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A B S T R A C T   

We study a version of the two-degree-of-freedom double pendulum in which the two point masses are replaced 
by rigid bodies of irregular shape and nonconservative forces are permitted. We derive the equations of motion 
by analysing the forces involved in the framework of screw theory. This distinguishes the work from similar 
studies in the literature, which typically consider a double pendulum composed with rods and assume equations 
of motion without derivation. The equations of motion are solved numerically using the fourth-order Runge- 
Kutta method to show that decreasing the friction of the axles can cause the trajectory of one of the pendulums to 
become aperiodic. The stability of steady state solutions is also analysed.   

1. Introduction 

The simple double pendulum is one of the most famous dynamical 
systems in classical mechanics, consisting of two point masses joined by 
two massless rods which are free to rotate [1,2]. The system is one of the 
simplest to exhibit features typical of chaotic motion (motion which is 
sensitive to small changes in the initial conditions) [3]. It is also a 
common pedagogical example of a nonlinear dynamical system [4]. 
Many variants of the double pendulum have been considered, including 
a simple asymmetric double pendulum [5]. Various types of compound 
distributed-mass pendulum have also been studied. The most typical 
examples are the double bar pendulum and the double square pendulum 
[6]. An interesting variation on the compound pendulum was consid-
ered by Amer et al., who considered the nonlinear oscillations of a rigid 
body constrained to the plane and attached at a point to one end of a 
massless damped spring, with stiffness k, whose other end is attached to 
another point [7]. This type of system is known to be useful in modelling 
ship motions with nonlinear coupling between pitching and rolling 
motions and is an example of a harmonically excited dynamical system 
with three degrees of freedom [8]. Furthermore, the system has intricate 
dynamics marked by the presence of both bifurcations and chaotic 
motions [9]. A similar two-degree-of-freedom system with non-linear 
damping was studied by Zhu et al., who found that the system can 
exhibit periodic, quasiperiodic and chaotic motions [10]. Their results 
also showed that the amplitude could be reduced by carefully adjusting 
the parameters of the system. 

More recently, El-Sabaa et al. considered the planar motion of a two- 
degree-of-freedom double rigid body pendulum, where the pivot point is 

constrained to move in a Lissajous curve [11]. The resonances were 
classified for this system and solvability conditions were identified for 
the steady-state solutions. The equations of motion were solved 
numerically using the fourth-order Runge-Kutta method. This work 
builds on previous investigations of chaotic responses of a harmonically 
excited spring pendulum system using the method of multiple scales 
[12]. Using this method, the nonautonomous system is reduced to an 
approximate autonomous system of amplitude and phase variables 
which is show to have Hopf bifurcation and a sequence of 
period-doubling bifurcations leading to chaotic motions. Eissa et al. used 
this method to solve the equations of motion up to the fourth order 
approximation and extracted all primary resonance cases to this order 
[13]. 

The stability of the system was also investigated using both fre-
quency response equations and the phase-plane method. Addelhfeez 
et al. considered the planar motion of a three-degree-of-freedom triple 
pendulum, consisting of a double rigid pendulum attached to an un- 
stretched rod, whose suspension point is fixed [14]. The resonance 
conditions have been analysed for harmonically excited 
three-degrees-of-freedom pendulum using the asymptotic method of 
multiple scales [15–17]. Finally, both regular and chaotic behaviour has 
been studied for a two-degree-of-freedom double pendulum with 
repulsive permanent magnets embedded in each body, with the first 
magnet installed at the end of the second pendulum and the second one 
attached to the body of the experimental rig. It was found that the 
motion is governed by a pair of coupled non-linear second-order ODEs 
which include friction and magnetic interaction torques [18]. This study 
was subsequently extended to a two-degree-of-freedom system 
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consisting of a double pendulum with magnets embedded in a variable 
magnetic field, where the pivots of the two pendulums are coupled by an 
elastic element [19]. 

