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Abstract

We prove two kinds of results on rigidity of graphs arising from punctured spheres.
First, we prove that the graphs whose vertices are discs with a suitably bounded

number of marked points, and whose edges are given by disjointness, are rigid, that
is, every graph automorphisms is topologically induced by an extended mapping class.
We will also extend this rigidity result to subgraphs of the curve graph, with similar
bounds on marked points enclosed by each curve, obtaining a generalisation of Bowditch’s
rigidity theorem for the strongly separating curve graph. Moreover, we will provide
a complete topological classification of the rigid graphs of regions, which are graphs
of isotopy classes of subsurfaces, sharpening a theorem of McLeay. Thus, our work
verifies another case of Ivanov’s Metaconjecture, which states that sufficiently rich objects
naturally associated with surfaces have the extended mapping class group as the group
of their automorphisms.

The second group of results concerns the existence of exhaustions by finite rigid
subgraphs, that is, such that every embedding into the ambient graph is induced by
a global graph automorphism. We will study the case of the strongly separating curve
graphs of both the seven-holed sphere and the eight-holed sphere, that is the graph whose
vertices having at least three punctures in each complementary component, with edges
given by disjointness. These are inspired by related work of Aramayona-Leininger on
exhaustions of the regular curve graph. It follows that our graphs have the co-Hopfian
property, that is every self-embedding of the entire graph is actually an automorphism.
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Introduction

Since 1981, when first introduced by Harvey in [Harv1], the curve complex of a surface
has been a major object of interest for low-dimensional topologists and geometric group
theorists. The curve complex on a surface has the (isotopy classes of) curves on that
surface as vertices, and a k-dimensional simplex for each set of k − 1 pariwise disjoint
curves. In many applications, including this thesis, the study of this complex is equivalent
to the study of its 1-skeleton, known as the curve graph. The key property of this object
comes from the fact that, although apparently encoding a meager amount of information,
it proves to be a complete invariant for the topological type of the surface (apart from
some sporadic cases), hence revealing to contain much more data than apparent. This
is the reason why the curve complex, and many of its variants, find notable application
throughout many aspects of low-dimensional topology and geometric group theory.

Among the many applications of the curve complex we recall some of the most notable
ones. Harer, in [Hare1] and [Hare2], studied the homological type of curve complexes,
and used that information to compute the cohomology of mapping class groups. The
mapping class group is another fundamental object of study related to surfaces. It
consists of the group of self-homeomorphisms of the surface, mod out by isotopy: this
ensures that this group does not contain the wasteful information provided by the group of
homeomorphisms, which is too big, while for finite-type surface is indeed finally presented.
At the same time, the mapping class group retain all the relevant information about the
surface, since it is a complete invariant for its topological type (apart from some sporadic
cases). Since the mapping class group naturally acts on the curve complex, the two
objects are deeply linked.

Masur and Misky, in their pioneering works [MM1] and [MM2], continued using the
curve complex in order to study the mapping class group, this time from a metrical
viewpoint. This machinery was eventually generalised and led to the notion of Hierarchi-
cally Hyperbolic Spaces, as defined in [BHS] by Behrstock, Hagen, and Sisto. The curve
complex has also been used in the study of 3-manifolds and Klenian groups: it is, for
instance, a key element in the proof of the Ending Lamination Theorem, as first proven
by Brock, Canary, and Minsky in [BCM].

In time, many subcomplexes of the curve complex have been studied, as well as
many other complexes naturally associated to surfaces. Among the vast array of results
related to such complexes, in this thesis we will focus on aspects of rigidity for planar
surfaces. Our results can be divided into two main areas. The first group of results
concerns combinatorial rigidity of three classes of graphs, that is, the fact that every
automorphism of the graph is induced topologically by a mapping class. This property
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expresses the fact that, apart from sporadic cases, the curve complex contains all the
relevant information regarding the surface, and is a complete invariant for its topological
type. The first rigidity result we prove is for the k-separating curve graph, that is, the
subgraph of the curve graph induced by the vertices which represent the curves that have
at least k marked points in either of their complementary component; see Definition 1.3.6.

Theorem A. Let k ≥ 2 and m ≥ 2k+ 1. Let S0,m be the m-punctured sphere. Then the
k-separating curve graph Ck(S0,m) is rigid.

Among the possible variation on the curve complex and graph, is it possible to use
(isotopy classes of) subsurfaces as vertices, with adjacency still induced by disjointness.
Indeed, the k-separating disc graph is defined as the graph with discs with a number of
marked points between k and m−k as vertices, with an edge joining vertices represented
by disjoint discs; see Definition 1.4.1. We prove the rigidity of this graph, which if the
following result.

Theorem B. Let k ≥ 2 and m ≥ 2k+ 1. Let S0,m be the m-punctured sphere. Then the
k-separating disc graph D(k)(S0,m) is rigid.

The last result of this group is the most general and constitutes a complete classi-
fication of rigid graphs of region on punctured spheres. In the definition of a graph of
regions vertices are a collection of isotopy classes of subsurfaces, which is stable under
the action on the mapping class group, so that a natural action is defined. Once again,
an edge is present between two regions if they are disjoint. For all the relevant definitions
we refer to §1.4.2. We give a complete classification of all the rigid graphs of regions on
planar surfaces. The requirements for rigidity are a bound on the minimal complexity of
any region in the collection, where the complexity of a region is the minimum number
of marked points that a disc containing it must have. Moreover, the graph of regions
must not have pathological types of vertices, called vertices with holes and cork pairs:
these vertices have the property of generating automorphisms of the graph which only
exchange two vertices, while fixing all the other, any such automorphisms cannot be
induced topologically. The aforementioned classification is the following.

Theorem C. Let m ≥ 5. Let S0,m be the m-punctured sphere. Let A ⊆ R(S0,m) be a
Mod±(S0,m)-invariant collection of regions, and let GA(S0,m) be the associated graph of
regions. Then the graph is rigid if and only m ≥ 2νA + 1, and the graph has no vertices
with holes and no cork pairs.

The second group of results concerns the existence of exhaustions of the strongly
separating curve graph on the 7-holed sphere S0,7 and the 8-holed sphere S0,8 by finite
rigid sets, as in Definition 1.6.1, with trivial pointwise stabilisers. Strongly separating
curve graph is the original name for the 3-separating curve graph, that is the subgraph of
the curve graph induced by vertices representing curves with at least 3 marked points in
each of their complementary components. In this context a rigid subgraph is such that
every embedding into the ambient graph is induced by a global automorphism. The first
result we prove is the following.

Theorem D. Let S = S0,7 or S = S0,8. Then the strongly separating curve graph Css(S)
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admits an exhaustion by finite rigid sets⋃
i∈N

Xi = Css(S).

Moreover, every subgraph Xi has trivial pointwise stabiliser.

As a corollary of the previous result we obtain that the aforementioned graphs satisfy
the co-Hopfian property.

Theorem E. Let S = S0,7 or S = S0,8. Then, for every injective graph homomorphism
i : Css(S) ↪→ Css(S), there exists an extended mapping class f ∈ Mod±(S) such that i is
induced by f .

As for a historical note, the first rigidity result for the curve graph was proven by
Ivanov in [Iv1], whose proof was completed by Korkmaz in [Kor]. The result has also been
proven by Luo in [Lu] using different techniques. In the years that followed many rigidity
results for various subgraphs of the curve graph have been found. Among these, Irmak
in [Ir] proved rigidity of the graph of nonseparating curves, while Brendle and Margalit
in [BM1] proved the rigidity of the graph of separating curves, extending a partial result
due to Kida in [Ki]; lastly, the rigidity of the strongly separating curve graph was proven
by Bowditch in [B2].

There are also rigidity results regarding graph whose vertices are still objects related
to surfaces, but not necessarily curves. In this vein, for example, McCarthy and Pa-
padopoulos proved the rigidity of the truncated graph of domains in [MP], Irmak and
McCarty proved rigidity of the arc graph in [IrM], a result which has also independently
been proven by Disarlo in [Di]; similarly the arc and curve complex has been proven to
be rigid by Korkmaz and Papadopoulos in [KP].

All the results we have mentioned so far concern finite-type surfaces, but many results
have also been proven for infinite-type surfaces. Among others, Hernández Hernández,
Morales, and Valdez have proven that the curve graph is rigid in [HMV], while the rigidity
of both the loop graph and the arc graph has been proven by Schaffer-Cohen in [S-C].

The previously mentioned results also have deep consequences for the computation
of automorphisms of other objects naturally associated to surfaces. Just to name a few,
the rigidity of the curve graph was already been used by Ivanov in [Iv1] to prove rigidity
of the Teichmüller space, and Bowditch in [B3] proved the quasi isometric rigidity of
the Weil-Petersson space reducing to the computation of automorphisms of the strongly
separating curve graph.

The abundance of such positive rigidity results has led Ivanov to state the following
metaconjecture in [Iv2].

Conjecture (Ivanov’s Metaconjecture). Every object naturally associated to a surface
S and having a sufficiently rich structure (that is apart from some low-complexity cases)
has the mapping class group Mod±(S) as its group of automorphisms. Moreover, this
can be proven by a reduction to the theorem about the automorphisms of the curve graph.

With the previous metaconjecture in mind, many authors developed results appli-
cable to wide classes of objects related to surfaces. For example, rigidity for graph of

x



regions has been dealt with by Brendle and Margalit for closed surfaces in [BM2] and
by McLeay for punctured spheres in [Mc1] and for general punctured surfaces in [Mc2].
The vertices of such graphs are isotopy classes of subsurfaces, and edges between them
are given by disjointness. All the aforementioned results bring as a corollary many inter-
esting rigidity results for normal subgroups of the mapping class groups, proving that,
under mild hypotheses, every group automorphism and abstract commensurator is in-
duced topologically. However, these results are not sharp and do not provide a complete
classification of the rigid graphs. Our Theorem D will instead be a complete classifica-
tion of the rigid graphs of region on punctured spheres. The proof of the aforementioned
result will pivot around the reduction to the computation of automorphisms of graphs of
discs or curves, hence, ultimately, to the application of Ivanov’s Theorem, as suggested
by the metaconjecture.

In the latter part of the thesis we will instead focus on rigid subgraphs of the strongly
separating curve graphs for the 7-holed sphere and the 8-holed sphere. Such graphs have
for vertices isotopy classes of curves which do not bound a pair of pants on either side, and
edges between two of them if they are disjoint. A rigid subgraph is a subgraph such that
each of its embedding into the ambient graph is induced by an automorphism of the latter
graph. The existence of finite rigid subgraphs is a problem which is interesting per se.
Just to name a few results the problem was solved for the curve graph by Aramayona and
Leininger in [AL1], whereas Hernández Hernández, Leininger, and Maungchang solved it
for the pants graph in [HLM], and Shinkle did for the arc graph in [Shi]. For the strongly
separating curve graph of the 7-holed sphere a finite rigid subgraph is provided in [B2].

Alongside the existence of finite rigid subgraphs, another interesting problem is the
existence of exhaustions of the graph by finite rigid sets. This was proven, for the curve
graph, once again by Aramayona and Leininger in [AL2], and, through a different method,
by Hernández Hernández in [He]. In this thesis we show the existence of an exhaustion
by finite rigid sets for the strongly separating curve graph of the 7-holed and the 8-holed
sphere (Theorem E).

The existence of such exhaustions brings other rigidity results as a consequence.
Indeed, Aramayona and Leininger in [AL2] gave a proof of the co-Hopfian property of
the curve graph, which was already proven by Shackleton in [Sha], that is every injection
of the graph into itself is induced by a graph automorphism. From the existence of an
exhaustion by finite rigid sets we will deduce that the analogous result holds for the
strongly separating curve graph of the 7-holed and the 8-holed sphere (Theorem F ).
Moreover, we will use this fact to present some examples of graphs that, although they
are rigid and metrically nice, do not admit any exhaustion by rigid sets with trivial
pointwise stabilisers.

The thesis will be structured as follows. In Chapter 1 we will fix notations and
conventions, define the main objects and state the main results of the thesis, while
providing the necessary background material.

In Chapter 2 we will deal with the rigidity result regarding graphs of regions. In order
to achieve such a result we will first investigate the rigidity of graphs of discs and curves.
Moreover, we will prove the connectedness of such graphs.

Lastly, in Chapter 3 we will construct exhaustions by finite rigid sets for the strongly
separating curve graphs for the 7-holed sphere and the 8-holed sphere. In order to do so
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we will introduce a general graph-theoretical machinery to produce such exhaustions, and
deduce the co-Hopfian property from them. Furthermore, we give a couple of examples
of graphs naturally associated with surfaces, which do not admit any such exhaustion.
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Chapter 1

Main Results and Background
Material

The definition of the main objects of study, and the technical statements of the main
theorem of the thesis are contained in Sections 1.3, 1.4, and 1.6.

Section 1.5 contains the definition of the Kneser graph: an uncommon combinatorial
tool which plays a big role in our arguments.

Section 1.1 contains general definitions of objects which are probably well known by
the expert reader, and has the role of fixing conventions, but might be skipped at will
without compromising the comprehension of the rest of the thesis.

Section 1.2 contains some results about realisation of isotopy classes of curves which
are intuitive and consitute some unspoken assumption throughout many arguments. The
main purpose of the section is to give formal proofs of some of these assumptions, due to
a lack in the literature of the specific formulation needed, but can easily be skipped at
first reading and just used as a reference, since we will discuss these subtle issues when
they appear in our future arguments.

1.1 Basic Objects and Conventions

1.1.1 Categories

Throughout this thesis, unless otherwise stated, we will work inside the smooth (DIFF)
category. This means that the objects will be smooth manifolds, and the morphisms be-
tween them will be smooth maps. This will let us make use of notion such as transversality
and general position. Whenever we perform any sort of surgery the initially obtained
object will just be piecewise-smooth, and will always tacitly assume that some kind of
smoothing of the angles is performed, so to remain inside the smooth category.

However, in order to allow for more flexibility, the figures in this thesis are to be
thought of in the topological (TOP) category.

The reader should feel free to employ the category they feel most comfortable with.
Indeed, in this thesis we will always work with manifolds of dimension at most 2, and in
those cases it is a well known fact that the smooth, piecewise-linear (PL), and topological
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categories are equivalent (although not in a strictly categorical sense, as some contain
more morphisms than other).

The existence of triangulations for topological surfaces and the equivalence between
homeomorphisms and PL homeomorphisms (known as Hauptvermutung for surfaces)
have been first proven by Radó in [R]. For a more modern exposition and proof in
English we refer to [Mo, §8 Theorem 3] and [Mo, §8 Theorem 5], respectively.

The existence of unique smooth structures on PL surfaces has been proven by Thom
in [Tho]; for a modern proof see [Thu, Theorem 3.10.8, and Theorem 3.10.9]. Lastly,
existence and uniqueness of PL structures for smooth surfaces has been first proven by
Whitehead in [Wh]; for a modern proof we refer to [Thu, Theorem 3.10.2].

1.1.2 Surfaces and Subsurfaces

For convenience we want to work with surfaces with marked points instead of punctures.
This is the reason why we need to define our objects with the language of topological
pairs, whose definition we will now recall, in accordance with [Sp, p.17].

Definition 1.1.1. A topological pair is pair (X,A) where X is a topological space, and
A ⊂ X.

As for the maps between pairs we will use the following definition, which is stronger
that the usual notion of morphism of pairs. Indeed, usually only Property 1 is required for
morphisms of pairs, see again [Sp, p.17], and Property 2 will be the additional property
we will need. The reason for this choice will be clear when the definition gets specialised
to the case of surfaces.

Definition 1.1.2. Let (X,A), (Y,B) be two topological pairs. We define a strict map of
pairs f : (X,A) −→ (Y,B) to be a continuous map f : X −→ Y such that the following
hold:

1. f(A) ⊆ B;

2. f−1(B) ⊆ A.

We can now define what is the technical meaning the word surface will have for us.

Definition 1.1.3. Throughout this thesis a surface will be a topological pair (S,Π)

where S is 2-dimensional, compact, connected, oriented smooth manifold (possibly with
boundary), and Π ⊂ S is a subset such that Π ∩ ∂S = ∅. The points in Π will be called
the marked points of S.

Unless otherwise stated, we will assume that any surface (S,Π) is of finite type, that
is such that its fundamental group π1(S \Π) is finitely generated.

Maps between surfaces will be strict maps of pairs. The conditions we have imposed
in the definition of strict map of pairs express the fact that marked points have to be
mapped to marked points, and only marked points can be mapped to marked points.

In the following we will more often than not abuse notation and write S instead of
the pair (S,Π) to indicate a surface. Similarly we will write f : S −→ S′ to denote a
map between surfaces although such map is, technically speaking, a strict map of pairs.
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The complete classification of finite-type surfaces was originally proven by Möbius
(although his proof was only for triangulated surface): for a modern statement see [FM,
Theorem. 1.1], and moreover see [Hi, §9, Theorem 1.9] for a proof (in the smooth cate-
gory). In the wake of this result we have the following.

Definition 1.1.4. A finite-type surface (S,Π) is said to be of type Sbg,p if it has genus
g, p marked points (that is |Π| = p) and b boundary components.

We define the complexity of a surface S of type Sbg,p as ξ(S) = 3g + p+ b− 3.

