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Abstract: With the synergistic effect of laser and arc heat sources, laser-arc hybrid welding (LAHW)
technology can improve welding speed and penetration depth, and enhance gap-bridging ability.
This review describes the fundamental concepts and characteristics of droplet transfer behavior in
LAHW. Emphasis was placed on the physical interaction between the laser and arc and the effect of
the combined laser/arc heat sources on the welding process. However, the physical understanding of
these multivariable and complex interactions is still evolving. Through numerous research findings
and summary, it is found that there are several critical factors, including the laser-to-arc distance,
heat source leading mode, shielding gas composition, and laser power, affecting the droplet transfer
characteristics. This review critically interprets the latest development in the basic understanding of
LAHW. It lays great stress on the coupling effect of laser and arc in droplet transfer dynamic process
of LAHW, and offers a direction for the future study and progress of LAHW. Significant fields for
future research are also confirmed.

Keywords: laser-arc hybrid welding; droplet transfer behavior; force analysis; process parameter

1. Introduction

Nowadays, LAHW technology is an advanced welding method, which has been
applied widely and successfully [1]. Laser-arc hybrid welding combines laser and arc heat
sources, acting together on the same location of the workpiece, and a laser beam and arc are
simultaneously superimposed on a common interaction zone [2,3]. It uses the advantages of
the laser and arc energy effectively [4–6]. It is a novel and efficient welding method, and one
of the current study directions for welding technology all over the world. In arc welding,
due to the dispersion of the arc energy distribution, the actual energy involved in material
melting is low. The guiding role of the laser on the arc enhances the melting efficiency of
the arc. In laser welding, the absorption rate of laser energy by molten metal is higher than
that of solid metal, and the preheating effect of the arc on the molten pool also enhances
material absorption efficiency effectively. Therefore, the absorption and conversion rate of
a hybrid heat source are better than those of single heat source. In comparison to traditional
welding methods, the primary advantages of LAHW are high welding speed [7,8] and
penetration [9–11], good bridging performance [11–14], low assembly accuracy, and process
stability [15], so it is widely used and studied. Nowadays, laser-arc hybrid welding
technology is increasingly widely put into use in diverse industrial fields, and can use
its unique advantages in pipeline construction [16], ship construction [17–19], automobile
tracks [20,21], aerospace [22–24], and other fields. Laser-arc hybrid welding can weld all
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kinds of metals and alloy materials, including high strength steel [25–29], highly reflective
materials [30], and active metals [31–36].

The laser-arc hybrid welding process is an extremely complex physical and chemical
process, and the stress behavior of droplets in the welding process affects the droplet trans-
fer directly. Metal transfer exerts an important effect on deciding the process stability and
welding quality in gas metal arc welding (GMAW) [37,38] and LAHW [39–41]. The droplet
transfer behavior provides information about the process characteristics and metallurgical
characteristics of welding, including the welding process stability, characteristics of arc
behavior, melting efficiency, the welding smoke, and spatter. It is intuitional and visual,
and has become an irreplaceable source and way of information acquisition in welding
information technology. A high-speed video system is utilized to research droplet transfer,
as shown in Figure 1. The droplet transfer explains the behavior of the droplet transiting
from the tip of the welding wire to the molten pool, which primarily incorporates four
phases: formation, separation, transfer, and falling into the molten pool [42–44]. In LAHW
process, the mode, size, frequency, and stability of the metal droplet transferring to the
molten pool depend on the characteristics of the welding materials, welding parameters,
shielding gas, laser power, the mutual influence between laser and arc heat sources, laser-
to-arc distance, and other metallurgical and physical factors. Finally, it is subjected to
various forces, such as gravity, electromagnetic force, plasma flow force, surface tension,
metal vapor reaction force, and other comprehensive actions. According to the SFBT, when
the separation force on the droplet exceeds retention force, the droplet separates from the
welding wire. Separation force includes gravity, electromagnetic force, and plasma flow
force, while retention force includes surface tension [45]. Metal droplet transfer modes
in hybrid welding generally include short-circuit transfer, globular transfer, and spray
transfer [46].
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In LAHW, the addition of laser leads to a change in arc morphology and energy
distribution, thus changing the thermal and mechanical balance of the droplet. In contrast
to arc welding, the evaporation of materials is intensified due to laser radiation, and the size,
direction, and type of force on the droplet changes, making the situation more complex. At
present, in the research of droplet transfer in LAHW, some scholars agree that laser-induced
plasma changes the shape and physical properties of the arc and affects the behavior
characteristics of the droplet; however, there are still differences in the rule of droplet
transfer. In this review, through research and summary, it is found that the droplet transfer
behavior exerts a significant effect on the welding process, and process parameters can
affect the droplet transfer behavior, including laser-to-arc distance, heat resource leading
mode, shielding gas composition, laser power, and other process parameters. Therefore,
droplet transfer is critical to the stability of the welding process and welding joint quality.

Figure 2 demonstrates the content framework of this review, including two primary
parts. In fundamental theory (Sections 2–4), it starts with a detailed introduction about the
basic theory of LAHW and the heat source coupling relationship, and three main transfer
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modes of droplet transfer are introduced in Section 2. Then, in order to fully understand the
change in the droplet in the keyhole, Section 3 introduces the force analysis of the droplet
transfer in detail. In the characteristics of droplet transfer behavior from Section 5, the
influence of process parameters on droplet transfer is summarized. In the end, Section 6
summarizes this review and offers future outlooks.
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2. The Laser-Arc Hybrid Welding Theory

In the late 1970s, the British professor W. Steen [8] was the first person to propose the
process method of LAHW, and their research data suggested that the combination of laser
welding and arc welding had significant advantages. Laser and arc heat sources act on the
same position of the metal surface at the same time, and laser-induced plasma generated
by laser action above the welding seam absorbs and scatters the incident laser, reducing
the utilization rate of laser energy. With the addition of an arc source, low temperature and
low-density arc plasma dilutes the laser-induced plasma, thus improving the efficiency
of laser energy transmission. In the meantime, the pre-heating influence of the arc on the
workpiece surface further improves the laser absorption of the materials. The laser beam
can melt the base metal, provide free electrons for the arc, reduce the resistance of the
arc channel, improve the utilization rate of the arc energy, and focus and guide the arc,
making the arc more stable in the welding process. Under the thermal effect of the high
temperature arc, the tip of the welding wire resistance melts to form droplets. Under the
synergistic influence of the laser-induced plasma and the “keyhole” effect, a molten pool
takes shape on workpiece. The liquid metal in the molten pool flows under the synthetic
effect of volume force and surface force, and cools down to form a weld as the distance
from the hybrid heat source becomes larger. The shielding gas is provided through the
shielding gas nozzle to prevent the oxidation of the molten metal, as shown in Figure 3.
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In summary, the mutual influence between laser plasma and arc plasma achieves a
“1 + 1 > 2” synergistic effect. The mutual interaction mechanism of the laser and arc is that
the thermal energy of the arc enhances the use ratio of the laser. The addition of laser exerts
a vital effect on stabilizing and inducing the arc, and the mutual attraction of the laser
plasma and arc plasma compresses and strengthens the arc.
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3. Droplet Transfer Mode

The droplet is liquid metal formed at the tip of the welding wire, transferring to
the molten pool during arc welding. The process of the droplet transfer from arc space
to the molten pool is called droplet transfer. Droplet transfer exerts a significant role
on the stability of the welding process, appearance formation, spatter, and quality of
welding joints.

3.1. Short-Circuit Transfer

The droplet at the tip of the welding wire is in short-circuit contact with the molten
pool, due to its explosion and strong overheating, and it is directly transferred to the molten
pool. Short-circuit transfer generally occurs in the welding process of low voltage and
low current. As the arc is small, the droplet that does not detach contacts the molten
pool to establish a short-circuit liquid bridge, as shown in Figure 4. Under the action of
electromagnetic force and surface tension, the droplet necks down and breaks, completing
a short-circuit transfer. The short-circuit transfer is suitable for welding thin plates or when
low heat input is required.
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Figure 4. The schematic diagram of the short-circuit transfer mode:(a) initial stage, (b) process stage,
(c) final stage.

