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ABSTRACT
Tight-binding approaches, especially the Density Functional Tight-Binding (DFTB) and the extended tight-binding schemes, allow for effi-
cient quantum mechanical simulations of large systems and long-time scales. They are derived from ab initio density functional theory using
pragmatic approximations and some empirical terms, ensuring a fine balance between speed and accuracy. Their accuracy can be improved
by tuning the empirical parameters using machine learning techniques, especially when information about the local environment of the atoms
is incorporated. As the significant quantum mechanical contributions are still provided by the tight-binding models, and only short-ranged
corrections are fitted, the learning procedure is typically shorter and more transferable as it were with predicting the quantum mechani-
cal properties directly with machine learning without an underlying physically motivated model. As a further advantage, derived quantum
mechanical quantities can be calculated based on the tight-binding model without the need for additional learning. We have developed the
open-source framework—Tight-Binding Machine Learning Toolkit—which allows the easy implementation of such combined approaches.
The toolkit currently contains layers for the DFTB method and an interface to the GFN1-xTB Hamiltonian, but due to its modular struc-
ture and its well-defined interfaces, additional atom-based schemes can be implemented easily. We are discussing the general structure of the
framework, some essential implementation details, and several proof-of-concept applications demonstrating the perspectives of the combined
methods and the functionality of the toolkit.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0132892

I. INTRODUCTION

Many recent technological advancements can be attributed,
at least in part, to the discovery and development of novel func-
tional materials. Computational simulation methods have become
an important tool in the field of materials research in which the
ability to explore configurational space and to accurately predict
material properties is of paramount importance. Ab initio meth-
ods, such as Density Functional Theory (DFT), are commonplace

as they offer a comparably high degree of accuracy and provide
access to the electronic structure. However, their high computa-
tional cost makes them ill-suited to tackle problems requiring large
time and size scales, such as molecular overlayer formation. While
classical force field methods are able to reach the required scales at
a reasonable cost, they do not provide access to electronic struc-
ture and are commonly unable to capture the full complexity of
the potential energy surface; particularly when metals are involved.
Semi-empirical methods are commonly referred to as “bridging”
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methods due to their ability to reach size and time scales that are
off-limits to traditional ab initio methods while retaining electronic
structure. Unfortunately, the parameter sets upon which such meth-
ods commonly rely require a non-trivial degree of effort to create
and might suffer from limited transferability for complex systems.
However, by leveraging the power of machine learning (ML), one
could augment existing bridging methods to improve their transfer-
ability, reduce the complexity of creating parameter sets, and even
introduce reactivity.

The field of machine learning has experienced steady growth
over the past two decades and has recently exploded in popularity
due to the accessibility afforded by frameworks, such as TensorFlow1

and PyTorch.2 Machine learning has been used with great success to
tackle problems in a variety of fields, with chemistry, physics, and
materials science being no exception. Several groups demonstrated
successful and promising approaches for combining various levels
of materials simulation methods with machine learning, such as in
Refs. 3–9. We will omit an in-depth discussion of machine learn-
ing and its successes within the field of materials science in this
paper, as detailed reviews10–12 on the subject already exist, and the
purpose of this publication is not to demonstrate any novel meth-
ods but to provide an overview about the current capabilities of
the Tight-Binding Machine Learning Toolkit (TBMaLT) software
package.

Applications of machine learning to materials modeling can
be loosely placed into one of three categories: (i) assistive, (ii) aug-
mentative, and (iii) substitutive. Assistive implementations are those
which do not directly modify the method to which they are applied
but rather fulfill an ancillary role, such as aiding the creation of
new parameters.13,14 Those which directly modify or replace parts
of or add new components to their parent method are deemed to
be augmentative; some examples being those replacing traditional
parameterizations with neural networks or those offering alterna-
tive routes to the chemical Hamiltonian.13,15,16 Novel ML-based
approaches that are not templated off of any standard simulation
method are labeled as substitutive as they are used in place of
traditional methods; methods that directly predict specific proper-
ties, or groups thereof, are also included in this category. While
such categorization is entirely artificial and somewhat subjective,
it does highlight the notion that many approaches are based on
established methods. Thus, assistive and augmentative approaches
could, in theory, make use of existing codes to reduce the work
required to implement them. When working with non-ML-based
augmentations, one may directly modify existing codes to add new
functionality and methods. However, this is not always viable for
ML-based augmentations.

