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Abstract 

Human probability judgments are both variable and subject to systematic biases. Most 

probability judgment models treat variability and bias separately: a deterministic model 

explains the origin of bias, to which a noise process is added to generate variability. But these 

accounts do not explain the characteristic inverse U-shaped signature linking mean and 

variance in probability judgments. By contrast, models based on sampling generate the mean 

and variance of judgments in a unified way: the variability in the response is an inevitable 

consequence of basing probability judgments on a small sample of remembered or simulated 

instances of events. We consider two recent sampling models, in which biases are explained 

either by the sample accumulation being further corrupted by retrieval noise (the Probability 

Theory + Noise account), or as a Bayesian adjustment to the uncertainty implicit in small 

samples (the Bayesian sampler). While the mean predictions of these accounts closely mimic 

one another, they differ regarding the predicted relationship between mean and variance. We 

show that these models can be distinguished by a novel linear regression method that 

analyses this crucial mean-variance signature. First, the efficacy of the method is established 

using model recovery, demonstrating that it more accurately recovers parameters than 

complex approaches. Second, the method is applied to the mean and variance of both existing 

and new probability judgment data, confirming that judgments are based on a small number 

of samples that are adjusted by a prior, as predicted by the Bayesian sampler. 

Keywords: sampling, probability, biases, Bayes, noise 

Public Significance Statement 

Human probability judgments play a crucial role in everyday reasoning and decision-making. 

But it can be difficult to distinguish between different theoretical models of the mental 

processes determining such judgements. This study introduces a new method which uses the 

relationships between the mean and the variance of probability judgments to discriminate 

between theoretical models. Applying the method provides new evidence for a theory based 

on mental sampling coupled with a Bayesian adjustment of the sampled proportions, as well 

as a simple and accurate way to estimate model parameters for individuals. This sheds new 

light on many of the reoccurring biases in human probability judgment. 
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Introduction 

During the last few decades, sampling-based models have emerged as one of the most 

promising accounts of human probability judgment. This perspective is based on the 

assumption that, when judging the probability of an event, the brain samples a number of 

instances from some internal representation, such as drawing them from long-term memory 

or performing mental simulation, and then bases the judgment on the frequencies in this 

sample. For example, when looking out the window and judging the probability of rain, we 

might sample a number of similar days and base our judgments on how many of those days it 

actually did rain.  

Sampling-based models have been very successful at modeling a range of human 

behaviors; perhaps most critically, they naturally account for the stochasticity of human 

judgment and decision making (Bonawitz et al., 2014; Griffiths et al., 2012; Juslin et al., 

2007; Sanborn, & Chater, 2016), while almost all other extant models of human probability 

judgment do not specifically explain this variability. Instead, other models typically add a 

generic error term that implicitly encompasses any type of response or measurement noise 

that might perturb the cognitive process, while the process itself is otherwise described as 

deterministic. Of course, any type of noise could potentially account for stochasticity in 

human probability judgment, but as we will demonstrate, different assumptions regarding the 

source of the noise will imply different identifiable patterns. In this perspective, the 

variability of human behavior is not merely a ‘nuisance parameter’ to be grudgingly tolerated 

but a source of valuable data in itself. 

In this paper, we will demonstrate that, firstly, sampling-based models are associated 

with a particular signature pattern in the relationship between the mean and the variance of 

human probability judgments that cannot be accounted for by a generic additive error term 

and, secondly, that particular empirical characteristics of this pattern is consistent with a 
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Bayesian sampler account of judgment biases. As has been observed in other research (Howe 

& Costello, 2020; Kvam & Busemeyer, 2020; Ren et al., 2021), human probability judgments 

are associated with an inverse U-shaped relationship between the mean probability and the 

variance of judgments, where judgments near the edges of the probability scale (i.e., 0 or 1) 

are associated with less variability than judgments near the middle of the probability scale 

(i.e., .5). This is consistent with a binomial response distribution with variance np(1 – p), 

such as is generally assumed in sampling-based models. In deterministic models however, 

error is generally modeled by the generic normally-distributed error term ε ~ N(0, σ). In this 

case, variance is defined solely by σ, which is typically assumed to be independent from p, 

and therefore (aside from at the boundaries) will predict variance to be constant over the 

probability scale. This is notable because in a majority of extant models, such as most 

heuristics, noise is conceptualized in the latter way, which is inconsistent with the inverse U-

shape observed in previous findings. 

This paper is organized as follows: First, we introduce two of the most successful 

sampling-based models of human probability judgment, Probability Theory plus Noise 

(PT+N; Costello & Watts, 2014; 2016) and the Bayesian sampler (Zhu, et al. 2020). We then 

demonstrate, using a regression-based method, that both models will naturally account for the 

inverse U-shaped pattern found in data in a way that most deterministic models cannot, 

although they make qualitatively different predictions regarding the precise characteristics of 

this pattern; this is confirmed via model recovery. Lastly, by applying the same regression-

based method to experimental data, we find that the results are consistent with a binomial 

sampling process with an adjustment according to a prior, as predicted by the Bayesian 

sampler. 

Sampling-based models of human probability judgment. 
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Apart from varying stochastically, human probability judgment is subject to a number 

of biases. These biases are the focus of most models of human probability judgment, and they 

cannot be explained by sampling from underlying probabilities, which typically produce 

unbiased estimates. The most fundamental of these biases is conservatism: that people’s 

probability judgments are usually less extreme than what would be expected (Costello & 

Watts, 2014; Erev et al., 1994; Hilbert, 2012; Kaufman et al., 1949).1 Conservatism can, in 

turn, partly explain other biases, such as the conjunction and disjunction fallacies. A 

conjunction fallacy occurs when a conjunction between events is judged as more likely than 

either of the marginal events (such as judging the probability of a person being a bank teller 

and a feminist as more likely than being a bank teller) and, conversely, a disjunction fallacy 

occurs when a disjunction between events is judged as less likely than either of the marginal 

events (such as judging the probability of a person being a bank teller or a feminist as less 

likely than being a feminist; Bar-Hillel & Neter, 1993; Costello, 2009; Moro, 2009; Tversky 

& Kahneman, 1983). If one presumes that the conservatism bias is stronger for conjunctions 

and disjunctions than for single events, then conjunction and disjunction fallacies can occur 

(Costello & Watts, 2016; Zhu et al., 2020). 

From the point of view of sampling accounts, where does conservatism come from? 

Two recent accounts make almost indistinguishable predictions but embody very different 

viewpoints on conservatism. One influential approach, the Probability Theory plus Noise 

model (PT+N; Costello & Watts, 2014; 2016), suggests that conservatism arises because the 

process of retrieving memories is corrupted by noise. So even if a person recalls, say, five 

days that were all rainy, there is a good chance they will erroneously recall one (or more) as 

dry, pulling their probability away from 1; and similarly, the noise will tend to push up 

1 Note that we focus specifically on conservatism in probability judgments, rather than conservatism in updates 
on probability estimates in light of new evidence (e.g., Peterson & Beach, 1967). 
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probabilities of low probability events. This account is similar to the noisy memory channels 

suggested by Hilbert (2012), but while Hilbert’s theory includes various types of noise 

associated with various types of memory, PT+N focuses specifically on noisy retrieval of 

binary outcomes. More recently, Zhu et al. (2020) proposed a model in which conservatism 

arises not through noise, but as a result of Bayesian inference with small samples. 

Remarkably, the mean predictions of these models turn out to be identical. However, we will 

show that the two approaches differ regarding the relationship between the means and 

variances in probability judgments. Indeed, Bayesian models have a distinctive “signature” 

relationship between mean and variance, which is, we will see, empirically observed. 

We first outline the two classes of theory in more detail. The PT+N model is based on 

the idea that for each sampled instance there is a certain probability (denoted d) that the 

outcome will be misread, so that an occurrence is read as a non-occurrence or vice versa. We 

will refer to this error as retrieval noise, to distinguish it from the sampling noise inherent in 

all sampling-based models with finite sample size. This is an important distinction because 

retrieval noise causes biased probability judgments while sampling noise does not. For an 

event A, the probability of reading an outcome as A according to the PT+N model is the 

weighted mean of the probabilities P(A) and P(not-A) weighted by d. Because the judgment 

of the PT+N model is based directly on the proportion of outcomes read as A, the average 

estimate is 

� ���(�)� = (1 − 2�)�(�) + �. 1 

This means that whenever d > 0 the judgment will be regressed towards the middle of the 

scale, and also that the value of the d parameter will be directly related to the amount of bias 

that people show in their judgments (see Figure 1). 

