
 

 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Manuscript version: Author’s Accepted Manuscript 
The version presented in WRAP is the author’s accepted manuscript and may differ from the 
published version or Version of Record. 
 
Persistent WRAP URL: 
http://wrap.warwick.ac.uk/173768                                
 
How to cite: 
Please refer to published version for the most recent bibliographic citation information.  
If a published version is known of, the repository item page linked to above, will contain 
details on accessing it. 
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  
 
Copyright © and all moral rights to the version of the paper presented here belong to the 
individual author(s) and/or other copyright owners. To the extent reasonable and 
practicable the material made available in WRAP has been checked for eligibility before 
being made available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-profit 
purposes without prior permission or charge. Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 
 
Publisher’s statement: 
Please refer to the repository item page, publisher’s statement section, for further 
information. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk. 
 

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/173768
mailto:wrap@warwick.ac.uk


POST-CRITICALLY FINITE MAPS ON Pn FOR n ≥ 2
ARE SPARSE

PATRICK INGRAM, ROHINI RAMADAS, AND JOSEPH H. SILVERMAN

Abstract. Let f : Pn → Pn be a morphism of degree d ≥ 2.
The map f is said to be post-critically finite (PCF) if there exist
integers k ≥ 1 and ` ≥ 0 such that the critical locus Critf satisfies
fk+`(Critf ) ⊆ f `(Critf ). The smallest such ` is called the tail-
length. We prove that for d ≥ 3 and n ≥ 2, the set of PCF maps f
with tail-length at most 2 is not Zariski dense in the the parameter
space of all such maps. In particular, maps with periodic critical
loci, i.e., with ` = 0, are not Zariski dense.
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1. Introduction

A rational map f : P1 → P1 of degree d ≥ 2 is said to be post-
critically finite (PCF) if all of its critical points have finite forward or-
bits. PCF maps play a fundamental role in the study of one-dimensional
dynamics; see Remark 6 for a brief history. In particular, PCF maps
are ubiquitous in the sense that they are Zariski dense in the parameter
space of all degree d rational maps of P1, and the same is true of the
smaller collection of post-critically periodic (PCP) maps, which are the
maps whose critical points are periodic; see [6, Theorem A].

Fornæss and Sibony [8] introduced an analogue of PCF maps on Pn
for n ≥ 2, and a number of authors have constructed examples of such
maps and studied their properties; see [1, 2, 5, 13, 14, 15, 21, 25] for
examples in complex dynamics, and [3, 13] for some arithmetic results.
Our aim in this paper is to explain why it is likely that the set of such
maps is much sparser than in the one-dimensional case, and to prove a
result which quantifies this statement for PCF maps having small tail
length. We set the notation

Endnd :=

{
morphisms f : Pn → Pn of algebraic

degree d, i.e., f ∗OP(1) = OP(d)

}
.

We note that Endnd is naturally identified with a Zariski open subset
of PN , where N = (n + 1)

(
d+n
n

)
− 1. More precisely, the variety Endnd

is the complement of the hypersurface in PN defined by the vanishing
of the Macaulay resultant. See [23, Chapter 1] for details.

In this paper we always work over1

F := an algebraically closed field of characteristic 0.

Definition 1. The critical locus of a map f = [f0, . . . , fn] ∈ Endnd
given by homogeneous polynomials fi(x0, . . . , xn) is the variety

Cf :=

{
det

(
∂fi
∂xj

)
= 0

}
⊂ Pn.

The branch locus of f is the image of the critical locus, taken with the
reduced scheme structure and denoted by

Bf := f(Cf ).

Definition 2. A map f ∈ Endnd is post-critically finite (PCF) if there
exist k ≥ 1 and ` ≥ 0 such that

fk+`(Cf ) ⊆ f `(Cf ).
1Some parts of this paper remain true over infinite fields of characteristic p, but

to avoid separability complications, we restrict to the case of characteristic 0.
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If k and ` are chosen minimally, we say that f is PCF of Type (k, `),
where k is the period and ` is the tail-length. A PCF map with tail
length 0 is said to be post-critically periodic (PCP).

Our main theorem says that in dimension greater than one, post-
critically periodic maps are comparatively rare, and more generally
the same is true for post-critically finite maps whose tail-length is at
most 2.

Theorem 3. Let d ≥ 3 and n ≥ 2. Fix some ` ≤ 2. Then

{f ∈ Endnd : f is post-critically finite of Type (k, `) for some k ∈ N}

is contained in a proper Zariski closed subset of Endnd .

We conjecture that Theorem 3 is true for any fixed tail-length, and
we ask whether it remains valid for the union over all tail-lengths.

Conjecture 4. Let d ≥ 3 and n ≥ 2. Then for all ` ≥ 1,

{f ∈ Endnd : f is post-critically finite of Type (k, `) for some k ∈ N}

is contained in a proper Zariski closed subset of Endnd .

Question 5. Let d ≥ 3 and n ≥ 2. Is the set

{f ∈ Endnd : f is post-critically finite}

contained in a proper Zariski closed subset of Endnd?

Remark 6. One motivation for studying PCF endomorphisms in higher
dimensions comes from work of Nekrashevych [18], in which he studies
the Julia set of a PCF map f : PNC → PNC using an associated iter-
ated monodromy group. In [1], Belk and Koch explicitly compute the
iterated monodromy group associated to a particular example, which
in fact turns out to be post-critically periodic. We also mention that
the algebraic analogue of the partial self-covering property is exploited
in [3] to show that extensions of number fields obtained by adjoin-
ing backward orbits of points relative to PCF endomorphisms of any
smooth, projective variety are finitely ramified.

Remark 7. For ease of exposition, we work in the parameter space
Endnd , but we note that since the PCF property is invariant under
PGLn+1-conjugation, Theorem 3 could equally well be formulated for
the dynamical moduli space Mn

d := Endnd //PGLn+1 constructed via
GIT in [17, 20]. And similarly for Conjecture 4 and Question 5.
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Remark 8. The property of being PCF as given in Definition 2 admits
two other equivalent characterizations that are sometimes useful. First,
a map f ∈ Endnd is PCF if and only if the post-critical locus

PostCrit(f) :=
⋃
m≥1

fm(Cf )

is algebraic, that is, if PostCrit(f) consists of a finite union of algebraic
hypersurfaces. This equivalence follows immediately from the fact that
for each m, the image fm(Cf ) is a finite union of algebraic hypersur-
faces. Second, a map f is PCF if and only if there exists a Zariski-open
subset U ⊆ PN such that f−1(U) ⊆ U and such that f : U → PN is
unramified; specifically, if such a U exists, then its complement is al-
gebraic and contains the post-critical locus.