While novel ML-augmented methods are an attractive
prospect, they can require a disproportionately large degree of effort
to fully implement when compared to their non-ML counterparts.
This is because the majority of production-level simulation pack-
ages were never designed to accommodate machine learning, and
thus lack associated features, such as batch operability and auto-
matic gradients. Therefore, existing code cannot easily be reused to
reduce the work required, and one cannot simply generate and test
a new method without first having to create and test a framework
within which the new method can be used. With the Tight-Binding
Machine Learning Toolkit (TBMaLT),17 we would like to intro-
duce an ML-capable framework that offers tested and documented,

ready-to-use components to facilitate the rapid prototyping and
development of new tight-binding models. It is hoped that the pres-
ence of such a framework will not only reduce the work required to
implement, validate, and share new models but also aid in reducing
duplicated efforts.

To keep the scope of the project to a reasonable size, the
decision was made to limit the focus of TBMaLT exclusively to tight-
binding type methods. Tight-binding theory [such as in Density
Functional Tight-Binding (DFTB)18,19 or in Extended Tight-Binding
(xTB)20,21] was chosen because it lends itself well to the ideas of
machine learning as it tends to focus on speed and scalability with-
out giving up access to the electronic band structure. It is important
to note that the purpose of this body of work is not to present a
novel tight-binding model but rather to highlight the existence and
capabilities of the TBMaLT framework.

II. STRUCTURE AND DESIGN
The main driving force behind TBMaLT’s development was the

common need for a testbed within which novel, commonly machine
learning-based, tight-binding methods could be implemented with-
out having to repeatedly write and test all the associated boilerplate
code. Such a framework could, in addition to helping to reduce
a potential source of duplicated effort, be employed to reduce the
complexity associated with parameterizing currently existing mod-
els by automating much of the fitting process. The primary design
philosophy behind this project emphasizes flexibility and usabil-
ity over raw computational efficiency. TBMaLT’s intended use case
deviates from traditional modeling packages in that it is intended
to facilitate the rapid prototyping, development, and validation
of new models rather than the production-level use of existing
ones.

The TBMaLT framework was written in Python as it is a
highly accessible language, which lends itself well to rapid proto-
typing, which is prolifically used in the field of machine learning.22

Critical machine learning functionality, such as automated ana-
lytical gradients, was provided through the use of the PyTorch
package.2 PyTorch was selected over other common machine learn-
ing frameworks due to its ease of use, simple pythonic syntax,
and flexible nature. TBMaLT has been written in a modular and
plug-and-play manner. This reduces the complexity associated with
implementing new models and keeps users from having to modify
the source code to do so. This has the added benefit of allowing
new components to be used beyond their initial scope as compo-
nents from different models could be arbitrarily combined to create
new ones.

TBMaLT supports batch operability through the use of packed
padding, which involves expanding a set of n rank k arrays to a com-
mon size and concatenating them into a single rank (k + 1) array.
The padding values are commonly set to zero or one, depending
on usage. This allows for operations to be vectorized and optimized
for graphics processing unit (GPU)/single-instruction multiple data
(SIMD) execution. The low memory efficiency of this method can
commonly be offset via sparse tensors. However, it should be noted
that the undeveloped nature of sparse tensors in PyTorch, at the
time of writing, prevents their current use. Lorentzian and condi-
tional broadening were used to alleviate the gradient stability issues
with performing eigendecompositions on systems with degenerate
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eigenspectra, such as an equilibrated CH4 molecule.23,24 Conver-
sion from the generalized to the standard eigenvalue problem was
achieved via Cholesky decomposition as it produced more stable
gradients than Löwdin orthogonalization. Self-consistency cycles,
such as the self-consistent-charge (SCC) cycle of DFTB and xTB, are
then performed (if applicable to the method), during which systems
are sequentially culled from the batch as they converge to prevent
over-convergence.

