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Abstract—Two conventional errors in the stress-induced 

birefringence (SIB) of polarization-maintaining fibers (PMFs) are 
revealed and corrected. The first issue refers to the fundamental 
expression and its calculation of the SIB, which depends on the 
selection of stress components. There were obvious inconsistencies 
in two pioneering reports, while both were widely applied in 
subsequent works. The second issue is the basic form of the Airy 
stress function (ASF) in the cross-section plane of the PMF, which 
dominates the complexity of the stress calculation for SIB. The 
ASFs in two early pioneering works were different, which led to 
two different expressions of SIB. Both expressions cannot be 
reproduced, and calculated results were just around 1/2 of the 
corresponding measurements. In this paper, both issues have been 
fixed by revising the definition of SIB and proposing a new ASF 
form for PMFs. The developed theory is simple and does not have 
any mathematical contradiction in the calculation process, 
compare to reported works. Results of the revised SIB based on 
the developed theory achieve a good agreement with the practical 
experimental measurements.

Index Terms—Airy stress function, Polarization-maintaining 
fibers, Principal directions, Principal stresses, Stress components 
transformation, Stress-induced birefringence.

I. INTRODUCTION 
OLARIZATION-MAINTAINING FIBERS (PMFS) have been 
widely employed for decades in optical devices such as

fiber laser [1], fiber grating [2], fiber interferometer [3], and 
various fiber sensors [4], especially fiber-optic gyroscopes [5]. 
The stress-induced birefringence (SIB) which is intrinsic in 
PMFs is usually very high [6], [7], which enables the fiber to be 
immune to external perturbations [8], [9]. The SIB critically 
affects the polarization-maintaining capability of PMFs and 
hence the performance of systems using PMFs [10], [11]. 
Generally, the better performance comes from the higher SIB 
of the fiber, which has already become one of the main targets 
in the design and fabrication of PMFs [12]. 

In most PMFs, the SIB is produced through the photo-elastic 
effect due to the thermal stress from the stress-applying parts
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(SAPs) embedded in fiber cladding [13], which have different 
thermal expanding coefficients (TECs) from surroundings due 
to the dopant [14]. The stress distribution and the SIB depend 
on the difference between TECs of these constituting materials, 
which is mainly dominated by the geometry of SAPs in 
additional to the concentration of the dopant [15], [16]. PMFs 
were conventionally named Panda, Bow-tie, Elliptical-cladding, 
and Side-pit fibers, et.al., depending on the geometry of SAPs 
[6], [7], [13]-[16]. Among them, Panda-PMFs attracted more 
research interests due to the simple geometry of SAPs, with the 
same two cylinders symmetrically located at both sides of the 
core, and are more convenient for the fabrication [12]. 

In the design, fabrication, and application of PMFs, an 
analytical formula is required to predict the SIB, although the 
experimental measurement of the beat length can also provide it 
via some calculations [8]. Two pioneering works analytically 
estimated the SIB [13] and the stress distribution [14] based on 
the Panda-PMFs, in addition to numerical simulations by the 
finite element method [16]. According to the thermal-elastic 
displacement potential (TEDP) method from the theory of 
elasticity, both works developed fundamental models for 
subsequent research works, and the latter model have been 
widely applied [17], even in recent works [18]. 

However, there are two unsolved key technical problems. On 
one hand, theoretical results from both models [13] and [14] are 
far smaller than those in the experimental measurements. On 
the other hand, there are two disagreements in [13] and [14]. 
Firstly, the selected stress components in calculating the SIB 
were not consistent with each other, while this was 
fundamentally related to the definition of the SIB in PMFs, as 
demonstrated in our recent work for the SIB in Panda-PMFs 
[15]. Secondly, the expressions of the Airy stress function (ASF) 
applied in two schemes were not consistent either. 
Consequently, the reported expressions of the SIB were very 
complicated and also different in both works, even for the same 
type of PMFs. 