The Bayesian sampler, by contrast, does not assume that sampling is perturbed by 

retrieval noise, but rather that each judgment is adjusted by a prior on responses after 
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sampling is complete and frequencies are tallied. The function of this prior is to compensate 

for the inherent uncertainty in sampling, by weighting the sampled proportion according to a 

distribution that is (presumably) representative of one’s previous experiences and general 

knowledge. This prior on responses differs from the internal distributions from which 

outcomes are sampled in that it does not necessarily represent specific memories or simulated 

instances per se, but rather constitutes a conception of probability estimates in a more general 

and potentially more abstract sense; it is therefore insensitive to the specific details of the 

question at hand. In the Bayesian sampler, the prior is represented by a symmetric Beta 

distribution, which is commonly used as a prior over probabilities. The symmetric Beta 

distribution has a single parameter, b, that determines its shape: for b > 1 it is has a single 

peak at .5 and the probability is lowest at 0 and 1, for b = 1 it is a uniform distribution across 

the entire range, while for b < 1 it is a u-shape that peaks at 0 and 1 and the probability is 

lowest at .5.2 If only a small number of sampled instances is used then such an adjustment 

will decrease average judgment error. For example, if one draws a red ball from an urn with 

an unknown proportion of red and blue balls, then it would be foolish to assume that the urn 

contained only red balls on that evidence alone; given no information on the proportion of red 

and blue balls (i.e., a uniform prior with b = 1) the estimate that will minimize average 

squared error is .67. 

Notably, the Bayesian adjustment is a simple linear function of the sample size N and 

the prior parameter b. It also can be expressed in terms of the same parameter d as in the 

PT+N model and using the same equation (Costello & Watts, 2019; Zhu et al., 2020). In this 

case the d parameter does not represent retrieval noise but rather the influence of the 

symmetric prior as expressed by a Beta distribution, mitigated by the sample size. Zhu et al. 

2 Note that in many cases, including the article by Zhu et al. (2020), the parameter of the Beta distribution is 
represented by the letter  (or  and ) rather than b. We chose to change the notation to b in order to avoid 
confusion with the regression weight parameter, which is also traditionally denoted . 
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(2020) show that the average estimate of the Bayesian sampler turns out to be mathematically 

identical to the average estimate of the PT+N model (see Equation 1), given the bridge 

conditions � =
�

����
 and (1 − 2�) =

�

����
. In both models d can therefore be considered a 

measure of bias, though in each model the bias has a different source (retrieval error and 

Bayesian adjustment, respectively). The bias expressed by the Bayesian sampler is also 

adaptive in the sense that d will decrease as the number of sampled instances increases and 

approach zero as sample size approaches infinity (see Figure 1). 

These rather different interpretations of the source of bias in human probability 

judgment are difficult to disentangle. First, the predictions of mean probability judgments 

from the two models are identical for simple probabilities (e.g., the probability that a day will 

be rainy) and for conjunctions of two events (e.g., the probability that a day will be rainy and 

cold). The only judgments for which mean estimates appear different for the two models are 

for conditional probabilities (e.g., the probability that it will rain on a cold day). For these 

judgments, Zhu et al. (2020) found that the Bayesian sampler model outperformed the current 

version of the PT+N for conditional probabilities (Costello & Watts, 2016). But, as Zhu et al. 

(2020) note, the predictions of a slightly modified variant of the PT+N model can precisely 

match the predictions of the Bayesian sampler for conditional, as well as unconditional, 

probabilities. Thus, mean judgments alone do not provide the power to distinguish between 

retrieval noise and Bayesian adjustment due to using a prior over probabilities. In addition, 

using mean judgments alone only allows the overall bias d to be estimated, while the sample 

size N and prior parameter b are not identifiable. 

A natural response to this state of affairs is to look at the individual judgments, because 

retrieval noise and the Bayesian sampler, as we discuss below, predict different distributions 

of responses. This is commonly done in a likelihood framework by calculating a model 

selection measure such as Bayes factors, AIC, BIC, etc. based on the likelihood of the model 
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producing the observed data. Unfortunately for these two models this is not viable: each 

generally predicts that people will never use portions of the response scale. People do, at least 

on occasion, use any of the response values, and so the identity of the winning model will 

depend very heavily on the auxiliary assumptions about participant “response noise,” in 

particular the exact nature of the keypress and mouse movement errors that they make, rather 

than the theoretically interesting assumptions of each model (Acerbi et al., 2014).  

In order to avoid these issues, Zhu et al. (2020) evaluated the fit of the models to 

individual judgments using a Wasserstein distance measure instead of likelihood. Wasserstein 

distance, often called earth mover’s distance, is the minimum amount of “effort” needed to 

transform one discrete distribution into another. This fit measure allowed for an evaluation of 

the goodness of fit of the discrete distributions predicted by the response-noise-free PT+N 

and Bayesian sampler models to the discrete distributions of responses made by participants. 

It also allowed the sample size N and prior parameter b to be estimated for the Bayesian 

sampler. While this measure has the potential to distinguish the models in theory, Zhu et al. 

(2020) found that it did not prove diagnostic in practice: the fits were somewhat ambiguous, 

and the parameter estimates appeared implausibly biased towards very large sample sizes for 

both models. 

In this paper, we take a different approach. We show that it is possible to distinguish 

generally between retrieval noise and adjustment based on a prior by modeling the 

relationship between the mean and the variance of the judgments using linear regression. 

Recall that according to the PT+N model retrieval noise is an inherent part of the sampling 

process. By contrast, the adjustment described by the Bayesian sampler takes place after 

sampling is completed and proportions are tallied. It turns out that this distinction has 

different implications for the relationship between the mean and the variance of the 

probability judgments. In addition, linear regression can be used to extract parameter 
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estimates of the sample size N and, for the Bayesian sampler, the parameter b of the 

symmetric prior distribution Beta(b, b). Focusing on the characteristic mean-variance 

signature in probability judgment tasks also highlights the challenge faced by deterministic 

models of probability judgments. Simply adding noise to the predictions of a deterministic 

model will not readily capture mean-variance signature observed in experimental data.  

The mean/variance relationship as a linear regression 

In sample-based models of human probability judgment, samples are distributed 

according to a binomial distribution, meaning that the variance of the estimate ��(�) is 

dependent on the underlying probability3 P(A) as well as the sample size N, according to the 

equation 

����(�)� =
1

�
�(�)�1 − �(�)�. 2 

This formula illustrates that the variance of repeated judgments will be lower the larger the 

sample size N and be higher in the middle of the probability scale than at the edges of the 

scale. Although we typically do not have access to the underlying probabilities for probability 

estimates (which, in a sampling model, would be approached as the sample size increased to 

infinity), for repeated judgments we can generally use the mean of the estimates as a proxy. 

Thus, if we plot the variance of the estimates against the mean of the same estimates, we will 

observe an inverse U-shaped curve, the height of which will vary according to sample size 

(see Figure 1). 

The retrieval noise of the PT+N model and the adjustment of the Bayesian sampler will 

both affect the variance of the estimates. However, because the PT+N model adjusts the 

probability of sampling A before outcomes are tallied, and the Bayesian sampler adjusts the 

estimate of P(A) after outcomes are tallied, the two models will affect the variance in 

3 Note that “underlying probability” here refers to distributions in peoples’ minds, which might or might not 
correspond to the statistical properties of their environment. 
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different ways. Although both models predict the characteristic inverse U-shaped curve, and 

both predict that the height of the curve will vary depending on the size of N, the adjustment 

made by the Bayesian sampler will affect the relationship described in Equation 2 in a way 

that the PT+N models does not. This follows from the fact that the retrieval noise of the 

PT+N model only affects the variance in so far as it affects the probability of sampling an 

outcome, meaning that the relationship described in Equation 2 is retained, while a Bayesian 

adjustment made after sampling does not affect the probability of sampling an outcome but 

rather uses the sample size and prior (expressed as d) to adjust the probability judgment away 

from the relative frequencies, meaning that the relationship described in Equation 2 changes 

to include those additional parameters. This means that, when we plot the variance of the 

estimates against the means of the estimates, the retrieval noise of the PT+N model will not 

affect the shape of the curve, while the adjustment of the Bayesian sampler implies that the 

endpoints of the curve will be moved away from the extremes and towards the middle of the 

probability scale. 

