in the training queue. The training process
obtains the input from the training queue and executes the
forward and backward computation of the GNN model.

The rationale behind this asynchronous pipeline-based
scheduling is explained as follows. First, GPUs are now
equipped with a large number of computing units and
various on-chip memory units, even heterogeneous comput-

ing units (such as tensor cores). Since different stages have
different resource requirements (such as cores, shared mem-
ory, and memory bandwidth) and are often complementary,
the mechanism of asynchronous pipeline-based scheduling
can improve the degree of parallelism and increase overall
resource utilization. Second, due to the workload imbalance
between different layers in a stage and that the layers in
a stage must be executed serially, the low-workload layers
from either the sampling or training stage can hardly utilize
the GPU resource fully and resulting in low utilization. With
our asynchronous pipeline-based scheduling, the layers
from different stages can be executed concurrently, which
reduces the load imbalance and consequently increases GPU
utilization.

It is worth mentioning that in asynchronous pipeline-
based scheduling, different stages are run in different pro-
cesses. The traditional way of implementing concurrent
executions on GPU is to use multi-threading with multiple
streams and place each stage in an individual stream. How-
ever, Python multi-threading is not efficient. This is because
that Python implements the global interpreter lock (GIL)
and the GPU events such as dynamic memory allocation,
which is very common when the subgraphs are generated
in the sampling stage, can cause implicit synchronization
among multiple streams. Therefore, we chose to use the
multi-process approach.

However, the consequent challenge of adopting the
multi-process approach is the high data serialization cost
in inter-process communication. For example, the sending
process (such as the sampling process) needs to serialize the
information in the class instances of the generated subgraph,
which includes the metadata of vertices and edges and
the topology data of the subgraphs (e.g., the edge list of
a subgraph), to the byte sequence and sends it to the re-
ceiving process (such as the feature extraction process). The
receiving process then needs to deserialize the received byte
sequence into the classes. We adopt the following method to
reduce the data serialization cost. Specifically, we find that
a large proportion of the data for a subgraph comes from
the edge-list tensors. The edge list tensors are read-only and
have a very simple format. Therefore, we decouple this part
of the data and exploit the direct tensor sharing in Pytorch,
which calls torch.multiple.simpleQueue, to share the edge
list directly among the sampling and training processes. The
simpleQueue can share data in the GPU global memory
so that different processes can access it directly and avoid
repeated data copying. The rest of the subgraph data (such
as the metadata of vertices) is still communicated through
the queue mechanism, which involves data serialization
(such as the sampling queue when the sampling process
communicates with the feature extraction process). Since
the volume of the vertices metadata of a subgraph is much
less than that of its edge list, most data serialization cost
is avoided. Note that torch.multiple.simplQueue only sup-
ports simple tensors, so we cannot use it to share the entire
subgraph class among processes.

Usually, the pipeline mechanism is most efficient when
the progress of each pipeline stage is relatively balanced.
Therefore, another challenge in pipeline-based execution is
to maintain such balance and avoid resource contention
where one process occupies too much GPU resource, which
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Fig. 4: The Architecture of TurboGNN

may stall other processes’ progress. We address this issue by
introducing a Runtime Monitoring and Dynamic Schedul-
ing (RMDS) mechanism, which aims to balance the number
of tasks run by different processes. The RMDS mechanism
exploits the CUDA MPS (Multi-Process Service) [27] to set
the best MPS configuration based on the historical data
or the results of several initial iterations of running. At
runtime, it dynamically controls the pace of different stages.
For example, if the number of subgraphs in the sampling
queue keeps increasing for more than a certain period (e.g.,
five iterations), it indicates that the training process cannot
consume in time the subgraphs generated by the sampling
process. The sampling process is then deemed to be running
too fast. When this happens, the RMDS mechanism sets a
limit to the speed at which the subgraphs are generated. The
GPU sampling process will check this limit before starting
a new sampling iteration. If the limit has been reached, the
sampling process sleeps for a period of time. With the RMDS
mechanism, all processes can maintain a steady state.

3.4 Architecture and Implementation of TurboGNN
We have implemented the proposed optimization tech-
niques for the GPU sampling and training to DGL-SOTA
and developed a highly efficient GNN training framework
called TurboGNN. There are six core modules in Tur-
boGNN, as shown in Fig.4: main scheduling module, perfor-
mance monitoring module, GPU sampling module, feature
transfer module, GPU training module, and GPU caching
module. In the following, we present some implementation
details of the six modules.