Unfortunately, our previous analyses [15] did not completely 
solve the above problems, due to the use of the same ASF in the 
pioneering work [13] and [14]. It caused tedious and 
contradictory mathematical calculations. Therefore, this 
pioneering work [14] was only highly cited [17], [18], but has 
never been fully reproduced. In this paper, both inconsistencies 
will be comprehensively explained and corrected by revisiting 
the definition of SIB and proposing a new ASF for 
Panda-PMFs. The modified definition of SIB in PMFs is 
clearly presented, which removes the inconsistency in early
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theories. The newly proposed ASF has a very simple form, 
which introduces a greatly simplified mathematical calculation. 
Meanwhile, the calculated SIB makes a good agreement with 
the experimental measurements.

3 0n n= +
2 0n n= +
1 0n n= +

1 2C C

0),

2),

II. THEORY 
The two notes on the definition and estimation of the SIB in 
PMFs are specified and addressed via theoretical analyses in 
this section.

� �

A. Conventional definition of SIB 
According to the Photo-Elasticity, the principal refractive 

indices in ( 1,2,3i = ) of materials are related to the principal
stresses i ( 1,2,3i = ) by [19]:

1 1 1 2n C C= + ( 2 3+ ) , (1)

2 1 2 2n C C= + ( 3 1+ ) , (2)

3 1 3 2n C C= + ( 1 2+ ) , (3)

where 1C  and 2C  are stress-optic constants of the material, 
respectively. 

According to the basic relationship, let the directions of axes 
in the Cartesian coordinate system describe the projection of 
the birefringence to the principal directions of the stress field, 
and thus the “stress birefringence” was defined as [19]

B n n= −1 2

= −( )( )C C  −1 2 1 2

C = 

, (4)

where 1 2C C C= −  and 1 2   = −  are the photo-elastic 
constant and the difference between the principal stresses, 
respectively. 

In fiber optics, the “modal birefringence” of a fiber was 
defined as [8]

X YB n n = − , (5) 
where Xn  and Yn  are the refractive indices of the slow 
(denoted by the subscript X  from now) and the fast (denoted 
by the subscript Y  from now) axes, respectively. 

At the same time, the “modal birefringence” of a fiber was 
measured as [8]

B  =


, (6) 

where   and   are the wavelength in the free space and the 
beat length of the fiber, respectively. 

For PMFs with the cross-section shown in Fig.1, the “modal 
birefringence” in (5) equals exactly the “stress birefringence” 
in (4) induced by the thermal stresses through the photo-elastic 
effect, as stated in early works [7], [13], [14], [16]. Then the 
“stress-induced birefringence” (SIB) for PMFs can be written 
as [15]

B n n = −X Y

= −( 1C  −)( X )Y
=C  

, (7)

where X  and Y  can be named “normal stresses on axes”

(for slow and fast axes, respectively), and    is their 
difference. It will be demonstrated later that these “normal 
stresses on axes” are different from the principal stresses. That 
is contrary to the conclusions from pioneering works [13], [14]. 
For instance, the SIB is 6.2 10−  for a commercial PMF with 4

a 2.5-mm beat length at the 1.55um wavelength. It corresponds 
to the difference between the normal stresses on the slow and 
the fast axes of 1.845 10    8 Pa under the constant 

3.36 10C −12=  /Pa, which is almost twice the value in the 
reported theory [13] and [14] under the same conditions. This 
contradiction arises from the relationship between the principal 
stresses ( 1 , 2 ) in (4) and the “normal stress on axes” ( X , 

Y ) in (6). The SIB in PMFs was defined in the Cartesian 
coordinate system ( , , )O x y z , but thermal stresses were usually 
estimated in the polar coordinate system ( , , )O z  . This 
indicates the reason of the first problem, i.e., the coordinate 
transformation of stress components for the SIB in PMFs. 