The default behavior in TBMaLT is to track the gradients dur-
ing the SCC cycles using PyTorch’s autograd engine, resulting in
accurate gradients with respect to the input features and accurate
forces. All results presented in the main paper were obtained this
way. Depending on the system sizes, however, the overhead caused
by the gradient tracking might become substantial. Different strate-
gies can be applied in TBMaLT to reduce this overhead. One might
calculate the converged charges (at a given value of the input feature
vector) for each system outside of the purview of PyTorch’s auto-
grad engine and use those charges as input when building the charge
dependent Hamiltonians (with gradient tracking) and omit any fur-
ther SCC cycles. Keeping those input charges constant for several
epochs, as first implemented by Yaron and co-workers,13 helps to
reduce the computational complexity associated with the gradient
computation. Nevertheless, the input charges must be updated reg-
ularly (e.g., every tenth epoch as in Ref. 13) to take their change due
to the changes in the input feature vector into account. Alternatively,
in systems where one expects the converged charges to have only a
weak dependence on the input feature vector (e.g., in mostly homo-
geneous systems), one might also carry out the external SCC cycles
without the autograd feature for each input feature vector. In con-
trast to the previous approach, this yields continuous error functions
without jumps, but the obtained gradients will always deviate from
the exact ones due to the missing derivative of the converged charges
with respect to the input feature vector. If the deviation is small, the
optimization might, nevertheless, converge to a solution close to the
one obtained with exact gradients (as demonstrated for rattled bulk
silicon structures in Fig. S1).

In a typical workflow, a base Calculator is selected and ini-
tialized by supplying it with the requisite Feed objects. The Feed
objects are optimizable entities that are responsible for supplying
the necessary inputs to a given calculation. The Calculator is then
tasked with interrogating these feeds and using the resulting data to
compute various properties as and when they are requested. During
initialization, the Calculator may also be provided with calculator-
specific settings, such as those that may pertain to charge mixing,
finite temperature, and so on. Once initialized, the Calculator is
given a target system, or batch thereof, and is then itself interrogated
to retrieve the desired properties. These properties can then be com-
pared to those computed via the reference method, and a loss can be
calculated. The PyTorch autograd engine can then be invoked, and
the resulting gradients are used to update the properties contained
within some or all of the feeds. A schematic depiction of this pro-
cess is provided for the SCC-DFTB case in Fig. 1. The method can
be modified by selecting a different choice of Calculator or Feed
objects. For example, the SCC-DFTB implementation displayed in
Fig. 1 can be morphed into xTB by swapping out the Hamiltonian
and overlap Feed objects. The modular nature of TBMaLT means
that in many cases, the Feed objects can themselves be modified or
otherwise augmented to change the nature of the method.

FIG. 1. Schematic depiction of the prediction and update process for an SCC-
DFTB type calculator instance in which: (1) Feed objects are instantiated and
supplied to the Calculator, (2) the target system is specified, (3) requested
properties are predicted and then (4) compared to their reference values to get the
loss upon which the autograd engine is then invoked, and (5) the feed properties
are updated. Commonly steps 3–5 are repeated cyclically to improve the fit.

III. METHODOLOGY
The TBMaLT framework currently offers two different tight-

binding approaches: the DFTB and the xTB methods. In the follow-
ing, we give a concise summary of these two formalisms in order
to supply the necessary theoretical background for the applications
described in Sec. IV.

A. DFTB
The density functional tight-binding method18,19 is an approx-

imation to density functional theory (for a review, see Ref. 25). It
starts from the Kohn–Sham ansatz, where the electron density ρ(r)
is represented as a sum of independent particle-densities,

ρ(r) =∑
i

fi∣ψi(r)∣2, (1)

where the sum runs over all one-electron states and fi is the occu-
pation number of state ψi. Writing the density as a deviation
with respect to a reference density, ρ(r) = ρ0(r) + δρ(r), the total
energy is expanded up to second (or sometimes third) order and is
traditionally collected into three energy terms,

Etot[ρ0 + δρ] = Erep[ρ0] + Eband[ρ0] + E2[ρ0, δρ2], (2)

the repulsive energy Erep, the band energy Eband, and the charge
transfer related second order energy E2. The reference density is
composed as a sum of the (compressed) atomic densities ρ0(r)
= ∑A ρ

A
0 (r) from all atoms A in the system. The last two terms in
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Eq. (2) are explicitly calculated with several approximations, while
the repulsive energy is used to compensate for the accuracy loss due
to those approximations.