3.2. Globular Transfer

When arc length exceeds a certain value, the droplet can detach freely from the tip
of the welding wire by influence of the surface tension, as shown in Figure 5. When the
forces (gravity, electromagnetic force, etc.) that promote the droplet to fall are greater than
the surface tension, the droplet breaks away from the welding wire and transfer freely
to the molten pool without short-circuit occurring. The droplet transfer occurs in the
welding process with a low welding current and long arc. The droplet does not generate
a short-circuit connection with the molten pool. A large droplet (usually larger than the
diameter of welding wire) is formed at the tip of the welding wire, which separates from
the welding wire and enters into the molten pool under the effect of gravity, thus forming a
droplet transfer.

Coatings 2023, 13, x FOR PEER REVIEW 5 of 35 
 

 

surface tension, the droplet breaks away from the welding wire and transfer freely to the 

molten pool without short-circuit occurring. The droplet transfer occurs in the welding 

process with a low welding current and long arc. The droplet does not generate a short-

circuit connection with the molten pool. A large droplet (usually larger than the diameter 

of welding wire) is formed at the tip of the welding wire, which separates from the 

welding wire and enters into the molten pool under the effect of gravity, thus forming a 

droplet transfer. 

 

Figure 5. The schematic diagram of the globular transfer mode: (a) initial stage, (b) process stage, 

(c)final stage. 

3.3. Spray Transfer 

Spray transfer refers to the form in which the droplets are fine particles and transfer 

rapidly though the arc space to the molten pool in a spray state. The droplet size decreases 

as welding current increases. When arc length is stationary and welding current increases 

to a certain value, the spray transfer state appears. Spray transfer generally occurs in the arc 

welding process with a high voltage and current or argon protection. As shown in Figure 6, 

under the influence of electromagnetic force and plasma flow force, molten droplets are 

sprayed into the molten pool as small spheres along the axial direction of the welding wire 

to form spray transfer. The droplet diameter is generally smaller than the welding wire 

diameter, and transfer frequency is greater than that of globular transfer, so there is almost 

no phenomenon of short-circuit. Even if short-circuit occurs, the arc does not extinguish, so 

the spatter is small and the welding process is stable. Spray transfer is characterized by fine 

droplets, high transfer frequency, and droplets moving towards the molten pool at a high 

speed along the axial direction of the welding wire, and it has the advantages of a stable arc, 

small spatter, large penetration, good weld formation, and high production efficiency. 

 

Figure 6. The schematic diagram of the spray transfer mode: (a) initial stage, (b) process stage, (c) 

final stage. 

The droplet transfer modes are very important to the quality and stability of welding. 

Generally, spray transfer has better welding stability than short-circuit transfer. The 

advantage of LAHW is that there is less welding deformation, and the depth of the arc 

zone increases significantly, which can meet the requirements of the smooth zone of laser 

transfer. In comparison to individual heat source laser welding, the width of the laser zone 

Figure 5. The schematic diagram of the globular transfer mode: (a) initial stage, (b) process stage,
(c) final stage.

3.3. Spray Transfer

Spray transfer refers to the form in which the droplets are fine particles and transfer
rapidly though the arc space to the molten pool in a spray state. The droplet size decreases
as welding current increases. When arc length is stationary and welding current increases
to a certain value, the spray transfer state appears. Spray transfer generally occurs in the arc
welding process with a high voltage and current or argon protection. As shown in Figure 6,
under the influence of electromagnetic force and plasma flow force, molten droplets are
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sprayed into the molten pool as small spheres along the axial direction of the welding wire
to form spray transfer. The droplet diameter is generally smaller than the welding wire
diameter, and transfer frequency is greater than that of globular transfer, so there is almost
no phenomenon of short-circuit. Even if short-circuit occurs, the arc does not extinguish, so
the spatter is small and the welding process is stable. Spray transfer is characterized by fine
droplets, high transfer frequency, and droplets moving towards the molten pool at a high
speed along the axial direction of the welding wire, and it has the advantages of a stable
arc, small spatter, large penetration, good weld formation, and high production efficiency.
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The droplet transfer modes are very important to the quality and stability of weld-
ing. Generally, spray transfer has better welding stability than short-circuit transfer. The
advantage of LAHW is that there is less welding deformation, and the depth of the arc
zone increases significantly, which can meet the requirements of the smooth zone of laser
transfer. In comparison to individual heat source laser welding, the width of the laser zone
at the lower part of the weld is much wider, which plays a great role in improving the
welding efficiency, stability, and quality. Therefore, when the laser is added, not only is
droplet transfer frequency accelerated, but droplet transfer form is also transformed into a
stable spray transfer, which is conducive to improving the weld penetration and stabilizing
the welding arc. In the short-circuit mode, droplet transfer is difficult and is deviated from
the wire to the laser point. In globular and spray transfer modes, there exists an unstable
phenomenon in the droplet transfer and welding voltage.

Through experiment research, it is found that when the droplet transfer mode is
dominated by short-circuit transfer or globular transfer, it is easy to cause the relative
disturbance of convection in the molten pool, so that the metal static pressure in the liquid
state fluctuates greatly and it is difficult to maintain the balance of the keyhole. When the
static pressure to maintain the balance changes, the keyhole eventually collapses. Once
the keyhole collapses, the inner metal vapor rapidly sprays out, which poses a threat to
welding stability. In addition, the droplets with larger globular size also have a greater
impact on the weld pool, which has a potential impact on welding. In the process of LAHW,
the arc energy, as an important parameter, determines the droplet transfer form, and the
laser energy has a decisive influence on droplet transfer frequency. The droplet transfer
mode is very important to the quality and stability of welding, and the welding stability of
spray transfer is stronger than that of short-circuit transfer.

4. Analysis of Droplet Force

For many years, there has been a short of sufficient consensus on the synergistic
influence and physical mechanism of interaction between laser and arc heat sources. In
particular, the research on the force behavior of the arc and droplet by laser is slightly
insufficient, and the force behavior of the droplet affects the droplet transfer directly
during welding process, thus affecting the overall weld formation, surface morphology,
and microstructure. Therefore, the force on the droplet is the main factor that affects the
droplet transfer. In LAHW, the droplet transfer is related to the quality of welding. The
addition of laser changes the arc force field, electromagnetic field, molten pool temperature
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field, and surface tension, which makes the droplet transfer change in hybrid welding.
Hence, it is imperative to research the droplet transfer process in LAHW.

In comparison to the GMAW process, the forces of LAHW are more complex. The
traditional GMAW process usually considers four forces: gravity, electromagnetic force,
plasma flow force, and surface tension [47]. However, because of the influence of metal
vapor flow sprayed by laser keyhole, the type, size, and direction of the droplet changes.
In a hybrid welding process, the droplet is accompanied by multiple forces in the process
of forming, falling, and entering the molten pool. It is observed in Figure 7 that the main
forces on the droplet are gravity (Fg), electromagnetic force (Femz), plasma flow force (Fp),
surface tension (Fσ), and metal vapor reaction force (FRL).
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4.1. Gravity

The direction of gravity is always vertical and downward, which is the force that
promotes droplet transfer. The formula [48] is shown in Equation (1),

Fg =
4
3

πr3
dρg (1)

where rd is droplet radius, ρ is density of droplet, and g is acceleration of gravity. When the
welding wire material is determined, the density of the droplet does not change, and the
gravity of the droplet only increases as the droplet radius increases. It can be observed that
the larger size of the droplet, the greater its mass, and the greater the role of gravity in the
droplet transfer process.

