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Abstract

Many regions of the world experience regular outbreaks of Foot-and-Mouth
Disease (FMD), a virulent livestock disease which causes great amounts of economic
damage. Mathematical models are a fundamental component of many epidemiolog-
ical studies, however there is limited work on endemic FMD due to the complicated
dynamics of the endemic disease and a lack of good data. We probe the dynamics of
this disease using a model developed with these dynamics, along with high quality
data from Turkey.

First, we develop a stochastic spatial metapopulation model which takes into
account the dynamics of endemic FMD, test identifiable parameters with the avail-
able data from Turkey, and parameterise the model using the Approximate Bayesian
Computation Sequential Monte Carlo (ABC-SMC) model fitting algorithm. Second,
we assess plausible control policies for their effectiveness in reducing disease circula-
tion and potential for disease eradication. The optimal control policy combinations
are found to be reactive ring vaccination with biannual mass vaccination, but re-
active movement bans are ineffective. The parameter sensitivity of these control
policies are then identified.

Third, we use the model to explore potential carrier transmission and com-
pare this to transmission via movements of infected livestock. The rate of carrier
transmission sufficient to contribute to persistence of the disease is found to be
very low, such that failure to observe transmission experimentally is unsurprising.
Movement transmission alone is found to be insufficient for persistence, however the
assumption of vehicle contamination allows persistence also.

Finally, we explore the interaction of the assumed persistence drivers of car-
rier transmission and contaminated livestock shipments, and assess control policies
in the presence of these disease transmission mechanisms. It is shown that pes-
simistic assumptions of carrier transmission alter the optimal control policy to reac-
tive ring vaccination alone, but contaminated livestock shipments make no difference
to the optimal control policies.
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Chapter 1
Introduction

1.1 The Global Context of Foot-and-Mouth Disease

1.1.1 History of FMD

It is generally agreed that the earliest known description of FMD was by the monk

Fracastorius in 1545, suggesting that the disease has been extant for approximately

500 years (J. Arzt et al. 2011). Despite this long history however, the first true

insights into the disease did not come until 1898, when Loeffler and Frosch demon-

strated that the etiological agent of the disease was a virus and in so doing helping

to found the field of virology (Brown 2003).

Research on FMD has always been hampered by the biosecurity requirements

of working with the virus, and the seven serotypes and myriad strains that circulate

globally (J. Arzt et al. 2011). Initial research efforts focused on identifying a suitable

experimental animal to grow the virus in, eventually identifying guinea pigs and then

mice in 1927 and 1951 respectively. Although the problem of large scale production

of the virus was solved by 1947, efforts at a vaccine continued to be held back by the

multitude of serotypes which circulated globally, as protection against one serotype

does not confer protection against any other. Indeed, there have been cases where

protection was not offered against different strains within the same serotype, such as

the 1965-66 European outbreaks (Brown 2003). Modern vaccines generally include

multiple serotypes to work around this problem (Luis L Rodriguez and Marvin J

Grubman 2009).

With the problem of large-scale production of vaccine solved, many states

began to implement vaccination of cattle and swine to prevent the circulation of

FMD within their borders. Mexico eliminated FMD through the use of vaccination
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in 1952, joining the rest of North America in being free from the disease (Naranjo

and Cosivi 2013). By 1991 in Europe, the European Community had judged that

the disease was under control and that there was no indigenous focus for the disease

on the continent, as such banning preventative vaccination against FMD in 1991

(Leforban 1999). Occasional introductions over the decade following were quickly

controlled, with the exception of the 2001 outbreaks in the UK and the Netherlands

(Bouma, A. R. W. Elbers, et al. 2003). However, the disease has never re-established

itself as endemic to the continent of Europe. In South America, the first national

FMD elimination programs were established in the 1960s and 1970s, progressing

to regional elimination efforts in the 80s. By 2009 however, the disease remained

present on the continent (Naranjo and Cosivi 2013). Today the majority of the

continent (with the exception of Venezuela) is recognised by World Organisation for

Animal Health (OIE) as free from the disease with vaccination, as shown in Figure

1.2.

However, the disease remains endemic in many Asian and African countries.

For a variety of reasons including lack of good quality data and the more complex

dynamics of multiple circulating serotypes, less research has focused on the disease

in endemic areas. The areas still at risk for FMD are split into regional pools,

which tend to share a number of serotypes. There are seven such pools, outlined

in Figure 1.1. Due to the virulence and ease of transmission of Foot-and-Mouth

Disease Virus (FMDV), it therefore remains as a constant threat for reintroduction

to those areas of the world currently free of the disease.

In those countries where FMD remains endemic, efforts to control or combat

FMD vary, and there are major difficulties in bringing the disease under control.

Indeed, in 2014 only 2 laboratories existed in Africa that could diagnose FMD

and carry out vaccine-matching (Brito et al. 2017). In an effort to encourage and

streamline the path of a country to being free from FMD, the Progressive Control

Pathway (PCP) was introduced in 2012 by European Commission for the Control of

Foot-and-Mouth Disease (EuFMD) and OIE. The PCP introduces stages, outlined

in Figure 1.3, by which a country can progressively learn about the presence of

the disease within their borders, introduce control measures to reduce the impact

of the disease, and eventually proceed to being free of the disease (K. Sumption,

Domenech, and Ferrari 2012).

1.1.2 International & Economic FMD Policy

International policy regarding FMD is governed by OIE, the disease being listed in

the Terrestrial Animal Health Code (OIE 2021). OIE formulates rules about the

2



Figure 1.1: Conjectured Global FMD Status & Regional Serotype Pools, 2021,
by the World Reference Laboratory for Foot-and-Mouth Disease (WRLFMD) at
Pirbright. Each pool lists the serotypes that typically circulate in that region.
Countries where the disease is endemic are found only in Asia and Africa. Venezuela
is considered to have sporadic outbreaks.

Source: https://www.foot-and-mouth.org/sites/foot/files/quick_media/WRLFMD_

status.png

Figure 1.2: OIE Member’s Official FMD Status Map (Jan 2022).
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Figure 1.3: The stages of the Progressive Control pathway for FMD.
Source: K. Sumption, Domenech, and Ferrari 2012

treatment and classification of a countries FMD-status, voted on by its 182 member

countries, and is the arbiter of whether a region is officially free from FMD. OIE

also maintains relations with the few non-member states for collecting and validating

disease occurrence information.

The OIE recognises two classifications of regions as free from the disease.

The first is ”Free from FMD without vaccination”, the second is ”Free from FMD

with vaccination”, and distinguishes between those regions where mass vaccination

is regularly applied to control the spread of the disease (OIE 2021). Countries

not FMD-free cannot trade live animals with those countries that are free from

the disease. Trade of livestock products are also restricted; countries experiencing

regular outbreaks can only export heat-treated meat and even those countries who

are FMD-free with vaccination can only export de-boned meat subject to stringent

bio-security measures (James and Rushton 2002). Being classified as free from the

disease is therefore important for unrestricted access to lucrative markets, as most

of the richest economies are free from FMD (T. J. D. Knight-Jones and J. Rushton

2013).

The response to an outbreak of a country free from FMD has important

consequences on a countries access to international trade in the event of an epidemic,
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which has implications for how the epidemic is managed. When a policy of culling

only is pursued to manage the epidemic, Free status is regained 3 months after the

end of the outbreak. If vaccines are used to contain the spread of the disease, and

the vaccinated animals are subsequently slaughtered, this also applies. However,

if the vaccinated animals are allowed to live, this period where restrictions still

apply is extended to 6 months, due to the fear that unnoticed carriers might initiate

subsequent outbreaks (Arnold et al. 2008; OIE 2021). This can have large economic

effects, and incentivizes the slaughter of animals to reduce the period when access

to international markets is restricted.

Countries that are free from FMD experience losses related to their surveil-

lance and enforcement systems required to remain free of the disease. In the event

of disease incursions, they also experience the direct losses of vaccination and/or

culling of livestock, as well as expensive restrictions on trade in an economy use to

access to international markets (T. J. D. Knight-Jones and J. Rushton 2013).

Regions where the disease is endemic experience losses in potential revenue

due to the aforementioned trade barriers, impairment of their food security, and

indirect losses from the prevention of the adoption of more efficient production

methods by FMD. Direct losses are related to the costs of measures to monitor,

prevent, and bring under control FMD (T. J. D. Knight-Jones and J. Rushton

2013).

1.1.3 FMD in the Republic of Turkey

The Republic of Turkey is a region where FMD is considered to be endemic, as seen

in Figure 1.1. More specifically, Thrace (in Europe) is considered free from FMD

with vaccination, while Anatolia (in Asia) is considered to be at PCP Stage 2. The

region is considered important due the size of the cattle industry in the area, and its

proximity to FMD-free Europe. Unlike many countries where the disease is endemic

however, the country has a comprehensive reporting system and mass vaccination

program. Over the past 20 years serotypes O, A, and Asia-1 have circulated in the

region (T. J. D. Knight-Jones, S. Gubbins, et al. 2016). During the period data

is available the Turkish surveillance system relied on passive surveillance (farmers

reports), but over the last decade have added active surveillance measures such

as seroprevalence studies and risk-based surveillance efforts (unpublished commu-

nication). Control policies include biannual mass vaccination in at-risk provinces,

as well as reactive ring vaccination and movement bans around detected infected

farms. The data used in this thesis is from the Republic of Turkey, and the setting

and details of the data are discussed in detail in Chapter 2.
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Published research on FMD in Turkey is sparse. The earliest reference to

research in the area appears to be Nazlioglu in 1967, who assessed the economic

losses the disease was causing. In 1992 Zog et al developed a model to update the

financial losses. In 2005 and 2008, it was estimated that FMD-induced production

losses in dairy and fattening cattle totalled losses of $294/head for milking cattle,

$152/head for dairy heifers, and $197/head for beef cattle - demonstrating the large

impact that FMD can have (Senturk and Yalcin 2005; Şentürk and Yalçin 2008).

In the past 20 years, there have been four published modelling frameworks

used to assess FMD in the Republic of Turkey. Gilbert et al. (2005) analysed spatial

and temporal trends in the spread of FMD in the region, finding that from 1997-

2002 the disease had retreated into persistence islands and become more associated

with long-range transportation of live animals, as opposed to the previous dynamic

of short-range transmission. In 2008 Branscum et al also used a Bayesian spatio-

temporal model to analyse the same trends, and found that the disease appeared to

be waning in Western Anatolia and waxing in Eastern Anatolia (Branscum et al.

2008).

Finally, in 2016 two modelling frameworks were developed by Theo Knight-

Jones et al, 2016. One attempted to assess the probability of FMD spread from

wild boars, the other modelled the coverage and decay of vaccination protection

in a simulated population of cattle using the previously used vaccination strategy

(T J D Knight-Jones, Robinson, et al. 2016; T. J. D. Knight-Jones, S. Gubbins,

et al. 2016). However, this model used the previous vaccination strategy of biannual

vaccination with a single-dose of a ≥ 3 50% Protective Dose (𝑃𝐷50) vaccine, instead

of the latest strategy of a two-dose course of a ≥ 6𝑃𝐷50 vaccine, and did not account

for the effect of cattle movements throughout the country.

1.2 Natural History of Foot-and-Mouth Disease

FMDV is the causative agent of FMD, and consists of a single-strand, plus-sense

RNA genome of approximately 8,500 base-pairs. This is enclosed in icosahedral

capsid made up of four structural proteins (Marvin J. Grubman and Baxt 2004).

FMD is one of the most infectious animal diseases in the world and can infect up

to 70 different animal species, including all species of domesticated cloven-hoofed

animals and many undomesticated species (J. Arzt et al. 2011; Marvin J. Grubman

and Baxt 2004). Seven serotypes of FMD are known: O; A; C; Asia-1; South African

Territories (SAT)1; SAT2; SAT3 (Fig. 1.4), with each serotype including a varying

number of strains or sub-types (Domingo et al. 2002).
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Figure 1.4: Phylogenetic relationships between the 7 serotypes of FMD. (Domingo
et al. 2002)
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FMD exhibits high morbidity but low mortality. The most common symp-

toms, for which the disease takes its name, are lesions on the feet, mouth and tongue

of affected animals. Common but less visible symptoms include a drop in milk pro-

duction, fever, and excessive drooling. Less common symptoms include lameness

and miscarriages (Marvin J. Grubman and Baxt 2004). Although most adult ani-

mals recover from the disease, mortality typically being less than 5%, death is more

common in younger animals (Şentürk and Yalçin 2008). The severity of disease

varies by the species infected, the individual susceptibility of the host, the infecting

strain, and the infecting dose (R P Kitching, Hutber, and Thrusfield 2005). It is

generally considered impossible to carry out intensive cattle or swine agriculture in

regions where the disease is endemic (James and Rushton 2002).

FMDV can infect many different species, including most domesticated cloven-

hoofed animals and many other wild species such as deer (Marvin J. Grubman and

Baxt 2004; Schaftenaar 2002). The course of the disease can be different in different

species. In cattle, upon infection with FMD the incubation period of the disease

can extend up to 12 days, but is most commonly 2-3 days. Virus can be excreted in

the milk of infected cattle 2-4 days before any lesions form. Excretion of the virus

(and hence infectiousness) generally ceases by around 5 days after the appearance

of lesions. Clinical signs typically disappear 10 days after their first appearance

(Mardones et al. 2010; Yadav et al. 2019). Cattle are highly susceptible to infection

via inhalation, whereas swine are more easily infected via oral exposure (J. Arzt

et al. 2011). Once infected however, swine excrete more infectious doses per day by

an order of magnitude (up to 500 million 𝐼𝐷50/day). Sheep and goats are generally

only mildly symptomatic if at all, and are less infectious (S. Alexandersen, Quan,

et al. 2003).

In cattle, immunity following infection varies but can potentially last up to

four and a half years, although the immunity is generally serotype-specific and does

not induce sterilizing immunity. In swine however, it typically lasts only 3-6 months.

Little research has been done on this area for sheep or goats (T. R. Doel 2005, 1999).

1.2.1 Transmission

FMD is one of the most infectious animal diseases in the world, with estimates of the

basic reproductive ratio Reproductive Ratio (𝑅0), the average number of secondary

infections from an infected animal in a naive herd, sometimes exceeding 70 (T. J. D.

Knight-Jones and J. Rushton 2013; Woolhouse et al. 1996).

There are three main routes of infection. The most common route is via

the inhalation of aerosolized virus particles which have been exhaled in an infected
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animals breath. Swine require up to 6000 Median Tissue Culture Infectious Dose

(TCID50) to become infected in this manner, whereas cattle and sheep can require

as little as 10 TCID50. Contrasting this, once infected swine produce much more

aerosolized virus, estimated at up to 400,000,000 TCID50 from a single pig in a day.

Over the same time period, cattle are estimated to release up to 120,000 TCID50

(R P Kitching, Hutber, and Thrusfield 2005).

In favourable environmental conditions, the aerosolized release of virus can

potentially spread the disease over distances of many kilometres. In 1981 aerosol

from an infected herd in Brittany, France, was detected as far as the Isle of Wight

more than 250 km away (A. I. Donaldson et al. 1982).

FMD may also spread through oral ingestion of the remains of previously

infected animals, for example when this is added to animal feed. In 2001 this

occurred in the UK, leading to a major outbreak (Bourn et al. 2002).

Finally, the virus can persist in the environment in the form of fomites. High

temperatures, dry conditions, or pH values below 6 or above 10 can reduce the time

these virus particles do survive in the environment. Nevertheless if kept moist and

at a neutral pH the virus can potentially survive for days, weeks, or even months

on surfaces. As such, virus-laden clothing or uncleaned tools or vehicles which have

come close to infected animals present the risk of further onward spread. This route

was determined to be the cause of outbreaks in Denmark in 1982, and Italy in 1983

(R P Kitching, Hutber, and Thrusfield 2005). This sort of contamination also played

an important role in the 2001 UK outbreak, and generally occurs through indirect

contacts such as farm-to-farm movements of personnel (L.M et al. 2011). Due to the

difficulty of obtaining this contact data, research on this route is limited, however

work has demonstrated that being limited to subsets of the full information can lead

to significantly different results (Rossi et al. 2017). Additionally, it has been shown

that environmental R arising from this contamination is approximately 2, enough

to sustain an epidemic without direct contact (Bravo de Rueda et al. 2015).

1.2.2 Carrier Animals

Essentially all naive cattle show symptoms of FMD, lesions around the mouth,

tongue and feet, as well as a fever and possible lameness, during the period where

they are clinically infectious. Following this phase, some proportion of the cat-

tle fully clear the infection and generate immunity against the infecting strain or

serotype, and the rest remain persistently infected, referred to as carriers. Exper-

imental evidence suggests that close to 50% of cattle become carriers, although

field studies find lower proportions (C. Stenfeldt et al. 2016; Carolina Stenfeldt
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and Jonathan Arzt 2020; Carolina Stenfeldt, Heegaard, et al. 2011; Paul Sutmoller,

McVicar, and Cottral 1968). Carrier cattle display no symptoms, but have de-

tectable levels of virus recoverable from the oropharyngeal fluid (ORF) more than

28 days post-infection. This period can potentially last up to 3 years, although

most evidence suggests around 6 months to 1 year is likely (Carolina Stenfeldt and

Jonathan Arzt 2020; Tenzin et al. 2008).

It is unclear whether or not carrier animals are infectious and can transmit

to other susceptible animals (Soren Alexandersen, Zhidong Zhang, and Alex I. Don-

aldson 2002; Carolina Stenfeldt and Jonathan Arzt 2020). There is no evidence from

well-studied epidemics in FMD-free countries, such as in the UK in 2001, because

all known or suspected infected animals are generally culled. Multiple experimental

studies have failed to find evidence of transmission or viral shedding from carrier

animals, and it has never been observed in the field (Soren Alexandersen, Zhidong

Zhang, and Alex I. Donaldson 2002; Moonen et al. 2004). Recent field experiments

observing animals in Vietnam and India observed no transmission from carriers

(Bertram, Vu, et al. 2018; Bertram, Yadav, et al. 2020; Hayer et al. 2018). A sum-

mary of the research by Tenzin et al. (2008) however, noted that after calculating

a rate of transmission after synthesising multiple studies, transmission from carrier

could still not be entirely ruled out. More recently, research has demonstrated that

the virus taken from the ORF can be infectious (Jonathan Arzt et al. 2018).

Sheep may also become persistently infected with FMD, but swine are not

capable of maintaining persistent FMDV infection (Carolina Stenfeldt and Jonathan

Arzt 2020).

If persistently-infected livestock are capable of infecting susceptible animals,

the probability of such an event must be low. However, if such transmission does

occur, it has potential policy implications. The possibility of carrier animals trig-

gering a new outbreak after a contained outbreak is one of the reasons why the

OIE mandated trade ban lasts for 6 months if vaccinate-to-live is used, but only 3

months for vaccinate-to-kill policies.

1.2.3 Vaccination

The first practical vaccine against FMD was developed by Waldemann in 1937, and

used virus from epithelium and vesicular fluid of tongues from deliberately infected

cattle. In the intervening decades, much research and development has been carried

out on vaccines, and today vaccine is formulated by infecting Baby Hamster Kidney

Cell (BHK)-21 suspension cells with carefully selected virus, although research into

vaccines continues (Singh et al. 2019). The extracted virus is then inactivated and
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concentrated, purified, and then adjuvants and preservatives added (T. R. Doel

2003). The inactivated vaccines are generally formulated depending on the strain

required and the species to be vaccinated, commonly containing more than one strain

to cover more than one serotype. Strains selected are tested against field isolates

and reference vaccine strains (D J Paton et al. 2005). The use of vaccines purified

of Non-Structural Protein(s) (NSP) allows discrimination between those animals

vaccinated and those who have been exposed to infection. These Differentiation

Infected from Vaccinated Animals (DIVA) tests have been available since 1998,

although the purification process may leave trace remnants and animals may still

develop antibodies to NSPs after multiple vaccinations, so caution is appropriate

(R P Kitching, Hutber, and Thrusfield 2005; Mackay et al. 1998).

Vaccinated livestock respond rapidly to their first dose of a vaccine, and

depending on vaccine composition reach peak antibody titres 14-28 days post-

vaccination, though subclinical infection remains possible (T. R. Doel 2003). Younger

animals commonly receive a booster dose 3-4 weeks after their first vaccine dose to

induce a greater immune response (T. J. D. Knight-Jones, S. Gubbins, et al. 2016;

Park et al. 2021). High potency vaccines are able to reduce the time until protection

to within 3-4 days. Calves from non-vaccinated cattle appear to respond as effec-

tively as adult cattle after 1-2 weeks of age. Maternally Derived Antibodies (MDA)

against FMDV however, interferes with the immune response of young animals to

the vaccine, possibly up to several months of age, which must be accounted for in

vaccination programs (R. P. Kitching and Salt 1995; Nicholls, Black, and M. M.

Rweyemamu 1984).

Vaccines generally confer approximately 6 months of immunity against the

serotype used, comparable with the duration of natural immunity in swine but less

than has been observed for natural immunity in cattle (T. R. Doel 2003; Lyons et al.

2019). A single dose of vaccine does not prevent the vaccinated animal from becom-

ing sub-clinically or persistently infected (Parthiban et al. 2015; Carolina Stenfeldt,

Eschbaumer, et al. 2016). The effect of reinfection on the duration of immunity

is not well studied, however E. El-Sayed et al. (2012) finds natural immunity last-

ing 32-36 weeks where T. R. Doel (2005) reports protective immunity up to several

years. This, in combination with the known benefit of booster vaccinations, suggests

that reinfection will stimulate a greater duration of the immune response.

Vaccination has successfully been used as a tool in integrated control pro-

grams for FMD, as demonstrated by the decline and subsequent elimination of the

disease in many areas of the world over the past 70 years. This may effectively

be achieved even without the vaccination of all livestock. For example, during the
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time of mass vaccination in Europe it was common to focus on cattle, due to their

abundance and high value, and vaccinate only a few of the sheep or pigs. Nonethe-

less the disease was eradicated (T. R. Doel 2003). Many countries free from FMD

today maintain emergency vaccine stocks, for use in the event of an epidemic. In

many cases, these vaccines will be used to slow the spread of the disease before the

vaccinated animals are subsequently culled to speed the return to official FMD-free

status, as in the Netherlands in 2001 (Bouma, A. Elbers, et al. 2003). In contrast,

the 2001 UK policy response involved culling alone, with no emergency vaccination

(Bourn et al. 2002). Whether culling or vaccination is the optimal policy for control

of FMD depends on the goal of the policymaker and their resource constraints, but

if stopping an epidemic is the main concern vaccination is best used as a prophy-

lactic before an animal is infected due to the time delay to protection, and culling

of currently infected animals is best for preventing the further spread of the virus.

1.3 Modelling Infectious Diseases

Mathematical and mechanistic models of infectious disease can play an important

role in infectious disease epidemiology. Mathematical models are mathematical de-

scriptions of a situation based on initial hypotheses, which produce results and

conclusions that may be compared against experimental evidence. This production

of comparable results usually requires numerical simulations, usually on a computer.

For epidemiology, the general process is to formulate assumptions about how a dis-

ease spreads and translate this into a mathematical problem (Brauer 2009).

Mathematical models have great use in epidemiology because experiments

in epidemiology with controls are often difficult, expensive, or ethically dubious to

carry out. Models can offer a method of investigating the underlying mechanisms

of a disease that reduces or eliminates these concerns. In doing so, it can often

suggest or support control mechanisms for the disease. In more recent years, the

rapid deployment of such models have aided in predictions of ongoing outbreaks

as well as comparing control measures (Brauer 2008; Matt J. Keeling, Hill, et al.

2021). As such, mathematical models offer a very useful tool, with a wide range of

applicability.

The foundations of mathematical modelling of infectious disease lie in the

work of Ronald Ross, the British medical doctor who won the Nobel prize in 1902

for discovering that Anopheles mosquitoes are the host vector for malaria. In 1911

he modelled the spread of malaria using differential equations, through this mathe-

matical reasoning demonstrating that the cessation of malarial spread required only
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the reduction in the Anopheles population below a certain threshold, rather than

complete eradication (Ross 1911).

This contribution was then developed by Kermack and McKendrick in 1927,

using partial differential equations to predict the spread of disease within a pop-

ulation. Although their model structured the population in terms of age-at-first-

infection, the simple case where infectiousness did not vary by age led to the first

compartmental SIR model (Kermack, McKendrick, and Walker 1927).

In the second half of the 20th Century the field was revitalised, most notably

by Anderson and May (Anderson and May 1979; May and Anderson 1979). The

field remained focused on the theory underpinning mathematical modelling in this

period, most likely due to the lack of computing power available to simulate their

ideas.

Modern efforts at formalising mathematical models about the spread of dis-

ease have the benefit of large amounts of computing power, which can allow the use

of such models as predictions during the crises being analysed, for example during

the 2001 UK FMD epidemic or the 2020 COVID19 pandemic (Anastassopoulou et

al. 2020; Brauer 2008; Kao 2002; Matt J. Keeling, Hill, et al. 2021). A common

target for this type of work is to predict the 𝑅0, which is the average number of sec-

ondary infections that is expected from a primary case in a completely susceptible

population (Heesterbeek 2002). This ratio is useful for the information it contains

about the spread of the disease, if 𝑅0 > 1 then the number of infected hosts is in-

creasing, if 𝑅0 < 1 then the number of infected hosts is decreasing. Consequently,

disease control policies are targeting this ratio.

1.3.1 Compartmental ODE models

The compartmental Ordinary Differential Equation (ODE) model, first developed

as an SIR model in Kermack, McKendrick, and Walker (1927), is very common

in epidemiological research. This model divides the population under study into

compartments which correspond to a disease status, and they move between these

compartments at different rates. There are many formulations of these compart-

mental models, for example the SI model, which includes a susceptible population

S and an infectious population I, with movement 𝑆 −→ 𝐼 at rate _. SIR models add a

recovered compartment R, to allow individuals to recover (or die) from the disease,

with recovery rate 𝛾 for 𝐼 −→ 𝑅 (shown in Figure 1.5). Other formulations include

SEIR, which includes an exposed/latent compartment, with 𝐸 −→ 𝐼 proceeding at

rate 𝜎; SIS to allow infectious individuals to become susceptible again (𝑆 −→ 𝐼 −→ 𝑆);

and SIRS or SEIRS to allow recovered (and immune) individuals to lose their immu-
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Figure 1.5: A basic compartments of the SIR model, with susceptible individuals
proceeding to become infected at rate _, and recover at rate 𝛾.

nity to infection. These basic models can also be extended to include compartments

for control strategies such as vaccination, or age-structured disease compartments

to allow age-dependent transmission rates.

Once the specific formulation of the model has been determined, the system

of ODEs which describe the rates individuals move between the compartments can

be laid out. For the SIR system, the equations are laid out below in equations 1.1 to

1.3. These equations deal with proportions of the population in each compartment,

so S is the proportion of the population under study which are susceptible to the

disease. Additionally, it is enforced that 𝑆 + 𝐼 + 𝑅 = 1, so that the entirety of the

population is in one of the compartments.

𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼 (1.1)

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝛾𝐼 (1.2)

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 (1.3)

If we examine equation 1.2, if the fraction of susceptible individuals in the

population S is less than 𝛾/𝛽 then 𝑑𝐼
𝑑𝑡
< 0 and the disease will die out. If however

𝑆 > 𝛾/𝛽 then 𝑑𝐼
𝑑𝑡
> 0 and the proportion of the population infected will increase. This

ratio, between the rate of infection and the rate of recovery, defines the reproductive

ratio. 𝑅0 = 𝛽/𝛾.
This formulation of the SIR model assumes a closed population, with no

births, deaths, immigration or emigration (𝑆 + 𝐼 + 𝑅 = 1). This assumption may

be close enough to reality if the time-scale in question is very small compared to a

typical lifespan of a member of the population under study, but in endemic situations

this assumption is less useful. The addition of demography to the SIR model may

be done by adding a birth rate a and a death rate `, leading to the equations below.
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𝑑𝑆

𝑑𝑡
= a − 𝛽𝑆𝐼 − `𝑆 (1.4)

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝛾𝐼 − `𝐼 (1.5)

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 − `𝑅 (1.6)

The death rate in this system acts to increase the rate of recovery and de-

crease 𝑅0, so 𝑅0 = 𝛽/(𝛾 + `).
Analysis of these systems for stable equilibria ( 𝑑𝐼

𝑑𝑡
= 0) reveals two values of

I where the system is stable. The first is 𝐼 = 0, the disease-free state, or

𝑆∗ =
𝛾 + `
𝛽

=
1

𝑅0
(1.7)

which leads to the conclusion that the proportion of the population which

must be susceptible for an endemic equilibrium to emerge is the reciprocal to 𝑅0.

Once again, 𝑅0 emerges as a threshold, in order for a disease to be endemic 𝑅0 must

be greater than 1.

Further exploration of this system shows that to prevent the circulation of

a disease of a given 𝑅0 within a population, we need only reduce the population of

susceptible individuals below a certain threshold, defined by 𝑅0. This can be done

via vaccinating a certain proportion of the population 𝑝. If we modify a so that

a
′
= a(1 − 𝑝) in equation 1.4 (balanced by addition of a𝑝 in eq. 1.6), 𝑅0 emerges as

𝑅
′
0 = (1 − 𝑝)𝑅0 (1.8)

and the threshold proportion that must be vaccinated that results from this

is obtained by setting 𝑅
′
0 < 1, resulting in the following equation.

𝑝𝑐 = 1 − 1

𝑅0
(1.9)

This phenomenon is known as herd immunity, and the obvious implication is

that the larger 𝑅0 is the greater the proportion of the population which needs to be

vaccinated to control spread of the disease. This critical threshold was first recog-

nised in C. E. Smith (1970). However, one must take into account the assumptions

made when formulating this model, such as random mixing of the population and

random delivery of vaccination. For a good discussion of the complexities of this

threshold, see Fine, Eames, and Heymann (2011).
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1.3.2 Subcompartments

In the models considered so far, all disease status compartments have had only one

subcompartment. When this is true, the probability that an individual is in the

compartment at a time after entering it is an exponential distribution. However,

by subdividing each compartment into 𝑛 subcompartments, the distribution of the

period of time spent in the disease compartment can be altered.

As an example, if we subdivide the infected compartment of the SIR model:

𝑑𝑆

𝑑𝑡
= a − 𝛽𝑆

𝑛∑︁
𝑖=1

𝐼𝑖 − `𝑆 (1.10)

𝑑𝐼1

𝑑𝑡
= 𝛽𝑆

𝑛∑︁
𝑖=1

𝐼𝑖 − 𝛾𝑛𝐼1 − `𝐼1 (1.11)

𝑑𝐼𝑖

𝑑𝑡
= 𝛾𝑛𝐼𝑖−1 − 𝛾𝑛𝐼𝑖 − `𝐼𝑖∀𝑖 = 2, ..., 𝑛 (1.12)

𝑑𝑅

𝑑𝑡
= 𝛾𝑛𝐼𝑛 − `𝑅 (1.13)

we see that to maintain a constant average time between infection and recov-

ery, as the number of subcompartments increases the rate at which individuals move

between subcompartments must also increase commensurately. The variance in the

length of the infected period decreases as 𝑛 increases. When 𝑛 = 1, this distribution

is exponential; when 1 < 𝑛 < ∞, this distribution is a gamma distribution; as 𝑛 −→ ∞
this becomes a constant period.

1.3.3 Stochasticity

All models considered thus far have been deterministic, given the same starting

conditions exactly the same disease trajectory will be observed. This deterministic

view does not actually apply to the real-world dynamics of pathogens; if we could

”re-run” an epidemic we are unlikely to see exactly the same hosts becoming infected

at exactly the same time. The specific individual hosts which become infected has a

large element of chance, and models which take account of this probabilistic element

are common. The importance of randomness is highest when populations are small,

as population sizes increase random elements will begin to cancel each other out

and the observed randomness will decrease.

There are three methods for approximating random processes in disease

transmission and recovery. The first method is to introduce randomness directly
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into population variables; the second is to randomly vary parameter values; the

third is to explicitly model individual-level random events (Matt J. Keeling and

Rohani 2008). For example, observational noise is the simplest type of noise, and

acknowledges the uncertainty inherent in recorded data such as case numbers. The

underlying epidemic dynamics remain deterministic. However, this does not impact

the observational dynamics, and modifies only the reported data.

Event-driven approaches are a popular method for incorporating demographic

stochasticity. These methods require explicit consideration of the possible events in

a given system. A common method to implement this event-driven randomness is

Gillespie’s Algorithm, shown in algorithm 1 (Gillespie 1975).