Main Schedule Module is in the master process, which
spawns multiple other processes responsible for other mod-
ules such as the GPU sampling module and the GPU train-
ing module. Next, the multiple queues in the asynchronous
pipeline-based scheduling are created by Python multipro-
cessing. Queue with the custom serializer and deserializer
to parse the subgraph data between processes. Then, the
main schedule module starts all the processes and queries
the Performance Monitoring module to control the running
pace of different processes using the RMDS mechanism
proposed in the asynchronous pipeline-based scheduling.

Performance Monitoring Module. This module is run
by a process and collects the values of the performance
metrics such as the number of subgraphs generated by
the sampling process per second, the number of subgraphs
trained by the training process per second, the lengths
of the queues between the processes in the asynchronous
pipeline-based scheduling and the cache miss rate of the
GPU caching module. Then, these metrics values are passed

to the main schedule module through the message queue,
which in turn controls the pace of different processes.

GPU Sampling Module. The GPU sampling module
integrates our share memory-based data placement, degree-
guided adaptive optimizations, and degree-guided thread
block scheduling technique into the sampling kernel and
performs the GPU sampling iteratively. The sampled ver-
tices are sorted using cub :: DeviceRadixSort from the
NVIDIA CUB, and are divided into two partitions: high-
degree partition and low-degree partition. Each partition is
run in an individual kernel and stream to exploit the con-
current execution based on the degree-guided thread block
scheduling. We run the two partitions in different kernels
because the data about the high-degree partition need to
be placed in shared memory while the data about the low-
degree partition is in the global memory. We encapsulate
the subgraph sampling module, which includes sorting of
vertex degree, partitioning of high- and low-degree vertices,
graph sampling, and merging of the sampling results from
the two partitions, as a function with the same interface
and parameters as in the default sampling function (i.e.,
CSRRowWiseSamplingUniform()) in DGL. This newly
implemented sampling function replaces the default sam-
pling function in DGL while other parts of the implementa-
tion in DGL remain unchanged.

Feature Transfer Module. The feature extraction module
is responsible for feature collection and transferring to GPU
memory. This implementation of this module is the same as
that in PaGraph [12].

GPU Training Module. This module queries the training
queue and conducts the training using the user-defined
model. We reused the common graph aggregation opera-
tions and the optimized kernel implementation of SPMM
and SDDMM from DGL [7].

GPU Caching Module. This module caches frequently
accessed vertex features in the GPU memory. It first collects
the memory footprints for several iterations, which include
the graph data size and the workspace size in sampling and
training. By subtracting the size of the collected memory
footprint from the total GPU device memory, the cache size
for storing the graph features is determined and the cache
space is then allocated accordingly. Next, according to the
cache policy, the frequently accessed features are identified
and copied to the allocated cache space. The reason why
we implement the GPU caching as a separate module is
because this way the caching policy can be decoupled from
the main execution control. The users can customize their
own caching policies if they want to.

4 EVALUATION

We developed TurboGNN with all the proposed opti-
mization methods. In this section, we compare it with
DGL(V0.8.1), a popular GNN training system with the
message passing model to facilitate usurers’ programming.
Since DGL does not support the GPU cache yet and the fea-
ture extraction dominates the time of training large graphs
[12], we integrated the GPU cache optimization [12] into
DGL (called DGL-SOTA) and uses it as the performance
baseline for a fair comparison in this section.
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4.1 Experiment Setup

Cluster configuration: We conducted our experiments on a
platform equipped with two eight-core Xeon-2670 2.60GHz
CPUs with 264GB memory. The platform is installed with
Ubuntu 16.04, and GCC 6.5.0. We used CUDA 10.1 together
with CuDNN V7.4.2 in all the experiments. All the exper-
iments were conducted on a single NVIDIA P100 except
for the experiments in Figure 10, which were performed on
P100 and V100.