4.2. Electromagnetic Force

Electromagnetic force is a key force that affects droplet transfer, and it is the macro-
scopic manifestation of the Lorentz force of the magnetic field to which the electric current
on the droplet is subjected. In hybrid welding, the laser keyhole provides a stable cathode
spot for the arc. Because of the attraction of the laser to the arc, the contraction force of
the arc is deviated towards the keyhole, making the droplet deviate from the axis of the
welding wire, leading to an intersection angle between the direction of the electromagnetic
contraction force above the droplet and the axis of the welding wire. The size of this angle
has a close connection with parameters, including laser-to-arc distance. The formula [49] is
shown in Equation (2),

Femz =
µ0

4π
I2

[
ln

rd sin ϕ

R
− 1

4
− 1

1 − cos ϕ
+

2

(1 − cos ϕ)2 ln
2

1 + cos ϕ

]
cos β (2)

where rd is droplet radius, R is welding wire radius, ϕ is arc root angle, I is welding current,
and µ0 is magnetic conductivity coefficient. The size and direction of the electromagnetic
force also change in the LAHW process.
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4.3. Plasma Flow Force

The plasma flow force is the force to accelerate the droplet transfer. The plasma force
on the droplet is caused though the drag of the plasma flow caused by the intrusion of
droplet into the fluid. It plays an important role in droplet transfer. The plasma flow in
the arc moves at a high speed from the tip of the welding wire to the molten pool, so the
droplet is influenced by the plasma flow, which has a vital impact on droplet separation
and movement after separation. The formula [50] is shown in Equation (3),

Fp =
π

2
r2

dv2
f ρ f Cd (3)

where v f is plasma velocity, ρ f is plasma density, and Cd is plasma flow coefficient. The
area has a connection with the droplet radius, and force increases as the droplet radius and
plasma velocity increase. The plasma flow force also promotes droplet transfer.

4.4. Surface Tension

The surface tension of the droplet is tension along with the surface boundary, caused
by the unbalanced molecular gravity of the droplet surface layer. The role of the surface
tension is to promote molten metal to adhere to the tip of the wire, and hinder droplet
transfer. The formula [51] is shown in Equation (4),

Fσ = 2πRσ (4)

where R is welding wire radius, and σ is surface tension coefficient. Because the surface
tension coefficient has a close connection with the temperature, when temperature rises, the
surface tension coefficient is reduced, so the size of the droplet is also reduced. In LAHW
process, because of the influence of the laser, the arc temperature rises, and the droplet is
wrapped in the plasma, so it is beneficial to droplet transfer, which eventually causes the
increase in droplet transfer frequency.

4.5. Metal Vapor Reaction Force

In LAHW, the addition of laser generates a keyhole effect. When the laser heat input
casts on the base metal surface, solid metal is rapidly heated, melted, vaporized, formed
into a keyhole, and sprays out a great deal of metallic vapor, forming a high-speed gas
flow, and the metal vapor hinders the droplet transfer. A mass of metal vapor is sprayed
form the keyhole, thus the droplet is subjected to vertical reaction force. The stronger the
incident laser energy, the higher the temperature of the molten body, caused by the laser
energy absorbed for the material surface, and the stronger reaction force of the metal vapor.
The formula [51] is shown in Equation (5),

FRL = Ca Av2
gρg (5)

where A is projected area of the droplet which is perpendicular to flow direction, vg is
metal stream eruption speed, and ρg is metal vapor density.

In conclusion, through the droplet transfer under the joint action of laser plasma and
arc plasma, the complex force state of the droplet and generation and the action principle
of the force source in the LAHW process are deeply investigated. The metal on the top of
the welding wire is heated and melted under heat source action to form droplets, which
fall off from the end of the solder wire at a certain time under the influence of all kinds of
forces. The completion of droplet transfer is due to the insufficient force to maintain the
droplet, such as surface tension, so that the droplet can continue to adhere to the tip of
the welding wire. The SFBM is to compare the resultant force that promotes the droplet
transfer with resultant force that hinders the droplet transfer, such as surface tension. When
the resultant force that promotes the droplet transfer, along the axis of the wire, is larger
than the resultant force that hinders droplet transfer, such as surface tension, the droplet
separates from the end of wire. It can be found that, on the one hand, the laser changes
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the size and direction of the arc force. Because a large amount of metal vapor jet flow is
generated during the violent gasification of materials in the laser welding process, a huge
reaction force is formed above the droplet, hindering the droplet transfer behavior. On the
other hand, since the plasma generated by laser welding changes the formation path of
the original inert gas metal arc welding plasma, the arc plasma absorbs the energy of the
laser passing through the arc, and the metallic vapor generated though the laser also has
a thermal radiation effect on the droplet, which promotes droplet transfer. Therefore, the
droplet transfer of LAHW is the result of this comprehensive effect.

5. The Characteristic of Droplet Transfer Behavior

In the process of LAHW, there are many factors affecting droplet transfer. As shown
in Figure 8, this review will concentrate on the influence of four aspects of droplet transfer,
including laser-to-arc distance, heat source leading mode, shielding gas composition, and
laser power.
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5.1. The Laser-to-Arc Distance

The welding parameters affect the weld morphology, microstructure, mechanical
properties, and welding quality of the joint. Laser-to-arc distance (DLA) is the key factor to
determine whether the laser and arc heat sources can be coupled optimally. DLA refers to
the linear distance from the center of the laser spot to the point where the welding wire is
perpendicular to the plate. As shown in Figure 9, the size of the DLA determines whether
the laser and the arc form a molten pool together. It also has an impact on the coupling
effect of the two heat sources. It is one of the pivotal parameters in LAHW, and exerts a
significant influence on the cooperation effect of the two heat sources. Many scholars have
carried out basic research on the heat source interaction in LAHW. Three influential aspects
are summarized in Table 1.

Firstly, the DLA has a vital influence on the penetration depth of LAHW. Jokinen and
Karhu [52] utilized the LAHW method to weld austenitic steel plates with the thickness of
20 mm, and suggested that the main factor to achieve good welding was the DLA. Song
et al. [53] studied the overlap weldability of an AZ31B Mg alloy sheet utilizing the hybrid
welding process, considering the DLA as the main factor affecting the penetration depth.
Liu et al. [54] found that, with increase in DLA, the penetration depth of welding increased
firstly and then decreased. This showed that, as arc current increased, the horizontal
distance between the deepest surface of the molten pool and the TIG electrode increased.
For the sake of ensuring the synergistic effect in the molten pool, the arc electrode was
often close to the laser beam. However, if the DLA was too small, the laser energy would
be lost and the penetration depth would be reduced [36]. In the LAHW process, when
the coupling distance of laser-to-arc was small, the arc would perturb the stability of the
keyhole, and the laser would interfere with the stability of droplet transfer [12]. The laser
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beam shined on the splashed droplet, which hindered the laser beam irradiation, resulting
in shallow penetration of the weld [55,56].

Table 1. Three influential aspects about DLA in this review.

No. Influence Aspects Laser Power Author Year/Ref.

1 Penetration depth 0.4 kW Song 2006/[53]
0.4 kW Liu 2012/[54]

2 Process stability

3.5–5.5 kW M. Moradi 2013/[57]
5–8 kW Atabaki 2018/[58]

4 kW L. Liu 2018/[59]
2 kW S. Liu 2012/[49]
5 kW S. Zhang 2020/[60]

3
Transfer mode and

frequency

4 kW W. Liu 2014/[29]
3 kW G. Campana 2007/[61]
2 kW S. Liu 2011/[49]
2 kW H. Huang 2021/[62]
≥8 kW J. Zhou 2008/[41]
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Secondly, the DLA also exerts an important effect on the stability of hybrid welding.
Moradi et al. [57] proposed that a short DLA would make laser-arc hybrid welding unstable,
because the droplet directly interacted with the keyhole, resulting in extra flow fluctuations.
Atabaki et al. [58] reported that in the process of welding high-strength quenched and
tempered steel, the DLA played an important role in keyhole stability. By monitoring the
welding process, less plasma plume led to higher molten pool stability in comparison to
the arc-leading mode. Liu et al. [59] studied the influence of different DLAs on process
stability and burn-through defects by HIS and spectrometer, and considered that the DLA
influenced keyhole behavior, induction efficiency, and burn-though defects. As shown in
Figure 9, continuous burn-through defects occurred in coupling conditions, while local
burn-through defects occurred when the DLA was same as the arc length. Liu et al. [49]
researched droplet transfer modes and formation processes in hybrid welding, considering
that it was beneficial to the stability of the hybrid welding process. High-speed photography
was utilized to understand the weld cross-section morphology. When DLA was within the
range of 2 mm to 5 mm, the process was stable. Zhang et al. [60] suggested that the DLA
had a crucial impact on the stability and defects of the process. In addition, it can be seen
from the research report that the DLA played a significant role in commanding the welding
state in hybrid welding. Under the situation of constant heat input energy, different heat
source states could be obtained by changing the DLA. Therefore, stability of the molten pool
could be improved by adjusting the DLA to control the state of the heat source with effect.

