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Abstract

Human reading comprehension often requires
reasoning of event semantic relations in narra-
tives, represented by Event-centric Question-
Answering (QA). To address event-centric QA,
we propose a novel QA model with con-
trastive learning and invertible event transfor-
mation, call TranCLR. Our proposed model
utilizes an invertible transformation matrix
to project semantic vectors of events into a
common event embedding space, trained with
contrastive learning, and thus naturally inject
event semantic knowledge into mainstream QA
pipelines. The transformation matrix is fine-
tuned with the annotated event relation types
between events that occurred in questions and
those in answers, using event-aware question
vectors. Experimental results on the Event
Semantic Relation Reasoning (ESTER) dataset
show significant improvements in both gener-
ative and extractive settings compared to the
existing strong baselines, achieving over 8.4%
gain in the token-level F1 score and 3.0% gain
in Exact Match (EM) score under the multi-
answer setting. Qualitative analysis reveals
the high quality of the generated answers by
TranCLR, demonstrating the feasibility of in-
jecting event knowledge into QA model learn-
ing. Our code and models can be found at
https://github.com/LuJunru/TranCLR.

1 Introduction

Since 2019, many larger-scale pre-trained lan-
guage models (PLMs) (Devlin et al., 2018; Raffel
et al., 2019; Lu et al., 2020; Pergola et al., 2021b)
have been introduced to address the Question-
Answering (QA) tasks, reaching performance on
par with humans on entity-centric QA datasets
such as SQuAD (Rajpurkar et al., 2016), Trivi-
aQA (Joshi et al., 2017), and NewsQA (Trischler
et al., 2016), in which answers are often entities ex-
tracted from text. A raising challenge is to research
and develop new PLM-based frameworks tackling

Figure 1: An event-centric QA example from the ES-
TER dataset (Han et al., 2021). All event triggers are
highlighted in bold and underlined in the paragraph.
The question event trigger and answer event triggers are
further highlighted in red colors with different shades.
In-text answer is smeared with blue.

more difficult QA settings in real-world scenar-
ios. One direction is to go beyond entity-centric
QA and explore QA tasks focusing on high cogni-
tive level information such as events. A recently
introduced Event Semantic Relation Reasoning
(ESTER) dataset (Han et al., 2021) facilitates the
development of Machine Reading Comprehension
(MRC) models for event-centric QA. The dataset
contains event-centric question-answers annotated
with event semantic relation type labels. Figure
11 shows an example instance from the dataset.
The main challenge is to effectively explore event
semantic knowledge to answer event-centric ques-
tions. In the example illustrated in Figure 1, an
MRC or QA model needs to first understand that
the question asks for a potential answer event which
holds a conditional relation with the main event
‘charges’ mentioned in the question. It then needs
to identify events in the paragraph which have the

1Better viewing in color.
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conditional relation with the question event trig-
ger ‘charges’, in this case, ‘linked’, ‘testing’ and
‘found’. Finally, it needs to generate the answer
involving the identified events in natural language.
It is easy for humans to understand narratives by
constructing a situational logic chain capturing how
events evolve and relate to each other in text. Yet,
existing QA models only learn shallow semantic
cues based on word token statistics gathered from
large-scale text corpora (Niven and Kao, 2019),
but are not able to grasp high-level concepts such
as events. Preliminary experimental results using
the pre-trained T5 language model on the ESTER
dataset show that there remains a large gap over
15% between machine and human performance
(Han et al., 2021).

Intuitively, it is possible to inject event informa-
tion through a multi-task learning framework where
event-related tasks such as event relation type de-
tection and event embedding learning could be po-
tentially useful to guide the QA model to generate
better answers. For example, event relation type
detection aims to detect the desired event semantic
relation given a question, while event embedding
learning aims to push events holding the desired se-
mantic relation closer in the new event embedding
space. However, in a QA model, the answer gener-
ator is usually built on a PLM in which the original
event representations learned in the PLM should
be preserved. That is, we want to map event rep-
resentations onto a new event embedding space in
order to inherently capture their semantic relations
specified by an input question, but at the same time,
we need to keep the original event representations
learned by the PLM in order to generate coherent
answers. To deal with this dilemma, we propose
an invertible transformation operator, which makes
it possible to learn new event embeddings with-
out changing the mutual information of any given
event pairs, making it effective in injecting event
information for event-centric QA.

More concretely, to leverage the event semantic
knowledge into QA models, we propose a novel
multi-task learning framework, named TranCLR
(Fig. 2), combining a general-purpose QA model,
with an event invertible transformation operator to
encode event relations across questions and para-
graphs. It builds on the UnifiedQA (Khashabi
et al., 2020) model for answer generation, and
employs an invertible event transformation opera-
tor to project the hidden representations from the

UnifiedQA encoder onto a new event embedding
space. The transformed representations are then
used for (i) contrasting learning and for (ii) event
relation type classification. The contrastive learn-
ing mechanism is adopted to realign the event vec-
tors, strengthening the relations between the events
mentioned in questions and those candidate answer
events in paragraphs and improving the generaliza-
tion to out-of-distribution event relations. On the
other hand, the event relation type classification is
used to further fine-tune the transformation matrix
through contextualized question representations.
The combination of the transformation operator,
along with contrastive learning and event relation
type classification, leads the model to focus on
the textual and relation features characterizing the
event occurrences in text, and results in an overall
boost in performance on event-centric QA tasks.