While writing Sbg,p to denote the type of a surface, we will omit the superscript b
when there are no boundary components.

A surface of type Sb0,p will be denoted with Σbp (we will still omit b when it is zero).
For the most part of the thesis we will only work on these surfaces. The surface Σp

will be called p-punctured sphere. A surface of type Σ1
p will be called a p-punctured disc

(or simply a disc if it has no marked points). The names for these surfaces are purely
conventional, as we will work with marked points instead of punctures, but are chosen in
order to keep the statements in the thesis closer to the existing literature. Any surface
of type Σbp with p + b = 3 will be loosely called a pair of pants, although we will make
care to remark the specific type in every case we will encounter one. Lastly, a surface
of type Σ2

0,p will be called a p-punctured annulus (or simply an annulus if it contains no
marked points).

In terms of pairs, (R,P ) is a subsurface of (S,Π) if R ⊆ S is a 2-dimensional com-
pact submanifold of S (possibly not connected), and P = Π ∩ R. We will not require
any condition about boundaries: indeed, it will be common for the subsurfaces we will
consider to have their boundary lying in the interior of the ambient surface. We will
abuse notation and write R ⊆ S to indicate a subsurface, without explicit mention of
the marked points. We remark that, under our definition, subsurfaces are automatically
closed subsets of the ambient surface.

In line with our goal to work with closed objects, given a subsurface R ⊆ S, we will
refer to the closure of S \R as the complement of R, and will indicate that by Rc (slightly
abusing notation, as it technically is not the set-theoretical complement). In particular,
given a punctured disc D ⊆ S we will call Dc the complementary disc to D.

1.1.3 Homotopy and Isotopy

We will now recall some convention about homotopies and isotopies. These maps may be
thought of as morphisms in any of the categories discussed in §1.1.1 without any change.

We now fist give a general definition of homotopy and isotopy, see also [Hat, p.3] and
[FM, p.33]. We give it for differential manifolds (hence in the DIFF category), although
it is naturally defined with the morphisms in any of the other categories that might be
employed.

Definition 1.1.5. Let X,Y be differential manifolds. Let f, g : X −→ Y be two smooth
maps. A homotpy between f and g is a map F : X × [0, 1] −→ Y such that, for every
x ∈ X, F (x, 0) = f(x) and F (x, 1) = g(1). Moreover, if for every t ∈ [0, 1] the map
F|X×{t} is injective, then F is said to be an isotopy between f and g.
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All of the homotopies we will consider will be between pairs (M,P ) and (N,Q), hence
they are strict map of pairs

(M × [0, 1], P × [0, 1]) −→ (N,Q).

In particular, for maps into surfaces, homotopies at any time map marked points, and
only marked points, to marked points.

When dealing with surfaces with boundary, and unless otherwise stated, we will
always assume that every homotopy is relative to the boundary: that is, it pointwise
fixes the boundary at any time.

Moreover, let S be a surface and M be a manifold. We recall that we say that
two maps f, g : M −→ S are ambient homotopic (resp. isotopic) if there exists an
automorphism ϕ : S −→ S, homotopic (resp. isotopic) to the identity, and such that
f = ϕ ◦ g.

Since we will only be dealing with manifolds of dimension at most two we may freely
promote homotopies to isotopies. Indeed, two curves on a surface are homotopic to each
other if and only if they are isotopic, see [FM, Proposition 1,10] for a proof. Similarly,
two homeomorphisms (relative to the boundary) of a compact surface are homotopic if
and only if they are isotopic, see [FM, Theorem 1.12] and the related discussion. Both
of these results are originally due to Reinhold Baer. These results will cover all the cases
of interest to us.

Moreover, we recall that any homeomorphism of a compact surface S is isotopic to a
diffeomorphism of S. This was first proven independently by James Munkres, Stephen
Smale and John Whitehead; see [FM, Theorem 1.13] for further reference.

1.1.4 Curves, Arcs and Regions

In order to clarify our conventions we will now give some definition about curves and
arcs which we will follow throughout the thesis. Once again, the following definition are
valid for each of the three categories presented in §1.1.1. We first start with parametrised
curves.

Definition 1.1.6. Let (S,Π) be a surface. A closed (oriented) parametrised curve on
(S,Π) is a strict map of pairs γ : (S1, ∅) −→ (S,Π), where (S1, ∅) is the pair composed
of the unit complex circle with no marked points. We equip S1 with the standard
counterclockwise orientation (given by its embedding into C).

A parametrised curve is said to be essential if it not isotopic to a curve contained in
a neighbourhood of either a point or a boundary component. It is said to be peripheral
otherwise.

A parametrised curve is said to be simple if it is an embedding.

A trivial loop is obviously non essential. We remark that a loop around a marked
point, although nontrivial from an homotopical perspective, is peripheral under our def-
inition.

Since in the previous definition we are using strict map of pairs, this means that
curves avoid marked points. Likewise, this means that a homotopy between two curves
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consists in a strict map of pairs

(S1 × [0, 1], ∅) −→ (S,Π),

that is it avoids the marked points at all times.
In what follows we want the term curve to indicate not the single parametrised curve

(hence the apparently odd name) but its isotopy class. Thus we make the following
definition.

Definition 1.1.7. Let (S,Π) be a surface. An oriented curve on S is the isotopy class
of an oriented essential simple closed parametrised curve.

A curve on S is a class of oriented curves up to the orientation (that is forgetting
about the orientation).

We remark that, when a surface contains curves, there it contains countably many.
We remind that, in view of [FM, Proposition 1,10], in the previous definition homo-

topy classes could have been considered instead of isotopy classes, without any change
of note. Moreover, two parametrised curves are isotopic if and only if they are ambient
isotopic, see [FM, Proposition 1.11]. For a proof (in the smooth case) of the underlying
theorem, known as Extension of Isotopy Theorem, we refer to [Hi, §8 Theorem 1.3].

We will abuse notation and always use lowercase Greek letters to identify both
(parametrised) curves and their isotopy classes. Moreover, we will mostly be loose in
distinguishing between a curve and one of its representatives. While this is mostly done
in order not to make both the notation and the arguments too cumbersome, the fact
that it is possible to pick particularly nice representatives (see § 1.2) further justifies this
looseness.

We will now start defining arcs.

Definition 1.1.8. Let (S,Π) be a surface. Let X ⊆ {0, 1}. A parametrised arc on S is
a strict embedding of pairs γ : ([0, 1], X) −→ (S,Π).

An oriented arc on S is the isotopy class of a parametrised arc. Unless otherwise
stated, we will require such isotopy to be relative to the endpoints, that is relative to
∂[0, 1] = {0, 1}.

An arc on S is a class of oriented arcs up to the orientation.

The set X appearing in the definition of parametrised arcs has the following meaning.
For convenience reasons, we want to allow arcs to potentially have marked points as
endpoints, but we never want the interior of an arc to contain any marked point. Three
cases can now occur: first, if X is empty the arc is disjoint from marked points. Second,
if X contains a single point then exactly one of the endpoints of the arc is a marked
point. Last, if X contains two points the arc is from a marked point to another. All of
these cases will be of relevance in various parts of the thesis.

Moreover, we notice that a parametrised arc a comes with a natural orientation. We
will call the point a(0) the first endpoint, while the point a(1) will be called the second
endpoint. Isotopies of parametrised arcs preserve this orientation, so oriented arcs will
have a natural orientation.

We will use lowercase Latin characters for both parametrised arcs and arcs. Moreover,
we will often abuse notation and confuse arcs with their representatives.
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Definition 1.1.8 is intentionally vague. We will always impose some restrictions on
the allowed isotopies between parametrised arcs, but the requirements will be defined in
each case, according to the specific needs. One general rule will, however, be that an
isotopy F between two parametrised arcs is a strict map of pairs

([0, 1]× [0, 1], X × [0, 1]) −→ (S,Π).

Similarly to what happens in the case of curves, homotopy classes could have been
considered instead of isotopies. In all the cases of interest to us this does not produce
any chance of note.

We will now give a definition of the intersection number between curves and arcs. In
what follows the square brackets will indicate an isotopy class of maps.

Definition 1.1.9. Let S be a surface. Let A = [X → S] be a curve or an arc, and let
B = [Y → S] be a curve or an arc. The geometric intersection number i(A,B) between
A and B is the number

i(A,B) = min {|f(X) ∩ g(Y )| for f ∈ A, g ∈ B} .

In the previous definition, for the case of arcs, the isotopy classes are to be intended
subjected to all the specific restrictions we will give in each case.

From now on, given two parametrised curves α, β we will often abuse notation and
confuse the map with its image in the surface. This means we will write α, β ⊂ S, we
write α ∩ β ⊂ S to mean the intersection of the images, and |α ∩ β| for its cardinality.
We will similarly abuse notation confusing parametrised arcs with their images.

We will say that a curve or an arc is disjoint from another curve or arc if their
intersection number is 0, that is if they admit disjoint representatives. Moreover, we
will refer to a (finite) collection of disjoint curves as a multicurve. We recall that the
maximum size of a multicurve on a surface S is given by its complexity ξ(S); see [FM,
p.237].

We will say that a parametrised curve or arc is in minimal position with another
curve or arc if the cardinality of their intersection is equal to the intersection number
between their classes. In the case of two parametrised curves, the following proposition,
known as bigon criterion, gives a necessary and sufficient condition for them to be in
minimal position. For the formal definition of transversality we refer to [Hi, §3.2 p.74],
also see § 1.2.1 for further discussion.

Definition 1.1.10. Let S be a surface. Let α, β ⊂ S be two transverse (see § 1.2.1 for
definition) parametrised curves. We say that a connected component D ⊆ S \ (α ∪ β) is
a (punctured) bigon (or that α and β form a bigon) if D is a (punctured) disc and both
∂D ∩ α and ∂D ∩ β are (parametrised) arcs.

If the component D is a disc not containing any marked point we will call it an empty
bigon.

Proposition 1.1.11. Let S be a surface. Let α, β ⊂ S be two transverse parametrised
curves. Then α and β are in minimal position if and only if they do not form any empty
bigon.
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The previous proposition is [FM, Proposition 1.7], and we refer to that for its proof.
We will now introduce the concept of regions, which will largely used in what follows.

For this definition, we follow [Mc2, § 1].

Definition 1.1.12. Let (S,Π) be a surface. A region is an isotopy class of connected a
proper subsurface S′ ( S (possibly with boundary and marked points) such that every
component of ∂S′ is an essential curve.

We will denote the set of regions on a surface S as R(S).

It is immediate to notice that any two representatives of a region must be homeo-
morphic, so the topological type of a region is well defined.

Given a region R, the boundary components of any two representatives are isotopic
in pairs, hence their isotopy class is a well defined multicurve, which we will call the
boundary of the region R, and will indicate by ∂R.

If R is homeomorphic to an annulus with no marked points then the boundary of R
is homotopic to a single curve γ, hence the entire region R is homotopic to γ. We will
refer to such a region as an annular region homotopic to γ, and will sometimes abuse
language and confuse the annular region with the homotopy class of its boundary, which
is a curve, although such curve is technically not a region (as regions are isotopy classes
of subsurfaces only). This also proves that if the complexity ξ(S) ≥ 0 and S 6= Σ3, that
is S is not a pair of pants, then the set of regions R(S) is infinite, as it contains at least
one element for each curve.

Once again, two regions are said to be disjoint if they admit disjoint representatives.
We will often abuse notation and be loose in distinguishing region from their repre-

sentatives. The potential issues coming from this will be addressed in § 1.2.2.

1.1.5 Mapping Class Groups

For the sake of clarity here we recall the definition of the (extended) mapping class group
of a surface. For a more detailed discussion see, for instance, [FM, §2.1].

Definition 1.1.13. Let (S,Π) be a surface with marked points Π ⊂ S and boundary
∂S. The mapping class group of S, which we will denote by Mod(S), is the group of
orientation preserving self-homeomorphism of the pair (S,Π) fixing ∂S pointwise, modulo
isotopy relative to the boundary.

The extended mapping class group of S, which we will denote by Mod±(S), is the
group of all self-homeomorphism of the pair (S,Π) fixing ∂S pointwise, modulo isotopy
relative to ∂S.

Elements of the (extended) mapping class group will be called (extended) mapping
classes.

We recall that the isotopies here considered are strict maps of pairs

F : (S × [0, 1],Π× [0, 1]) −→ (S,Π)

relative to ∂S.
Following common conventions, in our previous definition we allow for the homeo-

morphisms to permute the marked points, but they have to fix the boundary pointwise.
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This means that marked points and boundary components play significant different roles
when it comes to the definition of the mapping class group, whereas the are essentially
the same when it comes to the study of curves. For example, given two surfaces Sbg,p and
Sb
′

g,p′ with p+ b = p′ + b′, their (extended) mapping class groups are different if p 6= p′.
We remark that in our definitions we might have considered diffeomorphisms instead

of homeomorphisms, and homotopy instead of isotopy. The group obtained would have
been naturally isomorphic to the ones we defined. Indeed, this is another instance in
which all the possible choices for the category to work with are essentially equivalent.
See [FM, §2.1] for further reference.

We recall that Mod(S) < Mod±(S) and the mapping class group has index 2 inside the
extended mapping class group, the quotient being generated by any orientation-reversing
map.

Given a curve γ ⊂ S the (right) Dehn-twist around γ, as defined in [FM, §3.1.1], will
be denoted by Tγ ∈ Mod(S). We recall that a Dehn twists is a self-homeomorphisms
supported in an annular neighbourhood of a curve, which can be thought of as keeping
one of the boundary components fixed and rotating the other by a full twist.

Similarly, let γ ⊂ S be a curve such that the closure of one component of S \ γ is
of type S1

0,2. Then the (right) half Dehn-twists around γ, as in [FM, §9.1.3], is a well
defined mapping class and will be denoted by Hγ .

Lastly, we state the following very well-known result, originally proven (for closed
surfaces) by Dehn in 1938; for a modern version of the papers in English see [De]. For a
modern proof, see [FM, Corollary 4.15].

Theorem 1.1.14. Let S be a finite-type surface. Then, both the mapping class group
Mod(S) and the extended mapping class group Mod±(S) are finitely generated.

1.1.6 Graphs

Throughout the thesis we will make use of multiple (unoriented) graphs and subgraphs.
For us the definition of a graph will be the following.

Definition 1.1.15. A graph Γ is a pair of sets (V(Γ), E(Γ)), where

E(Γ) ⊆ V(Γ)× V(Γ)/∼,

where (a, b) ∼ (a, b) and (a, b) ∼ (b, a). The elements of the set V(Γ) are called vertices
of the graph, while the elements of E(Γ) are known as edges.

We will not distinguish graphs from their geometric realisation: for us graphs will
always be 1-dimensional simplicial complexes. Moreover, we endow all the graphs with
the natural metric coming from giving length 1 to every edge, and indicate such metric
with d. It follows that graphs for us will be geodesic metric spaces. In all our arguments
only distances between two vertices will appear: we say that two vertices v, w are k-
distant to mean that d(v, w) = k. In particular we remark that a pair of 1-distant
vertices is exactly a pair of adjacent (that is joined by an edge) vertices, so we will use
both terminologies in our arguments.

We will now recall what our definition of graph homomorphisms is.
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Definition 1.1.16. Let Γ,Γ′ be graphs. A graph homomorphism between Γ and Γ′ is a
map Φ̄ : V(Γ) −→ V(Γ′) such that for any two vertices v, w ∈ V(Γ) which are joined by
an edge then Φ̄(v) is adjacent to Φ̄(w), too.

We remark that we can extend the map Φ̄, as in the previous definition, to a contin-
uous map Φ : Γ −→ Γ defined on the entire graph by mapping every edge isometrically
to the edge between the images of the two endpoints.

What follows in the definition of graph isomorphism.

Definition 1.1.17. A graph isomorphism is a bijective (on the entire graphs, not just
between the sets of vertices) morphism or, equivalently, an isometry. We will denote the
group of automorphisms of Γ with Aut(Γ).

Equivalently, a graph isomorphism is a bijective map Φ̄ : V(Γ) −→ V(Γ′) such that
v, v′ ∈ V(Γ) are joined by an edge if and only if Φ̄(v), Φ̄(v′) ∈ V(Γ′) are adjacent.

We will now give the definition of equivariance, which is a property we will often use.
The following definition is only given in terms of actions on graphs, which will be the
only case of interest for us.

Definition 1.1.18. Let Γ,Γ′ be two graphs. Let G be a group acting by automorphisms
on both Γ and Γ′. Let ρΓ : G −→ Aut(Γ) be the group homomorphism induced by the
action Gy Γ, and let ρΓ′ : G −→ Aut(Γ′) be the one induced by the action Gy Γ′. A
group homomorphism ϕ : Aut(Γ) −→ Aut(Γ′) is said to be G-equivariant if the following
diagram

G G

Aut(Γ) Aut(Γ′)

Id

ρΓ′ρΓ

ϕ

commutes.

1.1.7 Symmetric Groups

Let X be a set. We will denote the group of permutations on X, also known as symmetric
group of X, with S(X). Given a subset Y ⊂ X we will naturally identify S(Y ) as a
subgroup of S(X).

Given a set X we will use |X| ∈ N ∪ {∞} to denote its cardinality. The previous
notation does not distinguish between different infinite cardinalities: however, apart from
this subsection we will always just be interested in distinguishing finite sets from infinite
one, so we will not need to be more precise than that.