In the traditional DFTB approach, the repulsive energy is
written as a sum of pairwise interactions,

Erep =
1
2 ∑A,B≠A

E sp(A) sp(B)
rep (RAB), (3)

where the sum runs over all atom pairs in the system, and the
two-body contributions E sp(A) sp(B)

rep depend on the species of the
two atoms A and B, respectively, and their distances RAB. The
two-body contributions are usually obtained by a fitting procedure,
requiring DFTB total energies and/or forces to reproduce corre-
sponding reference quantities (typically originating from ab initio
calculations).

The band-structure energy can be written as

Eband =∑
i

fi⟨ψi∣ −
1
2
∇2 + Veff∣ψi⟩, (4)

where the one-electron Hamiltonian H = − 1
2∇

2 + Veff contains the
kinetic energy and the Kohn–Sham effective potential Veff calculated
at the reference density ρ0(r). The one-electron wavefunctions are
expanded into a linear combination of atomic orbitals

ψi(r) =∑
μ

ciμϕμ(r), (5)

which leads to the generalized eigenvalue problem

∑
ν

Hμνciν = εi∑
ν

Sμνciν, (6)

with Hμν = ⟨ϕμ∣H∣ϕν⟩ and Sμν = ⟨ϕμ∣ϕν⟩ being the Hamiltonian and
overlap matrices, respectively, in the basis of the atomic orbitals.

The Hamiltonian matrix element HμAνB between the atomic
orbitals ϕμ on atom A and ϕν on atom B is approximated as

HμAνB =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

εμδμν if A = B,

⟨ϕμ∣ −
1
2
∇2 + Veff[ρ0

A + ρ0
B]∣ϕν⟩ if A ≠ B,

(7)

where εμ is the electron eigenenergy (onsite energy) belonging to
orbital ϕμ in a free atom. Due to the two-center approximation in the
matrix elements between different atoms (A ≠ B), the actual Hamil-
tonian (and overlap) matrices can be instantaneously constructed
from pre-computed distance-dependent integrals for specific orbital
orientations (ssσ , spσ , ppσ , ppπ , etc.) by applying the Slater–Koster
transformations.26

One typically uses a minimal basis with maximal one polar-
ization orbital in DFTB. In order to improve the accuracy, the
basis functions and the atomic densities are obtained by solving
the atomic Kohn–Sham equation for an atom in a confinement
potential Vconf,

[−1
2
∇2 + Veff[ρ0

I ] + Vconf]ϕλ = ε̃λϕλ. (8)

Often, the confinement potential is chosen to be a harmonic poten-
tial Vconf(r) = (r/r0)2 and different values for the compression
radius r0 are used when calculating the compressed atomic orbitals
ϕλ and the compressed atomic density ρ0

I (in separate calculations)
for a given atom type I.

Finally, the charge fluctuation-dependent energy term is writ-
ten as a Coulomb-like interaction of the gross Mulliken monopole
charges on the atoms

E2 =
1
2∑A,B

γAB qA qB, (9)

where the coupling

γAB =
1

RAB
− F(UA, UB, RAB) (10)

between the charges qA and qB on atoms A and B depends on
the distance RAB between the atoms and on the second derivative
of the energy of the free DFT atom with respect to the charge,
UI = ∂2E atom

I /∂q2
I (chemical hardness). The second term in Eq. (10)

is short-ranged. The Coulomb term is long-ranged, though, and
needs special summation techniques (e.g., Ewald summation27)
when calculated for periodic systems. The charge fluctuations also
contribute to the Hamiltonian as

H2
μAνB =

1
2

Sμν∑
C
(γAC + γBC)qC (11)

and consequently also to the resulting electronic structure. Since
the Mulliken population depends on the solution of Eq. (6), a
self-consistent procedure is needed to obtain the final quantities
of a calculation, similar to the self-consistent field (SCF) in DFT
calculations.

B. xTB
The extended tight-binding (xTB) method is rooted in the same

energy expansion as DFTB but contains different energy expressions
and approximations and employs a mostly atom-wise parameteriza-
tion strategy. Note that the following expressions are restricted to the
first iteration of the xTB method (GFN1-xTB) as TBMaLT currently
implements the GFN1-xTB Hamiltonian.