B. Conventional calculation of SIB 
As shown in Fig. 1, the polar angle   in the polar coordinate 

system starts from the x -axis of the Cartesian (rectangular) 
coordinate system and goes towards the counter-clockwise as 
the positive value. The polar angle of a stress point in the polar 
system also equals the angle of the point in the Cartesian system. 
The components of stresses at this point in both systems are 
linked by [20] 

cos sin sin 2x         = + −2 2 , (8) 

sin cos sin 2y         = + +2 2 , (9) 

  = −( )sin cos cos2xy      + , (10)

bb

aa
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Fig. 1. Two coordinate systems for defining and calculating the SIB of an 
ideal Panda-PMF, on the cross-section of the fiber with diameters of SAPs 
2r , cladding 2b , and core 2a . The polar system with polar radius   and 
angle   is applied for calculating the stresses and the Cartesian coordinate is 
employed for defining the SIB. The ideal PMF has a two-fold symmetry about 
x - and y - axes.
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where   and xy are the shear stresses in corresponding

 
 
 

systems, respectively. According to the definition in (4), the 
stress birefringence comes from the difference between the two 
principal stresses in the Cartesian system, meaning that the

 
 
 

( )

.

 +

−

( )

shear stress vanishes, i.e., 

.−

0xy = . Via the basic relationship in

,

(9) we have

 

= − −

)
tan 2 = 

2 
  −

 (11)

to represent the principal directions, i.e., the polar angle of 
principal axes of the birefringence. In the principal directions, 
the principal stresses are [20]

 = +1

 + −x y

2 2

2 x y
xy+ 2 , (12)

and

� �

 = −2

 + −x y

2 2
 x y

2

xy+ 2 . (13)

The directions of the principal stresses, described by angles 
between the two principal directions and the reference axis, are 
given by [20]

tan 2 =  xy
 −x y

(14)

It is noted that transformation equations in (8) - (10) are valid 
for stress components at any point expressed in the polar 
coordinate ( , )   and the Cartesian coordinate ( , )x y . Then 
the general formula for calculating the SIB in PMFs by the 
stresses at an arbitrary point in the polar coordinate ( ,r  ) is

( ) ( ) ( )
1 2  = − =

  = −

2 24 −x y

2 2
4 2+ 

xy

   sin 4  −
, (15)

and the directions of the two birefringence axes, i.e., their 
angles to x -axis, are given by (14). Usually it is calculated 
with one of the four special polar angles for simplicity, such as 

0 = , 2 , 3 2 , and  . Taking the first one 0 =  as an 
example, the SIB should be

) (  =  0 0 = =

2 2
4 

 +
0=

(16)

For this case, one of the principal directions determined by (14) 
is at 0 = = , which refers to the direction of the slow 
birefringence axis, i.e., the x -axis of the Cartesian coordinate 
system in Fig. 1. Meanwhile, the fast birefringence axis, i.e., the 
other principal direction, is at 2  = =  i.e., the y -axis in 
Fig. 1, according to the theory of elasticity. 

From (16) it can be seen that the formula ( x yB C  = − )  is

not correct, even when we take 0 =  as the x -axis of the 
Cartesian coordinate system, i.e., 0 = . We will have

 =
0x  =

y 
0 =

0 =

0  =
=

(17)

but there is no evidence for 
0 =

0= .

If we wrongly assume that the normal stresses X  and Y
in (7) are expressed by x  in (8) and y in (9), respectively,

and take them as the principal stresses 1  and 2  in (4),

respectively, and also wrongly take ( x yB C  = − like 

researchers usually did, then the SIB is estimated as

x= yB C ( )−

)cos 2C   = (   2 sin 2  
. (18)

This provides exactly the incorrect basic equation (21) in the 
pioneer work [14], and causes the confusion that the polar angle 
  is half the angle of SAPs about the core [17].

C. Revised SIB in PMFs 
As pointed out in our previous work [15], there are in total 

four normal stresses contributed to the SIB in PMFs. Two of
them come from the conventional principal stresses ( 

0 =

and 
0 


=

), the other two refer to their orthogonal counterparts

( 
2 =

 and   


2=
). As shown in Fig. 2, there are eight

normal stresses (four radial and four circumferential stresses) in 
the four special directions (positive and negative slow and fast 
axes, respectively). All components should follow the linear 
superposition principal. 