It a straightforward and well-known fact that the isomorphism class of a symmetric
group S(X) only depends on the cardinality of the set X. If |X| = m ∈ N we will
denote the isomorphism class of S({1, . . . ,m}) as Sm. We will moreover denote S(N) as
S∞: let us remark once again that this group is isomorphic to the symmetric group of
any countable set. We observe that the group S∞ is uncountable, hence it cannot be
contained in any finitely generated group. In particular, a subgroup of the (extended)
mapping class group of a finite-type surface cannot be isomorphic to it.
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1.2 Realisation of Curves and Regions

1.2.1 Transversality and General Position

Throughout the current section we will work in the smooth category. Similar definitions
and results are also valid for the PL category, but a richer structure than the purely
topological one is needed.

We begin by recalling that two parametrised curves are said to be transverse if, at
every point in which they intersect, (the pushforward of) their tangent spaces are not
zero and together span the entire tangent of the surface. For instance, in a plain two non-
parallel lines are transverse, whereas two tangent circumferences are not, as the tangent
spaces at the intersection point coincide, so they span a 1-dimensional subspace of the
plane. For a more precise and technical definition we refer to [Hi, §3.2 p.74]. We recall
that two transverse parametrised curves intersect in a finite number of points, see [Hi,
§3 Theorem 3.3] for reference.

Given a finite collection of parametrised curves as above, we call a triple point a point
belonging to the intersection of (at least) three different curves. This is a pathological
behaviour we want to avoid. This is indeed possible up to homotopy. Actually, the
following slightly stronger statement holds true.

We will now give definition of general position

Definition 1.2.1. Let γ1, . . . , γn be a finite collection of distinct parametrised curves.
We say those curves are in general position if they are pairwise transverse and there are
no triple points.

Given that transversality is a dense condition, and given a collection of parametrised
curves γ1, . . . , γn, there exists a collection of curves γ′1, . . . , γ′n which are pairwise trans-
verse to each other and such that γi is isotopic to γ′i. For a reference for this result see
[Kos, §2 Corollary 2.5].

Proposition 1.2.2. Let γ1, . . . , γn be a collection of parametrised curves in general posi-
tion. Let γ be a parametrised curve. There there exists a parametrised curve γ′, isotopic
to γ, such that the collection γ1, . . . , γn, γ

′ is in general position.

Moreover, if the parametrised curves in the collection γ1, . . . , γn are not pairwise in
minimal position, all the bigons between them can be removed without interfering with
transversality or creating triple points, hence resulting in a collection of curves in general
and minimal position.

From now on, unless otherwise stated, when dealing with any collection of curves
[γ1], . . . , [γn] we will abuse notation and identify it with a collection of representatives
γ1, . . . , γn in general and minimal position. The legitimacy of such an assumption follows
from the previous discussion.

1.2.2 Geodesic Realisation and Representatives of Regions

Let (S,Π) be a surface with marked points Π ⊂ S, such that for the Euler characteristic
(see [Hat, p.146]) we have χ(S \ Π) < 0 (this will cover all the cases of interest for us).
Let µ be a finite-area complete metric on S \Π with constant curvature −1, which exists
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due to [FM, Theorem 1.2]. We will abuse language and call such a metric a hyperbolic
metric on S. When dealing with surfaces in the the remainder of this section we will
always assume they come equipped with a hyperbolic metric. Since all the surfaces we
will be interested in throughout the thesis have negative Euler characteristic, this is not
restrictive.

Any (essential) curve γ on S admits a unique representative that is a closed geodesic
(where the term must be interpreted in the context of Reimannian geometry, hence as
a locally length-minimising curve) for the metric µ, see [FM, Proposition 1.3]. Two
distinct geodesics are transverse, thanks to the uniqueness property of [Do, §4.4 Proposi-
tion 5]. Moreover, two distinct simple closed geodesics are in minimal position, see [FM,
Corollary 1.9]. It follows that, given a collection of distinct curves [γ1], . . . , [γn] their
geodesic representatives can be chosen to obtain a collection of representatives which are
transverse and in minimal position.

Such a collection, though, is not necessarily free from triple points: for this reason
we will generally not use geodesics as representatives. We will however rely on geodesic
representatives of curves in two cases: to represent punctured discs, and in order to
construct representatives of regions through the procedure we will later discuss.

Let D be a collection of regions on S which are all isotopy classes of punctured
discs. For any disc D ∈ D let γD be the geodesic representative of ∂D. We define
a representative WD as the closure of the component of S \ γD isotopic to D. When
dealing with graphs of discs (see §1.4.1) we will always adopt this set of representatives,
and consistently abuse notation identifying a disc D with its representative WD. Given
this conventional choice, intersections and inclusion between discs are well defined. In
particular, our choice of representative has the nice property that for any disc D we
have D ∩Dc = γD, where γD is once again the geodesic representative of ∂D. We will
also abuse notation here, writing D ∩ Dc = ∂D. Moreover any two distinct discs A,B
are disjoint if and only if WA ∩WB is either empty (that is B ( Ac) or it is a single
curve (which occurs when B = Ac); otherwise the intersection A ∩B is a union of discs,
possibly punctured.

In the case of collections of regions which are not all discs, we need a bit more work
in order to define representatives satisfying similarly nice properties. We introduce the
necessary technical background for this construction with the next two results.

First, we give a version of the Collar Lemma in terms of lifts of curves, as it will
be useful later. This version follows directly from the hyperbolic geometry involved in
the proof of the usual Collar Lemma itself. We refer to [Hal] for a proof in the context
of Riemann surfaces (which completes the original proof provided by Linda Keen in
[Ke]) which directly adapts to our statement. Otherwise see [FM, Lemma 13.6] and
their following remark for another proof. Said proof can be followed step by step, only
replacing the hyperbolic geometry identities with their analogues in the universal cover,
to get the statement we are interested in.

Before we present the result, we recall some notation, which will also be employed
elsewhere in the thesis. Let (X, d) be a metric space and Y ⊂ X be a subset. Let
r ∈ R≥0. We will denote the (open) r-regular neighbourhood of Y as

N (Y, r) := {x ∈ X s.t. d(x, Y ) < r} .

11



The closed neighbourhood will be denoted with N (Y, r).
Moreover, given a parametrised curve γ : S1 −→ S we will follow [FM, §1.2.1] and

we will call lift of γ a smooth map γ̃ : R −→ H2 such that the following diagram

R H2

S1 S

γ̃

πS1πS

γ

commutes, where the two descending arrow are the universal covering maps. We recall
that a curve admit infinitely many lifts, and that the lift of a geodesic on S is a geodesic
ray in H2.

We are now ready to state the version of the Collar Lemma we will use.

Theorem 1.2.3 (Collar Lemma). Let S be a surface endowed with a hyperbolic metric
µ. Then there exists a function K : R>0 −→ R>0 with the following property. Let α, β
be simple closed (local) geodesics on S (possibly the same). Let α̃ (resp. β̃) be a lift of α
(resp. β) to the universal cover H2. Then

N (α̃,K(L(α))) ∩N (β̃,K(L(β))) = ∅ if and only if α̃ ∩ β̃ = ∅.

From the Collar Lemma we deduce the following corollary, which will be the key for
our construction. It is merely a technically convenient result but, since we have not been
able to find any reference for it in the literature, we will give a proof.

Corollary 1.2.4. Let (S,Π) be a finite-type surface such that χ(S \ Π) < 0, endowed
with a hyperbolic metric µ. Let α, β be simple closed geodesics on S. Let l ≤ K(L(α))

and h ≤ K(L(β)), where K is the function as in Theorem 1.2.3. Let α′ (resp. β′) be a
component of ∂N (α, l) (resp. ∂N (β, h)). Then the two parametrised curves α′ and β′

are in general and minimal position.

Proof. Let α̃′ (resp. β̃′) be a lift of α′ (resp. β′) to the universal cover H2. Let α̃ (resp.
β̃) be the lifts of α (resp. β) such that α̃′ ⊆ ∂N (α̃, l) (resp. β̃′ ⊆ ∂N (β̃, h)). In the disc
model the lift α̃′ (resp. β̃′) is an arc of an Euclidean circumference between the same
endpoints of α̃ (resp. β̃), although that circumference is not orthogonal to the boundary
circle. From the Collar Lemma (Theorem 1.2.3) it follows that two such lifts intersect if
and only their endpoints are linked in the boundary circumference ∂H2, and in that case
they intersect exactly once.

First, we will prove that α′ and β′ are in minimal position. From the Collar Lemma
(Theorem 1.2.3) it follows that α̃′ ∩ β̃′ 6= ∅ if and only if α̃ ∩ β̃ 6= ∅. It follows that
there exists a bijective correspondence, which respects the action of π1(S \Π) on H2 via
deck transformations, between π−1(α′) ∩ π−1(β′) and π−1(α) ∩ π−1(β) where the map
π : H2 −→ S is the universal covering map. The aforementioned correspondence preserves
π1(S)-orbits. Since those orbits are in bijective correspondence with intersection points
for the parametrised curves on the surface it follows that |α′ ∩ β′| = |α ∩ β|. Since
geodesic are always in minimal position it follows that |α ∩ β| = i(α, β). Lastly, since
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the curve α′ (resp. β′) is isotopic to α (resp. β) it follows that i(α′, β′) = i(α, β). From
this we conclude that |α′ ∩ β′| = i(α′, β′), that is α′ and β′ are in minimal position.

Lastly, we claim that α′ and β′ are in general position, that is they intersect trans-
versely. If not, since the covering map is conformal, there would exists two lifts α̃′, β̃′

which are tangent in a point. Since such lifts are arcs of Euclidean circumferences with
linked endpoints (as they intersect) it is impossible for them to be tangent. This is a
contradiction, and hence our claim is proven.

We can now define nice representatives of regions in the following way. If R is an
annular region homotopic to a simple closed geodesic γ ⊂ S let

WR = N
(
γ,
K(L(α))

2

)
.

If R is a nonannular region let γ1, . . . , γn be the simple closed geodesics representing the
multicurve ∂R. Let X be the connected component of S \ (γ1 ∪ · · · ∪ γn) isotopic to R.
Then we define a representative for R by

WR = X \

(
n⋃
1

N (γi,K(L(γi)))

)
.

The previous set of representatives is defined in a way such that two distinct regions
R,Q are disjoint if and only if we have WR ∩ WQ = ∅. Moreover, it follows directly
from Corollary 1.2.4 that the boundaries of two such representatives are in general and
minimal position. Indeed, such collection is the union of two multicurves so there exist
no three curves pairwise intersecting, hence there are no triple points.

Given two region R,Q their intersection, defined as the isotopy class of WR ∩WQ,
is now well-defined as a union of disjoint isotopy classes of subsurfaces (not necessarily
regions, as they might have nonessential boundary components). We will denote this
intersection as R ∩ Q. Moreover, the notion of inclusion between regions in now well
defined. This was the main reason for the choice of representatives we have introduced.

In what follows we will constantly abuse notation and, when we refer to a region R,
we will actually refer to the representative WR, as constructed before.

1.2.3 Alexander’s Method

Another way to obtain a good definition of the intersection of two regions is the use of
the so-called Alexander Method, which we are now going to discuss, as it will also be
needed later in the thesis. We start with the following lemma, that is [FM, Lemma 2.9],
which we refer to for the proof.

Lemma 1.2.5. Let S be a surface. Let γ1, . . . , γn be a collection of essential simple
closed parametrised curves such that the following hold:

1. The parametrised curves γi are pairwise in general and minimal position;

2. The parametrised curves γi are pairwise non-isotopic;

3. There are no triangles, that is, for every three distinct parametrised curves γi, γj , γk
at least two are pairwise disjoint.
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Let γ′1, . . . , γ′n be another collection of simple closed parametrised curves with the same
properties, and such that for every i the curves γi and γ′i are isotopic. Then there exists
an ambient isotopy of S which simultaneously maps every parametrised curve γi to γ′i.

Given two regions R,Q any two sets of representatives for ∂R ∪ ∂Q which are in
general and minimal position automatically satisfy the hypotheses of the previous lemma.
It follows that, given any two such collection, there exists a global isotopy mapping one
to the other. It follows that the intersection between two regions can be defined this way,
and it is well defined up to a global isotopy of the surface.

The statement of Alexander’s Method which we will need later is the following. This
is a weaker version of [FM, Proposition 2.8], and we refer to that for the proof.

Proposition 1.2.6 (Alexander’s Method). Let S be a surface. Let γ1, . . . , γn be a col-
lection of essential oriented simple closed parametrised curves such that the following
hold:

1. The parametrised curves γi are pairwise in general and minimal position;

2. The parametrised curves γi are pairwise non-isotopic;

3. There are no triangles, that is for every three distinct parametrised curves γi, γj , γk
at least two are pairwise disjoint.

4. The parametrised curves γi fill S, that is every component of S \ (γ1 ∪ · · · ∪ γn) is
either a disc or a once-punctured disc.

Let f ∈ Homeo+(S, ∂S) be an orientation-preserving self-homeomorphism of S relative
to the boundary. Suppose that for every i = 1, . . . , n the parametrised curve f(γi) is
isotopic to γi and it has the same orientation. Then f is isotopic to the identity IdS.
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1.3 Graphs of Curves

1.3.1 The Classical Curve Graph

We recall the definition of the curve graph of a surface, as initially introduced by Harvey
in [Harv1].

Definition 1.3.1. Let S be a surface (not necessarily of finite type). The curve graph
C(S) of S is the abstract graph defined as follows:

Vertices There is one vertex for every curve (that is for every isotopy class of simple
closed essential curves) on S;

Edges There is an edge between two vertices corresponding to two curves if they are
disjoint (that is they admit disjoint representatives).

We will almost always abuse notation and indicate the vertices of the curve graph as
curves, that is with lowercase Greek letters.

We notice that if the complexity is ξ(S) ≤ 0 and S is not the torus S1,0, every
parametrised curve on S is nonessential, so the curve graph has no vertices. If S is either
of type S1,0 or ξ(S) = 1 every two curves on S intersect so, given our definition, the curve
graph is discrete, hence not very interesting. A different definition for the graph can be
given in these cases, only requiring two curves to have the minimal possible intersection
for them to be connected by an edge, producing a Farey graph; see [FM, §4.1.1] for
further details. However, this refinement of the definition will play no role in this thesis,
as we will only focus on surfaces of complexity ξ(S) ≥ 2. In these cases the curve graph
is actually connected, as was already known to Harvey, see [Harv1, Proposition 2]. For
another proof, there given in the closed case but adaptable to the general one, also see
[FM, Theorem 4.4].

Let α, β be two parametrised curves on S. Moreover, let f, g ∈ Homeo(S) be two
isotopic self-homeomorphisms. If α and β are isotopic it follows that f(α) = f(β) so
f([α]) is a well-defined curve. Moreover f([α]) is isotopic to g([α]), so, given a mapping
class [f ] ∈ Mod±(S), its action on the vertices of the curve graphs is well defined. If
α and β are disjoint then f(α) is disjoint from f(β). It follows that a group action
Mod±(S) y C(S) by graph automorphisms is well-defined. Given an extended mapping
class f ∈ Mod±(S) and a vertex of the graph, that is a curve γ ∈ V(C(S)), we will loosely
denote the action of the mapping class on the curve as f(γ).

Apart from some sporadic cases, the aforementioned action is faithful and induces
all the automorphisms of the graph. This is the content of the following celebrated and
important rigidity result, known as Ivanov’s Theorem, as the first proof is due to Nikolai
Ivanov in [Iv1] in the case of genus at least two, while the missing cases were proven by
Korkmaz in [Kor]. An independent proof covering all the cases has been provided by Luo
in [Lu].

Theorem 1.3.2 (Ivanov’s Theorem). Let S be a surface of type S0
g,p with complexity

ξ(S) ≥ 2 and different from S1,2 or S2,0. Then the curve graph C(S) is rigid, that is the
group homomorphism

ρ : Mod±(S) −→ Aut(C(S))
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induced by the natural action is an isomorphism.

1.3.2 Subgraphs of the Curve Graph

In this subsection we will introduce some important subgraphs of the curve graph that
will play a major role in this thesis. In order to define them we will first introduce some
properties of curves. The following definition introduces the first two such properties and
the first important subgraph, the strongly separating curve graph introduced by Bowditch
in [B2].

We recall that by subgraph of a graph Γ induced by a set of vertices V we mean the
graph having V has the set of vertices and having an edge between two of them if and
only those vertices are connected by an edge in Γ.

Definition 1.3.3. Let S be a surface. A curve γ ⊂ S is said to be separating if the set
S \ γ is disconnected.

A separating curve γ ⊂ S is said to be strongly separating if no closure of any
component of S \ γ is a pair of pants, that is of type Sb0,p with p+ b = 3.

The strongly separating curve graph Css(S) is the subgraph of the curve graph induced
by vertices representing strongly separating curves.

In other terms, the strongly separating curve graph is the graph whose vertices are
strongly separating curves, and two curves are joined by an edge if and only if they are
disjoint.