Our contributions can be summarized as follows:
(1) We introduce a novel multi-task learning frame-
work for event-centric QA, TranCLR, in which we
design an invertible event transformation operator
and a contrastive learning mechanism, further com-
bined with event relation type classification, to per-
form better reasoning on event semantic relations;
(2) We conduct an experimental assessment on the
ESTER dataset showing that TranCLR boosts the
performance of QA models compared to strong
existing PLM-based QA baselines, achieving over
8.4% and 3.0% gain in the token-level F1 and EM
score respectively under the multi-answer setting;
(3) Visualization of event-aware token semantic
vectors verifies the effectiveness of event knowl-
edge injection. We further show the advantages of
our framework tailored for event-centric learning
on both zero- and few-shot learning, and adaptation
ability on out-of-domain event-centric questions.

2 Related work

This work is related to two lines of research: event-
centric QA, and contrastive learning.

Event-centric QA The growing interest into
event understanding has recently led to the de-
velopment of new resources for event-centric QA
and event relation extraction. Souza Costa et al.
(2020) proposed EventQA, an event-centric QA
dataset to access semantic information stores in
knowledge graphs. The questions are created via a
random walking on the EventKG (Gottschalk and
Demidova, 2019), then manually translated into
natural language. Ning et al. (2020a) modified
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and converted an event temporal relation extraction
dataset – MATRES (Ning et al., 2018) into a read-
ing comprehension format focused on event tempo-
ral ordering questions, named TORQUE. Instead
of solely focusing on simple arguments or tempo-
ral relations, the ESTER dataset (Han et al., 2021)
was developed to highlight how events are semanti-
cally related in terms of five most common seman-
tic relations: Causal, Conditional, Counterfactual,
Sub-event, and Coreference relations. Aforemen-
tioned work built dataset baselines with popular
entity-based PLMs, and thus leave significant per-
formance gaps compared with human evaluation.
Asai and Hajishirzi (2020), Dua et al. (2021) and
Shang et al. (2021) leverage features of closely re-
lated questions to capture temporal difference to
deal with certain types of event-centric questions.
Compared to the existing works, we target to var-
ious types of event-centric questions. Therefore,
we introduce an invertible event transformation to
(i) model the event semantic relations through an
auxiliary classification task, and to (ii) realign the
event latent representations via contrastive learning
in the space of the transformed events.

Contrastive Learning Approaches to contrastive
learning for text focus on the generation of posi-
tive and negative training pairs from pretrained lan-
guage models. For example, Clark et al. (2020) pro-
posed a new pretraining framework named ELEC-
TRA, which defines a new generative training task,
i.e., Replacement Token Detection (RTD), with
the aim of determining whether a token was orig-
inally replaced by the language model. Based on
ELECTRA, Meng et al. (2021) designed two new
pretraining tasks: the Correct Language Modeling
(CLM), aiming at restoring a corrupted sentence;
and the a contrastive learning-based task, in which
the positive pairs are made of recovered sentences
and corresponding previously corrupted sentences.
Similarly, Qin et al. (2020) designed another con-
trastive learning framework ERICA for document-
level text understanding, via specific entity dis-
crimination pre-training task and relation discrim-
ination pre-training task. Chen et al. (2022) pro-
posed a two-stage framework, integrating answer-
aware span-based contrastive learning for cross-
lingual machine reading comprehension. Wu et al.
(2020) and Fang et al. (2020) designed a frame-
work similar to SimCLR (Chen et al., 2020) to gen-
erate sentence representations by applying several
data augmentation strategies to create contrastive

pairs, such as word deleting and swapping, back-
translation and synonym replacement. Yet, Gao
et al. (2021) reported that simply using dropout
masks twice within a PLM can led to rather re-
liable positive pairs. Our work adopts standard
contrastive learning framework. The positive and
negative pairs of events are composed directly from
the different text sections: questions, paragraphs,
and answers within the paragraph.

3 Methodology

In this section, we first define the task of event-
centric QA and then present our proposed TranCLR
model. We build our model mainly based on the
ESTER dataset (Han et al., 2021).

3.1 Task Formulation

Event-centric QA can be formulated as question
answering centred on the understanding of event
semantic relations. The task can be mathematically
defined as: given a text passage xp and an answer-
able event-centric question xq, a model is asked to
provide one or more answers Ŷ = {ŷ1, · · · , ŷA},
where A denotes the total number of answers to
the given question. In the ESTER dataset, event
triggers in text passages, questions and answers are
annotated, E = {ep1, · · · , epCp

, eq, ea1, · · · , eaCa
},

where Cp and Ca denote the total number of events
in the text passage and the answer, respectively.
Each question only contains a single event eq.
Since answers are parts of the paragraph in ES-
TER, paragraph event triggers also include answer
event triggers. In addition, the relation type of the
question event and answer events, t ∈ T , is also an-
notated. In the ESTER dataset, there are 5 event se-
mantic relations types: Causal, Conditional, Coun-
terfactual, Subevent, and Co-reference.