Workload configuration. Our experiments used six
datasets (four homogeneous datasets and two heteroge-
neous datasets) which are popular for GNN training. (1)
Reddit [19]. Reddit is a post-to-post graph and each ver-
tex stands for a post while an edge connects two posts
commented by the same users. It has 232,965 vertexes,
114,615,892 edges with an average degree of 492, and
a feature dimension of 602. (2) Ogbn-products [10]. The
Ogbn-products dataset represents an Amazon product co-
purchasing network with 2,449,029 vertices and 61,859,140
edges. (3) Ogbn-arxiv [10]. Ogbn-arxiv is a directed cita-
tion network graph for CS papers with 169,343 vertices
1,166,243 edges, and a feature dimension of 128. (4) Ogbn-
papers100M [10]. Ogbnn-papers100M is a directed citation
graph with 111,059,956 vertices 1,615,685,872 edges and a
feature dimension of 128. (5) BGS [29]. BGS is a geological
measurements graph in Great Britain with 94,806 vertices,
672,884 edges, and 96 edge types. (6) AM [29]. AM de-
scribes the information about the artifacts in the Amsterdam
Museum. It has 881,680 vertices, 5,668,682 edges, and 96
relations. We tested TurboGNN with four representative
GNN models. (1) GCN [18]. It is a basic model for the
GNN network with three-layer neighbor aggregation. (2)
GraphSage [11]. It is an inductive GNN learning model to
learn the general aggregation functions (such as sum, mean,
pool, and LSTM) for different layers. (3) GAT [30]. It is the
first work that introduces the attention mechanism to the
aggregation process of graph convolutional networks. (4) R-
GCN [31]. R-GCN is the first GCN modeCl for modeling the
relational data.

4.2 Evaluation of the Sampling Kernel

We first evaluate the optimization techniques developed for
the sampling kernel (the adaptive shared-memory-based
data placement policy with the thread block scheduling
method; the corresponding kernel is called kernel-opt), and
compare the sampling time with that of the original GPU
implementation based on DGL-SOTA (called kernel-ori).
The time of kernel-opt includes the extra overhead such as
vertex sorting. We run the experiments with two datasets
(Reddit and ogbn-products). The number of sampled ver-
tices (called batch size) tested in the experiments is 4K, 8K,
16K, 32K, 40K, 80K, 100K and 200K, while the number of
neighbors to be sampled for a vertex (i.e., fanout) is 10 15
and 30. These are common configurations in the default
GNN networks and training process [11], [18]. All the results
reported in the figures or the tables are the averages over
500 iterations. The experimental results are shown in Fig. 5.
Our method (kernel-opt) outperforms kernel-ori in all the
cases and achieves up to 1.35x speedup while the average
usage of the memory bandwidth increases to 87% of the

peak value. When the number of sampled vertices (i.e.,
batch size) is small, our method achieves less performance
gain (e.g., 1.15X for Reddit dataset with batchsize=4000,
fanout=30). This is because the small number of thread
blocks cannot fully utilize the massively parallel power
of the GPU while other costs such as kernel launch still
exist. Since the sampling time for the higher layers (which
contain more vertices) dominates the first stage execution
(e.g., the batch size for the third layer on ogbn-products is
335753 while the batch size for the first layer is only 8000),
performance optimization is especially needed for large
batch sizes. When the batch size increases, the performance
gain increases compared with kernel-ori (e.g., increases from
1.15X to 1.31X when the batch size increases from 4000 to
200000 on the Reddit dataset and fanout=30). This is because
when the number of sampled vertices increases, more thread
blocks are needed, and consequently kernel-ori experiences
a more severe load imbalance among the thread blocks and
the warps in a block. Moreover, more atomic operations are
performed in kernel-ori as the number of atomic operations
is positively related to the number of the sampled vertices
and the degree of vertices. In this situation, our method
optimizes the kernel’s efficiency in accessing memory and
scheduling thread blocks. Therefore, kernel-opt shows a
more prominent advantage.

We also find that the speedup increases when fanout
increases. For example, we achieve 1.28X, 1.30X, and 1.35X
speedup for fanout 10, 15, and 30 respectively on ogbn-
products dataset with batchsize=200000. This is because
when the fanout increases, more atomic operations are
required. Our optimization method uses the shared memory
in GPU to cache the intermediate results in training, which
effectively reduces the number of global atomic operations
and therefore improves the performance.