Algorithm 1 Gillespie’s Direct Algorithm

1: Label all possible events 𝐸1,..., 𝐸𝑛.
2: For each event determine the rate at which it occurs, 𝑅1,..., 𝑅𝑛
3: The rate at which any event occurs is 𝑅𝑡𝑜𝑡𝑎𝑙 =

∑𝑛
𝑚=1 𝑅𝑚

4: The time until the next event is 𝛿𝑡 = −1
𝑅𝑡𝑜𝑡𝑎𝑙

𝑙𝑜𝑔(𝑅𝐴𝑁𝐷1)
5: Generate a new random number 𝑅𝐴𝑁𝐷2. Set 𝑃 = 𝑅𝐴𝑁𝐷2 × 𝑅𝑡𝑜𝑡𝑎𝑙
6: Event 𝑝 occurs if

𝑝−1∑︁
𝑚=1

𝑅𝑚 < 𝑃 ≤
𝑃∑︁
𝑚=1

𝑅𝑚

7: The time is now updated. 𝑡 −→ 𝑡 + 𝛿𝑡, and event 𝑝 is performed.
8: Return to Step 2.

Using the common Gillespie algorithm for simulating a stochastic system, if

we consider an SIS model with no demographics:

𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼/𝑁 + 𝛾𝐼 (1.14)

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼/𝑁 − 𝛾𝐼 (1.15)

where 𝑁 is the size of the population (𝑁 = 𝑆 + 𝐼). Note that 𝑆 and 𝐼 are

now the number of individuals in the compartment, rather than the proportion

of the population. This is introduced because the event-driven approach requires

that we deal with individuals becoming infected, and so we can no longer deal with

proportions of the population without accounting for the size of that population.

For this system, there are only 2 possible events:

• Transmission occurs at rate 𝛽𝑆𝐼/𝑁. Result: 𝑆 −→ 𝑆 − 1, 𝐼 −→ 𝐼 + 1

• Recovery occurs at rate 𝛾𝐼. Result: 𝐼 −→ 𝐼 − 1, 𝑆 −→ 𝑆 + 1
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Transmission occurs at rate 𝛽𝑆𝐼/𝑁, recovery at rate 𝛾𝐼, and so either event

occurs at a total rate of 𝑅𝑡𝑜𝑡𝑎𝑙 = 𝛽𝑆𝐼/𝑁 + 𝛾𝐼. 𝑅𝐴𝑁𝐷1 denotes a uniform random

number drawn from the interval (0, 1).
The time 𝛿𝑡 until an event occurs, either transmission or recovery, is there-

fore:

𝛿𝑡 =
−𝑙𝑜𝑔(𝑅𝐴𝑁𝐷1)
𝛽𝑆𝐼/𝑁 + 𝛾𝐼 (1.16)

and we choose which event occurs randomly, weighted by the rates at which

either event is occurring. In this example, the transmission event occurs if:

𝑅𝐴𝑁𝐷2 <
𝛽𝑆𝐼/𝑁

𝛽𝑆𝐼/𝑁 + 𝛾𝐼 (1.17)

otherwise the recovery event occurs. Finally time is updated (𝑡 −→ 𝑡 + 𝛿𝑡),
the appropriate changes are made to the population variables, and the process is

repeated.

A serious drawback of the Gillespie algorithm is that the increase in the

number of interaction terms that must be considered increases prohibitively as the

population becomes large. Additionally, the time interval between events decreases

as there are more events happening, so the number of iterations that must be com-

puted in a given time period also increases. An algorithm to increase efficiency was

presented by Gillespie in 2001, and is called the 𝜏-leap algorithm (Gillespie 2001).

This discretises time, allowing multiple events to happen in a single time step, and

is justifiable as long as the probability of an individual undergoing multiple events

in a single time-step is small. This algorithm is presented in Algorithm 2 for the

SIS model, taken from Matt J. Keeling and Rohani (2008).

1.3.4 Spatial Heterogeneity

An important assumption of these models is that of homogeneous mixing within the

population. Each individual is equally likely to mix with every other individual in

the population, such that every individual population member is equally likely to

become infected. As the size of the population increases however, this becomes a

less reasonable assumption. Interactions between individuals is often primarily local

in nature, and directly transmitted diseases are dependent on interactions between

individual disease hosts. Intuitively, a person who lives in the West Midlands, UK,

is not equally as likely to physically interact with someone living in Ohio, USA, as

compared to mixing with someone who also lives in the West Midlands.
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Algorithm 2 𝜏-leap algorithm

1: Let the time increment between steps, 𝛿𝑡, be small and fixed.
2: Let 𝑀𝑇 (𝑡) and 𝑀𝑅 (𝑡) represent the number of transmission and recovery events

by time 𝑡
3: Defining 𝛿𝑀𝑖 = 𝑀𝑖 (𝑡 + 𝛿𝑡) − 𝑀𝑖 (𝑡) (𝑖 = 𝑇, 𝑅), then

𝑃(𝛿𝑀𝑇 = 1|𝑆, 𝐼) = 𝛽𝑆𝐼

𝑁
𝛿𝑡 + 𝑜(𝛿𝑡)

𝑃(𝛿𝑀𝑅 = 1|𝐼) = 𝛾𝐼𝛿𝑡 + 𝑜(𝛿𝑡)

defined the transition probabilities for transmission and recovery events occur-
ring in the time interval 𝛿𝑡.

4: For small 𝛿𝑡, the increments 𝛿𝑀𝑖 are approximately Poisson, such that:

𝛿𝑀𝑇 ≈ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛( 𝛽𝑆𝐼
𝑁
𝛿𝑡)

𝛿𝑀𝑅 ≈ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝛾𝐼𝛿𝑡)

5: Now, the variables can be updated:

𝑆(𝑡 + 𝛿𝑡) = 𝑆(𝑡) − 𝛿𝑀𝑇 + 𝛿𝑀𝑅

𝐼 (𝑡 + 𝛿𝑡) = 𝐼 (𝑡) + 𝛿𝑀𝑇 − 𝛿𝑀𝑅

6: Time is updated, 𝑡 = 𝑡 + 𝛿𝑡.
7: Return to Step 4.
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Spatial hetereogeneity refers to differences between populations or individu-

als at different geographical locations, and can arise from two sources. One source

is spatial differences in the underlying forces which govern the dynamics of a popu-

lation, for example environmental conditions of light, soil fertility, or rainfall. These

can have important effects on the spread and incidence of disease, although the

modern supply of georeferenced strain sequence data in combination with environ-

mental data is now allowing the exploration of which environmental variables are

most important (Munsey, Mwiine, Ochwo, Velazquez-Salinas, Ahmed, F. Maree, et

al. 2021; Munsey, Mwiine, Ochwo, Velazquez-Salinas, Ahmed, Luis L. Rodriguez,

et al. 2022).

The other source of heterogeneity describes the observed differences in pop-

ulation structures over space, generally arising from processes such as movement

restrictions or simple stochasticity (Matt J. Keeling and Rohani 2008). This het-

erogeneity can also lead to some striking patterns in the spread of disease (Bolker

and Grenfell 1996). Capturing this usefully can be done by acknowledging the spa-

tial structure of the population. The simplest model is the metapopulation model,

subdividing the population into subpopulations, and modelling the dynamics of

these subpopulations independently alongside limited interactions between subpop-

ulations. Ideally, the level of subdivision used would produce subpopulations where

the assumption of homogeneous mixing is as close to reality as possible, although

this is not always possible. Regardless, these metapopulation models are a useful

tool to simulate the spread of disease (including livestock disease) over larger areas

and populations in a mathematically rigorous way.

The 2001 foot-and-mouth epidemic in the UK was a clear example of space

playing a strong role in the dynamics of disease spread. Cases were predominantly

within three regions: Cumbria, Devon, and the Welsh borders; most transmission

occurred within 3 kilometres of the source farm (Matt J. Keeling and Rohani 2008).

Two of the three main modelling efforts during the epidemic were spatially explicit.

A deterministic and non-spatially-explicit model was put forward by the Imperial

group of modellers (N. M. Ferguson 2001; Neil M. Ferguson, Donnelly, and Anderson

2001). Morris et al. (2001) used Interspread, a spatially-explicit and highly detailed

model with 54 parameters, to assess alternative control strategies for the epidemic.

Finally, M J Keeling et al. (2001) developed and used a simpler spatially explicit

stochastic model to assess disease dynamics. A good discussion of these modelling

frameworks is found in Kao (2002), as well as Matt J Keeling (2005).

The Keeling model treats the farm as the basic epidemiological unit, and

models the spread of infection between farms based on the spatial location of the

20



farm, and the number and demographics of the livestock on the farm. Each farm has

an associated susceptibility S and infectiousness I, determined by the demographics

of the livestock on that farm, and the relative susceptibility and infectiousness of

cattle and sheep.

𝑆 𝑗 =
∑︁
𝑠

𝑁
𝑗
𝑠 𝑆𝑠 (1.18)

𝐼 𝑖 =
∑︁
𝑠

𝑁 𝑖𝑠𝑇𝑠 (1.19)

Where 𝑁
𝑗
𝑠 gives the number of livestock of species 𝑠 on farm 𝑗 or 𝑖, and 𝑆𝑠

and 𝑇𝑠 are species-specific susceptibility and transmission rates.

The transmission process is then stochastic, such that the probability of farm

𝑗 becoming infected by infectious farms on any day is:

𝑃(𝑖𝑛 𝑓 𝑒𝑐𝑡) = 1 − 𝑒𝑥𝑝
−𝑆 𝑗

∑︁
𝑖∈𝑖𝑛 𝑓 𝑒𝑐𝑡𝑖𝑜𝑢𝑠

𝐼 𝑖𝐾 (𝑑𝑖 𝑗)
 (1.20)

With 𝐾 (𝑑𝑖 𝑗) a spatial transmission kernel which defines how a farms infec-

tiousness decreases with the distance 𝑑 between susceptible farm 𝑗 and infectious

farm 𝑖. The sum over all infectious farms creates an infectious pressure on suscep-

tible farms, rather than have any individual infectious explicitly infect another. 𝐾

subsumes all transmission routes which exist in reality, which has the advantage of

rapid parameterization.

1.3.5 Model Validation

Once a dynamic mathematical system has been decided upon to represent the sys-

tem of interest, obtaining a solution to the problem is the next step. With complex

models, this generally takes the form of fitting the model to available data. Pa-

rameterization of such models is vitally important, as the selection of more accurate

parameters improves the robustness of the interpretation of the model results. There

is likely to be uncertainty in prior estimates of parameters, and data available from

which to estimate the parameters might be patchy, incomplete or unreliable.

If the required outputs are point estimates of the parameters of a statistical

model, Maximum Likelihood Estimation (MLE) is a suitable approach, first devel-

oped by Fisher in the 1920s. Given that we have a model and some data, our model

will provide a probability distribution which allows us to estimate the probability of

observing our data, given our model and parameters. As we vary our parameters,

the probability of observing the data we have collected will change. For example, if
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we have observed a coin flip 10 times, and it has come up heads 8 times, the proba-

bility that our model would assign to this is we assumed a per-flip heads probability

of 0.2 is much lower than if we assumed the per-flip heads probability of 0.5. This

is the probability of our data given our model and parameters; we can then reverse

this, and ask what is the probability of the parameters given our data. The MLE

method attempts to estimate the parameters for which the sample data is most

likely (Myung 2003).

Depending on the model specification and data available, and analytic MLE

solution may be tractable, but in many cases a MLE is found numerically using

optimization methods.

When the objective is to obtain predictions of model parameter distributions,

Bayesian inference can be a fruitful approach. Bayesian inference treats the param-

eters as random variables that are drawn from a probabilistic distribution given

the observed data and some prior beliefs about those (the prior distribution), and

attempts to update the belief given the data and the prior belief. A Bayesian ap-

proach to parameter estimation can provide continuous estimations without specific

assumptions.

The core part of Bayesian inference is Bayes’ theorem, which allows us to

establish a relationship between our prior belief distribution, 𝜋(\), and the posterior

distribution 𝑓 (\ |𝐷), where 𝐷 is the observed data and \ is our parameters. Bayes’

theorem is below:

𝑓 (\ |𝐷) ∝ 𝐿 (𝐷 |\)𝜋(\) (1.21)

which allows us to obtain an estimate of 𝑓 (\ |𝐷) when we only have a prior

belief distribution 𝜋(\), and a likelihood function 𝐿 (𝐷 |\) which gives us the proba-

bility of our data given our parameters. The prior 𝜋(\) can incorporate expert belief

and prior research on the parameter, though if there is no prior belief it is typical

to use an uninformative ”flat” prior such as a uniform distribution.

Bayesian inference is useful when the problem is tractable analytically, how-

ever many problems in epidemiological research are not. In those cases, we can re-

sort to numerical estimation methods such as Markov Chain Monte Carlo (MCMC)

and Approximate Bayesian Computation (ABC) (T. McKinley, Cook, and Robert

Deardon 2009; T. J. McKinley et al. 2018; Toni et al. 2009).
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1.4 Aims

The purpose of this thesis is to develop a stochastic mechanistic model capable of

accommodating the complications of endemic FMD, and using it to analyse the

spread of FMD within the context of a region where it is already endemic, with

the goal of aiding authorities in endemic regions in their efforts to control and

eventually eradicate the disease. Additionally, we explore the role of carrier animals

as a potential driver for the disease remaining endemic in those areas, as it may be

important whether such animals do indeed act as disease reservoirs.

Chapter 2 outlines a model framework which accounts for most of the specific

complications of endemic FMD, and the verification of this model. This is important

for the following work using this model to compare control policies, increasing the

confidence we can feel in the salience of the results observed.

Chapter 3 uses this model to assess the non-culling control policies which

might be implemented in endemic countries, using a range of different plausible

parameter values. Sensitivity analysis of those policies helps to identify the most

important aspects of their implementation. This work has relevance to deciding

control policy implementations for endemic regions.

Chapter 4 explores the possible persistence drivers leading to those regions

being endemic, comparing possible carrier-animal transmission to the movement of

infected livestock (and contaminated vehicles). The work has relevance to the ongo-

ing debate on the infectiousness of carrier animals, as well as raising the possibility

of the relevance of such animals to control efforts.

Finally, Chapter 5 explores the impact of the identified hypothetical persis-

tence drivers on potential control policies. Carrier transmission may or may not be

an extant phenomenon, but from the perspective of policy it is the impact of this

on control policy choices that is most relevant, and this chapter offers some clarity

on this question.

I believe that this model represents endemic FMD in greater and better detail

than previous models, considering demographics and the specifics of maternally-

derived and waning immunity. Furthermore, the model structure offers an ideal

framework for investigating the effects of carrier transmission, which if it occurs

will be extremely localised. The development of this model and comparison of

vaccination policies will aid in future control efforts in currently endemic areas and

indicate what role if any carrier animals might play in the current maintenance of

the disease.
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Chapter 2
Developing and Fitting a Model of

Endemic FMD to the Republic of

Turkey

2.1 Introduction

There is a mismatch in the FMD modelling world, the areas where the disease is

endemic and modelling is most needed are generally the areas where data are not

easily available and modelling the spread of disease and control policies is there-

fore difficult. Additionally, there are many dynamics of the disease which are not

necessarily relevant in the case of an epidemic of FMD where the stated policy

is elimination of the disease, but are very relevant when the disease is endemic.

These extra dynamics make modelling of the endemic scenario more complicated

than doing so for the epidemic scenario. Finally, most epidemiological modellers are

based in rich countries and are consequently most interested in and are funded for

modelling the spread of disease in their own country.

As a result of these factors, the vast majority of the FMDmodelling literature

focuses on regions of the world that are free of the disease, such as the UK, the USA,

New Zealand and Australia. For example, much modelling work was done after the

2001 outbreaks of FMD in the UK and the Netherlands (Kao 2002; M J Keeling

et al. 2001). Several different modelling groups have developed simulation models

of FMD spread for epidemics in developed nations, such as AusSpread for Australia

(Garner and Beckett 2005), InterSpread Plus for New Zealand (M.A. Stevenson et al.

2013), the North American Disease Spread Model (Harvey et al. 2007), the Keeling
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model in the UK (M J Keeling et al. 2001, 2003), and its adaptation the U.S. Animal

Movement Model (USAMM) and Disease Outbreak Simulation (USDOS) (Michael

J. Tildesley, G. Smith, and Matt J. Keeling 2012; Tsao et al. 2020).

Few spatially explicit and mechanistic modelling efforts have looked at en-

demic regions, despite the vast majority of FMD cases taking places in these re-

gions (Zaheer, Mo D Salman, et al. 2020a). Ringa and Bauch (2014) developed

a pair-approximation SEIRV model for an idealised population of 40,000 farms,

which showed that prophylactic vaccination was more effective than ring vaccina-

tion. However, this model was not based on real-world agricultural data and focused

on only some features of the endemic disease such as waning immunity and disease

re-importation, while ignoring others such as population demography. Kim et al.

(2016) developed a modelling framework to simulate pastoral herds in the endemic

Far North of Cameroon. Schnell (2019) also used a farm-level framework for mod-

elling the possible effect of carrier herds and mobile herds of cattle on the endemicity

of the disease in Cameroon, finding that asymptomatic carriers may be contributing

to disease persistence but not mobile herds.

The Republic of Turkey offers a significant opportunity to probe the dynamics

of endemic FMD. In the present day, FMD has been eliminated from the European

Thrace region of Turkey in the west, but remains present and endemic in Anatolia,

with disease prevalence overall shifting east (Branscum et al. 2008). Efforts to

control the disease are longstanding, between 2008 and 2018 the Turkish government

reduced the prevalence of the disease from 45% to 5% as a result of their control

policies. They aim to achieve OIE status of FMD Free with Vaccination by 2023,

via improved clinical surveillance, improved vaccine effectiveness, and management

of animal movements. This also involves an extra focus on border regions. (Ozturk,

Kocak, and Vosough Ahmadi 2020).

As one of the higher income countries where the disease remains endemic,

high quality data has been collected on the spread of FMD within their borders for

at least 20 years. These data include outbreak records such as dates, locations and

serotypes, as well as agricultural data such as farm locations, and cattle shipments.

These records offer most things needed to be useful for a stochastic spatial model

of disease spread in an endemic context.

We aim to use this high-quality data from an important endemic region to

develop a spatial stochastic model of the spread of the disease, and estimate trans-

mission parameters which take into account the more complicated endemic disease

dynamics. We develop a model which uses the available data to simulate the spread

of FMD within and between farms, as well as population demography, maternal an-
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tibody derived immunity, the movements of infected cattle, and waning immunity.

Following this, we identify which of the relevant parameters are identifiable from the

data available using the ABC-SMC algorithm. Finally, we use this algorithm and

the incidence data from Turkey to estimate values for the identifiable parameters.

This work will provide another estimate for the relevant transmission pa-

rameters of FMD taking into account the endemic disease dynamics, and so will aid

work modelling the disease in this and other regions where the disease is endemic.

2.2 Methods & Materials

2.2.1 Data

The data available from the Republic of Turkey consisted of: Farm outbreak data

covering 2001-2012; cattle shipment data covering 2007-2012; farm location data;

and farm cattle headcount data from 2010. A description of this data has been

published previously in Dawson (2016).

Figure 2.1 shows a summary of the recorded incidence of farm-level FMD

outbreaks over the period that the data covered, although this is likely an under-

estimate of the true incidence given imperfect surveillance and reporting. Daily

incidence was calculated using the recorded confirmation date of an outbreak, al-

though this is likely an underestimate the data were not enough to reliably calculate

prevalence. Three serotypes were present in the data, but the two most prevalent

were serotypes O and A. Serotype Asia-1 was seen in 2001 but did not reappear

until the end of the period in question in 2011. Several major outbreaks are visible

in the data: an outbreak of Asia-1 in 2001; an outbreak of serotype A FMD in 2007

followed by serotype O in 2008; and larger outbreaks of O, then A, and then Asia-1

in 2010 to 2012. The apparent serotype switching is likely due to a combination of

waning serotype-specific immunity (due to no cross-reaction) and the introduction

of strains which had partially escaped the vaccine in use; comparing the number

of recorded outbreaks to the number of farms shows most farms were likely not

infected at all over this period and so should not have had natural immunity. Some

proportion of outbreaks did not have a serotype identified, this proportion appears

to be relatively constant over time. In total 9282 infected farms were recorded over

this period, 2879 being of serotype O, 2651 of serotype A, 905 of serotype Asia-1,

and 2847 for which the serotype was unidentified.

Figure 2.2 shows the spatial spread of these recorded outbreaks, colouring

each province by the number of outbreaks recorded in their borders. There is very

clear heterogeneity in farm-level incidence, with several provinces acting as clusters.
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Figure 2.1: Farm level FMD incidence for the Republic of Turkey, over the period
2001 to 2012, coloured by serotype (Unknown indicating outbreaks where a serotype
was not identified). The period begins with an outbreak of serotype Asia-1 concur-
rent with serotype O. O predominates during the next few years until 2005, when
there is a major outbreak of serotype A, followed by another large wave of serotype
O. There is decline in the number of cases after this, but another large outbreak of
serotype O, then A, then Asia-1 return at the end of the period.
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Figure 2.2: The number of recorded outbreaks by province in the Republic of
Turkey over the period 2001 to 2012. Each province is coloured by the number of out-
breaks associated with it, with darker colours indicating more outbreaks recorded.
The province with the highest number of recorded outbreaks is Erzurum, in black in
the east of the country. The other cluster of high-incidence provinces are clustered
near the centre of the country, closer to Ankara.

Near the eastern edge of Turkey is the province of Erzurum, which is coloured black

because of its much larger number of outbreaks compared to other provinces. In the

centre of the country there is also a belt of provinces with relatively high disease

incidence, including the province of Ankara, Afyon, Kayseri, and Silvas. Finally, on

the northern border with the Black Sea are the provinces of Kastamonu and Samsun,

also exhibiting high-incidence. In contrast, European Thrace has very low incidence

during this period, and is one region of Turkey that is currently acknowledged as

free of the disease. The southern border also demonstrated low incidence.

It is clear looking at Figure 2.3 that a lot of the incidence is concentrated

in areas with many cattle. Two of the highest incidence provinces, Erzurum and

Ankara, are also two of the provinces with the highest cattle population. To a large

extent, the areas with high or low incidence are decided by the areas with high or

low numbers of cattle.

The shipment data was available in relatively precise form, recording the

number of cattle shipped between a source farm and destination farm, and on which

day this occurred. 14,261,447 records of this type, spanning the entirety of Turkey

and covering the years 2007 to 2012, and which contained the date of shipment,
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Figure 2.3: The cattle population of each province of Turkey, according to the data
available. High concentrations of cattle are seen in Ankara province (the centre of
Turkey), Erzurum Province in the East, and Izmir and Balikesir provinces in the
West.

source and destination farms, and the number of animals moved, were graciously

made available by the Turkish Ministry of Agriculture and Forestry. As an example

of the detail of these shipment records, a subset of the records are displayed in Figure

2.5. Figure 2.4 demonstrates the high number of cattle shipments occurring every

month in Turkey, as well as the clear seasonal pattern. In the Republic of Turkey Eid

Al-Adha (Kurban Bayrami, the Festival of Sacrifice) occurs every year celebrating

Abraham’s willingness to sacrifice his son for God by sacrificing a cow or goat. Due

to this there is a spike in movements every year, visible in the data. Incorporating

these records allowed for the seasonality of such shipments to be explicitly modelled.

The median shipment distance for the entirety of Turkey was 28.3 km, and the mean

was 94.7 km due to the smaller number of very long distance shipments.

The data also make clear the local nature of most cattle movements, the

majority of the recorded cattle shipments were between farms in the same district,

with only a minority going further. The vast majority of these shipments moved

only one animal, with a median of 1 and the 99th-percentile shipment size being 30

animals.

These data were made available as separate data-sets, and cross-referencing

these data with each other was not straightforward. As they had been separate
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Figure 2.4: Monthly Cattle Shipments in the Republic of Turkey over the period
2007 to 2012, when data are available. Blue indicates the number of within district
shipments, and red the number between districts. There is a clear seasonal pattern
of shipments peaking every year for the festival Kurban Bayrami. Within-district
shipments make up the clear majority of all cattle shipments recorded.
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Figure 2.5: Individual cattle shipments within Horasan District, Erzurum
Province, on the 1st of June 2012. Each point is a farm, with blue farms indi-
cating source farms and red points destination farms. Purple farms are sources and
destinations. Each line between points represents an individual cattle shipment.
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data-sets, they did not always have a consistent key to allow this cross-referencing,

and there were other inconsistencies. For example, the farm headcount dataset did

not use exactly the same district naming scheme as the recorded outbreak data, so

matching a farm where an outbreak was recorded with a specific farm headcount

was not always straightforward.

A major discrepancy in the data received involved the farm location data.

Of the 54,096 recorded farm locations, only 40,746 ( 75%) had a unique set of co-

ordinates. 15445 farms shared a set of 2095 longitude and latitude coordinates,

the vast majority shared their coordinates with at only one other record, but some

shared them with up to 183 other farms, as shown in Figure 2.6. In many cases

it was clear that farms had been recorded as at the centre of their district as their

actual longitude and latitude were not known, and the duplicate coordinates only

occurred within districts and not between them. The actual distance between farms

sharing longitude and latitude coordinates could be as large as 20 kilometres. Man-

ually checking a random sample of 20 duplicate farm addresses by searching their

addresses in Google Maps demonstrated that the farms did exist. This presented a

problem, duplicate farms ”sitting on top of each other” would lead to falsely high

spread of infection, as transmission would be calculated as if the farms were in the

same place.

Several methods were used to attempt to resolve this. Cross-referencing

the farm cattle headcount data could provide a correct location for only a small

proportion of the duplicated locations, as only 56.2% of the headcount records had a

separate longitude and latitude listed with it. Additionally, geocoding via the Google

Maps Application Programming Interface could convert some of the addresses into a

set of longitude and latitude coordinates. However, only a small number of addresses

returned a useful set of longitude and latitude coordinates in this manner.

Finally, to avoid the problem of overlapping farms without discarding 13,000

farms, unique latitude and longitude coordinates were generated for the remaining

duplicates by adding or subtracting a random number of degrees drawn from the

uniform distribution𝑈 (0.00, 0.05), which corresponds to approximately 0-6 km. The

newly modified coordinate set was then reverse geocoded via Google Maps to check

that the farm had not jumped to a different district than recorded (for example if

it was near a border), and the coordinates accepted if this had not occurred.

Additionally, of the 47802 farm cattle headcounts provided, only 40208 of

those could be matched with the provided farm location data. As the farm location

is useless for our purposes without an associated number of cattle, those which could

not be matched had to be discarded for ongoing work. Moving forward, we simulate
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Figure 2.6: The distribution of the number of farms sharing a single set of longitude
and latitude coordinates. Most farms with a duplicated location shared it with only
one or two other farms, but some shared it with many other farms.
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Figure 2.7: The basic disease compartments which animals in the model can
be in and the progression between them. (M)aternal, (S)usceptible, (E)xposed,
(I)nfectious, and (R)ecovered. 𝑉𝑆 indicates susceptible individuals which were vac-
cinated, and 𝑉𝑅 recovered individuals which were vaccinated. It was assumed that
M, E, and I animals could not be successfully vaccinated. The dashed arrows point-
ing to the vaccinated compartments indicate that movement along this direction
needs vaccination to be implement, which is a model parameter. The movement of
individuals between these compartments is done at different rates, dependent on the
population of each compartments as well as model parameter inputs. These rates
are described in Eq. 2.1 and the parameters in Table 2.1. Note that arrows for
natural birth rates, death rates, and sub-compartments are not included here for
simplicity.

a single province (Erzurum province) with 1108 farms and 253 outbreaks between

2007 to 2012, for an average of 0.228 outbreaks per farm over the 5 year period.

2.2.2 Model Structure

We utilise a stochastic spatial metapopulation model, where each farm is considered

a separate population and the within-farm and between-farm dynamics are mod-

elled interdependently. Figure 2.7 describes the progression of disease states for

each infected animal. At the beginning of the model timeline, it is assumed that

all animals are in the susceptible compartment. Progression between these com-

partments is described by Ordinary Differential Equations (ODEs) outline in (2.1).

Natural immunity is represented by the Recovered compartment, and the waning of
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this immunity by the gradual transition of animals in this compartment back to the

Susceptible compartment at rate _𝑅. The Maternal compartment has 3 subcom-

partments, the Recovered and both Vaccinated compartment have 20, to provide

an non-exponential distribution of time spent in each compartment as discussed in

Chapter 1. The number of subcompartments was chosen to ensure animals would

not immediately begin leaving a compartment as soon as they entered, balanced

against the expected rate of transition through the compartment. Additionally,

due to a lack of age data, there is no age-stratification of the compartments. The

meaning of each term and the values used are described in Table 2.1. Stochastic

simulation of these ODEs was done via the 𝜏-leap approximation (Gillespie 2001).

This offers large advantages in speed for minor sacrifices in accuracy, and also allows

a fixed time increment for synchronising with the between-farm transmission.

𝑑𝑀

𝑑𝑡
= 𝛼𝑁

(𝑅 +𝑉𝑆 +𝑉𝑅)
(𝑁 − 𝑀) − `𝑀 −Ω𝑛𝑀,

𝑑𝑆

𝑑𝑡
= 𝛼𝑁 (1 − (𝑅 +𝑉𝑆 +𝑉𝑅)

(𝑁 − 𝑀) ) + `𝑀 + _𝑅𝑅 + _𝑉𝑅
𝑉𝑅 + _𝑉𝑆𝑉𝑆 −

𝛽𝑆𝐼

𝑁
−Ω𝑛𝑆,

𝑑𝐸

𝑑𝑡
=
𝛽𝑆𝐼

𝑁
− 𝜎𝐸 −Ω𝑛𝐸 −Ω𝑑𝐸,

𝑑𝐼

𝑑𝑡
= 𝜎𝐸 − 𝛾𝐼 −Ω𝑛𝐼 −Ω𝑑 𝐼,

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 − _𝑅𝑅 −Ω𝑛𝑅,

𝑑𝑉𝑅

𝑑𝑡
= −_𝑉𝑅

𝑉𝑅 −Ω𝑛𝑉𝑅

𝑑𝑉𝑆

𝑑𝑡
= −_𝑉𝑆𝑉𝑆 −Ω𝑛𝑉𝑆

(2.1)

The virus is transmitted between farms either by local spread or the ship-

ments of cattle. The probability of spread from an infected farm to a susceptible

farm (defined as a farm where the number of susceptible animals is greater than

or equal to 1) via local spread is calculated by equation 2.2. This depends on the

number of infectious animals on the infecting farm, the number of susceptible an-

imals on the susceptible farm, and the distance between them. Initial scale and

shape parameters were chosen (prior to fitting) matching the dispersal kernel from

Jewell, M. J. Keeling, and Roberts (2009), but the kernel has been used to flexibly

describe the spread of FMD in many different regions such as the UK and Japan

(Jewell, M. J. Keeling, and Roberts 2009; Probert et al. 2018). It has also been

used in the USDOS model of disease spread in the USA, although the lack of FMD

there prevents its validation (Tsao et al. 2020). For the purpose of computational
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speed this is done in a grid, using the algorithm outlined in (Sellman et al. 2018).

If infection is adjudged to happen, the susceptible farm has a number of susceptible

animals proceed to the exposed/latent stage, drawn from a binomial distribution.

𝑃(𝑙𝑠) = 1 − 𝑒−𝑇𝑁
𝑖𝑛 𝑓

𝑖
𝑆𝑁 𝑠𝑢𝑠

𝑗
𝐾 (𝑑𝑖 𝑗 ) ,

𝐾 (𝑑𝑖 𝑗) =
1

1 + ( 𝑑
𝑠𝑐𝑎𝑙𝑒

)𝑠ℎ𝑎𝑝𝑒
.

(2.2)

Livestock shipments are simulated on a daily basis and replay the animal

movement records provided by the Republic of Turkey. This involves moving the

number of cattle recorded between the recorded farms, on the day this occurred.

Doing this allows the seasonality of those shipments to be accurately captured,

but limits the period which can be modelled to 2007-2012, excluding 2001-2007.

Shipments are modelled as a random sample without replacement from the animals

at the source farm, hence the probability of selecting at least one infected animal is

proportional to the shipment size and number of infected animals on the farm.

Vaccination occurs in the model only in response to a control policy op-

tion, either ring vaccination or mass vaccination. Farms are identified as requiring

vaccination with probability equal to the input vaccine coverage, and for ring vac-

cination an additional requirement of being within a specified radius of a known

infected farm. These farms are added to a queue and farms then vaccinated up to a

daily vaccination capacity. For ring vaccination this queue is ordered such that the

outer farms of the ring are queued first, an ’outside-in’ strategy; there is no ordering

for mass vaccination as all farms are targeted for vaccination. Should vaccination be

scheduled for a simulated farm, vaccination leads to both susceptible and recovered

individuals proceeding to their respective vaccinated compartments, in proportion

to the efficacy of the vaccine. Maternally immune (M) are assumed not to be vac-

cinated, and currently infected animals (compartments E and I) are added to the

count of vaccines used but do not proceed to the vaccinated compartment due to

their current active infection. The realised vaccine efficacy fluctuates on each farm,

being drawn from a normal distribution characterised by the provided mean and

standard deviation of the vaccine efficacy. Compartment 𝑉𝑆 wanes at rate _𝑉𝑆 , and

compartment 𝑉𝑅 at the longer duration of either _𝑅 or _𝑉𝑅
. This is to prevent the

situation where naturally immune animals are simulated as having their immunity

duration cut short by vaccination because the duration of vaccine-induced immunity

is shorter.