We briefly summarize the contents of this paper. In Section 2 we
give various constructions of PCF maps and non-PCF maps, and in
particular show that for all d and n, every period and tail length can
occur. In Section 3 we prove that there is a Zariski dense set of f ∈
Endnd such that Cf is a variety of general type. (We thank Jason Starr
for showing us this proof.) We use this in Section 4 to show that the
set of PCP maps, i.e., the set of maps f of PCF Type (k, 0), is not
Zariski dense. Section 5 contains two multiplicity lemmas. In Section 6
we construct maps whose branch locus has a minimally branched point
and use this map to show that the set of f of PCF Type (k, 1) is not
Zariski dense. Section 7 gives a general method for proving, for any
fixed `, that the set of f of PCF Type (k, `) is not Zariski dense. This
method requires showing that there exists a single map having certain
properties. In Section 8 we construct such a map for ` = 2, thereby
completing the proof that the set of f of PCF Type (k, 2) is not Zariski
dense.

2. Examples of PCF maps

Before proving our main results on higher dimensional PCF maps,
we pause in this section to give a number of examples. We remark
that in all of these examples, the critical locus Cf is reducible, and
indeed it is generally a union of rational hypersurfaces, the multiplic-
ity MultCf (f) is strictly greater than 2 and generally equal to deg(f),
and the restriction f |Cf : Cf → Bf is generally not 1-to-1. This high-
lights the difficulty of constructing maps whose critical and branch loci
are sufficiently generic, and the existence of such maps is the key to
proving results such as Theorem 3.
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Example 9. The most obvious PCF map is the d-power map

f = [xd0, . . . , x
d
n] with critical locus Cf = {x0x1 · · ·xn = 0}

consisting of the coordinate hyperplanes. Thus f(Cf ) = Cf , so f is PCF
of Type (1, 0).

Example 10 (Symmetric powers of PCF maps on P1). Let f : P1 → P1

be a map of degree d. Then the n-fold product map, which we denote
by

Fn := f × f × · · · × f : (P1)n −→ (P1)n,

descends to a map F̃n on the symmetric product (P1)n/Sn. Using the
standard isomorphism Pn ∼= (P1)n/Sn, we obtain a map F̃n on Pn such
that the diagram in Figure 1 commutes.

(P1)n
Fn−−−→ (P1)n

π

y yπ
Pn F̃n−−−→ Pn

Figure 1. The symmetric power of a PCF map

The commutative diagram above can be used to relate the dynamical
properties of F̃n to those of f ; see [28] and [27] for a systematic study
of symmetric power maps. Firstly, we observe that F̃n and f have the
same algebraic degree, and an explicit chain-rule calculation (whose
details we omit here) can be used to relate the critical locus of F̃n
to that of f . Secondly, the branch locus of F̃n is reducible, with each
irreducible component rational. Also, F̃n is PCF if and only if f is PCF.
Now, suppose that f is PCF. Given p ∈ Cf , p is pre-periodic under f ;
we denote the tail-length and period of p by `p and kp, respectively. A
straightforward diagram chase and chain-rule computation can be used
to show that F̃n is PCF of Type (k, `) with

k = lcm
p∈Cf

kp and ` = max
(
1,max

p∈Cf
{`p}

)
. (1)

As a special case of Example 10, we obtain the following result.

Proposition 11. For all n ≥ 1, all d ≥ 2, all k ≥ 1 and all ` ≥ 1,
there exists a PCF map of Type (k, `) in Endnd .

Proof. It is known that for all d ≥ 2, all k ≥ 1 and all ` ≥ 1, there
exists a PCF map f of Type (k, `) in End1

d such that f has exactly two
critical points, one fixed, and one pre-periodic of Type (k, `). More
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precisely, one can take f(x) = xd + c for an appropriate choice of c. It
follows from (1) that F̃n ∈ Endnd is PCF of Type (k, `). �

Example 12. Koch [15] has used Teichmüller theory and Thurston’s
topological characterization of PCF maps on P1 (presented in [7] by
Douady and Hubbard) to construct interesting PCF maps in all di-
mensions and degrees. We omit the details of the construction but
note that for every PCF map on Pn arising from Koch’s construction,
the post-critical locus is contained in the union of hyperplanes

∆ :=
⋃

0≤i≤n

{xi = 0} ∪
⋃

0≤i<j≤n

{xi = xj}.

It follows from counting the number of hyperplanes in ∆ that if a map
arising from Koch’s construction is PCF Type (k, `) then 1 ≤ k, ` ≤
(n + 1 +

(
n+1
2

)
). (In fact, the postcritical portraits of these maps can

be completely described; see [15, Propositions 6.1 and 6.2].)

Example 13. Although our contention is that PCF maps are rare, it is
perhaps not obvious that there exist any maps that are not PCF. One
non-constructive way to see that there exist PCF maps defined over C is
to apply Fakhruddin’s result [29] that a very general endomorphism of
Pn does not have any positive-dimensional periodic subvarieties other
than Pn, hence cannot be PCF if n ≥ 2. We take the time here to
construct examples of non-PCF maps in Endnd , defined over Q, for
all d ≥ 2 and all n ≥ 1. We consider the family of morphisms

ft : Pn −→ Pn, ft(X0, . . . , Xn) := [Xd
0 + tXd

1 , X
d
1 , X

d
2 , . . . , X

d
n].

The support of the critical locus of ft is the union of the coordinate
hyperplanes {Xi = 0}, each of which is fixed by ft except {X0 = 0}.
Set

Hα := {X0 = αX1} ⊂ Pn,
and note that (ft)∗Hα = Hαd+t. It follows that ft is PCF if and only if
the univariate polynomial zd + t is, and so f1 in particular is not PCF.

We observe as an immediate consequence that for any fixed k and `,
the set

{f ∈ Endnd : f is post-critically finite of type (k, `)} (2)

is not Zariski dense in Endnd . This follows, since elimination theory
says that the set (2) is Zariski closed, and our example says that the
complement of (2) is non-empty. Of course, the fact that (2) is not
Zariski dense for each fixed pair (k, `) is much weaker than Theorem 3,
which implies that if ` ≤ 2, then the union of (2) over all k is still not
Zariski dense.
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3. Determinental varieties are of general type

A key tool in the proof that PCP maps are sparse is the following
result, whose proof was shown to us by Jason Starr.

Theorem 14. Let n ≥ 2 and d ≥ 3. Then the set

{f ∈ Endnd : Cf is an irreducible variety of general type}
is a non-empty Zariski open subset of Endnd .

Proof. The generic determinantal variety

D =
{
M ∈ Mat(n+1)×(n+1)(F) ∼= F(n+1)2 : det(M) = 0

}
is singular, but its singularities are relatively mild. More precisely, the
generic determinantal variety D is canonical, and thus all global sec-
tions of (positive powers of) the dualizing sheaf on the singular deter-
minantal variety lift to global sections (rather than to rational/mero-
morphic sections) of (positive powers of) the dualizing sheaf on any
desingularization. This follows from results of Vainsencher [26], who
describes an explicit desingularization D̃ of D as the space of complete
linear collineations. The result is also stated explicitly and proven in
the preprint of Starr [24, Corollary 3.14].

Since D has canonical singularities, and since the total space of the
incidence correspondence is smooth over the parameter space of matri-
ces, it follows that the inverse image of D in this total space also has
canonical singularities. Thus when we project this total space to the
parameter space of (n + 1)-tuples of homogeneous degree d polyomi-
als, the (geometric) generic fiber has canonical singularities. Hence the
open set of the parameter space consisting of fibers that have canonical
singularities is dense.