Since surface self-homeomorphisms preserve the set of separating curves, and the
topological types of the complementary components, and vertices and edges are defined
up to isotopy, the extended mapping class group naturally acts by automorphisms on the
strongly separating curve graph. Apart from some sporadic cases, the strongly separating
curve graph is rigid. This result, which is [B2, Theorem 1.1], was originally proven by
Bowditch in order to prove quasi isometric rigidity of the Weil-Petersson space, see [B3].

Theorem 1.3.4. Let S be a surface of type S0
g,p with g + p ≥ 7. Then the strongly

separating curve graph Css(S) is rigid, that is the group homomorphism

ρ : Mod±(S) −→ Aut(Css(S))

induced by the natural action is an isomorphism.

Restricted to the case of punctured spheres, our Theorem A is a generalisation of the
previous rigidity result, although it says nothing about the case of non-planar surfaces.

From now on we will exclusively focus our attention to the case of punctured spheres.
We recall that we will denote a p-punctured sphere, that is a surface of type S0

0,p, as
Σp. On punctured spheres every curve is separating (this is the Jordan Curve Theorem,
first stated by Camille Jordan in [J]: for a modern proof, using algebraic topology, see
[Hat, Proposition 2B.1.b]) and we can easily classify curves according to the number of
marked points on each side. Practically speaking, in order to make the notation less
cumbersome, we will classify them in terms of the number of marked points on the side
which contain less. This is the content of the following definition. We recall that, given
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a curve, the closure of their complementary components are regions well defined up to
isotopy, see §1.2, in particular their topological type is well defined.

Definition 1.3.5. Let m ∈ N with m ≥ 4. Let Σm be the m-punctured sphere. Let
γ ⊂ Σm be a curve. The closure of the two connected components of Σm \ γ are two
punctured discs, of types S1

0,l and S
1
0,h, with 2 ≤ l ≤ h. We say that γ is a l-separating

curve.

A 1-separating curve would be nonessential, hence the hypothesis l ≥ 2 is not restric-
tive. Moreover, we observe that two isotopic curves have the same topological type.

The definition of the following two subgraphs of the curve graph comes naturally.

Definition 1.3.6. Let Σm be a m-punctured sphere and let k ≥ 2. We define the
k-separating curve graph as the subgraph of the curve graph induced by h-separating
curves with k ≤ h: we will denote it with Ck(Σm).

The subgraph of Ck(Σm) induced by exactly k-separating curves only will be called
strict k-separating curve graph and denoted by C(k)(Σm).

The graphs we have just defined are only interesting if m ≥ 2k+1. Indeed, if m < 2k

there exists no k-separating curve on Σm, hence the graph is empty. When m = 2k two
k-separating curves on Σm are disjoint if and only if they cobound an annulus, hence
they are isotopic: it follows that the graph is discrete. When m ≥ 2k + 1 the (strict)
k-separating curve graphs are actually connected: we will give multiple proofs of this
fact in § 2.3, both following from the rigidity results and a a priori ones.

The simplest case we can have is for k = 2 and m ≥ 5: the graph C2(Σm) corresponds
to the usual (separating) curve graph C(Σm). When k = 3 and m ≥ 7 the graph C3(Σm)

is the strongly separating curve graph Css(Σm) described by Bowditch in [B2]. Moreover,
we observe that whenm = 2k+1 every vertex of the k-separating curve graph corresponds
to a k-separating curve, so the graph Ck(Σ2k+1) coincides with the (strict) k-separating
curve graph C(k)(Σ2k+1).

We observe that there exist the following two natural inclusions of graphs:

Ck(Σm) ↪→ Ck+1(Σm);

C(k)(Σm) ↪→ Ck(Σm).

For every k, every self-homeomorphism of the ambient surface preserves the set of
k-separating curves, and its action on the set of those curves is transitive, see [FM,
§1.3]. Since vertices and edges are defined up to isotopy, the extended mapping class
group naturally acts on the (strict) k-separating curve graph. Indeed, in all but some
sporadic cases those graphs our rigid. This is the content of our first main theorem
(which covers the case of the non-strictly separating curve graphs, the other following
from Theorem D).

Theorem A. Let k ≥ 2 and m ≥ 2k + 1. Let Σm be the m-punctured sphere. Then the
k-separating curve graph Ck(Σm) is rigid, that is the group homomorphism

ρ : Mod±(Σm) −→ Aut(Ck(Σm))

17



induced by the natural action is an isomorphism.

We have already remarked that the previous theorem is an extension of [B2, Theo-
rem 1.1] for planar surfaces. Moreover, this result is a sharpening of [Mc1, Theorem 1.5]
(which is [Mc2, Theorem 2] in the planar case), which only holds for m ≥ 3k − 1.

Lastly, let us note that the bound on the complexity of the surface in term of k we
have used in our result is sharp. Indeed, if m ≤ 2k we have noticed that Ck(Σm) is either
empty or countable and discrete. In the first case the automorphism group is empty, in
the other case it is the infinite permutation group S∞. In neither case such a group can
be isomorphic to the extended mapping class group of the surface, which is nontrivial
but finally generated, thanks to the observation made in §1.1.7.
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1.4 Graphs of Discs and Regions

1.4.1 Graphs of k-Separating Discs

During most of Chapter 2 we will not deal with the graph of k-separating curve, but
with a closely related graph whose vertices will not be curves but rather discs. This is
mostly due to technical reasons: indeed, in our arguments we would have to repeatedly
mention the discs bounded by a curve, and the fact that there is a possible ambiguity
in the choice of the side would have made the notation, and hence the arguments, much
more cumbersome. In order to avoid this issue we will work with graphs whose vertices
are discs, since their boundary curves are always well-defined, so our notation will be
much less convoluted. Moreover, these graphs are an interesting first example of graphs
of regions, which we will introduce in Definition 1.4.3, so they are worth considering on
their own.

These are the reason for the following definitions.

Definition 1.4.1. Let k,m ∈ N. Let Σm be the sphere with m-marked points. We
define the k-separating disc graph Dk(Σm) as the abstract graph given by the following.

Vertices There is vertex for each isotopy class of p-punctured discs D ⊆ Σm, with
k ≤ p ≤ m− k;

Edges There is an edge between two vertices if the corresponding classes of discs are
disjoint (that is they admit disjoint representatives).

Analogously to the k-separating curve graph the aforementioned graph is only inter-
esting for m ≥ 2k + 1. Indeed, if m < 2k the graph is empty, and if m = 2k it has
infinitely many connected components, each consisting of a pair of complementary discs
{D,Dc} only.

Similarly to the definition of the strict k-separating curve graph we have given in
Definition 1.3.6 we will now define a graph whose elements are k-punctured discs only,
which will come up in some of our later arguments.

Definition 1.4.2. Let k,m ∈ N. Let Σm be the sphere with m-marked points. We
define the graph of k-punctured discs D(k)(Σm) as the full subgraph of Dk(Σm) induced
by vertices corresponding to discs containing exactly k marked points.

It is immediate to observe that, when m ≥ 2k + 1, two k-punctured discs in Σm

are disjoint if and only if their boundary curves are. Indeed, this proves that the graph
D(k)(Σm) is naturally isomorphic to the strict k-separating curve graph C(k)(Σm), when
m ≥ 2k + 1.

For any p, any self-homeomorphism of the ambient surface preserves the set of p-
punctured discs, and its action on such set is transitive. Moreover, since vertices and
edges are defined up to isotopy, it follows that the extended mapping class group naturally
acts on the k-separating disc graph by graph automorphisms. It turns out that, apart
from some sporadic cases, this graph is actually rigid. This is the content of the following
result, to the proof of which the most part of Chapter 2 will be dedicated.
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Theorem B. Let k ≥ 2 and m ≥ 2k + 1. Let Σm be the m-punctured sphere. Then the
k-separating disc graph Dk(Σm) is rigid, that is the group homomorphism

ρ : Mod±(Σm) −→ Aut(Dk(Σm))

induced by the natural action is an isomorphism.

A weaker version of the previous theorem was already known, as it follows from [Mc1,
Theorem 3] (or [Mc2, Theorem 2] in the planar case) for m ≥ 3k − 1.

Once again, we remark that the bound in the previous result is sharp. Indeed, when
m < 2k the automorphism group is empty, and when m = 2k the graph is a countable
disjoint union of pairs of vertices joined by an edge, hence the automorphism group con-
tains an infinite permutation group S∞ as a subgroup. Since this group is uncountable,
as noted in §1.1.7, the automorphism group cannot be isomorphic to any mapping class
group.

1.4.2 Graphs of Regions

We will now introduce the last class of graphs naturally arising from surfaces, that of
graphs of regions, which we will encounter later in this thesis. Such class of graphs encom-
pass all the previously defined ones, hence will be the object of our most general rigidity
result. This kind of graphs has first been introduced by McCarthy and Papadopoulos in
[MP], and was popularised, in the context of closed surfaces, by Brendle and Margalit in
[BM1]; we will follow the definition for punctured spheres given by McLeay in [Mc1, §1].
For the definition of regions, we refer to Definition 1.1.12.

Definition 1.4.3. Let A ⊆ R(Σm) be a Mod±(Σm)-invariant set of regions. We define
the graph of regions subordinate to A, written GA(Σm), as the abstract graph defined as
follows.

Vertices There is a vertex for every region R ∈ A;

Edges There is an edge between two vertices if the corresponding regions are disjoint
(that is they admit disjoint representatives).

The k-separating disc graph introduced in Definition 1.4.1 is a first example of a
graph of regions. Moreover, the curve graph, and hence its subgraphs, can be thought as
a graph of regions, by taking as setA the set of annuli with essential boundary. The graph
of regions GA(Σm) is naturally isomorphic to the curve graph, and this isomorphism is
Mod±(Σm)-equivariant.

Given that we have required the set of regions A to be Mod±(Σm)-invariant the
mapping class group naturally acts by automorphisms on the graph of regions GA(Σm).
We will produce a complete classification of the graphs of regions on planar surfaces
which are rigid (Theorem D). The two ingredients we are currently missing in order to
give the precise statement are the following.

First, we will need a way to measure the complexity of the set of regions A, such that
we can impose a lower bound on the complexity of the surface, in order to avoid empty
or disconnected graphs. This measure of complexity, which will be a natural number νA,
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will play a role analogous to the one the number k played for the graphs of k-separating
curves or discs.

Second, since we are now allowing the considered regions to be not only discs or
annuli, some new potentially pathological configurations can arise, which might prevent
the graph from being rigid. In particular, these configurations allow for the existence
of automorphisms, called exchange automorphisms, which permute two vertices while
fixing all the other, and such automorphisms cannot be induced by mapping classes.
We will give a complete topological description of the pathologies which generate such
obstructions to rigidity.

The definition of the complexity of a set of regions, which is the same definition as in
[Mc1, §1], is the following.

Definition 1.4.4. Let m ≥ 5. Let R ∈ R(Σm) be a region of the m-punctured sphere
Σm. We define the complexity ν(R) to be the minimum natural number such that there
exists a ν(R)-punctured disc D ⊆ Σm containing R.

Given a set of regions A ⊆ R(Σm) we define its complexity νA to be the minimum of
ν(R) with R varying among every region R ∈ A.

For examples of the complexity of region see Figures 1.1 and 1.2.
We immediately remark that, since boundary components of regions are essential by

definition, it follows that for every collection of regions A it always holds νA ≥ 2.
We notice that the complexity of a h-punctured disc is h, and the complexity of an

annulus homotopic to a h-separating curve is exactly h. It follows that the complexity
of the k-separating curve (resp. disc) graphs, thought as graphs of regions, is exactly k,
as expected.

We begin with the definition of vertices with holes. Before that, we introduce some
notation: given a region R ∈ R(Σm), a complementary disc of R is the isotopy class of
the closure of one of the connected components of Σm \R (which is well-defined region,
as it is a disc with at least two marked points).

Definition 1.4.5 (Vertices with holes). Let A ⊆ R(Σm) be a Mod±(Σm)-invariant
set of regions. A vertex R ∈ GA(Σm) is said to be a vertex with a hole if one of the
complementary discs of R does not contain any subsurface representing a region of A.

We notice that, by definition, an annular region without marked points never has
holes, since any complementary discs contains a subsurface which is isotopic to it.

For an example of a region with holes let us consider the set A ⊆ R(Σ5) given by
once-punctured annuli with essential boundary (that is surface of type S2

0,1). Any of those
regions has a hole, since if one of its complementary discs, which have two punctures each,
contained a once-punctured annulus, this would have one boundary component isotopic
to a marked point. For a picture of these regions see Figure 1.1.

The second type of pathological vertices is that of cork pairs.

Definition 1.4.6 (Cork pairs). Let A ⊆ R(Σm) be a Mod±(Σm)-invariant set of regions.
A pair of vertices (P,D), with P,D ∈ A are said to form a cork pair if P is represented
by an annular region with a complementary disc D and no proper, nonperipheral (that
is not isotopic to ∂D) subsurface of D represents an element of A.
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P

Figure 1.1: The once-punctured annulus P is shaded in gray. Any of the two comple-
mentary disc is a hole for it. Note that the complexity is ν(P ) = 3.

An example of a graph of regions admitting cork pairs is the following. LetA ⊆ R(Σ5)

be the set of annular regions and twice-punctured discs. Then any annular region and
the twice-punctured disc it bounds form a cork pair. Indeed, any essential curve in a
2-punctured disc is isotopic to the boundary. This can be seen in Figure 1.2 (which also
explains the name of the object, as the disc is the “cork” of the bottle, while the annular
region is the “neck”).

We can now state our rigidity result for graphs of planar regions, which is a complete
classification.

Theorem C. Let m ≥ 5. Let Σm be the m-punctured sphere. Let A ⊆ R(Σm) be a
Mod±(Σm)-invariant collection of regions, and let GA(Σm) be the associated graph of
regions. Then the graph is rigid, i.e. the natural homomorphism

ρ : Mod±(Σm) −→ Aut(GA(Σm))

is an isomorphism, if and only if m ≥ 2νA + 1, and the graph has no vertices with holes
and no cork pairs.

The previous theorem is a sharp version of [Mc1, Theorem 3] (that is [Mc2, Theorem 2]
in the planar case), which proves the same rigidity result with the weaker bound m ≥
3νA − 1.
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P

D

Figure 1.2: The 5-holed sphere is represented as the doubling of the “bottle” in figure.
The regions (P,D) form a cork pair. The annulus P is the “neck of the bottle”, while the
twice-punctured disc D is the “cork”. Note that the complexity is ν(P ) = ν(D) = 2.
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1.5 Kneser Graphs

1.5.1 Standard Kneser Graphs

Throughout many of the arguments of this thesis, we will need to keep track of the
combinatorics of marked points, and relate it to configurations arising from graphs of
curves or discs. This is the reason for us to introduce the Kneser graphs, whose definition
is originally due to Kneser in [Kn]. For a more accessible English reference for the
definition, see [SU, §3.2].

Definition 1.5.1. Let m, k ∈ N, m ≥ k. Let Π = {1, . . . ,m}. The Kneser graph
K(m, k) is the abstract graph defined as follows.

Vertices There is one vertex for every subset V ⊆ Π of cardinality exactly k;

Edges There is an edge between two vertices if the corresponding sets are disjoint.

Since permutations preserve cardinalities and disjointness, we notice that the sym-
metric group Sm naturally acts on K(m, k) by graph automorphisms.

The reason we are interested to Kneser graphs is the following. Let Σm be the m-
punctured sphere, and let the marked points be labelled by Π = {1, . . . ,m}. Let γ ⊂ S

be a k-separating curve. If m ≥ 2k + 1 then there exists a unique complementary disc
for γ, which contains exactly k marked points. Let π(γ) ⊆ Π be the set of those marked
points: this is a subset of Π of cardinality k, hence a vertex of the Kneser graph K(m, k).
Moreover, if γ, γ′ are two distinct disjoint k-separating curves then their k-punctured
complementary discs are disjoint (otherwise the two curves would cobound an annulus,
hence they would be isotopic), so in particular the vertices π(γ), π(γ′) ∈ K(m, k) are
disjoint, hence adjacent. It follow that it is defined a graph homomorphism:

π : C(k)(Σm) −→ K(m, k)

from the strict k-separating curve graph to the Kneser graph K(m, k).
This morphism will be a key component of the arguments in Chapter 3.

1.5.2 Extended Kneser Graphs

For the arguments throughout Chapter 2 we will need the following variation on Kneser
graphs, which is original.

Definition 1.5.2. Let m, k ∈ N, m ≥ k. Let Π = {1, . . . ,m}. The extended Kneser
graph K∗(m, k) is the abstract graph defined as follows.

Vertices There is one vertex for every subset V ⊆ Π such that k ≤ |V | ≤ m− k;

Edges There is an edge between two vertices if the corresponding sets are disjoint.

A vertex given by a subset of cardinality h will be called a h-vertex.