Finally, the DLA is of great importance to the mode and frequency of droplet transfer.
Liu et al. [29] studied the synergistic effect of laser and arc in LAHW. When the D LA was
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set to be small, because of a strong synergistic effect, the reduction of welding voltage and
welding current caused the transfer mode to change from spray transfer mode to globular
transfer mode. Campana et al. [61] considered that the DLA must be kept at 2–3 mm in
their research of hybrid welding, avoid the disorder of the molten pool and the instability
of the keyhole. At the same time, the synergistic influence of the hybrid heat sources
can be realized. The transfer mode of the droplet was very important to the stability and
repeatability of the welding process, so pulse transfer and spray transfer modes were
preferred. Liu et al. [49] investigated droplet transfer modes and weld formation processes
in LAHW. The DLA exerted a great impact on arc characteristics, droplet transfer mode, and
final weld geometry. With the increase in DLA and when the DLA was smaller than the arc
plasma radius, the weld geometry altered from “cocktail cup” to “cone”, droplet transfer
frequency in the welding process increased, and the transfer mode altered from globular
transfer to spray transfer. Huang et al. [62] utilized hybrid welding to connect 3 mm low-
alloy high-strength steel. The results suggested that the change in the DLA could optimize
the weld formation. When the DLA was 0 mm, droplet transfer frequency was the fastest,
and droplet transfer mode was a mixture of short-circuit transfer and liquid bridge transfer.
When the optimal process parameter of DLA was 0.5 mm, the weld penetration value was
best. Zhou [41] studied the complex transmission phenomenon in the keyhole of hybrid
welding through the developed mathematical model and related numerical technology. It
could be seen that the dynamics of the molten pool, cooling rate, and weld morphology
were hugely impacted though droplet impact process in LAHW, and it stressed that the
homogeneity of weld composition was influenced by the competition between the rate of
mixing and the rate of solidification.

Zhang et al. [60] analyzed the influence of the DLA on the heat source coupling effect
of laser-MAG welding in the alloy steel. When the DLA was 0 mm, the droplet transfer
and laser keyhole were extremely unstable, as shown in Figure 10. On the one hand, the
arc was located on the laser transmission path, which had a strong shielding effect on
the laser energy. In the meanwhile, the laser may irradiate the droplet, further increasing
the energy loss, and greatly reducing the stability of the keyhole while generating a large
number of spatters. On the other hand, the droplet was very close to the keyhole, and
metal vapor reaction force was very strong, leading to unstable droplet transfer. When the
DLA was within 2–4 mm, the heat source coupling effect was good, and the laser played a
role in compressing and stabilizing the arc. In the meantime, the arc captured some metal
vapor, which weakened the shielding effect of laser-induced plasma and increased laser
transmission efficiency, and droplet transfer was more stable. When the DLA exceeded
6 mm, the heat source coupling effect weakened rapidly. At this time, the arc may still be
attracted by the keyhole, but the molten pool was lengthened, and the arc would conduct
electricity by lowering the liquid metal, causing the arc to fluctuate violently and the
process to be unstable.
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The stability of LAHW relies on droplet transfer mode [63]. In LAHW, droplet transfer
plays an important role in deciding arc stability. When the welding current is small or the
arc length is short, the droplets do not separate until they contact the molten pool, leading
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to short-circuit transfer and explosion. In low-current LAHW, the laser can provide extra
heating input for the workpiece, so as not to explode in flight. Researchers have carried
out much research on LAHW, including the coupling of laser welding process and arc
welding process.

5.2. The Heat Source Leading Mode

The location of laser and arc heat sources in the welding direction has a vital influence
in LAHW. There are two leading configurations, namely, laser-leading mode [64,65] and
arc-leading mode [47,49,61,66], which have a significant impact on welding process, weld
geometry, and formation of welding defects [54,59,67]. The different relative positions of
the laser and arc have a vital impact on the surface formation and internal performance of
the weld. Figure 11 shows the schematic diagram of heat source location. The advantages
of different heat source-leading modes are summarized in Table 2.
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Table 2. The advantages of different heat source-leading modes in this review.

Leading
Mode Materials Advantages Author Year/Ref.

Laser-
leading

Al alloy better penetration depth Casalino 2013/[68]
5053 Al alloy low porosity and good weld formation Huang 2017/[69]

- stable welding process Zhang 2014/[70]
A7N01 Al alloy bright and clear weld morphology Miao 2017/[71]

High strength steel better weld quality Cao 2011/[72]
SM490A steel improving uniformity of weld metal Zhao 2009/[73]

Arc-
leading

High strength steel superior weld geometry and grain size Liu 2016/[74]
Q235 steel stable molten pool flow Li 2022/[75]

10CrNi3MoV steel good weld morphology Zhang 2020/[60]

Some researchers believed that laser-leading mode was superior to arc-leading mode.
When the position of the laser is used for welding before the arc, the laser energy can
preheat the workpiece, enhance the fluidity of the molten pool, and make the liquid
molten pool easier to spread around. Casalino et al. [68] utilized the laser-leading and
arc-leading hybrid welding to weld aluminum alloys, and proposed that the laser-leading
mode provided a more solid weld and better penetration depth. The results suggested
that the laser-leading mode generated optimal penetration depth and a more complete
weld, and it was considered that the laser-leading mode was more convenient than the
arc-leading mode. Therefore, under the same welding process parameters, laser-leading
mode could achieve greater penetration depth than arc-leading mode. This was because
when the position of the laser was before the arc, the laser acted on the front of the molten
pool, which was conducive to the formation of greater penetration depth. Huang et al. [69]
welded Al alloy in different leading modes in LAHW. The results suggested that a relatively
stable arc, low porosity, and good weld appearance were achieved in laser-leading mode,
as shown in Figure 12. In addition, in the laser-leading mode, the formation of pores could
be effectively suppressed, because there was almost no air in the molten pool, and keyhole
was not easy to collapse, so bubbles could easily escape from the molten pool without
delay. Zhang et al. [70] utilized LAHW to weld steel to study the influence of leading
mode on plasma and metal transfer. The results manifested that the laser-leading mode
decreased the arc plasma resistance, as shown in Figure 13. For the identical pulse duration,
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the transfer mode was spray transfer under the laser-leading mode. Because of the low
arc resistance and spray transfer mode, the laser-leading mode provided a stable process.
Miao [71] studied LAHW of A7N01 Al alloy with an X-ray device, and observed that dark
gray weld morphology occurred under arc-leading mode, while bright and clear weld
morphology was presented under laser-leading mode. Cao et al. [72] welded HSLA-65 steel
with a thickness of 65 mm. As shown in Figure 14, they proposed that when the position
of the laser was before the arc, they achieved better weld quality. They believed that, in
comparison to the arc-leading mode, laser-leading mode could form a higher quality weld,
because there were fewer filler and pore defects at the bottom. When the heat source mode
was laser-leading, the laser energy could preheat the workpiece, improve the fluidity of the
arc welding molten pool, and make the liquid molten pool easier to spread around, so the
weld width is larger. Zhao [73] used the LAHW method to weld 11 mm SM490A steel. It
could be seen that molten metal moved inward during laser-leading mode, improving the
uniformity of the weld metal, while the molten metal moved outward during arc-leading
mode. It can be seen form the above discussion that huge coupling effects between laser
and arc affected the welding thermal cycle and flow of the molten pool in LAHW, thus
affecting the microstructure of welding joints.
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Figure 14. (a) LAHW system with laser leading mode; (b) Schematic of groove shape; (c) Laser-
leading HLAW with joint gaps at a root size of 2 mm; (d) MAG-leading HLAW with gaps at a root
size of 2 mm [72]. Reprinted with permission from [72] 2016 Elsevier.