3.2 TranCLR

We propose a novel framework for event-centric
question answering, called TranCLR, which is a
multitask model via contrastive learning and in-
vertible event transformation. The overall frame-
work is shown in Figure 2. Following settings in
the ESTER work (Han et al., 2021), we adopt T5-
large (Raffel et al., 2019) as an encoder-decoder
backbone for the generative setting (i.e., answer
generation), and RoBERTa-large (Liu et al., 2019)
as an encoder for the extractive setting (i.e., an-
swer extraction). The T5-large model will be fine-
tuned in a universal generative style (Khashabi
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Figure 2: The overall TranCLR architecture. The input to encoder is the concatenation of the event relation type,
the question, and the paragraph. The resulting hidden vectors are used to provide answers. Simultaneously, the
hidden representations are projected through a transformation matrix and used for both contrastive learning and
event relation type classification. The contrastive learning mechanism realigns the event vectors to strengthen the
relations between the event occurred in question and candidate answer events in paragraphs; while event relation
type classification predicts the event relation type given a transformed question representation.

et al., 2020), therefore named as UnifiedQA-T5-
large. During training, the input sequence consists
of question-answer event relation type label t, ques-
tion xq and passage xp with ":", "\n", "</s>" and
"<s>" special tokens. We use x = {t:xq\nxp}
and {<s>t:xq</s></s>xp} to denote the whole in-
put sequence for the generative and the extractive
settings, respectively. Let Nx be the length of
x, and d be the dimension of hidden state vec-
tors, H ∈ RNx×d is the contextual hidden states
of the encoder. The target label for the gener-
ative setting is the concatenation of all answers
Ŷ = {ŷ1, · · · , ŷA} with each separated by a ";"
special token, while labels for the extractive setting
are Ŷ = {ŷ1, · · · , ŷxp}, following the "B-I-O" or
"I-O" tagging format.

After getting the hidden states H of an in-
put sequence x via the UnifiedQA-T5-large or
the RoBERTa-large encoder, we simultaneously
train the model with contrastive learning for two
tasks, the main QA task, and the auxiliary task
for event relation type classification. Therefore,
our model is designed to maximize the probability
p(ŷ|xq,xp,E, t) of the generated answers or the
predicted labels given a question xq, the support-
ing paragraph xp, all event triggers in the materials
E, and question-answer event relation type label t.
The event relation type t can be considered as a pre-
fix or prompt to the input in prompt-based learning.

It is worth noting that the annotated event triggers
are only used in training, but not in inference.

The key to event-centric QA is to perform rea-
soning on the semantic relation of the event found
in the question and those candidate events in the
paired text passage. For example, for the ques-
tion in Figure 2, “What actions from the law en-
forcemnet could lead to the filling of the charges
against Kopp?”, we would expect the QA model
to generate the answer which contains the event(s)
that exhibit the Conditional relation with the event
charges mentioned in the question. This is some-
what similar to node prediction in knowledge graph
embedding learning, that is, given the head event
eq in the question and the relation type t, we aim to
locate the tail event ep in the text passage to gener-
ate the desired answer. Inspired by knowledge em-
bedding learning methods such as TransE (2013),
we propose to transform event embeddings using
a transformation matrix and introduce an auxiliary
task for event relation type classification. Using the
transformation matrix has two advantages. First,
the token-level hidden states are preserved in the
original embedding space which are important for
semantic-based QA. Second, the transformed event
embeddings allow the identification of common
features for more general event relation type classi-
fication in the new event embedding space. In what
follows, we describe our proposed invertible event
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transformation operator, contrastive learning, and
event relation type classification in more detail.

3.2.1 Invertible Event Transformation
We propose an invertible transformation which
aims to map event representations onto a new
event embedding space in which the desired event
semantic relations are inherently encoded. Let
Hq|e ∈ RCq×d, Ha|e ∈ RCa×d and Ho|e ∈ RCo×d

be part of the hidden state vectors H representing
the embeddings of the question event, the answer
events and other events in the text passage, in which
Cq refers to the number of event triggers in the
question, and the sum of Ca and Co refers to the
total number of event triggers in the text passage.
Additionally, let M ∈ Rd×d be the transformation
matrix, Hq|e, Ha|e and Ho|e are mapped onto a new
event embedding space by: H

′
q|e = MHq|e + bM ,

H
′
a|e = MHa|e + bM , and H

′
o|e = MHo|e + bM ,

where bM ∈ Rd is the bias term. The singularity
of the random matrix can be guaranteed by (Tao
and Vu, 2008) with high probability (confirmed by
our experimental results as well). Therefore, we do
not need any regularisation terms to guarantee the
rank of the transformation matrix in the training
process. Since the linear transformation is invert-
ible, we have the following properties (the proof
can be found in Appendix A),
Property 1. For any event representation e ob-
tained from a PLM, and its transformed new em-
bedding e′, we have S(e′) = S(e) + log(|M |),
where S is the entropy of a given event.

Property 1 guarantees that the projected repre-
sentation of a given event has a smoother distri-
bution which makes it easier to find a separatrix
in a hyperspace in the auxiliary task of event rela-
tion type classification, since |M | is usually large
than 1. The distribution of outliers, i.e., low fre-
quency words, will be smoothed by this invertible
transformation as well.
Property 2. For any event representation pair e1
and e2 obtained from a PLM, and their transformed
representations e′1 and e′2, we have I(e′1, e

′
2) =

I(e1, e2), where I is the mutual information of the
given event pair.

Property 2 guarantees that for any event pairs,
the projection will not change the mutual informa-
tion, which represents event relations encoded in
the original PLM. Since the projection is a bijec-
tion and invertible, the separatrix from the learned
auxiliary task will be converted to the hidden states

to guide the answer generation directly.