Considering the symmetry of the stress,   
 =

2 2   =
, 

the normal stresses in the slow and the fast axes can be written
as

 = +X  0 =  


2=
, (19)

and
 = +Y  2 = 


0=

, (20)

aa

Radius stress  Circumferential stress  Superimposed stresses ,X Y 

Core

Center (0,0)O

: , ( 0)X x   =

: , ( 2)Y y   =

Fig. 2. Schematic of stresses at the points located on the principal axes inside 
the core. Here we have 0X Y    for the superimposed stresses, which 
means a major and a minor tension stresses on the slow and the fast axes, 
respectively. 
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respectively. Then the true SIB in the PMF should be revised as

)(

,
]}

B C     = +  0 2 = =  2 0= =( −
  

+ ) 
, (21)

which arises from the definition of SIB in PMFs as shown in (7). 
The revised SIB in (21), has the symmetry between the slow 
and the fast axes, and it can also be rewritten as 

� �

( )X YB C   =  +  , (22)
where 

  =X  0 =


=
−

0
, (23)

and

Y  = (  −
2 =  

− )2=
, (24)

should be regarded as the difference between normal stresses 
experienced in the x -polarization and the y -polarization, 
respectively. 

The revised SIB in PMFs, (21) and (22), can be explained 
according to the definition of the stress birefringence 
measurement, where the phase delay between the two linearly 
polarized light in the two orthogonal directions is measured by 
the interferometry [19]. Then (21) and (22) are explained in 
order as follows. 

In the extended media such as bulk optical components, 
which have relatively infinite dimension compared to the 
wavelength, the phase of a ray is determined by the major 
principal stress at the points located on the corresponding 
principal direction. The principal stress (usually the minor one) 
parallel to the polarization state at the points located on the 
other (orthogonal) principal direction will not contribute to the 
phase, since the distance between orthogonal points is 
sufficiently far compared to the wavelength. On the contrary, in 
the bounded media such as optical fiber waveguides, the minor 
principal stress on the other (orthogonal) principal direction 
will contribute to the phase of the polarized ray in any principal 
direction. That is to say, the points located on the two principal 
axes in the fiber core are so close to each other that the 
paralleled stresses on both axes are linearly superimposed, as 
described in (19) and (20). This explanation can also be 
interpreted in another two manners. The first theory treats the 
linearly polarized light as a series of photons, which are spheres 
with diameters equal to the wavelength. Each sphere (photon) 
has three dimensions, which will make it experience both axes 
in orthogonal directions when it is traveling along the fiber. The 
other theory supposes that all points on both orthogonal axes 
are located very close to the central point of the core, i.e., 

0 → , and then the linear superposition of the stresses from 
both axes is natural at the central point of the core 0 = , i.e., 
the origin point of both coordinate systems. 

For the other form of the revised SIB in PMFs according to 
(22), we can consider that there are two components of the 
stress differences for SIB, expressed by (23) and (24). One is 
experienced by the light polarized along the slow axis 
( x -polarization). The other is experienced by the light 
polarized along the fast axis ( y -polarization). Most of the rays 
in fibers are helical instead of meridional. It means that most 

rays in the fiber core will equally experience both components 
of the revised SIB. The total SIB is the sum of the two 
components. Here the first negative sign in (24) is to keep the 
component positive due to the relative variations in magnitudes 
between the radial and circumferential components. 

Figure 3 shows the above process with a flow chart. For 
simplicity here we used the names of Models I, II, III, and IV, 
to denote the theories in [13], [14], [15], and the proposed one, 
respectively. Model IV covers model III as a special scenario 
by using the same definition of the revised SIB and proposing a 
new ASF for Panda-PMFs as follows.

D. New ASF for Panda-PMFs 
Results in pioneering works [13] and [14] for the Panda-

PMF cannot be reproduced in our investigation since there were 
several mathematical contradictions in [13] and [14]. All these 
contradictions arise from the forms of the ASF ( ),F   . In 
order to avoid those contradictions, we propose a new form for 
the ASF in the Panda-PMF as 

0 0, cos2F b c    = +( ) 2 2 ,  (25) 

where coefficients 0b , and 0c  are to be determined from the 
boundary conditions. Following the standard process in 
[13]-[15], we could get

b = +0

+

1 1T Tv a  + 1 1{ [
1 4v b b−

2(b d2 2 )−
( )b d2 2+ 2

2

2 2

2 1r 2 2 +
4 ( )d− + 2( )b d

(26)

and

Model II: Model IV: 