To evaluate how much each optimization policy con-
tributes to the performance gain, we conducted experi-
ments with different combinations of individual optimiza-
tion policies. The breakdown of the contribution is shown in
Fig.6. Note that the extra overheads such as vertex sorting
are included in the final result. When only the policy of
the degree-guided block scheduling is applied, kernel-opt
achieves the 1.20X speedup compared with kernel-ori (on
the Reddit dataset, batchsize=100K, fanout=30). When the
naive shared memory-based caching policy, which caches
everything in the shared memory without incorporating
the degree-guided adaptive policy, is added, the speedup
further increases to 1.22X. This further speedup is small,
which suggests that simply applying the share memory-
based caching policy cannot improve the performance sig-
nificantly due to other factors such as block resource con-
tention. If we further add the degree-guided adaptive policy,
the speedup increases to 1.31X, which suggests the effective-
ness of our adaptive policy.

Moreover, it can be observed from the figures that
different optimization policies bring different performance
improvement for different configurations and graphs. For
example, for ogbn-products, which exhibits more power-
law distribution, the degree-guided block scheduling pol-
icy achieves more improvement than Reddit (1.27X vs.
1.18X when batchsize=80000, fanout=30). For large values
of fanout, the adaptive share memory optimization in con-
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Fig. 5: One sampling iteration time for different datasets,
batch size, fanout (F). The X-axis is the different kernel
and batch size, and the Y-axis is the time of one sampling
iteration in milliseconds.

junction with thread block scheduling brings more benefits
(1.28X and 1.35X speedups for fanout 10 and 30 respectively
with ogbn-products and the batch size of 200000). This
is because with a larger fanout, a large shared memory
footprint is needed for each thread block, which may de-
crease the degree of concurrency. Adaptive shared memory
optimization only assigns the shared memory for the set of
”the most valuable” vertices, which not only reduces the
number of global atomic operations but also reduces the
contention for the limited shared memory.

We also compared our kernel optimization methods with
the latest work, NextDoor [32], in the multiple-hop sam-
pling. The results are presented in Fig.7. Our method outper-
forms NextDoor [32] and achieves up to 1.48X speedup. It
should be noted that NextDoor [32] targets the complicated
sampling algorithm with multiple sampling paths and uti-
lizes the transit-parallel paradigm, which is not suitable for
the bipartite graph-based computation paradigm in DGL.

4.3 Evaluation with Asynchronous Pipeline-based
Scheduling
To evaluate the efficiency of asynchronous pipeline-based
scheduling, we conducted experiments to compare Tur-
boGNN with DGL-SOTA in terms of the end-to-end time
of one training epoch. The experimental results are shown
in Fig.8. Our proposed methods outperform DGL-SOTA in
all cases and can achieve up to 5.6X speedup. The speedup
on ogbn-paper100M [10] is less than that on ogbn-arxiv
because all feature data of ogbn-arxiv can be cached in the
GPU memory, which eliminates the bottleneck caused by
the feature transfer. On ogbn-paper100M, which has a large
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Fig. 6: Running time of one sampling iteration for different
combinations of individual optimization policies on (a) the
Reddit dataset and (b) ogbn-products dataset; fanout=30.
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shared memory optimization, and ”A” for adaptive shared
memory optimization.
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Fig. 7: The sampling kernel speedup compared to NextDoor
[32] on (a) the Reddit dataset and (b) ogbn-products dataset
with different batchsize and fanout

feature transfer cost (occupying about an average of 37.1%
of the entire training time of an epoch), our methods can
hide the graph transfer cost with the GPU sampling, which
utilizes the idle GPU resources to sample more subgraphs
for the next iteration, or use the training stage to hide the
graph transfer needed for next iteration.

Note that the speedup of GCN is more than that of
GraphSage. For example, we obtain 2.5X and 1.9X speedup
for GCN and GraphSage respectively on ogbn-arxiv with
batch size 4000. This is because GCN has more layers (3 vs. 2
in GraphSage) and consequently more workload imbalance
inside a processing stage. In this case, our asynchronous
pipeline-based scheduling method can improve the GPU
resource utilization when a layer in a stage cannot fully
utilize the parallel resources in GPU. Also, the speedup
on R-GCN and GAT is more than that on GraphSage
models (e.g., 2.6X, 3X and 1.9X respectively for the three
models). Since R-GCN has heterogeneous edges and multi-
level aggregation modes, while GAT have more complicated
interleaved computation from vertices and edges, the load
in the sampling and training process is more diverse and
unbalanced. Our pipeline scheduling can help tackle such
imbalance and improve resource utilization.