3.2.2 Contrastive Learning

After mapping event representations onto a new
event embedding space by the aforementioned in-
vertible event transformation, we can then form
positive event pairs (hi, hj) by selecting the trans-
formed question event hi from H

′
q|e and the trans-

formed answer event hj from H
′
a|e. We can also

form negative event pairs (hi, hk) and (hk, hj) by
randomly sampling hk from the transformed event
vectors of other events H

′
o|e. Let Lcl denote the

loss of contrastive learning:

Lcl =
1

Z

|H′
q|e|+|H′

a|e|∑

i=1

|H′
q|e|+|H′

a|e|∑

j=1

[lcl:(i,j) + lcl:(j,i)] (1)

where lcl:(i,j) denotes the loss for positive
pair on event vectors hi and hj , lcl:(i,j) =
− log[exp(cos(hi, hj)/τ)/si], cos(·) denotes the
cosine similarity function, si denotes the sum of
cosine similarity of the positive event pair (hi, hj)
and that of negative event pairs (hi, hk), τ is the
temperature hyperparameter to adjust the penalty
of negative pairs, and Z = 2(|H ′

q|e|+ |H ′
a|e|). Lcl

sums over the contrastive loss of all possible event
pairs in the training set.
TranCLR takes question event vector and answer

event vectors as the source of positive pairs, while
takes other event vectors as the source of negative
events. The purpose of contrastive learning is to
better employ the event information as hint for
the QA task. Therefore, a good transformation
matrix is essential. We introduce an auxiliary event
relation type classification task in order to train a
better transformation matrix.

3.2.3 Event Relation Type Classification

As shown in the analysis of the n-gram word and
token statistics conducted on the ESTER dataset
(Han et al., 2021), the questions already encode
sufficient information to detect the type of event
relations referred. Therefore, the idea is to apply
the same transformation matrix, used on the event
vectors, also on the hidden vectors encoding the
question, and then use the results for event relation
type classification. We first predict the event re-
lation type, t̂ by feeding the tranformed question
vector to a feed-forward layer and a softmax layer.
We then define the cross entropy loss of event rela-
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tion type classification, denoted as Ltc:

Ltc = −
N∑

n=1

tnlogt̂n (2)

3.2.4 Final Objective Function
For answer generation, the model operates on
the hidden state vectors H in the original embed-
ding space encoded by UnifiedQA-T5-large (or
RoBERTa-large) to generate (or extract) the an-
swer(s), ŷ. Let Lqa denote the loss of the main
question answering task:

Lqa = − 1

T

T∑

i=1

yi log ŷi (3)

where T = Na + A − 1 is the total token length
of A ground truth answers separated by A− 1 ";"
special tokens under the generative setting, while
T = xp is the total token length of the supporting
paragraph xp under the extractive setting. For the
latter, we further extract all tokens marked as "BI"
or "I" predictions as answers. The final loss is
defined as:

L = Lqa + λtcLtc + λclLcl (4)

where λtc, λcl are hyperparameters to control the
contribution of individual loss terms.

4 Experiments

In this section, we will first introduce the exper-
imental setup including the dataset used and the
hyperparameter setting, followed by the discussion
of experimental results and ablation studies.

4.1 Experimental Setup
Dataset We use the event-centric QA dataset,
ESTER (Han et al., 2021), for our experiments.
The dataset contains 6k human-annotated event-
centric questions with an average length of 10 to-
kens over 1.9k paragraphs with a maximum of 340
tokens. All event triggers have been marked over
the questions, paragraphs and answers. Besides,
the dataset provides the event type label for each
question from the five common event relation types:
Causal, Conditional, Counterfactual, Sub-event,
and Co-reference, and collects over 10k event re-
lation pairs. Each of the aforementioned event
relation types contribute to 43.1%, 21.3%, 7.1%,
15.6% and 12.9% of questions, respectively. Most
of the questions have 1-2 in-paragraph answers,

while the Sub-event type questions have more than
3 answers on average. ESTER has been officially
split into the training, development and test sets,
with 4,547, 301 and 1,170 instances, respectively.2

Table A1 in Appendix B reports the statistics of 5
event types in ESTER.

Evaluation Metrics We use the same metrics
introduced in ESTER (Han et al., 2021): F T

1 ,
HIT@1 and EM defined for the multi-answer set-
ting. F T

1 calculates unigram-level token overlap
between generated answers and the ground truth
answers, HIT@1 measures whether the leftmost
answer contains a correct event trigger, and Exact
Match EM checks if any predict answer matches
exactly the corresponding ground truth answer.

Baseline The baselines we use are the seq2seq
pipeline built on the UnifiedQA-T5-large and the
RoBERTa-large models introduced in ESTER (Han
et al., 2021).3 Hyperparameter setting for our mod-
els can be found in Appendix B.