SIB: B C = 

1 2   = −

1 2,X Y   = =

Polar stresses from ASF 
I: Eq. (9) in Ref. [11]

Polar stresses from ASF 
III: Eq. (25) in this work

Model I: 
1 2,x y   = = 1 2,x y   = =

Polar stresses from ASF
II: Eq. (15) in Ref. [12]

0 =
 =x  0 =

 
 =y 

=

0 =

2

2 2cos  = +x  

2 2sin cos sin 2      = + +y   

sin  sin 2 −
0 =

 = +X  0 =

 
 = +Y  

=

0 =


2

 =

0 =



2

0 =

0 =

Model III: 
1 2,X Y   = =

Fig. 3. Block diagram of the mathematical process calculating the SIB in 
PMFs using previous and proposed models. The SIB is defined by Eq. (4) and  
the principal indices in Eq. (1)-(3). These principal indices are dominated by 
the principal stresses in the rectangular coordinate system which defines the 
SIB. The problem in previous models I and II lies in the transformation of the 
stresses between the rectangular and the polar coordinate systems since the 
stresses are calculated in the polar form. One error occurred in the
transformation: two stress components were missed in Model I from [13] and 
the other two stress components were missed in Model II from [14]. Both 
models led to complicated, inaccurate, and different expressions of SIB, 
although the same ASF was used. On the contrary, the result based on the 
corrected definition of SIB from Model III (our previous work [15]) and the 
new ASF (25) from model IV (our proposed model), is simple and accurate, 
and contains the previous result in [15] as a special scenario.
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21 1 1 2(T rv b d + −2 2 )2 2{ [ ]}c = + −0 1 8 ( ) ( ) (2 2b d b d2 2 2)v b d− + − +
. (27) 

Here r  is the radius of SAP, d  is the position (distance
between its center and the core), and other symbols have same
meanings with previous works in [14], [15]. In these 
calculations all forms of required TEDPs are exactly same as 
the pioneering [14] and the subsequent works [15], except for
the use of the new ASF (25), which results in the coefficients in
(26) and (27). It is noted that there is no mathematical
contradiction here, compared to the reported work [14], which
we cannot reproduce with the same procedures due to some
obvious errors in mathematics. This is why we believe the ASF
in (25) is feasible, although it is a heuristic form, rather than 
derived from the theory of elasticity [20].

III. RESULTS

Using the updated (25)-(27), all required stress components can
be analytically calculated with low computational complexities. 
Here we will only focus on stress components in the core area
of the PMF, which play the dominant role on the SIB. All
intermediate steps in calculations have been skipped since they
are exactly the same as in the reported work [14] and our recent 
work [15]. For simplicity, the following results are calculated
based on ideally symmetric Panda-PMFs.

A. Expressions of stresses in core area
The radial stress is given by 
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(28)
the shear stress is described as

 
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(29)
and the circumferential stress is expressed as 
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(30)
All these components depend on the polar radii and angles, 
besides the material parameters, process parameters, and
geometric parameters, which are same as those in early works
[13]-[15].

B. Expressions of conventional and revised SIBs
Both conventional SIBs defined in pioneering works [13] 

and [14] are related to the normal stress components, i.e., the
principal stresses, which are all expressed in the polar
coordinate system. The normal stresses on the X -direction of
the Cartesian coordinate system are

  
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(31)
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(32)
The normal stresses on the Y -direction are

  
2 3 = =
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=
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and
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=

+ −

E a  1 1{ (
T T

1= +
2 2 2 2r 1 1
2 21 2 4 ( )v b b d− − +

6(b d2 2 2 2) 4( )d− −
( )b d2 2+ +2 2 2( )d 2

+ 2( )b d

(34)
These equations show that the symmetry about principal axes is
automatically satisfied by the stress components using our
ASF.