The available control policies are ring vaccination, movement controls, and
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mass vaccination. Both ring vaccination and movement controls are reactive, in re-

sponse to a detected farm infection, and occur within a radius of the infected farm.

Ring vaccination occurs ’outside-in’, reactively vaccinating the farms furthest away

but within the radius and working its way in towards the infected farm. Movement

controls are implemented in a similar way to ring vaccination, with relevant farms

identified within a radius of a known infected farm and marked as under a move-

ment ban with probability equal to the input movement ban compliance. Movement

ban simply prevents shipments of cattle both arriving or leaving these farms, mech-

anistically preventing the replay of a shipment record that would otherwise have

occurred. Mass vaccination occurs on a defined interval, and vaccinates all of the

farms in the region whenever that interval has been reached. All three of these poli-

cies can be toggled on or off, and their parameters can be changed. All three of the

control policies are implemented in Turkey, and the specifics of their implementation

is discussed in the Existing Control Policies subsection shortly.

Code for the model is available at https://github.com/gguyver/fmd-model-

thesis.

2.2.3 ABC-SMC Algorithm

Model fitting was done using the ABC-SMC algorithm as described in (Toni et al.

2009), and later described in Minter and Retkute 2019. ABC-SMC is useful as

it does not require knowing the likelihood function of the model as MCMC does,

and is simpler to set up. Generally speaking, Sequential Monte Carlo Approximate

Bayesian Computation (SMC ABC) involves sequential generations of ABC, where a

distance metric 𝜌(·, ·) is defined which measures how different simulated data is from

the observed data. A proposed particle (set of parameters drawn from a distribution)

is accepted if 𝜌(·, ·) < 𝜖 , where 𝜖 is the tolerance for matching the observed data.

The first generation samples and perturbs from the prior distribution 𝜋(\), however
later generations sample and perturb from the previously accepted particles, and 𝜖𝑡

is generated from these particle distances as well. In this manner, each generation

therefore samples from an approximate posterior 𝜋(\ |𝜌(𝑦, ·) < 𝜖), and as 𝜖 → 0 the

approximate posterior will tend to the true posterior at a greater computational

cost. However, instead of setting the tolerance schedule at the beginning, I set the

initial tolerance to ∞ and calculated the tolerance for following generations by using

the bisection method outlined in the supplementary material of T. J. McKinley et al.

2018, with minimum, maximum, and mean quantiles of 45%, 55%, and 50%. This

aids in the problem of setting the tolerance 𝜖 too low or too high, as this value is

now based on the observed errors. The distance metric was the least squares of the
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simulated incidence against the ”true” or observed incidence, with incidence taken

as the count of newly recorded infected farms on each day. Algorithm 3 outlines the

SMC ABC algorithm.

Algorithm 3 SMC ABC algorithm

1: Set the number of generations 𝑇 , the number of particles 𝑛𝑝𝑎𝑟𝑡 , and the target
acceptance rate 𝑝𝑡 .

2: Set 𝜖𝑡 =

{
∞ if 𝑡 = 1

𝐵(𝑝𝑡 ) if 𝑡 > 1
where 𝐵(𝑝𝑡 ) refers to McKinley et al ’s bisection

method for choosing tolerances at each generation (T. J. McKinley et al. 2018).
3: Set particle indicator 𝑗 = 1
4: If 𝑡 = 1, sample \

′′
independently from 𝜋(\). If 𝑡 > 1, sample \

′
from the previous

population {\𝑡−1} with weights {𝑊𝑡−1}, and perturb the particle to \
′′ ∼ 𝑄𝑡 (·|\

′)
according to a Markov transition kernel 𝑄𝑡 (·).

5: If 𝜋(\′′) = 0, return to 4.
6: Generate 𝑛 data sets 𝑧

′′
𝑖
∼ 𝜋(·|\′′), and calculate 𝜋(𝒚 |𝑧′′) = (1/𝑛)∑𝑛

𝑖=1 𝟙(𝜌(𝒚, 𝑧
′′) <

𝜖𝑡 ).
7: If 𝜋(𝑦 |𝑧′′) = 0, then return to 4.

8: Set \
( 𝑗)
𝑡 = \

′′
and 𝑊

( 𝑗)
𝑡 =


𝜋(𝒚 |𝑧′′) if 𝑡 = 1

𝜋 (𝒚 |𝑧′′ ) 𝜋 (\ ( 𝑗)𝑡 )∑𝑛𝑝𝑎𝑟𝑡

𝑗=1 𝑊
𝑗

𝑡−1𝑄𝑡 (\ ( 𝑗)𝑡 |\ ( 𝑗)
𝑡−1)

if 𝑡 > 1

9: If 𝑗 < 𝑛𝑝𝑎𝑟𝑡 , increment 𝑗 = 𝑗 + 1 and go to step 4.

10: Normalise the weights so that
∑𝑛𝑝𝑎𝑟𝑡

𝑗=1 𝑊
( 𝑗)
𝑡 = 1.

11: If 𝑡 < 𝑇 , increment 𝑡 = 𝑡 + 1 and go to step 2.

2.2.4 Identifiability Analysis

Identifiability analysis was performed to ascertain which parameters were recover-

able from the data using algorithm 3, and which were not. For each set of parameters

recovery was attempted for, prior distributions were generated and values drawn

from these distributions, the set of these values being called a particle. This was

done 5 times, generating 5 particles, to account for heterogeneity in identifiability

at different areas of the prior distributions.

For each of the sampled particles a single simulation was run and the results

taken as an ”observed” outbreak. The ABC-SMC algorithm was then run for each

of these particles until it either converged on a set of values or it became infeasible

to proceed because it was not converging. This was done with 500 particles per

generation (𝑛𝑝𝑎𝑟𝑡 = 500). 𝑄𝑡 (·) was a weighted multivariate normal distribution

using weights 𝑊𝑡−1, and the distance metric was the least squares of the simulated

incidence compared to the ”true” incidence. The distance metric was calculated on
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this time-series, it was not required that the specific farms recorded as infected also

be the ones infected in the simulation. The intention was to match a general state of

endemic FMD rather than the exact farms infected. The aim of this was to recover

the original sampled parameter value for as many of the parameters as possible, and

to find as large a set of parameters as possible that were identifiable in this manner.

Due to the limitations of the model and the computational resources avail-

able, only Erzurum Province of Turkey was simulated. This is the darkest province

in Figure 2.2, as it is the province where the most outbreaks (496) were recorded

in the 11-year period. The province covers 25066 km2, contains 1108 farms, which

themselves contain a total of 605,177 cattle. This was done because the computa-

tional complexity of the simulations scales exponentially with the number of farms

being simulated, and larger areas therefore take much longer to model in the frame-

work that has been adopted here.

Table 2.2: The prior distributions used to generate ”true” values for parameter
identifiability analysis.

Parameter Parameter Description Distribution

𝛽 Acutely infectious transmission 𝑈 (0.135, 1.8)
_ Average duration of recovered state 𝑈 (150, 550)
T Inter-farm per capita transmission 𝑁 (6.8𝑒 − 6, 6.8𝑒 − 6)
scale Kernel scale parameter 𝑁 (1.0, 0.75)
shape Kernel shape parameter 𝑁 (2.0, 0.75)

This was first done for the parameters within-farm transmission 𝛽, the du-

ration of immunity _, the between-farm per-capita transmission parameter T, and

the kernel scale and kernel shape parameters, this set of parameters is labelled ID1.

Subsequent to the results of this, another attempt was made dropping the kernel

shape parameters (labelled ID2), and then another attempt was made also dropping

the kernel scale parameter (labelled ID3) to try and find the optimal combination of

parameters that were identifiable. The prior distributions that were sampled from

are described in Table 2.2. A summary of the parameters used for these attempts

are laid out in Table 2.3, and the values used for the other fixed parameters are

shown in Table 2.1.

Finally, each possible 2-parameter or 3-parameter combination of the pa-

rameters 𝛽, 𝑇 , 𝑠𝑐𝑎𝑙𝑒, and 𝑠ℎ𝑎𝑝𝑒 were assessed in turn using the same procedure as

described previously. _ was no longer assessed due to the results of the previous

attempts, and reverted to the value described in Table 2.1. The specific parameter

combinations are shown in Table 2.3.
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Table 2.3: The parameter sets used for the attempts to assess parameter identifi-
ability. Each one has a set label which identifies it for ease of analysis.

Set Label Parameter Set

ID1 {𝛽, _, 𝑇, 𝑠𝑐𝑎𝑙𝑒, 𝑠ℎ𝑎𝑝𝑒}
ID2 {𝛽, _, 𝑇, 𝑠𝑐𝑎𝑙𝑒}
ID3 {𝛽, _, 𝑇}
ID4-2-1 {𝛽, 𝑇}
ID4-2-2 {𝛽, 𝑠𝑐𝑎𝑙𝑒}
ID4-2-3 {𝛽, 𝑠ℎ𝑎𝑝𝑒}
ID4-2-4 {𝑠𝑐𝑎𝑙𝑒, 𝑇}
ID4-2-5 {𝑠ℎ𝑎𝑝𝑒, 𝑇}
ID4-2-6 {𝑠𝑐𝑎𝑙𝑒, 𝑠ℎ𝑎𝑝𝑒}
ID4-3-1 {𝛽, 𝑠𝑐𝑎𝑙𝑒, 𝑇}
ID4-3-2 {𝛽, 𝑠𝑐𝑎𝑙𝑒, 𝑠ℎ𝑎𝑝𝑒}
ID4-3-3 {𝑠𝑐𝑎𝑙𝑒, 𝑠ℎ𝑎𝑝𝑒, 𝑇}
ID4-3-4 {𝛽, 𝑠ℎ𝑎𝑝𝑒, 𝑇}

2.2.5 Parameter Estimation

Parameter estimation was carried out using algorithm 3 and the parameters 𝑇 ,

𝑠𝑐𝑎𝑙𝑒, and 𝑠ℎ𝑎𝑝𝑒. As before, 500 particles were used per generation and the prior

distributions described in Table 2.2. Least squares of the incidence and the sum

difference of the incidence were both used as the summary statistics.

For each ABC-SMC particle the model was simulated once and compared to

the outbreak incidence data for Erzurum Province over the 5-year period 2007-2012.

Due to the period under analysis being endemic for the disease, but lacking in data

which might allow the model to begin with built-up immunity in the population

already, the model was given a burn-in period of 365 days to allow the initial seeded

infection to cause an outbreak and settle towards endemicity before comparing to

the already endemic real-world data. This burn-in period data was discarded and

not used for comparison or analysis. Subsequent to the burn-in period, the model

was simulated for a 5-year period using the Erzurum farm location and headcount

data as well as the relevant shipment data, and compared to the realised incidence

according to the ABC-SMC algorithm.

2.2.6 Existing Control Policies

As there were control policies for FMD in place during this period, the fit attempt

also needed to include control policies and surveillance. During this period surveil-

lance for FMD in Turkey was almost entirely passive surveillance, relying on farmer
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reporting (unpublished communication). An attempt to fit the parameters without

including the extant control policies would return a parameter estimate which as-

sumed the effect of the control policies to be the effect of the underlying parameters

of the disease and would therefore be a dramatic underestimate of disease transmis-

sibility. Vaccine efficacy was drawn from a normal distribution with mean 65 and

standard deviation of 5 as the vaccine in use at the time was known to be approx-

imately this effective (T. Knight-Jones et al. 2014). Mass vaccination was also in

place during this period, occurring every 6 months (182 days), as were reactive ring

vaccination and reactive movement bans within 10 km of a known infected farm.

After discussion of the control policies implemented in Turkey during this period,

these were assumed to occur in a 10 km radius with 90% coverage, and for the move-

ment bans to last 7 days. Detection was assumed to catch 95% of infected farms.

An average delay of 3 days between infection and detection was assumed, which

was the average delay in the assumed start dates to confirmation dates for those

outbreaks where this was provided. However, there are no data for vaccination or

reporting coverage.

2.3 Results

2.3.1 Identifiability Analysis

Using the parameter set outlined in Table 2.3 for ID1 for identifiability analysis,

the most identifiable parameter analysed was transmission 𝑇 , which was recovered

3 out 5 times. Recovery of a parameter was decided based on whether the highest

peak of the posterior distribution was close to the ”true” value, and whether the

posterior probability distribution was significantly different to the prior distribution.

The final density plots of each parameter are shown in Figure 2.8. In this figure

parameter recovery is taken as when the peak (assuming there is one) of the density

plot is at, or close to, the ”true” value indicated by the vertical black lines.

The other parameters analysed were either recovered once out of the 5 at-

tempts, in the case of 𝛽, 𝑠𝑐𝑎𝑙𝑒, and 𝑠ℎ𝑎𝑝𝑒, or not recovered at all in the case of _.

It was considered that perhaps there were too many parameters and the parameter

space was too large.

Subsequent to this attempt, which of the parameters of the set identified by

the label ID2 were attempted, shown in Figure 2.17. Performance improved with

this attempt, as 𝛽 was recovered 3 out of 5 times, and 𝑠𝑐𝑎𝑙𝑒 2 out of 5 times. How-

ever, 𝑇 was only recovered 2 out of 5 times, a reduction from the 3 seen previously.

Additionally, _ was again not recovered, with the final distribution being similar to
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Figure 2.8: The density distributions of the parameter set {𝛽, _, 𝑇, 𝑠𝑐𝑎𝑙𝑒, 𝑠ℎ𝑎𝑝𝑒}
(ID1) after 6 generations of ABC-SMC. Each column is a different parameter,
with colour-coded density plots. Each row corresponds to a different ”true” value
sampled from the prior distribution and recovery attempted via ABC-SMC. The
black dotted line on each plot indicates the prior distribution for that parameter,
and the vertical solid black line indicates the ”true” sampled value for that particular
parameter and fit. On the right-hand axis, the number indicate how many events
were seen in that ”true” outbreak, calculated as the total incidence of infection over
the simulation. Higher totals indicate more information to fit to. Attempts where
a parameter was considered recovered are surrounded by a dotted red box. With
this set of parameters, 𝛽 was recovered 1 out of 5 times, _ was not recovered, 𝑠𝑐𝑎𝑙𝑒
was recovered 1 out of 5 times, 𝑠ℎ𝑎𝑝𝑒 was recovered 1 out of 5 times, and 𝑇 was
recovered 3 out of 5 times.
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the prior uniform distribution in all five attempts.

The final parameter distributions of ID3 are shown in Figure 2.10. This

shows an improvement in the identifiability of 𝛽, with 4 out of 5 attempts succeeding

and showing tighter distributions where recovery occurred. 𝑇 improved back to being

recovered 3 out of the 5 attempts. However, _ once again failed to be recovered,

with posterior distributions similar to the prior.

As _ had failed to be identified on 3 separate occasions, this parameter was

dropped from subsequent attempts and reverted to the value established in Table

2.1.

Figures 2.11, 2.12, 2.13, 2.14, 2.15, and 2.16 show the results of the 2-

parameter combinations of 𝛽, 𝑇 , 𝑠𝑐𝑎𝑙𝑒, and 𝑠ℎ𝑎𝑝𝑒 identified in Table 2.3.

For parameter set ID4-2-1 (fig. 2.11), which looked at 𝛽 and 𝑇 , performance

was poor. 𝛽 was recovered three times, and 𝑇 only recovered twice. Similar perfor-

mance was observed for set ID4-2-2 (fig. 2.12), where 𝛽 was also only recovered

once, and 𝑠𝑐𝑎𝑙𝑒 was recovered 2 out of 5 times.

Parameter set ID4-2-3 (fig. 2.13) assess 𝛽 and 𝑠ℎ𝑎𝑝𝑒 together, seeing poor

performance also. 𝛽 was recovered 3 out of 5 times, and 𝑠ℎ𝑎𝑝𝑒 3 out of 5.

For parameter set ID4-2-4 (fig. 2.14), both 𝑠𝑐𝑎𝑙𝑒 and 𝑇 were recovered

4 out of 5 times. This parameter set performed the best out of the 2-parameter

combinations assessed.

Worst performing was parameter set ID4-2-5 (fig. 2.15), where 𝑠ℎ𝑎𝑝𝑒 and

𝑇 were both only recovered once out of 5 attempts. Finally, parameter set ID4-2-6

(fig. 2.16), showed 𝑠𝑐𝑎𝑙𝑒 recovered once and 𝑠ℎ𝑎𝑝𝑒 recovered twice out of the 5

attempts with that set of parameters.

For the 3-parameter sets described in Table 2.3, set ID4-3-1 (fig. 2.17)

exhibited poor performance. Of the 5 fitting attempts, 𝛽 was recovered 3 times,

𝑠𝑐𝑎𝑙𝑒 once, and 𝑇 twice.

The worst performance was seen with the set ID4-3-2 (fig. 2.18), where 𝛽,

𝑠𝑐𝑎𝑙𝑒, and 𝑠ℎ𝑎𝑝𝑒 were all recovered once out of the 5 attempts.

Much better performance was seen with set ID4-3-3 (fig. 2.19). This as-

sessed 𝑠𝑐𝑎𝑙𝑒, 𝑠ℎ𝑎𝑝𝑒, and 𝑇 together, and the least identifiable parameter with this

set of parameters was 𝑠ℎ𝑎𝑝𝑒, which was only recovered 3 out of the 5 attempts.

Although no parameter was recovered every time, both 𝑠𝑐𝑎𝑙𝑒 and 𝑇 were recovered

4 out of the 5 attempts.

Finally, set ID4-3-4 (fig. 2.20) demonstrated decent performance, with 𝛽,

𝑠ℎ𝑎𝑝𝑒, and 𝑇 all being recovered on 3 out of the 5 attempts.
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Figure 2.9: The density distributions of the parameter set {𝛽, _, 𝑇, 𝑠𝑐𝑎𝑙𝑒} (ID2)
after 7 generations of ABC-SMC. Each column is a different parameter, with colour-
coded density plots. Each row corresponds to a different ”true” value sampled from
the prior distribution and recovery attempted via ABC-SMC. The black dotted line
on each plot indicates the prior distribution for that parameter, and the vertical
solid black line indicates the ”true” sampled value for that particular parameter
and fit. On the right-hand axis, the number indicate how many events were seen in
that ”true” outbreak, calculated as the total incidence of infection over the simula-
tion. Higher totals indicate more information to fit to.Attempts where a parameter
was considered recovered are surrounded by a dotted red box. With this set of pa-
rameters, 𝛽 was recovered 3 out of 5 times, _ was not recovered, 𝑠𝑐𝑎𝑙𝑒 was recovered
2 out of 5 times, and 𝑇 was recovered 2 out of 5 times.
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The parameter set that demonstrated the greatest identifiability with the

greatest number of parameters was parameter set ID4-3-3, which assessed dispersal

kernel 𝑠𝑐𝑎𝑙𝑒, 𝑠ℎ𝑎𝑝𝑒, and 𝑇 together. It was this set of parameters that were used

for the parameter estimation using the real data.

For the 3-parameter sets described in Table 2.3, set ID4-3-1 (fig. 2.17)

exhibited poor performance. Of the 5 fitting attempts, 𝛽 was recovered 3 times,

𝑠𝑐𝑎𝑙𝑒 once, and 𝑇 twice.

The worst performance was seen with the set ID4-3-2 (fig. 2.18), where 𝛽,

𝑠𝑐𝑎𝑙𝑒, and 𝑠ℎ𝑎𝑝𝑒 were all recovered once out of the 5 attempts.

Much better performance was seen with set ID4-3-3 (fig. 2.19). This as-

sessed 𝑠𝑐𝑎𝑙𝑒, 𝑠ℎ𝑎𝑝𝑒, and 𝑇 together, and the least identifiable parameter with this

set of parameters was 𝑠ℎ𝑎𝑝𝑒, which was only recovered 3 out of the 5 attempts.

Although no parameter was recovered every time, both 𝑠𝑐𝑎𝑙𝑒 and 𝑇 were recovered

4 out of the 5 attempts.

Finally, set ID4-3-4 (fig. 2.20) demonstrated decent performance, with 𝛽,

𝑠ℎ𝑎𝑝𝑒, and 𝑇 all being recovered on 3 out of the 5 attempts.

The parameter set that demonstrated the greatest identifiability with the

greatest number of parameters was parameter set ID4-3-3, which assessed kernel

𝑠𝑐𝑎𝑙𝑒, 𝑠ℎ𝑎𝑝𝑒, and 𝑇 together. It was this set of parameters that were used for the

parameter estimation using the real data.

2.3.2 Parameter Estimates

Using the ABC-SMC algorithm with the identified parameters, the most likely pa-

rameter values were 𝑠𝑐𝑎𝑙𝑒 = 1.23, 𝑠ℎ𝑎𝑝𝑒 = 2.09, and 𝑇 = 4.98𝑒 − 6 to 4.98e-6.

Weighted density distributions of these parameters are shown in Figure 2.21, demon-

strating relatively tight and sharp peaks around these values.

Figures 2.22 and 2.23 compare the incidence of FMD in the simulations

against the real recorded incidence in the province of Erzurum. Plots of both normal

and cumulative incidence are provided for clarity. The real observed incidence is

very sporadic and does not exceed 5 new farm-level infections in one day until almost

4 years in to the 5 year period under investigation. There are a total of only 253

infections recorded over this entire period. Most of the simulations are reasonably

fit to the observed incidence until approximately 2011, when there is an increase in

the observed incidence that the simulations are much less likely to follow.
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Figure 2.10: The density distributions of the parameter set {𝛽, _, 𝑇} (ID3) after 7
generations of ABC-SMC. Each column is a different parameter, with colour-coded
density plots. Each row corresponds to a different ”true” value sampled from the
prior distribution and recovery attempted via ABC-SMC. The black dotted line on
each plot indicates the prior distribution for that parameter, and the vertical solid
black line indicates the ”true” sampled value for that particular parameter and fit.
On the right-hand axis, the number indicate how many events were seen in that
”true” outbreak, calculated as the total incidence of infection over the simulation.
Higher totals indicate more information to fit to. Attempts where a parameter
was considered recovered are surrounded by a dotted red box. With this set of
parameters, 𝛽 was recovered 4 out of 5 times, _ was not recovered, and 𝑇 was
recovered 3 out of 5 times.
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Figure 2.11: The density distributions of the parameters 𝛽 and 𝑇 (ID4-2-1) after 6
generations of ABC-SMC. Each column is a different parameter, with colour-coded
density plots. Each row corresponds to a different ”true” value sampled from the
prior distribution and recovery attempted via ABC-SMC. The black dotted line on
each plot indicates the prior distribution for that parameter, and the vertical solid
black line indicates the ”true” sampled value for that particular parameter and fit.
On the right-hand axis, the number indicate how many events were seen in that
”true” outbreak, calculated as the total incidence of infection over the simulation.
Higher totals indicate more information to fit to. Attempts where a parameter
was considered recovered are surrounded by a dotted red box. With this set of
parameters, 𝛽 was recovered 3 out of 5 times, and 𝑇 was recovered 2 out of 5 times.
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Figure 2.12: The density distributions of the parameters 𝛽 and 𝑠𝑐𝑎𝑙𝑒 (ID4-2-2)
after 6 generations of ABC-SMC. Each column is a different parameter, with colour-
coded density plots. Each row corresponds to a different ”true” value sampled from
the prior distribution and recovery attempted via ABC-SMC. The black dotted line
on each plot indicates the prior distribution for that parameter, and the vertical solid
black line indicates the ”true” sampled value for that particular parameter and fit.
On the right-hand axis, the number indicate how many events were seen in that
”true” outbreak, calculated as the total incidence of infection over the simulation.
Higher totals indicate more information to fit to. Attempts where a parameter
was considered recovered are surrounded by a dotted red box. With this set of
parameters, 𝛽 was recovered 1 out of 5 times, and 𝑠𝑐𝑎𝑙𝑒 was recovered 2 out of 5
times.
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Figure 2.13: The density distributions of the parameters 𝛽 and 𝑠ℎ𝑎𝑝𝑒 (ID4-2-3)
after 6 generations of ABC-SMC. Each column is a different parameter, with colour-
coded density plots. Each row corresponds to a different ”true” value sampled from
the prior distribution and recovery attempted via ABC-SMC. The black dotted line
on each plot indicates the prior distribution for that parameter, and the vertical solid
black line indicates the ”true” sampled value for that particular parameter and fit.
On the right-hand axis, the number indicate how many events were seen in that
”true” outbreak, calculated as the total incidence of infection over the simulation.
Higher totals indicate more information to fit to. Attempts where a parameter
was considered recovered are surrounded by a dotted red box. With this set of
parameters, 𝛽 was recovered 3 out of 5 times, and 𝑠ℎ𝑎𝑝𝑒 was recovered 3 out of 5
times.
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Figure 2.14: The density distributions of the parameters 𝑠𝑐𝑎𝑙𝑒 and 𝑇 (ID4-2-4)
after 6 generations of ABC-SMC. Each column is a different parameter, with colour-
coded density plots. Each row corresponds to a different ”true” value sampled from
the prior distribution and recovery attempted via ABC-SMC. The black dotted line
on each plot indicates the prior distribution for that parameter, and the vertical solid
black line indicates the ”true” sampled value for that particular parameter and fit.
On the right-hand axis, the number indicate how many events were seen in that
”true” outbreak, calculated as the total incidence of infection over the simulation.
Higher totals indicate more information to fit to. Attempts where a parameter
was considered recovered are surrounded by a dotted red box. With this set of
parameters, 𝑠𝑐𝑎𝑙𝑒 was recovered 4 out of 5 times, and 𝑇 was recovered 4 out of 5
times.
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Figure 2.15: The density distributions of the parameters 𝑠ℎ𝑎𝑝𝑒 and 𝑇 (ID4-2-5)
after 6 generations of ABC-SMC. Each column is a different parameter, with colour-
coded density plots. Each row corresponds to a different ”true” value sampled from
the prior distribution and recovery attempted via ABC-SMC. The black dotted line
on each plot indicates the prior distribution for that parameter, and the vertical solid
black line indicates the ”true” sampled value for that particular parameter and fit.
On the right-hand axis, the number indicate how many events were seen in that
”true” outbreak, calculated as the total incidence of infection over the simulation.
Higher totals indicate more information to fit to. Attempts where a parameter
was considered recovered are surrounded by a dotted red box. With this set of
parameters, 𝑠ℎ𝑎𝑝𝑒 was recovered 1 out of 5 times, and 𝑇 was recovered 1 out of 5
times.
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Figure 2.16: The density distributions of the parameters 𝑠𝑐𝑎𝑙𝑒 and 𝑠ℎ𝑎𝑝𝑒 (ID4-
2-6) after 6 generations of ABC-SMC. Each column is a different parameter, with
colour-coded density plots. Each row corresponds to a different ”true” value sampled
from the prior distribution and recovery attempted via ABC-SMC. The black dotted
line on each plot indicates the prior distribution for that parameter, and the vertical
solid black line indicates the ”true” sampled value for that particular parameter and
fit. On the right-hand axis, the number indicate how many events were seen in that
”true” outbreak, calculated as the total incidence of infection over the simulation.
Higher totals indicate more information to fit to. Attempts where a parameter
was considered recovered are surrounded by a dotted red box. With this set of
parameters, 𝑠𝑐𝑎𝑙𝑒 was recovered 1 out of 5 times, and 𝑠ℎ𝑎𝑝𝑒 was recovered 2 out of
5 times.
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Figure 2.17: The density distributions of the parameters 𝛽, 𝑠𝑐𝑎𝑙𝑒, and 𝑇 (ID4-
3-1), after 6 generations of ABC-SMC. Each column is a different parameter, with
colour-coded density plots. Each row corresponds to a different ”true” value sampled
from the prior distribution and recovery attempted via ABC-SMC. The black dotted
line on each plot indicates the prior distribution for that parameter, and the vertical
solid black line indicates the ”true” sampled value for that particular parameter and
fit. On the right-hand axis, the number indicate how many events were seen in that
”true” outbreak, calculated as the total incidence of infection over the simulation.
Higher totals indicate more information to fit to. Attempts where a parameter
was considered recovered are surrounded by a dotted red box. With this set of
parameters, 𝛽 was recovered 3 out of 5 times, 𝑠𝑐𝑎𝑙𝑒 was recovered 1 out of 5 times,
and 𝑇 was recovered 2 out of 5 times.
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Figure 2.18: The density distributions of the parameters 𝛽, 𝑠𝑐𝑎𝑙𝑒, and 𝑠ℎ𝑎𝑝𝑒

(ID4-3-2) after 6 generations of ABC-SMC. Each column is a different parameter,
with colour-coded density plots. Each row corresponds to a different ”true” value
sampled from the prior distribution and recovery attempted via ABC-SMC. The
black dotted line on each plot indicates the prior distribution for that parameter,
and the vertical solid black line indicates the ”true” sampled value for that particular
parameter and fit. On the right-hand axis, the number indicate how many events
were seen in that ”true” outbreak, calculated as the total incidence of infection over
the simulation. Higher totals indicate more information to fit to. Attempts where a
parameter was considered recovered are surrounded by a dotted red box. With this
set of parameters, 𝛽 was recovered 1 out of 5 times, 𝑠𝑐𝑎𝑙𝑒 was recovered 1 out of 5
times, and 𝑠ℎ𝑎𝑝𝑒 was recovered 1 out of 5 times.
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Figure 2.19: The density distributions of the parameters 𝑠𝑐𝑎𝑙𝑒, 𝑠ℎ𝑎𝑝𝑒, and 𝑇

(ID4-3-3) after 6 generations of ABC-SMC. Each column is a different parameter,
with colour-coded density plots. Each row corresponds to a different ”true” value
sampled from the prior distribution and recovery attempted via ABC-SMC. The
black dotted line on each plot indicates the prior distribution for that parameter,
and the vertical solid black line indicates the ”true” sampled value for that particular
parameter and fit. On the right-hand axis, the number indicate how many events
were seen in that ”true” outbreak, calculated as the total incidence of infection over
the simulation. Higher totals indicate more information to fit to. Attempts where a
parameter was considered recovered are surrounded by a dotted red box. With this
set of parameters, 𝑠𝑐𝑎𝑙𝑒 was recovered 4 out of 5 times, 𝑠ℎ𝑎𝑝𝑒 was recovered 3 out
of 5 times, and 𝑇 was recovered 4 out of 5 times.
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Figure 2.20: The density distributions of the parameters 𝛽, 𝑠ℎ𝑎𝑝𝑒, and 𝑇 (ID4-
3-4) after 6 generations of ABC-SMC. Each column is a different parameter, with
colour-coded density plots. Each row corresponds to a different ”true” value sampled
from the prior distribution and recovery attempted via ABC-SMC. The black dotted
line on each plot indicates the prior distribution for that parameter, and the vertical
solid black line indicates the ”true” sampled value for that particular parameter and
fit. On the right-hand axis, the number indicate how many events were seen in that
”true” outbreak, calculated as the total incidence of infection over the simulation.
Higher totals indicate more information to fit to. Attempts where a parameter
was considered recovered are surrounded by a dotted red box. With this set of
parameters, 𝛽 was recovered 3 out of 5 times, 𝑠ℎ𝑎𝑝𝑒 was recovered 3 out of 5 times,
and 𝑇 was recovered 3 out of 5 times.
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Figure 2.21: The weighted density distributions of the parameters 𝑠𝑐𝑎𝑙𝑒, 𝑠ℎ𝑎𝑝𝑒,
and 𝑇 after 6 generations of ABC-SMC with 500 particles per generation. Each
parameter demonstrates a clearly defined peak, for 𝑠𝑐𝑎𝑙𝑒 this peak corresponds to
a value of 1.23, for 𝑠ℎ𝑎𝑝𝑒 to 2.09, and for 𝑇 to 4.98e-6. Each coloured line indicates
this peak for its generation.
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Figure 2.22: Incidence over time for the province of Erzurum. The real data is in
red, and the simulated data of the final generation of fitting is in black. Dark black
indicates incidence values that are common for the simulations, lighter grey areas
uncommon values.
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Figure 2.23: Cumulative incidence over time for the province of Erzurum. The
red line indicates the real data from this province over this time period, light grey
lines indicate the results of one simulation of the final generation. Most simulations
are similar to the real data for the period 2007 to 2011, but fewer also match the
rise in incidence at the tail end of this period in 2012.
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2.4 Discussion

This work has developed a model to describe the dynamics of FMD spread in the

endemic region of Turkey, and used this model and the available data to fit a disper-

sal kernel and transmission parameters. Not all of the parameters that might have

been desirable to identify from the data were in fact identifiable, and so I undertook

work to establish which combination of parameters was both large enough to be

worth while and identifiable from incidence data.