Since these fibers have canonical singularities, they are of general
type once the dualizing sheaf is ample. But for degree d maps Pn → Pn,
the dualizing sheaf of the critical locus is the restriction of

OPn
(
(n+ 1)(d− 2)

)
.

Hence if d ≥ 3, then a general (n + 1)-tuple of degree d homogeneous
polynomials has a critical locus whose desingularization is of general
type. �

Theorem 14 covers maps of degree d ≥ 3 for all dimensions n. For
dimension 2 we can prove something stronger that includes quadratic
maps.

Theorem 15. We consider the set of maps

E sm-irr
d := {f ∈ End2

d : Cf is smooth and irreducible}.
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(a) Let d ≥ 1. Then E sm-irr
d is a non-empty Zariski open subset of End2

d.
(b) Let d ≥ 2. Then E sm-irr

d does not contain any PCP maps.
(c) For all d ≥ 2, the set

{f ∈ End2
d : f is PCP}

is not Zariski dense in End2
d.

Proof. (a) The set E sm-irr
d is clearly Zariski open, so the only question

is whether it’s empty. To prove that E sm-irr
d is not empty, we use [4,

Theorem 1], which says that for any smooth irreducible surface S ⊂
Pr, the set of linear projections π : Pr → P2 such that the critical
locus of π|S is smooth and irreducible is a non-empty Zariski open
subset of the space of linear projections. (The special case that S is
a Veronese embedding of P2 is proven in [16].) Taking S to be the
image of the d-uple embedding ρd : P2 ↪→ Pr [11, Exercise I.2.12], we
see that compositions with linear projections π ◦ ρd correspond exactly
to degree d rational maps P2 → P2. So the desired result is the special
case of [4] in which S = ρd(P2).
(b) Let f ∈ E sm-irr

d . Then Cf is a smooth irreducible curve of de-
gree 3(d− 1) in P2, so it has genus g(Cf ) = 1

2
(3d− 4)(3d− 5) ≥ 1 for

all d ≥ 2.2 Suppose now that f is PCP, so fk(Cf ) = Cf for some k ≥ 1.
(Note that we must have equality, since Cf is irreducible.) Thus Cf is
an irreducible curve that is (forward) invariant for the map fk. Further,
since

Cfk = Cf +f ∗ Cf + · · ·+ f (k−1)∗ Cf ,
we see that Cf is also critical for fk. We now apply [2, Theorem 4.1],
which says that an irreducible curve in P2 that is forward invariant and
critical for a non-linear morphism P2 → P2 is necessarily a rational
curve, i.e., has genus 0. This contradicts g(Cf ) ≥ 1, which completes
the proof that the set E sm-irr

d does not contain any PCP maps.
(c) This is immediate from (a) and (b), since (a) gives a non-empty
Zariski open subset of End2

d, and (b) says that this open set contains
no PCP maps. �

4. Proof that post-critically periodic maps are sparse

In this section we prove the tail length 0 part of Theorem 3, i.e., we
prove the following result:

2For d ≥ 3, the genus satisfies g(Cf ) ≥ 10, so in particular Cf is of general type,
as predicted by Theorem 14; but for d = 2 we see that Cf is not of general type.
This shows that Theorem 14 cannot be extended to d = 2.
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Theorem 16. Let d ≥ 3 and n ≥ 2. Then

{f ∈ Endnd : f is post-critically periodic}
is contained in a proper Zariski closed subset of Endnd .

Proof. For notational convenience we let

PCPn
d := {f ∈ Endnd : f is post-critically periodic}.

We assume that PCPn
d(F) is a Zariski dense subset of Endnd(F) and

derive a contradiction.
Step 1: Theorem 14 tells us that

{f ∈ Endnd(F) : Cf is irreducible and of general type} (3)

is a non-empty Zariski open subset of Endnd(F). Under our assumption
that PCPn

d(F) is a Zariski dense subset of Endnd(F), it follows that the
intersection of PCPn

d(F) with (3), i.e., the set

{f ∈ PCPn
d(F) : Cf is irreducible and of general type},

is also a Zariski dense subset of Endnd(F).
Step 2: We next show that for every map f in the set

{f ∈ PCPn
d(F) : Cf is irreducible and of general type},

there is an integer m(f) ≥ 1 such that

Cf ⊆ Fix(fm(f)),

i.e., there is an iterate of f that fixes every point in Cf . To see this, we
use the definition of PCP to find some k ≥ 1 such that fk(Cf ) ⊆ Cf .
But f is a morphism, so for any irreducible subvariety V ⊂ Pn we
have dim f(V ) = dimV . Hence dim fk(Cf ) = dim Cf , and the ir-
reducibility of Cf implies that fk(Cf ) = Cf . In other words, the
map fk|Cf is a surjective endomorphism of Cf . But Cf is of general
type, and it is known that for varieties of general type, every surjective
endomorphism is an automorphism; see [9, Lemma 3.4] or [12, Propo-
sition 10.10]. Further, the automorphism group of a variety of general
type is finite; see [10] for a recent strong upper bound on its order.3

Hence there exists an r such that fkr fixes every point of Cf , and we
take m(f) = kr.
Step 3: We note that endomorphisms of Pn fix no positive-dimensional
subvarieties.

Lemma 17. Let f ∈ Endnd(F) with d ≥ 2. Then dim Fix(f) = 0.

3The quintessential example is that of a curve of genus g ≥ 2, whose automor-
phism group has order at most 84(g − 1).
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Proof. Note that Fix(f) is certainly Zariski closed, and suppose that
Y ⊆ Fix(f) is an irreducible subvariety of positive dimension. Setting
L = O(1)|Y , we see that f = id on Y implies f ∗L = L. On the other
hand, since f ∗O(1) ∼= O(1)⊗d, we must also have L = f ∗L ∼= L⊗d. As
d ≥ 2, this contradicts L being ample. �

Step 4: We resume the proof of Theorem 16. Let f be an element of
the set

{f ∈ PCPn
d(F) : Cf is irreducible and of general type}. (4)

Applying Step 2, we find an integer m = m(f) ≥ 1 so that

Cf ⊆ Fix(fm).

The map fm is in Endndm(F), so applying Lemma 17 to the map fm

tells us that dim Fix(fm) = 0. Hence

n− 1 = dim Cf ≤ dim Fix(fm) = 0,

contradicting our assumption that n ≥ 2. �

5. Two multiplicity lemmas

In this section we prove two multiplicity lemmas that will be used
to deal with PCF maps of tail length 1.

Definition 18. We use Mult to denote multiplicity in various contexts.
Thus if s is a local parameter cutting out Cf near p and t is a local
parameter cutting out Bf near f(p), then

f#(t) = (unit in the local ring at p) · sk with MultCf (f) = k.

And if Z is a zero-dimensional scheme and p ∈ Z, then MultZ(p) is the
scheme-theoretic multiplicity of Z at p.

Lemma 19. Let X and Y be projective varieties of dimension n, let f :
X → Y be a morphism, and let p ∈ Cf be a point satisfying :

• p is a smooth point of Cf .
• p is a smooth point of X.
• f(p) is a smooth point of Y .
• The restriction f |Cf is an immersion near p.