In this article, we study the planar motion of a two-degree-of- 
freedom rigid body pendulum, where the upper body is attached to a 
stationary axle. Similarly to [18], the mathematical model which we use 
allows for the inclusion of nonconservative forces. The equations of 
motion are derived using screw theory formalism and analysis of forces. 
It is then easy to include the effects of friction at both axles. This is to be 
compared with [18], where both the form of the equations of motion and 
the governing equations for friction torques are assumed a priori to fit 
with experimental data. Since both the equations of motion and the 
equations for the torques have a form which is somewhat long and 
complicated, the mathematical model ends up having 15 parameters 
and has very long transitional processes. This can be compared with our 
model, which allows for the inclusion of friction and other nonconser-
vative forces in a simple way. It is anticipated that the model which we 
study could be useful when studying locomotion of a robot, where the 
robot has a leg composed of two links of identical irregular shape and 
friction occurs at both axles. In Section 2, we describe the dynamical 
system which we study and the physical assumptions which we employ 
in our mathematical model. In Section 3, we give a brief introduction to 
screw theory and the notation of screws. This notation is then used to 
derive the equations of motion. In Section 4, we solve the equations 
numerically and demonstrate an interesting point that decreasing fric-
tion at the axles of the two bodies can cause them to stop oscillating in 
phase. In Section 5, we study stability of steady state solutions for the 
system, the case which would likely be of most interest for applications 
in robot walking. In Section 6, we finish with conclusions and future 
directions. 

2. The compound double pendulum 

We will begin by setting up the mechanical system which we would 
like to study. Consider a double pendulum composed of two identical 
rigid bodies with equal mass m and some irregular shape (see Fig. 1 for 
an example). Note that the two bodies do not necessarily need to be rods 
or squares. The upper body rotates around a fixed axle at P in the 
x-direction and the lower body rotates about an axle at Q which passes 
through the upper body. The two axles are assumed to be massless and 
the axles are situated at the same points within the geometries of their 
respective plates. It is also assumed that the two bodies have uniform 

mass density distributions and that both bodies have the same moments 
of inertia about their axles, where the moment of inertia is defined to be 
the second moment of the mass density. Our setting is generalized in-
sofar as we do not neglect the effects of friction or other non- 
conservative forces at the axles. A coordinate system with origin at P 
is defined as shown in Fig. 1 and the centers of mass for the upper and 
lower bodies are located at positions (x1, y1) and (x2,y2). The centers of 
mass of the two bodies form angles θ1 and θ2 with respect to the y axis. 
The distance between the two axles is defined to be d and the distance 
between each axle and the respective center of mass at (x1, y1) or (x2, y2)

is defined to be c. The notation for all the quantities used in given in 
Table 1. 

To begin deriving the equations of motion, note that the orientation 
of each plate can be described by a rotation matrix R(θi) from the group 
of special orthogonal matrices SO(2): 

R(θi) =

(
cosθi − sinθi
sinθi cosθi

)

, (1)  

for i = 1,2. Such a transformation rotates points in the xy-plane through 
an angle θi with respect to the x-axis about the origin of a Cartesian 
coordinate system. The aim is to arrive at a system of equations 

τ = Aθ̈ + b, (2)  

where τ is a vector of torques, θ̈ denotes an angular acceleration, and A 
and b are defined in terms of angular positions θ and angular speeds θ̇. As 
we have two plates, we must ultimately get rid of all the reaction forces 
and produce a system of two coupled scalar equations. 

Fig. 1. Left: a diagram of the rigid body double pendulum showing the locations of the axles and the centres of mass in the xy-plane. The first axle is located at the 
point P and the second is located at the point Q. Right: the rigid body pendulum from an angle. Both axles are shown to go through the z-axis. The angles θ1 and θ2 of 
the centres of mass with respect to the y-axis are also shown. 

Table 1 
Parameters of the system.  

Quantity Dimension Description 

m kg Mass of first and second pendulum 
θ1 Dimensionless Angle which first pendulum makes with y axis 
θ2 Dimensionless Angle which second pendulum makes with y axis 
d m Distance between the two axles 
I kg m2 Moment of inertia 
c m Distance from an axle to the centre of mass of 

pendulum 
γ1 Dimensionless Friction coefficient for first axle 
γ2 Dimensionless Friction coefficient for second axle 
g m s− 2 Acceleration due to gravity  
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The position vector for the center of mass c1 of the first plate is a 
function of the angle θ1 which we can define as 

c1 = R(θ1)

(
0
− c

)

=

(
csinθ1
− ccosθ1

)

. (3)  

The position vector for the second center of mass c2 is found by adding 
the relative position vector for the second axle r2: 

c2 = R(θ1)

(
0
− d

)

+ R(θ2)

(
0
− c

)

=

(
dsinθ1 + csinθ2

− dcosθ1 − ccosθ2

)