4.2 Results

4.2.1 Overall Comparison

Model F T
1 HIT@1 EM

Generative setting

UnifiedQA-large (Han et al., 2021) 66.8 87.2 24.4
UnifiedQA-large (our run) 65.8 86.7 24.6
UnifiedQA-large TranCLR 74.2 86.4 25.6

UnifiedQA-large TranCLR (-prefix) 69.6 81.4 21.6
UnifiedQA-large TranCLR (-TC) 74.6 87.4 24.6
UnifiedQA-large TranCLR (-CL) 72.8 84.7 25.6
UnifiedQA-large TranCLR (-TransM) 66.8 77.7 20.3

Extractive setting

RoBERTa-large (Han et al., 2021) 68.8 66.7 16.7
RoBERTa-large (our run) 67.0 69.4 17.9
RoBERTa-large (IO) 73.7 77.4 15.3
RoBERTa-large (IO) TranCLR 74.7 80.4 18.3

Table 1: Main results of experiments on ESTER dataset.
(Han et al., 2021) takes "B-I-O" labels for extractive QA,
while we found "I-O" labels work better. UnifiedQA-
large TranCLR (-*) refer to ablation studies for gener-
ative QA, where -prefix, -TC, -CL and -TransM refer
to the removal of the event type label prefix, question-
answer event type classification, contrastive learning,
and the transformation matrix, respectively.

2As only the training set and the development set have
been released, we fine-tune our model on the training set and
evaluate on the development set.

3As the event-centric QA task has only been recently in-
troduced, no other approach has been proposed for ESTER.
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UnifiedQA-large (our run) UL TranCLR UL TranCLR (-TC&CL) UL TranCLR (-prefix)

Type F T
1 HIT@1 EM F T

1 HIT@1 EM F T
1 HIT@1 EM F T

1 HIT@1 EM

Causal (39.2%) 72.8 90.7 31.4 80.5 89.8 30.5 71.4 88.1 31.4 75.0 82.2 25.4
Conditional (19.3%) 58.7 84.5 19.0 66.6 86.2 24.1 63.5 89.7 22.4 69.2 86.2 19.0
Counterfactual (9.3%) 65.7 78.6 35.7 75.9 78.6 32.1 65.1 75.0 39.3 65.2 67.9 28.6
Sub-event (19.6%) 59.0 89.8 13.6 70.6 89.8 13.6 66.2 93.2 13.6 65.0 89.8 11.9
Co-reference (12.6%) 65.2 79.0 21.1 70.6 76.3 26.3 65.8 76.3 23.7 63.6 68.4 23.7
All (100%) 65.8 86.7 24.6 74.2 86.4 25.6 67.6 86.7 25.9 69.6 81.4 21.6

Table 2: Results from various models on 5 different event relation types on the development set. UL refer to the
abbreviation of UnifiedQA-large. UL TranCLR outperforms UnifiedQA-large baseline significantly in FT

1 across all
event relation types. The ablated versions of UL TranCLR show mixed results in HIT@1 and EM .

We show the overall evaluation results in Table
1. Our model achieves impressive results compared
with the previous baseline, gaining about 8% im-
provement in F T

1 under the generative setting, 3.0%
improvement in EM and HIT@1 scores under the
extractive setting.4 We have the following observa-
tions: (1) event-based contrastive learning brings a
significant gain, enabling a better reasoning of se-
mantic relations between event triggers in questions
and candidate answers in text, since the question
event and the answer event, although bearing very
different semantic meanings, are pushed closer in
their projected new event embedding space. This is
evident from the drastically improved F T

1 score in
the main QA task; (2) both event relation type clas-
sification and contrastive learning are indispens-
able since the combination of them achieves more
balanced results across all metrics in answer evalu-
ation, showing that the auxiliary event relation type
classification task leads to a better learned transfor-
mation matrix; (3) prompt-based learning using the
event relation type as prefix of input5 is effective
as the additional information can better guide the
model to answer questions which are much more
difficult than traditional factoid questions; and fi-
nally (4) the use of the transformation matrix makes
it possible to simultaneously learn representations
in both the original embedding space and the new
event-centric space, leading to better QA results.

4.2.2 Zero-shot and Few-shot Learning
In this section, we assess the ability of TranCLR for
zero-shot and few-shot learning, i.e., without the
training data or with very few training instances.
Figure 3 shows the F T

1 and EM values of TranCLR
and the baseline UnifiedQA-large with the vary-

4Evaluation code: https://github.com/PlusLabNLP/
ESTER/tree/master/code

5During inference, event relation type is detected automat-
ically from a given question.

Figure 3: Zero-shot and Few-shot learning performance
of UnifiedQA-large TranCLR and UnifiedQA-large.

ing size of the training set. It can be observed
that in zero-shot learning, both models give simi-
lar EM results and TranCLR slightly outperforms
UnifiedQA-large in F T

1 . With only 500 training in-
stances, TranCLR is able to generate more accurate
answers, beating UnifiedQA-large by 3% in EM ,
demonstrating the benefit of making effective use
of event information for better reasoning of event
semantic relations. The performance gap however
gradually diminishes with the increasing size of
the training set. Nevertheless, TranCLR is able to
generate answers containing more overlapped in-
formation with the ground truth with more train-
ing instances, evidenced by the increased perfor-
mance gains compared to UnifiedQA-large, reach-
ing nearly 8% in F T

1 when using the full training
set. This shows that our proposed contrastive learn-
ing combined with the auxiliary task of event se-
mantic type classification can better capture event
semantic knowledge which guides the decoder to
generate answers closer to the ground truth.