Then we have:

(a) The point p is an isolated point of f−1(f(p)).
(b) The multiplicity of p in this set equals the multiplicity of f along

its critical locus,

Multf−1(f(p))(p) = MultCf (f).
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Proof. We let

k = MultCf (f).

We first note that since p is a smooth point of Cf and f |Cf is an im-
mersion near p, it follows that f(p) is a smooth point of Bf . We work
in the completions of the local rings at p and f(p), so we can pick lo-
cal equations s cutting out Cf at p and t cutting out Bf at f(p) such
that f#(t) = sk. We complete s and t respectively to local coordi-
nates (x1, . . . , xn−1, xn) = s for X at p and (y1, . . . , yn−1, yn) = t for Y
at f(p) in such a way that (x1, . . . , xn−1) restrict to local coordinates
for Cf at p, and (y1, . . . , yn−1) restrict to local parameters for Bf at f(p),
and further so that in these coordinates, the map induced by fCf from
the completion of the local ring of Bf at f(p) to the completion of the
local ring of Cf at p is

f#
Cf : F[[y1, . . . , yn−1]]→ F[[x1, . . . , xn−1]],

yi 7→ xi, i = 1, . . . , n− 1.

Then in these coordinates, the map induced by f from the completion
of the local ring of Y at f(p) to the completion of the local ring of X
at p is

f# : F[[y1, . . . , yn−1, yn]]→ F[[x1, . . . , xn−1, xn]],

yi 7→

{
xi + fi(xn) for i = 1, . . . , n− 1,

xkn for i = n,

where each fi is a power series in xn whose constant term is zero.

Claim. The set {1, xn, x2n, . . . , xk−1n } is an F-basis for the vector sapce

F[[x1, . . . , xn]](
x1 + f1(xn), . . . , xn−1 + fn−1(xn), xkn

) .
Proof of Claim. Both spanning and linear independence can easily be
shown directly. �

We conclude that

F[[x1, . . . , xn]](
pullback of maximal ideal of f(p)

)
=

F[[x1, . . . , xn]](
x1 + f1(xn), . . . , xn−1 + fn−1(xn), xkn

)
has dimension k over F, so p is an isolated point of multiplicity k
in f−1(f(p)). �
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Lemma 20. Let X and Y be projective varieties of dimension n,
let f : X → Y be a morphism, and let p ∈ X and q ∈ Y be smooth
points such that p is an isolated point of multiplicity k in f−1(q).
Let (x1, . . . xn) be coordinates at p, so the completion of the local ring
to X at p is F[[x1, . . . , xn]], and let (z1, . . . zn) be coordinates at q, so
the completion of local ring to Y at q is F[[z1, . . . , zn]], and suppose that
in these coordinates we have zi = fi(x1, . . . , xn). Denote the maxi-
mal ideals of the completions of the local rings at p and q by m and n
respectively.

(1) The following are equivalent :
(A) k = 1.
(B) f1, . . . , fn generate m.
(C) {f1, . . . , fn} mod m2 is an F-basis for m/m2.
(D) p 6∈ Cf .

(2) If k = 2, then the following are true:
(a) p is a smooth point of Cf .
(b) f |Cf is an immersion near p.
(c) f has multiplicity 2 along Cf near p.

Proof. Recall that

k = dimF
F[[x1, . . . , xn]]

(f1, . . . , fn)
.

This implies the equivalence of (A) and (B). Nakayama’s lemma implies
the equivalence of (B) and (C). By definition, p ∈ Cf if and only if the
Jacobian of f , i.e., the induced map on tangent spaces, drops rank at p.
The Jacobian at p is dual to the induced map from n/n2 to m/m2.
In turn, the map from n/n2 to m/m2 sends the basis {z1 . . . , zn} to
{f1, . . . , fn} mod m2. Thus the Jacobian at p is full rank if and only
if {f1, . . . , fn} mod m2 is an F-basis for m/m2, proving the equivalence
of (C) and (D). This completes the proof of Part (1) of Lemma 20.

For Part (2) we suppose that k = 2. By the preceding discussion,
the set {f1, . . . , fn} mod m2 does not generate m/m2. Let g1, . . . , gs be
functions whose reductions modulo m2 form a basis for

m/m2

Span
(
{f1, . . . , fn} mod m2

) .
Note that we have that s ≥ 1. Also

1, g1, . . . , gs are linearly independent in
F[[x1, . . . , xn]]

(f1, . . . , fn)
.

But

dimF
F[[x1, . . . , xn]]

(f1, . . . , fn)
= 2,
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which implies that s = 1, and hence that 1, g1 form a basis. We con-
clude that {f1, . . . , fn} mod m2 span an (n− 1)-dimensional subspace,
so without loss of generality we may assume that {f1, . . . , fn−1} mod m2

are linearly independent, and that {f1, . . . , fn−1, g1} mod m2 is a basis
for m/m2. By Nakayama’s lemma again,

{y1, . . . , yn} := {f1, . . . , fn−1, g1}

generate m and form an alternate system of coordinates at p. With
respect to these new coordinates, fn is a power series f ′n in y1, . . . , yn.
We expand f ′n with respect to the last coordinate yn,

f ′n(y1, . . . , yn) = c0 + c1yn + c2y
2
n + · · · ,

where each ci is a power series in y1, . . . , yn−1. Also

∂f ′n
∂yn

(y1, . . . , yn) = c1 + 2c2yn + 3c3y
2
n + · · · .

We know that 1, yn forms a basis for

F[[y1, . . . , yn]]

(y1, . . . , yn−1, f ′n)
∼=

F[[yn]]

c0(0, . . . , 0) + c1(0, . . . , 0)yn + c2(0, . . . , 0)y2n + · · ·
,

so we must have

c0(0, . . . , 0) = c1(0, . . . , 0) = 0 and c2,0 := c2(0, . . . , 0) 6= 0.

Let

c1 = c1,1y1 + · · ·+ c1,n−1yn−1 + (higher order terms in m2),

where each c1,i ∈ F. Then

∂f ′n
∂yn

= c1,1y1 + · · · c1,n−1yn−1 + 2c2,0yn + (something in m2).

We want to re-write f in coordinates y1, . . . yn at p and z1, . . . zn at q.
We have the induced map on the completions of local rings,

f# : F[[z1, . . . , zn]]→ F[[y1, . . . , yn]]

zi 7→

{
yi for i = 1, . . . , n− 1,

f ′n for i = n.
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In these coordinates, the Jacobian matrix Jf is of the form

Jf =



1 0 0 · · · 0 ∂f ′n
∂y1

0 1 0 · · · 0 ∂f ′n
∂y2

0 0 1 · · · 0 ∂f ′n
∂y3

...
...

...
. . .

...
...

0 0 0 · · · 1 ∂f ′n
∂yn−1

0 0 0 · · · 0 ∂f ′n
∂yn


.

The critical locus Cf is locally cut out by the determinant of Jf , which
in these coordinates is

det(Jf ) =
df ′n
dyn

= c1,1y1 + · · · c1,n−1yn−1 + 2c2,0yn + (something in m2).