The results indicated that the parameters 𝑠𝑐𝑎𝑙𝑒, 𝑠ℎ𝑎𝑝𝑒, and 𝑇 best fit this

combination of desiderata. The parameter _ was eliminated from consideration as

it did not appear to be identifiable from the data. Additionally the parameter 𝛽

was eliminated from the final combination of parameters; though it was identifi-

able in combination with some parameters, it was not identifiable well enough or

consistently enough to be included.

This accords with my intuitions. All of the parameters that were considered

identifiable are part of the dispersal kernel, whereas the two originally included

parameters were both within-farm parameters. The kernel has a large effect on how

well the disease spreads from farm to farm, and farm-level incidence is the data

being fit to, whereas 𝛽 and _ both mainly affect the within-farm dynamics and so

the effect of varying them would lead to only minor variations in farm-level incidence

which would be difficult to detect.

After deciding on a parameter combination that was relevant and identifiable,

I followed up with an attempt to fit to the farm-level incidence data of Erzurum

province, which returned estimates of 𝑇 = 4.98𝑒 − 6, 𝑠ℎ𝑎𝑝𝑒 = 2.09, and 𝑠𝑐𝑎𝑙𝑒 =

1.23 for the three parameters. The transmission (𝑇) parameter was similar to the

estimates from the literature I had sourced my prior distribution from (Table 2.1),

which were from the 2001 UK FMD epidemic (ranging from 5.4e-6 to 1.3e-5), and

it was useful for the kernel to be validated on data from an endemic region. The

lower value of transmission was expected as the shipment transmission route has

been separated out from the kernel.

Viewing Figure 2.22 demonstrates the reasonably close fit to the observed

incidence data, as well as making it clearer the difficulty in fitting a model to such

sporadic data. It was sometimes a challenge to find parameter values which did not

either lead to too many infections or lead to infections dying out completely. Figure

2.23 makes this clearer, there were only 253 recorded infections for the province over

the entire 5 year period of 1,108 farms being fit to, a rate of approximately 0.1386

infections/day and 0.228 infections/farm. Most farms (median and mode) were not
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recorded as infected at all during this period. The dynamics of the disease were

also difficult to fit, many proposed particles fit the period of quiet endemic disease

circulation of the first 3.5 years but were less able to predict the small outbreak that

took place in the final year and a half.

An assumptions made in the development of this model are the assumption

that all of the real incidence was observed and recorded in the data available to us. It

is very likely that the recorded incidence is not all of the true incidence due to some

infections not being recorded or detected. Because the recorded infections might

have been seeded by unobserved infections, this would have the effect of reducing

the correspondence between my parameter estimates and the ”real” parameters.

Accounting for this could be done by including detection and surveillance parameters

in the parameter inference scheme, however this was not considered feasible given

the large parameter space this opened up and so the estimate of detection from

Turkey was used.

Some limitations of this work arose from limitations of the data, the quality

of which was not everything to be desired. As discussed in the methods, there

was limited overlap between data sources to allow cross-referencing which results

in uncertainty about the extent of the correspondence between the farms simulated

and the real farms present in reality. This also adds uncertainty about the resulting

parameter estimates, excluded farms may have impacted the real dynamics we are

attempting to simulate and their exclusion from the simulations would result in

skewed estimates of the most likely course of infection. Additionally, there was

no data available on non-cattle species such as goats, sheep, or pigs. Although

the number of swine in Turkey is very low for religious reasons, there are millions

of sheep and goats which may act as reservoirs for the disease and reinfect cattle

repeatedly. The lack of data on these animals is disappointing, and it would be

useful in future if such data were available, as they may allow more accurate model

simulations of disease spread.

Other limitations arose from decisions made, often due to limitations of the

data or computational complexity, that nevertheless could have been otherwise.

One of these is the limited geographic area covered, which also limits the number

of recorded infections and provides less information for parameter inference. This

decision was due to the computational limitations of the model, as greater areas are

simulated the number of interactions between farms increases exponentially resulting

in large increases in running time. In light of the available computational resources,

simulating Erzurum Province was a reasonable decision to balance accurate inference

with the time available, yet simulating a greater area may have allowed tighter or
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more parameter estimates.

Another limitation which arose out of this decision was the aggregation of

serotype-specific infection data into a pan-serotype incidence time-series for the

purposes of model fitting. This increased the information available for fitting and

reduced the computational complexity of the simulations, allowing for a better and

faster model fit. Although little data was available for serotypes A and Asia-1 in

Erzurum over this period, it did preclude the possibility of serotype-specific parame-

ter estimates, as there is evidence they can differ in transmission dynamics (Pacheco,

Lee, et al. 2016; Pacheco, Tucker, et al. 2012).

In developing this model, I have endeavoured to portray the more compli-

cated dynamics that can and do occur in the spread of the disease in the endemic

regions, both in the Republic of Turkey and other areas. Unlike epidemics of FMD

in regions otherwise free of the disease, multiple serotypes exist and there is already

a reservoir of population immunity from prior infections. Additionally, the dynam-

ics of endemic diseases play out over a longer period of time, which necessitates

population demography and which itself adds complications due to the existence

maternally derived antibodies. Not all of these could be included in this work, such

as the multiple co-circulating serotypes already discussed. There are also other dy-

namics which were not included in the model which may also be relevant to the

spread of the virus in regions endemic for FMD, such as culture-specific agricultural

practices (e.g. pastoralism) or climate.

One of these dynamics, and a limitation of the model, is that spread via ship-

ments is assumed to happen only via the movement of infected animals. Although

difficult to parameterise and limited by the lack of data on vehicles, this could be

extended to allow simulation of fomite spread, where virus particles contaminate

the vehicles and people moving between farms. It is known that fomites can last up

to several months in the right conditions, and research indicates that environmental

contamination can sustain R above 1 by itself, so this might be one method that the

disease could be so sporadic in this region (Bravo de Rueda et al. 2015; Colenutt

et al. 2020). The environmental transmission investigated here encompasses more

than just vehicle contamination however, and such a route alone might not support

R > 1. Another possibility is the addition of carrier animals, which is explored in

later chapters.

Another limitation of the model is the lack of simulation of the effect of mul-

tiple recurrent infections on the immune status of individual cattle. As discussed

by T. R. Doel (2005), the duration of the protective immunity generated by in-

fection (and vaccination) can vary depending on prior infection status, with those
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animals infected (and surviving) the most also ending up with the most robust im-

mune responses. In endemic regions this preexisting immunity could complicate the

immunological landscape that we are attempting to fit to, but it is very difficult

to know whether this is relevant without data on pre-existing immunity. This also

makes it very difficult to develop prior distributions for the parameters, so it is

perhaps beyond reach for the moment.

This chapter has developed a simulation model of Foot-and-Mouth Disease

which takes into account several of the important and under-studies dynamics of

the disease when endemic, including: waning immunity; the effect of maternally

derived antibodies on newborn calves; and demographics. Using this model, we

have explored which parameters were identifiable from the data available and fit

those parameters using an approximate Bayesian inference scheme, providing a novel

estimate of these parameters from an endemic system. This model is a good platform

to begin to explore the effect of different control strategies on endemic dynamics.
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Chapter 3
Assessing The Performance of Control

Policies In Endemic Regions Of The

Republic of Turkey

3.1 Introduction

FMD is a highly economically important livestock disease, in both areas that are

currently free of the disease and areas where it is endemic. In free countries, control

programs and bio-security measures create large costs. Epidemics in these regions

can cause tremendous losses and lead to the culling of millions of animals however,

as seen in the 2001 epidemics in the UK and the Netherlands. They also lead

to restrictions on access to international livestock markets, which has additional

enormous costs (Bouma, A. R. W. Elbers, et al. 2003; Bourn et al. 2002; T. J. D.

Knight-Jones and J. Rushton 2013).

However the burden of the disease is not equally distributed globally, with

poorer countries both more dependent on livestock and less able to control the

disease. Although costs in endemic regions are hard to estimate reliably, FMDV

directly reduces herd fertility via symptoms such as milk drop and lameness, in ad-

dition to preventing the use of high-productivity but more susceptible livestock. The

long-standing presence of the disease also prevents international livestock market ac-

cess, especially to the developed free countries (T. J. D. Knight-Jones, McLaws,

and J. Rushton 2017; T. J. D. Knight-Jones and J. Rushton 2013).

Control of this disease therefore offers significant opportunities to assist in

the development of many economies. Attempts to control FMD date back several

65



centuries. Prior to the development of effective mass-producible vaccines in the

1950’s, control efforts focused on isolation of known infected animals from the rest

of the herd, passive immunization where possible, and elsewise culling them. Mass

Vaccination (MV) of animals with FMD vaccines was instituted in Europe in this

period until the early 1990’s, when elimination of the disease allowed a bio-security-

based strategy to become feasible (Blancou 2002; David J. Paton, K. J. Sumption,

and Charleston 2009).

The fundamental concepts for the control of animal diseases such as FMD

are: (i) to prevent access of the virus to susceptible hosts; to control contact between

infected and susceptible animals; (ii) to reduce the number of infected animals; (iii)

to reduce the number of susceptible animals (Premashthira et al. 2011). Applying

these concepts practically transforms these concepts to: movement controls such as

quarantine, or zoning; planned culling of infected animals or herds; vaccination of

susceptible animals.

In free-without-vaccination countries such as the USA or European coun-

tries, this status is maintained via bio-security efforts, and control of an epidemic

is often achieved by some combination of culling of infected or at risk animals,

with vaccination sometimes used as a temporary measure to arrest the spread of

the disease, and movement controls of livestock also implemented (Premashthira

et al. 2011; Michael J Tildesley, Savill, et al. 2006). Countries which are free-with-

vaccination maintain this status via widespread prophylactic vaccination campaigns,

South American countries have pursued this strategy since the 1960’s with a large

degree of success (Premashthira et al. 2011). One major difference with endemic

regions is willingness to cull, endemic regions are generally Low and Middle Income

Countries (LMIC)s, the economic importance of livestock and commonness of FMD

means that culling of animals after detecting infection with FMDV is rare.

Regions where FMD is endemic face a number of challenges in their at-

tempts to control disease circulation. In many such areas political attention for

FMD is limited by the circulation of other animal diseases, limited funds, as well

as other pressing political problems such as human development, or in some cases

civil unrest or military conflict (F. F. Maree et al. 2014). The presence of multiple

serotype of FMD complicates vaccination efforts, assuming the LMIC in question

even has access to high-quality vaccines, and there must also be an effort to match

the vaccine used to the strains actually circulating. Circulating strains may also

change rapidly, due to mutation or introduction from elsewhere, which may render

vaccines ineffective and require reformulation (David J. Paton, K. J. Sumption, and

Charleston 2009). Additionally, farming practices in LMICs may make it easier for
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the virus to circulate, with cattle grazed on communal land or transhumant herds

allowing rapid spread of FMDV (Laura W Pomeroy et al. 2015; Sinkala et al. 2014).

For these reasons and more, efforts to control FMD in endemic regions take large

amounts of funding and political will to be seen through to control of the disease.

The Republic of Turkey, from which our data originates, has used all of

these policies other than culling. Ring Vaccination (RV) and Movement Ban (MB)s

within a 10 km radius, which involve vaccinating farms and preventing the movement

of animals within a ring around a newly detected infected premises, are regularly

implemented. Since at least 2009 they have also commenced prophylactic biannual

mass vaccination with a trivalent vaccine with an efficacy of 65%, and in 2015 this

was upgraded to a double-dose 6× 𝑃𝐷50 regime which greatly increased the efficacy

(T J D Knight-Jones, Bulut, et al. 2015; T. J. D. Knight-Jones, S. Gubbins, et

al. 2016; T. Knight-Jones et al. 2014). Over this time period, they have reduced

the number of FMD outbreaks they experience significantly, experiencing only 6

outbreaks in the last quarter of 2021 (FAO 2022).

We aim to use the stochastic spatial metapopulation model developed in a

previous chapter, as well as the estimates of the dispersal kernel parameters, and the

high-quality data available from the Republic of Turkey, to investigate the efficacy of

these different control strategies in a region where the disease is already endemic. We

simulate these policies alone and in combination with each other, and assess which

policy combinations are most efficacious in reducing the circulation of the disease,

as well as their likelihood of elimination of the disease from the region and speed at

doing so. Finally, we perform sensitivity analysis to estimate which parameters are

most important to these policy combination outputs.

This work has implications for policy choice in regions of the world which

are currently experiencing endemic FMD.

3.2 Methods

To investigate the efficacy of different control strategies in the Republic of Turkey

from an endemic situation, the model outlined in the previous chapter was used, with

the fit parameters values used for the dispersal kernel, and within-farm transmission

model parameterised as described in Table 2.1.

To generate an endemic situation, the model was simulated for 5 years with

no controls in effect, and the output of this saved. This endemic situation was then

used as the starting point for all of the different control policies that were assessed.

This allowed an endemic starting point for the imposition of controls to be simulated,
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and also meant that differences in outcomes with different policies could be isolated

to the effect of the control policies rather than a different starting situation.

These simulations were simulated on the province of Erzurum for computa-

tional reasons.

81 unique control policy scenarios were assessed in this manner, varying the

control strategy parameters amongst the values given in Table 3.1. For example, a

strategy might be a combination of parameter values such that Vaccine Efficacy (VE)

is 65%, the ring vaccination radius is 5 km, and there are no movement bans or mass

vaccination as their respective values are 0 km and ∞, which was interpreted as not

implementing those control policies. In this manner, each possible control policy

was assessed on its own and in combination with the other control policies.

Each control policy combination was simulated 100 times for 5 years, begin-

ning from the simulated endemic starting situation previously discussed. Simplifying

assumptions were that detection of infected premises was complete and that cover-

age was total. The outcomes of interest were the total numbers of infected farms,

the Probability of Elimination (P(E)) (taken to be the proportion of simulations

where the disease was eliminated), and the Time To Elimination (TTE). These

were compared to a scenario where no control policies were implemented.

Table 3.1: The different control strategy parameter values which were assessed in
combination, for example VE of 65% in combination with ring vaccination at 5 km.
For ring vaccination and movement bans, a radius of 0 km indicates that the policy
was not implemented. For mass vaccination, an interval of ∞ indicates that the
policy was not implemented.

Parameter Parameter Values (unit)

Vaccine Efficacy {65, 80, 90} %
Ring Vaccination Radius {0, 5, 10} km
Movement Ban Radius {0, 5, 10} km
Mass Vaccination Interval {∞, 365, 182} days

3.2.1 Sensitivity Analysis

To test which parameters were most important to different control policies, sensitiv-

ity analysis was performed for different control policy combinations. Of these there

were seven: Ring Vaccination; Movement Bans; Mass Vaccination; Ring Vaccination

+ Movement Bans; Ring Vaccination + Mass Vaccination; Movement Bans + Mass

Vaccination; and all three policies in concert.

To reduce the dimensions of the problem whilst still exploring each parameter

distribution thoroughly, Latin Hypercube Sampling (LHS) was used to generate
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500 samples from the relevant parameter distributions (Table 3.2), and each set of

parameter values (particle) was simulated 100 times for 5 years in Erzurum Province.

Each control policy combination varied the detection and vaccine parame-

ters, grouped as the Surveillance parameters in Table 3.2, as well as the relevant

control policy parameters. For example, when analysing the combination of RV and

MB policies, the Surveillance parameter group as well as the Ring and Movement

parameter groups were varied, but not the Mass parameter group as MV policies

were not being assessed.

Detection Probability was the probability that an infected farm would be

detected and reported for reactive control policies, with Detection Delay outlining

the time between infection and detection. Vaccine Efficacy was the average efficacy

of the vaccine, drawn from a normal distribution with this as the mean for each farm

vaccinated, as described in Chapter 2. Vaccine Duration is _𝑉𝑆 , the average duration

of the vaccine immunity state. Vaccine Capacity was defined as the percentage

of the total number of farms that could be vaccinated in a day. For both Ring

Vaccination and Movement Bans, the Radius parameter defined the ring around

a known infected farm that would have the control policy implemented. Coverage

(for Ring and Mass Vaccination) controlled the probability that a farm identified for

vaccination would actually be vaccinated, and for Movement Bans Compliance this

controlled whether a farm would comply with movement restrictions. Movement

Ban Duration controlled the time period of a given movement restriction order, and

Mass Vaccination Interval defined the time period between vaccination campaigns.

Model code is available at https://github.com/gguyver/fmd-model-thesis.

After simulation of the parameters, outputs were calculated and analysed.

The inputs assessed are outlined in Table 3.2 and are random samples of the param-

eter distributions selected according to the LHS method. The outputs assessed were:

(i) the average total incidence over the 5 year period simulated; (ii) the probability

of disease elimination (P(E)); (iii) and the average time to elimination conditional

on elimination occurring (TTE). For each of these outputs Partial Rank Correlation

Coefficient (PRCC) sensitivity analysis was performed to assess the importance of

each parameter to the outcomes. PRCC analysis is a standard, efficient, and robust

sensitivity measure for non-linear but monotonic relationships between inputs and

outputs (Marino et al. 2008). For a good overview of different sensitivity analysis

techniques useful in infectious disease modelling, see Wu et al. (2013).

PRCC sensitivity analysis was done using R 4.0.5, and the epiR package

version 1.0-2 (R Core Team 2020; Mark Stevenson et al. 2021).
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Table 3.2: A summary of the parameter ranges used for sensitivity analysis. Re-
lated parameters are grouped with each other and given a descriptive name for ease
of reference. All parameters are drawn from a uniform distribution between the
minimum and maximum value. Whether they are continuous (C) or discrete (D) is
indicated in the Type column.

Parameter Value Min, Max Group Type

Detection Probability 0, 100 % Surveillance C
Detection Delay 1, 14 days Surveillance C
Vaccine Efficacy 50, 100 % Surveillance C
Vaccine Duration 30, 730 days Surveillance D
Vaccine Capacity 0,100 % Surveillance C

Ring Vaccination Radius 1,10 km Ring C
Ring Vaccination Coverage 1,100 % Ring C

Movement Ban Radius 1, 10 km Movement C
Movement Ban Duration 1, 14 days Movement D
Movement Ban Compliance 1, 100 % Movement C

Mass Vaccination Interval 30, 730 days Mass D
Mass Vaccination Coverage 1, 100 % Mass C

3.3 Results

3.3.1 No Controls

All control policies were compared to the scenario of no controls and each other.

When no controls were implemented, the disease continued the classic damped os-

cillations toward an endemic equilibrium, seen in Figure 3.1.

When no controls were implemented, an average of 7845.77 (standard devi-

ation 93.13) newly infected farms occurred over the 5 year period simulated.

3.3.2 Ring Vaccination

The RV policy was able to produce a strong reduction in the circulation of the disease

as a policy on its own, reducing the average total incidence of infected premises by

54.17% with the smallest radius and lowest efficacy vaccine (Table 3.3). Figure 3.2

shows the reduction in prevalence associated with this, with prevalence at less than

200 infected premises with a 5 km vaccination radius, and less than 100 infected

premises with a 10 km vaccination radius.

Table 3.3 shows that increasing VE was associated with lower incidence, but

that the largest reduction came from increasing the radius of vaccination. Increasing

the radius at least halved the incidence again, however increasing VE from 65%

to 90% reduced incidence by approximately 500 infected premises over the 5-year
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Figure 3.1: Average Prevalence of FMD with no implementation of control policies
simulated. The vertical dotted line indicates the when the simulated implementation
of the control policy would have begun, on day 0. The line to the right of this
indicates the average prevalence over time, with a darker coloured area around
indicating the Interquartile Range (IQR) of values, and the lighter coloured ribbon
indicating the full range of values.
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Table 3.3: Statistics of the standalone Ring Vaccination (RV) policies. This sum-
marises the average total incidence, the percentage difference this average is from
the baseline no control scenario, the estimated probability of elimination P(E), the
average time to elimination TTE, and the average number of farms vaccinated.

Radius VE Incidence P(E) TTE Vaccinated

65% 3,595.72 (-54.17%) 0 - 15,633.41
80% 3,181.36 (-59.45%) 0 - 15,293.055 km
90% 3,007.57 (-61.67%) 0 - 15,178.34

65% 1,483.99 (-81.09%) 0 - 19,564.26
80% 1,165.63 (-85.14%) 0 - 18,811.4610 km
90% 1,049.26 (-86.63%) 0 - 18,450.66

Table 3.4: Statistics of the standalone Movement Ban (MB) policies. This sum-
marises the average total incidence, the percentage difference this average is from
the baseline no control scenario, the estimated probability of elimination (P(E)),
the average time to elimination (TTE), and the average total number of days farms
spent under a movement ban (Ban-days).

Radius Incidence P(E) TTE Ban-days

5 km 7,839.32 (-0.08%) 0 - 1,507,224

10 km 7,848.71 (0.04%) 0 - 1,860,761

simulated period.

3.3.3 Movement Bans

The MB policy on its own does not appear to have any effect on the prevalence

of FMD, as shown in Figure 3.3. After the implementation of controls, the disease

continues damped oscillation towards the endemic equilibrium. Table 3.4 shows that

the total incidence for all combinations of MB policies was almost identical to the

scenario where no controls were implemented.

3.3.4 Mass Vaccination

Implementing MV as a stand-alone policy leads to a large reduction in the prevalence

of FMD. Both intervals simulated lead to a reduction, however biannual vaccination

led to a larger reduction and constant control of the disease (Figure 3.4). Addi-

tionally, mass vaccination also lead to elimination of the disease in the majority of

simulations. When annual vaccination was implemented, a greater VE reduced the
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Figure 3.2: Average Prevalence of FMD after implementation of ring vaccination
alone. The vertical dotted line indicates the simulated implementation of the control
policy on day 0. Each coloured line indicates the average prevalence for the given
VE, with a darker coloured area around indicating the IQR of values, and the lighter
coloured ribbon indicating the full range of values. The top facet displays results for
a 5 kilometre radius, and the bottom facet for a 10 km radius. Both radii lead to a
large reduction in prevalence compared to the prior endemic state, with the larger
radius leading to a larger decrease. There is a large overlap between different VE
values. Elimination is not observed.
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Figure 3.3: Average Prevalence of FMD after implementation of movement bans
alone. The vertical dotted line indicates the simulated implementation of the control
policy on day 0. The line indicates the average prevalence for the given movement
ban radius, with a darker coloured area around indicating the IQR of values, and
the lighter coloured ribbon indicating the full range of values. The top facet displays
results for a 5 kilometre radius, and the bottom facet for a 10 km radius. Movement
bans on their own do not lead to a reduction in prevalence of FMD when simulated
for an already endemic state.
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Table 3.5: Statistics of the standalone Mass Vaccination (MV) policies. This
summarises the average total incidence, the percentage difference this average is from
the baseline no control scenario, the estimated probability of elimination (P(E)), the
average time to elimination (TTE), and the average number of farms vaccinated.

Interval VE Incidence P(E) TTE Vaccinated

65% 1,010.24 (-87.12%) 0.97 540.57 10,968.66
80% 982.12 (-87.48%) 1.00 406.80 10,969.96182 days
90% 977.13 (-87.55%) 1.00 372.59 10,970.20

65% 4,394.37 (-43.99%) 0.17 623.35 5,484.05
80% 1,886.39 (-75.96%) 0.90 614.31 5,484.97365 days
90% 1,731.57 (-77.93%) 0.99 634.33 5,484.89

resurgences seen, with the greatest resurgences observed when VE was only 65%.

Table 3.5 shows that Mass Vaccination alone could lead to reductions in

total incidence of 43.99 - 87.55% compared to a no control scenario. The least

effective policy, of annual vaccination with a VE of 65%, averaged 4394.37 infected

premises over a 5 year period, vaccinating 5484 farms. However, increasing the VE

from 65% to 80% reduced this incidence still further to 1886.39 infected premises. A

further increase from 80% to 90% did not see a commensurate reduction in incidence,

averaging 1731.57 infected premises.

Biannual vaccination did not exhibit the same dependence on vaccine effi-

cacy, with only minor decreases in incidence observed for the same increases in VE.

Despite twice as many farms vaccinated, the biannual vaccination policy achieved

much lower incidence than annual vaccination.

3.3.5 Ring Vaccination and Movement Bans

When implementing ring vaccination in concert with movement bans, a similar

pattern to using ring vaccination alone is observed. A significant decrease in the

prevalence of FMD is observed compared to no controls, with a larger decrease in

prevalence when using a larger radius. The addition of movement bans does not

appear to lead to an additional decrease in prevalence (Figure 3.5).

This is seen in Table 3.6, where the reduction in total incidence is almost

identical to the reduction seen for ring vaccination alone (Table 3.3). The number

of vaccinated farms is also almost identical. However, the total number of farm

ban-days is between 484,201 to 1,701,312 ban-days.
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Figure 3.4: Average Prevalence of FMD after implementation of mass vaccination
alone. The vertical dotted line indicates the simulated implementation of the control
policy on day 0. Each coloured line indicates the average prevalence for the given
VE, with a darker coloured area around indicating the IQR of values, and the lighter
coloured ribbon indicating the full range of values. The top facet displays results
for a 182 day (6 month) mass vaccination interval, and the bottom facet for a 365
day interval. Mass vaccination can lead to a large reduction in the prevalence of
FMD compared to the prior endemic state, although the wrong interval can blunt
this effect as the reduction is much smaller for yearly mass vaccination compared
to biannual vaccination. Greater VE leads to a greater reduction in prevalence,
especially in the annual mass vaccination scenario.
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Figure 3.5: Prevalence of FMD after implementation of both ring vaccination and
movement bans. Each column indicates either 5 or 10 km radius for ring vaccination,
and each row a 5 or 10 km radius for movement bans. The vertical dotted lines
indicate the simulated implementation of the control policies on day 0. Lines to the
right of this on each plot indicates the average prevalence for the given day, with
different coloured lines and ribbons referencing different average vaccine efficacy. A
darker coloured area around each line indicates the IQR of values, and the lighter
coloured ribbon indicating the full range of values. Ring vaccination leads to a
reduction in prevalence, however even in concert with this movement bans do not
lead to a further reduction.
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3.3.6 Ring Vaccination and Mass Vaccination

Combining Mass Vaccination and Ring Vaccination leads to a much reduced preva-

lence of FMD (Figure 3.6). When biannual MV is combined with any radius of RV,

prevalence is reduced to a minimum within a year, with elimination of the disease

likely. This appears to be invariant to the vaccine efficacy used. An RV policy

in combination with annual MV also reduces the prevalence resurgences associated

with VE, reducing prevalence more with a larger radius.

The two policies in concert reduced total incidence by between 73.88 - 98.66%

compared to a baseline scenario of no controls, registering between 77 - 2569 total

incidence depending on policy (Table 3.7). Between 8257 - 18521 farms were vac-

cinated, also depending on policy, more than MV as a stand-alone policy but less

than RV as a stand-alone policy.

3.3.7 Movement Bans and Mass Vaccination

Using MV and MB together lead to a larger reduction in prevalence and incidence,

but a very similar reduction to MV alone, and less of a reduction compared to using

RV instead of MB policy options (Table 3.8). Farms vaccinated ranged from 5,464

to 11,000, similar to MV alone, and farm ban-days ranged from 179,719 to 944,365.

As seen in Figure 3.7, biannual vaccination led to sharp reductions of preva-

lence to a manageable level or elimination, whereas annual vaccination could lead

to resurgences, the strength of which depended on the VE assumed.

3.3.8 Ring Vaccination, Movement Bans, and Mass Vaccination

Combining all of the control policies together, prevalence can be reduced to elimi-

nation of FMD with biannual mass vaccination, and a large reduction with annual

mass vaccination (Figure 3.8). Ring vaccination at a 10 km radius reduces preva-

lence further in the case of annual vaccination. In agreement with the previous

policy combinations, movement bans had no effect on prevalence or incidence.

The total number of farms vaccinated over the course of the simulations

is similar in each scenario, with most biannual mass vaccination policies ranging

between 12,570 to 15,434 farms (Table 3.9). Annual vaccination had a greater

range, between 8285 to 19,166 farms vaccinated.

Movement ban-days ranged from 81,433 ban-days with biannual mass vacci-

nation, ring vaccination at 10 km, and 5 km movement bans, to 1,141,609 ban-days

with annual mass vaccination, 5 km ring vaccination, and 10 km movement bans.
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Figure 3.6: Prevalence of FMD after implementation of both reactive ring vacci-
nation and proactive mass vaccination. Each column indicates a mass vaccination
interval of either 182 or 265 days, and each row a 5 or 10 km radius for reactive
ring vaccination. The vertical dotted lines indicate the simulated implementation
of the control policies on day 0. Lines to the right of this on each plot indicates
the average prevalence for the given day, with different coloured lines and ribbons
referencing different average vaccine efficacy. A darker coloured area around each
line indicates the IQR of values, and the lighter coloured ribbon indicating the full
range of values. The implementation of biannual mass vaccination is clearly better
than annual mass vaccination, though both lead to a strong reduction in prevalence.
With annual mass vaccination, there is a potential for resurgences depending on VE,
with higher VE reducing this risk. A larger ring vaccination radius leads to an ad-
ditional reduction in virus circulation.

80



T
a
b
le

3
.7
:
S
ta
ti
st
ic
s
of

th
e
co
m
b
in
ed

R
in
g
V
ac
ci
n
at
io
n
(R

V
)
an

d
M
as
s
V
ac
ci
n
at
io
n
(M

V
)
p
ol
ic
ie
s.

T
h
is
su
m
m
ar
is
es

th
e
av
er
ag

e
to
ta
l
in
ci
d
en

ce
,
th
e
p
er
ce
n
ta
g
e
d
iff
er
en

ce
th
is

av
er
ag

e
is

fr
om

th
e
b
as
el
in
e
n
o
co
n
tr
ol

sc
en

ar
io
,
th
e
es
ti
m
at
ed

p
ro
b
ab

il
it
y
of

el
im

in
a
ti
o
n
P
(E

),
th
e
av
er
ag

e
ti
m
e
to

el
im

in
at
io
n
T
T
E
,
an

d
th
e
av
er
ag

e
n
u
m
b
er

of
fa
rm

s
va
cc
in
at
ed

.

In
te
rv

a
l

R
a
d
iu
s

V
E

In
c
id
e
n
c
e

P
(E

)
T
T
E

V
a
c
c
in
a
te
d

65
%

38
9.
40

(-
95

.0
4%

)
1.
00

54
1.
51

12
,9
24

.5
3

80
%

32
9.
13

(-
95

.8
1%

)
1.
00

38
6.
72

12
,7
48

.2
6

5
k
m

90
%

31
2.
45

(-
96

.0
2%

)
1.
00

36
0.
51

12
,7
15

.0
4

65
%

17
2.
35

(-
97

.8
%
)

1.
00

46
3.
52

13
,7
96

.8
8

80
%

11
9.
70

(-
98

.4
7%

)
1.
00

35
3.
77

13
,6
02

.3
0

1
82

d
ay

s

1
0
k
m

90
%

10
4.
83

(-
98

.6
6%

)
1.
00

31
2.
29

13
,5
34

.9
5

65
%

2,
04

9.
70

(-
73

.8
8%

)
0.
08

76
5.
13

13
,6
56

.7
2

80
%

71
9.
03

(-
90

.8
4%

)
0.
94

71
2.
43

9,
17

2.
00

5
k
m

90
%

64
6.
42

(-
91

.7
6%

)
0.
98

65
3.
28

8,
93

4.
63

65
%

47
8.
26

(-
93

.9
%
)

0.
69

80
3.
23

12
,3
73

.7
5

80
%

24
1.
26

(-
96

.9
2%

)
0.
99

63
2.
66

10
,0
96

.3
6

3
65

d
ay

s

1
0
k
m

90
%

17
8.
88

(-
97

.7
2%

)
1.
00

50
6.
88

9,
51

7.
39

81



Figure 3.7: Prevalence of FMD after implementation of both reactive movement
bans and proactive mass vaccination. Each column indicates a mass vaccination
interval of either 182 or 265 days, and each row a 5 or 10 km radius for reactive
movement bans. The vertical dotted lines indicate the simulated implementation
of the control policies on day 0. Lines to the right of this on each plot indicates
the average prevalence for the given day, with different coloured lines and ribbons
referencing different average vaccine efficacy. A darker coloured area around each
line indicates the IQR of values, and the lighter coloured ribbon indicating the full
range of values. The implementation of biannual mass vaccination clearly leads
to lower prevalence than annual mass vaccination, though both cause to a strong
reduction in prevalence. With annual mass vaccination, there is a potential for
resurgences depending on VE, with higher VE reducing this risk. Movement bans
appear to make no difference to the prevalence, regardless of which mass vaccination
policy they are combined with.
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Figure 3.8: Prevalence of FMD after implementation of all three of reactive ring
vaccination, reactive movement bans, and proactive mass vaccination. Each column
indicates a mass vaccination interval of either 182 or 265 days, and each row a
combination of a 5 or 10 km radius for reactive ring vaccination (indicated by r) and
movement bans (indicated by m). The vertical dotted lines indicate the simulated
implementation of the control policies on day 0. Lines to the right of this on each plot
indicates the average prevalence for the given day, with different coloured lines and
ribbons referencing different average vaccine efficacy. A darker coloured area around
each line indicates the IQR of values, and the lighter coloured ribbon indicating the
full range of values. The implementation of biannual mass vaccination clearly leads
to lower prevalence than annual mass vaccination, though both cause to a strong
reduction in prevalence. With annual mass vaccination, there is a potential for
resurgences depending on VE, with higher VE reducing this risk. Ring vaccination
additionally reduces the prevalence of disease, however movement bans appear to
make no difference to the prevalence, regardless of which policy they are combined
with.
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3.3.9 Sensitivity Analysis

Sensitivity analysis focused on three different outputs, average total incidence (Fig-

ure 3.9), the probability of elimination (P(E)) (Figure 3.10), and the time to elimi-

nation (TTE) in simulations where elimination was achieved (Figure 3.11).