Other researchers considered that the arc-leading mode was superior to the laser-
leading mode. When the position of arc is used for welding before the laser, the heating
of the arc enhances the use rate of the laser. The addition of laser plays a crucial role in
stabilizing and inducing the arc. The mutual attraction of the laser plasma and arc plasma
makes the arc compressed and strengthened. The laser always irradiates the molten pool
of liquid metal, and the absorption rate of the liquid metal with the laser is far greater
than that of solid metal, so effective laser energy for welding and welding penetration
depth can naturally increase. Liu et al. [74] studied the leading mode of welding integrity.
The results proposed that, in the arc-leading mode, there was superior weld geometry
and a better grain size of the joint in the heat-affected zone than that of laser-leading
mode. The ALHW (arc-laser hybrid welding) joint had better weld morphology and a more
uniform lath martensite structure, while the LAHW (laser-arc hybrid welding) joint had an
asymmetrical lath martensite and austenite structure. Li et al. [75] also applied the method
of changing the location of the heat source to research the effect of the location of the heat
source on droplet transfer in the LAHW process, as shown in Figure 15. Compared with the
ultra-high-power laser-leading mode, the ultra-high-power arc-leading mode had formed
steady arc characteristics and molten pool flow, and the angle between the droplet radius
and conductive surface produced a greater force to promote the separation of the molten
droplets, improving welding process stability. Zhang et al. [60] studied the influence of arc
morphology and droplet transfer under different heat source modes. The comprehensive
comparison of weld morphology suggested that the arc-leading mode was superior to the
laser-leading mode.

The welding process is affected not only by the different positions of the laser and arc,
but also by the different DLAs. In LAHW, the thermal radiation effect of the laser plasma
on the droplet and the absorption effect of the laser plasma on the arc change the shape
of the arc and the corresponding stress state of the droplet, which changes the droplet
transfer process. For different welding currents, there is an optimal DLA. Under the optimal
DLA, the droplet transfer mode is a single stable spray transfer, and the weld formation is
good. Bunaziv et al. [76] proposed that increasing the DLA could optimize the melt flow
state in the arc-leading mode. However, in the laser-leading mode, the small DLA was
preferred, since the excessive DLA would reduce the previous laser–arc hybrid welding
effect. Bunaziv [36] utilized a hybrid welding method to weld 5083 aluminum alloy with a
thickness of 5 mm. He proposed that, under the arc-leading mode, the porosity decreased
as the DLA increased, while under the laser-leading mode, the situation was opposite. Liu
et al. [77] studied DC LAHW in the arc-leading mode. They found that with the increase
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in DLA, the droplet transfer mode shifted from globular transfer to spray transfer. The
difference between the heat source positions of the two processes has a direct impact on the
thermal phenomenon of LAHW.
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Combined with the changes in plasma shape, electron temperature, and electron
density, the laser-arc coupling mechanism of two heat source sequences is different under
different laser power. When the heat source is in laser-leading mode, due to the energy
density of the laser and the formation of a molten pool prior to the arc, a large number
of dispersed electrons are generated, making the plasma shape more divergent. With the
continuous increase laser power, the evaporation of molten metal in the molten pool on
the surface of the base metal is enhanced, the ionization of metal particles is enhanced,
the volume of plasma expands, the electron temperature increases, and electron density
increases. When the heat source is in arc-leading mode, laser energy density is small,
and there are fewer electrons generated in the welding process. When laser is added, the
electrons that maintain the arc are mainly provided by the laser keyhole. In the process
of laser-leading mode, due to the lack of preheating effect of the arc, the corresponding
laser-induced plasma absorbs more energy and generates higher electron temperature, and
the plasma morphology is more divergent. The electron density of the divergent plasma is
smaller. When laser power is small, the coupling process is dominated by the arc. With
the increase in laser power, the plasma electron density increases, the electron temperature
increases, the keyhole effect of the laser is suppressed, and the weld penetration decreases.
In the LAHW process, heat source mode has a direct impact on plasma characteristics, the
dynamic behavior of the droplet and molten pool, and temperature field, thus affecting the
welding process and welding quality. Under different heat source positions, the droplet
transfer and transfer frequency in LAHW are very significant.

5.3. The Shielding Gas Composition

In LAHW, the energy absorption of the materials is related to the energy density of
the heat source, the thermal conductivity of the materials, hot melting, and other physical
properties. The absorptivity of the materials to the arc is affected by electronic circle-
circuit, shielding gas, material characteristics, etc. The absorption of laser energy is mainly
affected by laser wavelength, workpiece surface state, joint shape, plasma morphology, and
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properties above the molten pool. Shielding gas is a very important welding parameter.
Whether in single laser welding or arc welding, it must be considered that it has an
important impact on the joint quality. The advantages of different shielding gases are
summarized in this review in Table 3. In laser welding, shielding gas is an effective
means to eliminate the plasma shielding effect, improve process stability, and realize deep
penetration welding. In arc welding, shielding gas is the key factor to achieve stable arc
combustion and determine the arc column heat distribution and droplet transfer mode.
Shielding gas is also important for LAHW with two integrated processes. Basic chemical
and physical properties of the gases commonly used in LAHW are summarized in Table 4.

Compared with GMAW, the physical process of LAHW is complicated, because
mutual influence between the arc and laser-induced plasma affects the arc and droplet
transfer mode stability. In LAHW, shielding gas exerts an impact on improving the weld
quality [78,79]. For the sake of obtaining better process stability and appearance of the
weld, it is necessary to comprehend the interaction of the shielding gas and its influence
on droplet transfer. Zhu et al. [80] reported droplet transfer behavior in LAHW under
shielding gas, as shown in Figure 16. The results suggested that, when the shielding gas
was pure Ar, Ar + 30% He, and Ar + 50% He, the droplet transfer mode was rotary spray
transfer. When the shielding gas was Ar + 30% He, the transfer behavior was best. When
the shielding gas was pure He, the transfer mode shifted from rotary spray transfer to
large globular transfer, which not only decreased stability of the welding state, but also
weakened uniformity of weld metal. Therefore, the hybrid influence between laser and arc
was improved by adding 30% He, and the matched degree between rotary spray transfer
and arc pulse period was improved. When Ar and He were used as shielding gases, their
advantages and disadvantages were different. The combination of them made full use
of the advantages of “1 + 1 > 2”. When Ar is used as shielding gas, the arc is stable, and
the density of Ar is higher than air, so the protection effect is good, but there are many
porosities in the weld. When He is used as a shielding gas, the porosity of the weld is
low, but the arc stability is poor. The He-Ar mixture gas has the following advantages:
stabilizing the arc, increasing the welding speed, increasing the penetration, and reducing
the porosity.
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Similarly, Campana [61] discussed the influence of the transfer mode of a CO2 laser-
MIG hybrid welding process on the weld morphology under a 40% Ar, 57% He, and
3% O2 ternary shielding gas. They believed that, in the LAHW process, though the
harmonious control of the laser and MIG arc, there must be a distance of 2–3 mm to avoid
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the disturbance of the welding pool and holes, and the focal point of the laser should
be in a negative defocusing state. The transfer mode of the droplet directly influenced
the weld quality, and the pulse or spray transfer mode was better than the short-circuit
transfer mode. Cai et al. [81] proved that instability of the shielding gas and high gas flow
rate in laser-arc hybrid welding could lead to precarious droplet transfer behavior with
spatter. Pan et al. [82] suggested, in comparison, the impact of 20% CO2 + Ar and 100%
CO2 utilized as a shielding gas on defects of welding joints. The results showed that the
spatter could be significantly reduced by optimizing the composition of the shielding gas
to control the transfer mode. Zhang et al. [83] investigated the influence of CO2 content
on droplet transfer during LAHW. The increase in CO2 content enhanced the synergistic
effect. The laser energy density continuously increased, and the penetration depth became
deep. When CO2 content was low (5% CO2 + Ar), the welding state was fluctuant with
spatter, and transfer mode was spray transfer. When CO2 content was high (15% CO2 +
Ar), the welding state was not fluctuant, the spatter was small, and transfer mode was
spray transfer.

Table 3. The advantages of different shielding gases in this review.

Shielding Gas Type Advantages Year/Ref.

Ar + 30% He best transfer behavior and welding process stability 2021/[80]
40% Ar, 57% He, and 3% O2 achieving better spray transfer mode 2007/[61]

20% CO2 + Ar and 100% CO2 reducing spatters 2016/[82]
CO2 content enhancing synergistic effect of laser and arc 2019/[83]

50% He reducing pore defects 2018/[84]
O2 + Ar mixture gas increasing penetration depth 2006/[85]
He-Ar mixture gas achieving full penetration depth 2006/[65]

Table 4. Basic chemical and physical properties of the gases commonly used in LAHW.