The GFN1-xTB total energy reads as

Etot = Erep + Edisp + EEHT + E2
el + E3

el + EXB +GFermi, (12)

whereby the zeroth order energy expansion is given by a repulsion
term Erep approximated by an atom-pairwise screened Coulomb
potential,28 and a dispersion term Edisp given by the established DFT-
D3(BJ) dispersion correction scheme.29,30 For the first order energy,
an extended Hückel-type (EHT) term EEHT is employed,

EEHT =
1
2∑μν

PνμH0
μν, (13)

where H0 and P denote the core Hamiltonian and the density matrix,
respectively. This energy term is the analog of Eband in Eq. (2).
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Interatomic electrostatic interactions Eel originate from the second
and third order energy expansion and are expressed with orbital-
resolved Mulliken charges qμ similar to DFTB. In fact, E2

el closely
resembles Eq. (9),

E2
el =

1
2∑μ,ν

qμqνJμν , (14)

replacing the Coulomb interaction with the analytical
Mataga–Nishimoto–Ohno–Klopman kernel31–33

JμA ,νB = (R
g
AB + favg(UA,l, UB,l′)−g)−1/g , (15)

where favg denotes the (harmonic) average of the atomic Hubbard
parameters UA,l and UB,l′ , and g is a free parameter. The third order
term E3

el includes the diagonal elements of the charge derivative of
the Hubbard parameter Γμ,

E3
el =

1
3
⎛
⎝∑μ

Γμqμ
⎞
⎠

3

, (16)

improving the description of highly charged systems.34 A classical
halogen bond correction EXB is added to remedy the poor descrip-
tion of halogen bonds due to the isotropic point charge approxima-
tion. Finally, the electronic free energy GFermi is added.35 This term
arises from fractional occupations generated by Fermi smearing in
order to handle static correlation cases.

Variational minimization of the total energy expression yields
the tight-binding Hamiltonian matrix elements Hμν for the gen-
eralized eigenvalue problem [Eq. (6)]. The Hamiltonian can be
separated in a core Hamiltonian H0 stemming from EEHT and a
charge-dependent Hamiltonian H1 derived from Eel: H = H0 +H1.

Similar to DFTB, the extended tight-binding (xTB) Hamilto-
nian is defined in a valence-only but partially polarized minimal
basis set of spherical Gaussian-type orbitals (GTO). The GTO con-
traction coefficients are obtained by expanding Slater-type orbitals
(STO) using the STO-nG scheme.36 The core Hamiltonian matrix
elements are obtained in an EHT-like fashion by

H0
μν =

Hμμ +Hνν

2
Sμν XEN Fscale , (17)

where Sμν denotes the overlap matrix elements, XEN an
electronegativity-dependent term, and Fscale an elaborate scal-
ing function. The latter depends on the angular momenta of the
shells and the distance of the atomic centers and consumes the
majority of the xTB parameters. The diagonal elements Hμμ/νν are
computed from parameterized, shell-resolved atomic level energies
hμ and their local environment described by the coordination
number CNμ as

Hμμ = hμ + k CN
μ CNμ (18)

with the scaling factor k CN
μ being an adjustable parameter.

The charge-dependent Hamiltonian takes a similar form as
DFTB’s charge fluctuation Hamiltonian [Eq. (11)] but extends it by
the third order term

H1
μν = −

1
2

Sμν(∑
κ
(Jμκ + Jνκ)qκ + (Γμq2

μ + Γνq2
ν)) . (19)

Correspondingly, and similar to DFTB, xTB also requires a self-
consistent procedure.

The original implementation of xTB, including a more detailed
description of the energy expressions, can be found in Refs. 20
and 21.

IV. RESULTS
In this section, we present the first proof-of-concept showcases

demonstrating the current capabilities of the TBMaLT framework.
We include both, DFTB and xTB applications, in order to emphasize
the Hamiltonian-type agnostic structure of the framework. Since the
applications described below are meant to serve as simple showcases
only, we have chosen rather small training set sizes (which we have
found to be suitable for those cases37), but omitted a detailed sys-
tematic study on the influence of the training set choice on the final
results.

A. DFTB
1. Global and local parameter optimization

The traditional parameterization technique in DFTB involves
an initial choice of atomic orbitals obtained from confined atomic
calculations, which are then used to calculate the two-center approx-
imated Hamiltonian integrals and the overlap integrals, as shown
in Eqs. (5), (7), and (8). Within the TBMaLT framework, we have
tested three different optimization strategies that have the potential
to improve this procedure.