4.2.3 Results per Event Relation Type

In Table 2, we provide detailed comparison of re-
sults under various event relation types. We can
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Paragraph: Kopp also has been linked, through DNA testing, to a strand of hair found near where the sniper fired, law enforcement sources have
said.\n Nicknamed the “Atomic Dog” in anti-abortion circles, Kopp had been arrested in several states since 1990 for protesting abortion. His car was
spotted in Slepian’s neighborhood in the weeks before the shooting, and was found abandoned at the Newark, N.J., airport in December.\n The filing of
the charges has intensified interest in Kopp as a suspect in three non-fatal sniper attacks on Canadian abortion providers, and one near Rochester, N.Y.
, between 1994 and 1997.\n Kopp is now the second anti-abortion activist being sought by the FBI as a suspect in a fatal attack.\n

Question: What actions from the law enforcement could lead to the filing of the charges against Kopp?
Ground Truth Answer: linked, through DNA testing, to a strand of hair found
Question-answer event relation type: Conditional

UnifiedQA-T5-large (our run): 1: arrested in several states since 1990 for protesting abortion; 2: his car was spotted in slepian’s
neighborhood; 3: was found abandoned at the newark, n.j., airport in december
UnifiedQA-T5-large TranCLR: 1: arrested in several states since 1990; 2: link, through dna testing; 3: strand of hair found near where the sniper fired

Table 3: Example answers generated by different models. TranCLR injected with event knowledge accurately grab
the news narrative, and generate answers that cover 100% content of ground truth. In contrast, UnifiedQA-T5
without event-related learning is confused with question-related context information in the paragraph.

observe that the results on the ‘Causal’ type, being
the largest category, are much better compared to
other event relation types. Our proposed TranCLR
achieves the best F T

1 scores across all event relation
types compared to the baseline UnifiedQA-large,
with the increment in the range of 5.4-11.6%. The
largest performance improvement of 11.6% is ob-
served on the most difficult ‘Sub-event’ type in
which questions have more than 3 answers on av-
erage. By analyzing the results, we found that it
is sometimes quite difficult to distinguish between
‘Conditional’ and ‘Counterfactual’ types. As such,
adding the event relation type as prefix may con-
fuse the model. In terms of the HIT@1 results,
TranCLR with prefix only (i.e., -TC&CL) improves
upon the baseline by over 5% and nearly 4% for
the ‘Conditional’ and the ‘Sub-event’ types respec-
tively. We also observe that using the event rela-
tion type as prefix in prompt-based learning is very
effective in boosting the EM scores, especially
for the ‘Counterfactual’ type in which nearly 4%
improvement is obtained compared to UnifiedQA-
large. For the ‘Sub-event’ type where multiple
answers are expected, there is no improvement in
EM in our models compared to the baseline.

4.2.4 Visualisation of Event Embeddings
In Figure 46, we visualize the learned event embed-
dings in the semantic space during the training. It
can be observed that with the increasing number
of training epochs, event triggers are grouped into
few clusters from an evenly distributed initial state.
Most irrelevant event nodes are pushed aside as
they are used as negative samples in contrastive
learning, while question events and answer events
are pulled together. The visualization reveals rea-
sonable process of event knowledge distillation.

6Better viewing in color.

Figure 4: Distributions of events in the semantic space.
Question events, answer events, other events and the re-
maining non-event tokens are shown in blue, red, black
and gray, respectively.

4.3 Qualitative Analysis

We further perform qualitative analysis in Table 3
over the example illustrated in Figure 1 and 27. All
models generate more than one answers. More con-
cretely, TranCLR manages to generate text covering
100% of the ground truth answer, while UnifiedQA-
large is unable to generate coherent answers as the
model failed to detect the semantic relations be-
tween the question event trigger "charges" and the
answer event triggers "link", "testing" and "found".

4.4 Generalization Evaluation

To further evaluate the generalization capability
of our event knowledge distillation paradigm, we
apply the TranCLR model trained on ESTER for

7More example outputs are presented in Appendix C.
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Model F1 EM

RoBERTa-large 10.0 0.0
RoBERTa-large (Han et al., 2021) 20.0 4.1
RoBERTa-large TranCLR (ESTER) 28.7 15.6

Table 4: Zero-shot inference results on the TORQUE
development set. RoBERTa-large (the first result row)
is not trained on any event QA data, while the other
models are trained on ESTER only.

zero-shot inference on unseen QA data focusing
on event temporal relations, using the TORQUE
dataset (Ning et al., 2020b). TORQUE focuses on
questions about event temporal relations such as

“what happened before/after [some event]?”. For
each question, the dataset provides a two-sentence
supporting passage and passage event annotations.
The answers are simply event mentions in the form
of words/phrases, rather than longer text spans as
in the ESTER dataset. We perform zero-shot infer-
ence on TORQUE without fine-tuning the models
on its training set. It can be observed from Table 4
that compared with RoBERTa-large without trained
on any event QA data (first result row), fine-tuning
RoBERTa-large on ESTER (second result row) im-
proves F1 by 10%. Nevertheless, our proposed
TranCLR exhibits a significantly better event un-
derstanding capability, achieving 8.7% and 11.5%
further gains in F1 and EM scores, respectively. It
is worth mentioning that the ESTER dataset does
not contain any questions about event temporal re-
lations. The results show the strong generalization
capabilities of TranCLR and further verify the ef-
fectiveness of our proposed framework for event
semantic reasoning.

5 Conclusions

In this paper, we have proposed a novel framework,
called TranCLR, to tackle the event-centric QA task
on the ESTER dataset (Han et al., 2021). The core
idea of TranCLR is to effectively explore the event
knowledge in both questions and context through
event-centric contrastive learning and the auxiliary
task of event type classification. Our experimental
results show superior performance of TranCLR on
event-centric QA compared to the strong baseline,
gaining 8.4% and 3% absolute improvements in
F T
1 and EM scores respectively. Further zero-short

inference and qualitative analysis verify the promis-
ing event semantic understanding and reasoning
capability of our model.