Since c2,0 is non-zero in F, we see that det(Jf ) is non-zero in m/m2,
which implies that Cf is smooth at p.

The tangent space to Cf at p is cut out by the equation

yn = − c1,1
2c2,0

y1 − · · · −
c1,n−1
2c2,0

yn−1,

so y1, . . . , yn−1 restrict to give local coordinates (a basis) for the cotan-
gent space to Cf at p. The map f |Cf : Cf → Y induces the following
map of completions of local rings at p and q:

f#
Cf : F[[z1, . . . , zn]]→ F[[y1, . . . , yn]]

(det(Jf ))
∼= F[[y1, . . . , yn−1]]

zi 7→

{
yi for i = 1, . . . , n− 1,

f ′n mod det(Jf ) for i = n.

In these coordinates, it is clear that the map on cotangent spaces is
surjective, so the map on tangent spaces is injective. Thus the map
f |Cf : Cf → Y is an immersion near p, as desired. Finally, a direct
application of Lemma 19 tells us that f has multiplicity 2 along Cf
near p. �

6. A map with a minimally branched point

In this section we construct a map f whose branch locus contains
a point that is minimally branched. We call this the “hyperplance
construction” because the coordinates of the map f that we construct
vanish along hyperplanes.

Proposition 21 (Hyperplane Construction). Let n ≥ 1 and d ≥ 2.
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(a) There exists a morphism f : Pn → Pn of degree d containing a
branch point q ∈ Bf with the property that

f ∗(q) = 2p+ p1 + p2 + · · ·+ pdn−2︸ ︷︷ ︸
distinct points different from p

. (5)

(b) Let f be a map as in (a) with a point q satisfying (5). Then the
following are true:
(1) The point q is a smooth point of Bf , and thus lies on exactly

one irreducible component B of Bf .
(2) There exists a unique irreducible component C of Cf mapping

to B.
(3) The map f |C : C → B is generically 1-to-1.
(4) The map f has multiplicity 2 along C.

Proof. (a) We take

q = [0 : 0 : · · · : 0 : 1] ∈ Pn,

and we use X = [X1 : · · · : Xn+1] as homogeneous coordinates on Pn.
We are going to create a map

f(X) = [f1 : · · · : fn+1] with fi(X) =
d∏
j=1

Li,j(X),

where the Li,j(X) are linear forms that will be constructed inductively.
We note that

f(P ) = q ⇐⇒
(

for all 1 ≤ i ≤ n there is some index
1 ≤ σ(i) ≤ d such that Li,σ(i)(P ) = 0.

)
In other words, the solutions to f(P ) = q are parameterized by the dn

functions

σ : {1, 2, . . . , n} −→ {1, 2, . . . , d},
where a given σ corresponds to the solution(s) Pσ to the system of
linear equations

L1,σ(1)(P ) = L2,σ(2)(P ) = · · · = Ln,σ(n)(P ) = 0. (6)

To ease notation, we denote this set of index maps by

[n : d] :=
(
collection of maps σ : {1, . . . , n} → {1, . . . , d}

)
.

We start our construction by setting

Ln+1,j(X) = Xn+1 for all 1 ≤ j ≤ d,

i.e., we take

fn+1(X) := Xd
n+1.
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This allows us to dehomogenize Xn+1 = 1, and then by abuse of nota-
tion, we write f = (f1, . . . , fn) for the affine map f : An → An having
affine coordinates (X1, . . . , Xn), and q = (0, 0, . . . , 0).

We next assign the initial linear form in each fi to be Xi, i.e.,

L1,1 = X1, L2,1 = X2, . . . , Ln,1 = Xn, and thus fi = XiLi,2Li,3 · · ·Li,d.
The next step is to select the second linear form in f1, which we do

by setting

L1,2 = X1 −X2. Thus f1 = X1(X1 −X2)L1,3 · · ·L1,d.

This allows us to determine the solution Pσ to (6) for the following
two particular index maps σ1 and σ2 in [n : d]:

σ1 ∈ [n : d] is defined by σ1(i) = 1 for all 1 ≤ i ≤ n.

σ2 ∈ [n : d] is defined by σ2(i) =

{
2 if i = 1,

1 for 2 ≤ i ≤ n.

For these index maps we have

Pσ1 = {X1 = X2 = X3 = · · · = Xn = 0} = q,

Pσ2 = {X1 −X2 = X2 = X3 = · · · = Xn = 0} = q.

Now suppose that for a given k1, . . . , kn ∈ {1, . . . , d}, we have con-
structed linear forms

L1,1, . . . , L1,k1 ,

L2,1, . . . , L2,k2 ,

...

Ln,1, . . . , Ln,kn ,

such that for every

σ ∈ [n : d] satisfying σ(i) ≤ ki for all 1 ≤ i ≤ n, (7)

the following hold:

• There is a solution Pσ to (6).
• The solutions Pσ corresponding to the σ satisfying (7) are distinct

except for the duplicate value Pσ1 = Pσ2 = q noted earlier.

Suppose that
kt < d for some 1 ≤ t ≤ n.

Then we choose a linear form Lt,kt+1 such that

Lt,kt+1(Pσ) 6= 0 for all σ satisfying (7),

i.e., we want Lt,kt+1 to not vanish at all of the previously selected
points. We can find such a linear form by choosing a point in the dual
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space P̌n that is not on any of the hyperplanes defined by the previously
selected Pσ. (This is where we use the assumption that our field F is
infinite, since it ensures that (P̌n)(F) is not covered by finitely many
hyperplanes.)

Note that it also follows that for all σ satisfying (7), the hyper-
plane Lt,kt+1 = 0 does not contain the line⋂

i 6=t

Li,σ(i),

since if it did, then the form Lt,kt+1 would vanish at all points on this
line, including Pσ. Hence for every σ satisfying

σ(i) ≤ ki for i 6= t and σ(t) = kt + 1,

the hyperplanes
L1,σ(1), L2,σ(2), . . . , Ln,σ(n)

intersect properly at a point Pσ that cannot equal any of the previously
constructed points.

Continuing this process, we end up with linear forms

Li,j for all 1 ≤ i ≤ n and all 1 ≤ j ≤ d

such that for σ, τ ∈ [n : d], we have

Pσ = Pτ ⇐⇒ σ = τ or {σ, τ} = {σ1, σ2},
where σ1 and σ2 are the maps defined earlier. It follows that the map

f(X) :=

[ d∏
j=1

L1,j(X) : · · · :
d∏
j=1

Ln,j(X) : Xd
n+1

]
,

satisfies
f ∗(q) = 2q + p1 + p2 + · · ·+ pdn−2,

where the points q, p1, . . . , pdn−2 are distinct. This completes the proof
of Proposition 21(a).
(b) Lemma 20 tells us that:

• p is the only point on Cf that maps to q.
• p is a smooth point of Cf .
• The map f |Cf : Cf → Pn is an immersion near p.