The first conventional SIB defined in the pioneering work
[13] is

(B C  = −1  

0 2 = =

0 0 = =



2 1 1 2(T rCE b d  2 2 )−2 2= [ + −2 21 2 ( )v b d− − +( ) (b d b d2 2 )+ 2

. (35)

The second conventional SIB in the pioneering work [14] is
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The newly updated SIB [15] is
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It can be seen that the revised SIB in (37) has the better 
symmetry than the conventional models in (35) and (36). 
Obviously, we have 0B   for two extreme cases: 0r = (no 
SAPs) and 0d = (SAPs are located at the center of the fiber), 
respectively. 

To analyze a more general case of d a  and 0r  , we 
rewrite (37) as

CEB T r P Q =   ( )2 −2 21 v−
, (38)

where
1 1 2(b d2 2 )−P = + −2 2( ) ( ) (b d b d b d− + 2 2 2)+

, (39) 

and

Q = +
2 21 1 2( )d −

−
( ) ( ) (d d− +2 2 2 2 2)d   +

, (40)

have exactly the same form. 
We will have 4Q d= 2  when 0 = , i.e., at the center of 

the fiber core, and the approximation of the revised SIB will 
lead to an expression of 

−
2 1 1 2(T rCE b d    2 2 ) 4−2 2

 =B + −2 21 2 ( ) ( ) (v− − + b d b d b d2 2 2+ 2) d
, 

(41)
which is much simpler than the accurate expression in (37). It is 
also accurate due to the constant stresses across the core. This 
will be demonstrated in the next section. 

Since P Q  in real PMFs, the accurate expression of the 
revised SIB in (41) could be further approximated as

( )CE = B T
1 1v v− −

 2 2

24CE    T r
 

−r P Q2 2 2− 
2 d 

, (42)

which is exactly the approximated expression of our previous 
result [15].

IV. CALCULATIONS

In this section we will verify the revised model by 
numerically calculating the corresponding stresses and their 
differences. We will focus on the stresses in the core area of

Panda-PMFs required for the calculation of SIB. These 
calculations used the Panda-PMF with parameters listed in Fig. 
4. Geometrical and material parameters are carefully chosen 
due to their influences on results, based on early research works 
[12]-[16]. 

Figure 4 directly shows the principal stresses and their 
difference in the core area required for the calculation of 
conventional SIB from the early model [14]. As mentioned 
before, the stress difference is at the level of 80 MPa, which is 
nearly half of that calculated from the measured beat length at 
3.18-mm for commercial PMFs. This problem was neglected in 
early models since the values of material parameters were 
somehow arbitrary, and the stresses and hence the SIB were not 
very high. Nowadays the 300-MPa stresses for the SIB in a 
PMF with the beat length of 1.55-mm cannot be practically 
achieved under the reasonable geometric and material 
parameters, due to limitations in the fabrication. This indicates 
that the early model is not very accurate.
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The updated principal stresses and their difference with the 
same parameters according to the revised SIB model are shown 
in Fig. 5. There are three common and three different 
characteristics in the results shown in Fig. 4 and Fig. 5. 

The first common property is that all stresses and their 
differences are similarly constant across the core except for the 
center of the core. The second common point is that the first 
conventional and the revised principal stresses in two models 
are nearly equal to each other. The third common point is that 
all stresses and their differences are positive, i.e., the stresses on 
x - and y - axes of the Cartesian coordinate system in both 
models are tensions, instead of the tensions in x - axes and the 
compressions in y - axes explained in [4]. 

With regards to the differences, the first observation is that 
the stress difference for the revised SIB is nearly twice of that 
calculated from the conventional model. It is induced by the 
second observation, i.e., the second revised principal stress 
( Y ) is far smaller than the first revised principal stress 
( X ), which leads to a higher SIB than that estimated from 
the conventional model. The last observation is that the revised 
principal stress difference is close to some constant, since the 
two stresses have more similar tendency. It means that the 
revised SIB is closer to some constant than the conventional 
SIB across the fiber core. 