Limitations

Although we have verified the promising event se-
mantic understanding and reasoning capability of
TranCLR trained on ESTER for both in-domain
event semantic relations and the out-of-domain
event temporal relation, it is worth further explor-
ing whether the model indeed captures event se-
mantic relations and does not just generate answers
by the matching of spurious patterns. Adversarial
attacks could be explored in the future to assess the
possible backdoor of the model in order to evalu-
ate its robustness (Tan et al., 2021; Pergola et al.,
2021a; Bartolo et al., 2021).

Our current work is built on the ESTER dataset
where each question is paired with a single para-
graph. In reality, event-centric QA may require the
gathering of evidence scattered over multiple para-
graphs and reasoning over more sophisticated event
chains or graphs. Such complex event semantic re-
lations is beyond what our proposed event-centric
contrastive learning could capture. To develop new
methodologies for dealing with more challenging
event-centric QA, efforts need to be devoted to
develop a dataset under a more realistic setting.
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Appendix

A Proof of Properties of the Invertible
Transformation

Definition: For any event representation e obtained
from a Pre-trained Language Model (PLM), let e′

be the transformed representation, e′ = M · e +
b, where M is the transformation matrix and b is
a bias, the projection of linear transformation is
invertible.
Property 1 For any event representation e obtained
from a PLM, and its transformed representation e′,
we have S(e′) = S(e) + log(|M |), where S is the
entropy of the given event.

Proof. Assume that M is an identity matrix, we
then have e′ = e+ b. Hence,

S(e′) = −
∫

pe′(e+ b)logpe′((e+ b)d(e+ b)

= −
∫

pe(e)logpe(e)d(e)

= S(e),

where the pe and pe′ represent the probability
space before and after transformation. Therefore,
the bias term will not change the entropy after pro-
jection. Then, we only need to consider a general
transformation matrix M ,

S(e′) = −E[logpe′(M · e)]
= −E[log(M−1pe(M

−1 · e′))]
= −E[log(M−1pe(e)]

= S(e) + log(|M |)

Property 2 For any event representation pair e1
and e2 obtained from a PLM, and their transformed
representations e′1 and e′2, we have I(e′1, e

′
2) =

I(e1, e2), where the I is the mutual information of
the given event pair.

Proof.

I(e′1, e
′
2) = S(e′1)− S(e′1|e′2)

= S(e′1)− S(e′1|e′2) + log(|M |)− log(|M |)

According to the proof of Property 1, we have
S(e) = S(e′)− log(|M |). Hence,

I(e′1, e
′
2) = S(e′1)− log(|M |)− (S(e′1|e′2)− log(|M |))

= S(e1)− S(e1|e2)
= I(e1, e2)

B Experimental Setting

Hyperparameters Our hyperparameter setting
follows what has been reported in Han et al. (2021).

For generative setting, the hidden size of Unified-
T5-large is 1,024 and the corresponding vocabulary
size is 32,128. The random seed is 5. The batch
size is set to 2 and the accumulation steps 3 on
2 quadro_rtx_6000 GPUs. The optimizer of all
models is BertAdam8 with β1 = 0.9, β2 = 0.999,
and ϵ=1e-6. Except for parameters of weights in
layer normalization and bias in all layers, all other
trainable parameters are decayed with a rate of
0.95 during training. The learning rate is increased
linearly from 0 to 5e-5 in the first 10% total training
steps and then linearly decreased to 0.

Similarly, for extractive setting, the hidden size
of Roberta-large is 1,024 and the vocabulary size
is 50,265. The random seed is 23. The batch
size is 8 with accumulation steps 2 on same 2
quadro_rtx_6000 GPUs. The optimizer and de-
caying strategy remain same as generative models.
The learning rate is changed to 1e-5. In addition,
following Han et al. (2021), we adopt label weight
4 for "B" and "I" label to reduce label unbalance.

For other hyperparamters, we set empirically τ
to 1.0 in contrastive learning, and λtc = 0.1, λcl

= 0.1 in Eq. (4). It takes around 3 hours to fine-
tune our models for 10 epochs. Parameter amounts
are 356M and 738M for extractive and generative
settings respectively.

Statistics of the ESTER Dataset Table A1
shows the data statistics per event relation type.
The Causal event relation type is the largest cate-
gory, while Counterfactual being the smallest one.

Type Train Dev Test

Causal 2047 118 431
Conditional 928 58 289
Counterfactural 294 28 106
Sub-event 678 59 204
Co-reference 600 38 140

All 4547 301 1170

Table A1: The statistics of 5 event types in the ESTER
dataset. We only use the training and development set.
The test set is not published.