Type of
Gas

Content in the
Air/%

Boiling Point
at 1.013 × 105

Pa/°C

Density at
15°C, 1 × 105

Pa/(kg/m3)

Atomic Weight and
Mean Molecular

Weight Reps

Chemical
Activity

Ar 0.934 −185.9 1.669 39.948 Inert

He 5.2 × 10−6 −268.9 0.167 4.002 Inert

H2 0.5 × 10−6 −252.9 0.085 2.016 Reducing

O2 20.946 −183.0 1.337 31.998 Oxidizing

CO2 0.033 −78.5 1.849 44.011 Oxidizing

Continuous optimization of shielding gas can enhance the stability of welding joints
and process stability. The shielding gas not only influences the welding line morphol-
ogy, welding defects and alloy composition of laser-arc hybrid welding, but also has an
important impact on the mechanical properties of the weld. Different kinds of shielding
gas and volume fractions of the shielding gas can not only improve weld penetration, but
also improve welding defects. Cai et al. [84] reported the influence of Helium content
within shielding gas on porosity defects. The results suggested that the penetration depth
increased and the pore defects were obviously reduced when 50% He was added. Naito
et al. [85] found that in the process of LAHW, when O2 was added into the Ar shielding gas,
the penetration depth was increased slightly, which might be due to the melt flow caused
by the inward surface tension. Gao et al. [65] proposed that full penetration depth could
be achieved when He content in He-Ar mixture shielding gas is more than 50% during
hybrid welding. Due to the indispensable role of shielding gas, Kah [79] elaborated on
the importance of shielding gas on the experiment research. Tani et al. [86] studied the
influence of shielding gas in LAHW, and observed that higher He content and gas flow
rate in the mixture of shielding gas would gradually lead to unstable an arc. When He
content increased to 30%, the plasma formation was restricted and the absorption of laser
power was decreased. When the content of He exceeded 40%, the welding process was not
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stable, and the weld formation was not significantly improved. They also pointed out that
high-density gas was a fine opportunity for a good protection effect, rather than enhancing
gas flow rate to a greater level [87]. Yang et al. [88] reported that when the gas flow was
too large, the process stability of MIG welding was worse than that of LAHW, and the gas
flow force hindered the droplet transfer. Increasing shielding gas flow cannot significantly
change the shielding gas flow mode in the primary welding region, while high gas flow
rate can expand the region with a high Ar concentration, which was conducive to the
spread of molten metal and reduced weld oxidation, as shown in Figure 17. Fellman and
Kujanp [14] utilized different proportions of He, Ar, and CO2 gas to weld I-type and T-type
butt joints. They proposed that the change in shielding gas CO2 affected droplet transfer
and arc stability. The optimal result was obtained when shielding gas was Ar + 40%–50%
He and Ar + 2%–5% CO2. Gao, Zeng [89], and Tani [86] et al. also obtained similar results.
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Whether laser welding or arc welding, shielding gas is the vital factor affecting the
process characteristics. In laser welding, especially CO2 laser welding, shielding gas is
an effective means to eliminate the plasma shielding effect, improve process stability, and
realize deep penetration welding. In arc welding, shielding gas is the vital factor to achieve
stable arc combustion and determine the arc column heat distribution and droplet transfer
mode. Moreover, for the welding pool, shielding gas is a necessary means to prevent the
oxidation or pollution of the high-temperature welding pool. Therefore, the shielding gas is
also important for laser-arc hybrid welding, which integrates two processes. How to choose
the suitable shielding gas parameters is a necessary premise for the research of LAHW.

In solid laser LAHW, because the defocusing shielding effect of laser-induced plasma
on the laser beam is very small, the stable process and good hybrid effect can be obtained
by using pure Ar as the shielding gas. In CO2 LAHW, because of the strong plasma
shielding effect, it is necessary to use He to obtain good hybrid welding effect. However,
He is not good for arc stability, especially for droplet transfer, and is expensive. Therefore,
He-Ar mixture gas is usually used in CO2 LAHW. In the research of the hybrid welding
of low carbon steel and stainless steel, adding a small amount of CO2 and O2 and using
He-Ar-O2 or He-Ar-CO2 ternary mixed gas was also shown to improve the stability of
CO2 LAHW to a certain extent and reduce welding spatter, as shown in Figure 18. The
research shows that the volume fraction of He must be higher than 30% for both binary and
ternary gas mixtures to ensure effective suppression of the laser-induced plasma shielding
effect, and enhance the synergy between the two heat sources and produce greater welding
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penetration. However, once the plasma shielding effect is effectively suppressed, increasing
the He or CO2 content does not significantly help increase the welding penetration, but
leads to a decline in process stability and an increase in welding spatter.
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It is generally believed that in order to achieve stable and efficient hybrid welding,
the shielding gas needs to meet the following principles: (1) The gas composition is inert
for welding materials, but some active gases can be added to improve the arc stability and
weld formation. (2) The gas flow can eliminate the shielding effect of laser-induced plasma
without blowing away the liquid molten pool. (3) The shielding gas should have high
ionization energy so as to inhibit the expansion of plasma and obtain sufficient welding
penetration. It is difficult for a single gas to meet the above requirements to enhance
the stability of hybrid welding process and increase welding penetration in the meantime.
Therefore, according to the characteristics of the laser, arc type, and welding materials, there
are great differences in the selection of shielding gas composition and related parameters.

5.4. The Laser Power

Since the addition of laser to GMAW welding causes changes in the arc morphology
and molten pool morphology, resulting in changes in the arc force, electromagnetic field,
and surface tension of the molten pool, the changes in these factors lead directly to changes
in the droplet transfer characteristics. Many experiment scholars have paid close attention to
the droplet behavior of LAHW, integrating the deep penetration advantage of laser welding
and bridging the gap of arc welding. It can be found that droplet behavior is related to laser-
induced plasma. Droplet transfer mode is relevant for processing parameters, including
laser power [77], laser-to-arc distance [49,90], shielding gas [86], etc.

5.4.1. The Addition of Laser

In recent years, domestic and overseas researchers have concentrated on the analy-
sis and discussion of laser-arc droplet transfer, welding process characteristics, and the
mechanism of effect in hybrid welding. Researchers have discovered that laser can increase
the stability of the arc. However, it is still controversial whether the role of the laser is to
hinder or promote droplet transfer. As shown in Figure 19, the effect of the laser on droplet
transfer in LAHW is summarized in this review.
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Regarding the influence of laser on droplet transfer, some scholars considered that
laser can hinder droplet transfer in hybrid welding. Sugino et al. [91] found that the laser
hindered the droplet transfer because of the reduction in electromagnetic force. Fellman
et al. [92] studied the droplet transfer behavior in LAHW. They considered that the high
pressure of the laser-induced plasma prevented droplet transfer. The droplet would rotate
around the tip of the welding wire before transferring to the molten pool. Liu et al. [49]
found that, in comparison to arc welding, in globular transfer mode, mutual influence
between arc plasma and laser-induced plasma in LAHW hindered droplet transfer, and
the separation speed and transfer frequency decreased. The laser-induced plasma was
generated by the addition of laser, which increased the plasma concentration on the surface
of the workpiece, and the arc was attracted by plasma, thus changing the arc shape, thereby
altering the pressure difference between the upper and lower surfaces of the droplet, so
that the droplet close to the surface of the molten pool merged, and transfer frequency
slowed down.

However, some other scholars believe that laser can promote droplet transfer in LAHW.
Ono et al. [93] utilized 3 kW laser power and a current of 100 A in LAHW. They found
that the voltage waveform was more stable after the addition of laser. The droplet transfer
frequency was increased nearly four times, compared with arc welding. The author thought
that the laser plasma could change the arc shape, and its discharge area was within the
range of about 1 mm of the laser spot, so that the arc was compressed, energy was more
concentrated, and volume was smaller. Gao et al. [94] also concluded that, in comparison to
arc welding, as shown in Figure 20, in the large globular transfer mode of hybrid welding,
the number and density of plasma increased in LAHW, which changed arc morphology,
increased the area of anode spots on the droplet surface, and changed the direction of the
ionization force. Therefore, the laser could promote the droplet transfer. In LAHW, due
to the addition of laser, the electromagnetic force in arc welding changed from retention
force to separating force. At the same time, the increase in arc plasma density increased the
size of the ionization force. Therefore, the role of laser promoted the frequency of droplet
transfer. Zhang et al. [95] compared the droplet transfer of MIG welding and laser-MIG
hybrid welding. The results suggested that laser-coupling with a certain power can stabilize
the arc, reduce the arc fluctuation, and reduce the possibility of the droplet flying out of the
molten pool to form the spatter, as shown in Figure 21. Through researching droplet transfer
frequency in the welding progress, it could be seen that laser generated a lot of thermal
radiation in metal plasma, which promoted the droplet transfer. Meanwhile, because of the
attraction force of the laser plasma on the droplet and the metal vapor reaction force on the
droplet, the transfer mode and frequency of the droplet changed [77].
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Figure 21. Droplet transfer behavior of aluminum alloy welding: (a) Laser–arc hybrid welding;
(b) Arc welding [95]. Reprinted with permission from [95] 2019 Elsevier.