To get an intuition of why this is, imagine an event Q with probability P(Q) = 0. When 

the PT+N model estimates P(Q) it will potentially, depending on the value of d, mistakenly 

read a sample as Q rather than not-Q. This in turn implies that the probability of sampling Q

is above zero, and therefore the variance of the judgments will also be above zero. In other 

words, the variance of the judgments has increased, but so has the mean, and therefore it has 

moved along the same curve. The Bayesian sampler, by contrast, will sample exactly zero 

occurrences of Q when P(Q) = 0, but will adjust the judgment to a value above zero, because 

it will compensate for small samples. In this case, because the probability of sampling Q is 

still zero, the variance of the judgment is also equal to zero, so the mean changes while the 

variance does not. In effect, the endpoints of the curve when using the Bayesian sampler will 

be adjusted in towards the middle (see Figure 1). 
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The mean-variance relationships described above can be expressed in terms of linear 

regression. As previously mentioned, we generally do not have access to the values of P(A), 

but both the PT+N model and the Bayesian sampler allows us to use the expected values of 

the model predictions instead. This means that we can replace the underlying probability P(A) 

in Equation 2 with the mean estimates � ���(�)�. In the case of the PT+N model this is a 

simple substitution, while in the case of the Bayesian sampler we need to add an additional 

term to the equation. Putting the above considerations together, we can let X = 

� ���(�)� �1 − � ���(�)�� be the independent variable,  = 
�

�
 be the regression weight 

parameter, and  = 
�

�
�(� − 1), which is the additional term required by the Bayesian 

sampler, be the intercept (see Appendix A for the mathematical details), which means that we 

can express the variance of the estimates of the Bayesian sampler in terms of linear 

regression 

����(�)� = � + ��. 3 

This equation can be fitted to data with repeated judgments of different events, regardless of 

the relationship between events and without knowing the probabilities underlying the 

sampling process. Furthermore, the parameter estimates of the intercept  and the regression 

weight  can be used to in turn extract the parameters N, d, and b, by using the following 

equations: 

� =
1

�
4 

� =
1 − √4�� + 1

2
5 
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� =
��

1 − 2�
6 

Note that the d in Equation 5 and 6 only pertains to the Bayesian sampler and not the PT+N 

model; as explained above, the d (i.e., the retrieval noise) of the PT+N model will not affect 

the relationship between mean judgments and variance. Because the variance of the estimates 

of the PT+N model can be expressed by the same regression as in Equation 3 but without the 

intercept, the presence of a (negative) intercept can be considered evidence in favor of the 

Bayesian sampler. In short, when fitting the regression described in Equation 3 to data, the 

PT+N model and the Bayesian sampler both predict a positive regression weight (because if 

N > 0 then 
�

�
 > 0), but the Bayesian sampler predicts a strictly negative intercept (because if N

> 0 and 0 > d > .5 then  = 
�

�
�(� − 1) < 0) while the PT+N model predicts an intercept of 

zero. In both cases we can therefore estimate the sample size from the regression weight β

(see Equation 4) and, if the Bayesian sampler is supported by the presence of a negative 

intercept, then we can also estimate the d parameter and the prior (see Equation 5 and 6). 

This method has some notable advantages over a related method presented in Howe and 

Costello (2020) that fits a relationship between the true objective probabilities and the 

variance of estimates. Firstly, the mean-variance curve we describe is invariant to retrieval 

noise while the relationship between objective probabilities and variance is not, so our 

method provides a better test of the use of a prior. Secondly, because the present method does 

not require knowing participants’ underlying probabilities it is applicable to a much wider 

range of experimental designs, though we assume that participant’s underlying probabilities 

should hold constant with respect to the same query. Thirdly, because the present approach 

fits parameters with linear regression, we can take advantage of methodological advances in 

linear regression (e.g., pooling data across participants using random effects) as well as its 
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fast and easy-to-use implementations (e.g., we have included a simple implementation of the 

model using the programming language R in the supplementary information). 

The mean-variance signature of response errors 

Importantly, most types of error or adjustments, such as retrieval error, typing errors, or 

misunderstanding the question, typically either increase total variance or do not affect total 

variance at all. We have already demonstrated that the linear regression described is invariant 

to retrieval error and it is easy to see that this holds for any type of noise that directly affect 

the probability of sampling an outcome, since changes in the value of variable P(A) will not 

affect the relationship described in Equation 2. Typing errors or misunderstandings, on the 

other hand, both imply additional variability since they each represent a probabilistic change 

to the judgment; if we conceptualize typing errors and misunderstandings as independent 

random variables in their own right then they will each add to the total variance, since the 

variance of a sum of two independent random variables equals the sum of the variance. By 

contrast, neither the PT+N model nor the Bayesian sampler involve any additional random 

variables; the retrieval error of the PT+N model is subsumed by the sampling error and the 

Bayesian sampler does not include any random components beyond the sampling error. Note 

that this does not imply that the PT+N or the Bayesian sampler precludes other sources of 

variance, nor that a negative intercept implies that other sources of variance are not present; 

to the extent that they are, however, their only effect on the negative intercept implied by the 

Bayesian sampler would be to make it more difficult to detect. Therefore, a negative intercept 

is a strong indication of a Bayesian adjustment; to our knowledge there is no other model that 

consistently predicts this pattern.  

There are of course many other cognitive models that can explain conservatism and 

other biases in human probability judgment. Although a formal comparison between all 

extant models of human probability judgment is beyond the scope of this paper (rewarding 
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though such a study might be), it is nevertheless pertinent to determine what predictions other 

models would make concerning the mean-variance relationship, and hence the predicted 

results of the regression model discussed above. Critically, sampling-based models naturally 

account for the variability in human probability judgment by the stochasticity in the sampling 

process, while most other models (e.g., heuristics or averaging models) lack any inherent 

stochasticity and therefore can only account for the variability by assuming either that 

judgments are perturbed by the type of response noise described above or by adding a more 

loosely defined but mathematically equivalent “error term” to the model. Such deterministic 

models with an additive error term generally predict a positive intercept and a regression 

weight close to zero (see Appendix B for simulations demonstrating this using the Configural 

Weighted Average model; Nilsson et. al. 2009) and are therefore incompatible with the 

predictions made by both the PT+N model and the Bayesian sampler. We will return to a 

more in-depth treatment of these questions in the Discussion. 

Model Recovery 

As described above, the linear regression can be used to estimate the sample size N, as 

well as identify the presence of post-sampling adjustment and estimate the prior Beta(b, b) 

according to which judgments are adjusted. In previous research Zhu et al. (2020) estimated 

N and Beta(b, b) parameters using Wasserstein distance, but because overall fit for all models 

was better the larger the sample size, there is reason to suspect that this method results in a 

overestimation of N. To compare the accuracy of parameter estimates from the linear 

regression with estimates from Wasserstein distance, we performed model recovery using 

data with the same design and structure as in Experiment 1 in Zhu et al. (2020). 

The simulated data for the model recovery consisted of 100 simulated participants and 

was created to match the empirical data as closely as possible. Therefore, each simulated 

participant was based on two sets of 20 unique queries, for a total of 40 unique queries. Each 
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set of 20 queries were based on an event pair and, for each event pair, the 20 queries included 

judgments of the marginal events and their negations as well as all possible conjunctions, 

disjunctions, and conditionals. Each simulated participant was assigned a set of “true” 

probabilities for each marginal probability in each event pair drawn from the uniform 

distribution U(0, 1). The true probabilities for each query were extrapolated from the 

marginal probabilities; for simplicity we assume independent events, so that P(A|B) = P(A). 