Fig.9 shows the speedup when the batch size increases
on the four datasets. TurboGNN has different performances
on different datasets and models. For GCN on ogbn-arxiv,
the speedup is 2.3, 2,5, 2,6 and 2.9 respectively when the
batch size is 2000, 4000, 8000, and 10000. ogbn-arxiv is a
very sparse graph and so each stage has very small kernels
that can hardly fully utilize the GPU resources. When the
batch size increases, there is a more severe load imbal-
ance between the layers within a stage. Therefore, there is
more room for our asynchronous pipeline-based scheduling
method to run the computations of the layers from different
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Fig. 8: Running time of one epoch of GCN, GraphSage, GAT,
and R-GCN on different datasets

stages concurrently (e.g., the sampling and the training
stage). For ogbn-products and ogbn-paper100M with the
GCN model, the speedup increases first and then decreases.
For example, the speedup is 4.6, 5.6, 5.1 and 4.8 respectively
when the batch size is 2000, 4000, 8000 and 10000 on ogbn-
products dataset. There is such a trend because when the
batch size increases, our method can bring more benefits
with an increasingly unbalanced workload (such as in ogbn-
arxiv). When the batch size increases further, the workload
of all the kernels in every stage increases, and there are
fewer chances to run two (bigger) kernels concurrently.
More resource demand and contention caused by multiple
processes may even harm performance, which causes a
decrease in speedup.

We also tested the effectiveness of the proposed method
in different GPUs. Figure 10 shows the speedup of Tur-
boGNN with GCN and GraphSage on two GPUs (NVIDIA
P100 and V100 GPU). The two GPUs are from different
generations of architecture (Pascal and Volta) and have
different computation capacities. The batch size is 4000. Tur-
boGNN achieves better performance on V100 (an average
of 29% increase) since V100 is equipped with higher com-
putation and memory capacities. It suggests our sampling
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Fig. 9: Speedup of different batchsize for different datasets
and models compared to DGL-SOTA

0

1

2

3

4

Reddit obgn-arxiv

Sp
ee
d
u
p

0

1
2
3
4
5
6
7

Re
dd

it

ob
gn

-p
ro
du

ct
s

ob
gn

-a
rx
iv

ob
gn

-p
ap

er
10

0M

Re
dd

it

ob
gn

-p
ro
du

ct
s

ob
gn

-a
rx
iv

ob
gn

-p
ap

er
10

0M

GCN GraphSage

Sp
e
e
d
u
p

P100 V100

Fig. 10: Speedup of TurboGNN on different GPUs

and pipeline-based scheduling optimization can better use
the parallelization opportunity provided by more powerful
GPU devices.

Though our methods mainly target the medium-scale
graphs, on which the sampling and training can run con-
currently in a single GPU and the cache works effectively,
we compared our method with GNNLab [41], which mainly
optimizes the cache invalidity caused by big graphs in
the multi-GPU scenario. We simply extend our method
to multiple GPUs with data parallelism. The results are
presented in Fig.12. In a single GPU, our method achieves
better performance thanks to the optimized sampling kernel
and the pipeline-based scheduling. In the scenario of mul-
tiple GPUs, when the vertex feature can be fully or mostly
cached by the GPU (e.g., the cases of Reddit, ogbn-product,
ogbn-arxiv), our method still achieves better performance
because there is less inter-GPU communication. For large
graphs (e.g., ogbn-paper100M), the working space of sam-
pling will compromise the cache efficiency due to memory
shortage, and the feature transfer will impose more impact
on the training time. Because of the decoupled design in
GNNLab for better cache efficiency, our method is worse
than GNNlab (e.g., the speedup is 0.7 for GCN). It is worth
noting that the GPU memory is becoming increasely bigger
in new generations of GPU (e.g., A100 is equipped with
80GB memory), our method will work for larger graphs in
those GPUs. We also plan it as our future work to develop
special optimization techniques for multi-GPU scenarios
and larger graphs.