Detection delays and vaccination capacity were not associated with decreased

total incidence in any of the control policy combinations that were assessed (Figure

3.9). Nor was MB compliance, duration, or radius significant when that policy was

assessed, due to the lack of effect that was seen for that policy in prior analyses.

RV coverage was also not significantly different from a correlation of 0 with total

incidence.

The probability of detection was significantly negatively correlated with total

incidence when assessing RV policies and when RV was used in concert with MV.

The coefficient for this parameter was not significantly different from 0 when using

MB policies without RV policies.

Additionally, MV coverage was significantly negatively correlated with in-

cidence when the relevant policies were assessed, as was RV radius, and vaccine

duration. VE was also weakly negatively correlated with incidence when a policy

used vaccines. MV interval was significantly positively correlated with incidence,

with longer intervals leading to more incidence.

A similar pattern is seen with the probability of, and time to, elimination

(Figures 3.10, 3.11). Detection delay and vaccine capacity remained uncorrelated

with the probability of elimination and time to elimination, as were MB compli-

ance, duration, and radius. The most correlated parameters were MV coverage and

interval, RV radius, and vaccine duration.
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Figure 3.9: Estimated correlation coefficients of control policy parame-
ters with the average total incidence, for each control policy combination.
Each panel corresponds to correlation coefficient estimates for different parameters,
each row in each panel a different control policy combination. Points indicate the
point estimates, error bars denote the 95% confidence interval. A dotted line is
shown at 0.0 for ease of interpretation. Parameters which were not relevant for a
particular policy do not have a coefficient estimate for that policy on that panel.
Detection Probability, Mass Vaccination Coverage and Interval, Ring Vaccination
Radius, Vaccine Duration, and Vaccine Efficacy are the parameters most consis-
tently associated with a reduction in total incidence.
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Figure 3.10: Estimated correlation coefficients of control policy parame-
ters with the estimated probability of disease elimination, for each control
policy combination. Each panel corresponds to correlation coefficient estimates
for different parameters, each row in each panel a different control policy combi-
nation. Points indicate the point estimates, error bars denote the 95% confidence
interval. A dotted line is shown at 0.0 for ease of interpretation. Parameters which
were not relevant for a particular policy do not have a coefficient estimate for that
policy on that panel, additionally policies where disease elimination did not oc-
cur are also not shown as a coefficient could not be calculated. Mass Vaccination
Coverage and Interval, Ring Vaccination Radius, and Vaccine Duration, are the pa-
rameters most consistently associated with an increase in the probability of disease
elimination.
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Figure 3.11: Estimated correlation coefficients of control policy param-
eters with the time to elimination, for each control policy combination.
Each panel corresponds to correlation coefficient estimates for different parameters,
each row in each panel a different control policy combination. Points indicate the
point estimates, error bars denote the 95% confidence interval. A dotted line is
shown at 0.0 for ease of interpretation. Parameters which were not relevant for a
particular policy do not have a coefficient estimate for that policy on that panel,
additionally policies where disease elimination did not occur are also not shown as
a coefficient could not be calculated. Mass Vaccination Coverage and Interval, Ring
Vaccination Radius, and Vaccine Duration, are the parameters most consistently
associated with an decrease in the time to disease elimination.
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3.4 Discussion

These results demonstrate that of the 3 control policies investigated, only 2 of them

are observed to be effective in controlling the spread of FMD in a region where

the disease is already endemic. Reactive ring vaccination is an effective method of

controlling the spread of FMD in these simulations, as is proactive mass vaccination,

however reactive movement bans within a radius of a detected infected premises do

not appear to have any effect on the circulation of FMD when the disease is already

endemic. This is observed even when the policy is combined with the other policies

tested, MB policies do not lead to a greater reduction in incidence in combination

with RV or MV policies in comparison to using those policies without movement

bans. This ineffectiveness is also seen in the sensitivity analysis, where none of

MB policy parameters were practically different from a correlation of 0, for all

outputs assessed. The ineffectiveness of MB policies is surprising in light of their

acknowledged effectiveness in controlling FMD epidemics (M. J. Tildesley et al.

2019), although their role in endemic regions is less clear. The potential importance

of the movement of infected livestock to contribute to the spread of FMD is clear,

yet at least one study has found that the movement of infected herds of cattle in

Cameroon was not enough for the disease to persist as endemic in the area (A, N.J,

and D.J 2011; Schnell 2019).

One possible reason for the failure of MB policies in these simulations is

that the disease, already endemic, does not need to be spread to new areas of the

simulated region as the disease is likely already present nearby and can spread via

local transmission (e.g. aerosol transmission). In an epidemic outbreak in a country

free of the disease, preventing the movement of animals between farms is part of

an effort to prevent spread to new farms, in a region where the disease is already

endemic this is more likely to be ineffective. However, this hypothesis is damaged by

the fact that MB policies remain ineffective even when used with effective policies

which greatly reduce the disease burden. This could also be tested by simulating

epidemics with or without movement ban policies in effect and observing whether

there is a difference in the epidemic trajectory, if it has an effect we would expect a

slower growth of the epidemic.

Another possible reason for the failed MB policies is that the region, simu-

lated for reasons of computational complexity, is too small for cattle shipments to

play a large role in the spread of the disease. Animal movements present a risk not

just of spread to presently-uninfected areas, but of long jumps to uninfected areas

which are not at risk of aerosol spread due to the distance between them (M. J.
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Tildesley et al. 2019). The median travel distance of shipments originating within

Erzurum is 30.5 km, with a mean of 177.0 km, both larger than the median of 28.3

km and mean of 94.7 km for the entirety of Turkey. Erzurum itself is approximately

190 x 170 km, close to the mean distance of shipments originating in the province.

If long distance jumps is the major role that animal movements play, yet the sim-

ulated region is too small for this effect to occur, then the role of movement bans

in preventing the spread of disease may be underestimated. Simulating a larger re-

gion to see whether movement bans become more efficacious would be a reasonable

extension of this work.

Ring vaccination is an effective reactive control policy, reducing the incidence

of FMD by up to 86% as a stand-alone policy choice. A surprising result of this

analysis was the small effect of the coverage of this policy, what percentage of farms

within an infected premises radius were successfully vaccinated. By comparison, the

radius of the policy was important in every analysis, with a larger policy leading to

a greater reduction in incidence and a greater probability of disease elimination. It

may be that there is a threshold effect, above which coverage is sufficient for a sharp

drop in disease spread.

Mass vaccination was the most effective policy assessed, capable of reducing

incidence up to 87% compared to no controls as a stand-alone policy, and up to 98%

reduction in incidence when combined with ring vaccination. Because of this efficacy,

the two parameters aligned with it (Interval and Coverage) are strongly correlated

with the total incidence observed, as well as the probability of elimination and time

to elimination. It is also the only policy assessed which could reliably eliminate the

disease. This accords with the observed reality that elimination in both Europe and

South America have depended on large mass vaccination campaigns, although such

campaigns required decades of implementation before elimination could be declared

(Leforban 1999; Parida 2009; David J. Paton, K. J. Sumption, and Charleston

2009). The discrepancy between real-world results and the model outputs are likely

due to the much smaller area simulated and the lack of outside re-introductions of

disease. The assumed perfect detection is less relevant for mass vaccination, which

is a proactive policy.

Of the parameters that were not specific to individual control policies, the

delay to detection was surprisingly little correlated with any of the three outputs,

regardless of which control policy was in place. Although it is expected that this

would not be relevant when implementing mass vaccination (which does not rely

on detecting infected premises), it was expected that adding up to a 14 day delay

to detection would severely reduce the efficacy of the reactive policies. However,
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despite the small correlation coefficients, the overall pattern accords with the other

results for total incidence. Detection delay is most correlated when RV policies are

implemented stand-alone, and also when these are implemented in concert with MV

policies. No correlation is seen with MB policies due to the ineffectiveness of those

policies. For the probability of elimination and time to elimination, no correlation

was found, likely due to such results depending heavily on MV policies.

Vaccine capacity was also uncorrelated for all control policies assessed. Vac-

cination capacity is most relevant when a lack of capacity prevents a needed vacci-

nation of a farm, and all capacity values which are over this threshold are equally

useful. It does not matter if capacity is 100 farms per day, or 500 farms, if you only

ever need to vaccinate 50 farms at once. This threshold appears to be low. It is

likely that the range of values assessed was too broad, with too many values above

the threshold, for any correlation to be found.

The probability of detection exhibited strong negative correlations with total

incidence whenever RV policies were implemented, but not when MB policies were.

As a reactive policy, detecting infected premises is critically important to the efficacy

of RV policies, but MB policies were not efficacious for other reasons.

Vaccine duration was strongly correlated with all three outputs. Although

most FMD vaccines induce immunity that last approximately 6 months, it has long

been recognised that a longer duration of vaccine-induced immunity could much

reduce the difficulty of controlling the disease, and research efforts into different

vaccine formulations is ongoing (Kamel, A. El-Sayed, and Castañeda Vazquez 2019;

Singh et al. 2019). This sensitivity analysis calculates the sensitivity of the results

to vaccine immunity duration controlling for other parameters, and demonstrates

how important for control efforts it could be if vaccine duration could be extended.

Vaccine efficacy is also significantly negatively correlated with incidence, al-

though it is less correlated with elimination. This accords with initial expectations,

but is likely to be an underestimate of the correlation without range restriction (e.g.

0-100% efficacy rather than 50-100%). Although the range chosen was based off

realistic expectations of the minimum VE required for a vaccine to be used in the

field, it should not be forgotten that this minimum threshold is chosen because of

the known effects of using an ineffective vaccine.

This work has demonstrated that MV in combination with RV policies are

likely to be the most effective at reducing the circulation of FMD in regions already

endemic for the disease. It has also demonstrated that MB policies are less likely

to have a negative effect on circulation. However, a weakness of the work is the

assumption of perfect detection of infected premises for the individual control pol-
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icy combinations. The sensitivity analysis shows that the probability of detecting

infected premises is an important variable for the effectiveness of RV policies, the

assumption of perfect detection therefore likely overestimates for the efficacy of RV

policies in a real-world setting.

An extension of this work would be to broaden the surveillance strategies

simulated and compare their effect on optimal policies. This work has used passive

surveillance, with infected premises being reported at some fixed probability (detec-

tion probability) and fixed delay (detection delay). A more sophisticated approach

to the probability of detection might vary this probability and delay depending on

local conditions, perhaps reporting is more likely when the disease is known to be

in the area, or with a larger farm, although more research would have to be done

to outline the form of this reporting function. Additionally, assessing proactive

surveillance strategies used in reality, such as random proactive surveys of farms

or monitoring sentinel farms, might also offer additional insights into the benefit of

these in an already endemic situation (Caporale, Giovannini, and Zepeda 2012).

Another possibility for extension is the simulation and surveillance of strains

of multiple serotypes, which are known to co-circulate in Turkey and many other

areas. There is evidence that different strains of different serotypes can be more

or less transmissible along different transmission routes (Pacheco, Lee, et al. 2016;

Pacheco, Tucker, et al. 2012). Other work has found that different serotypes might

induce different immunity profiles (Laura W Pomeroy et al. 2015). Does the op-

timal policy change, or do the most important parameters change, when there are

more strains circulating? Similar questions could be asked with more detailed as-

sumptions about the mechanisms of transmission which might contribute to the

disease remaining endemic, such as fomite contamination of the environment, or the

hypothesis of ’carrier’ transmission.

In summary, ring vaccination and mass vaccination are the most effective

control policies for regions where FMD is endemic, however reactive movement bans

are not effective at all in our results despite being implemented in Turkey. Ring

vaccination at a radius of 10 km, in combination with biannual mass vaccination,

emerged as the clear optimal policy for reducing the circulation of disease and max-

imising the probability of elimination. When considering these policies, it was most

important to maximise the radius of ring radius and mass vaccination coverage, and

minimise the interval mass vaccination was implemented on. However, all of these

conclusions must take into account the optimistic bias of the results seen because of

the assumption of perfect detection of infected premises, perfect coverage in control

policy implementation, and no outside re-introductions of disease. More research to
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bound the effects of these assumptions on policy effectiveness should be undertaken.
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Chapter 4
Carrier and Shipment mediated

persistence of FMD

4.1 Introduction

FMDV is highly diverse, capable of infecting many different wild and domesticated

species, with up to 7 immunologically distinct serotypes circulating globally and

multiple lineages within those serotypes. Despite similarities in FMD clinical symp-

toms across species, the severity of those symptoms varies with species infected

and the strain characteristics. This complexity makes efforts to control the disease

difficult, however the picture may be further complicated by the phenomenon of

persistent infection in ruminants, as the virus may remain cryptically present in

otherwise symptom-free populations (Carolina Stenfeldt and Jonathan Arzt 2020).

Infection of ruminants with FMDV leads to several distinct phases of infec-

tion. Upon infection with FMDV, animals will enter a latent phase while the virus

replicates within the host animal. At this point the animal is not infectious and

no symptoms are exhibited. In cattle, approximately 1-2 days before symptoms

are shown the animal will begin shedding infectious virus, becoming sub-clinically

infectious (Yadav et al. 2019). The vast majority of näıve cattle exhibit clinical

symptoms: most commonly lesions around the mouth, tongue and feet (for which

the disease is named), but also fever, milk drop, and possible lameness, during

which they are clinically infectious (Carolina Stenfeldt and Jonathan Arzt 2020).

Approximately 10 days after the appearance of clinical symptoms, a proportion of

the cattle will recover fully and generate protective immunity against the infecting

strain. The remainder however, become persistently infected with no symptoms -
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also referred to as as carrier animals. Cattle are generally acknowledged as carriers

if live virus can be recovered from the Oro-pharyngeal Fluid (OPF) 28 days or more

after infection, although recent efforts have been made to define this status based on

a probability function of persistence instead (Bronsvoort et al. 2016). This period

of sub-clinical infection can potentially last up to 3 years, although most evidence

suggests around 6 months to 1 year is likely (Carolina Stenfeldt and Jonathan Arzt

2020; Tenzin et al. 2008). Experimental evidence suggests that close to 50% of cattle

become carriers; although field studies generally find lower proportions, these stud-

ies are not typically undertaken at the time of infection and hence natural attrition

of carrier animals should be taken into account (C. Stenfeldt et al. 2016; Carolina

Stenfeldt and Jonathan Arzt 2020; Carolina Stenfeldt, Heegaard, et al. 2011; Paul

Sutmoller, McVicar, and Cottral 1968). Vaccination does not prevent an animal

from becoming a carrier (C. Stenfeldt et al. 2016).

Sheep, similar to other ruminant animals, may also become persistently in-

fected with FMDV regardless of the occurrence of clinical disease (S. Alexandersen,

Z. Zhang, et al. 2002; Carolina Stenfeldt, Pacheco, et al. 2020). Swine, despite

experiencing severe clinical symptoms with most strains of FMDV, clear the virus

within 4 weeks and do not appear capable of maintaining persistent FMDV infec-

tion; no live virus is recoverable from tissues 28-100 days post infection, though

specific biological reasons for this are not known (Carolina Stenfeldt and Jonathan

Arzt 2020).

Infectious persistently-infected cattle have been proposed as a mechanism

supporting the persistence of the disease in areas where the disease is currently

endemic (Jonathan Arzt et al. 2018; Condy et al. 1985; P. Moonen and Schrijver

2000; Tenzin et al. 2008). Infectious carrier animals would act as a disease reservoir,

allowing reinfection of the population once immunity from prior waves of infection

has waned. It is, however, unclear whether persistently-infected cattle are capable

of transmitting infectious virus to other susceptible animals (Soren Alexandersen,

Zhidong Zhang, and Alex I. Donaldson 2002; Carolina Stenfeldt and Jonathan Arzt

2020). Outbreaks in Zimbabwe in 1989 and 1991 were blamed on initial carrier

transmission events, however the situation was unclear (Soren Alexandersen, Zhi-

dong Zhang, and Alex I. Donaldson 2002). More recently, research has demonstrated

that the virus taken from the OPF can be infectious (Jonathan Arzt et al. 2018).

A summary of the research by Tenzin et al. (2008) noted that after calculating

a rate of transmission following a synthesis of multiple studies, transmission from

carriers could still not be entirely ruled out. The possibility of carrier animals trig-

gering a new outbreak after a contained outbreak is one of the reasons why the OIE
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mandated trade ban lasts for 6 months if a vaccinate-to-live policy (retaining vacci-

nated animals after the end of the epidemic) is used rather than the 3 months for a

vaccinate-to-kill policy (culling vaccinated animals after the outbreak), as vaccina-

tion does not prevent sub-clinical infection. However, multiple experimental studies

housing susceptible cattle with carrier animals have failed to find evidence of trans-

mission or viral shedding from carrier cattle, and it has never been observed in the

field (Soren Alexandersen, Zhidong Zhang, and Alex I. Donaldson 2002; Moonen

et al. 2004; Tenzin et al. 2008). Additionally, recent field experiments observing

animals in Vietnam and India observed no transmission from carriers (Bertram, Vu,

et al. 2018; Bertram, Yadav, et al. 2020; Hayer et al. 2018). If ”carrier” animals are

capable of infecting naive animals, it is clear that the per-capita probability of such

an event must be very low.

An alternate explanations for the persistence of FMD in endemic areas in-

volves the movement of infected animals into proximity with herds containing sus-

ceptible animals. After an initial wave of infection in an area, the local population of

susceptible animals replenishes after an outbreak via births, movements, or waning

immunity. The time delays between spatially separated outbreaks in a large area

can, therefore, allow the infection to persist in the larger region as there is always

a sub-region where a proportion of the population immunity has waned to act as

new hosts for the disease. The movement of infectious animals, by livestock ship-

ments or transhumance, between these partially connected and newly susceptible

populations therefore offers a clear mechanism for this to occur (A, N.J, and D.J

2011; Fèvre et al. 2006; M. Rweyemamu et al. 2008). Supporting this interpretation

is the known effectiveness of movement bans in reducing the spread of the disease

during ongoing outbreaks (M. J. Tildesley et al. 2019), although movement alone

does not appear to be sufficient to maintain FMDV transmission in regions such as

Cameroon (Kim et al. 2016).

A third explanation is fomite contamination of the environment. The shed-

ding of infectious virus particles by infected animals is known to contaminate nearby

surfaces, and the virus is known to be stable for a time in the environment. The sur-

vival time of the fomites are highly variable, explicitly depending on the surface it is

on and local environmental conditions: the laboratory-investigated optimal survival

conditions for FMDV are pH of 7-7.5, a temperature below 20◦𝐶, and a relative hu-

midity greater than 55%s (Mielke and Garabed 2020). In water, the median fomite

survival time is 28.5 days (11 - 30 days); in biological fluids the median survival time

is only 5 days (1 - 28+ days); in the air median survival was 3 days (1 - 5.5 days),

yet survival analysis indicated that virus fomite survival could exceed 70% on day
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150 if the surface was vegetation even when temperatures were 37◦C (Mielke and

Garabed 2020). Due to this dependence on environmental conditions, and a lack of

available data on such conditions for our work, this hypothesis was not assessed in

this work.

Identifying which drivers of continued transmission are relevant will aid in

targeting data collection and policy recommendations. Mechanistic mathematical

modelling can be a useful technique for exploratory analysis of the emergent dynam-

ics of diseases, without the ethical considerations or expense of real-world animal

experiments, and allowing the dynamics of the system to emerge from the known

characteristics of the disease in question. Much work has been done modelling FMD

in epidemic settings (Björnham, Sigg, and Burman 2020; Neil M. Ferguson, Don-

nelly, and Anderson 2001; Hayama et al. 2013; Kao 2002; M J Keeling et al. 2001;

Schley, Simon Gubbins, and David J. Paton 2009; Michael J Tildesley, Rob Deardon,

et al. 2008; Wada et al. 2017), however relatively few studies have looked at FMD

in endemic settings (Kim et al. 2016; McLachlan et al. 2019; Laura W. Pomeroy

et al. 2017; Ringa and Bauch 2014; Schnell 2019). Schnell (2019) used a farm level

spatial stochastic model to investigate the hypotheses of carrier transmission and

animal movements as drivers for endemicity in the Far North Region of Cameroon,

although within-farm transmission was not included, and found that carrier animals

were sufficient for maintenance of endemic FMD but that mobile pastoralism was

not. Similar conclusions had been drawn by Kim et al. (2016) when they mod-

elled pastoral herds in Cameroon (Kim et al. 2016). McLachlan et al. (2019) used a

stochastic compartmental model to investigate individual herds, finding that outside

introductions of disease were necessary for the maintenance of disease circulation

regardless of the presence of carriers. The importance of carrier animals in endemic

disease maintenance is not straightforward.

In this chapter we use the available detailed agricultural data from the Re-

public of Turkey ,and a modified version of the developed metapopulation model, to

investigate and compare the plausibility of the carrier transmission and movement

hypotheses of endemic FMD maintenance. We simulate combinations of relevant

parameters, assuming one or the other hypotheses, and estimate the probability of

persistence given those parameters. In addition, we use PRCC analysis to estimate

the importance of different parameters to the probability of disease persistence.
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Figure 4.1: A: The regions of Turkey modelled, made up of sets of provinces. Four
different areas were simulated, shown in different colours, relevant statistics for each
of the regions being provided in Table 4.1. ER (red) contains I2, I2 (purple) contains
I1, I1 (blue) contains EZ (green). B: The Eastern Region (ER), shown with farm
locations as points. This region contains all of the others. C: Erzurum Province
(EZ). D: Intermediate 1 (I1) region, containing Erzurum. E: Intermediate 2 (I2)
region, containing the smaller I1 region.
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Figure 4.2: The basic disease compartments which animals in the model can be
in. (M)aternal, (S)usceptible, (E)xposed, (I)nfectious, (R)ecovered and
(C)arrier. Moving between these compartments is done at different rates, depen-
dent on the population of each compartments as well as model inputs.

4.2 Methods

4.2.1 Data

In order to attain reasonable model running times and to explore the effect of chang-

ing the area under investigation, several geographical subsets of Turkey were used.

These corresponded to those data in the thirteen easternmost provinces, split into

nested regions. These regions were selected based on the express Turkish interest

in the area, as well as the ability to split the overall region into relatively equal

areas for the purposes of assessing the effect of area on persistence. The smallest

region modelled was Erzurum Province (EZ); the next largest was Intermediate 1

Region (I1) which contained EZ and added Rize, Artvin and Ardahan. Intermediate

2 Region (I2) contained I1 and added Kars, Igdir, Agri, Mus and Bitlis. Finally, the

largest region modelled contained I2 as well as Hakkari, Siirt, Sirnak, and Van, and

was referred to as Eastern Region (ER). A map of these regions is shown in Figure

4.1, with the relevant statistics for each of them shown in Table 4.1.

4.2.2 Model

The metapopulation model developed in previous chapters, where each farm is

considered a separate population and the within-farm and between-farm dynamics

are modelled interdependently, is suitable for investigation of this with only minor

changes. The structure of the model provides an advantage in modelling potential

carrier transmission - any such transmission would almost certainly be constrained

to those animals closest to the carrier, which can be realistically modelled by as-

suming carrier animals transmit in the within-farm model but do not effect the
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between-farm dispersal kernel. Figure 4.2 demonstrates the modified compartmen-

tal model simulated within each farm, infectious animals now progress to either

recover fully or become carrier animals, with those carrier animals eventually clear-

ing the virus and naturally recovering themselves. The carrier compartment has

5 sub-compartments for a non-exponential distribution of carrier-periods. As con-

trol policies are not considered in this work, vaccine compartments are no longer

included.

The modified compartments require modified ODEs to calculate the move-

ment of animals between them, described in (4.1). The main changes are the ad-

dition of 𝛽𝐶𝑆𝐶/𝑁 to the transmission term, representing the assumed transmission

of carrier animals to susceptible animals, mediated by carrier-specific transmission

parameter 𝛽𝐶 . As described in Table 4.2, this is the carrier specific transmission

parameter, where 𝛽𝐼 is the transmission parameter for acutely infectious animals. In

all values of 𝛽𝐶 investigated, 𝛽𝐼 >> 𝛽𝐶 . _𝐶 is also added as the waning parameter

for the carrier state, with _𝑅 now indicating the waning parameter for the recovered

compartment in order to distinguish it. The other modification is the addition of

𝑘𝐶 as a parameter, which decides the proportion of acutely infectious animals who

will become carriers or recover naturally. 𝑘𝐶 proportion will become carriers, 1− 𝑘𝐶
proportion will recover naturally. As might be expected, setting 𝑘𝐶 = 0 removes

carrier animals from consideration by the model.

Livestock shipments in this model are simulated on a daily basis by replaying

the animal movement data provided by the Republic of Turkey. Transmission via

cattle shipments occurs in two ways, direct shipment of infected animals to the

destination farm, or indirect transmission via fomite contamination of the vehicle,

driver, or surroundings. Shipments are simulated as a random sample of cattle

without replacement from the source farm, hence the probability of selecting at least

one infected animal for shipment (and therefore direct transmission) is proportional

to the shipment size and number of infected animals on the farm. In this model,

indirect fomite transmission can also occur when the source farm is infected, and is

included in the model as a simple probability that fomite transmission occurs given

that the source farm is infected.

As before, at the beginning of the model timeline it is assumed that all

animals are in the susceptible compartment. Although there is no effect from either

carrier transmission or contaminated shipments on the dispersal kernel, the equation

for this is included again for convenience ((4.2)), and the parameters are included

in the parameter description table 4.2. The parameters used for the kernel are not

the values identified in the model fitting work, as that work had not yet finished
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when this work was undertaken. However, the kernel parameters are very similar,

with this kernel providing slightly more probability to long range transmission and

less to short range transmission than the kernel parameters fitted in Chapter 2. The

sensitivity of the results to these parameters is investigated further on.

𝑑𝑀

𝑑𝑡
= 𝛼𝑁

𝑅

(𝑁 − 𝑀) − `𝑀 −Ω𝑛𝑀,

𝑑𝑆

𝑑𝑡
= 𝛼𝑁 (1 − 𝑅

(𝑁 − 𝑀) ) + `𝑀 + _𝑅𝑅 − 𝛽𝐼𝑆𝐼 + 𝛽𝐶𝑆𝐶
𝑁

−Ω𝑛𝑆,

𝑑𝐸

𝑑𝑡
=
𝛽𝐼𝑆𝐼 + 𝛽𝐶𝑆𝐶

𝑁
− 𝜎𝐸 −Ω𝑛𝐸 −Ω𝑑𝐸,

𝑑𝐼

𝑑𝑡
= 𝜎𝐸 − 𝛾𝐼 −Ω𝑛𝐼 −Ω𝑑 𝐼,

𝑑𝑅

𝑑𝑡
= (1 − 𝑘𝐶)𝛾𝐼 + _𝐶𝐶 − _𝑅𝑅 −Ω𝑛𝑅,

𝑑𝐶

𝑑𝑡
= 𝑘𝐶𝛾𝐼 − _𝐶𝐶 −Ω𝑛𝐶.

(4.1)

𝑃(𝑙𝑠) = 1 − 𝑒−𝑇𝑁
𝑖𝑛 𝑓

𝑖
𝑆𝑁 𝑠𝑢𝑠

𝑗
𝐾 (𝑑𝑖 𝑗 ) ,

𝐾 (𝑑𝑖 𝑗) =
1

1 + ( 𝑑
𝑠𝑐𝑎𝑙𝑒

)𝑠ℎ𝑎𝑝𝑒
.

(4.2)

4.2.3 Design

Investigating Carriers

The model was simulated using different sets of parameters to investigate each

hypothesis. The initial work on simulating carrier transmission is referred to as

carrier-1 as a shorthand, and the parameters shown in Table 4.3. Several pa-

rameters were investigated. The effect of farm populations as a modifier for the

probability of persistence was assessed by multiplying farm populations by some

constant, the population multiple parameter in Table 4.3. Likewise for shipments

and 𝑘𝐶 , which were included as a parameter as a null test to allow the effect to be

isolated as due to the introduction of carrier transmission to the model. _𝑅, _𝐶 ,

and 𝛽𝐶 rounded out the parameter list, with 𝛽𝐶 beginning at 2.67e-3 as a highest

estimate from Tenzin et al. (2008).

For each combination of the parameter values outlined in Table 4.3, the model

simulated a 5-year period (2007-2012) one hundred times. 5 years was chosen as the

maximum time-period for which full data was available, and for which it could be
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Table 4.3: The parameter values investigated for carrier-mediated persistence,
carrier-1. The combination of all of these values were simulated.

Parameter Value Set

Population Multiple x1, x2, x4
Shipments simulated, not simulated

_𝑅 365, 730, 1095, 1460 (days)
𝑘𝐶 0.0, 0.5
_𝐶 180, 540, 900, 1260 (days)
𝛽𝐶 2.67e-3, 1.33e-3, 6.67e-4, 3.33e-4, 1.67e-4, 8.33e-5, 4.17e-5

Table 4.4: The parameter values investigated for carrier-mediated persistence,
carrier-2. 𝛽𝐶 was halved until all parameter sets no longer exhibited persistence.
The combination of all of these values were simulated. Population Multiple, Ship-
ments, and 𝑘𝐶 were no longer varied due to the results of carrier-1.

Parameter Value Set

Population Multiple x1
Shipments not simulated

_𝑅 365, 730, 1095, 1460 (days)
𝑘𝐶 0.5
_𝐶 180, 540, 900, 1260 (days)
𝛽𝐶 4.17e-5, 2.08e-5, 1.04e-5, 5.21e-6, 2.61e-6, 1.30e-6,

6.51e-7, 3.26e-7, 1.63e-7, 8.14e-8, 4.07e-8, 2.03e-8,
1.02e-8, 5.09e-9, 2.54e-9, 1.27e-9, 6.36e-10, 3.19e-10,

1.59e-10, 7.95e-11

reasonably assumed that disease persistence indicated endemicity. The proportion

of these simulations where FMD was still present at the end of the year was assumed

to approximate the probability of persistence given those parameters.

Subsequent to the simulation of the carrier-1 parameters, and as an ex-

tension to it, the values of 𝛽𝐶 investigated were extended by repeatedly dividing

by 2 until all parameter sets no longer exhibited persistence, extending down to

7.951400e-11, these values are outlined in Table 4.4. For ease of reference this pa-

rameter set is referred to as carrier-2. Values of 𝛽𝐶 below 4.17e-5 were investigated

with the population multiple set to ”x1”, 𝑘𝐶 at 0.5, and no shipments modelled due

to the results obtained for carrier-1. _𝑅 and _𝐶 were investigated using the same

values used in Table 4.3.

For both carrier-1 and carrier-2 parameter set, the probability of fomite

transmission was 0.

To explore uncertainty in the dispersal kernel parameterisation, the carrier-

2 parameter set was re-simulated whilst independently increasing and decreasing
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kernel parameters 𝑠ℎ𝑎𝑝𝑒, 𝑠𝑐𝑎𝑙𝑒, and 𝑇 . Kernel 𝑠ℎ𝑎𝑝𝑒 was increased from 2 to 2.5

and 3.0. Kernel 𝑠𝑐𝑎𝑙𝑒 was halved to 0.5, and doubled to 2.0. 𝑇 was halved to

4.301e-6, and doubled to 1.720e-5.