In the first approach, we carry out a global optimization of the
compression radii of the species-dependent confinement potentials
[Vconf in Eq. (8)] and the onsite energies [εμ in Eq. (7)]. This way,
we obtain a “global” basis set for every species adapted to the train-
ing set. This approach is similar to the traditional parameterization
approach but allows for an optimized choice of the basis orbitals and
the onsite energies.

The second approach is similar, but we represent the distance-
dependent two-center integrals of Eq. (7) and the similar overlap
integrals with splines and optimize the spline coefficients directly.
This method is similar to the approach followed by Yaron and
co-workers13 and yields globally optimized integral tables for the
corresponding species pairs. Unfortunately, by optimizing the two-
center diatomic integrals directly, one loses the concept of a well-
defined basis. This inevitably leads to inconsistencies between the
obtained Hamiltonian and overlap matrices, although those can be
limited by starting the optimization from a good and consistent
initial guess. Furthermore, one cannot represent calculated quanti-
ties (such as electron density or eigenstates) as a function of space
anymore.

In our third approach, we reintroduce the concept of the well-
defined basis by predicting individual confinement radii Vconf and
onsite energies εμ for each atom based on its local environment.
This way, the basis becomes atom-dependent instead of atom-type
dependent, as in the traditional approach. The Hamiltonian and the
overlap matrices can be consistently calculated within this basis, and
all obtained quantities have a well-defined real space representation.
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In all three approaches, the optimization is driven by using the
loss function

F = 1
N

m

∑
j=1

N

∑
i=1
ωj(P DFT

ij − P DFTB
ij )2

, (20)

where N describes the number of systems in the training dataset,
and m is the number of physical properties taken into account. PDFT

and PDFTB are the target physical property values from the reference
DFT and the DFTB calculations, respectively, and ωj is the weight
associated with a given physical property.

For the training procedure, we used a subset of the ANAKIN-
ME dataset,38 where every molecule contained one heavy atom only
(ANI-11). From this subset, we have randomly selected 1000 and 400
molecules for the training and test sets, respectively, for all three
optimization methods. In order to reduce the bias in our train-
ing, we have carried out three independent training runs for each
optimization method, selecting the molecules of the training and
test sets randomly from the ANI-11 dataset each time. The ref-
erence DFT data were calculated using the FHI-aims code.39 We
have used the Perdew–Burke–Ernzerhof (PBE) functional40 with the
“tight” basis set. For the local basis optimization, we have used atom-
centered symmetry functions (ACSFs)41 to represent the chemical
environment of the atoms in the ML input and the random forest
method as the ML algorithm.42 The ACSFs have been implemented
in TBMaLT, while Scikit-learn43 has been used to perform the ran-
dom forest predictions. (Further details about the ML settings can
be found in the supplementary material.)

Figure 2 shows the result of the optimizations when using the
dipole moment as the only target property in the loss function
(m = 1). The reported mean absolute errors (MAEs) are the averages
of the MAEs calculated over the test sets in each of the three training
runs. For comparison, we also report the performance when using
the mio-1-1 parameter set.19 All three optimization techniques
show a significant improvement, with the local basis optimization
model performing best.

A more detailed discussion of the three different optimization
techniques and further use cases can be found in Ref. 37.

2. Training on the density of states
for periodic systems

The TBMaLT framework can also treat periodic systems and
allows for their inclusion into optimization and training scenar-
ios (currently with the DFTB Hamiltonian only). This should be
demonstrated by the following showcase, where DFTB parameters
were trained on bulk silicon structures in order to improve the
density of states (DOS) description. Unlike discrete properties,
such as Mulliken charges or dipole moments, the DOS is rep-
resented by a continuous distribution in a certain energy range.
Therefore, the Hellinger distance44 was employed as a loss func-
tion to evaluate the difference between pairs of distributions as it
enables learning not only on the absolute differences but also on
the trends of the curves. By using a similar strategy as discussed in
Sec. IV A 1, the diatomic two-center integrals were represented by
splines, which were optimized in order to obtain the Hamiltonian
and the overlap matrices yielding an improved DOS for the training
dataset.

FIG. 2. Mean absolute error of dipole moments from DFTB calculations with
respect to reference DFT calculations. The Hamiltonian and overlap matrices of
the DFTB calculations have been constructed using the mio − 1 − 1 parameter
set (blue), the globally optimized basis model (yellow), the environment depen-
dently optimized basis model (green), and the globally optimized splines of the
diatomic two-center integrals (red). The values with the corresponding error bars
represent averages over the test sets of three independent training runs, with the
training and test set sizes of 1000 and 400, respectively.