This implies that Bf is smooth at q, so q lies on a unique irreducible
component of Bf , as desired. We know already that q ∈ B has exactly
one pre-image point in Cf , and that that pre-image point p is a smooth
point of Cf , which implies that the unique irreducible component C
of Cf containing p is the only irreducible component of Cf mapping
to B. Since f |C : C → Pn is an immersion near p, it is generically
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1-to-1. Finally, Lemma 20 also tells us that f has order 2 along C,
which completes the proof of Proposition 21(b). �

Remark 22. With minor modifications, the proof of Proposition 21(a)
can be modified to construct a map satisfying f ∗(q) = ep + p1 + p2 +
· · · + pdn−e for any e ≥ 2. To do this, in the proof we simply start
by choosing L1,2, . . . , L1,e to be linear forms defining hyperplanes in
general position.

7. PCF maps with fixed tail length

In this section, we prove a number of results about PCF maps with
fixed tail length `. An immediate consequence will be a proof that PCF
maps with tail length 1 are sparse, and the methods that we develop
will then be used in Section 8 to show that PCF maps with tail length
at most 2 are sparse.

We recall that in Section 4 we proved that a map f whose critical
locus is irreducible and of general type cannot be PCP. The key to the
proof is the fact that these assumptions imply that some iterate fm is
an endomorphism of Cf , and hence is an automorphism of finite order,
since varieties of general type have finite automorphism groups.

More generally, suppose that f is PCF of type (k, `). Then fk re-
stricts to an endomorphism of f `(Cf ), but if f `(Cf ) is not general type,
then it may admit endomorphisms that are not of finite order. On the
other hand, by Theorem 14, we know that for most maps f , the critical
locus Cf is of general type. Our next proposition lays out a roadmap
for proving that PCF maps with fixed tail length ` are sparse. It says,
roughly, that such maps are sparse provided that we can find even a
single map f with the property that f `(Cf ) is of general type. Using
this proposition, we will easily be able to handle the case ` = 1, and
with significantly more work as described in Section 8, the case ` = 2.

Proposition 23. Let n ≥ 2 and d ≥ 3 and ` ≥ 1. Suppose that there
exists at least one endomorphism f0 ∈ Endnd such that f `0(Cf0) has an
irreducible component B with the following properties :

(1) There is exactly one irreducible component C of Cf0 satisfying

f `0(C) = B.

(2) None of the images f0(C), . . . , f `−10 (C) is contained in Cf0.
(3) The map f `0 |C : C → B is generically 1-to-1.
(4) The map f `0 has multiplicity 2 along C.

Then the following are true:
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(a) There is a non-empty Zariski open subset Un
d,` ⊂ Endnd such that

for all f ∈ Un
d,`:

• Cf is irreducible and of general type.
• The map f `|Cf : Cf → f `(Cf ) is generically 1-to-1.
• The map f is not PCF with tail-length `.

(b) The set of PCF maps with exact tail length ` is not Zariski dense
in Endnd .

We start with some preliminary results.

Lemma 24. Let n ≥ 3 and d ≥ 3 and ` ≥ 1. There exists a positive
integer rnd,` and a non-empty Zariski-open set Un

d,` ⊂ Endnd such that
every f ∈ Un

d,` has the following properties :

(1) The critical locus Cf is irreducible and of general type.
(2) The map f `|Cf : Cf → f `(Cf ) is generically rnd,`-to-1.

Proof. We first observe that there is a non-empty Zariski open set
(Un

d,`)1 ⊂ Endnd such that for all f ∈ (Un
d,`)1:

(1) The critical locus Cf is irreducible and of general type. The fact
that this is a non-empty open condition follows from Theorem 14.

(2′) The maps f, f 2, . . . , f ` have no non-trivial automorphisms.4 The
fact that this is a non-empty open condition follows from [17].

Then over (Un
d,`)1 there is a universal family

F : Pn × (Un
d,`)1 → Pn × (Un

d,`)1,

with universal critical locus Ĉ → (Un
d,`)1. We denote by B̂` the under-

lying reduced variety of the image F `(Ĉ) of the universal critical locus
under the `th iterate of F .

The restriction F `|Ĉ : Ĉ → B̂` is generically finite, so has some generic
degree rnd,`. There is an open set (Un

d,`)2 ⊂ (Un
d,`)1 over which πB̂` is flat,

as well as an open set B̂◦` ⊂ π−1B̂`

(
(Un

d,`

)
2
) over which F `|Ĉ is étale of

degree exactly rnd,`. Since a flat map of finite type of Noetherian schemes
is open, the set

Un
d,` := πB̂`(B̂

◦
` ) ⊂ (Un

d,`)2

is open, and over Un
d,`, the map

F `|Ĉ : Ĉ → B̂`
has generic degree rnd,` by construction. �

4In general, the automorphism group of a dynamical system f : Pn → Pn is
Aut(f) := {α ∈ PGLn+1 : α◦f = f ◦α}. It is proven in [17] that if f is a morphism
and d ≥ 2, then Aut(f) is finite, and that the set of f ∈ Endn

d with Aut(f) 6= 1 is
a Zariski closed set.
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Lemma 25. Suppose that there is an endomorphism f0 ∈ Endnd sat-
isfying the hypothesis (1)–(4) of Proposition 23. Then the degree rnd,`
described in Lemma 24 satisfies rnd,` = 1.

Proof. We are given a map f0 that satisfies the four hypotheses of
Proposition 23. Since f0 is in the closure of Un

d,`, we can find a map

F : Spec
(
F[[t]]

)
→ Endnd

such that the generic point Spec
(
F((t))

)
maps to Un

d,` and the special
point at t = 0 maps to f0. Taking a ramified base change if necessary,
we obtain from F a family of degree d morphisms over Spec

(
F[[t]]

)
,

F : Spec
(
F[[t]]

)
× Pn → Spec

(
F[[t]]

)
× Pn.

Denote by Ĉ the underlying reduced scheme of the critical locus of F .
It has pure codimension one. Denote by B̂` the underlying reduced
variety of the image F `(Ĉ) of the universal critical locus under the `th
iterate of F . Denote by Fη the restriction of F to the generic fiber
Spec

(
F((t))

)
×Pn and by F0 the restriction of F to the special fiber PnF.

By construction, we have:

• F0 = f0
• Ĉη is irreducible general type.
• F `η|Cη has degree rnd,`.

Further, since deg(F0) = deg(F) = d, the map F is not ramified along

the special fiber. We conclude that Ĉ is the Zariski closure of Ĉη and

that B̂` is the Zariski closure of (B̂`)η.
Let p ∈ C be a smooth point such that:

• The points f0(p), f
2
0 (p), . . . , f `0(p) = q are not in the critical

locus Cf0 .
• The point p is not in the critical loci of any of the restrictions

(f0)|C , (f 2
0 )|C , . . . (f `0)|C .

Then p and q = f `0(p) satisfy the conditions in Proposition 21(a) with
respect to f `0 , that is, the divisor (f `0)∗(q) is the sum of 2p and (d`)n−2
points having multiplicity 1.

On the one hand, (F `0)−1(q) is a subscheme of (F `)−1(q), while
on the other hand, both schemes have degree (d`)n over F. There-
fore (F `0)−1(q) = (F `)−1(q). This means that p has multiplicity ex-
actly 2 in (F `)−1(q). Since the proof of Lemma 20 was local, we con-

clude that Ĉ is smooth at p, and that B̂` is smooth at q. We also have
that (B̂`)0 is smooth at q.