Additionally, to explore how the distribution of assumed transmission over

time affects the results obtained, I simulated the carrier-2 parameter set again with

a linearly declining distribution of transmission. Instead of assuming a homogeneous

distribution of carrier transmission over time, each sub-compartment had transmis-

sion equal to 𝛽𝑖𝑐 = 𝛽𝐶 (1 + 𝑛𝑠 − 𝑖)/
∑𝑛𝑠
𝑛=1 𝑖, where 𝛽

𝑖
𝑐 is the transmission rate of the

specific carrier, sub-compartment 𝑛𝑠 is the number of sub-compartments, and 𝑖 is the

sub-compartment index. This meant that newly infected carrier animals were most

infectious, with infectiousness declining linearly as the animals proceeded through

the compartment.

Investigating Shipments & Fomites

Similar to carrier transmission, the ability of shipments to allow for FMD to persist

over the 5 year period was investigated by simulating the model 100 times with

every combination of the parameter values outlined in Table 4.5. Transmission

via shipments is simulated in two ways: (i) by the movement of infected animals;

(ii) by a probability of transmission if the source farm is infected, independent of

whether the shipment is moving infected animals and representing assume fomite

contamination of the vehicle. The parameters once again included a no-shipments

null test. Simulating a smaller and larger area (Erzurum and Eastern Region)

allows for the impact of a larger area for livestock shipments to spread in. Long

range shipments also investigates this possibility that it is the long range possibility

of livestock movements that present the most threat. The probability of fomite

transmission represents the probability that a shipment from an infected source

farm would transmit infection via fomites to a susceptible destination farm. No

carriers were modelled (𝑘𝐶 = 0.0) for all of these parameter combinations.

Long Range (LR) shipments were defined as those shipments where the dis-

tance traversed was over 40 km (25 miles). This was chosen as the distance where a

completely infected farm of median size (141 cattle) would have a 0.01 probability

of infecting a completely susceptible farm of median size via local spread, given the

power law dispersal kernel uses values 𝑎 = 1, 𝑠𝑐𝑎𝑙𝑒 = 1, 𝑠ℎ𝑎𝑝𝑒 = 2. For EZ, excluding

LR shipments reduced the number of records from 336,522 to 207,589 (-38.3%); for

ER it reduced the number of records from 2,291,913 to 1,043,478 (-54.5%). The

parameter sets outlined in Table 4.5 are referred to as shipment-1.

To disentangle the effect of the area modelled from the (correlated) number
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Table 4.5: The parameter values which were investigated for shipment-mediated
persistence, shipment-1. For all model simulations run with these parameters,
𝑘𝐶 = 0.0 (i.e. there were no carrier simulated).

Parameter Values

Shipments simulated, not simulated
Area Modelled EZ, ER

Probability of Fomite Transmission 0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07,
0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,

0.8, 0.9, 1.0
Long Range Shipments simulated , not simulated

_𝑅 365, 730, 1095, 1460 days

Table 4.6: The parameter values which were investigated for shipment-mediated
persistence, shipment-2. For all model simulations runs with these parameters,
𝑘𝐶 = 0.0 (i.e. there were no carriers simulated), and long range shipments simulated.
Each combination of these parameters was simulated. Area Farm Density refers to
the percentage of farms randomly selected from each area to be included in the
simulation.

Parameter Values

Shipments simulated
Area Modelled EZ, I1, I2, ER

Area Farm Density 25, 50, 75, 100 (%)
Probability of Fomite Transmission 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

Long Range Shipments simulated
_𝑅 365, 730, 1095, 1460 days
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of farms modelled on the probability of persistence, the area was split into four

areas as previously defined (ER, I2, I1, EZ), and simulated with either 25%, 50%,

75% and 100% of the farms in that area included. Farms were selected randomly

with probability equal to 25/50/75/100%, and a set of farms were only accepted if

their convex hull area was within 1% of the actual approximate area covered by the

100% set of farms. For each parameter set with density < 100%, 4 replicates were

taken and simulated to mitigate the effect of randomly missing possibly important

nodes in the shipment network. Each combination of area and density was simulated

for 5 years, and persistence assessed as previously and averaged for the replicated.

The probability of persistence was assessed as normal. These parameter sets were

referred to as shipment-2 and are shown in Table 4.6.

Analysis

Analysis was done in R 4.0.2 (R Core Team 2020). PRCC analysis was done using

the package epiR 2.0.19 (Mark Stevenson et al. 2021). Plots were done using ggplot2

3.3.3 (Wickham 2016).

4.3 Results

4.3.1 Carrier-mediated persistence

Simulating the model with the combinations of parameters found in Table 4.3, it

was found that combinations of parameters with infectious carriers could lead to the

persistence of FMD in the population over the 5 year period simulated. This was

true with values of 𝛽𝐶 (carrier transmission) several orders of magnitude smaller

than estimated by Tenzin et al in 2008.

In the carrier-1 parameter set, 𝛽𝐶 took the values on the furthest right in

Figure 4.3, extending from 2.67e-3 down to 4.17e-5, whereas carrier-2 included val-

ues down to 7.95e-11. As shown in Figure 4.4, no association of carrier transmission

with persistence was found for the values of 𝛽𝑐 investigated in the carrier-1 param-

eter set, likely due to the restricted range of values assessed. Figure 4.3 highlights

the range of these values in grey, it is clear that almost all of the values assessed

in this parameter set resulted in persistence being a certainty for most parameters.

_𝐶 and _𝑅 are significantly positively and negatively correlated respectively.

However, when the value of 𝛽𝐶 is extended in the carrier-2 parameter set,

a clear relationship between 𝛽𝐶 and the probability of persistence is visible. Addi-

tionally a pattern is visible in the relationship between _𝐶 , _𝑅, and the probability
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Figure 4.3: The observed relationship between the probability of persistence and
carrier transmission for four different values of carrier duration (indicated on the
right). Each type of line represents a given immunity duration (_𝑅). The red vertical
line indicates the estimated carrier transmission value by Tenzin et al 2008. The
values explored in carrier-1 lie in the grey area to the right. For any given value of
immunity duration (_𝑅), an increase the duration of the carrier state (_𝐶) increases
the probability of persistence. For any given duration of the carrier state (_𝐶), an
increase in the duration of immunity decreases the probability of persistence.
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of persistence in Figures 4.3 and 4.4. Population and the presence/absence of ship-

ments remain uncorrelated with persistence. _𝑅 is weakly negatively correlated with

persistence, a longer duration of immunity decreases the probability of persistence.

𝛽𝐶 and _𝐶 are moderately positively correlated with persistence.

After performing PRCC analysis on the carrier-1 results data, it was found

that the parameter most strongly associated with changes to the probability of

persistence is the presence or absence of carriers in the population (𝑘𝐶), shown

in Figure 4.4. Significantly associated but weakly correlated are _𝑅 (immunity

duration) and _𝐶 (carrier duration). Figure 4.5 shows the average prevalence over

the 5 year period in those simulations where persistence was observed, and 4.6

shows the same in those simulations where no persistence was observed. These

are organised by _𝑅 and _𝐶 , and demonstrate the relatively minor effects these

parameters have on the probability of persistence.

No significant association was found between the probability of persistence

and population size, the presence/absence of shipments, or 𝛽𝐶 . These results remain

when restricting analysis to parameter sets where 𝑘𝐶 = 0.5.

Whereas 𝛽𝐶 is not significantly associated with persistence in the carrier-1

parameter set, a clear and strong correlation between 𝛽𝐶 and the probability of

persistence is visible after analysis of the extended carrier-2 parameter set, shown

in Figure 4.3. Additionally a pattern is visible in the relationship between _𝐶 ,

which is strongly positively correlated with persistence, and _𝑅, which is weakly

to moderately negatively correlated with persistence. These patterns are visible in

Figure 4.3, where after holding _𝐶 constant, a longer duration of immunity decreases

the probability of persistence. Population and the presence/absence of shipments

remain uncorrelated with the probability of persistence.

When _𝐶 = 1
180 , the probability of persistence is 0 at values of 𝛽𝐶 ⪅ 2𝑒 − 08.

When _𝐶 = 1
540 ,

1
900 , or

1
1260 , the probability of persistence is close to 0 at values of

𝛽𝐶 ⪅ 6𝑒 − 10.

4.3.2 Shipment-mediated persistence

Investigating scenarios where shipments can spread disease, and fomite transmission

is simulated, we see that no persistence appears to be possible when the probability

of fomite transmission is 0.0, whether simulating the smaller Erzurum Province (EZ)

or simulating the Eastern Region (ER). The minimum probability of fomite trans-

mission where persistence is observed is 0.2 for Erzurum Province, the minimum is

0.05 for the Eastern Region (Figure 4.7).

For the shipment-1 parameter set, Figure 4.7 demonstrates clearly the re-
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Figure 4.4: PRCC coefficients for carrier-1 and carrier-2 parameter sets, with
error bars indicating 95% CI. 𝑘𝐶 is strongly positively correlated with the probability
of persistence in carrier-1. 𝛽𝐶 is now moderately positively correlated with the
probability of persistence.

111



Figure 4.5: Simulated prevalence of FMD over time in simulations where the
disease does persist over the 5 year period, organized by carrier (columns) and
immunity (rows) duration, taken from the carrier-1 and carrier-2 results. Carrier
duration and immunity duration were used as two of the most important parameters
to illustrate the trends. Prevalence is defined as the number of farms where at least
one animal is acutely infected. The black line indicates the average prevalence for
simulations at that time point, the grey area is the IQR, and the light grey indicates
the 5-95% range of results at that time-point. Blank plots indicate combinations of
carrier and immunity duration where no simulation exhibited persistence. Where
persistence occurred, there is a large gap between the initial outbreak before the
carrier animals re-seed the outbreak and it proceeds towards endemicity.

112



Figure 4.6: Simulated prevalence of FMD over time in simulations where the
disease does not persist over the 5 year period, organized by carrier (columns) and
immunity (rows) duration, taken from the carrier-1 and carrier-2 results. Carrier
duration and immunity duration were used as two of the most important parameters
to illustrate the trends. Prevalence is defined as the number of farms where at least
one animal is acutely infected. The black line indicates the average prevalence for
simulations at that time point, the grey area is the IQR, and the light grey indicates
the 5-95% range of results at that time-point. Blank plots indicate combinations
of carrier and immunity duration where no simulation exhibited persistence. In
these cases, after the initial outbreak burned itself out, there was often no revival of
the disease. With some combinations of parameters there was occasionally a small
outbreak following the decline in immunity, but this did not last to the end of the
5 year period.
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Figure 4.7: The observed relationship between the probability of fomite transmis-
sion and the probability of persistence for shipment-1. The top half of the plot
contains results when no long range shipments were simulated, the bottom half when
long range shipments were simulated. Each linetype indicates a different duration
of immunity (_𝑅), and each colour the area being simulated. As the probability of
fomite transmission increases, the probability of persistence also increases. Erzurum
Province (EZ) requires much a higher probability of fomite transmission for persis-
tence than Eastern Region (ER), as it has both a smaller area and fewer farms.
Within each area, increasing immune duration increased the probability of fomite
transmission required for persistence by a small amount. There is little difference
whether long range shipments are simulated or not.
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lationship between the probability of fomite transmission and persistence, with the

persistence curve seen depending in large part on the area simulated. For the Eastern

Region (ER), persistence is very likely at low probabilities of fomite transmission,

reaching 1 at probabilities of approximately 0.2-0.3 depending on _𝑅. For Erzurum

Province there is a large difference, with persistence rare until the probability of

fomite transmission of approximately 0.4 - 0.5, again varying with _𝑅. Removing

long range shipments results in a small reduction in the probability of persistence,

as does assuming a longer duration of immunity.

PRCC analysis of this shipment-1 parameter set suggests that the area

simulated and the probability of fomite transmission are significantly and strongly

positively associated with the persistence measure when shipments are simulated,

as shown in Figure 4.9. The presence of long-range movements is weakly correlated

with persistence, and the duration of immunity (_𝑅) is weakly negatively correlated

with persistence.

The shipment-2 parameter set attempts to disentangle the effect of a larger

simulated area from simulating a larger number of farms. Figure 4.8 outlines the

relationship between the probability of fomite transmission and persistence. An

increasing number of farms simulated leads to a greater probability of persistence

ceteris paribus, independent of the area simulated. This can be seen in the first two

mini-plots of Figure 4.8: the two plots have similar persistence curves despite the

second simulating an area almost 5 times larger.

PRCC analysis on the results of the shipment-2 parameter sets (including

the 4-region simulations ER, I2, I1, EZ) revealed a strong positive correlation with

the number of farms simulated, in addition to a moderate-to-strong positive correla-

tion with the probability of fomite transmission (Figure 4.9. No correlation between

the area simulated and the probability of persistence was observed.

4.3.3 Sensitivity

The results obtained appear to be generally robust against large variations in the

parameters of the dispersal kernel. Doubling or halving the per-capita transmission

(𝑇) parameter increases or decreases the observed probability of persistence ceteris

paribus, but not to the extent that low rates of carrier transmission no longer support

persistence (Figure 4.12).

The same pattern is seen with the kernel 𝑠𝑐𝑎𝑙𝑒 parameter, seen in Figure

4.11, and the 𝑠ℎ𝑎𝑝𝑒 parameter shown in Figure 4.10. For 𝑠𝑐𝑎𝑙𝑒, doubling this value

to 2.0 leads to very similar probabilities of persistence as when it is not doubled.

Halving it to 0.5 results in a slight decrease in the probability of persistence, but
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Figure 4.8: The observed relationship between the probability of fomite transmis-
sion and the probability of persistence for shipment-2. Each mini-plot indicates
the number of farms simulated for these results above it, and the point type indi-
cates the region simulated. Simulating a greater number of farms leads to a greater
probability of persistence for a given probability of fomite transmission, with the
actual area (𝑘𝑚2) simulated being less important. Persistence curves are most sim-
ilar to each other when the number of farms simulated is similar, with the different
areas (colour) not clustering together in the same manner.
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Figure 4.9: The PRCC coefficients for the shipment parameter sets, with error
bars indicating the 95% confidence intervals. The colour of the bars indicates the
coefficients seen in shipment-1 or shipment-2.
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Figure 4.10: The observed relationship between the probability of persistence and
carrier transmission for four different values of carrier duration (indicated on the
right). Each type of line represents a given immunity duration (_𝑅). Each colour
line indicates a different value of the kernel shape parameter, with red lines referring
to the original value of 2.0. The red vertical line indicates the estimated carrier
transmission value by Tenzin et al 2008. The values explored in carrier-1 lie in the
grey area to the right. For any given value of immunity duration (_𝑅), an increase
the duration of the carrier state increases the probability of persistence. For any
given duration of the carrier state (_𝐶), an increase in the duration of immunity
decreases the probability of persistence. Increasing the shape parameter leads to
persistence becoming less probable as transmission becomes more local. However,
the same overall pattern is still seen with any value of the transmission parameter.
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Figure 4.11: The observed relationship between the probability of persistence and
carrier transmission for four different values of carrier duration (indicated on the
right). Each type of line represents a given immunity duration (_𝑅). Each colour line
indicates a different value of the kernel scale parameter, with green lines referring
to the original value of 1.0. The red vertical line indicates the estimated carrier
transmission value by Tenzin et al 2008. The values explored in carrier-1 lie in the
grey area to the right. For any given value of immunity duration (_𝑅), an increase
the duration of the carrier state increases the probability of persistence. For any
given duration of the carrier state (_𝐶), an increase in the duration of immunity
decreases the probability of persistence. Increasing the scale parameter leads to
persistence becoming more probable, decreasing it leads to persistence being less
probable. Greater durations of the carrier state (_𝐶) leads to compression of the
probabilities towards each other, with the lower scale parameter sometimes leading
to a greater probability of persistence than the greater values. However, the same
overall pattern is still seen with any value of the transmission parameter.
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Figure 4.12: The observed relationship between the probability of persistence and
carrier transmission for four different values of carrier duration (indicated on the
right). Each type of line represents a given immunity duration (_𝑅). Each colour
line indicates a different value of the transmission kernel parameter (T), with green
lines referring to the original value of 8.602e-6. The red vertical line indicates the
estimated carrier transmission value by Tenzin et al 2008. The values explored in
carrier-1 lie in the grey area to the right. For any given value of immunity duration
(_𝑅), an increase the duration of the carrier state (_𝐶) increases the probability
of persistence. For any given duration of the carrier state (_𝐶), an increase in
the duration of immunity decreases the probability of persistence. Increasing the
transmission parameter leads to persistence becoming more likely, decreasing it to
persistence being less probable. However, the same overall pattern is still seen with
any value of the transmission parameter.
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Figure 4.13: A comparison between the probability of persistence for given param-
eter values assuming either no decline of carrier transmission over time, or a linear
decrease. Carrier durations _𝐶 are indicated on the right of each quarter panel.
Each type of line represents a given immunity duration (_𝑅). The red vertical line
indicates the estimated carrier transmission value by Tenzin et al 2008. Although
the assumption of carrier transmission decreasing through time reduced the likeli-
hood of persistence ceteris paribus, larger assumptions of _𝐶 retain persistence even
at very low values of 𝛽𝐶
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once again not to the extent necessary. For 𝑠ℎ𝑎𝑝𝑒, increasing this value decreases

the probability of persistence, but the highest value assessed does not make carrier-

mediated persistence impossible even at low rates of transmission.

The results also appear robust against the assumption of non-declining car-

rier transmission, as shown in Figure 4.13. Although the assumption of declining-

through-time carrier transmission does reduce the probability of persistence all else

being equal, carrier transmission retains the ability to cause persistence even at very

low values of 𝛽𝐶 .

4.4 Discussion

The results obtained suggest that persistence of FMD in populations is possible even

with very small per-capita probabilities of transmission and no other pro-persistence

factor. This suggests that carriers should not yet be set aside as a possible cause for

the persistence of FMD. This effect seemed to be independent of greater population

size, suggesting that current realistic farm sizes are already large enough for this

effect to take place.

The values of 𝛽𝐶 (carrier transmission) investigated are much smaller than

the value estimated by Tenzin et al. (2008), which was itself an overestimate due to

an inability to calculate species-specific 𝛽𝐶 . Depending on assumptions about the

duration of the carrier state and natural immunity, per-capita transmission rates

of 2.03e-8 lead to an even probability of persistence, approximately 1 in 49 million.

These results are not very sensitive to the dispersal kernel parameters. Given the

expense and ethical difficulties with experimental livestock studies, it is unlikely that

an experiment with power sufficient to detect a transmission rate of this magnitude

could be undertaken. However, it may perhaps be possible through meta-analysis

of all studies and experimental field studies, including more recent work (Bertram,

Vu, et al. 2018; Hayer et al. 2018; Parthiban et al. 2015).

Further work to refine estimates of critical parameters would also help to

narrow down the likely range of 𝛽𝐶 sufficient for evasion of experimental evidence

and epidemiological relevance. For our work on carrier animals, the two main factors

affecting carrier-mediated persistence were the average duration of immunity to

FMD, and the average duration of the carrier state. Realistic estimates of these

parameters may therefore be important in determining whether carrier-mediated

persistence is a realistic proposition. Many different studies support different values,

with some supporting shorter durations of 6-12 months and others supporting longer

durations of up to several years (Bertram, Yadav, et al. 2020; Hayer et al. 2018; P.
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Moonen and Schrijver 2000). Assuming a shorter carrier duration of 6 months,

durations of natural immunity longer than 1.5 years appear to rule out undetected

transmission from carrier animals, and evidence suggests immunity can last much

longer (T. R. Doel 2005). However, assuming a longer duration of the carrier state

relaxes this constraint, with realistic durations of immunity theoretically allowing

both carrier transmission to be happening and to have remain undiscovered by

experiments to date.

An assumption of this work was that carrier transmission is homogeneous

through time, meaning that a persistently-infected animal is as likely to infect a

nearby susceptible animal 1 day before it clears the infection as it is 28 days after

infection. Our work with a linear decline model of carrier transmission indicates that

this is an unnecessary assumption - our results also appear valid even with declining

transmission. However, since we have difficulty demonstrating carrier transmission

at all there is no evidence which might inform whether or how transmission might

change over time. Further work should be done on this area, which might enable

better parameterisation of a decline curve.

Our work also addresses fomite contamination of vehicles as a mechanism for

persistence. In the absence of explicitly modelled fomite transmission, the shipment

of potentially infected cattle from infected farms to susceptible farms did not lead to

persistence. Fomite transmission was necessary for persistence to be observed. This

result suggests that the shipment of infected animals to uninfected areas plays less

of a role in persistence, but that contamination of vehicles plays more of a role, sup-

porting the importance of farm bio-security in controlling the spread of FMD. This

matches the evidence, it is known that indirect transmission through fomite contam-

ination played an important role in the 2001 UK outbreak, and that environmental

transmission is sufficient to maintain an FMD epidemic without contributions from

direct transmission (Bravo de Rueda et al. 2015; L.M et al. 2011).

The minimum probability of fomite transmission necessary for the probabil-

ity of persistence to be greater than 0 declined as the number of farms modelled

increased, suggesting that even small probabilities of fomite transmission would be

sufficient for persistence to happen in regions with large numbers of farms, or larger

regions. Our work suggests that it is large numbers of farms that are more important

for this factor, perhaps because as the number of farms increases the probability of

spread to at least one farm increases, or because the number of shipments between

farms increases. Due to the lack of data on actual vehicle movements (as opposed to

the movement of cattle which are assumed to be in one vehicle), we cannot address

the case of one vehicle visiting multiple farms in a row. Our assumption of single-
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farm shipments would mitigate the effect of contamination, suggesting our estimate

of its importance is an underestimate. Additionally we assume that fomites are only

transmitted when the source farm is actively infected. In reality virus can survive on

fomites for up to 6-9 months in the environment given favourable conditions, expand-

ing the time period where fomites might contaminate vehicles and likely reducing

further the minimum necessary to contribute to persistence (Mielke and Garabed

2020). Shipments therefore appear to represent a viable alternate mechanism for

supporting persistence when fomite transmission is explicitly modelled.

A limitation of this work was the inability to properly address fomite trans-

mission, which has a more important role than simulated here due to the contam-

ination of the environment. This represents an important alternate hypothesis for

the maintenance of endemic FMD in these regions. As previously noted by Mielke

and Garabed (2020), currently endemic regions are predominantly in tropical and

sub-tropical regions, where temperatures and relative humidity are high. In their

work, fomites exhibited their highest survival rate at day 150 in these conditions.

It would be useful to begin incorporating environmental data and explicit environ-

mental contamination into this work, in order to better represent this hypothesis.

This work found that: (i) carrier transmission can support the persistence of

FMD in a region; (ii) the rate of carrier transmission necessary for this to occur is

much lower than has been ruled out experimentally; (iii) the movement of infected

cattle alone did not support the persistence of FMD; (iv) the additional assumption

of fomite contamination of cattle shipments was sufficient to allow persistence; and

(v) this effect was significantly mediated by the number of farms rather than the

area simulated.

In conclusion, this work suggests that carrier-mediated persistence cannot

yet be discounted as a possibility, with our modelling approach demonstrating the

ability of even very sporadic carrier transmission events that are unlikely to be de-

tected to support persistence within a greater population. The main factors that

affect the plausibility of carrier transmission being epidemiologically relevant to per-

sistence are the duration of the carrier state and the immune state – further work

on elucidating those are likely to narrow the range of values at which potential car-

rier transmission can be epidemiologically relevant and simultaneously undetected.

However, shipment-mediated persistence is a viable alternate mechanism by which

persistence might occur and requires only small probabilities of fomite transmission.

As fomite transmission is a recognised and well evidenced mechanism, whereas car-

rier transmission has still not been shown to occur in the field, this study suggests

that shipment-mediated persistence remains the more likely of the two hypotheses
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to be occurring. It should also be remembered that epidemiological relevance is not

necessarily policy-relevance - the values of 𝛽𝐶 investigated are very low and unlikely

to have much effect in the face of mass vaccination of animal herds.
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Chapter 5
Assessing Control Policy Performance

With Assumptions of Persistence

Mechanisms

5.1 Introduction

In FMD-endemic regions of the world, it is hypothesised that carrier transmission,

the movement of infected animals, or fomite contamination might contribute to

the maintenance of the disease. Previous work in Chapter 4 assessed two of these

hypotheses (carrier transmission and livestock movements), and found that they

were both plausible with different assumptions. However, given processes being

epidemiologically plausible does not necessarily imply policy relevance.

As stated before, the fundamental concepts for the control of animal diseases

such as FMD are: (i) to prevent access of the virus to susceptible hosts; (ii) to

control contact between infected and susceptible animals; (iii) to reduce the number

of infected animals; (iv) to reduce the number of susceptible animals (Premashthira

et al. 2011). The practical versions of these policies for FMD control are: movement

controls such as quarantine, or zoning; planned culling of infected animals or herds;

and vaccination of susceptible animals.

Previous work in Chapter 3 assessed the potential FMD control policies from

the perspective of an endemic country, finding that the optimal policy for both con-

trolling the disease and potentially eliminating it was a combination of biannual

mass vaccination and reactive ring vaccination. However, this did not include as-

sumptions about the drivers of persistence, which may affect which policy is optimal
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as well as the predicted costs and benefits of specific policies. As has been noted be-

fore however, the existence of persistently-infected animals (and mildly-symptomatic

infections of small ruminants such as sheep) has not prevented the elimination of

FMD from Europe by vaccination (P. Sutmoller and Casas 2002).

This chapter uses the stochastic metapopulation model already developed,

with the addition of the persistence drivers discussed in Chapter 4, to investigate

if and how those mechanisms change the optimal policies for controlling and elimi-

nating FMD within an endemic region’s borders.

5.2 Methods

5.2.1 Model Adjustments

To investigate control policies with the assumption of two different drivers for per-

sistence, the model had to be slightly adjusted for the addition of vaccination. It

was assumed that vaccination did not work on persistently-infected animals due to

the ongoing uncleared infection. This resulted in the disease status compartments

shown in Figure 5.1, the progression between which is described by the equations

in Eq. (5.1). As before, carriers can be removed from this model by setting 𝑘𝐶 = 0.

This is done for the shipment-spread assumption.

The parameter values used for this model are described in Table 5.1.

𝑑𝑀

𝑑𝑡
= 𝛼𝑁

(𝑅 +𝑉𝑆 +𝑉𝑅)
(𝑁 − 𝑀) − `𝑀 −Ω𝑛𝑀,

𝑑𝑆

𝑑𝑡
= 𝛼𝑁 (1 − (𝑅 +𝑉𝑆 +𝑉𝑅)

(𝑁 − 𝑀) ) + `𝑀 + _𝑅𝑅 + _𝑉𝑅
𝑉𝑅 + _𝑉𝑆𝑉𝑆 −

𝛽𝐼𝑆𝐼 + 𝛽𝐼𝑆𝐶
𝑁

−Ω𝑛𝑆,

𝑑𝐸

𝑑𝑡
=
𝛽𝐼𝑆𝐼 + 𝛽𝐶𝑆𝐶

𝑁
− 𝜎𝐸 −Ω𝑛𝐸 −Ω𝑑𝐸,

𝑑𝐼

𝑑𝑡
= 𝜎𝐸 − 𝛾𝐼 −Ω𝑛𝐼 −Ω𝑑 𝐼,

𝑑𝑅

𝑑𝑡
= (1 − 𝑘𝐶)𝛾𝐼 − _𝑅𝑅 −Ω𝑛𝑅,

𝑑𝐶

𝑑𝑡
= 𝑘𝐶𝛾𝐼 − _𝐶𝐶 −Ω𝑛𝐶.

𝑑𝑉𝑅

𝑑𝑡
= −_𝑉𝑅

𝑉𝑅 −Ω𝑛𝑉𝑅

𝑑𝑉𝑆

𝑑𝑡
= −_𝑉𝑆𝑉𝑆 −Ω𝑛𝑉𝑆

(5.1)
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(Ş
en
tü
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Figure 5.1: The disease compartments which animals in the model can progress
through, with vaccination. Maternally Immune (M), Susceptible (S), Ex-
posed/Latent (E), Infectious (I), Recovered (R), Carrier (C), Vaccinated-
Susceptible (𝑉𝑆), and Vaccinated-Recovered (𝑉𝑅).

5.2.2 Scenarios

After adjusting the model to include both carrier animals and controls, the scenarios

from Chapter 3 were used, shown in Table 5.2. An endemic situation was generated

by simulating Erzurum Province (EZ) with no controls implemented for 5 years,

and using the result as an initial start scenario for the imposition of controls. Sepa-

rate endemic simulations were used for the carrier transmission assumption and the

shipment contamination assumption.

As the aim was to investigate the effect of these assumptions on optimal con-

trol policies, the most pessimistic assumptions for each persistence driver was used.

For carrier transmission, it was assumed that the average period of the carrier state

(_𝐶) was 3.5 years (1260 days), and that carrier transmission (𝛽𝐶) was 0.00267, the

highest rate assessed. For shipment contamination, it was assumed the probability

of fomite transmission given that a shipment was from an infected farm was 100%,

and independent of whether the cattle being moved was infected.

For each of these assumptions, the carrier-transmission assumption and the

shipment-spread assumption, the same 81 policy combinations (Table 5.2) were

simulated, to allow comparison with prior results. Each policy combination was

simulated 100 times for 5 years, starting from the relevant endemic situation for that

persistence assumption. Once again, the outcomes of interest were the total number

of infected farms, the proportion of simulations where the disease was eliminated,

and the time to elimination (in simulations where this occurred).
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Table 5.2: The different control strategy parameter values which were assessed
in combination, yielding 81 total policy combinations. For ring vaccination and
movement bans, a radius of 0 km indicates that the policy was not implemented.
For mass vaccination, an interval of∞ indicates that the policy was not implemented.

Parameter Parameter Values (unit)

Vaccine Efficacy {65, 80, 90} %
Ring Vaccination Radius {0, 5, 10} km
Movement Ban Radius {0, 5, 10} km

Mass Vaccination Interval {∞, 365, 182} days

5.3 Results

5.3.1 Assumed Carrier Transmission

No Controls

All control policies were compared to the scenario of no controls, each other, and the

results obtained when no persistence driver was assumed (Chapter 3). For reference,

the average total incidence observed when no persistence driver was assumed and

no controls were implemented, was 7845.77 (𝜎 = 93.13) over the 5-year simulated

period.

When the persistence driver of carrier transmission was assumed, and no

controls were implemented, the disease prevalence did not follow the normal damped

oscillations around an equilibrium but instead remained very high at approximately

800 of the 1108 farms simulated, seen in Figure 5.2. On average, there were 16954

(𝜎 = 133) infected farms over the 5-year period simulated, more than twice that

seen without the persistence driver.
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Figure 5.2: Average Prevalence of FMD with no implementation of control policies
simulated. The vertical dotted line indicates the when the simulated implementation
of the control policy would have begun, on day 0. The line to the right of this
indicates the average prevalence over time, with a darker coloured area around
indicating the IQR of values, and the lighter coloured ribbon indicating the full
range of values.
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Ring Vaccination

With assumed carrier transmission, RV policies were able to produce a reduction in

the circulation of the disease as a policy on their own, however at a reduced efficacy

compared to without the persistence driver (Figure 5.3). Table 5.3 shows the change

in average total incidence, varying from +2.72% compared to no controls when using

the least efficacious vaccine, to -17.05% when using the most efficacious with the

largest ring radius. VE appears to have a large effect on the policy efficacy in these

scenarios, and ring radius a small effect. Incidence remained high regardless of RV

policy implemented, and the probability of elimination was 0.

Movement Bans

Once again, MB policies did not appear to have any effect on the prevalence or inci-

dence of FMD in these simulations (Figure 5.4). Table 5.4 shows that the variation

from the scenario with no controls was minimal, ranging from an average of -0.03%

to +0.04% total incidence, despite almost 2 million ban days implemented.
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Figure 5.3: Average Prevalence of FMD after implementation of ring vaccination
alone. The vertical dotted line indicates the simulated implementation of the control
policy on day 0. Each coloured line indicates the average prevalence for the given
VE, with a darker coloured area around indicating the IQR of values, and the lighter
coloured ribbon indicating the full range of values. The top facet displays results for
a 5 kilometre radius, and the bottom facet for a 10 km radius. Both radii lead to a
large reduction in prevalence compared to the prior endemic state, with the larger
radius leading to a larger decrease. There is a large overlap between different VE
values. Elimination is not observed.
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Figure 5.4: Average Prevalence of FMD after implementation of movement bans
alone. The vertical dotted line indicates the simulated implementation of the control
policy on day 0. The line indicates the average prevalence for the given movement
ban radius, with a darker coloured area around indicating the IQR of values, and
the lighter coloured ribbon indicating the full range of values. The top facet displays
results for a 5 kilometre radius, and the bottom facet for a 10 km radius. Movement
bans on their own do not lead to a reduction in prevalence of FMD when simulated
for an already endemic state.
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Table 5.3: Statistics of the standalone Ring Vaccination (RV) policies, when an
assumed carrier transmission persistence driver is in place. This summarises the
average total incidence, the percentage difference this average is from the baseline
no control scenario, the estimated probability of elimination P(E), the average time
to elimination TTE, and the average number of farms vaccinated.