First, we generated a database containing 50 randomly rat-
tled silicon bulk systems with supercells of 64 atoms [an example is
shown in Fig. 3(a)]. DFT calculations employing the HSE06 hybrid
functional45 with a screening parameter of 0.11 a−1

0 were carried out
with the FHI-aims code39 using the “tight” parameter set. During
the training process, the siband-1-1 parameter set46 was used as
the starting point for the optimization of the spline representations
of the DFTB diatomic Hamiltonian and overlap integrals, which
were optimized simultaneously. In order to ensure that the DFT
and DFTB DOS results are comparable, the DOS was calculated by
applying identical Gaussian broadening to the eigenvalues in both
cases. The same energy ranges (from −3.3 eV to +1.6 eV relative to
the Fermi levels) were used to sample the DOS curves and to cal-
culate the loss between the DFT and the DFTB results. To reduce
the influence of sampling on the training data, 30 systems were
randomly selected and partitioned into three distinct training sets,
yielding three independent training runs. The remaining 20 unseen
systems were then used to test the model. Figures 3(b) and 3(c) com-
pare the DOS results with the DFT references on the test dataset
in the three training runs before and after the ML optimization of
the DFTB parameters. The ML optimization leads to more accurate
results, reducing the average Hellinger and MSE losses from 10.8 and
19.4 to 6.2 and 5.4, respectively. It is also clear that the results after
the ML optimization fit the DFT references better than the original
DFTB calculations using the siband-1-1 parameter set.

Additional tests were also performed to evaluate the transfer-
ability of the model; i.e., whether it makes reasonable predictions
for larger systems after having been trained on small ones. This
was done by training models exclusively on the small 64-atom sys-
tems and evaluating them on larger 512-atom systems. In order
to reduce the computational efforts, training and testing references
were obtained by using the GGA-PBE functional40 in this case. As
shown in Fig. 3(d), the ML optimization can correct the energy
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FIG. 3. Examples of DOS training: (a)
geometry of a rattled diamond type sili-
con system, (b) comparison of the DFTB
DOS curves obtained with three test runs
using the siband-1-1 parameter set
with the DFT references, (c) comparison
of the DFTB DOS curves obtained with
three test runs with optimized splines
for the diatomic integrals with the DFT
references, and (d) DOS curves of the
transferability test calculated by DFT, by
DFTB with the siband-1-1 parameter
set, and by DFTB with optimized splines
for the diatomic integrals. In (b) and
(c), the solid blue and dashed orange
lines represent the average DOS val-
ues obtained with three test runs with
DFT and DFTB, respectively, while the
shadow areas indicate the diversity of
the corresponding DOS values.

shift of the DOS curve below the Fermi level and enhance the
accuracy above the Fermi level, making a total improvement of
34% and 66% as measured by the Hellinger loss and the MSE loss,
respectively.

B. xTB
This section illustrates the possibility of using other tight-

binding schemes within the TBMaLT framework. For this purpose,
we employ the GFN1-xTB Hamiltonian to improve its parameteri-
zation for applications on specific chemical spaces. The Hamiltonian
is integrated into the TBMaLT workflow employing a GFN1-xTB
adapter.47 Prior to further analysis, it is verified that the xTB Hamil-
tonian reproduces the number of electrons as well as the orbital
occupancies within TBMaLT.

The optimization procedure employs gradient descent with the
Adam optimizer48 and an MSE loss function. The atomic charges
obtained from SCC-DFTB calculations are used as the target quan-
tity. The corresponding DFT reference charges are obtained as
described in Sec. IV A. Using the ANAKIN-ME subset ANI-11 with
a single heavy atom (C, N, and O), Hamiltonian-dependent para-
meters (scaling of electronegativities kEN and shell parameters) as
well as element-specific scaling parameters (elemental pair para-
meters kpair) are optimized. For training purposes, we utilize 50
samples and test on 1000 samples, both containing an equal ratio
of molecular species. Despite the minimal split, the chemical space
of the dataset is well represented due to the choice of only a
single heavy atom. Moreover, it facilitates only minor deviations
from the original general-purpose GFN1-xTB parameterization and
demonstrates the general robustness of the fit, being able to trans-
fer to a multitude of samples not included in the fit. However,
since the study is intended as a proof-of-principle, one should

notice that the chemical variety in the employed dataset is rather
limited.