From the above research, it could be found that numerous research focuses on the
influence of CO2 and a YAG laser on droplet transfer behavior in short-circuit and globular
transfer modes, but the influence of the laser on the droplet is controversial. In fact,
compared with a CO2 laser, a fiber laser can improve photo-electric efficiency and retain
the advantages of a YAG laser in aspects of reliability [96–99]. This has been applied far
and wide in LAHW [100–103]. However, the effect of a fiber laser on droplet behavior in
short-circuiting, globular, and spray modes is still indistinct. Cai et al. [104] reported on
the impact of laser on droplet transfer behavior in the three transfer modes. As shown in
Figure 22, compared with arc welding, it could be found that droplet transfer frequency
and the position of the falling point of the three transfer modes in hybrid welding had
changed. The results suggested that the addition of laser improved the transfer frequency of
short-circuit transfer and droplet transfer modes, but hindered droplet transfer under spray
mode. The size and direction of the electromagnetic force and plasma flow force affecting
the droplet were the key factors. Therefore, the arc stability mechanism of hybrid welding
was attributed to two aspects. Firstly, the coupling of laser and arc boosted globular transfer
of the droplet. Secondly, the interaction between laser and arc caused the electromagnetic
force to change from separation force to retention force.

In conclusion, as an important parameter, the arc energy determines the droplet
transfer mode, and the laser energy has a decisive influence on droplet transfer frequency.
The addition of laser in the arc welding process causes changes in the arc shape, temperature
distribution, and molten pool shape, which inevitably leads to changes in the droplet
transfer characteristics. Compared with the droplet transfer characteristics of individual
MIG/MAG welding, on the one hand, the metal plasma generated during the laser deep
penetration drives the droplet transfer because of thermal radiation of droplet. On the
other hand, the attraction of laser plasma to the droplet and the metal vapor reaction force
on the droplet hinder droplet transfer, and their combined effects change droplet transfer
mode and frequency.
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5.4.2. The Effect of Laser Power

In the LAHW process, the stability of arc morphology and transfer is affected not only
by arc parameters, but also by laser parameters. The laser energy affects the arc morphology
and the heat conduction of the arc plasma, affects the electron density and current density,
and changes the arc length, droplet size, and speed.

With the increase in laser power, the metal vapor reaction force increases. The relation
of laser power and blocking effect in this review is concluded in Table 5. Huang et al. [105]
reported the influence of the groove constraint of thick plate titanium alloy in LAHW. It was
found that groove had a constraint effect on the metal vapor emitted by the laser keyhole.
Compared with flat plate welding, the metal vapor forced to escape upwards had a stronger
inhibition influence on droplet transfer. The blocking effect continued to increase as laser
power increased. Liu et al. [106] thought that the effect of metal vapor reaction force on
droplet transfer behavior was based on theoretical calculation. When laser energy increases,
the metal vapor reaction force naturally increased. When the DLA exceeded a certain range,
its influence on the droplet could be ignored, as shown in Figure 23. Mahmoud Moradi
et al. [57] investigated droplet transfer stability in LAHW. It was observed that if laser
power was properly increased, the compression influence of the laser on the arc would
be stronger, and the arc would absorb more laser energy, which was conducive to a more
stable droplet transfer. However, when the laser power increased, the metal vapor reaction
force increased, which hindered the droplet transfer. They also studied the stability effect
of voltage and laser power in hybrid welding. They discovered high laser energy could
lead to instability, and high arc voltage could seriously damage welding state, since spray
arc became extremely long and the droplet moved laterally. Liu et al. [77] observed that, in
CO2 laser-MAG hybrid welding, the droplet diameter increased and transfer frequency
decreased with the increase in laser power. Zhang et al. [107] found that high-power laser-
induced plasma altered the droplet’s direction of force. This force led the center of mass of
the droplet to deviate from the axis, resulting in a weak shrinkage effect and destroying
the transfer mode of one droplet per pulse. Therefore, it could be seen that decreasing
the arc length though decreasing voltage could deal with this matter. It was shown that a
low-power laser and short arc length could improve droplet transfer stability in LAHW.
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Table 5. The relation of laser power and blocking effect in this review.

No. Laser Power Materials Year/Ref. Conclusion

1 2 kW Ti-6Al-4V 2019/[105]

The blocking effect
continued to increase as
laser power increased.

2 3 kW High strength steel 2018/[106]

3 3.5–5.5 kW Stainless steel 2012/[57]

4 1.5–3.5 kW High strength steel 2013/[77]

5 6 kW E36 2013/[107]
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Figure 23. The connection between DLA and the reaction force of metal vapor [77]. Reprinted with
permission from [77] 2013 Elsevier.

In order to obtain smooth and steady droplet transfer and reduce the loss of laser heat
input, many researchers changed the conventional process parameters (including laser
power and laser-to-arc distance) to solve the problem. Due to the narrowing of the window
of process parameters, it is difficult to achieve excellent hybrid welding between a high-
power laser and an arc with a small DLA. Therefore, some scholars considered adjusting
the laser power to synch the arc current and voltage to cope with the above-mentioned
matters. Petring et al. [108] firstly reported the coordinating adjustment technology of
laser and arc, and forecasted that this method had plenty of advantages. Chen et al. [109]
proposed that adding laser could inhibit arc discharge during negative arc current, which
led to a greater penetration depth than adding laser during positive arc current. Sugino
et al. [91] discovered that, under the invariable 5 kW laser power, unstable droplet transfer
was led though the decrease in the arc current in the period of peak value. Therefore, they
adopted the means of adjusting the laser energy to synch the arc current and voltage to
promote droplet transfer and restrain spatter. Li et al. [110] realized the synchronization
of the arc current by modulating the laser power. There were two coupling modes. In
the in-phase coupling mode, adding high-power laser in the period of the peak value
of arc current would increase the time of the droplet formation and separation, causing
the droplet to deviate from the axis, thus decreasing droplet transfer stability, as shown
in Figure 24. In the anti-phase coupling mode, as shown in Figure 25, utilization of a
low-power laser with the maximum arc current inhibited the arc length from becoming
longer, leading to faster droplet separation, less spatter, and enhanced stability of droplet
transfer. It can be seen that many research fellows concentrated on the influence of the
synchronous pulse of modulation laser-arc hybrid welding on the penetration and changes
in arc current or voltage. They also considered that droplet transfer would reduce the
stability of the keyhole for LAHW. Because of the attraction of the laser to the arc, they
confirmed through high-speed photography that the droplet might pass through the laser
transmission path when passing through the arc space. The droplet absorbed laser energy
and explode, resulting in splash. At the same time, the laser keyhole cannot be maintained,
the depth decreased, and the fluctuation increased.
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Lei et al. [111] proposed the effect of heat source coupling parameters on droplet
transfer behavior in laser-CMT hybrid welding. They observed that, with an increase in
laser power, the area of photoinduced plasma was constantly expanding, and the thermal
radiation of plasma could accelerate the melting of the welding wire and shorten the
growth time of molten droplets. As shown in Figure 26, laser power and DLA were the
parameters that had the greatest impact on droplet transfer. Zhang et al. [112] studied the
plasma behavior and metal transfer in LAHW, and found that with the increase in laser
power, the vapor jet force induced by keyhole plasma increased. It is helpful to generate
desired welding quality by understanding welding characteristics between laser power
and DLA. Zhang et al. [113] researched the stability of hybrid welding under different heat
source coupling conditions. By analyzing the change in weld width, it was found that
the improper proportion of heat source power would lead to poor welding quality. When
welding current increased, the droplet was likely to fall into the surrounding of the laser
keyhole, causing keyhole fluctuation and poor stability. Liu et al. [77] investigated the effect
of hybrid welding heat source coupling on arc morphology, and counted the changes in arc
root width and height. Because of the compression influence of the laser on the arc, the arc
root width decreased, while the arc height increased. Tomkow et al. [114] considered that
the temper bead welding (TBW) technique could improve the limited weldability of steel
under water. The results suggested that TBW lead to positive microstructure changes and
reduced the number of cracks in different areas of welding joints.
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Figure 26. The effect of laser power on transfer frequency, droplet volume, and plasma tempera-
ture [111]. Reprinted with permission from [111] 2019 Elsevier.