Since permutations preserve cardinalities and disjointness, we notice that the sym-
metric group Sm naturally acts on K∗(m, k) by graph automorphisms.
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Let Σm be the m-punctured sphere, and let its marked points be labelled by Π =

{1, . . . ,m}. Let D ⊂ S be a h-punctured disc with k ≤ h ≤ m−k. Let π(D) = D∩Π ⊆ Π

be the set of marked points contained in D: this is a h-vertex of the extended Kneser
graph K∗(m, k). Moreover, given two disjoint punctured discs D,D′ the sets π(D), π(D′)

are disjoint, hence adjacent as vertices of the extended Kneser graph. It follows that a
graph homomorphism:

π : Dk(Σm) −→ K∗(m, k)

from the k-separating disc graph to the extended Kneser graph K∗(m, k) is well-defined.
This morphism maps h-punctured discs to h-vertices of the extended Kneser graph.
Moreover, we have π(Dc) = π(D)c, where Dc is the closure of the complementary of the
disc D, while π(D)c is the set of the marked points not contained in D.
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1.6 Rigid Subgraphs and Exhaustions

So far, we have only discussed a notion of “global” (also called combinatorial or simpli-
cial) rigidity for graphs, that is the natural action of the mapping class group inducing
isomorphisms with the group of automorphisms. We will now introduce a “local” concept
of rigidity for subgraphs, which is in the sense of [AL2]. This will be the main topic of
Chapter 3.

Definition 1.6.1. Let Γ be a graph. A subgraph X ⊆ Γ is said to be rigid if for every
graph embedding i : X ↪→ Γ there exists a graph automorphism ϕ ∈ Aut(Γ) such that
i = ϕ|X . A graph which is rigid, as a subgraph of itself, is said to be co-Hopfian.

We also recall the definition of exhaustions of graphs.

Definition 1.6.2. Let Γ be a graph. A sequence of subgraphs Xi ⊆ Γ is said to be an
exhaustion if Xi ⊆ Xi+1 and ⋃

i∈N
Xi = Γ.

If every set Xi is finite (resp. rigid) we say that the exhaustion is by finite (resp. rigid)
sets.

Aramayona and Leininger proved the existence not only of a finite rigid subgraph of
the curve graph ([AL1, Theorem 1.1]), which is an interesting problem per se, but also
the existence of an exhaustion by finite rigid sets ([AL2, Theorem 1.1]).

We will focus on the case of strongly separating curve graph of the 7- and 8-holes
sphere. A finite rigid set for Css(Σ7) has been discovered by Bowditch in ([B2, Propo-
sition 3.1]). In the same paper, Bowditch also produced a finite rigid set of the strict
graph of 3-separating curve graph of Σ8, that is, C(3)(Σ8) ([B2, Lemma 7.2]), which we
will adapt to find a finite rigid set for Css(Σ8).

Our main result in this field, whose proof will occupy most of Chapter 3, will be
existence of an exhaustion by finite rigid sets for the strongly separating curve graph of
the 7- and 8-holes sphere.

Theorem D. Let S = Σ7 or S = Σ8. Then the strongly separating curve graph Css(S)

admits an exhaustion by finite rigid sets⋃
i∈N

Xi = Css(S).

Moreover, every subgraph Xi has trivial pointwise stabiliser.

From the previous theorem our last result, which is a co-Hopfian property for the
strongly separating curve graphs of the 7- and 8-holes sphere will follow.

The analogous co-Hopfian property for the standard curve graph has first been proven
by Shackleton ([Sha, Theorem 1]), and also deduced from the existence of exhaustion by
rigid sets by Aramayona and Leininger ([AL2, Corollary 1.2]).

Theorem E. Let S = Σ7 or S = Σ8. Then, for every injective graph self-embedding
i : Css(S) ↪→ Css(S), there exists an extended mapping class f ∈ Mod±(S) such that
i = f , that is the self embedding i coincides with the map induced on the curve graph by
the mapping class f .
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In the cases of interest to us this is a stronger statement than [B2, Theorem 1.1] (that
is Theorem A), which was the combinatorial rigidity.

This co-Hopfian property is a direct consequence of the existence of exhaustions by
rigid sets with trivial pointwise stabilisers. We will discuss an example in which this
property fails, hence the graph does not admit any such exhaustion by rigid sets, in
§3.6.

27



Chapter 2

Rigidity of Graphs of Regions

2.1 Outline of the Chapter

In this chapter we will prove Theorems A, B, and D.
For the most part we will focus on k-separating disc graphs. As remarked in §1.4.1,

the choice to study this graph instead of the perhaps more natural graph of curves
comes from the fact that the boundary of a disc is uniquely defined, whereas the “side”
of a curve is not. Not having to deal with this issue will make our arguments more
streamlined, although they can be adapted to the case of the graph of curves without
any deep modification.

The general strategy employed for the proof of Theorem B will resemble the argu-
ments used in [B2] and [Mc1], although the technical details will mostly differ. Indeed,
the proof of rigidity of the graph Dk(Σm) will be an inductive argument on k. For the
base case, that is, k = 2, we will employ the fact that the automorphism group of this
graph is isomorphic to the automorphism group of the 2-separating curve graph (Propo-
sition 2.7.7), that is„ the standard curve graph. Given this fact, the base case follows
directly from Ivanov’s Theorem (Theorem 1.3.2). We remark that this behaviour is con-
sistent with Ivanov’s Metaconjecture (see page x), as our argument effectively reduces
the computation of automorphisms of the k-separating disc graph to the computation of
automorphisms of the curve graph.

The inductive step of the argument, that is„ the existence of a Mod±(Σm)-equivariant
injection from Aut(Dk(Σm)) to Aut(Dk−1(Σm)) (Lemma 2.8.12) will be the biggest tech-
nical challenge of the proof. Indeed, in order to prove this property we will actually prove
that we can reconstruct the entire structure of the graph Dk−1(Σm) from the purely com-
binatorial structure of its subgraph Dk(Σm). In terms of topology we need to describe
(k−1)- and (m−k+1)-punctured discs and their disjointness in terms of discs in Dk(Σm)

and properties expressible in terms of disjointness only. As we will see in §2.2 the topo-
logical type of discs, and complementarity are recognisable (we will more formally define
the term later) from the graph of discs, hence reconstructing (k−1)-punctured discs will
suffice. Analogously to [B2], the (k − 1)-discs will be represented by surrounding pairs,
whose topological definition is the following.

Definition 2.1.1. Let k ≥ 2, and m ≥ 2k + 1. Let A,B be two k-punctured discs on
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Σm. We say that A,B form a surrounding pair {A,B} if their intersection A ∩ B is a
(k − 1)-punctured disc.

We recall that discs are regions, and the intersection of regions is well defined up to
ambient isotopy, as discussed in §1.2. Moreover, we remark that surrounding pairs are
unordered.

Two problems arise when we try to employ the previous definition to represent (k−1)-
punctured discs. The first one, which is the easiest one to solve, is the fact that multiple
distinct surrounding pairs may have the same intersection, that is, they represent the
same (k − 1)-punctured disc. It follows that the set of surrounding pairs is not fit for
representing (k−1)-punctured discs, but luckily a suitable quotient is (Proposition 2.8.4).
The relation which encodes the fact that two surrounding pairs have the same intersection
is generated by the equivalence of couples of surrounding pairs {A,B} ∼ {B,C} when
the triple {A,B,C} is a surrounding triple, as in the following definition.

Definition 2.1.2. Let k ≥ 2, and m ≥ 2k + 1. Let A,B,C be three k-punctured discs
on Σm. We say that A,B,C form a surrounding triple {A,B,C} if pairwise they form
surrounding pairs and their triple intersection A ∩B ∩ C is a (k − 1)-punctured disc.

The second issue which we will need to take care of for our argumentative strategy,
that is to use surrounding pairs to represent (k − 1)-punctured discs, to work will prove
more problematic and will require the vast majority of the chapter to be addresses. This
issue is the fact that the definition of surrounding pairs and triple we have given so
far is based on topological information. Such information is, a priori, not recorded in
the graph of k-separating discs, which records disjointness but apparently no informa-
tion regarding any nonempty intersection between discs. Luckily for us, it turns out
that such information can actually be extracted from the purely combinatorial struc-
ture of the graph. This means that it is possible to characterise surrounding pairs and
triple just in terms of combinatorial properties of vertices of the graph. Ultimately, this
proves that those pairs and triples are preserved not only by mapping classes but by any
graph automorphism (Corollary 2.2.10). This result will be the key piece to reconstruct
the graph Dk−1(Σm) and its automorphisms in terms of graph-theoretical properties of
Dk(Σm). As a final remark, once the rigidity of the graph is proven, the preservation of
surrounding pairs and triples must be true a posteriori so, as in many similar rigidity
proofs, the main struggle is to extract topological information from the combinatorics
of the graph only. The practical way in which we will achieve this goal will be to prove
that surrounding pairs and triples appear in a class of hexagons, the standard alternating
hexagons (Definition 2.2.7), which is preserved under graph automorphisms. This is sim-
ilar to the approach developed in [B2, §3]: in that case surrounding pairs and triples were
characterised in terms of heptagons. Unfortunately, it is impossible to utilise heptagons
in the general case, and contructions similar to Bowditch’s would involve an increasing
number of vertices as k grows, so any universal proof using them would probably be
impossible. Luckily, hexagons are suitable for the recognition of surrounding pairs and
triples, independently of k and m. Unfortunately, differently from heptagons in [B2,
Proposition 3.1], hexagons are no longer rigid as subgraphs (see Definition 1.6.1), that
is, they are not unique up to the action of the mapping class group. We will still be
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able to prove that the class of standard alternating hexagons can be recognised through
purely combinatorial properties (Theorem 2.2.8), and this will suffice for our needs, but
this argument will be quite long and technical, and constitutes the core of our proof.

The proof of rigidity for Theorem D will essentially resemble the one of [Mc1, Theo-
rem 3], although with some modifications, as we will use graphs of discs instead of graphs
of curves. However, to prove the other direction of the theorem, the sharpness of the
result, two original arguments will be given.

In order to reduce the computation of automorphisms of a generic graph of regions
GA(Σm) to the ones of the graph of discs DνA(Σm) we will study particular subgraphs,
called maximal perfect joins (see Definition 2.9.19). When the complexity νA (Defini-
tion 1.4.4) is low enough, and no vertices with holes or cork pairs are present, each of
these joins will represent exactly the subgraphs of regions that are contained in either a
disc D or its complementary Dc. This will produce a bijection between the set of max-
imal perfect joins and the set of pairs of complementary discs. Since maximal perfect
joins are defined in purely combinatorial terms, they are preserved under graph automor-
phisms, hence any automorphism of the graph of regions will induce a bijection of the
set of pairs of complementary discs. It will turn out that this map actually induces an
automorphism of the graph of νA-punctured discs (Proposition 2.9.27). This will let us
reduce to the computation of the automorphisms of the graph of discs, hence Theorem B

can be employed to prove Theorem D.
As for the sharpness of the result, we will first prove that a certain type of graph

automorphisms are incompatible with rigidity. These automorphisms are the so-called
exchange automorphisms (Definition 2.9.2), and consist of automorphisms that permute
two vertices, while fixing all the others. We will show directly (Proposition 2.9.3) that,
if the complexity is low enough, such automorphisms can never be induced by map-
ping classes. Afterward, we will characterise this combinatorial obstruction to rigidity
in topological terms. Indeed, we will prove that the presence of either vertices with
holes (Definition 1.4.5) or cork pairs (Definition 1.4.6) implies the existence of exchange
automorphisms. Theorem D proves, a posteriori, that the existence of such vertices is
not only a sufficient condition fro the existence of exchange automorphisms, but it is
also necessary. Lastly, we will prove that if the complexity of the graph is too high,
with respect to the complexity of the surface, then either the graph is disconnected, or
it admits a vertex with holes or it is one of two graph for which we can directly compute
the automorphism group. In all these cases the graph turns out not to be rigid, hence
proving the sharpness of Theorem D.

This chapter will be divided as follows. We start with Section 2.3 where we will
discuss various proof of the connectedness of graphs of discs, curves and regions. Some
of these proofs will be proof a posteriori, and for those we will assume the rigidity results,
or some intermediate result in their proofs, while others will be completely independent
a priori proofs.

In Section 2.2 we will prove that some topological properties of discs are recognisable
from the combinatorics of the graph Dk(Σm). Moreover, we will introduce the notion of
alternating hexagons we will work with throughout the following sections.

In Section 2.4 we will study the projection of alternating hexagons in the graph of
discs Dk(Σm) to the extended Kneser graph K∗(m, k), hence studying the combinatorics
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of the distribution of the marked points contained by the vertices.
In Sections 2.5 and 2.6 we will prove the preservation of standard alternating hexagons

by graph automorphisms (Theorem 2.2.8). Each section will cover one of the two main
different cases, differentiated according to the projection of the hexagons to the Kneser
graph: the arguments are similar in spirit, but the technical details differ substantially
between them.

In Section 2.7 we will relate the k-separating disc graphs, hence its automorphism
group, to the k-separating curve graphs, proving that Theorems A are B are equivalent.
This fact will also be needed to reduce the base case of the inductive argument to Ivanov’s
Theorem.

In Section 2.8 we will formalise the inductive argument we sketched earlier and prove
rigidity for k-separating disc graphs, that is, Theorem B.

Lastly, in Section 2.9 we will expand on the argument outlined above and prove the
characterisation of rigid graphs of regions, that is, Theorem D.
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2.2 Topological Properties and Alternating Hexagons

In what follows we will from time to time change our notation, and write Dk(Σk+n+1)

with n ≥ k instead of Dk(Σm) with m ≥ 2k + 1: the quantities m and k + n + 1 will
alternatively play the same role. This will simplify the notation in many statements and
arguments.

Our main technical result, Corollary 2.2.10, will require that k ≥ 3 (we will point
out why in more detail after the statement of Theorem 2.2.8), but this will be enough
for our needs, as Lemma 2.8.12 would still require k ≥ 3. This is the reason why, unless
otherwise stated, from now on we will always assume k ≥ 3. However, many intermediate
statements will still hold for k ≥ 2, hence we will state them with this weaker bound, in
order for their proofs to appear more natural.

The goal of this section is to introduce the hexagons we want to study in the graph
of k-separating hexagons, in order to recognise surrounding pairs and triples. In the first
part of this section we will show how some topological properties of discs can be detected
just by looking at the combinatorial structure of the graph.

We say that a certain property, or a set of vertices, is recognisable in the graph to
mean that it is preserved under graph automorphisms.

We will start by proving that inclusion between two discs up to isotopy (which is well
defined, see §1.2.2) is a recognisable property in the graph. We can actually characterise
it in the following way.

Proposition 2.2.1. Let k ≥ 2 and n ≥ k. Let A,B be two distinct vertices of the
graph Dk(Σk+n+1). Then A ⊆ B if and only if every vertex of Dk(Σm) adjacent to B is
adjacent to A. In particular inclusion between discs is a recognisable property.

We remark that the above condition can be expressed in more graph-theoretical terms
as link(B) ⊆ link(A).

Proof of Proposition 2.2.1. IfA ⊆ B it is immediate to observe that every disc disjoint
from B must be disjoint from A, too.

For the converse let A,B be vertices such that link(B) ⊆ link(A). From this it follows
that Bc is adjacent to A, since it is adjacent to B. Hence, we have that A ⊆ (Bc)c = B,
which was our claim.

Now that we have proven that inclusion between discs is recognisable, we can go a
step further and prove that the topological type of a disk, that is, the number of marked
points in it, is preserved under graph automorphisms. Since every graph automorphism
induced by the extended mapping class group preserves the topological types of discs, the
topological types being recognisable is a necessary condition for the graph to be rigid.

In order to describe the topological types we will use maximal chains of nested discs,
which we will now define.

Definition 2.2.2. Let k ≥ 2 and n ≥ k. A chain of discs is a collection of discs
{D0, . . . , Dj} ⊂ Dk(Σk+n+1) such that D0 ( D1 ( · · · ( Dj .

A chain is said to be maximal if it is not properly contained in any other chain.
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If two discs A,B contain the same number of marked points and A ⊆ B then B \ A
is an annulus, hence A and B are isotopic. It follows that the number of marked points
contained by discs in a chain must be strictly increasing. Hence it is immediate to observe
that there cannot exist infinite chains.

Since inclusion is recognisable in the graph of discs due to Proposition 2.2.1, chains
of discs are recognisable too.

Given a disc in Dk(Σk+n+1), there exists a maximal chain containing it. The fol-
lowing proposition gives us the characterisation of topological types of discs in terms of
maximal chains and, alongside the previous observations, proves that topological types
are recognisable.

Proposition 2.2.3. Let k ≥ 2 and n ≥ k. Let D0 ( · · · ( Dj be a maximal chain of
discs in Dk(Σk+n+1). Then j = n− k + 1 and Di is a (k + i)-punctured disc.

Let D be a vertex of Dk(Σk+n+1). Then D is a (k + i)-punctured disc if and only if
there exists a maximal chain D0 ( · · · ( Dn−k+1 such that D = Di. In particular, the
topological type of discs is recognisable in the graph.

Proof. We proceed by induction on i. First, we claim that the disc D0 is k-punctured.
If not, there would exists a k-punctured disc D properly contained in D0, and the chain
D ( D0 ( · · · ( Dj would be strictly longer than the chain we started with, contradicting
maximality. Our claim is proven.

If the disc Di is (k + i)-punctured then the subsequent disc Di+1 must contain at
least k + i + 1 marked points, otherwise we would have Di = Di+1. We claim that the
disc Di+1 contains exactly k+ i+1 marked points. If not, the disc Di+1 would contain at
least two marked points not in Di, let us denote them with p, q. Then there would exist
a disc D ⊆ Di+1 containing p but not q. From this it would follow that Di ( D ( Di+1,
hence the chain would not be maximal. We have reached a contradiction, proving the
inductive step of the argument, hence the proposition.