Radius VE Incidence P(E) TTE Vaccinated

65% 17414.4 (2.72%) 0 - 15,804.26
80% 15827.3 (-6.65%) 0 - 16,379.885 km
90% 14285.54 (-15.74%) 0 - 16,649.02

65% 17407.13 (2.67%) 0 - 17,451.62
80% 15726.3 (-7.24%) 0 - 18,351.6810 km
90% 14064.02 (-17.05%) 0 - 18,829.59

Table 5.4: Statistics of the standalone Movement Ban (MB) policies, when an
assumed carrier transmission persistence driver is in place. This summarises the
average total incidence, the percentage difference this average is from the baseline
no control scenario, the estimated probability of elimination P(E), the average time
to elimination TTE, and the average total number of days farms spent under a
movement ban (Ban-days).

Radius Incidence P(E) TTE Ban-days

5 km 16961.02 (0.04%) 0 - 1,975,629

10 km 16949.09 (-0.03%) 0 - 2,003,573

Mass Vaccination

Assuming carrier transmission, implementing MV policies stand-alone no longer

leads to large reductions in the prevalence or incidence of FMD in the simula-

tions. Figure 5.5 shows the previous pattern of periodic reductions in prevalence,

however all VE values now lead to a return to the disease prevalence of the pre-

implementation period. Implementing MV every 6 months appears to have a small

effect in reducing the prevalence to which the disease bounces back to.

Table 5.5 shows the recorded average total incidence of these scenarios in-

creased compared to the no controls scenario, varying from +20.1% to +55.01%

depending on vaccination interval and VE. Comparing this to Figure 5.5 reveals

that this is likely a result of measuring incidence, the large drops in prevalence seen

mean that more farms are recorded as ”newly infected” when they are reinfected

during the disease resurgence. Measuring prevalence in the period of time after

a pulse of mass vaccination, an interval of 6 months sees an average of -21.6% to
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-43.3% reduction in prevalence as vaccine efficacy increases, and -28.5% to -56.0%

when the interval is 12 months. As expected, there was no possibility of elimination.

Figure 5.5: Average Prevalence of FMD after implementation of mass vaccination
alone. The vertical dotted line indicates the simulated implementation of the control
policy on day 0. Each coloured line indicates the average prevalence for the given
VE, with a darker coloured area around indicating the IQR of values, and the lighter
coloured ribbon indicating the full range of values. The top facet displays results
for a 182 day (6 month) mass vaccination interval, and the bottom facet for a 365
day interval. Mass vaccination can lead to a large reduction in the prevalence of
FMD compared to the prior endemic state, although the wrong interval can blunt
this effect as the reduction is much smaller for yearly mass vaccination compared
to biannual vaccination. Greater VE leads to a greater reduction in prevalence,
especially in the annual mass vaccination scenario.
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Table 5.5: Statistics of the standalone Mass Vaccination (MV) policies, when an
assumed carrier transmission persistence driver is in place. This summarises the
average total incidence, the percentage difference this average is from the baseline
no control scenario, the estimated probability of elimination P(E), the average time
to elimination TTE, and the average number of farms vaccinated.

Interval VE Incidence P(E) TTE Vaccinated

65% 23722.1 (39.92%) 0 - 10,968.56
80% 25687.04 (51.51%) 0 - 10,970.62182 days
90% 26280.54 (55.01%) 0 - 10,971.34

65% 20678.63 (21.97%) 0 - 5,486.17
80% 21148.73 (24.74%) 0 - 5,485.56365 days
90% 20361.62 (20.1%) 0 - 5,484.95

Ring Vaccination and Movement Bans

As seen when comparing control policies with no persistence drivers, when imple-

menting RV policies in concert with MB policies no interaction is seen, and the

effects on prevalence and incidence are close to identical to those seen with the

policies in isolation. Figure 5.6 shows the same pattern as Figure 5.3, a significant

reduction in prevalence with ring vaccination which is strongly dependent on the

VE used. The addition of MB policies appears to have no effect, also similar to

those policies on their own.

Table 5.6 shows a similar range of incidence values, ranging from +2.71%

to -17.11% total incidence compared to no controls at all (although still assuming

carrier transmission).

Ring Vaccination and Mass Vaccination

Combining MV and RV policies leads to an interaction, seen in Figure 5.7. RV poli-

cies reduce the average level of prevalence, and MV policies produce periodic extra

reductions in prevalence before returning to the level set by the ring vaccination.

Increased VE reduces the average prevalence.

Table 5.7 shows that this effects incidence in the same manner as before

ranging from +7.1% compared to no controls, to +32.85% compared to no controls,

depending on the specific combination of RV and MV used. Little variation in

incidence with RV is seen, most of the variation appears to come with MV and VE.

Measuring prevalence in the period of time after a pulse of mass vaccination, an

interval of 6 months sees an average of -19.1% to -38.4% reduction in prevalence

as vaccine efficacy increases, and -21.5% to -44.7% when the interval is 12 months.
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Figure 5.6: Prevalence of FMD after implementation of both ring vaccination and
movement bans. Each column indicates either 5 or 10 km radius for ring vaccination,
and each row a 5 or 10 km radius for movement bans. The vertical dotted lines
indicate the simulated implementation of the control policies on day 0. Lines to the
right of this on each plot indicates the average prevalence for the given day, with
different coloured lines and ribbons referencing different average vaccine efficacy. A
darker coloured area around each line indicates the IQR of values, and the lighter
coloured ribbon indicating the full range of values. Ring vaccination leads to a
reduction in prevalence, however even in concert with this movement bans do not
lead to a further reduction.

138



T
a
b
le

5
.6
:

S
ta
ti
st
ic
s
of

th
e
co
m
b
in
ed

R
in
g
V
ac
ci
n
at
io
n
(R

V
)
an

d
M
ov
em

en
t
B
an

(M
B
)
p
ol
ic
ie
s,

w
h
en

an
as
su
m
ed

c
a
rr
ie
r

tr
a
n
sm

is
si
o
n
p
er
si
st
en

ce
d
ri
ve
r
is

in
p
la
ce
.
T
h
is

su
m
m
ar
is
es

th
e
av
er
ag

e
to
ta
l
in
ci
d
en

ce
,
th
e
p
er
ce
n
ta
ge

d
iff
er
en

ce
th
is

av
er
ag

e
is
fr
om

th
e
b
as
el
in
e
n
o
co
n
tr
ol

sc
en

ar
io
,
th
e
es
ti
m
at
ed

p
ro
b
ab

il
it
y
of

el
im

in
at
io
n
P
(E

),
th
e
av
er
ag

e
ti
m
e
to

el
im

in
at
io
n
T
T
E
,
th
e

av
er
ag

e
n
u
m
b
er

o
f
fa
rm

s
va
cc
in
a
te
d
,
a
n
d
th
e
av
er
ag

e
to
ta
l
n
u
m
b
er

of
d
ay
s
fa
rm

s
sp
en
t
u
n
d
er

a
m
ov
em

en
t
b
an

(B
an

-d
ay
s)
.

R
V

R
a
d
iu
s

M
B

R
a
d
iu
s

V
E

In
c
id
e
n
c
e

P
(E

)
T
T
E

V
a
c
c
in
a
te
d

B
a
n
-d

a
y
s

65
%

17
38

9.
04

(2
.5
7%

)
0

-
15

,8
13

.3
8

1,
93

3,
73

7
80

%
15

84
4.
57

(-
6.
54

%
)

0
-

16
,3
84

.6
0

1,
92

0,
42

5
5
k
m

90
%

14
28

0.
87

(-
15

.7
7%

)
0

-
16

,6
34

.8
4

1,
91

2,
45

3

65
%

17
39

4.
23

(2
.6
%
)

0
-

15
,7
93

.3
7

2,
00

1,
17

3
80

%
15

84
8.
62

(-
6.
52

%
)

0
-

16
,4
00

.7
5

2,
00

0,
51

7

5
k
m

1
0
k
m

90
%

14
25

8.
5
(-
15

.9
%
)

0
-

16
,6
22

.2
2

2,
00

0,
12

9

65
%

17
41

3.
93

(2
.7
1%

)
0

-
17

,4
57

.4
1

1,
89

6,
88

9
80

%
15

72
5.
7
(-
7.
24

%
)

0
-

18
,3
62

.8
6

1,
86

5,
43

9
5
k
m

90
%

14
05

8.
49

(-
17

.0
8%

)
0

-
18

,8
37

.8
1

1,
84

1,
77

1

65
%

17
38

1.
99

(2
.5
2%

)
0

-
17

,4
45

.3
6

1,
99

6,
53

7
80

%
15

70
5.
13

(-
7.
37

%
)

0
-

18
,3
40

.8
3

1,
99

3,
13

6

10
k
m

1
0
k
m

90
%

14
05

3.
38

(-
17

.1
1%

)
0

-
18

,8
45

.5
0

1,
99

0,
64

2

139



The probability of elimination remains 0, and the number of vaccines used is a large

increase on either MV or RV alone.
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Figure 5.7: Prevalence of FMD after implementation of both reactive ring vacci-
nation and proactive mass vaccination. Each column indicates a mass vaccination
interval of either 182 or 265 days, and each row a 5 or 10 km radius for reactive
ring vaccination. The vertical dotted lines indicate the simulated implementation
of the control policies on day 0. Lines to the right of this on each plot indicates
the average prevalence for the given day, with different coloured lines and ribbons
referencing different average vaccine efficacy. A darker coloured area around each
line indicates the IQR of values, and the lighter coloured ribbon indicating the full
range of values. The implementation of biannual mass vaccination is clearly better
than annual mass vaccination, though both lead to a strong reduction in prevalence.
With annual mass vaccination, there is a potential for resurgences depending on VE,
with higher VE reducing this risk. A larger ring vaccination radius leads to an ad-
ditional reduction in virus circulation.

141



T
a
b
le

5
.7
:
S
ta
ti
st
ic
s
o
f
th
e
co
m
b
in
ed

R
in
g
V
ac
ci
n
at
io
n
(R

V
)
an

d
M
as
s
V
ac
ci
n
at
io
n
(M

V
)
p
ol
ic
ie
s,

w
h
en

an
as
su
m
ed

c
a
rr
ie
r

tr
a
n
sm

is
si
o
n
p
er
si
st
en

ce
d
ri
ve
r
is

in
p
la
ce
.
T
h
is

su
m
m
ar
is
es

th
e
av
er
ag

e
to
ta
l
in
ci
d
en

ce
,
th
e
p
er
ce
n
ta
ge

d
iff
er
en

ce
th
is

av
er
ag

e
is
fr
om

th
e
b
a
se
li
n
e
n
o
co
n
tr
o
l
sc
en

a
ri
o,

th
e
es
ti
m
at
ed

p
ro
b
ab

il
it
y
of

el
im

in
at
io
n
P
(E

),
th
e
av
er
ag

e
ti
m
e
to

el
im

in
at
io
n
T
T
E
,
an

d
th
e
av
er
a
ge

n
u
m
b
er

of
fa
rm

s
va
cc
in
a
te
d
.

In
te
rv

a
l

R
a
d
iu
s

V
E

In
c
id
e
n
c
e

P
(E

)
T
T
E

V
a
c
c
in
a
te
d

65
%

22
40

4.
8
(3
2.
15

%
)

0
-

26
,6
47

.4
6

80
%

22
52

3.
95

(3
2.
85

%
)

0
-

27
,7
85

.1
1

5
k
m

90
%

22
02

6.
22

(2
9.
92

%
)

0
-

28
,2
88

.6
3

65
%

22
21

2.
91

(3
1.
02

%
)

0
-

28
,7
40

.4
2

80
%

22
14

9.
11

(3
0.
64

%
)

0
-

30
,4
72

.9
0

1
82

d
ay

s

10
k
m

90
%

21
46

7.
51

(2
6.
62

%
)

0
-

31
,4
98

.2
5

65
%

20
44

0.
07

(2
0.
56

%
)

0
-

21
,5
31

.7
8

80
%

19
67

4.
76

(1
6.
05

%
)

0
-

22
,4
24

.8
2

5
k
m

90
%

18
39

5.
64

(8
.5
%
)

0
-

22
,7
74

.2
1

65
%

20
37

5.
95

(2
0.
18

%
)

0
-

23
,3
99

.2
2

80
%

19
49

7.
91

(1
5%

)
0

-
24

,7
84

.6
9

3
65

d
ay

s

10
k
m

90
%

18
15

7.
15

(7
.1
%
)

0
-

25
,5
57

.7
5

142



Movement Bans and Mass Vaccination

Using both MV and MB together replicated the results of MV alone, with prevalence

periodically being reduced as farms are vaccinated before recovering to the previous

level, seen in Figure 5.8. The radius of the MB policy was not relevant and appears

to have no effect, similar to the policy on its own.

Table 5.8 shows a similar pattern to MV alone, with incidence compared

to no controls ranging from +20.1% to +54.92%, no possibility of elimination, the

number of farms vaccinated varying from 5500 to 11000 depending on the MV

interval, and almost 2 million ban-days. Measuring prevalence in the period of time

after a pulse of mass vaccination, an interval of 6 months sees an average of -21.6%

to -43.3% reduction in prevalence as vaccine efficacy increases, and -28.3% to -56.0%

when the interval is 12 months.

5.3.2 Ring Vaccination, Movement Bans, and Mass Vaccination

Combining all of the control policies together with the assumption of carrier trans-

mission, prevalence can be maximally reduced with biannual mass vaccination com-

bined with ring vaccination of either 5 or 10 km. As MB policies do not appear to

cause a reduction in disease circulation when using this persistence driver, Figure

5.9 shows the same pattern observed for MV and RV combined without MB.

Average total incidence was relatively similar for all combinations of the three

policies, ranging from +6.82% to +32.97% compared to no controls at all (Table

5.9. Measuring prevalence in the period of time after a pulse of mass vaccination,

an interval of 6 months sees an average of -19.1% to -38.5% reduction in prevalence

as vaccine efficacy increases, and -21.5% to -44.7% when the interval is 12 months.
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Figure 5.8: Prevalence of FMD after implementation of both reactive movement
bans and proactive mass vaccination. Each column indicates a mass vaccination
interval of either 182 or 265 days, and each row a 5 or 10 km radius for reactive
movement bans. The vertical dotted lines indicate the simulated implementation
of the control policies on day 0. Lines to the right of this on each plot indicates
the average prevalence for the given day, with different coloured lines and ribbons
referencing different average vaccine efficacy. A darker coloured area around each
line indicates the IQR of values, and the lighter coloured ribbon indicating the full
range of values. The implementation of biannual mass vaccination clearly leads
to lower prevalence than annual mass vaccination, though both cause to a strong
reduction in prevalence. With annual mass vaccination, there is a potential for
resurgences depending on VE, with higher VE reducing this risk. Movement bans
appear to make no difference to the prevalence, regardless of which mass vaccination
policy they are combined with.
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Figure 5.9: Prevalence of FMD after implementation of all three of reactive ring
vaccination, reactive movement bans, and proactive mass vaccination. Each column
indicates a mass vaccination interval of either 182 or 265 days, and each row a
combination of a 5 or 10 km radius for reactive ring vaccination (indicated by r) and
movement bans (indicated by m). The vertical dotted lines indicate the simulated
implementation of the control policies on day 0. Lines to the right of this on each plot
indicates the average prevalence for the given day, with different coloured lines and
ribbons referencing different average vaccine efficacy. A darker coloured area around
each line indicates the IQR of values, and the lighter coloured ribbon indicating the
full range of values. The implementation of biannual mass vaccination clearly leads
to lower prevalence than annual mass vaccination, though both cause to a strong
reduction in prevalence. With annual mass vaccination, there is a potential for
resurgences depending on VE, with higher VE reducing this risk. Ring vaccination
additionally reduces the prevalence of disease, however movement bans appear to
make no difference to the prevalence, regardless of which policy they are combined
with.
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5.3.3 Assumed Shipment Transmission

No Controls

When the persistence driver of fomite contaminated shipments was assumed and

no controls were implemented, disease prevalence continued damped oscillations

toward an endemic equilibrium (Figure 3.1). An average total incidence of 7896

(𝜎 = 85) was observed. For reference, the average total incidence observed when

no persistence driver was assumed and no controls were implemented, was 7845.77

(𝜎 = 93) over the 5-year simulated period. There was very little difference in the

prevalence or incidence observed when assuming contaminated shipments.

Ring Vaccination

Similar to that seen with no persistence driver, the RV policy was able to produce

a strong reduction in the circulation of the disease as a policy on its own, seen in

Figure 5.11. There remained a large overlap in the prevalence seen for different VE

values.

Table 5.10 shows a reduction of -54.12% to -85.26% in average total incidence

compared to a no control scenario, which is almost identical to the results seen when

no persistence driver was assumed. Elimination was not observed, except for once

with a radius of 10 km and VE of 90%, which took 542 days to occur. The number

of farms ranged from approximately 14500 to approximately 19000.

Movement Bans

Once again, the MB policy on its own does not appear to have any effect on the

prevalence of FMD, merely continuing a trend of damped oscillations towards the

endemic equilibrium (Figure 5.12). Table 5.11 shows that the total incidence for

all combinations of MB policies ranged from -0.13% to +0.02%, within the range of

error of the scenario where no controls were implemented.

Mass Vaccination

Implementing MV as a stand-alone policy leads to a large reduction in the prevalence

of FMD even when shipments are assumed to be contaminated and always transmit

infection. Similar to the no persistence drivers scenario, biannual vaccination lead

to a much larger reduction in prevalence and incidence compared to annual mass

vaccination (Figure 5.13). The same pattern of periodic resurgences in prevalence

is seen with annual vaccination.
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Figure 5.10: Average Prevalence of FMD with no implementation of control poli-
cies simulated. The vertical dotted line indicates the when the simulated implemen-
tation of the control policy would have begun, on day 0. The line to the right of
this indicates the average prevalence over time, with a darker coloured area around
indicating the IQR of values, and the lighter coloured ribbon indicating the full
range of values.
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Figure 5.11: Average Prevalence of FMD after implementation of ring vaccina-
tion alone. The vertical dotted line indicates the simulated implementation of the
control policy on day 0. Each coloured line indicates the average prevalence for the
given VE, with a darker coloured area around indicating the IQR of values, and the
lighter coloured ribbon indicating the full range of values. The top facet displays
results for a 5 kilometre radius, and the bottom facet for a 10 km radius. Both
radii lead to a large reduction in prevalence compared to the prior endemic state,
with the larger radius leading to a larger decrease. There is a large overlap between
different VE values. Elimination is not observed.
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Table 5.10: Statistics of the standalone Ring Vaccination (RV) policies, when an
assumed shipment transmission persistence driver is in place. This summarises
the average total incidence, the percentage difference this average is from the baseline
no control scenario, the estimated probability of elimination P(E), the average time
to elimination TTE, and the average number of farms vaccinated.

Radius VE Incidence P(E) TTE Vaccinated

65% 3622.99 (-54.12%) 0.00 - 15,129.65
80% 3214.01 (-59.3%) 0.00 - 14,774.915 km
90% 3044.33 (-61.44%) 0.00 - 14,611.68

65% 1498.6 (-81.02%) 0.00 - 19,151.65
80% 1163.82 (-85.26%) 0.01 541 18,176.9510 km
90% 1076.88 (-86.36%) 0.00 - 18,140.47

Table 5.11: Statistics of the standalone Movement Ban (MB) policies, when an
assumed shipment transmission persistence driver is in place. This summarises
the average total incidence, the percentage difference this average is from the baseline
no control scenario, the estimated probability of elimination P(E), the average time
to elimination TTE, and the average total number of days farms spent under a
movement ban (Ban-days).

Radius Incidence P(E) TTE Ban-days

5 km 7885.41 (-0.13%) 0 - 1,548,974

10 km 7897.54 (0.02%) 0 - 1,890,435
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Figure 5.12: Average Prevalence of FMD after implementation of movement bans
alone. The vertical dotted line indicates the simulated implementation of the control
policy on day 0. The line indicates the average prevalence for the given movement
ban radius, with a darker coloured area around indicating the IQR of values, and
the lighter coloured ribbon indicating the full range of values. The top facet displays
results for a 5 kilometre radius, and the bottom facet for a 10 km radius. Movement
bans on their own do not lead to a reduction in prevalence of FMD when simulated
for an already endemic state.
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Table 5.12: Statistics of the standalone Mass Vaccination (MV) policies, when an
assumed shipment transmission persistence driver is in place. This summarises
the average total incidence, the percentage difference this average is from the baseline
no control scenario, the estimated probability of elimination P(E), the average time
to elimination TTE, and the average number of farms vaccinated.

Interval VE Incidence P(E) TTE Vaccinated

65% 948.8 (-87.98%) 0.99 516.27 10,972.68
80% 926.06 (-88.27%) 1.00 381.72 10,969.69182 days
90% 921.11 (-88.33%) 1.00 367.9 10,972.19

65% 4852.78 (-38.54%) 0.04 681 5,485.09
80% 2044.7 (-74.1%) 0.85 701.71 5,484.37365 days
90% 1755.32 (-77.77%) 0.97 647.10 5,485.37

Table 5.12 shows that this can reduce the average total incidence to 921

over the 5 years simulated. Biannual vaccination makes elimination almost certain,

with annual vaccination this is less so but is positively correlated with VE. VE also

decreases the TTE, declining to an average of 367.9 with biannual vaccination and

90% VE.
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Figure 5.13: Average Prevalence of FMD after implementation of mass vaccination
alone. The vertical dotted line indicates the simulated implementation of the control
policy on day 0. Each coloured line indicates the average prevalence for the given
VE, with a darker coloured area around indicating the IQR of values, and the lighter
coloured ribbon indicating the full range of values. The top facet displays results
for a 182 day (6 month) mass vaccination interval, and the bottom facet for a 365
day interval. Mass vaccination can lead to a large reduction in the prevalence of
FMD compared to the prior endemic state, although the wrong interval can blunt
this effect as the reduction is much smaller for yearly mass vaccination compared
to biannual vaccination. Greater VE leads to a greater reduction in prevalence,
especially in the annual mass vaccination scenario.
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Ring Vaccination and Movement Bans

Implementing ring vaccination in concert with movement bans is the same as im-

plementing ring vaccination alone due to the inefficacy of MB policies. Figure 5.14

shows a significant decrease in the prevalence of FMD is observed compared to no

controls, with a larger decrease in prevalence when using a larger radius. The radius

of MB policies has no effect.

Table 5.13 also demonstrates this, the decline in average total incidence ob-

served range from -54.21% to -61.52% when RV radius is 5 km, but range from

-81.27% to -86.57% when it is 10 km, regardless of MB radius. These are very

similar to those observed for RV as a stand-alone policy.

Elimination is not observed for any of these policy combinations.

Ring Vaccination and Mass Vaccination

Combining Mass Vaccination and Ring Vaccination leads to a much reduced preva-

lence of FMD (Figure 5.15), most especially when combining biannual MV with RV

of either radius. Elimination of the disease was seen in all of the simulations where

this combination of policies was implemented (Table 5.14). Annual MV did not lead

to elimination with the same probability, ranging from 0.05 to 1.00 depending on the

specific combination of annual MV, RV, and VE. Similarly to when no persistence

driver was used, the interaction of RV reduced the periodic resurgences seen with

annual MV. Incidence reductions ranged from -74.5% to -99.01%.
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Figure 5.14: Prevalence of FMD after implementation of both ring vaccination
and movement bans. Each column indicates either 5 or 10 km radius for ring
vaccination, and each row a 5 or 10 km radius for movement bans. The vertical
dotted lines indicate the simulated implementation of the control policies on day 0.
Lines to the right of this on each plot indicates the average prevalence for the given
day, with different coloured lines and ribbons referencing different average vaccine
efficacy. A darker coloured area around each line indicates the IQR of values, and
the lighter coloured ribbon indicating the full range of values. Ring vaccination leads
to a reduction in prevalence, however even in concert with this movement bans do
not lead to a further reduction.
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Figure 5.15: Prevalence of FMD after implementation of both reactive ring vacci-
nation and proactive mass vaccination. Each column indicates a mass vaccination
interval of either 182 or 265 days, and each row a 5 or 10 km radius for reactive
ring vaccination. The vertical dotted lines indicate the simulated implementation
of the control policies on day 0. Lines to the right of this on each plot indicates
the average prevalence for the given day, with different coloured lines and ribbons
referencing different average vaccine efficacy. A darker coloured area around each
line indicates the IQR of values, and the lighter coloured ribbon indicating the full
range of values. The implementation of biannual mass vaccination is clearly better
than annual mass vaccination, though both lead to a strong reduction in prevalence.
With annual mass vaccination, there is a potential for resurgences depending on VE,
with higher VE reducing this risk. A larger ring vaccination radius leads to an ad-
ditional reduction in virus circulation.
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Movement Bans and Mass Vaccination

Due to the amply demonstrated inefficacy of MB policies, using MV in concert with

MB policies did not lead to a larger reduction in prevalence and incidence, but a

very similar reduction to MV alone (Figure 5.16). There was also no mitigating

interaction, seen with RV policies, which could reduce the large resurgences seen

with annual MV.

As with MV alone, reductions in incidence ranged from -38.48% to -88.34%,

and P(E) from 0.04 to 1.00.

5.3.4 Ring Vaccination, Movement Bans, and Mass Vaccination

Combining all of the control policies together is very similar to the combination of

MV and RV: disease circulation can be reduced to elimination of FMD with biannual

mass vaccination, and large reductions are observed annual mass vaccination (Figure

5.17). Ring vaccination at a 10 km radius reduces prevalence further in the case of

annual vaccination. Movement bans had no effect on prevalence or incidence.

Reductions in incidence ranged from -75.74% to -98.99%, and elimination

can be almost certain with biannual mass vaccination and ring vaccination. The

average TTE varied from as high as 694 to as low as 294.73, and the number of

farms vaccinated between approximately 8500 to 14000.
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Figure 5.16: Prevalence of FMD after implementation of both reactive movement
bans and proactive mass vaccination. Each column indicates a mass vaccination
interval of either 182 or 265 days, and each row a 5 or 10 km radius for reactive
movement bans. The vertical dotted lines indicate the simulated implementation
of the control policies on day 0. Lines to the right of this on each plot indicates
the average prevalence for the given day, with different coloured lines and ribbons
referencing different average vaccine efficacy. A darker coloured area around each
line indicates the IQR of values, and the lighter coloured ribbon indicating the full
range of values. The implementation of biannual mass vaccination clearly leads
to lower prevalence than annual mass vaccination, though both cause to a strong
reduction in prevalence. With annual mass vaccination, there is a potential for
resurgences depending on VE, with higher VE reducing this risk. Movement bans
appear to make no difference to the prevalence, regardless of which mass vaccination
policy they are combined with.
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Figure 5.17: Prevalence of FMD after implementation of all three of reactive
ring vaccination, reactive movement bans, and proactive mass vaccination. Each
column indicates a mass vaccination interval of either 182 or 265 days, and each
row a combination of a 5 or 10 km radius for reactive ring vaccination (indicated
by r) and movement bans (indicated by m). The vertical dotted lines indicate the
simulated implementation of the control policies on day 0. Lines to the right of
this on each plot indicates the average prevalence for the given day, with different
coloured lines and ribbons referencing different average vaccine efficacy. A darker
coloured area around each line indicates the IQR of values, and the lighter coloured
ribbon indicating the full range of values. The implementation of biannual mass
vaccination clearly leads to lower prevalence than annual mass vaccination, though
both cause to a strong reduction in prevalence. With annual mass vaccination, there
is a potential for resurgences depending on VE, with higher VE reducing this risk.
Ring vaccination additionally reduces the prevalence of disease, however movement
bans appear to make no difference to the prevalence, regardless of which policy they
are combined with.

163



T
a
b
le

5
.1
6
:
S
ta
ti
st
ic
s
o
f
th
e
co
m
b
in
ed

R
in
g
V
ac
ci
n
at
io
n
(R

V
),
M
ov
em

en
t
B
an

(M
B
),
an

d
M
as
s
V
ac
ci
n
at
io
n
(M

V
)
p
ol
ic
ie
s,
w
h
en

an
as
su
m
ed

sh
ip
m
e
n
t
tr
a
n
sm

is
si
o
n
p
er
si
st
en

ce
d
ri
ve
r
is
in

p
la
ce
.
T
h
is
su
m
m
ar
is
es

th
e
av
er
ag

e
to
ta
l
in
ci
d
en

ce
,
th
e
p
er
ce
n
ta
ge

d
iff
er
en

ce
th
is
av
er
ag

e
is
fr
om

th
e
b
a
se
li
n
e
n
o
co
n
tr
ol

sc
en

ar
io
,
th
e
es
ti
m
at
ed

p
ro
b
ab

il
it
y
of

el
im

in
at
io
n
P
(E

),
th
e
av
er
ag

e
ti
m
e
to

el
im

in
at
io
n
T
T
E
,
th
e
av
er
a
ge

n
u
m
b
er

o
f
fa
rm

s
va
cc
in
at
ed

,
an

d
th
e
av
er
ag

e
to
ta
l
n
u
m
b
er

of
d
ay
s
fa
rm

s
sp
en
t
u
n
d
er

a
m
ov
em

en
t

b
a
n
(B

a
n
-d
ay
s)
.

In
te
rv

a
l

R
V

R
a
d
iu
s

M
B

R
a
d
iu
s

V
E

In
c
id
e
n
c
e

P
(E

)
T
T
E

V
a
c
c
in
a
te
d

B
a
n
-d

a
y
s

65
%

33
3.
73

(-
95

.7
7%

)
1.
00

46
6.
27

12
,8
69

.4
2

15
9,
89

1.
4

80
%

28
3.
49

(-
96

.4
1%

)
1.
00

37
4.
41

12
,7
73

.7
3

15
2,
76

1.
0

5
k
m

90
%

26
5.
56

(-
96

.6
4%

)
1.
00

34
1.
29

12
,7
47

.2
2

15
1,
01

6.
9

65
%

33
4.
14

(-
95

.7
7%

)
1.
00

48
8.
67

12
,8
69

.1
3

24
7,
15

8.
0

80
%

28
4.
16

(-
96

.4
%
)

1.
00

37
0.
32

12
,7
76

.4
6

23
2,
08

9.
0

5
k
m

10
k
m

90
%

26
8.
14

(-
96

.6
%
)

1.
00

35
5.
3

12
,7
57

.2
7

22
7,
68

1.
9

65
%

14
5.
58

(-
98

.1
6%

)
1.
00

39
0.
66

13
,7
18

.4
0

11
6,
83

3.
6

80
%

98
.4
2
(-
98

.7
5%

)
1.
00

32
4.
9

13
,6
43

.6
8

11
3,
94

7.
6

5
k
m

90
%

79
.8
9
(-
98

.9
9%

)
1.
00

29
5.
93

13
,5
86

.0
0

11
1,
94

3.
9

65
%

14
7.
43

(-
98

.1
3%

)
1.
00

40
4.
48

13
,7
47

.6
1

19
4,
81

2.
9

80
%

96
.3
1
(-
98

.7
8%

)
1.
00

33
2.
83

13
,6
46

.1
6

18
7,
86

4.
0

18
2
d
ay
s

10
k
m

10
k
m

90
%

79
.8
1
(-
98

.9
9%

)
1.
00

29
4.
73

13
,5
97

.8
6

18
3,
91

4.
2

65
%

19
15

.5
6
(-
75

.7
4%

)
0.
12

69
4

12
,9
97

.9
5

55
2,
68

8.
3

80
%

63
0.
08

(-
92

.0
2%

)
0.
92

68
5.
98

8,
91

2.
57

26
3,
48

9.
3

5
k
m

90
%

50
3.
56

(-
93

.6
2%

)
0.
99

58
1.
81

8,
52

1.
02

23
7,
06

9.
8

65
%

18
64

.7
4
(-
76

.3
8%

)
0.
16

69
6.
19

12
,8
21

.3
7

92
2,
43

6.
9

80
%

64
9.
57

(-
91

.7
7%

)
0.
92

73
8.
78

8,
98

7.
37

44
9,
88

9.
8

5
k
m

10
k
m

90
%

50
0.
69

(-
93

.6
6%

)
0.
99

57
7.
01

8,
53

1.
76

38
6,
63

4.
8

65
%

42
7.
27

(-
94

.5
9%

)
0.
74

79
1.
05

11
,8
78

.2
2

20
9,
44

5.
5

80
%

16
5.
57

(-
97

.9
%
)

0.
98

56
4.
35

9,
45

6.
61

14
3,
62

3.
5

5
k
m

90
%

13
4.
4
(-
98

.3
%
)

1.
00

51
1.
67

9,
28

9.
44

14
0,
00

6.
0

65
%

42
4.
18

(-
94

.6
3%

)
0.
69

72
3.
01

11
,8
75

.5
4

40
2,
89

1.
7

80
%

18
7.
45

(-
97

.6
3%

)
0.
97

58
6.
96

9,
71

8.
20

27
5,
10

2.
4

36
5
d
ay
s

10
k
m

10
k
m

90
%

13
6.
11

(-
98

.2
8%

)
1.
00

50
1.
99

9,
27

3.
50

24
9,
72

1.
8

164



5.4 Discussion

The results demonstrate that the assumption of carrier transmission can reduce the

effectiveness in reducing infections of individual control policies, drastically reducing

the effectiveness of mass vaccination. The pessimistic assumption of the greatest

infectiousness of carrier animals, with the longest duration, increased the average

number of infections in the no-controls scenario to 16,954, and reduced the oscilla-

tions around the endemic equilibrium compared to the scenario where no assumption

of carrier transmission was made.