Each participant was also assigned a sample size N randomly drawn from the values {1, 2, 3, 

4, 5, 6, 7, 8, 9, 10, 15, 20, 50, 100, 250}. These values were chosen to represent a range of 

both small and large sample sizes from previous literature, while also including steps 

representative of differences in scale (e.g., the step between N = 5 and N = 6 is of more 

relative importance than the step between N = 105 and N = 106). Lastly, each simulated 

participant was also assigned a Bayesian adjustment according to a prior parameter b that was 

randomly drawn from the values {0.2, 0.25, 0.33, 0.5, 1, 2, 3, 4, 5}. To create the simulated 

judgment data, three binomial samples with sample size N, representing three repetitions of 

each unique query, was drawn for each query and adjusted according to the Bayesian sampler 

with a prior Beta(b, b) (Zhu, et al. 2020), creating a dataset with a total of 120 judgments for 

each simulated participant. 

Results indicate that estimates of N and b from the linear regression indeed have both 

less total error and less bias than estimates from Wasserstein distance, but that the estimate of 

d is comparable (see Figure 2 and Table 1).4 We can conclude that Wasserstein distance is 

suitable for estimating the total amount of bias, but less so for estimates of sample size and 

prior. 

4 When recovering parameters, bounds are imposed so that  ≤ 0 and  ≥ 0, in order to conform to the same 
conditions as for the Wasserstein modelling in Zhu et al. (2020). Without these bounds the results are broadly 
the same but there are occasional additional outliers (see Appendix C). These bounds are not used when 
recovering the number of statistically significant negative intercepts. 
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Table 1. 

Mean Error and Mean Absolute Error for Recovered Parameter Estimates.

Parameter Linear regression Wasserstein distance 

N 
Mean error .794 20.2
Mean abs. error 7.11 20.3 

b 
Mean error -.115 .709
Mean abs. error .729 .825 

d 
Mean error -.007 -.011
Mean abs. error .017 .015 

Because one of the most important aspects of the linear regression is its ability to 

distinguish Bayesian adjustment by the presence or absence of a negative intercept, we also 

created 100 simulated datasets each with 80 simulated participants (the average number of 

participants in our empirical datasets), generated in the same manner as above, and applied a 

mixed-effects model to each dataset with random slopes and intercepts for each participant. 

For each simulated dataset, we found a statistically significant (negative) intercept at p < 

.005. This procedure was then repeated but with simulated participants without a Bayesian 

adjustment, which resulted in no statistically significant intercepts for any of the simulated 

datasets. This was also confirmed using Bayesian regression; for all simulated datasets with a 

Bayesian adjustment we found a BF > 1,000 in favor of a model with intercept as opposed to 

without, and for all datasets without a Bayesian adjustment the same comparison resulted in a 

BF < .001. Although for individual participants negative intercepts close to zero may be 

difficult to detect (see Appendix C), we can conclude that, on an aggregate level, the linear 

regression will reliably detect a Bayesian adjustment if it is present. 

Empirical Results  
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Having validated our method with simulated data, we now use it to distinguish between 

the Bayesian sampler and PT+N models on empirical data. Specifically, we applied the linear 

regression described above to data from two previous experiments (Zhu et al., 2020)5 and two 

new datasets with the same experimental design.6 The purpose of Experiment 3 was to 

replicate previous results, while also avoiding the possibility of schematic reasoning due to 

logical contradictions (e.g., warm and snowy weather) present to some degree in earlier 

experiments, and the purpose of Experiment 4 was to determine whether those same results 

also hold for future one-off events; the new experiments are therefore functionally identical 

to those in Zhu et al. (2020), except for the different nature of events in Experiment 4. In 

Experiment 1-3, participants made probability judgments of the format: “What is the 

probability that the weather is [X] on a random day in England?” Various weather events 

were used, and the queries included both marginal events, conditional events, conjunctions, 

and disjunctions. In Experiment 4, participants instead made probability judgments on future 

events, such as: “What is the probability that there will be an early UK general election?” 

Again, the queries included both marginal events, conditional events, conjunctions, and 

disjunctions, using the same structure as in Experiment 1-3 (see Appendix D for a description 

of the experimental design). Crucially, for all experiments, each individual query was 

repeated three times; the mean and variance for each participant’s judgment of each 

individual query was calculated from these three repetitions. 

The linear regression described above was applied to each dataset as a mixed-effects 

model with participant as a random effect, in order to explore overall patterns while also 

allowing for between-subjects variability. These mixed-effects models were applied with 

5 Note that in Zhu et al. (2020), the event pair {warm, snowy} was excluded from Exp. 2, due to the fact that 
such highly dependent events can induce schematic reasoning if the participant consider, for example, the 
conjunction warm and snowy to be a logical contradiction. We found the results of the linear regression to be 
very similar in both cases and therefore chose to include also {warm, snowy} in the current analysis. 
6 Data for both new experiments is available at: https://osf.io/9kea6/. 
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random slopes as well as intercepts, in order to allow for between-subjects variability in 

sample size as well as prior, using an unstructured covariance matrix. The best fitting 

parameter values are summarized in Table 2 and plots of the best fitting function values are 

visualized in Figure 3. The results have three important implications. Firstly, we estimate that 

only a small number of instances were sampled for each judgment, as few as approximately 

three in some cases. This is in contrast to the notably higher medians of N (median NExp1 = 

10, median NExp2 = 48) found by Zhu et al. (2020) using Wasserstein distance and, following 

the model recovery, we consider the results of the linear regression to be more reliable. 

Smaller samples are arguably more psychologically plausible as well; previous research has 

indicated that people only generate a small number of thoughts when coming to a decision 

(e.g., 3.6 on average; Weber et al., 2007), which is compatible with research on short-term 

memory capacity (Cowan, 2001). Additionally, it has been demonstrated that only very small 

samples are optimal when sampling is costly in time or effort (Vul et al., 2014). 

Secondly, the linear regression confirms that judgments were indeed adjusted after the 

sampling process, as predicted by the Bayesian sampler. All four experiments showed a 

negative intercept (p-values for intercept: pExp1-3 < .001, pExp4 = .005; Bayes Factors in favor 

of the regression models with intercept compared to without intercept: BFExp1 > 1,000, BFExp2

= 259, BFExp3 > 1,000, BFExp4 > 1,000).7 While the results in Zhu et al. (2020) did favor the 

Bayesian sampler overall, the fits were sometimes ambiguous, and the distinction relied 

primarily on the conditional probabilities. Here, by focusing the relationship between mean 

and variance, the linear regression clearly indicates that, on aggregate, a Bayesian adjustment 

did take place. This does not necessarily preclude other sources of bias, such as retrieval 

noise, but it does strongly confirm a key and distinctive prediction of the Bayesian sampler. 

7 The Bayesian mixed model regressions, as well as all other Bayesian regressions cited in this study, were 
performed using the R package BRMS v. 2.17.0, applied with a flat (proper) prior with bounds [-.25, .33] for the 
intercept and [0, 1] for the regression weight. Parameter estimates for the Bayesian regressions were practically 
identical to the frequentist regressions. 
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Thirdly, the adjustments suggest a U-shaped prior, because b < 1 for all experiments, 

with higher priors associated with extreme probabilities. Again, this contrasts with the 

findings by Zhu et al. (2020) and, again, we consider the results of the linear regression more 

reliable, since model recovery indicates that the estimates of the Wasserstein distance are 

positively biased. Interestingly, the estimated values are remarkably similar to the empirical 

prior that Zhu et al. (2020) calculated from the statistics of probability words in natural 

language observed by Stewart et al. (2006). In the latter study, the frequencies of when a 

range of probability related words and phrases were used to describe a probability were 

collected, and participants were then asked to judge the probability they associated with each 

phrase. When fitting a symmetric Beta distribution to the resulting distribution of values, the 

best fitting distribution was Beta(.27, .27), which is very similar to the results of the linear 

regression. 

Table 2. 

Best Mixed-Effects Model Parameter Estimates for Exp. 1-4. 

Experiment 
Regression Parameters Model Parameters 

α β N b d 

Exp. 1* -.026 .372 2.68 .239 .076 

Exp. 2* -.007 .150 6.66 .347 .047 

Exp. 3** -.024 .324 3.09 .293 .080 

Exp. 4** -.006 .156 6.43 .290 .041 

*From Zhu, Sanborn, & Chater, 2020; **New dataset 

Examining the random effects of the mixed-effects model also indicates very strong 

negative correlations between intercepts and regression weights, rExp1 = -.811, 95% CI [-.884, 

-.700], rExp2 = -1, 95% CI [-1, -1], rExp3 = -.966, 95% CI [-.979, -.946], rExp4 = -1, 95% CI [-1, 

-1] which in turn implies that bias is indeed adaptive (i.e., we observe more bias for smaller 
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samples). Because intercepts and the regression weights are statistically related however,8 it 

is more prudent to examine the extracted parameters. 