In order to prove the existence of the disc D the following construction can be em-
ployed. Let a ⊂ Di+1 \Di be a simple arc with one endpoint on Di and p as the other
one, not containing q. Let D ⊆ Di+1 be a regular neighbourhood of Di ∪ a small enough
to be a punctured disc not containing q.

The following proposition, whose proof is immediate, alongside the previous result,
also proves that complementary discs are recognisable in the graph.

Proposition 2.2.4. Let k ≥ 2 and n ≥ k. Let h be such that k ≤ h ≤ m−h. Let A be a
h-punctured disc in Dk(Σm). Then there exists a unique (m−h)-punctured disc B which
is disjoint from A. This disc is the complementary disc of A. In particular, (unordered)
pairs of complementary discs are recognisable in the graph of discs.

We are now ready to give the definition of the objects we will be focusing on for the
most part of the chapter: alternating hexagons. First, we begin with a graph-theoretical
definition.

Definition 2.2.5. Let Γ be a graph. Let h ≥ 3. Let Ch be the 2-regular connected
graph with h vertices. A h-cycle in Γ is a map f : Ch −→ Γ.

A cycle is said to be embedded if it is injective.
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A hexagon in Γ is an embedded 6-cycle.

We can now define alternating hexagons in the graph of k-separating discs.

Definition 2.2.6. Let k ≥ 2 and n ≥ k. Let H = (D1, . . . , D6) be a 6-cycle in the graph
Dk(Σk+n+1). We say that such a cycle is alternating if all the vertices are either k-
punctured or n-punctured discs, and a vertex Di is k-punctured if and only the adjacent
vertices Di±1 are n-punctured, where subscripts are to be considered modulo 6.

An alternating hexagon is an alternating embedded 6-cycle.

Thanks to Proposition 2.2.3 and Proposition 2.2.1 every property in the previous
definition is recongnisable in the graph, so the definition is purely graph-theoretical.

An alternating hexagon may not be isometrically embedded, that is, it can admit
diagonals in Dk(Σk+n+1).

We will now present a class of alternating hexagons, which constitute the simplest
possible example, but will play a pivotal role in our argument by letting us recognise
surrounding pairs and triples. We will call these hexagons standard. A standard alter-
nating hexagon can be defined as a hexagon which coincide with the one in Figure 2.1,
up to action of a mapping class. For clarity, in that picture, as in all the others to follow,
we have only drawn the boundaries of the discs in the hexagons. We do, however, also
give a formal definition of such hexagons, which, although cumbersome, does not rely on
pictures.

Definition 2.2.7. Let k ≥ 2, n ≥ k. Let T be the 1-skeleton of a standard 2-simplex,
with vertices v1, v2, v3. Let now ST ∼= S0

0,0 be the suspension of T , endowed with the
metric induced by every 2-simplex being an equilateral Euclidean triangle of edgelength
1. We will consider the triangle T as naturally embedded into R2, hence the suspension
as a naturally (but not isometrically) embedded subset ST ⊂ R3. We will call T ⊆ ST

the equator and the two collapsed points in the suspension north and south poles. Let
l1, l5, l3 be the edges from the north pole to vertices v1, v2, v3 respectively; and let l4, l2, l6
be the edges from the south pole to v1, v2, v3 respectively. Let now Di be the 1

3 -regular
closed neighbourhood of li (see § 1.2.2). Let us now mark k−1 points in the ball of radius
1
6 around the north pole, mark n−1 points in the ball of radius 1

6 around the south pole,
and mark each vertex of T . The surface we obtain is homeomorphic to Σk+n+1. Under
the identification given by the aforementioned homeomorphism the discs (D1, . . . , D6)

form a alternating hexagon H in Dk(Σk+n+1).
An alternating hexagon in Dk(Σk+n+1) is said to be standard if it belongs to the orbit

of H under the action of Mod±(Σk+n+1).

Let us remark that standard alternating hexagon all look the same, that is, as in
Figure 2.1, up to the action of the extended mapping class group.

The following theorem, concerning the recognition of standard alternating hexagons,
will be the main technical result of the chapter, and the key to the proof of Theorem B.
Its proof will be split in two different cases and dealt with in Sections 2.5 and 2.6.

Theorem 2.2.8. Let k ≥ 3 and m ≥ 2k + 1. Then, the set of standard alternating
hexagons in Dk(Σm) is preserved by graph automorphisms.
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Figure 2.1: Standard alternating hexagon.

The need for the hypothesis k ≥ 3 in the previous statement comes from one single
intermediate result in the proof, namely Proposition 2.6.4. Indeed, this result fails for
k = 2 (we will give a counterexample when we prove it in §2.6). It is very likely that
the proof can be adapted to the case k = 2, but this is completely unnecessary to prove
rigidity as Lemma 2.8.12 would still require that k ≥ 3 anyway.

In order to be able to use the previous result, we now want to prove that, using
standard alternating hexagons, we can recognise surrounding pairs and triples in the
graph of discs.

Proposition 2.2.9. Let k ≥ 2 and m ≥ 2k + 1. Let A,B,C be distinct k-punctured
discs in Σm. Then A and B form a surrounding pair if and only if they are at distance
2 in a standard alternating hexagon in Dk(Σm)

Moreover, A,B,C form a surrounding triple if and only if they are three pairwise
non-adjacent vertices in a standard alternating hexagon.

Proof. The fact that k-punctured discs at distance 2 in a standard alternating hexagon
form surrounding pairs and triples follows immediately from Definition 2.2.7, and can be
visualised in Figure 2.1.

For the converse let {A,B,C} be a surrounding triple. The argument for pairs can
be deduced from this by only considering the constructions related to A and B. Let
O = A ∩ B ∩ C, which is a (k − 1)-punctured disc. Let PA (resp. PB , PC) be A ∩ Oc

(resp. B ∩Oc, C ∩Oc), which is a once-punctured disc only containing a single marked
point we will denote with pA (resp. pB , pC .). In PA (resp. PB , PC) there exists a unique
arc a (resp. b, c) with pA (resp. pB , pC) as the first endpoints and the second one to
∂O, up to isotopy which keeps the second endpoint on ∂O at all times.

Since the action of the homeomorphism group is transitive among discs of the same
topological type (see [FM, p.37]), the disc O can be identified with the region O′ =
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D1 ∩D3 ∩D5 in Definition 2.2.7. Moreover, up to the action of a homeomorphism which
fixes O′ pointwise, the arc a, b, c can be simultaneously identified with disjoint arcs inside
D1, D3 and D5, with one endpoint on ∂(O′) and with v1, v3 or v2, respectively, as the
other endpoint. Under this identification, the disc A (resp. B, C) is isotopic to a small
regular neighbourhood of O′ ∪ a (resp. O′ ∪ b, O′ ∪ c) which contains k-marked points,
which is isotopic to D1 (resp. D3, D5). It follows that, up to the action of a mapping
class, we have A = D1, B = D3, and C = D5. Hence A,B,C are three vertices pairwise
at distance 2 in a standard hexagon.

Theorem 2.2.8 and Proposition 2.2.9 immediately prove the following corollary, which
will be the key result that, in Section 5, will let us reconstruct the (k−1)-separating disc
graph from the k-separating one.

Corollary 2.2.10. Let k ≥ 3 and m ≥ 2k + 1. Then, the set of surrounding pairs and
the set of surrounding triples in Dk(Σm) are preserved by graph automorphisms.
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2.3 Connectedness of the Graphs

In this section we will discuss and prove the following connectedness results for the graphs
of discs Dk(Σm), graph of curves Ck(Σm) and more generally graphs of regions GA(Σm).
This is not only an interesting argument per se, but also a way to familiarise with the
type of arguments and the techniques that will be heavily employed in the following
sections. Beacuse we are willingly anticipating this material, we will use some results
that will only be proven by the end of the section. However, the connectedness results
we achieve in this section will never be employed to prove those results. We begin with
the result for graphs of discs.

Theorem 2.3.1. Let k ≥ 2 and m ≥ 2k + 1. Then the k-separating disc graph Dk(Σm)

is connected.

Since every disc which is a vertex of Dk(Σm) is disjoint from a k-punctured discs, the
previous result is indeed equivalent to proving that the strict graph of k-punctured discs
D(k)(Σm) (see Definition 1.4.2) is connected.

The result for graphs of curves is the following.

Theorem 2.3.2. Let k ≥ 2 and m ≥ 2k+ 1. Then the k-separating curve graph Ck(Σm)

is connected.

Since every curve which is a vertex of Ck(Σm) is disjoint from a k-separating curve,
the previous result is indeed equivalent to proving that the strict k-separating curve
graph C(k)(Σm) (see Definition 1.3.6) is connected. We recall that, when m ≥ 2k + 1,
such graph is naturally isomorphic to the graph D(k)(Σm). It follows that Theorem 2.3.2

is equivalent to Theorem 2.3.1.
Lastly, the result for graphs of regions is the following. For the definition of the

complexity of a graph of region we refer to Definition 1.4.4, whereas the definition of
vertices with holes is given in Definition 1.4.5.

Theorem 2.3.3. Let A ⊆ R(Σm) such that m ≥ 2νA + 1 and such that the associated
graph of region GA(Σm) does not contain vertices with holes. Then GA(Σm) is connected.

When there are no vertices with holes, it follows from Lemma 2.9.12 that the set of
minimal complexity elements of GA(Σm) contains either the set of νA-punctured discs or
the set of annular surfaces representing νA-separating curves (possibly both). It follows
that the graph induced by the minimal complexity elements contains an isomorphic copy
of either the graph of k-punctured discs D(νA)(Σm) (see Definition 1.4.2 for definition)
or the strict k-separating curve graph C(νA)(Σm) (see Definition 1.3.6 for its definition).
Every region of A is adjacent to both a νA-punctured discs and an annular surfaces
representing νA-separating curve. Hence, connectedness of GA(Σm) is then equivalent
to the connectedness of one of the two previous graphs (which are isomorphic to each
other). It follows that the three previously stated results are equivalent.

It can be noticed that, in the previous theorems, the hypotheses needed for connect-
edness recall the ones required for rigidity. Indeed, connectedness of the graphs can
be proven as a direct consequence of rigidity, as Proposition 2.3.5 shows in the general
case of graphs of regions. Moreover, we observe that, thanks to Proposition 2.9.1 and

37



Lemma 2.9.11 for the graphs of regions without vertices with holes and corks pairs con-
nectedness is equivalent to rigidity. In the case of graphs with vertices with holes or cork
pairs, however, this equivalence is no longer true: indeed, in those cases the obstruction
to rigidity does not come from the existence of multiple connected components, but from
the existence of exchange automorphisms.

In order to prove that rigidity implies connectedness, we give the following general
graph-theoretical result.

Proposition 2.3.4. Let Γ be a graph such that the following hold:

1. There exists a Aut(Γ)-orbit with at least three elements;

2. Every connected component of Γ has trivial pointwise stabiliser for the action of
Aut(Γ).

Then the graph Γ is connected.

Proof. Let us argue by contradiction and assume that Γ is not connected. Let C1, C2 ⊆ Γ

bet two different connected components. Let v ∈ V(Γ) be a vertex whose Aut(Γ)-orbit
has at least three element. It follows that either such orbit intersects one component at
least twice, or there exists a third connected component C3.

We will first deal with the case of the Aut(Γ)-orbit of v intersecting one component
at least twice. Without loss of generality we can assume that v ∈ C1, and that there
exists ϕ ∈ Aut(Γ) such that ϕ(v) ∈ C1 and ϕ(v) 6= v, since the orbit of v intersect C in
at least one distinct vertex. In particular we have ϕ 6= IdΓ. Since graph automorphisms
preserve connected components it follows that ϕ(C1) = C1. We can now define a graph
automorphism of Γ as

ψ(w) =

ϕ(w) if w ∈ C1

w otherwise.

This automorphism ψ fixes the component C2 pointwise, hence ψ = IdΓ, which is a
contradiction.

We can now move to the case in which the graph Γ admits three connected com-
ponents C1, C2, C3, all intersecting the Aut(Γ)-orbit of v. Without loss of generality,
we can assume that v ∈ C1 and that ϕ ∈ Aut(Γ) is a graph automorphism such that
we have ϕ(v) ∈ C2. In particular we have ϕ 6= IdΓ. Since graph automorphisms pre-
serve connected components it follows that ϕ(C1) = C2. We can now define a graph
automorphism of Γ as

ψ(w) =


ϕ(w) if w ∈ C1

ϕ−1(w) if w ∈ C2

w otherwise.

This automorphism ψ fixes the component C3 pointwise, hence ψ = IdΓ, which is a
contradiction. The proposition is proven.

We will now prove that, for graphs of regions, rigidity implies connectedness.

Proposition 2.3.5. Let A ⊆ R(Σm) be such that the associated graph of regions GA(Σm)

is rigid, that is Aut(GA(Σm)) = Mod±(Σm). Then the graph GA(Σm) is connected.
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Proof. Our goal is to apply Proposition 2.3.4. Condition 1 is satisfied, since the orbit
of every vertex is infinite.

Since GA(Σm) is rigid, Corollary 2.9.15 proves that the graph does not contain either
any vertex with holes or any cork pair, and that m ≥ 2νA + 1.

Every connected component of GA(Σm) contains an element of minimal complexity.
Indeed, every vertex of GA(Σm) admits at least a complementary disc, and since it has
no holes, every such disc contains at least νA marked points. Thanks to Lemma 2.9.12,
it contains either a νA-punctured disc or an annular surfaces representing νA-separating
curves, which is disjoint from the original vertex. We will only focus on the case where
the set of minimal complexity elements of GA(Σm) contains the set of νA-punctured discs,
the other being extremely similar.

Let now C be a connected component of GA(Σm): we want to compute its pointwise
stabiliser. Let f ∈ Aut(GA(Σm)) such that f|C = IdC : since the graph is rigid then
f ∈ Mod±(Σm) is an extended mapping class. Let A ∈ C be a νA punctured disc. It
not only holds that f(A) = A but that for every νA-punctured disc B ⊆ Ac we have
f(B) = B. It follows that the homeomorphism f is supported in A, up to isotopy.
Similarly, let D be a ν-punctured discs disjoint from A, which exists as m ≥ 2νA + 1:
from a similar argument it follows that f is supported in D, up to isotopy. We can
deduce that f is supported in A ∩D = ∅, up to isotopy, hence isotopic to the identity.
We have proven that the pointwise stabiliser of every connected component of GA(Σm)

is trivial. We have checked Condition 2, so we can apply Proposition 2.3.4, proving that
GA(Σm) is connected.

The proof of connectedness which we have just given is completely a posteriori : in-
deed, the connectedness of the graphs has never been used throughout the entire proof
of rigidity.

Another way in which connectedness can be proven is by using the tools introduced
in our proof of rigidity, in particular using an inductive argument revolving around the
inclusion Dk(Σm) ⊆ Dk−1(Σm), Lemma 2.8.11 and the definition of edges in Defini-
tion 2.8.10. Indeed, it is not hard to prove that if two vertices representing h-punctured
discs with k ≤ h ≤ m− h are joined by a path in Dk−1(Σm) then they are also disjoint
by a path avoiding vertices representing either (k − 1) or (m − k + 1)-punctured discs.
Hence, the path is contained in Dk(Σm) ⊂ Dk−1(Σm), hence connectedness of Dk−1(Σm)

implies that also Dk(Σm) is connected. The base case is then given by connectedness of
the graph D2(Σm), which is equivalent to the graph C2(Σm) being connected. The last
mentioned graph is the usual curve graph, and its connectedness has been well-known
since its definition: see [Harv1, Proposition 2].

The proofs of connectedness we have presented so far, although perfectly valid, have
the issue of essentially being a posteriori, and relying on the most part, if not at all, of the
work needed to prove rigidity. It turns out that it is possible to give a priori direct proofs
of the connectedness of the graphs. The first proof of this kind we give is the following,
which has the upside of being quite short, although not particularly constructive, as it
uses an explicit set of generators for the mapping class group, finding which is a far
from trivial result. Such an approach will make use the following lemma, due to Andrew
Putman, the easy proof of which is left to the reader, see [Pu, Lemma 2.1].
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Lemma 2.3.6. Let Γ be a graph. Let G be a group acting on Γ by graph automorphisms.
Let H be a set of generators for the group G such that H−1 = H. Suppose there exists a
vertex v ∈ V(Γ) such that the following hold:

1. The orbit G · v intersects every connected component of Γ;

2. For every h ∈ H there is a path in Γ between v and h(v).

Then the graph Γ is connected.

We will now prove Theorem 2.3.1 through the use of an explicit set of generators for
the mapping class group.

Before we begin the proof we recall that, given a set X, its disjoint union with itself
is the set X tX = (X × {0}) ∪ (X × {1}).

Proof of Theorem 2.3.1 via a generating set of Mod(Σm). Throughout the entire
proof we will identify the m-punctured sphere as the doubling of a regular m-gon, simi-
larly to what we will consistently do in §3.4 and §3.5.

Let Pm be a regular polygon with m-sides in R2, with vertices {v1, . . . , vm} cyclically
ordered. Let li be the side between vi and vi+1.