C More Generated Answers

8https://github.com/google-research/bert/blob/
master/optimization.py
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Paragraph: Another leftist South American nation, Bolivia, has also expressed a desire to join OPEC despite its modest oil production of
40,000 barrels per day.\n The short-term outlook in terms of OPEC’s influence on oil prices is likely to depend on the discipline of the cartel
and the actual reduction of supplies to the market.\n The cartel decided in October to reduce its output by 1.2 million bpd from the
beginning of November, but analysts believe the real reduction has been only 500,000-800,000 bpd because of cheating by some members.
\n The cut of 500,000 bpd in February would reduce the output from OPEC members, excluding Iraq and Angola, to 25.8 million bpd in
principle.\n Some analysts expressed concern that any reduction in supplies could send prices higher in the months ahead, the peak time
for oil demand because of the northern hemisphere winter.\n
Question: Why could a reduction in supplies send prices higher in the months ahead?
Answer 1: oil demand because of the northern hemisphere winter
Question-answer event relation type: Conditional
UnifiedQA-T5-large(our run): 1: the peak time for oil demand because of the northern hemisphere winter
UnifiedQA-T5-large TranCLR: 1: the peak time for oil demand because of the northern hemisphere winter

Paragraph: Lowe’s decision to bring former England rugby world cup-winning coach Clive Woodward into the backroom staff was one
of the reasons for his unhappiness.\n "As a bloke I got on with him but I have to say the decision to bring him in was bizarre. The
relationship between me and Clive was never going to work because there were too many people undermining the structure Rupert
Lowe wanted at the club," he added.\n In an open letter by Mandaric published in the Sunday Mirror the Pompey chairman said: "If I’m
honest I never wanted Harry to leave in the first place.\n "Of all the candidates Harry is the one which that stands out. The supporters
have to trust me."\n
Question: Why was Mandaric unhappy with Lowe bringing Clive onto the staff?
Answer 1: never wanted Harry to leave in the first place
Answer 2: The relationship between me and Clive was never going to work
Answer 3: the decision to bring him in was bizarre
Question-answer event relation type: Causal
UnifiedQA-T5-large(our run): 1: too many people undermining the structure rupert lowe wanted at the club
UnifiedQA-T5-large TranCLR: 1: the decision to bring him in was bizarre

Paragraph: The visiting U.S. Assistant Secretary of State Richard Boucher on Tuesday said the United States did not have any
involvement in the attack on a religious school in Pakistan’s tribal region.\n "The Pakistani government has said they carried out
initiative to deal with serious threats from fighters who were in that location," Boucher told reporters at U.S. embassy.\n "The Pakistani
government says it has carried out this action. And it was necessary because militants, terrorists created a training center," he said.
\n He supported Pakistan’s policy to engage tribal elders to establish peace in the tribal region. \n
Question: What might have made Richard Boucher say United States did not have any involvement in the attack?
Answer 1: Pakistani government has said they carried out
Answer 2: Pakistani government says it has carried out this action
Question-answer event relation type: Conditional
UnifiedQA-T5-large(our run): 1: the pakistani government has said they carried out initiative to deal with serious threats
UnifiedQA-T5-large TranCLR: 1: the pakistani government has said they carried out initiative

Paragraph: It was Chamara Silva who primarily kept the scoreboard ticking over with a 68-run stand for the fifth wicket with Mahela
Jayawardene, and an unbeaten 57-run partnership with Prasanna Jaywardene.\n At the close, Silva was unbeaten on 79, his second half
century of the match after failing to score in the first Test, while Jayawardene was not out 22.\n Lasith "Slinga" Malinga and Muttiah
Muralitharan had earlier bowled Sri Lanka to a 138-run first innings lead.\n The New Zealand batsmen had no answer to the hostile pace
and slinging action of Malinga at one end, and could not read Muralitharan’s spin at the other, as they crumbled to be all out before lunch
on the second day for 130.\n Of the New Zealand batsmen only Brendon McCullum put up any solid resistance. He was dropped on the
first ball of the day without scoring and went on to post 43 before he was bowled by Muralitharan to end the innings.
Question: What led to the crumbling of New Zealand on the second day?
Answer 1: hostile pace and slinging action of Malinga
Answer 2: could not read Muralitharan’s spin
Question-answer event relation type: Causal
UnifiedQA-T5-large(our run): 1: hostile pace and slinging action of malinga
UnifiedQA-T5-large TranCLR: 1: hostile pace and slinging action of malinga at one end; 2: could not read muralitharan’s spin

Paragraph: Heavy fighting resumed in central Somalia Wednesday after retreating Islamist fighters opened fire on a force of government
and Ethiopian troops, officials and residents said, as the conflict in the Horn of Africa nation entered its second week.\n Hours after the
UN Security Council failed to agree on the withdrawal of foreign troops, Islamists fighters in trenches near the town of Jowhar
opened fire to stop Somali-Ethiopian troops from advancing further southwards.\n "Very heavy fighting has erupted outside Jowhar.
The Islamic forces say they will keep fighting," said Mohamed Abdi Ali, a resident of the town about 90 kilometres (55 miles) north of the
Islamist-controled capital of Mogadishu.\n "Ethiopians have not started using planes yet, but we do not rule that out," he added.\n
Question: What could be expected to happen after the Somali-Ethiopian troops tried to advance southwards?
Answer 1: Islamists fighters in trenches near the town of Jowhar opened fire
Question-answer event relation type: Conditional
UnifiedQA-T5-large(our run): 1: heavy fighting resumed in central somalia
UnifiedQA-T5-large TranCLR: 1: Islamists fighters in trenches

Table A2: Additional generated samples from the selected models. In the first case, both models generate overlong
answers. In the second case, TranCLR manages to generate one completely correct answer while UnifiedQA-T5-
large produced a wrong answer. For the next two cases, TranCLR controls answer range better in the third one and is
able to cover both answers in the fourth one, compared with the UnifiedQA-T5-large baseline. In the last case, only
TranCLR generates related answer.
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