To explore parameter correlations, we applied the linear regression to each participant 

individually, in order to avoid the random effects shrinking the individual estimates towards 

the mean. Results confirm that sample sizes are centered around relatively small values 

(median NExp1 = 2.65, median NExp2 = 8.25, median NExp3 = 3.00, median NExp4 = 5.91; see 

Figure 4). If bias, as measured by the parameter d, is adaptive, then we should find a negative 

correlation between N and d, and a positive correlation between d and b, because d is defined 

as � =
�

����
. Conversely, we do not expect a correlation between N and b, because we have 

no a priori reason to expect sample size and the prior to be related. These predictions were all 

confirmed (see Table 3). While only a limited proportion of individual participants in the 

datasets had statistically significant intercepts (Exp. 1: 21/59, Exp. 2: 4/84, Exp. 3: 27/69 Exp 

4: 24/111), this is to be expected with the current experimental design and parameter values 

(as demonstrated by model recovery in Appendix C). These effects were mirrored when 

counting the proportion of individual participants with BF > 3 in favor of a model with an 

intercept compared to without (Exp. 1: 14/59, Exp. 2: 3/84, Exp. 3: 9/69 Exp 4: 16/111). 

Nevertheless, one-sample t-tests could confirm that individual participants’ intercepts were 

significantly negative in all Experiments (p-values: pExp1-4 < .001; Bayes Factors in favor of 

intercepts below zero: BFExp1 > 1,000, BFExp2 = 157, BFExp3 > 1,000, BFExp4 > 1,000). 

Table 3. 

Correlation Coefficients Between Individual Parameters Estimates for Exp. 1-4. 

Experiment Correlation 

8 In a linear regression of the form y =  + x, intercept and slope are negatively correlated as long as x > 0. 
Simulations indicate that randomly generated N = unif(2, 10) and b = unif(.25, 1.25) will create a correlation of 
only r = -.164 however, so the observed correlation is still notably higher than what would be expected for 
chance alone. 
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N vs. d N vs. b d vs. b 

Exp. 1* r = -.440 
[-.625, -.207] 

r = -.198 
[-.432, .061]

r = .783 
[.659, .866]

Exp. 2* r = -.535 
[-.673, -.363]

r = -.177 
[-.377, .040]

r = .742 
[.628, .825]

Exp. 3** r = -.396 
[-.579, -.176]

r = -.014 
[-.250, .223]

r = .794 
[.686, .868]

Exp. 4** r = -.391 
[-.538, -.221]

r = -.003 
[-.189, .184]

r = .611 
[.480, .716]

*From Zhu, Sanborn & Chater, 2020; **New dataset 

Transparency and Openness 

None of the work in this manuscript was preregistered. We have made the new data 

reported in this paper available at the Open Science Framework webpage: 

https://osf.io/9kea6/. R-code for applying the model is available as supplementary material. 

Discussion 

In this article we demonstrate how sampling-based models naturally explain the inverse 

U-shaped relationship between the mean and the variance of probability judgments, which 

deterministic models with a generic additive error term cannot account for. We further 

demonstrate how to model this relationship with a linear regression in order to determine 

whether the conservatism bias in human probability judgment is due to a Bayesian 

adjustment after sampling or arises from retrieval noise. We confirm through model recovery 

that this method will recover the relevant parameters.  We apply the method to data from two 

published experiments and two new experiments, where we find that parameters are 

consistent with small samples and an adjustment after sampling, as predicted by the Bayesian 

sampler. It is worth noting that, although previous research has demonstrated that the 

Bayesian sampler fits data well (Zhu et al., 2020), this is the first direct demonstration of the 

presence of such an adjustment. 
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The parameters extracted from all three experiments are consistent with previous 

empirical data, in two important aspects: Firstly, the estimated number of samples are 

generally small. This is consistent with research on the limitations of working memory 

(Cowan, 2001; Miller, 1956; Weber et al., 2007) and the computational restraints of the brain 

(Gershman et al., 2015; Griffiths et al., 2015), as well as results indicating that only a very 

small number of samples is optimal when sampling takes time or effort (Vul et al. 2014). 

Additionally, it has been shown that some cognitive biases can be explained as a direct 

consequence of a small number of samples (Juslin et al., 2007). 

Secondly, the parameters are consistent with a U-shaped prior, implying that most 

events are either very likely or very unlikely and that intermediate probabilities are more 

rarely encountered. This matches the distribution of probability words in natural language 

(Stewart et al., 2006), which tentatively suggests that the prior is based on the frequencies of 

probability concepts in day-to-day life. If this is indeed representative of general tendencies 

in people, then this might have interesting implications regarding how our usage of 

probability in everyday language affects the way we approach uncertainty, and vice versa. 

Successful models will naturally explain data well, meaning that distinguishing two 

successful models only by their relative fit to data will be difficult. This is particularly the 

case with the PT+N model and the Bayesian sampler, since they make the exact same average 

predictions in many situations. The linear regression presented here is an alternative way of 

distinguishing between the models, by taking a conceptual difference between the two (i.e., 

the source of the conservatism effect) and exploring its effect on the variance of the data. 

Results indicate that the Bayesian sampler is consistent with data, insofar that we can confirm 

that estimates do indeed appear to be adjusted after sampling. Such an adjustment is 

necessary, as well as intuitively compelling, whenever sample sizes are small, meaning that 

the resulting bias is “adaptive” in the sense that it generally increases the accuracy of 
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probability judgments at the cost of introducing inconsistencies such as conjunction fallacies. 

In a broader perspective, the relative adaptivity (or “rationality”) of the Bayesian sampler 

exists in an intersection between computational and Bayesian rationality, in that it assumes 

that, on the one hand, the human mind has limited computational capacity but, on the other 

hand, it compensates for these limitations in ways that will (on average) minimize the 

deviance between probability estimates and statistical reality (see Appendix C of Zhu et al., 

2020). A recurring challenge of Bayesian models is that many Bayesian calculations are 

much too computationally complex for the human mind; the Bayesian sampler, by contrast, 

assumes that mind merely approximates Bayesian inference to the best of its capacity given 

the most effective tools at hand (e.g., sampling). 

Although the linear regression validates the Bayesian sampler, responses could 

potentially be affected by other factors as well, such as errors in retrieving items from 

memory, which are central to the PT+N model. Indeed, the mechanisms of the PT+N model 

are not explicitly contradicted by the Bayesian sampler, and it is possible that both processes 

occur simultaneously, in which case a hybrid model might be called for. Because the mean-

variance relationship we base our method on is invariant to retrieval noise, our results do not 

exclude this possibility. It should be noted however, that previous work on the PT+N model 

generally assumed a relatively low value of approximately d = 0.1 (Howe & Costello 2020; 

Costello & Watts, 2017), which might allow little room for retrieval noise after the Bayesian 

adjustment is accounted for. This also raises further questions regarding the source and 

function of the proposed retrieval noise and its relationship to the Bayesian interpretation. 

From the perspective of the PT+N account, although it is reasonable to assume that recall 

from long term memory is less than perfect, it appears odd that the same limitations should 

apply to mental simulation, as has been previously suggested in order to account for unique 

events (e.g., Costello & Watts, 2018a; Ludwin-Peery et al., 2020). From the perspective of 
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the Bayesian sampler, on the other hand, it seems reasonable to assume that, if the Bayesian 

sampler compensates for small samples, then it should also adjust for errors in sampling, such 

as retrieval noise. A hybrid model of human probability judgment would need to take these 

points into account. 