Table. 1 shows the average GPU resource utilization for
training one epoch on different datasets (the table shows
the results with the batch size of 4000; other batch sizes
have similar results and are not presented due to space
limitation). It can be found from the table that the average
GPU utilization is low (e.g., 53% for ogbn-paper100M with
GraphSage), which is due to the large feature extraction cost.
Even when the feature extraction cost is eliminated when all
the features for ogbn-products can be cached in GPU mem-
ory, the utilization is still only 63% on average. Our meth-
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TABLE 1: The average GPU utilization (%) comparison

dataset utilization (%) dataset utilization (%)
DGL-SOTA-GCN TurboGNN-GCN DGL-SOTA-Graphsage TurboGNN-GraphSage

Reddit 63 95 Reddit 61 94
ogbn-products 67 97 ogbn-products 63 95

ogbn-arxiv 66 95 ogbn-arxiv 66 94
ogbn-paper100M 50 93 ogbn-paper100M 53 91
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Fig. 11: (a). The speedup in the running time of one epoch
for different combinations of individual optimization meth-
ods with (a) GCN and (b) GraphSage. The batch size is
4000. ”S” stands for sampling optimization and ”A” for
asynchronous pipeline-based scheduling.

ods achieve much higher utilization (e.g., average 95% on
ogbn-products for GraphSage), thanks to our asynchronous
pipeline-based scheduling policy. Our scheduling policy can
fully overlap imbalanced workloads from different stages.
Note that since the new generation of GPUs are equipped
with more cores and higher bandwidth memory (e.g., A100
has 80GB memory and 6912 FP32 cores), more features can
be cached and therefore our methods are expected to show
a more prominent advantage.

In order to show the contribution breakdown made by
the sampling optimization and the asynchronous pipeline-
based scheduling to the end-to-end performance improve-
ment, we conducted the experiments with different opti-
mization combinations and compared with DGL-SOTA. The
results are shown in Fig. 11 (the performance of DGL-SOTA
is plotted as the value of 1 in the figure). As seen from the
figure, both methods contribute to performance improve-
ment for different models. The performance improvement
brought by the sampling optimization is less than that by
asynchronous pipeline-based scheduling. This is because
the sampling optimization only works for the sampling
stage, which accounts for a part of the entire processing (e.g.,
the time spent by the sampling stage occupies about 54%
of the time in one iteration for the Reddit dataset with the
batchsize of 4000). In contrast, the asynchronous pipeline-
based scheduling can have impact on the execution of mul-
tiple stages, given that the resource utilization in GPU is typ-
ically not high with the existing GNN learning frameworks
to date. Although graph sampling only happens in one stage
in GNN processing, the optimization is worthwhile given
that sampling is an important and indispensable stage for
graph learning.

4.4 Cost Evaluation
We also evaluated the cost of our methods. First, for the
sampling optimization, the extra costs lie in the sorting pro-
cess, which can be implemented efficiently by the NVIDIA
CUB library. The sorting time is less than 2% of the kernel
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Fig. 12: The end-to-end speedup compared to GNNlab [41]

execution time. For example, when the node to be sam-
pled increases from 8,000, 80,000 to 1,200,000 on the ogbn-
product dataset (with 2,449,029 vertices), the percentage of
the sorting time is 1.9%, 0.7%, and 0.3% respectively. The
sorting overhead decreases in percentage because although
the workload of both the sampling kernel and the sorting
kernel increase with the batch size, the sampling kernel
is more complicated than the sorting kernel and increases
much faster. For bigger graphs, such as Twitter with 41.7M
vertices, the sorting overhead is less than 0.1%.

Second, for the asynchronous pipeline-based scheduling,
the extra costs come from the data serialization and data
copying between the processes. Without our tensor-sharing
methods, the percentage of the overhead is 11% on aver-
age. By efficiently sharing the topology tensor of sampled
subgraphs between different processes, the percentage of
the overhead decreases to only 0.7%. Even on the Twitter
graph (41.7M vertices), this overhead is less than 1%. Also,
our methods promote the performance not by changing the
batch size or the semantics of the parameter synchroniza-
tion. Therefore the model accuracy is not affected.