Claim. The following are true:
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• The map πĈ : Ĉ → Spec
(
F[[t]]

)
is smooth at p.

• The map πB̂` : B̂` → Spec
(
F[[t]]

)
is smooth at q.

Proof of Claim. We follow the proof of Lemma 20. Let (t, x1, . . . xn) be
coordinates at p, so the completion of the local ring to Spec

(
F[[t]]

)
×Pn

at p is F[[t, x1, . . . , xn]], and let (z1, . . . zn) be coordinates at q, so the
completion of the local ring to Spec

(
F[[t]]

)
× Pn at q is F[[t, z1, . . . , zn]].

Using these coordinates, we suppose that F ` is given by

zi = fi(t, x1, . . . , xn).

Without loss of generality, we may assume that

zi = fi(t, x1, . . . , xn) = xi for i = 1, . . . , n− 1.

As in the proof of Lemma 20, we conclude that (t, x1, . . . , xn−1) restrict

to local coordinates on Ĉ, and that (t, z1, . . . , zn−1) restrict to local

coordinates on B̂`. In these coordinates, the maps πĈ and πB̂` are
obtained, respectively, by forgetting all of the xi and zi coordinates, and
thus they are smooth maps. This completes the proof of the claim. �

We resume the proof of Lemma 25. The claim implies that there
exists a section

P : Spec
(
F[[t]]

)
→ Ĉ

with P (0) = p. Then Q := F ` ◦ P is a section of B̂. Since Pη ∈ Ĉη,
we see that Pη appears in (F `η)−1(Qη) with multiplicity at least 2. On

the other hand, by construction we know that (F `)−1(Q)|t=0 has dn−1
distinct F-points, and that (d`)n − 2 of them appear with multiplicity
exactly 1. Hence (F `η)−1(Qη) must have at least (d`)n−2 distinct F((t))-

points appearing with multiplicity exactly 1. Therefore (F `η)−1(Qη)

must have exactly (d`)n − 1 distinct F((t))-points, with exactly one of
them, Pη, appearing with multiplicity 2. Proposition 21(b) implies that
(F `η)|Ĉη has degree 1, so rnd,` = 1, as desired. �

We can now finish the proof of Proposition 23.

Proof of Proposition 23. Suppose that, for some fixed `, the hypotheses
of Proposition 23 are satisfied. Then, by Lemmas 24 and 25, there is
a non-empty Zariski open subset Un

d,` ⊂ Endnd such that for all f ∈
Un
d,`:

• Cf is irreducible and of general type.
• The map f `|Cf : Cf → f `(Cf ) is generically 1-to-1.

It remains to show that if f ∈ Un
d,`, then f is not PCF of tail-length `.

Suppose we have some f ∈ Un
d,`. Then Cf is irreducible and of general
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type, and since f `|Cf : Cf → f `(Cf ) is generically 1-to-1, we know

that f `(Cf ) is birational to Cf , and hence f `(Cf ) is irreducible and of
general type. Assume for contradiction that f is PCF of tail-length `
and some period k > 0. Then fk defines an endomorphism of f `(Cf ).
As in Step 2 of Theorem 16, we conclude that fk|f`(Cf ) is a finite-order

automorphism. Thus there exists some r > 0 such that fkr|f`(Cf ) is the

identity, i.e., such that Cf ⊆ Fix(fkr). But Cf is a hypersurface, so it
has dimension n − 1 ≥ 1, while Lemma 17 tells us that Fix(fkr) has
dimension 0. The contradiction completes the proof of Proposition 23.

�

It is now a simple matter to prove that PCF maps with tail length
` = 1 are sparse.

Theorem 26. Let n ≥ 3 and d ≥ 3. Then

{f ∈ Endnd : fk(Cf ) ⊆ f(Cf ) for some k ≥ 2}
is contained in a proper closed subvariety of Endnd .

Proof. The map constructed in Proposition 21 satisfies the hypotheses
of Proposition 23 for ` = 1. We conclude that there is a non-empty
Zariski open subset Un

d,1 ⊂ Endnd such that for all f ∈ Un
d,1, the map f

is not PCF of tail-length 1. �

8. PCF maps with tail-length 2 are sparse

The main result of this section is as stated in the title. As in the
previous section, we begin with a number of preliminary results.

Lemma 27. Let n ≥ 2, and let f : Pn → Pn be a morphism of degree
d ≥ 2. Suppose that H ⊂ Pn is an irreducible hypersurface satisfy-
ing :

• f(H) is not contained in Bf .
• f |H is generically r-to-1 for some r ≥ 2.

Then there exists an automorphism α ∈ PGLn+1(F) such that:

(1) f(α(H)) is not contained in Bf , and
(2) f |α(H) is generically s-to-1, for some s < r.

Remark 28. Applying Lemma 27 repeatedly, we see that there exists
an α ∈ PGLn+1(F) such that f |α(H) is generically 1-to-1.

Proof of Lemma 27. First, we note that the conditions (1) and (2)
on α ∈ PGLn+1(F) are both Zariski-open, and so it suffices to show
that the sets of α ∈ PGLn+1(F) satisfying (1) and (2) are both non-
empty. Next, we note that, by assumption, Id ∈ PGLn+1(F) satisfies
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condition (1), so the set of α ∈ PGLn+1(F) satisfying (1) is non-empty.
So it remains only to show that the set of α ∈ PGLn+1(F) satisfying
(2) is non-empty. For this, set e = deg(H). Then f∗([H]) = r[f(H)]
is dn−1e times the class of a hyperplane, so

f(H) is a hypersurface of degree D :=
dn−1e

r
,

where for notational convenience we let D denote the frequently ap-
pearing quantity D = D(d, n, e, r) := dn−1e/r.

We pick a line L such that the intersection L∩f(H) has the following
properties:

• L and f(H) intersect transversally.
• The intersection consists of exactly D smooth points of f(H), say

L ∩ f(H) = {q1, . . . , qD}.
• L ∩ f(H) ∩ Bf = ∅, i.e., qi /∈ Bf for all 1 ≤ i ≤ D.
• L ∩ f(H) ∩ f(singular locus of H) = ∅.

It is possible to find such a line L because the “bad locus” that we
must avoid has codimension at least 2 in Pn.

By construction, L is not contained in Bf , so f−1(L) is a curve C of
degree dn−1. Also, the intersection C ∩H is transversal, consisting of
exactly dn−1e = rD smooth points of H, which we label as

C ∩H = {pi,j : 1 ≤ i ≤ D, 1 ≤ j ≤ r}
so that:

p1,1, . . . , p1,r map to q1
...

pi,1, . . . , pi,r map to qi
...

pD,1, . . . , pD,r map to qD.

Without loss of generality, we may assume that

p1,1 = [1 : 0 : · · · : 0] and p1,2 = [0 : 1 : 0 · · · : 0].