Further development of the Bayesian sampler will also need to relax the assumption 

that the samples drawn from each query are independent of one another. This will be 

necessary to explain effects of question order, e.g., how the percentage of individuals 

responding “yes” to the questions “Is Clinton honest?” and “Is Gore honest?” depends on the 

order in which the questions are asked, and which have been successfully accounted for by 

Quantum Cognition approaches (Wang et al., 2014). Sampling models using samples drawn 

independently for each query, such as the Bayesian sampler, do not account for these 

dependencies. While a model with full dependence (i.e., answering all queries with the same 

set of samples) would be deterministic and so would not predict the inverted U relationship 

between mean and variance, milder forms of dependence are possible. For example, an 

extension to the PT+N model that assumes samples can be primed by previous queries can 

account for key question order effects (Costello & Watts, 2018b). Extensions to the Bayesian 

sampler that assume local sampling instead of independent sampling are also under 

development (Zhu, et al., 2021) and should be evaluated against human-like question order 

effects.  

When it comes to other models of human probability judgment, the characteristic 

inverse U-shaped relationship and the negative intercept constitutes empirical hurdles that 

models need to explain in order to fully account for the process. Defining judgment noise 

solely as a generic additive error term, as is the case in many models, is clearly inconsistent 

with the empirical mean-variance relationship. For example, some of the most successful 

types of cognitive models in the study of judgment and decision making are based on 
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heuristics. Although these models are more often applied in the context of decision making 

under risk than probability judgment, the same basic principle generally applies: instead of 

performing a complicated estimation process to generate a probability judgment, a more 

accessible number is supplied using some simpler procedure. These models rarely make 

allowances for the stochasticity of human judgment, outside of the aforementioned generic 

error terms. Because these error terms are generally additive and independent of the value of 

the estimated probabilities, such models will neither predict the characteristic inverse U-

shape nor a negative intercept when modeling the variance using the regression model; to the 

extent that they can be said to make any predictions at all, this prediction should be a positive 

intercept and a regression weight equal to zero.9

The same principle holds for averaging models such as the Configural Weighted 

Average model (CWA; Nilsson et al. 2009). This model assumes that, when judging the 

probability of a conjunction, people approximate a weighted average of the probabilities of 

the component events, with more weight given to the lower probability and vice versa. If one 

assumes that both the estimation of the component probabilities and the averaging process is 

perturbed by some (as yet undefined) type of error, as suggested by Nilsson et al., (2009), the 

result should be a positive intercept and a regression weight close to zero. We confirmed this 

principle with simulations using the CWA model as an example of a broader range of 

heuristic and averaging models (see Appendix B), though this analysis generalizes to other 

models that makes deterministic predictions. The outcomes show that an additive error term 

will produce a constant variance, with sharp downward turns at the edges if values are 

truncated at 0 and 1. In terms of the regression model, this implies a flat (or close to flat) 

curve with a positive intercept, which is not consistent with the inverse U-shape that is 

9 An exception to this would be if the response error is truncated at the edges of the scale, in which case it is 
possible that one would observe that variance might drop sharply at the very edges – Appendix B also shows 
that truncated errors do not predict a negative intercept except for extreme levels of noise. 
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experimentally observed. We must conclude that, although it is no doubt a useful strategy to 

predict variable behaviors in many other cases, in the context of human probability judgment 

the generic additive error term constitutes a mischaracterization of the underlying cognitive 

process. 

Many other models make too few mechanistic assumptions regarding noise to make 

any kind of formal predictions. For example, the Inductive Confirmation model (Tentori et 

al., 2013) do not describe how probability judgments that are not directly associated with an 

implicit or explicit context are produced, and the Quantum Cognition account (Bruza et al., 

2015; Pothos & Busemeyer, 2022) has so far not supplied a definitive account of noise and 

stochasticity in human cognition and therefore the model makes no predictions concerning 

the mean/variance relationship. However, the Bounded Log Odds model (BLO; Zhang et al., 

2020) and other associated models working on the same principle (Khaw et al., 2021) 

constitute an interesting exception. Due to expressing noise as encoding variance on a linear 

log-odds scale, these models can produce the inverse U-shape and the negative intercept 

associated with the Bayesian sampler, though only for particular parameter values.10 Because 

BLO does not make a strong prediction regarding the mean-variance relationship, but rather 

is consistent with different patterns depending on the configuration of parameters, we did not 

consider it further in connection to the main analysis. 

It seems some kind of computational noise is necessary, and sampling-based models 

embody one form of computational noise. This fits well with past research that has indicated 

that Bayesian suboptimality in human inference cannot be explained by sensory or response 

noise alone, but necessitates some form of computational noise (Acerbi et al., 2014; 

Drugowitsch et al., 2016; Findling & Wyart, 2021; Stengård & van den Berg, 2019), 

10 More specifically, a standard deviation of approximately σ > 0.8 on the log-odds scale is required to mimic 
the magnitude of negative intercepts observed.
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motivated by, for example, limited coding resources (Polanía et al., 2019). Sampling has been 

identified as a potential source of computational noise (Findling & Wyart, 2021) and 

Stengård and van den Berg (2019) in particular found that a simple form of sampling could 

partially explain the computational noise in their data. This is not to say that sampling-based 

models are necessarily the only models that could account for these effects; as previously 

mentioned, models based on a linear log-odds scale also have a form of computational noise 

that can in some cases mimic the same patterns, as might other models, given enough 

additional assumptions. The distinctive strength of sampling-based models, and the Bayesian 

sampler in particular, is that they predict these patterns as a natural consequence of the basic 

mechanisms of the model, rather than being reliant on specific parameters or auxiliary 

assumptions. 

Although we here focus on the source of conservatism in human probability judgment 

and the distinction between two successful models in the area, we believe that the method we 

used has promise for wider application, particularly for estimating sample sizes for sampling-

based accounts of judgments. Sampling-based models have generally been relatively non-

committal regarding the number of sampled instances for each judgment, but there are 

indications that the human mind is limited to processing only a small number of samples 

(Cowan, 2001; Miller, 1956; Weber et al., 2007). A wider application of the linear regression 

presented here, or variants based on the same general idea, could go a long way to confirm or 

reject such claims. 

Author Note 

A preliminary version of our work was presented at the 42nd Annual Virtual Meeting of the 

Cognitive Science Society Conference and at the 2021 meeting of the Society for 

Mathematical Psychology, and a preprint of this work posted on PsyArXiv 

(https://psyarxiv.com/yuhaz), but otherwise none of the material included in this paper has 
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been published or is under consideration elsewhere. Informed consent was obtained from 

all human subjects in the experiments described in this manuscript. None of the work in 

this manuscript was preregistered. We have made the new data reported in this paper 

available here: https://osf.io/9kea6/. Zhu, Sundh, and Sanborn were supported by a 

European Research Council consolidator grant [817492-SAMPLING]. 

Constraints on Generality 

Our data samples were collected using the research participant pool at the University of 

Warwick and therefore largely consists of students at a UK university. Although we 

suspect that the basic principles (e.g., the inverse U-shaped relationship between mean 

judgments and variance) will generalize across different populations, more research should 

be performed to confirm this. Also, because the calibration and bias (e.g., overconfidence) 

of probability judgments have been shown to vary depending on both culture (Yates, 2010) 

and age (Prims & Moore, 2017), we can expect these differences to be expressed as 

differences in sample size and prior distribution (for the Bayesian sampler) or noise 

probability (for the PTN model). We have no reason to believe that the results depend on 

other characteristics of the participants, materials, or context. 
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Appendix A – Mathematical details 

The variance of a probability estimate ��(�), based on the proportion of occurrences S

in N mental samples, is 

����(�)� = � �
�

�
�

=
�(�)

��

=
��(�)�1 − �(�)�

��

=
�(�)�1 − �(�)�

�
.

A1

This can also be written as 

����(�)� =
1

�
�(�)�1 − �(�)�, A2

which, if we let the regression coefficient  = 
�

�
 and independent variable X = P(A)(1 – P(A)), 

can be expressed as a linear model, 

����(�)� = ��. A3

We generally do not have access to the values of P(A), but both the PT+N model and 

the Bayesian sampler can be rewritten to use the expected value of the model predictions 

instead. In this case, although we do not know the underlying probability P(A), we can 

substitute the mean response for each individual query. For both models � ���(�)� =

(1 − 2�)�(�) + �. In the PT+N model, d represents the probability of misreading a sampled 

instance, so that a positive outcome is read as a negative outcome or vice versa. In the 

Bayesian sampler however, d represents an adjustment according to a prior so that � =
�

����
, 

where the prior distribution is defined as Beta(b, b). Because the PT+N model adjust the 

probabilities of sampling A before outcomes are tallied, and the Bayesian sampler adjusts the 

estimate of P(A) after outcomes are tallied, the variance is expressed in different ways. 
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For the PT+N model, 

� ���(�)� = � �
�

�
�

=
�(�)

��

=
��(read as �)�1 − �(read as �)�

��

=
�(read as �)�1 − �(read as �)�

�

=
�(1 − 2�)�(�) + ��(1 − (1 − 2�)�(�) − �)

�
.