Figure 4 shows the performance (MAE) of the default and
various reoptimized GFN1-xTB parameterizations with respect to
the DFT reference values on the ANI-11 dataset. For training

FIG. 4. Comparison of reparameterizations of different parameters on ANI-11
data. Hereby, solely atomic charges are utilized as the fit target. Furthermore,
the change in nominal value of dipole moments for the new parameterizations
is given to demonstrate the transferability of our approach. The deviation is given
by the MAE to the reference method. The optimized parameters comprise the
element pair-specific scaling parameter k H−H

pair (yellow), the electronegativity scal-
ing parameter kEN (red), as well as all global Hamiltonian-related parameters of
GFN1-xTB including kEN (green). In particular, the reparameterization based on
electronegativities kEN shows a significant improvement over the existing default
parameterization.
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on the atomic charges (Fig. 4, left), reparameterizations based on
Hamiltonian- (red, green) and element-specific (yellow) parameters
lead to a significant improvement over the initial parameteriza-
tion (blue). As refitting all Hamiltonian-based parameters grants the
most flexibility to the optimization, the resulting reparameterization
expectedly achieves the largest improvement of ∼44%. Consider-
ing the only slightly worse performance (∼40% error decrease) of
the single-parameter fit of the electronegativity scaling kEN (red),
however, it becomes apparent that this parameter is most impor-
tant and mainly drives the Hamiltonian fit. This is due to the
fact that the original parameterization is designed to give reliable
results over a wide range of chemical space. Since this study targets
small molecules with limited binding motifs and simple struc-
tures, the electronic properties are optimized for individual heavy
atoms.

Furthermore, it becomes evident that the reparameterization
based on the atomic charges also has a beneficial effect on other
properties, as exemplified by the dipole moments (Fig. 4, right). This
demonstrates the possibility of improving the overall accuracy for
specific use cases by means of a GFN1-xTB reparameterization.

V. SUMMARY
Combining simple tight-binding models with machine learn-

ing is a very promising approach for materials simulations. Machine
learning can improve the accuracy of such models significantly
while having a well-defined physical model provides the advan-
tage of an easier interpretation of the simulation results as com-
pared to approaches, where physical quantities are predicted
“directly” via machine learning without an underlying classical
or quantum mechanical model. Also, the training procedure can
be expected to be less involved when the physics is provided
by the tight-binding model. Derivation of the ground state and
excited state quantities not considered during training is straight-
forward in these approaches, and their transferability should be
considerably better as of the direct approaches, provided the
physical behavior is qualitatively well described by the chosen
model.

We have started the development of the open-source soft-
ware package TBMaLT,17 which provides a toolkit for combining
machine learning approaches with atomistic simulation models.
Our main goal is to provide a framework for the rapid proto-
typing of such hybrid approaches and for testing their capabili-
ties and limits. The toolkit has been written using the PyTorch
framework, providing backpropagated gradients out of the box.
TBMaLT’s overall structure is designed to be physical model agnos-
tic, opening the possibility for implementing and testing arbi-
trary (atom-based) approaches. Although the development only
started recently, the package already offers the DFTB model (as
a built-in module) and the xTB model (via a connector to an
external PyTorch-based xTB implementation). Further models can
be implemented or integrated easily. TBMaLT comes with exten-
sive unit tests and a well-documented application programming
interface.

We have presented a few proof-of-concept showcases, which
demonstrate the viability of such hybrid approaches as well as the
current capabilities of the TBMaLT framework. Our project’s devel-
opment follows the usual open-source development workflow and

is open to external contributors. We hope that the software package
will be useful for the scientific community and will help to catalyze
the development of faster and more accurate materials simulation
methods in the near future.

SUPPLEMENTARY MATERIAL

The supplementary material contains further details to the
comparison of the approximative external SCC cycle technique with
the exact gradient calculation (as discussed in Sec. II) for a rattled
silicon structure and additional details about the machine learning
settings used in Sec. IV A 1. Additionally, a dataset containing the
geometries and the ab initio reference data used for the show case
applications in Sec. IV is provided.
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