For all i and j, the point pi,j is not in the branch locus of f , so f
induces isomorphisms of completions of local rings of Pn. Writing Rp

for the completion of the local ring at p, we have

fi,j : Rpi,j −→ Rqi ,

fi,j1,j2 := f−1i,j2 ◦ fi,j1 : Rpi,j1
−→ Rpi,j2

.

We pick a local parametrization of C near p1,1, i.e., we fix a map

P1,1 : Spec
(
F[[t]]

)
→ C with P1,1(0) = p1,1
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that induces an isomorphism between F[[t]] and the completion of the
local ring of C at p1,1. We then obtain a local parametrization of C
near p1,2 as follows: First we pre-compose P1,1 with a specified involu-
tion of Spec

(
F[[t]]

)
, then we apply f1,1,2. Specifically, we set

P1,2(t) = f1,1,2(P1,1(−t)), (8)

and then

(f ◦ P1,2)(t)

= (f ◦ f1,1,2 ◦ P1,1)(−t) from (8),

=
(
f ◦ (f1,2)

−1 ◦ f1,1 ◦ P1,1

)
(−t) since f1,1,2 := (f1,2)

−1 ◦ f1,1,
= (f1,1 ◦ P1,1)(−t) since f ◦ (f1,2)

−1 = Id on U1,2,

= (f ◦ P1,1)(−t) since f1,1 = f on U1,1. (9)

We note that d
dt
f(P1,2(t))

∣∣
t=0
6= 0, so taking derivatives of (9) and

evaluating at t = 0 yields

0 6= d

dt
(f ◦ P1,2)(t)

∣∣∣
t=0

=
d

dt
(f ◦ P1,1)(−t))

∣∣∣
t=0

= − d

dt
(f ◦ P1,1)(t))

∣∣∣
t=0
.

The condition on t that the points

P1,1(t), P1,2(t), [0 : 0 : 1 : 0 · · · : 0], . . . , [0 : · · · : 0 : 1], [1 : 1 · · · : 1]

are in general position is an open condition that is satisfied at t = 0,
and thus it is satisfied over Spec

(
F[[t]]

)
.

There is thus a unique element αt ∈ PGLn+1

(
F[[t]]

)
satisfying

αt([1 : 0 : 0 : 0 : · · · : 0 : 0]) = P1,1

αt([0 : 1 : 0 : 0 : · · · : 0 : 0]) = P1,2

αt([0 : 0 : 1 : 0 : · · · : 0 : 0]) = [0 : 0 : 1 : 0 : · · · : 0 : 0]

...
...

αt([0 : 0 : 0 : 0 : · · · : 0 : 1]) = [0 : 0 : 0 : 0 : · · · : 0 : 1]

αt([1 : 1 : 1 : 1 : · · · : 1 : 1]) = [1 : 1 : 1 : 1 : · · · : 1 : 1].

We note that α has the following properties:

α0 = Id ∈ PGLn+1(F). (10)

αt(p1,1) ∈ C
(
F[[t]]

)
and αt(p1,2) ∈ C

(
F[[t]]

)
. (11)

0 6= d

dt
f(αt(p1,1))

∣∣∣
t=0

= − d

dt
(f(αt(p1,2))

∣∣∣
t=0
. (12)
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Condition (12) implies that for t 6= 0, i.e., over the generic point
Spec

(
F((t))

)
, we have

f(αt(p1,1)) 6= f(αt(p1,2)).

We conclude that f(αt(p1,1)) and f(αt(p1,2)) restrict to distinct points
of L

(
F((t))

)
.

We can parametrize the intersection points of
(
αt(H) ∩ C

)(
F[[t]]

)
,

i.e., we can find maps

Pi,j : Spec
(
F[[t]]

)
→ αt(H) ∩ C

such that Pi,j(0) = pi,j for all i, j. We have that

P1,1(t) = αt(p1,1),

P1,2(t) = αt(p1,2),

f ◦ Pi,j ∈ (f(αt(H)) ∩ L)(Spec
(
F[[t]]

)
).

The conditions on t that

f ◦ Pi,1 6= f ◦ P1,1 and f ◦ Pi,1 6= f ◦ P1,2 for all 2 ≤ i ≤ D

are open conditions satisfied at t = 0, and thus are satisfied over F[[t]].
On the other hand, for t 6= 0, i.e., over Spec

(
F((t))

)
, we have

f ◦ P1,1 = f(αt(p1,1)) 6= f(αt(p1,2)) = f ◦ P1,2.

Thus (f(αt(H)) ∩ L)(Spec
(
F((t))

)
) contains at least D + 1 distinct

points, specifically

f ◦ P1,1, f ◦ P2,1, . . . , f ◦ PD,1, f ◦ P1,2 ∈
(
f(αt(H)) ∩ L

)(
Spec

(
F((t))

))
.

Thus over F((t)) we have

dn−1e

deg(f |αt(H))
= deg(f(αt(H))) ≥ |f(αt(H)) ∩ L| ≥ D + 1 > D.

Since D = dn−1e/r, this gives a strict inequality

deg(f |αt(H)) < r,

showing that the set of α ∈ PGLn+1(F) satisfying (2) is non-empty.
This completes the proof of Lemma 27 over the algebraically closed
characteristic 0 field F. �

Lemma 29. Let n ≥ 3 and d ≥ 3 and ` = 2. Then there exists
an f0 ∈ Endnd that satisfies Conditions (1)–(4) of Proposition 23.

Proof. By Proposition 21 and Theorem 14, there exists f ∈ Endnd such
that

• Cf is irreducible and of general type.
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• f is not PCF with tail length 1, i.e.,

f(Bf ) = f 2(Cf ) 6⊂ f(Cf ) = Bf .

• f : Cf → Bf is generically 1-to-1.
• f has multiplicity 2 along Cf

Thus f satisfies conditions (1), (2) and (4) of the hypotheses of Propo-
sition 23. If f |Bf is generically 1-to-1, then f also satisfies condition
(3) so we are done. If not, we use Lemma 27 to find an α ∈ PGLn+1

such that f |α(Bf ) is generically 1-to-1. Set f0 = α ◦ f . Then

Cf0 = Cf , Bf0 = α(Bf ), and (f0)|Bf0 = (f0)|α(Bf ) = (α ◦ f)|α(Bf ).

This last map (f0)|Bf0 is generically 1-to-1 because f |α(Bf ) is generi-
cally 1-to-1 and α is everywhere 1-to-1. Finally the multiplicity of f0
equals the multiplicity of f along Cf0 = Cf , thus is 2. Thus f0 satisfies
the hypotheses of Proposition 23 for ` = 2. �

We now have the tools to prove the main result of this section, which
is that PCF maps with tail length at most 2 are sparse.

Theorem 30. Let n ≥ 3 and d ≥ 3. Then

{f ∈ Endnd : fk(Cf ) ⊆ f 2(Cf ) for some k ≥ 2}

is contained in a proper closed subvariety of Endnd .

Proof. By Lemma 29, there exists a map f0 ∈ Endnd satisfying the
hypotheses of Proposition 23 for ` = 2. Thus we can use Proposition 23
to conclude that

{f ∈ Endnd : fk(Cf ) ⊆ f 2(Cf ) for some k ≥ 2}

is contained in a proper closed subvariety of Endnd . �
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