Let S = Pm t Pm/∼ be the doubling of the m-gon, where (x, 0) ∼ (y, 1) if and only
if x = y ∈ ∂Pm. The marked surface (S, {v1, . . . , vm}) is a m-holed sphere.

Let D be the k-punctured disc isotopic to a small regular closed neighbourhood of
l1∪· · ·∪lk−1. Let γi be the 2-separating curve isotopic to the boundary of a small regular
neighbourhood of li. Let Hi be the (right) half-Dehn twist around γi, see [FM, §9.1.3].
Let H =

{
H±1
i

}
: the discussion in [FM, § 4.4.4] proves that the collection H generates

the entire mapping class group Mod(Σm).
We will now apply Lemma 2.3.6 with Γ = D(k)(Σm) (we have already observed how

proving connectedness for this graph is enough), G = Mod(Σm), H as defined above,
and v = D.

Condition 1 follows immediately from the transitivity of the action, that is from fact
that for every disc A ∈ V(D(k)(Σm)), which contains exactly k marked points as D does,
there exists a mapping class f ∈ Mod(Σm) such that f(D) = A, hence A itself belongs
to the orbit of D.

In order to prove Condition 2, we first observe that for every j /∈ {k,m} the curve
γj is disjoint from ∂D, hence H±1

j (D) = D. The following constructions are pictured in
Figure 2.2. Let B be the k-punctured disc isotopic to a small regular closed neighbour-
hood of lk+2∪· · ·∪ l2k+1: since m ≥ 2k+1 this disc is disjoint from D. Similarly, let C be
the k-punctured disc isotopic to a small regular closed neighbourhood of lk+1 ∪ · · · ∪ l2k.
The disc B is disjoint both from H±1

k (D), which is contained in a small regular neigh-
bourhood of l1 ∪ · · · ∪ lk, and B is also disjoint from D. It follows that D and H±1

k (D)

are joined by a path in the graph. Similarly, the disc C is disjoint both from H±1
m (D)

and from D, hence D and H±1
m (D) are joined by a path in the graph. It follows that the

condition is satisfied and hence the graph D(k)(Σm) is connected.

Lastly, we would like to provide a proof of connectedness which is still a priori, and
very constructive, as it is based on a series of surgery operation between discs. This is
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Figure 2.2: The figure is for k = 3 and m = 7. The red curve is ∂D, the green curve is
γk, the blue curve is ∂(Hk(D)) (the dotted segments are to be intended on the “back” of
the heptagon), and the purple curve is ∂B.

an inductive argument somewhat similar to usual proof of connectedness for the curve
graph, see [FM, Theorem 4.4] for an example of such a proof.

Direct proof of Theorem 2.3.1. Once again we will only prove that the graph of k-
punctured discs D(k)(Σm) is connected, which is sufficient, as we have already remarked.

Let A,B two vertices of D(k)(Σm), that is two k-punctured discs of Σm. Our argument
will involve multiple inductions. We start by arguing by induction on i(∂A, ∂B). If such
intersection number is zero then either A ⊆ B or A ⊆ Bc. Since both discs contain
exactly k marked points in the former case it follows that A = B, while in the latter it
follows that A and B are disjoint, hence adjacent. In both cases A and B belong to the
same connected component.

Let us now assume that i(∂A, ∂B) = 2. We proceed by induction on |(A∆B) ∩Π|,
where A∆B = (A\B)∪(B\A) is the symmetric difference, and Π the set of marked points
on the surface. We remark that such cardinality is always even. Since i(∂A, ∂B) = 2

then both A∩Bc and B∩Ac are connected subspaces, and in particular they are bigons.
If it held |(A∆B) ∩Π| = 0 then the aforementioned components would be empty bigons,
contradicting minimal position.

If |(A∆B) ∩Π| = 2 then the region A ∪ B is a disc containing exactly k + 1 marked
points. It follows that the region D = (A ∪ B)c is a disc containing m − (k + 1) ≥ k

marked points, hence there exists a k-separating disc in D, which is then adjacent to
both A and B, which then belong to the same connected component.

Let us now assume that |(A∆B) ∩Π| > 2. The following construction is pictured in
Figure 2.3. Let p ∈ A∩Bc be a marked point and let q ∈ B∩Ac be a marked point. Let a
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be an arc inside A with one endpoint on ∂B\A and the other on p. Similarly, let b be a an
arc inside B with one endpoint on ∂B \A and the other on q. Let N (a) be the closure of
a small regular neighbourhood of a, not intersecting either any marked point other than
p. Similarly, let N (b) be a small open regular neighbourhood of b, not intersecting B∩Ac

and not containing any marked point other than q. Let D = (B ∪ N (a)) \ N (b). This
is a k-punctured discs whose boundary intersects ∂A and ∂B at most twice. Moreover
|(A∆C) ∩Π| = |(A∆B) ∩Π|−2 and |(B∆C) ∩Π| = 2. We can now apply our inductive
hypothesis to prove that A and B belong to the same connected component of C.

· · ·p q
a b

A B

Figure 2.3: For clarity we are omitting some of the marked points.

We can now move to the case of discs A,B such that i(∂A, ∂B) > 2. A picture of
this case is provided in Figure 2.4. First, assume that the intersection A ∩ B contains
a punctured bigon, that is a connected component whose boundary is composed of a
single arc of ∂A and a single arc of ∂B, and which contains at least one marked point.
Let D be such a bigon, and let h ≥ 1 be the number of marked points contained in
D. We proceed by induction on h ≥ 1. Let p be a marked points in D and let q be
a marked point in Ac ∩ Bc. Let a (resp. b) be a simple arcs in D (resp. Ac ∩ Bc)
with one endpoint on ∂B \ ∂A and the other on p (resp. q). Let N (a) be a small open
regular neighbourhood of the arcs a, contained in A and non containing any marked
point apart from p. Let N (b) be a small closed regular neighbourhood of the arcs b, non
containing any marked point apart from p, disjoint from A and whose intersection with
B is connected. The region C = (B \ N (a)) ∪ N (b) is a k-punctured disc. Moreover if
h = 1 then i(∂A, ∂C) = i(∂A, ∂B) − 2, otherwise i(∂A, ∂C) = i(∂A, ∂B), and C and A
form a bigon containing h−1 ≥ 1 marked points. In both cases our inductive hypotheses
prove that A and C belong to the same connected component. Moreover i(∂B, ∂C) = 2,
hence the previous case prove that B belongs to the same connected component of C,
henceforth to the same component of A.

We are now left to the case where A ∩ B does not contain any punctured bigon. A
picture of the following constrictions in provided in Figure 2.5. Once again we argue
by induction on the number of marked points contained in the symmetric intersection
|(A∆B) ∩Π|. There always exists an outermost arc among the connected components of
∂B ∩A, that is an arc c such that the interior of one of the components of A \ c does not

42



p

q

a
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B

Figure 2.4: For clarity we are omitting some of the marked points.

intersect ∂B. Due to this fact, the absence of bigons in A∩B implies that A∩Bc contains
at least one punctured bigon. In particular it follows that A ∩ Bc contains at least one
marked point, hence we can assume that |(A∆B) ∩Π| > 0 without loss of generality. Let
p be a marked point in A∩Bc and let q be a marked point in B∩Ac. Let a (resp. b) be a
simple arc in A∩Bc (resp. B∩Ac) with one endpoint on ∂B\A and the other on p (resp.
q). Let N (a) be a small closed regular neighbourhood of the arcs a, non containing any
marked point apart from p and whose intersection with B is connected.. Let N (b) be a
small closed regular neighbourhood of the arcs b, non containing any marked point apart
from p and disjoint from A. The region C = (B \N (b))∪N (a) is a k-punctured disc. we
have i(∂A, ∂C) ≤ i(∂A, ∂B) and |(A∆C) ∩Π| = |(A∆B) ∩Π| − 2, hence our inductive
hypotheses prove that A and C belong to the same connected component. Moreover,
i(∂B, ∂C) = 2, hence a previous argument proves that B lies in the same connected
component of C. In particular it follows that A and B belong to the same component,
and the proof is complete.
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Figure 2.5: For clarity we are omitting some of the marked points.
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2.4 Projections to Extended Kneser Graphs

In this section we will study the combinatorial configurations of marked points contained
in the discs forming an alternating hexagon. In order to study this behaviour, we will
make use of extended Kneser graphs K∗(m, k) (Definition 1.5.2) and the natural map

π : Dk(Σm) −→ K∗(m, k),

as described in §1.5.2. We recall that the projection of a disc π(D) is the set of marked
points inside the disc D, that is π(D) = D∩Π, where Π denotes the set of marked points
of Σm. Meoreover, two projections are joined by an edge if they are disjoint, that is is
the two discs do not share any marked point.

First, we observe the following very simple lemma, which will be useful later.

Lemma 2.4.1. Let k ≥ 2 and m ≥ 2k+ 1. Let h be such that k ≤ h ≤ m−k. Let v 6= w

be two distinct h-vertices of the extended Kneser graph K∗(m, k) such that there exists a
(m− h− 1)-vertex z adjacent to both. Then |v ∩ w| = h− 1.

Proof. Since v, w ⊆ zc and |zc| = h + 1 it follows that |v ∪ w| ≤ h + 1. Since v 6= w it
follows that |v ∪ w| > h so |v ∪ w| = h+ 1. The inclusion-exclusion principle yields

h+ 1 = |v ∪ w| = |v|+ |w| − |v ∩ w| = 2h− |v ∩ w|

hence |v ∩ w| = h− 1.

Since we will be studying the projections of alternating hexagons in the graph of
discs, we will now define the analogous alternating property in the context of extended
Kneser graphs. Indeed, the following definition is analogous in spirit to Definition 2.2.6.

Definition 2.4.2. Let k ≥ 2, n ≥ k. Let h ∈ N even with h ≥ 4. Let H = (v1, . . . , vh)

be a h-cycle in the extended Kneser graph K∗(k + n + 1, k). Such h-cycle is said to
be alternating if the vertices are either k-vertices or n-vertices, and the vertex vi is a
k-vertex if and only if its neighbours vi±1 are n-vertices, where subscripts are considered
modulo h.

An alternating hexagon in the extended Kneser graph K∗(k+n+1, k) is an embedded
alternating 6-cycle.

It follows immediately that an alternating h-cycle in Dk(Σm) projects to an alter-
nating h-cycle in K∗(m, k). However, even if the original cycle were embedded, the
projection cycle may not be. In particular, the projection of an alternating hexagon in
the graph of discs may not be a hexagon in the extended Kneser graph. For an example
of such a non-embedded projection see Figure 2.6.

We will now study the structure of alternating hexagons in the extended Kneser graph
K∗(m, k), with m ≥ 2k+ 1. It will turn out that there exists a unique such hexagon, up
to the action of the symmetric group and translation on the indices of vertices. That is
the content of the following proposition, which reminds of [B2, Lemma 3.3].

Proposition 2.4.3. Let k ≥ 2 and m ≥ 2k+1. Up to the action of Sm, and a translation
on the indices of vertices, there exists a unique alternating hexagon in the extended Kneser
graph K∗(m, k).
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D2
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D4

D4D5D5 D6

D6 ⊂ Dk

⊂ K∗· · ·

π

π(D6)

π(D3)π(D1) = π(D5)

π(D2) = π(D4)

Figure 2.6: A hexagon with non-embedded projection.

The model for that unique hexagon is the following. Let us define U = {1, . . . , k − 1},
V = {k, . . . ,m− 3}, and r = {m− 2}, p = {m− 1}, and q = {m}. The six vertices of
the model, in order, are the following:

v1 = U ∪ r;

v2 = V ∪ p;

v3 = U ∪ q;

v4 = V ∪ r;

v5 = U ∪ p;

v6 = V ∪ q.

We can now move to the proof of the proposition.

Proof of Proposition 2.4.3. Before starting the proof we recall that, given two sets
Y ⊆ X, we identify the symmetric group S(Y ) as the subgroup of S(X) which pointwise
fixes X \ Y . Moreover, Sm = S(Π) where Π = {1, . . . ,m}.

Given a vertex v we will write Stab(v) to denote the setwise stabiliser of v, that is
the subset of Sm which preserves v setwise, although not necessarily pointwise. This is
exactly the stabiliser for the action of Sm on K∗(m, k). We remark that, given a vertex
v and a set X ⊂ Π such that either X ⊆ v or v ∩ X = ∅, we have S(X ) ⊆ Stab(v).

For the rest of the proof we will consider n ≥ k such that m = k + n+ 1.
Let (v1, . . . , v6) be a hexagon. Up to a translation of the indices of vertices we can

assume v1 to be a k-vertex. Given that the action of Sm is transitive on k-vertices we
can assume that, up to the action of the symmetric group, we have

v1 = U ∪ r.
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we have v2 ⊆ v1
c = V ∪ q ∪ p. Thanks to a previous observation we have that

S(V ∪ q ∪ p) ⊂ Stab(v1).

Henceforth, up to a permutation in S(V ∪ q ∪ p), the second vertex can be chosen to be

v2 = V ∪ p.

Similarly, the third vertex is a subset of k elements of U ∪ q ∪ r which must be different
from v1 = U ∪ r, so it must contain q. Up to a permutation in

S(U ∪ r) ⊆ Stab(v1) ∪ Stab(v2)

we can choose it to be
v3 = U ∪ q.

Similarly the fourth vertex is a subset of n elements of V ∪ p∪ r which must be different
from v2 = V ∪ p, so it must contain r. Up to a permutation in

S(V ∪ p) ⊆ Stab(v1) ∪ Stab(v2) ∪ Stab(v3)

we can choose it to be
v4 = V ∪ r.

We claim that either q or p does not belong to v5. If, otherwise, both q and p were
contained in v5 then we would have U ∪ p ∪ q ∪ r ⊆ v1 ∪ v5, hence v6 ⊆ (v1 ∪ v5)c ⊆ V ,
which is impossible since |V | = n − 1 but v6 is a n-vertex. Since v5 ⊆ v4

c = U ∪ q ∪ p
it follows that either v5 = U ∪ p or v5 = U ∪ q, but in the latter case we would have
v5 = v3, contradicting the fact that the 6-cycle is embedded. It follows that

v5 = U ∪ p.

we have v6 ⊆ v1
c ∩ v5

c = V ∪ q and since |V ∪ q| = n and v6 is a n-vertex it follows that

v6 = V ∪ q.

Uniqueness, up to the action of Sm and a translation on indices, is proven.

The following corollary follows directly from the proof we have just given. It implies
that an alternating hexagon in an extended Kneser graph is uniquely determined by four
consecutive vertices, and will be useful later.

Corollary 2.4.4. Let (v1, v2, v3, v4) be four vertices of K∗(m, k) such that, for i = 1, 2, 3,
the vertices vi and vi+1 are joined by an edge. There there exists at most one pair of
vertices (v5, v6) such that (v1, . . . , v6) is an alternating hexagon.

Proposition 2.4.3 gives us a complete combinatorial structure for the alternating
hexagons which project to a hexagon in the extended Kneser graph. However, the previ-
ous proposition is unfortunately far from enough to have a complete grasp of the structure
of alternating hexagons in the graph of discs.

47



Indeed, infinitely many discs project to the same vertex in the Kneser graph, so infor-
mation about the projection is far from univocally determining the disc. This notwith-
standing, the projection to the extended Kneser graph will prove to be an invaluable tool
for the topological arguments to follow.

Unfortunately, as noted earlier, not every alternating hexagon in the graph of discs
projects to an alternating hexagon in the extended Kneser graph. This leads to the
following definition, which subdivides the set of hexagons in the graph of discs into two
categories: regular and irregular ones.

Definition 2.4.5. An alternating hexagon H in Dk(Σm) is said to be regular if its image
π(H) = (π(D1), . . . , π(D6)) under the map π in the extended Kneser graph K∗(m, k) is
an alternating hexagon. It is said to be irregular otherwise.

We recall that we keep on systematically identifying h-cycles with h-tuples of vertices
with the property that immediately subsequent vertices are adjacent in the graph.

In the last part of this section we will start studying the possible configurations arising
from the projection of irregular hexagons, in order to complete our understanding of the
combinatorics of the marked points for hexagons in Dk(Σm). However, in the current
section we will only take care of the combinatorial arguments, whereas the identification of
the only possible projection for irregular graph requires topological tools to be completed,
and will be taken care of in Section 2.6.

The following first result proves that the image of the projection of an alternating
hexagon in the curve graph to the extended Kneser graph, when it fails to be a hexagon,
is a tree. We will later study which trees can arise in this way.

Proposition 2.4.6. Let k ≥ 2, m ≥ 2k+1. Let H be an alternating hexagon in Dk(Σm)

such that π(H) = (v1, . . . , v6) is not embedded. Then the full subgraph induced by π(H)

does not contain any embedded h-cycle, for h ≥ 3. In particular the projection π(H) is a
tree.