RV policies alone remained relatively effective as control policies with this

persistence driver assumption, although the average reduction in incidence fell from

a maximum of -87% with no persistence drivers, to a maximum of -17%. VE also ap-

peared more relevant in this scenario, as there was less overlap between the observed

prevalence for each VE. RV policies were also relatively more effective compared to

MV policies, with the assumption of carrier transmission, as the only policy that

permanently reduced the prevalence of FMD in the simulations.

MB policies were once again not useful as control policies with the assumption

of carrier transmission, failing to reduce the circulation of FMD in the simulations

when implemented as stand-alone policies or in concert with other control policies.

This was similar to that observed when no persistence driver was assumed, and

is to be expected as the assumption of carrier transmission does not increase the

transmission potential of livestock shipments.

MV policies were also rendered much less effective when carrier transmission

was assumed to be occurring; instead of reducing the prevalence of FMD to a low and

manageable level, or eliminating the disease entirely, the periodic mass vaccination

of farms only reduced prevalence temporarily before a resurgence to the prevalence

seen prior to vaccination. This is a consequence of the pessimistic assumption about

the carrier transmission parameters, which are very infectious and remain so for a

long time, but also because vaccination does not induce clearance of the virus in

carrier animals. Because of this limitation, prophylactic vaccination of a farm will

leave many still-infectious carrier animals behind, acting as a reservoir of disease to

infect other animals when their immunity wanes. Due to the pulse-like nature of

mass vaccination, this occurs all at one time, whereas ring vaccination is a constant

reactive process and so constantly vaccinates farms, reaching an equilibrium level

where vaccination is matched by reinfections from carrier animals that vaccination

cannot cure. As might be expected with these assumptions, none of the control

policies could cause elimination of the disease.
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Whether or not the optimal policy with this pessimistic assumption is RV

alone or in combination with MV depends on the relative importance of reducing

average prevalence or incidence. Although the combination of RV and MV poli-

cies produced the lowest average prevalence seen with this persistence driver and

assumptions, the purpose of implementing control policies such as these is to pro-

duce lasting changes in the burden and distribution of disease, and by this criteria

only RV policies can be called effective within this set of assumptions. However, it

is likely that the effectiveness of MV policies would be greatly improved with less

pessimistic assumptions about the infectiousness and duration of the carrier state.

The assumption of the fomite-contaminated shipments driver appears to have

no effect on the relative rankings or actual effectiveness of the control policies sim-

ulated. With this assumption, RV and MV policies are most effective and MB

policies have no effect. This was unexpected, as the assumption that all shipments

from an infected farm will infect the source farm should raise the importance of this

transmission route, and make efforts to address it more important. This would tend

to support prior theorising that, at the scale of simulation, livestock shipments are

not an important transmission route. A limitation of the model simulation is the

lack of data on vehicles: in reality a contaminated vehicle can infect multiple farms,

possibly being contaminated for several days, which would increase the importance

of this transmission route. In our simulation, due to a lack of data, this cannot

be tracked and it is assumed only the initial movements from an infected farm to

another farm cause infection. This model would therefore tend to underestimate

the importance of this transmission route. Additionally, RV and MV can efficiently

reduce the prevalence of infected premises, which are necessary for this transmission

route to occur in the simulation at all.

A limitation of this work is the assumption of completely protective vaccines.

It is known that vaccinated animals are sometimes sub-clinically infected (depen-

dent on vaccine strength and time before challenge), and that vaccination does not

prevent cattle from becoming carriers, and in this model therefore carriers (Carolina

Stenfeldt and Jonathan Arzt 2020). It is likely that this would further reduce the

efficacy of RV and MV policies, as vaccination would become less effective in pre-

venting infection and the formation of a (in this model) disease reservoir of carrier

animals. This work should be done to see if this effect does indeed occur.

Another limitation is the lack of vehicle data, and more direct modelling of

fomite contamination of the environment. It is unfortunate that this requires access

to vehicle-specific movement data, as well as the environmental data of the farms

simulated, but work to simulate this important transmission route with more fidelity
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is likely to improve the accuracy and relevance of the results obtained.

This may be compared to real-world implementations of mass vaccination

campaigns against FMD, where the campaigns take much longer for elimination

of the disease to occur but elimination is possible. In Turkey, mass vaccination

campaigns have allowed the reduction in prevalence of FMD to only 6 outbreaks

in the last quarter of 2021 (FAO 2022). On the strength of the evidence, mass

vaccination with reactive ring vaccination is the optimal control policy for endemic

countries with enough resources to contemplate elimination, and the results of this

theoretical work with high carrier transmission may (conditional on the model) be

taken as evidence against the assumed rate of carrier transmission.

In summary, the assumption of different persistence drivers does make a

difference in the optimal disease control policy if (high) carrier transmission and du-

ration is assumed. Ring vaccination policies become relatively more effective as the

only policy that produces a lasting change in the prevalence and distribution of the

disease, whereas mass vaccination is much reduced in efficacy and movement bans

remain of little importance. However, assuming high transmission from livestock

movements does not affect the efficacy of the control policies assessed, and therefore

the optimal control policy combination with this assumption remains a combination

of biannual mass vaccination and ring vaccination. Given that different assumed

persistence drivers may lead to different optimal control policies, it is important

that we research the mechanisms underlying persistence in reality, in order to in-

vestigate their potential as roadblocks to elimination of FMD from more regions of

the world.
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Chapter 6
Conclusions

In this thesis we have outlined our development of an endemic epidemiological mod-

elling framework, and explored the dynamics of FMD in endemic regions of the

world. This model was applied to assess different policies used to control the disease

in endemic regions, in addition to exploring the effects of hypothetically infectious

carrier animals and comparing these to other hypothesised persistence drivers.

In Chapter 2 we described the development of a stochastic spatial metapop-

ulation model, keeping in mind the specific challenges of simulating endemic FMD

which have led to a dearth of epidemiological models assessing such disease environ-

ments. In particular, the lack of good data is a common handicap for research into

this area due to the many other problems that countries with endemic FMD may

face, fortunately ameliorated for our research due to the data available from Turkey.

The model includes birth and death demographics, maternal immunity, and waning

immunity, but could not include multiple serotypes at the scale used because of a

lack of explicit serotype data. Identification analysis indicated that the data avail-

able was sufficient for the parameterisation of the transmission dispersal kernel, and

fitting of this model framework resulted in estimation of this kernel using the quality

data available. This indicated that between-farm transmission in this environment

was likely to be slightly less likely than observed in the UK 2001 FMD outbreak,

as all of the most likely parameter values varied a minor amount in the direction of

more local transmission compared to the values found for that epidemic.

Resolving some of this parameter uncertainty allowed for a more robust ex-

ploration of plausible endemic FMD control policies in Chapter 3. We applied these

parameter estimates and knowledge of common control policies for FMD to exhaus-

tively assess the efficacy of such policies in reducing the prevalence of FMD in regions

where the disease was endemic, in addition to the potential for elimination and speed
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of doing so. In our analysis we found that reactive ring vaccination in combination

with biannual mass vaccination was optimal, in that these combinations were most

likely to eliminate the disease within the area assessed, and the fastest to do so. An

unexpected results was the failure of controls over livestock movements to have an

effect on disease prevalence or incidence. It was hypothesised that shipments were a

less relevant transmission route in regions where the disease is already widespread,

or that the simulated region was too small for the effect of livestock movements to

be observed. Sensitivity analysis of these control policies indicated that the mass

vaccination interval and coverage, as well as the ring vaccination radius, were most

important for the success of these control policies.

Chapter 4 used the model to explore the potential effects of infectious carrier

cattle as a driver for persistence, and compared it to the alternate hypothesis of

movements of infected animals spreading FMD to susceptible areas. This explo-

ration found that infectious carrier animals could act as a persistence driver even

at very low rates of transmission, suggesting that current research cannot yet rule

out the epidemiological relevance of this potential transmission route. Sensitivity

analysis suggested routes to narrow down the feasible values for this hypothesised

transmission further. The movement of infected animals was found not to sup-

port persistence without an assumption of contaminated vehicles, supporting the

importance of bio-security measures for controlling the spread of FMD. Persistence

through this transmission route depended on the number of premises under inves-

tigation rather than the area, suggesting that the number of shipments was more

important than long-range shipments for this transmission route.

Following this, the potential effects of the two persistence drivers on the

efficacy of FMD control policies were assessed in Chapter 5. Using pessimistic as-

sumptions about the persistence drivers, carrier transmission as a persistence driver

led to dramatic changes in the baseline prevalence of the disease, and significantly

limited the effectiveness of each control policy assessed. Ring vaccination fared best

with these pessimistic assumptions, whereas mass vaccination was rendered ineffec-

tive. These results suggest the impact of (high) carrier transmission would be large,

and might also act as Bayesian evidence in favour of low (or 0) carrier transmission

rates due to the severity of the effects. In contrast, the assumption of contaminated

livestock movements had no effect on the effectiveness of the control policies, and

the optimal control policies remained the same. This persistence driver has a larger

evidence base in support of its existence, in comparison to carrier transmission, and

this therefore suggests current policies are sufficient to control the disease in the

presence of this contamination.
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The model developed differs from the most common FMD models in the

intention behind it and the mechanisms that have been included. As discussed in

Zaheer, Mo D. Salman, et al. (2020b), the vast majority of stochastic spatial models

are intended for use simulating epidemics of FMD, and do not include relevant

features of endemic FMD such as births and deaths, multiple circulating serotypes,

and routine prophylactic vaccination. This model is spatial and stochastic, but also

includes the demographics of births and deaths and routine prophylactic vaccination.

It is also capable of simulating multiple circulating serotypes, although this was not

used in the thesis due to data issues discussed in Chapter 2. These features of

the model make it well-suited to simulating endemic FMD disease and addressing

questions of control policy, where the others are not. Finally, the model differs from

normal in the explicit modelling of within-farm transmission and synchronisation of

this with between-farm transmission. This allowed for the more natural expression

of carrier transmission as a within-farm phenomenon rather than a more clunky

construct of entire herds being in the carrier state as in Schnell (2019).

The analysis of control policies mostly found results that accorded with ex-

pectations about the effectiveness of different control policies. It is known that, given

a rigorous enough mass vaccination campaign in combination with adequate biose-

curity, FMD can be eliminated from a region. This has worked in Europe and most

of South America, and the PCP for FMD acknowledges that freedom from FMD

without vaccination entails going through a stage of managing the disease through

vaccination (Leforban 1999; Naranjo and Cosivi 2013; K. Sumption, Domenech, and

Ferrari 2012). Control policies once freedom from FMD is achieved tend to differ

from endemic control policies in their use of culling, the economic importance of

livestock to the countries that are currently endemic for FMD mitigates against

reactive culling in response to an outbreak. There is also likely an effect of what

equilibrium a country is used to: countries that are free have adapted to not having

FMD and having unrestricted livestock trade; countries that are endemic are used

to having FMD and restricted livestock trade, so they likely see the costs of another

outbreak as lower resulting in less political support for culling. As this work was

based on endemic regions, and Turkey does not cull, culling was not included as a

control policy option.

The most unexpected result was the lack of efficacy of movement restrictions

to reduce the observed incidence of FMD. Modelling of the 2001 UK epidemic found

that movement restrictions resulted in a reduction of predicted FMD spread relative

to the counterfactual, however the movement of entire infected herds in endemic re-

gions of Cameroon was not enough to support endemic FMD (Schnell 2019; M. J.
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Tildesley et al. 2019). This result therefore suggests that movement restrictions are

much less efficacious in endemic settings, but remain important in epidemic settings.

We explored a scenario of fomite transmission in Chapter 5 that assessed potential

contamination of the vehicles used to ship the recorded shipments, which also found

no effect of movement restrictions. However, structural uncertainty remains, as our

shipment records are unlikely to be a full accounting of animal movements in the

region, and certainly do not include informal movements of people or vehicles. Reac-

tive movement bans are common in both epidemic and endemic countries, however

the benefit of them may be less than expected in endemic regions, and this work

adds to the uncertainty.

The analysis of carrier transmission and animal movements as potential

drivers of endemic FMD demonstrated that both mechanisms were capable of sup-

porting endemicity. However, it did not include all possible drivers of endemic FMD.

For example, fomite contamination of the environment also occurs and is known to

be a significant contributor of overall transmission on a farm (Bravo de Rueda et al.

2015). Unfortunately this could not be included due to the lack of adequate data

on farm environments. Another possibility is the repeated importation of FMD

across borders, likely due to illegal or unrecorded animal movements which happen

in many regions, which have been recognised as a factor contributing to the failure

of control schemes in South East Asia (Blacksell et al. 2019). This is essentially the

mechanism investigated in this work, of patch extinction and reintroduction from a

currently infected area, but the movements would be unrecorded and so were not in

the model. However, the results of this work should still apply to these unregistered

movements, rather the control policies need to effect the unregistered movements

to have the effect intended. Animal reservoirs are another source of endemic FMD,

it is known that African Buffalo are chronic carriers of FMD and can transmit to

uninfected cattle, this is a significant factor in the recurrent outbreaks in South

Africa and nearby countries (Brückner et al. 2002). Again, this is already essen-

tially the investigated carrier transmission model and the results obtained should

be applicable.

The importance of fomite contamination to transmission accords with the

evidence that has accumulated. Indirect contamination routes are relatively un-

derstudied due to the difficulty of accessing data on the informal contacts between

farms, assuming such data exists; in endemic areas many farmers do not record who

visits the farm and when. Data on these contacts in free countries is generally col-

lected through farmer surveys or commercial data, which have their own difficulties

(Sansamur et al. 2020; Sanson et al. 1993). Given the right conditions however,
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virus particles can survive in the environment for days to months, and experimental

tests of indirect transmission found that roughly 44% of transmission was through

this route (Bravo de Rueda et al. 2015; Mielke and Garabed 2020). This indirect

transmission route is relevant in both epidemic and endemic scenarios (even public

access to the countryside may be a risk (Auty 2019)), and is the target of movement

restrictions control policies. Our work supports the importance of this transmission

route, and the importance of biosecurity measures to prevent fomite contamination.

The results here are likely to be scalable to larger regions, as the area and

number simulated is already quite large; Erzurum Province is 25,000 𝑘𝑚2 and the

entire Eastern Region is 120,000 𝑘𝑚2 (approximately the size of England). As

previously discussed, the control policy results are generally in accordance with

what is known to be possible; mass vaccination has led to the elimination of FMD

from the entirety of Europe. However, a major determining factor in the success or

failure of the policies concerned is state capacity: the ability of states to actually

accomplish its policy goals. The model developed allows some variation in the

efficacy of different policy options but cannot account for features not included in

the model which can effect the spread of FMD and which a government attempting

to control FMD needs to be concerned with. One of those factors is the illegal

movements of animals (or people), which are not recorded. The UK 2001 outbreak

was found to be due to illegal importation of infected feed, and transboundary animal

importation is known to be a large industry in the South East Asia (Blacksell et al.

2019; L.M et al. 2011). A state’s capacity to control this is likely to be critical to

the success of their efforts.

The work within this thesis suggests a number of potential avenues to pursue.

One possibility is to reduce the complexity of the model by reducing or removing

the within-farm stochastic compartmental model, with the aim of sufficient speed to

be able to simulate, and use data for, the entirety of Turkey. This would allow more

data for parameter estimates, also assisting in the addition of multiple serotypes

to the model, which was infeasible due to the lack of serotype-specific data at the

scale the model was used at. On the other hand, this might lead to the removal of

demographics and explicit maternal immunity from the model, reducing the accu-

racy of different areas of the model. Simulations covering larger areas might also

allow investigation of which spatial scales livestock shipments begin to have material

effects on control policies. As discussed in Chapter 3, where preventing the move-

ment of livestock failed to impact on FMD prevalence, the spatial scale simulated

might change the impact of the long-range disease spread events which livestock

movements present a risk of.
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Other avenues include explicitly simulating the spread of multiple simulta-

neous serotypes, and the circumstances in which this does or does not alter optimal

control strategies. Our modelling framework could also be adapted to add more

varied and targeted surveillance strategies, which might be combined with the sim-

ulation of multiple serotypes to investigate which surveillance and control strategies

are most robust to the introduction of strains which have escaped vaccine-induced

immunity. Other directions to pursue include but are not limited to directly attempt-

ing to simulate fomite contamination of farms; simulation of farm-level biosecurity

variation; and comparisons between state-led and farmer-directed disease controls.

Finally, the high-quality data available for Turkey might also allow artificially de-

grading the data to investigate which sections of the data are most important to

collect for different objectives, which could inform surveillance strategies in many

regions where the disease remains endemic.

Whilst there is much to be done, we have made contributory steps in analysing

the spread of Foot-and-Mouth Disease in endemic regions, as well as contributing

to the debate over the existence of infectious persistently-infected livestock animals.

We hope to continue this work into the future, and see where the future leads.
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and-mouth disease vaccines: recent updates and future perspectives”. In:

179

https://doi.org/10.1175/1520-0469(1975)032<1977:aemfns>2.0.co;2
https://doi.org/10.1175/1520-0469(1975)032<1977:aemfns>2.0.co;2
https://doi.org/10.1063/1.1378322
https://doi.org/10.1128/cmr.17.2.465-493.2004
https://doi.org/10.1128/cmr.17.2.465-493.2004
https://doi.org/https://doi.org/10.1016/j.prevetmed.2007.05.019
https://doi.org/https://doi.org/10.1016/j.prevetmed.2007.05.019
https://doi.org/10.1016/j.prevetmed.2013.08.010
https://doi.org/10.1016/j.prevetmed.2013.08.010
https://doi.org/https://doi.org/10.1111/tbed.12774
https://doi.org/https://doi.org/10.1111/tbed.12774
https://doi.org/10.1023/a:1016599411804
https://doi.org/10.20506/rst.21.3.1356
https://doi.org/10.1098/rsif.2008.0433


Archives of Virology 164.6, pp. 1501–1513. issn: 0304-8608, 1432-8798. doi:

10.1007/s00705-019-04216-x.

Kao, Rowland R. (June 2002). “The role of mathematical modelling in the control

of the 2001 FMD epidemic in the UK”. In: Trends in Microbiology 10.6,

pp. 279–286. issn: 0966842x. doi: 10.1016/s0966-842x(02)02371-5.

Keeling, M J, M E Woolhouse, D J Shaw, L Matthews, M Chase-Topping, D T

Haydon, S J Cornell, J Kappey, J Wilesmith, and B T Grenfell (Oct. 2001).

“Dynamics of the 2001 UK foot and mouth epidemic: stochastic dispersal

in a heterogeneous landscape”. en. In: Science 294.5543, pp. 813–817. doi:

10.1126/science.1065973.

Keeling, M. J., M. E. J. Woolhouse, R. M. May, G. Davies, and B. T. Grenfell (Jan.

2003). “Modelling vaccination strategies against foot-and-mouth disease”. In:

Nature 421.6919, pp. 136–142. issn: 1476-4687. doi: 10.1038/nature01343.

Keeling, Matt J (June 2005). “Models of foot-and-mouth disease”. en. In: Proc. Biol.

Sci. 272.1569, pp. 1195–1202. doi: 10.1098/rspb.2004.3046.

Keeling, Matt J., Edward M. Hill, et al. (Jan. 22, 2021). “Predictions of COVID-

19 dynamics in the UK: Short-term forecasting and analysis of potential

exit strategies”. In: PLOS Computational Biology 17.1. Publisher: Public

Library of Science, e1008619. issn: 1553-7358. doi: 10.1371/journal.pcbi.

1008619.

Keeling, Matt J. and Pejman Rohani (2008). Modeling Infectious Diseases in Hu-

mans and Animals. Princeton University Press. doi: https://doi.org/10.

1515/9781400841035.

Kermack, William Ogilvy, A. G. McKendrick, and Gilbert Thomas Walker (Aug. 1,

1927). “A contribution to the mathematical theory of epidemics”. In: Pro-

ceedings of the Royal Society of London. Series A, Containing Papers of

a Mathematical and Physical Character 115.772. Publisher: Royal Society,

pp. 700–721. doi: 10.1098/rspa.1927.0118.

Kim, Hyeyoung, Ningchuan Xiao, Mark Moritz, Rebecca Garabed, and Laura W.

Pomeroy (2016). “Simulating the Transmission of Foot-And-Mouth Disease

Among Mobile Herds in the Far North Region, Cameroon”. In: Journal of

Artificial Societies and Social Simulation 19.2, p. 6. issn: 1460-7425. doi:

10.18564/jasss.3064.

Kitching, R P, A M Hutber, and M V Thrusfield (Mar. 2005). “A review of foot-and-

mouth disease with special consideration for the clinical and epidemiological

factors relevant to predictive modelling of the disease”. en. In: Vet. J. 169.2,

pp. 197–209. doi: 10.1016/j.tvjl.2004.06.001.

180

https://doi.org/10.1007/s00705-019-04216-x
https://doi.org/10.1016/s0966-842x(02)02371-5
https://doi.org/10.1126/science.1065973
https://doi.org/10.1038/nature01343
https://doi.org/10.1098/rspb.2004.3046
https://doi.org/10.1371/journal.pcbi.1008619
https://doi.org/10.1371/journal.pcbi.1008619
https://doi.org/https://doi.org/10.1515/9781400841035
https://doi.org/https://doi.org/10.1515/9781400841035
https://doi.org/10.1098/rspa.1927.0118
https://doi.org/10.18564/jasss.3064
https://doi.org/10.1016/j.tvjl.2004.06.001


Kitching, R. P. and J. S. Salt (Jan. 1, 1995). “The interference by maternally-derived

antibody with active immunization of farm animals against foot-and-mouth

disease”. In: British Veterinary Journal 151.4, pp. 379–389. issn: 0007-1935.

doi: 10.1016/s0007-1935(95)80127-8.

Knight-Jones, T J D, A N Bulut, S Gubbins, K D C Stärk, D U Pfeiffer, K J

Sumption, and D J Paton (Feb. 2015). “Randomised field trial to evaluate

serological response after foot-and-mouth disease vaccination in Turkey”. en.

In: Vaccine 33.6, pp. 805–811. doi: 10.1016/j.vaccine.2014.12.010.

Knight-Jones, T J D, L Robinson, B Charleston, L L Rodriguez, C G Gay, K J

Sumption, and W Vosloo (2016). “Global Foot-and-Mouth Disease Research

Update and Gap Analysis: 2 – Epidemiology, Wildlife and Economics”. In:

Transboundary and Emerging Diseases., p. 16. doi: 10.1111/tbed.12522.

Knight-Jones, T. J. D., S. Gubbins, A. N. Bulut, K. D. C. Stärk, D. U. Pfeiffer, K. J.

Sumption, and D. J. Paton (Feb. 2016). “Mass vaccination, immunity and

coverage: modelling population protection against foot-and-mouth disease in

Turkish cattle”. In: Scientific Reports 6.1, p. 22121. issn: 2045-2322. doi:

10.1038/srep22121.

Knight-Jones, T. J. D., M. McLaws, and J. Rushton (2017). “Foot-and-Mouth Dis-

ease Impact on Smallholders - What Do We Know, What Don’t We Know

and How Can We Find Out More?” In: Transboundary and Emerging Dis-

eases 64.4, pp. 1079–1094. doi: https://doi.org/10.1111/tbed.12507.

Knight-Jones, T. J. D. and J. Rushton (Nov. 1, 2013). “The economic impacts of

foot and mouth disease – What are they, how big are they and where do

they occur?” In: Preventive Veterinary Medicine 112.3, pp. 161–173. issn:

0167-5877. doi: 10.1016/j.prevetmed.2013.07.013.

Knight-Jones, T.J.D., A.N. Bulut, S. Gubbins, K.D.C. Stärk, D.U. Pfeiffer, K.J.

Sumption, and D.J. Paton (2014). “Retrospective evaluation of foot-and-

mouth disease vaccine effectiveness in Turkey”. In: Vaccine 32.16, pp. 1848–

1855. issn: 0264-410x. doi: https://doi.org/10.1016/j.vaccine.2014.

01.071.

L.M, Mansley, Donaldson A.I., Thrusfield M.V., and Honhold N. (2011). “Destruc-

tive tension: mathematics versus experience – the progress and control of

the 2001 foot and mouth disease epidemic in Great Britain.” In: Scientific &

Technical Review. 08.1, pp. 483–498. doi: http://dx.doi.org/10.20506/

rst.30.2.2054.

181

https://doi.org/10.1016/s0007-1935(95)80127-8
https://doi.org/10.1016/j.vaccine.2014.12.010
https://doi.org/10.1111/tbed.12522
https://doi.org/10.1038/srep22121
https://doi.org/https://doi.org/10.1111/tbed.12507
https://doi.org/10.1016/j.prevetmed.2013.07.013
https://doi.org/https://doi.org/10.1016/j.vaccine.2014.01.071
https://doi.org/https://doi.org/10.1016/j.vaccine.2014.01.071
https://doi.org/http://dx.doi.org/10.20506/rst.30.2.2054
https://doi.org/http://dx.doi.org/10.20506/rst.30.2.2054


Leforban, Y (Mar. 1999). “Prevention measures against foot-and-mouth disease in

Europe in recent years”. en. In: Vaccine 17.13-14, pp. 1755–1759. doi: 10.

1016/s0264-410x(98)00445-9.

Lyons, Nicholas A. et al. (Feb. 2019). “Considerations for design and implementation

of vaccine field trials for novel foot-and-mouth disease vaccines”. In: Vaccine

37.8, pp. 1007–1015. issn: 0264410x. doi: 10.1016/j.vaccine.2018.12.

064.

Mackay, D.K.J., M.A. Forsyth, P.R. Davies, A. Berlinzani, G.J. Belsham, M. Flint,

and M.D. Ryan (1998). “Differentiating infection from vaccination in foot-

and-mouth disease using a panel of recombinant, non-structural proteins in

ELISA”. In: Vaccine 16.5, pp. 446–459. issn: 0264-410X. doi: https://doi.

org/10.1016/S0264-410X(97)00227-2.

Mardones, Fernando, Andrés Perez, Javier Sanchez, Mohammad Alkhamis, and Tim

Carpenter (2010). “Parameterization of the duration of infection stages of

serotype O foot-and-mouth disease virus: an analytical review and meta-

analysis with application to simulation models”. In: Veterinary Research

41.4. issn: 0928-4249. doi: 10.1051/vetres/2010017.

Maree, Francois F. et al. (Oct. 2014). “Challenges and prospects for the control of

foot-and-mouth disease: an African perspective”. eng. In:Veterinary medicine

(Auckland, N.Z.) 5. 32670853[pmid], pp. 119–138. issn: 2230-2034. doi: 10.

2147/vmrr.s62607.

Marino, Simeone, Ian B. Hogue, Christian J. Ray, and Denise E. Kirschner (Sept.

2008). “A methodology for performing global uncertainty and sensitivity

analysis in systems biology”. eng. In: Journal of Theoretical Biology 254.1,

pp. 178–196. issn: 1095-8541. doi: 10.1016/j.jtbi.2008.04.011.

May, Robert M. and Roy M. Anderson (Aug. 1979). “Population biology of infectious

diseases: Part II”. In: Nature 280.5722, pp. 455–461. issn: 1476-4687. doi:

10.1038/280455a0.

McKinley, Trevelyan, Alex R Cook, and Robert Deardon (Jan. 20, 2009). “Inference

in Epidemic Models without Likelihoods”. In: The International Journal of

Biostatistics 5.1. issn: 1557-4679. doi: 10.2202/1557-4679.1171.

McKinley, Trevelyan J., Ian Vernon, Ioannis Andrianakis, Nicky McCreesh, Jeremy

E. Oakley, Rebecca N. Nsubuga, Michael Goldstein, and Richard G. White

(Feb. 2018). “Approximate Bayesian Computation and Simulation-Based In-

ference for Complex Stochastic Epidemic Models”. In: Statistical Science

33.1, pp. 4–18. issn: 0883-4237. doi: 10.1214/17-sts618.

182

https://doi.org/10.1016/s0264-410x(98)00445-9
https://doi.org/10.1016/s0264-410x(98)00445-9
https://doi.org/10.1016/j.vaccine.2018.12.064
https://doi.org/10.1016/j.vaccine.2018.12.064
https://doi.org/https://doi.org/10.1016/S0264-410X(97)00227-2
https://doi.org/https://doi.org/10.1016/S0264-410X(97)00227-2
https://doi.org/10.1051/vetres/2010017
https://doi.org/10.2147/vmrr.s62607
https://doi.org/10.2147/vmrr.s62607
https://doi.org/10.1016/j.jtbi.2008.04.011
https://doi.org/10.1038/280455a0
https://doi.org/10.2202/1557-4679.1171
https://doi.org/10.1214/17-sts618


McLachlan, I., G. Marion, I. J. McKendrick, T. Porphyre, I. G. Handel, and B. M. deC

Bronsvoort (Nov. 22, 2019). “Endemic foot and mouth disease: pastoral in-

herd disease dynamics in sub-Saharan Africa”. In: Scientific Reports 9.1.

Number: 1 Publisher: Nature Publishing Group, p. 17349. issn: 2045-2322.

doi: 10.1038/s41598-019-53658-5.

Mielke, Sarah R and Rebecca Garabed (Mar. 2020). “Environmental persistence

of foot-and-mouth disease virus applied to endemic regions”. en. In: Trans-

bound. Emerg. Dis. 67.2, pp. 543–554. doi: 10.1111/tbed.13383.

Minter, Amanda and Renata Retkute (Dec. 2019). “Approximate Bayesian Compu-

tation for infectious disease modelling”. In: Epidemics 29, p. 100368. issn:

17554365. doi: 10.1016/j.epidem.2019.100368.

Moonen, P, L Jacobs, A Crienen, and A Dekker (2004). “Detection of carriers of

foot-and-mouth disease virus among vaccinated cattle”. In: Veterinary Mi-

crobiology 103.3, p. 10. doi: 10.1016/j.vetmic.2004.07.005.

Moonen, P. and R. Schrijver (Oct. 1, 2000). “Carriers of foot-and-mouth disease

virus: A review”. In: Veterinary Quarterly 22.4, pp. 193–197. issn: 0165-

2176. doi: 10.1080/01652176.2000.9695056.

Morris, R S, J W Wilesmith, M W Stern, R L Sanson, and M A Stevenson (Aug.

2001). “Predictive spatial modelling of alternative control strategies for the

foot-and-mouth disease epidemic in Great Britain, 2001”. en. In: Vet. Rec.

149.5, pp. 137–144. doi: 10.1136/vr.149.5.137.

Munsey, Anna, Frank Norbert Mwiine, Sylvester Ochwo, Lauro Velazquez-Salinas,

Zaheer Ahmed, Francois Maree, et al. (2021). “Phylogeographic analysis of

foot-and-mouth disease virus serotype O dispersal and associated drivers

in East Africa”. In: Molecular Ecology 30.15, pp. 3815–3825. doi: https:

//doi.org/10.1111/mec.15991. eprint: https://onlinelibrary.wiley.

com/doi/pdf/10.1111/mec.15991.

Munsey, Anna, Frank Norbert Mwiine, Sylvester Ochwo, Lauro Velazquez-Salinas,

Zaheer Ahmed, Luis L. Rodriguez, Elizabeth Rieder, Andres Perez, and Kim-

berly VanderWaal (2022). “Ecological and Anthropogenic Spatial Gradients

Shape Patterns of Dispersal of Foot-and-Mouth Disease Virus in Uganda”.

In: Pathogens 11.5. issn: 2076-0817. doi: 10.3390/pathogens11050524.

Myung, In Jae (2003). “Tutorial on maximum likelihood estimation”. In: Journal

of Mathematical Psychology 47.1, pp. 90–100. issn: 0022-2496. doi: https:

//doi.org/10.1016/S0022-2496(02)00028-7.
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