Figure 6 shows the dependency on the angle between two 
systems of normal stresses on Cartesian axes and their 
difference for the revised SIB. The angle between the polar and 
the Cartesian system, denoted by  , is expressed with the angle 
between the rotated x -axis ( x  -axis) and the fixed axis 0 = , 
as shown in Fig. 1. The maxima of the corresponding stress 
difference and the revised SIB, occur at ( 1) 2m = − , where 

1,2,3m =  are natural numbers, as shown in Fig. 5 by stars. 
The negative maxima mean that the slow and the fast axes were 
swapped with the increase of the angle   between two systems. 
The positive maxima occur at ( 1)m = − , and negative 

maxima at (2 1) 2m = − , have the same absolute values, 
which is contrary to the early model [13], [14] and validates the 
efficacy of our model. The zero difference between the revised 
principal stresses occurs at the angles of (2 1) 4m = − , as 
shown with circles in Fig. 6. This indicates that the two revised 
principal stresses are equal to each other at these angles, as 
shown with the rectangular in Fig. 6. 

The dependency in Fig. 6 also provides an explanation for 
the ability of polarization maintaining of PMFs. Only the input 
light linearly polarized at angles ( 1) 2m = −  can maintain 
their linear polarization state during the propagation. The 
output light will have a linear polarization state similar to the 
input, which keeps their polarization extinction ratio (PER) 
close to the input PER in practice, usually over 20-dB. Since
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they will experience the maximum of the revised principal 
stresses difference, which gives the revised SIB. Those angles 
refer to the principal axes of the SIB, the x - and y - axes of the 
rectangular system in Fig. 1, respectively. 

The light polarized at angles (2 1) 4m = − , i.e., the 
middle between the two principal axes, cannot maintain their 
polarization states, which will lead to a PER of 0 dB in the 
measurements. The light polarized at other angles, will 
experience the partial polarization-maintaining, and shows a 
PER between zero and the input polarization state. 

Figure 7 shows the two stress differences ( X  and Y ) 
and their sum (   ) using the other explanation of the revised 
SIB, according to (22). The sum of the two components, i.e., the 
revised stress difference of SIB, makes a good agreement with 
Fig. 6. The two components of the normal stress difference in 
(23) and (24) are very close to each other, which means that 
they nearly equal each other. However, they are not exactly the 
same, which indicates the slight difference between the light 
polarized in the slow and the fast axes. The SIB component is 
slightly larger on the slow axis than that on the fast axis, 
according to the revised definition of SIB in PMFs. This may 
explain the slight difference in the output PER for the light 
linearly polarized in the slow and the fast axes. The difference 
between the two components of the revised SIB also explains 
the inconsistency between the two early models in [13] and 
[14]. 

Figure 8 shows the shear stress distribution in the core area. 
The normal stress differences are also shown for convenient 
reference. The SIB occurs at the angles where shear stresses are 
zero, which matches exactly the definition of principal stresses. 
These angles are the same as the X - and Y - axes in Fig. 1 and 
Fig. 2, which refer to the principal axes to define the SIB in 
PMFs via (7). 

Figures 8 and 9 show the dependency of the revised principal 
stresses and their difference on geometric parameters of SAPs, 
i.e., their positions and radii, respectively. The dependency of 
stress differences for SIB is similar with reported models 
[13]-[15]. The stresses and their differences (hence the SIB) 
increase with the increased radii and decreased positions (their

distances to core), respectively. The maximum SIB still occurs 
at ( ) 2r b a= −  and ( ) 2d b a= +  in theory and is dominated
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by the material strength [15]. The maximum directly depends 
on the radii and the distance of SAPs, instead of the subtended 
angles about the center of the core [17]. The subtended angle 
depends on the radii and the positions of SAPs, and then the 
dependency of SIB on them shows the same tendency as in Fig. 
9 and Fig. 10. 

It is interesting that the two revised principal stresses have 
the opposite tendencies. For the dependency on the positions of 
SAPs with fixed radii (Fig. 9), the first revised principal stress 
is decreasing and the second is increasing. The two principal 
stresses equal each other at the position where the SIB is zero. 
As the distance keeps increasing after exceeding that position, 
the SIB is reversed, i.e., the swap of the slow and the fast axes. 
It gives the third explanation why the SAPs should not be 
designed far away from the core, after the first reason for 
maximizing SIB and the second reason for the mechanical 

reliability of the fiber [15]. For the dependency on the radii of 
SAPs with fixed positions (Fig. 10), on the contrary, the first 
revised principal stress is increasing and the second is 
decreasing, and the SIB achieves its maximum at the largest 
radii of SAPs. 