. (4)  

We then need to derive the rotational velocities and accelerations for 
both bodies and the linear velocities and accelerations of the points P 
and Q. The angular velocities of the two plates are simply 

ω1 = θ̇1k, ω2 = θ̇2k, (5)  

whereas the angular accelerations are given by 

ω̇1 = θ̈1k, ω̇2 = θ̈2k. (6)  

The first axle is fixed, so we have for the linear velocities 

v1 = 0, v2 = (k× r2)θ̇1. (7) 

For the linear accelerations of the two plates, we have 

a1 = 0, a2 = (k× r2)θ̈1 − r2θ̇
2
1. (8)  

Similarly, the linear and angular accelerations of the two centers of mass 
are given by 

ċ1 = (k× c1)θ̇1, ċ2 = (k× c2)θ̇2, c̈1 = (k× c1)θ̈1 − c1θ̇
2
1, c̈2

= (k× c2)θ̈2 − c2θ̇
2
2.

(9)  

We now need to balance the forces and torques involved in the problem. 
The equation for one single rigid body is given by Newton’s second law. 
For the first plate, we obtain 

R1 − R2 − mgj = mc̈1, (10)  

where Ri denotes the reaction force at the i-th axle and mg is the 
restoring force due to gravity which tries to move the plate back to its 
equilibrium position. For the second plate, we have 

R2 − mgj = m
(

r̈2 + c̈2

)

. (11)  

Substituting equation (11) into (10) eliminates the reaction force R2. 
However, R2 appears again in the torque balance equations. These are 
written down using the fact that the net torque about a joint is zero, 
which gives us 

τ1 − τ2 = Iθ̈1 + k⋅(r2 × R2), (12a)
τ2 = Iθ̈2 + k⋅

(
c2 × mr̈2

)
. (12b)

The hope is that we can then get rid of the reaction forces by back- 
substituting and plugging the result back into equations (12a) and 
(12b). This ends up giving extremely long and cumbersome expressions 
which would need to be processed with a computer algebra system. 
Instead of proceeding in this way, it is easier for our purposes to intro-
duce an alternative type of notation called screw notation. 

3. Basics of screw notation 

Screw notation pairs up two vectors into one object with six com-
ponents (a screw being a pair of three-dimensional real vectors). Note 
that this switch in notation changes the usual vector calculus operations 

(× is no longer a vector cross-product because one is working with 6 × 1 
vectors). The physical intuition behind the use of screws is that any 
spatial displacement of a rigid body can be defined using a translation 
along a line, followed by a rotation around an axis parallel to that line (a 
fact known as Chasles’ theorem). The line along which the body is 
translated is known as a screw axis, by analogy with the fact that the 
pitch of a screw relates a rotation around an axis to a translation along 
that axis. A screw is a six-dimensional vector constructed from a pair of 
three-dimensional vectors. The key idea from the computational point of 
view is that the algebraic manipulations can be simplified using the fact 
that in screw notation the magnitude of a vector along a line is coupled 
to the moment about this line, which removes the necessity of dealing 
with the forces and the torques separately. 

The screw which is formed from a force vector and a torque vector is 
known in the literature as a wrench: 

W =

(
r × F

F

)

. (13)  

For example, the pure gravity wrench G i for both plates is a 6-compo-
nent vector defined to be 

G i =

(
− mgci × j
− mgj

)

, (14)  

where the direction of gravity is taken to be in the negative y direction, g 
is the acceleration due to gravity, ci is the position vector for the center 
of mass of the plate, and j is the unit vector in the y direction. On the 
other hand, the gravity screw is defined to be 

g =

(
0

− gj

)

, (15)  

where 0 denotes the three-dimensional vector whose components are all 
zero. Finally, a twist is a screw formed from the angular velocity of a 
rigid body around an axis and the linear velocity along that axis. 