A4

By contrast, for the Bayesian sampler, 

����(�)� = � �(1 − 2�)
�

�
+ ��

= �(�) �
1 − 2�

�
�
�

=
��(�)�1 − �(�)�(1 − 2�)�

��

=
�(�)�1 − �(�)�(1 − 2�)�

�
.

A5

First, let us consider the PT+N model. Because d only affects the probability of 

sampling A (or rather, the probability of reading a sampled outcome as A, but these are 

mathematically equivalent) and because the estimate of the model is equal to the sampled 

proportion of A, we can assume that P(read as A) = � ���(�)�. Therefore, we can ignore the 

last line of Eq. 4 and write, 

� ���(�)� =
� ���(�)� �1 − � ���(�)��

�

=
1

�
� ���(�)� �1 − � ���(�)��,

A6
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which gives us the linear model 

����(�)� = ��, A7

where X = � ���(�)� �1 − � ���(�)�� and regression coefficient  = 
�

�
. The parameter d is 

not part of the equation, because the degree of sampling noise in the PT+N model will affect 

the probability of sampling A but not the functional relationship of P(A) to ����(�)�. 

Therefore, regardless of the value of d, the variance ����(�)� will follow the same curve, 

defined by the parameter . 

The Bayesian sampler, on the other hand, assumes that the estimate is adjusted 

according to a prior after the sampling process is completed and the proportion of 

occurrences has been tallied. In the case of the PT+N model, the endpoints of the curve are 

located at P(A) = 0 and P(A) = 1 respectively, but this is no longer the case for the Bayesian 

sampler. Instead, the variance of the estimates is 

����(�)� =
�(�)�1 − �(�)�(1− 2�)�

�

=
1

�
�(�)�1 − �(�)�(1 − 2�)�.

A9

We can rewrite the equation in terms of the expected value of the responses, because 

the expected value of the responses is 

� ���(�)� = (1 − 2�)�(�) + �, A10

which we can rewrite as 

�(�) =
� − � ���(�)�

2� − 1
. A11

Inserting this into the above equation gives us 
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����(�)� =
1

�
�
� − � ���(�)�

2� − 1
��1 − �

� − � ���(�)�

2� − 1
�� (1 − 2�)�, A12

which can be simplified to 

����(�)� =
1

�
� ���(�)� �1 − � ���(�)�� +

1

�
�(� − 1). A13

This equation effectively gives us a linear model similar to the one described above, 

with X = � ���(�)� �1 − � ���(�)�� and  = 
�

�
 being exactly the same, plus the addition of 

the intercept  = 
�

�
�(� − 1). This does imply that the value of the intercept  is not wholly 

independent from the value of , but because d is also dependent on the prior,  is still free to 

vary within certain bounds. This means that we can express the variance of the estimates of 

the Bayesian sampler as the linear model 

����(�)� = � + ��. A14

These two linear models can then be compared to evaluate whether the pattern of variances is 

more consistent with the PT+N model or the Bayesian sampler. 
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Appendix B – Simulations of additive error 

First, we randomly generated 10,000 pairs of marginal probabilities from a uniform 

distribution U(0, 1). Each pair of probabilities was combined according to the Configural 

Weighted Average model (CWA; Nilsson et al., 2009), defined as 

��� = �min[�(�),�(�)] + (1 − �) max[�(�),�(�)], B1

where we set the weighting parameter γ = 0.8 (results are equivalent for γ = 0.2, which would 

be used for judging disjunctions). For each pair of probabilities, this process was repeated 

10,000 times for each of noisy total estimates, noisy marginal probabilities, and noisy 

marginal probabilities as well as total estimates, and the mean estimate and mean variance 

was calculated. In each case, noise was defined as a Gaussian error term ε ~ N(0, .1). This 

process was also repeated with values that were truncated at [0, 1] so that each value beyond 

0 or 1 was set to the corresponding edge value (embodying the same assumptions used in the 

response error model of Juslin et al., 1997). Note that, for noisy total estimates, this is 

equivalent to any model that produces a deterministic probability estimate and adds a 

Gaussian error term, and therefore the results generalize to a broad variety of models. Plots of 

the mean and variance of simulated probability estimates are illustrated in Figure B1. 

We can clearly see that the additive error term creates a uniform distribution of 

variance, with sharp downward curves at the very edges for the truncated values. If we apply 

the linear regression method introduced in the study, we can observe a nearly flat curve and a 

positive intercept (see Table B1). Although the curve estimated by the regression does show 

tendencies towards an inverse U-shape, it should be noted, firstly, that this will only appear if 

values are truncated and, even then, only if there is a significant proportion of values at the 

edges of the scale, and, secondly, that the regression weight is very small compared to what 

we observe in the empirical data. Most importantly, we see that this process will not replicate 

the negative intercept that is predicted by the Bayesian sampler, meaning that a negative 



39

intercept is strongly diagnostic. Of course, for the truncated values, increasing the level of 

noise will decrease the value of the positive intercept and at very large levels of noise (σ > .3) 

one might even start to observe a negative intercept. However, a model operating at this level 

of noise would have very questionable efficacy, so this seems unlikely to occur. By 

comparison, the median standard deviation observed in the experiments in this paper is (σ ≤ 

.1) in all experiments, which is not associated with a negative intercept for truncated response 

noise. 

Table B2. 

Parameter estimates for the linear regression.

Parameter Intercept α
Regression 

weight β

Non-truncated values 
Noisy total .010 2.44 × 10-05

Noisy marginals 
Noisy total & marginals

.006 

.016
.001 
.001

Truncated values 
Noisy total .006 .016
Noisy marginals 
Noisy total & marginals 

.002 

.006 
.018 
.043 
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Appendix C – Model recovery 

Model recovery without constraining parameter values 

As demonstrated in Figure C1 and Table C1, running the linear regression with no 

bounds will result in a number of additional outliers, including several values that do not have 

a meaningful interpretation (N ≤ 0, b ≤ 0, d < 0). These outliers will contribute to larger bias 

and lower accuracy when compared to Wasserstein distance. Bounded parameters are 

therefore important in order to ensure reliable estimates of individual parameters. 

Table C2. 

Mean Error and Mean Absolute Error for Recovered Parameter Estimates with No Bounds.

Parameter Linear regression Wasserstein distance 

N 
Mean error 6.52 20.2
Mean abs. error 12.8 20.3 

b 
Mean error -1.73 .709
Mean abs. error 2.35 .825 

d 
Mean error -.015 -.011
Mean abs. error .025 .015 

Intercepts for individual participants 

In order to explore the proportion of statistically significant intercepts when analyzing 

individual participants, we created 100 simulated participants for each of N = {1, 2, 3, 4, 5, 

10, 15, 20, 50, 100, 250} and each of b = {0.33, 1, 3} as well as without adjustment 

according to prior, then calculated the mean value of the intercept and the number of 

simulated participants with statistically significant intercept on the p < .05 level (see Table 

C3). 
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Table C3. 

Mean Value of Intercepts and Number of Statistically Significant Intercepts Out of 100 

Simulated Participants for Different Parameter Values (Number or Simulated Participants 

with BF > 3 for Model with Intercept Compared to Models Without Intercept in Parentheses)

N 
No adjustment b = 0.33 b = 1 b = 3 

mean stat. sig. mean stat. sig. mean stat. sig. mean stat. sig.