Figure 11 shows the dependency of revised principal stresses 
and their difference on the radii and the positions of SAPs in the 
practical engineering. It is estimated according to the 
mechanical reliability and the SIB maximization conditions, 

( 4 ) 2r b a= −  and 2d a r= + , respectively. There will be no
physical meanings when the right-hand part with 17μmr  , 
according to the mechanical reliability condition. 

Figures 9, 10, and 11 also show the design guidelines for 
geometric parameters of SAPs to maximize the SIB in 
Panda-PMFs, which are of most interests to the industrial 
fabrication. According to the basic and the simplified equations 
in (37) and (41), especially for the approximated one in (42), 
the SIB depends on the radii ( r ) and the distances ( d ) of two 
SAPs when the material parameters are constant. It shows a 
simple rule for maximizing the SIB in PMFs, i.e., the SAPs 
should be larger and closer. There is only one geometric 
limitation for the guideline, which is that the geometric 
parameters of SAPs cannot break the configuration of the fiber 
shown in Fig. 1. This means that we should have d a  and 

( ) 2r b a − in theory. Actually, the two “equal” signs will 
never be achieved in practice considering the optical loss (will 
dramatically increase at d a= ) and the mechanical reliability 
(will dramatically decrease at d r b+ = ). The curves are 
calculated under the engineering condition ( 4 ) 2r b a= −  and 

2d a r= + . Under these engineering conditions, the maximum 
SIB, which is hard to analytically calculate from (42), can be 
numerically obtained for the design of PMFs. It is achieved at 
the highest point of the revised principal stress difference in Fig. 
11. It also refers to the maximum SIB in the PMFs, as shown in 
Fig. 12, for three commercial Panda-PMFs with different 
cladding radii. These marked maxima indicate the optimum 
design for corresponding PMFs. Figure 13 shows the tendency 
for different components of the revised SIB in (39) and (40), 
and the approximated SIB in (42). It verifies the approximated 
expression since the difference between the two components is 
so large that the minor one can be neglected. 

At last, the role of the projection angle at the core center 
subtended by one of the SAPs for the early PMF ( 2 125μmb = ) 
is shown in Fig. 14. It clarifies the misleading statement that the 
90  projection angle is the condition of the SIB maximization 
[17], which actually is only valid for a particular fiber with 
2 125μmb =  and 3d a r= + , instead of all Panda-PMFs. The 
SIB only depends on the radii and the positions of SAPs. The 
projection angle is not explicitly reflected in the revised 
expression. The sinusoidal value of half of the angle refers to 
the ratio between the radius and the position. Obviously, the 
angle depends on the separation between the core and SAPs, i.e., 
d r

� �

a− − , which is dominated by the optical loss in the 
fabrication of the fiber.
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Fig. 13.  Dependency of the revised principal stresses inside the core and their 
difference on the radius of SAPs when their positions are fixed.
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Fig. 14.  Dependency of the revised principal stresses inside the core and their 
difference on the radii of SAPs when their positions are fixed. The occurrence 
of the maximum SIB at 90  (with half angle 45 ) is only valid for the 
geometry of 3d a r= + , instead of all types of PMFs. The maximum SIB 
directly depends on the radius and the distances of SAPs in geometry, which 
resulted in different angles such as 118  (with half angle 59 ) and 102  
(with half angle 51 ) for d a r= +  and 2d a r= + , respectively.
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V. CONCLUSION

� �

The definition of the SIB in PMFs has been revisited and 
modified, and a simple ASF is proposed. Both modifications 
aim to solve the existing errors in reported well-known models. 
Compared to early research works where the correct values 
were halved in the estimation for modern PMFs with high SIB, 
there are no mathematical contradictions in the proposed model, 
and the numerically calculated stresses and SIB make good 
agreements with the practical measurements. This work has 
pointed out a couple of technical contradictions in 
well-accepted models and has solved the fundamental legacy 
issues in the calculation of SIB, and has also provided insightful 
suggestions for the design and the fabrication of PMFs.
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