The dynamics of a robot can be simplified further by directly writing 
equations for the angular accelerations and angular speeds of the bodies 
about the axles. Since we are dealing with two links, we will write these 
for a pair of torques: 

τ1 = A1j θ̈j + B1jk θ̇jθ̇k + C1, (16a)
τ2 = A2j θ̈j + B2jk θ̇jθ̇k + C2, (16b)

where repeated indices are summed over. As long as we know the forms 
for A, B, and C, this then directly provides the dependencies of the 
torques on the angular speeds and accelerations which would have to be 
obtained at great length using the usual vector notation. A is a 6 × 6 
matrix defined to be 

Aij =

{
sT

i (N1 + N2)sj if i ≥ j
sT

j (N1 + N2)si if i < j
(17)  

and the B and C terms are Coriolis and gravity terms, respectively, 
which are defined in terms of s, N, and the gravity screw g. The usual 
choice for the tensor B is given by 

Bijk =
1
2

(
sT

j (Nx +… + N2)[si, sk] + sT
k (Nx +… + N2)

[
si, sj

]
− sT

i (Nx +…

+ N2)
[
sk, sj

])
.

(18)  

The gravity terms C are defined by 

Ci = sT
i (Ni +… + N2)g. (19)  

si denotes an eigenvector of the inertia matrix, where i refers to the i-th 
principal axis (also known as a principal screw of inertia). Substituting 
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in the necessary quantities, we arrive at two coupled scalar equations for 
the torques:  

The equations of motion in Eq. (20) form a pair of coupled nonlinear 
differential equations which can only be solved numerically. We will 
here assume that the instantaneous joint torque τi at a moment of time 
may be taken to be proportional to the friction of the axle, so that we 
have 

τ1 = − γ1θ̇1 − γ2(θ̇1 − θ̇2), τ2 = γ2(θ̇1 − θ̇2), (21)  

where γ1 and γ2 are coefficients of friction at the joints. This then leads to 
the following equations of motion:  

By way of verification of these equations, we note that they match with 
equations of motion which were assumed by Tian et al. [20] for a two 
degree-of-freedom hinged double rod pendulum which impacts with a 
rigid wall. We note that with some modifications the method which we 
have used here could also be used to rigorously derive the equations of 

motion used in [20]. The method which we have used can also be 
generalised to any type of torque apart from friction torques. 

4. Numerical solution 

To make an initial investigation of the dynamics of the pendulum the 
equations of motion are solved numerically using the fourth-order 
RungeKutta method. For this purpose, the ode45 solver was imple-
mented in MATLAB. This solver uses an adaptive time step and cannot 
be used with a fixed time step. In the numerical solution, it is also 
assumed that the two pendulums can only swing at a small angle in the 
same vertical plane. For the solver, the absolute and relative error tol-
erances are both set to 1× 10− 6. Typically in the literature on double 
pendulums, one notes that if the two pendulums are released from rest at 
the same initial angle, they will oscillate in phase [9]. Chaotic motion 

appears if the pendulums are released from a larger initial angle, which 
causes the two trajectories to diverge so that the in-phase oscillations are 
broken. It is interesting to ask whether the presence of friction or other 
non-conservative forces could have an influence on whether the motion 
can become unpredictable. 

Fig. 2. θ1 θ2 θ̇1 and θ̇2 against time for γ1 = γ2 = 1,0.4,0.1.  

− γ1θ̇1 − γ2(θ̇1 − θ̇2) = 2md2θ̈1 + Iθ̈1 + md2θ̈2cos(θ1 − θ2) + md2θ̇
2
2sin(θ1 − θ2) + 2mgdsinθ1, (22a)

γ2(θ̇1 − θ̇2) = md2θ̈2 + Iθ̈2 + md2θ̈1cos(θ1 − θ2) − md2θ̇
2
1sin(θ1 − θ2) + mgdsinθ2. (22b)

τ1 = 2md2θ̈1 + Iθ̈1 + md2θ̈2cos(θ1 − θ2) + md2θ̇
2
2sin(θ1 − θ2) + 2mgdsinθ1, (20a)

τ2 = md2θ̈2 + Iθ̈2 + md2θ̈1cos(θ1 − θ2) − md2θ̇
2
1sin(θ1 − θ2) + mgdsinθ2. (20b)
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To solve the equations numerically, we set all the parameters to unity 
and g to 9.8 ms− 1. As example initial conditions, we use θ1 = 0∘, θ2 = 4∘, 
and θ̇1 = θ̇2 = 0. In Fig. 2, we plot θ1, θ2, θ̇1 and θ̇2 against time with γ1 
= γ2 = 0.1, 0.4, 1, respectively. As one might expect, the presence of 
friction has a strong damping effect, but interestingly, the motion can 
become somewhat aperiodic as the friction is lowered, showing typical 
modes for the first pendulum which are out of phase with the second 
pendulum. We attribute the intuitive reason for this as the fact that 
stronger friction at the joints stops the bodies from turning as easily and 
so restricts them into following relatively regular trajectories, whereas 
without friction it becomes easier for the upper pendulum to be jerked 
back and forth such that it no longer follows a normal mode. 