When laser acts on the combustion stage of the MIG arc, high temperature plasma
attracts and compresses the MIG arc to a laser focal point. The temperature rises sharply, the
arc conductivity drops, and electric field intensity drops. At the same time, the arc increases
the penetration ability of the laser. The absorption of the laser energy is proportional
to the density of the plasma. The high temperature and density plasma produced by
individual laser welding has a great absorption effect on the energy. A large amount of
low temperature and density plasma is generated during the arc combustion stage, which
has a dilution effect on the plasma generated by the laser, decreasing the absorption rate
of the plasma on the laser, and increasing laser penetration ability. With the increase in
temperature, the laser absorptivity of the material increases, and the preheating effect of the
arc also greatly increases the laser penetration ability. The stability of the welding process
affects the welding quality, especially in the high-power welding process. The laser beam
hitting the material surface causes the material to evaporate rapidly to form a keyhole,
which blocks laser energy inside and transmutes it into heat. The process includes huge
changes and complex coupling of various physical elements, which causes great challenges
in becoming a true stable welding process.

In the LAHW process, the keyhole maintains a high absorption rate of laser energy.
Because of high energy density and intense energy conversion, it is easy for energy deviation
to occur, affecting the welding stability. In the process of welding, the preheating effect
of the backside becomes more obvious, which leads to the occurrence of “quasi-focus
reduction”. The preheating effect can increase evaporation, and it is a reason for unstable
welding. Therefore, effective control of laser-induced evaporation is considered key to
adjusting the distribution and preventing welding instability. It obliges us to take measures
to attain welding stability to offset the effects of preheating. Since energy coupling and
deviation are pivotal factors affecting welding stability, it is very significant to reveal the
rules of energy coupling and deviation in LAHW. The keyhole effect is very important to
realizing energy coupling for three main reasons: (1) Multiple reflection and absorption of
laser energy in the keyhole. (2) The energy distribution in the keyhole is influenced by the
metal plume. (3) The laser energy transfer is affected by the metal plume above.

6. Conclusions and Future Outlooks
6.1. Conclusions

LAHW technology combines laser and arc heat sources, and makes up for their
shortcomings. Laser-arc hybrid welding has different hybrid forms according to the
differences in heat source combination, relative position, and energy matching. Laser and
melt inert/active gas arcs (MIG/MAG) are the most promising hybrid welding modes. It is
imperative to further investigate the physical mechanism of hybrid heat sources. At the
same time, droplet transfer behavior is also very significant in the hybrid welding process.
Droplet transfer behavior can provide accurate information for the welding process, which
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can judge the stability of the welding process effectively. The droplet transfer behavior is
affected by the following factors:

(1) Distance between laser-to-arc: The DLA affects the mutual coupling effect of the heat
sources, thus affecting the weld penetration depth, welding stability, droplet transfer
mode, and droplet transfer frequency. It is observed that the best DLA can make the
droplet transfer mode more stable, improving the weld formation to a greater extent.

(2) Heat source leading mode: The different relative positions of the laser and arc have a
momentous impact on the surface formation and internal performance of the weld.
The arrangement of heat sources has a great influence on the absorption efficiency of
the laser, and exerts an effect on the dynamic behavior of the droplet, the behavior of
the molten pool, and the temperature field. Whether one uses laser-leading mode or
arc-leading mode plays a vital role on the droplet transfer and transfer frequency in
hybrid welding.

(3) Shielding gas composition: Whether in single laser welding or single arc welding,
the shielding gas should be considered. The shielding gas can eliminate the plasma
shielding effect effectively and enhance the welding process stability. The interaction
of different compositions of shielding gas greatly affects the droplet transfer behavior
and transfer frequency.

(4) Laser power: The addition of laser can increase the stability of the arc. When the
laser acts on the arc burning stage, the arc is attracted and compressed to the laser
focal point, increasing the penetration ability of the laser. Under different conditions,
laser can both promote and hinder droplet transfer. The laser energy affects the arc
morphology and the heat conduction of the arc plasma, affects the electron density
and current density, and changes arc length, droplet size, and speed. With the increase
in laser power, the metal vapor reaction force is enhanced, and metal droplet transfer
is hindered, which leads to an unstable welding process. The stability of droplet
transfer can be improved by adjusting laser energy to coordinate the arc current
and voltage.

At present, welding technology is developing towards mechanization and automation.
In the fields of marine processing, transportation, and oil and gas pipeline processing, laser–
arc hybrid welding has achieved ideal results with its excellent welding performance. The
GMAW welding method with short-circuit transfer is widely used in the industry because
of its advantages, such as concentrated arc energy, small workpiece deformation, and easy
automation. However, the short-circuit transfer welding has the issues of spatter and poor
formation. Scholars at home and abroad have done much research on spatter and formation
during short-circuit transfer in GMAW. LAHW can effectively improve the above issue with
the addition of laser. In addition, with the continuous development of visual technology,
the technology of observing the droplet transfer phenomenon is constantly updated. It is
necessary to combine the current advanced technology to constantly explore the research on
droplet transfer and summarize its rules. Combined with numerical simulation technology,
it focuses on analyzing the welding mechanism and understanding the causes of welding
defects, which is also the direction that current researchers need to continue to study.
Finally, due to the large number of process parameters, they have a greater impact on the
welding stability, thus affecting the droplet transfer.

6.2. Future Outlooks

At present, the research of droplet transfer behavior in hybrid welding has attracted
more and more attention from industry and scholars. Droplet transfer has a vital influence
on the stability of the welding process, weld formation, spatter, and the quality of welding
joints. Therefore, understanding droplet transfer is very important to master the LAHW
process. In recent years, LAHW has gradually been more widely concerned and applied
in various fields. In the future, LAHW will have great research significance and broad
application prospects regarding droplet transfer characteristics. However, at present, the
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research of droplet transfer behavior in LAHW is also facing urgent problems, mainly
including the following aspects:

(1) With the continuous development of engineering machinery, the thickness of plates is
also increasing. To meet the stability of thick plate welding, processing grooves for
thick plates is indispensable. Due to the complexity of thick plate grooves, arc stability
in the welding process is also damaged to a certain extent, resulting in the generation
of welding defects. At the same time, the generation of defects has close connection
with droplet transfer, and the droplet transfer behavior in thick plate welding is also
facing severe problems.

(2) In high-power hybrid welding, the generation of spatter defect is inevitable. The
optimization and progress of numerical simulation technology, which breaks through
the limitation of defect detection methods, provides a firm academic basis for the
further progress of innovative processes.

(3) Due to plenty of process parameters in LAHW, for the sake of obtaining the best weld
formation, the window of process parameters is constantly narrowed, and the change
in process parameters also exerts a huge effect on droplet transfer characteristics.
Therefore, the continuous exploration of process parameters is of great significance
for the breakthrough in the field of droplet transfer behavior in LAHW.
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Abbreviations

A projected area of the droplet LTT low transformation temperature
ALHW arc–laser hybrid welding MAG metal-active gas welding
CMT cold metal transfer MIG metal-inert gas welding
Cd plasma flow coefficient R welding wire radius
DLA laser-to-arc distance rd droplet radius
Fg gravity TBW temper bead welding
Femz electromagnetic force TIG tungsten inert gas
Fp plasma flow force v f plasma velocity
Fσ surface tension vg metal stream eruption speed
FRL metal vapor reaction force YAG yttrium aluminum garnet
g acceleration of gravity σ surface tension coefficient
I welding current ρ droplet density
GMAW gas metal arc welding ρ f plasma density
LAHW laser–arc hybrid welding ρg metal vapor density
ϕ arc root angle µ0 magnetic conductivity coefficient
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