1 -5.2910-17 91 (99) -0.24 100 (100) -0.332 100 (100) -0.368 100 (100) 

2 -9.410-04 0 (0) -0.063 89 (60) -0.112 99 (96) -0.137 100 (100) 

3 -8.2910-04 0 (0) -0.031 50 (13) -0.059 87 (84) -0.082 97 (93) 

4 -2.2810-04 0 (0) -0.015 19 (4) -0.039 79 (32) -0.059 89 (69) 

5 8.2210-04 0 (0) -0.014 11 (4) -0.024 54 (13) -0.046 92 (68) 

10 2.6410-04 0 (0) -0.002 1 (0) -0.008 16 (0) -0.017 58 (16) 

15 -5.9310-04 1 (0) -0.001 0 (0) -0.003 10 (0) -0.007 37 (4) 

20 -7.6710-05 0 (0) -8.4610-04 0 (0) -0.003 6 (0) -0.005 25 (2) 

50 1.6210-05 0 (0) -3.4410-04 0 (0) -6.610-04 0 (0) -0.001 3 (0) 

100 -6.1510-05 0 (0) 1.2210-05 1 (0) -2.0810-04 0 (0) -2.3610-04 0 (0) 

250 7.1410-06 0 (0) -1.9310-06 2 (0) -8.3710-06 0 (0) -5.0510-05 1 (0) 

We can see that the linear regression consistently outputs a negative intercept when an 

adjustment is present, but that for larger samples (N > 10) it is generally small enough that it 

will be difficult to detect with the current sizes of datasets. This is, to some extent, dependent 

on the nature of the prior, since a stronger prior implies larger adjustment and a larger 

(negative) intercept. It should be noted, however, that these results are based on an 

experimental paradigm mimicking that in Experiment 1 in Zhu et al. (2020), and that a 
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higher-powered experiment would no doubt detect more statistically significant intercepts, 

though the mean values would presumably be the same. 

It is also worth noting that the method detects a surprising number of statistically 

significant intercepts when no adjustment is made and the sample size is N = 1, although in 

this case the mean value is astronomically small. The reason for this is presumably that data 

can only take on two different values when the sample size is one, which can create illusory 

systematicity due to the lack of variance. This appears unlikely to happen in real data, but 

even if it did, the value of the intercept clearly demonstrate that no adjustment is actually 

taking place. Additionally, it would be very easy to detect if any participant was actually 

using only two different values in their responses. 

Parameter variability 

Although our modeling assumes constant sample size within subjects, it is of course 

possible that this varies to some extent. Although a full exploration of this possibility is 

beyond the scope of this paper, it is important to confirm that such variability would not 

affect the ability to distinguish between models. Therefore, we created 100 simulated datasets 

each with 80 simulated participants generated in the same manner as the model recovery in 

the main text, that is, two sets of 20 unique queries, making a total of 40 unique queries each 

repeated three times. Each participant was given a sample size parameter N randomly drawn 

from the values {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 50, 100, 250}, but for each data point the 

actual sample was drawn from a gamma distribution with a scale parameter θ = .5 and a 

shape parameter set so that the mode of the distribution equals N for that participant. A 

Bayesian adjustment was applied with a parameter b randomly drawn from the values {0.2, 

0.25, 0.33, 0.5, 1, 2, 3, 4, 5}. We then applied a mixed-effects model to each dataset with 

random slopes and intercepts for each participant. Again, for each simulated dataset with 

Bayesian adjustment, we found a statistically significant (negative) intercept at p < .005, and 
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when the procedure was repeated with 100 simulated datasets without a Bayesian adjustment, 

we found no statistically significant intercepts. 
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Appendix D – Experimental design 

All experiments were based on the basic probability judgment task introduced by 

Costello and Watts (2014, 2016), where participants were instructed to estimate the 

probability of a number of events. Responses were typed on a scale from 0 to 100.  

Each set of queries was based on a number of event pairs (e.g., {icy, frosty}, see Table 

D1 for a comprehensive list). For each event pair, queries included the marginal events and 

their negations (e.g., icy, not icy, frosty, and not frosty) as well as all possible conjunctions, 

disjunctions, and conditionals between the marginal events and their negations (e.g., icy and 

frosty, icy or frosty, icy given frosty, icy and not frosty etc.). For each event pair, this made 

for a total of 20 unique queries. The total set of unique queries formed a block within which 

the presentation order was randomized for each participant, and each experiment consisted of 

three blocks, so that all participants responded to each unique query three times. 

In Exp. 1-3, queries concerned the probability of various weather events occurring on a 

random day in England. Queries on marginal events, conjunctions, and disjunctions were 

expressed on the format “What is the probability that the weather will be [some event] on a 

random day in England?” and queries on conditional events were expressed on the format “If 

the weather in England is [some marginal event] on a random day, what is the probability 

that weather will also be [another marginal event] on that same day?” 

In Exp. 4, queries concerned the probability of future events (e.g., the probability that 

Joe Biden will win a second term). Queries on marginal events, conjunctions, and 

disjunctions were expressed on the format “What is the probability that [some event]?” and 

queries on conditional events were expressed on the format “If [some marginal event occurs], 

what is the probability that [another marginal event also occurs]?” In order to avoid 

misinterpretation while keeping the wording of the actual queries relatively brief, the 

marginal events were all fully explained as part of the instructions (e.g., the instructions 
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specified the marginal event as “that Joe Biden wins a second term as US president in the 

2024 US election” while the query was expressed as “that Joe Biden will win a second 

term”). For conditional events, participants were specifically instructed that it does not matter 

which event occurs first or if one causes the other or not, instead they should assume that they 

(somehow) were given certain information about one event but not about the other. 

All experiments took approximately 30-40 minutes to complete. Participants for Exp. 1, 

2, and 4 were recruited through the University of Warwick Student Research Experience 

Subject Panel and completed the experiment in exchange for course credit. Participants for 

Exp. 3 were recruited through the University of Warwick Research Participation System and 

were compensated with £3. Exp. 1-3 were administered in person at the psychology lab at the 

Department of Psychology, University of Warwick. Exp. 4 was administered online between 

26 April and 7 May 2021, meaning that the events in the queries were still well in the future. 

See Table D1 for details. 
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Table D1. 
Number of Participants Tested and Event Pairs for All Experiments

No. participants Event pairs 

Exp. 1  59 
{icy, frosty} 
{normal, typical} 

Exp. 2  84 
{cold, rainy} 
{windy, cloudy} 
{warm, snowy} 

Exp. 3  69 
{snowy, stormy} 
{thundery, humid} 
{mild, foggy} 

Exp. 4  111 

{Joe Biden winning a second term, the world 
reaching the 2050 climate goals} 
{early UK election, the UK economy recovering 
within current year} 
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Figure 1. 

Note. Upper panels show the underlying probability (x-axis) and the corresponding predicted 
model estimation (y-axis) for different levels of bias and sample sizes. Lower panels show 
the mean model estimate (x-axis) and the corresponding variance for the same levels of bias 
and the same sample sizes. As demonstrated, the same levels of bias and sample sizes are 
associated with different relationships between mean estimate and variance for the PT+N 
model (left side panels) and the Bayesian sampler (right side panels). Note that, for the lower 
left panel, the predicted mean estimates of the PT+N model for d > 0 will be strictly above 
zero, but because it is important to demonstrate that the curve intersects the y-axis at zero we 
have chosen to retain the curve (dashed) for the rest of the interval. 
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Figure 2. 

Note. Scatterplots of the true parameter values (x-axis) and the model estimates (y-axis) for 
the linear regression (upper panels) and the Wasserstein distance (lower panels). Note that, 
for readability, the plots of the N parameter (leftmost panels) are shown in log scale. 
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Figure 3. 

Note. Best fitting regression lines for the mixed-effects linear models for each experiment. 
Data points represent the mean estimate and mean variance of each individual query. 
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Figure 4.

Note. Histograms of the distributions of fitted sizes of mental samples in all experiments. 
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Figure B1. 

Note. Scatterplots of the mean (x-axis) and the variance (y-axis) of simulated probability 
estimates for different added noise with non-truncated (upper panels) and truncated (lower 
panels) values. The red lines represent the best fit of the linear regression model. 
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Figure C1. 

Note. Scatterplots of the true parameter values (x-axis) and the model estimates (y-axis) for 
the linear regression (upper panels) and the Wasserstein distance (lower panels). Note that, 
for readability, the plots of the N parameter (leftmost panels) are shown in log scale, and one 
extreme outlier with linear regression estimates N = 412, b = -107, and d = -.542 is excluded 
from all panels. 