5. Stability 

We will comment here on the formal stability of solutions at the 
steady state. A possible application of the system which we have dis-
cussed is to model the leg of a locomoting robot in a fashion which is 
slightly more realistic than that of a double rod pendulum, since both the 
upper and lower limb are allowed to have an irregular shape. In this 
case, it is sufficient to make a theoretical study of the system for motions 
with small angles. In this approximation, one has 

cos(θ1 − θ2) ≈ 1, sin(θ1 − θ2) ≈ θ1 − θ2, cosθi ≈ 1, sinθi

≈ θi, θ̇
2
i ≈ 0. (23)  

Using this approximation, the equations of motion become 

γ1θ̇1 − γ2
(
θ̇1 − θ̇y

)
= 2md2θ̈1 + Iθ̈1 + md2θ̈2 + 2mdgθ1, (24a)

γ2(θ̇1 − θ̇2) = md2θ̈2 + Iθ̈2 + md2θ̈1 + dmgθ2. (24b)

To reduce this system from second order to first order, we let θ1 = x1, ẋ1 
= x2, θ2 = y1, ẏ1 = y2 and solve for ẋ1, ẋ2, ẏ1 and ẏ2:  

Calculating the Jacobian J(x), we obtain  

where (∗) denotes d4m2 − γ1(d2m + I)+ 3d2Im+ I2. Numerically eval-
uating the determinant equation of the Jacobian to determine its ei-
genvalues, we find that J always has four eigenvalues with negative real 
part (ie. solutions are stable) unless a≲γ1. In this case, there is one 
eigenvalue with positive real part, implying instability. It follows that 
steady state solutions are stable as long as this condition is avoided. 

6. Conclusions 

The problem of the nonlinear dynamical motion of a 2-DOF com-
pound double pendulum with bodies of irregular shape has been 
investigated. We have considered a fixed pivot point for the first 
pendulum, but an interesting generalisation might be extend to the case 
the pivot point moves in an elliptical trajectory with a steady angular 
velocity, similarly to [17]. The analysis could also be easily extended to 
include two bodies with differing masses or moments of inertia. The 
governing equations of motion were derived using screw theory 
formalism and solve numerically using the fourth-order Runge-Kutta 
method in order to examine the influence of nonconservative forces on a 
typical trajectory. In this work, we considered friction torques in the 
equations of motion, but our analysis could easily be extended to include 
more general types of nonconservative force. Our method also allows for 

a rigorous, transparent derivation of similar equations of motion which 
were stated without justification for a hinged double pendulum in [20]. 
We have also analysed the stability of solutions at the steady state. The 
main applications of our model are likely in rotor dynamics and in 
walking analysis for humans or robots. The model may be particularly 
useful for robot walking, since although a human leg could be modelled 
by a double pendulum where each pendulum is a rod, a robot leg could 
have an upper and lower limb of irregular shape (for example, where 
both limbs are armour-plated and have mass distributions which can be 
encoded by the moment of inertia). 

ẋ1 = x2, (25a)

ẋ2 =
d3 gm2y1 − 2dgx1m

(
d2m + I

)
− γ2x2

(
2d2m + I

)
+ γ2y2

(
2d2m + I

)

d4m2 − γ1
(
d2m + I

)
+ 3d2Im + I2 , (25b)

ẏ1 = y2, (25c)

ẏ2 =
2d3 gm3x1 − dgm2y1

(
2d2m − γ1 + I

)
+ γ2x2

(
3d2m − γ1 + I

)
− γ2y2

(
3d2m − γ1 + I

)

d4m2 − γ1
(
d2m + I

)
+ 3d2Im + I2 . (25d)

J(x) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0

−
2dgm2( d2m + I

)

( ∗ )
−

γ2
(
2d2m + I

)

( ∗ )

d3 gm2

( ∗ )

γ2
(
2d2m + I

)

( ∗ )

0 0 0 1
2d3 gm2

( ∗ )

γ2
(
3md2 − γ1 + I

)

( ∗ )

− dgm
(
2md2 − γ1 + I

)

( ∗ )
−

γ2
(
3md2 − γ1 + I

)

( ∗ )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (26)   
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