5 RELATED WORK
Full graph-based GNN training. In full graph-based train-
ing, the core computation kernels are sparse matrix mul-
tiplication (SpMM) for vertex computation and the sam-
pled dense-dense matrix multiplication (SDDMM) for edge
computation [33], [34]. Many works have been proposed to
improve the two kernels. Hong et al. [33] propose intra-row
reordering and adaptive tiling to increase cache utilization.
[34] further proposes two-phase sorting to increase data
reuse. GE-SPMM [35] proposes the Coalesced Row Caching
and the Coarse-grained Warp Merging to reduce redundant
data loading and improve instruction parallelism. Seastar
[36] proposes a vertex-centric programming model and ap-
plies the automatic kernel fusing. NeuGraph [37] proposes a
general programming model named SAGA and an efficient
graph-aware data flow. Huang et al. [38] propose several
optimizations for GNN inference, including edge grouping,
vertex renaming, sparse fetching, and redundant compu-
tation reduction. GNNAdvisor [39] proposes the neighbor
grouping and dimension scheduling for accelerating the
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GNN training kernels. To scale to large graphs, DGCL [40]
proposes an efficient communication library that can use
heterogeneous links effectively. However, those works that
target full graph-based training have scalability issues due
to their large memory demand and the cost of distributed
communication.

Sampling-based training. By using mini-batches,
sampling-based training can scale to large graphs and
has shown accuracy competitive with the full graph-based
training [14], [15], [16]. GraphSage [11] first introduces the
fixed-number vertex sampling and proposes the general
message aggregation methods in GNN, such as sum, max
pool, average, and LSTM. PinSage [1] uses the map-reduce
style of CPU-GPU cooperation to scale the training to
large recommend systems. Since feature transfer becomes
a performance bottleneck in sampling-based training, many
works have been proposed to solve this problem. PaGraph
[12] proposes the vertex degree-based GPU cache policy to
reduce the feature transfer cost and has shown the effec-
tiveness for power-law graphs. However, its performance
is affected by the GPU memory capacity, which may not
work for very big graphs. Pytorch-direct [13] utilizes a GPU-
oriented communication kernel to increase the transfer effi-
ciency by automatic address alignment. However. when the
feature transfer time is reduced, another time-consuming
stage, CPU-based sampling, becomes the new performance
bottleneck. DGL [7] introduces the GPU-based sampling
when the graph data can be placed in the GPU. GNNLab
[41] proposes the factored system to divide different stages
into different GPUs, which may introduce the communi-
cation cost and load imbalance problem. It also proposes a
new pre-sampling-based caching policy to adapt to different
graph datasets and sampling algorithms. However, decou-
pled design may introduce large inter-GPU communication
overhead. Our work mainly focuses on single-GPU training
since a GPU is becoming more powerful and is equipped
with more high-bandwidth memory capacity. Its methods
are orthogonal to our work when our method can be easily
scaled to multiple GPU settings.

6 CONCLUSION AND FUTURE WORK
In this paper, we proposed a combination of methods for op-
timizing the GNN sampling and training on GPUs, aiming
to improve the end-to-end performance of GNN training.
In particular, to optimize the GPU sampling, we proposed
i) a shared memory-based data placement policy to reduce
the number of global atomic operations. ii) a degree-guided
adaptive caching policy to make the best use of shared
memory but not compromise the concurrency degree of
thread blocks, and iii) a degree-guided thread block schedul-
ing method to achieve workload balance and optimize
thread block execution. As for end-to-end GNN training,
we proposed an asynchronous pipeline-based scheduling
method to improve GPU resource utilization. Even though
the proposed optimization methods mainly target the GNN
training on a single GPU, it can be further extended to the
training on multiple GPUs through data or model paral-
lelism and multi-GPU unified memory management, which
is the plan of our future work. GNN is an import appli-
cation in next-generation computing [42]. The large-scale

dynamic graphs bring huge challenges to the paralleliza-
tion strategy, memory management, computing schedule,
and partitioning algorithm of GNN systems. Therefore, we
plan to continue to carry out the research in the following
directions: 1) hybrid parallelization policy for GNN train-
ing on the dynamic graphs, 2) GPU-supported snapshot
and incremental GNN training system for dynamic graphs,
3) partitioning algorithms for Large-scale graphs in GNN
training and 4) efficient GPU memory management in the
training and inference of large-scale dynamic graph.
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