Proof. The 6-cycle π(H) cannot clearly contain any embedded h cycle for h > 6.
Moreover, π(H) cannot contain any embedded 6-cycle, for such a cycle would be the

entire π(H), which would then be a hexagon, contradicting the hypothesis.
First, we claim that the subgraph induced by π(H) cannot contain an embedded

3-cycle. We argue by contradiction, and, up to a translation on the indices of vertices,
we assume that (v1, . . . , v3) is an embedded 3-cycle. It follows that those three vertices
are pairwise disjoint, hence

m ≥ |v1 ∪ v2 ∪ v3| = |v1|+ |v2|+ |v3| ≥ 2k + (m− k − 1) = m+ k − 1

which is a contradiction as k ≥ 2. The second inequality follows from the fact that
the vertices v1, v3 are either k-vertices or (m − k − 1)-vertices, and the vertex v2 is a
(m − k − 1)-vertex or a k-vertex, respectively, as the hexagon H was alternating and
p-punctured discs are mapped to p-vertices by π. Since m ≥ 2k + 1 the first case is the
one which minimises the sum of cardinalities, hence the inequality always holds. Our
claim is proven.
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If π(H) contained a 5-cycle then, without loss of generality, we would have that v1

and v5 would be adjacent. In particular, those vertices would form a 3-cycle alongside
v6, which is impossible thanks to the previous claim.

We are left to show that the subgraph induced by π(H) cannot contain an embedded
4-cycle. We argue by contradiction, and, up to a translation on the indices of vertices, we
assume that (v1, . . . , v4) is an embedded 4-cycle. Moreover, this 4-cycle is alternating, as
it is the projection of an alternating cycle. It follows that, up to another translation of
the indices of vertices, we can assume that v1 and v3 are k-vertices. Both v2 and v4, which
are adjacent to both v1 and v3 must be included in the set X = (v1∪v3)c. Since v1 6= v3,
the 4-cycle being embedded, it follows that |v1 ∪ v3| ≥ k + 1, hence |X| ≤ m − k − 1.
It follows that there may exists at most one (m− k − 1)-vertex adjacent to both v1 and
v3, hence we would have v2 = v4, contradicting injectivity. The claim is proven and the
proof is complete.

The only possible trees arising from projections of alternating hexagons to the ex-
tended Kneser graphs are exactly the following.

Corollary 2.4.7. Let k ≥ 2, m ≥ 2k + 1. Let H be an alternating hexagon in Dk(Σm)

such that π(H) = (v1, . . . , v6) is not a hexagon. Then, up to a translation on the indices
of vertices, one of the following happens:

1. We have v1 = v3 = v5 6= v2 = v4 = v6;

2. We have v1 = v3 = v5, v2 = v4 6= v6 and v1 6= v2, v6;

3. We have v1 = v3 = v5 and vi 6= vj otherwise.

4. We have v1 = v5, v2 = v4, and vi 6= vj otherwise.

Proof. The highlighted configurations are the only possible ones, once it is considered
that two neighbouring vertices vi, vi±1 must be different, as they come from projections
of disjoint discs.

Case 1 in the previous corollary represents the case in which the entire hexagon is
collapsed to a single edge, that is all the odd vertices of H project to the same vertex,
and all the even vertices project to the same vertex.

Case 2 represents the case where the hexagon H projects to a couple of consecutive
edges.

Case 3 describes the projection of the hexagon H to a “tripod”, that is three distinct
vertices with a single edge in common. In this case all the three odd or even vertices
of H project to the same vertex, while the other three vertices project to three distinct
other vertices. For a picture of a hexagon with this behaviour we refer to Figure 2.18.

Case 4 can be thought as a “folding” of the hexagon H over a diagonal (passing
through two opposite vertices), that is a projection onto three consecutive edges. This is
the behaviour happening in Figure 2.15.

While, a priori, all the configurations in Corollary 2.4.7 are allowed by the combina-
torics, it turns out (Corollary 2.6.10) that, when k ≥ 3, the last one is the only possible
configuration. When k = 2, Case 3 can occur. The obstructions to some types of projec-
tions occurring, though, must be looked for in the topology, not just in the combinatorics.
We will deal with this in the first half of Section 2.6.
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2.5 Nonstandard Regular Hexagons

The goal of this section and the following one is to prove that standard alternating
hexagons, hence surrounding pairs and triples, are recognisable in the k-separating disc
graph, that is, Theorem 2.2.8. In order to do this we will find a combinatorial property
to tell apart nonstandard hexagons from the standard ones. This property is the content
of the statement to come. We will prove the case of nonstandard regular hexagons, that
is, such that they project to a hexagon in the extended Kneser graph (Definition 2.4.5),
in this section, and will take care of irregular hexagons in the next one.

Proposition 2.5.1. Let k ≥ 3, n ≥ k. An alternating hexagon H in Dk(Σk+n+1) is
standard if and only if for any choice of four consecutive vertices there exists a different
alternating hexagon H ′ 6= H which shares the four chosen vertices with H.

Since Proposition 2.5.1 characterises standard hexagons in terms of a purely graph-
theoretical property, it follows immediately that the set of standard hexagons is preserved
by graph automorphisms, that is, it directly implies Theorem 2.2.8.

In the previous sections, we have mostly showed that some topological properties can
be expressed in terms of combinatorial properties of the graph of discs, and we have
extracted some combinatorial information thanks to the projection to extended Kneser
graphs. In this and the following section we will make use of that information, but
the arguments will become essentially topological. We start with a different topological
characterisation of standard hexagons, which will be useful later.

Proposition 2.5.2. Let k ≥ 2, n ≥ k. An alternating hexagon H in Dk(Σk+n+1) is
standard if and only if for every two 2-distant vertices A,B ∈ H We have i(∂A, ∂B) = 2.

Before we can prove this proposition, we will need some technical facts and introduce
some notation that will be useful throughout both this and the following section. We
will start with a result concerning the uniqueness of common neighbours.

Lemma 2.5.3. Let k ≥ 2 and m ≥ 2k+ 1 and let h be such that k ≤ h ≤ m− k− 1. Let
A,B be two distinct h-punctured discs in Σm. Then there exists at most one (m−h−1)-
punctured disc ∆ such that d(A,∆) = d(B,∆) = 1.

Proof. Let A,B be discs as in the statement. LetX = Ac∩Bc: any disc which is disjoint
from both A and B must be contained in X. If π(A) 6= π(B) it follows that X contains
at most m−h−1 marked points, hence it can contain at most one (m−h−1)-punctured
disc.

Let us now suppose that π(A) = π(B). If we had A ⊆ B from the fact that they
are both h-punctured discs it would follow they are isotopic, giving a contradiction. Let
α = ∂A and let a be an innermost arc among the closure of components of α\B, that is,
such that one component of Bc \ a does not intersect A. Such an innermost arc always
exists. Let Y be the closure of aforementioned component of Bc\a. Since α is in minimal
position with ∂B it follows that both Y and Bc \ Y are not empty bigons, hence they
must contain at least one marked point each. Since π(A) = π(B) then Y * A. It follows
that Bc \a, hence Bc∩Ac, has at least two connected components. As the marked points
in Bc are exactly m − h it follows that at every component of Bc ∩ Ac can contain at
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most m−h−1 marked points. If there existed more than one component of Y containing
at least m − h − 1 marked points, then, since k ≥ 2, the surface would contain at least
2(m − h − 1) + h ≥ m + k − 1 > m marked points, which is a contradiction. It follows
that there exists at most one connected component of X containing m − h − 1 marked
points. Any (m− h− 1)-punctured disc disjoint from both A and B must be contained
in such component, if it exists, hence it must be isotopic to its closure. It follows that
every two (m − h − 1)-punctured disc disjoint from both A and B are isotopic to each
other. The lemma is proven.

Definition 2.5.4. Under the hypotheses of the previous lemma we will refer to the
common neighbour disc ∆ as ∆(A,B).

An important step towards the proof of Proposition 2.5.2 is given by the following
lemma.

Lemma 2.5.5. Let k ≥ 2, n ≥ k. Let H = (D1, . . . , D6) be an alternating hexagon of
Dk(Σk+n+1) such that for every two 2-distant vertices A,B ∈ H we have i(∂A, ∂B) = 2.
Then the hexagon H is regular.

Proof. We first claim that every two 2-distant vertices in H project to different vertices
in the extended Kneser graph. We argue by contradiction: let A,B be different 2-distant
discs such that i(∂A, ∂B) = 2 and π(A) = π(B). A picture of the following constructions
is given in Figure 2.7. Since ∂A and ∂B only intersect twice it follows that the subspace
X = A∩Bc is connected, and its boundary is composed of a single arc of ∂A and a single
arc of ∂B. Since every marked point contained in A is contained in B too, it follows that
X does not contain any marked point. Hence X is an empty bigon between ∂A and ∂B,
contradicting minimal position.

· · ·

· · · BA

Figure 2.7: The gray region is X.

We are left to show that two opposite vertices in H, say D1, D4, cannot be mapped
to the same vertex in the extended Kneser graph K∗(k + n+ 1, k). If this happened we
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would have a k-punctured disc and a n-punctured disc projecting to the same vertex,
hence it should hold n = k. In this case, though, since both adjacent and 2-distant
vertices must have different projections there would exist an embedded 3-cycle (π(D1) =

π(D4), π(D2), π(D3)) inside K∗(2k + 1, k). Since the three vertices π(D1), π(D2), and
π(D3) would be pairwise disjoint, we would then have

2k + 1 ≥ |π(D1) ∪ π(D2) ∪ π(D3)| = |π(D1)|+ |π(D2)|+ |π(D3)| = 3k,

which is impossible since k ≥ 2.

We are now ready to prove a crucial step for our characterisation of standard hexagons
based on the intersection numbers, which will also be useful later.

Lemma 2.5.6. Let A,B,C be three k-separating discs such that both the triple intersec-
tion and any pairwise intersection of their projections to the extended Kneser graphs has
cardinality exactly k − 1. Then if i(∂A, ∂B) = 2 the pair {A,B} is a surrounding pair.

Moreover, if the boundaries of any pair of discs intersect exactly twice the triple
{A,B,C} is a surrounding triple.

We remark that the condition on the intersection in the extended Kneser graph is
automatically satisfied when the projections of the discs are the three k-vertices of a
regular alternating hexagon, thanks to Proposition 2.4.3.

Proof of Lemma 2.5.6. First, we prove the statement for pairs. Let A,B be as in the
statement, let O = A∩B. Since i(∂A, ∂B) = 2 it follows that ∂O is composed of a single
arc of ∂B inside A and a single arc of ∂A inside B. In particular O is connected. It
follows that O contains exactly the marked points in π(A) ∩ π(B), which are k − 1 by
hypothesis. It follows that O is a (k − 1)-punctured disc, hence {A,B} is a surrounding
pair.

We now claim that if C is a k-punctured discs whose boundary intersects both ∂A

and ∂B exactly twice, then {A,B,C} is a surrounding triple. A picture of the following
constructions is provided in Figure 2.8.

From the previous argument we know that {A,B}, {A,C}, and {B,C} are all sur-
rounding pairs. By hypothesis We have

|π(A)| ∩ |π(B)| ∩ |π(C)| = k − 1 ≥ 1,

as k ≥ 2. It follows that X = A∩B∩C contains k−1 marked points, so in particular it is
nonempty. Since X is the intersection of discs whose boundaries pairwise intersect twice
each of its connected components must have only one boundary component, that is, X
is a punctured disc. We claim this region X is connected, hence it is a (k− 1)-punctured
disc. If A ∩B ⊆ C then X = O and our claim follows immediately.

Let us now suppose A∩B * C. Let Y be a connected component of X. At least one
arc of ∂Y is contained in ∂C, hence there exists at least two intersection points between
∂C and ∂(A ∩ B). It follows that if X were not connected there would be at least four
intersection between ∂C and ∂(A∩B). In particular, since we are assuming all the curves
to be in minimal position without triple points, all the aforementioned intersections are
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C

k−1︷︸︸︷
· · ·

Figure 2.8: The gray region is X.

realised in ∂(A ∩ B) ⊂ (A ∪ B)◦, where (A ∪ B)◦ denotes the interior of the subspace
A ∪B. Since C * A ∪B, it follows that ∂C must intersect ∂(A ∪B) * (A ∪B)◦, hence
this intersection has not been counted yet. It follows that ∂C intersects ∂A∪∂B at least
five times, which is impossible, since it intersects each of the two curves twice. This is
contradiction, which proves our claim that X = A ∩ B ∩ C is connected, hence it is a
(k − 1)-punctured disc. It follows that {A,B,C} is a surrounding triple.

We can now prove the characterisation of standard alternating hexagons via intersec-
tion numbers.

Proof of Proposition 2.5.2. The fact that the discs in a standard alternating hexagon
have the required property follows directly from the definition and can easily be visualised
in Figure 2.1.

For the converse let (A1, . . . , A6) be an alternating hexagon as in the statement.
Thanks to Lemma 2.5.5 the projection of such hexagon to the extended Kneser graph is
an alternating hexagon. Hence, Lemma 2.5.6 implies that {A1, A3, A5} is a surrounding
triple. Thanks to Proposition 2.2.9 it follows that, up to the action of the mapping
class group, the triple (A1, A3, A5) can be identified with (D1, D3, D5) in the standard
alternating hexagon as defined in Definition 2.2.7. From Lemma 2.5.3 it follows that,
under the previous identification, the common neighbour Ai+1 = ∆(Ai, Ai+2) must be
equal to ∆(Di, Di+1) = Di+1, for i = 1, 3, 5. It follows that the hexagon is standard.

The alternating hexagon in Figure 2.9 provides an example of a hexagon which is reg-
ular, that is, it projects to a hexagon in the extended Kneser graph, but is not standard.

Let us note that the hexagon in Figure 2.9 shares the four consecutive vertices
D6, D1, D2, D3 with a standard hexagon. This fact, alongside the transitivity prop-
erty of the action of the mapping class group on a standard hexagon provided by the
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Figure 2.9: A nonstandard regular alternating hexagon.

next proposition, proves the “only if” implication of Proposition 2.5.1. Indeed, for ev-
ery choice of four consecutive vertices in a standard alternating hexagon there exists a
different alternating hexagon which shares them.

Proposition 2.5.7. Let k ≥ 2, n ≥ k. Let H be a standard alternating hexagon in
Dk(Σk+n+1), and let Isom∗(H) be the subgroup of simplicial automorphisms of H pre-
serving the topological types of discs. Then there exists a subgroup G < Mod±(Σk+n+1)

acting on the hexagon H by graph automorphisms such that the induced group homomor-
phism Φ : G −→ Isom∗(H) is surjective.

If n > k there are two different topological types of discs in the hexagon, hence the
group Isom∗(H) preserves odd and even vertices and, thanks to Lemma 2.5.3, such action
is completely determined by the action on one of these subset, on which it is transitive.
It follows that is, this case We have Isom∗(H) ∼= S3. When n = k, instead, the action is
transitive on all the vertices of the hexagon, hence the group is the full dihedral group
of the hexagon (which has order 12), that is, Isom∗(H) ∼= D6.

Proof of Proposition 2.5.7. Throughout the entire proof will use the description of a
standard hexagon given in Definition 2.2.7, considering the punctured sphere to embed-
ded in R3, as described there. A cartoon of the maps described in this proof is provided
in Figure 2.10.

First, we introduce the “rotation of an angle 2π
3 along the equator”, and study its

action on the hexagon. More formally, let τ be a homeomorphism supported in a 1
3 -

neighbourhood of the equator, that is, a 3-punctured annulus which we will identify
with

A = (T × [−1, 1]) \ ({v1, v2, v3} × {0}).

In the coordinates given by such parametrisation we define the homeomorphism τ to
rotate the latitude T × {h} of an angle (1− |h|) 2π

3 . The homeomorphism τ acts on the
standard hexagon by Di 7→ Di−2.
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Figure 2.10

Second, we consider a “reflection along a vertical plane”, and study its action. More
formally, let σ be the reflection along the plane (we assume that we are assuming Σ2k+1

to be naturally embedded in R3) containing l2 and l5 (we recall that we can assume the
marked points at the poles to arranged in a way such that this map is well-defined).
This homeomorphism permutes two of the three marked points on the equator. On the
standard hexagon σ acts by Di 7→ D4−i.

Let G = 〈σ, τ〉 < Mod±(Σk+n+1). Then G acts on H and let Φ : G −→ Aut∗(H)

be the induced group homomorphism. We can write as a composition of cycles the
two permutation Φ(τ) = (1 5 3)(2 6 4) and Φ(σ) = (1 3)(4 6). The action of these
permutations is transitive on the set of both odd and even vertices. From the observation
made before the statement it follows that, if n > k, Φ(τ) and Φ(σ) generate the entire
group Isom∗(H), that is, We have Φ(G) = Isom∗(H).

Lastly, when n = k we can define a new homeomorphism of the sphere preserving the
hexagon. This homeomorphism is the “reflection along the equator”, which was previously
not well-defined because the number of marked points around the north pole and around
the south pole differed. Formally, let µ be the reflection along the equator: this map
is well-defined in this case since the number of marked points around the north pole is
equal to the number of punctures around the south pole, and we can assume they are
placed symmetrically with respect to this reflection. The homeomorphism µ acts on the
standard hexagon by Di 7→ Di+3.
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In particular, the composition ρ = µ ◦ τ acts on the hexagon by Di 7→ Di+1. Let
G = 〈σ, ρ〉 < Mod±(Σ2k+1). Then Φ(ρ) is a rotation of the hexagon by an angle of π3 (if
we think to the hexagon as embedded in the plane), where Φ(σ) is a reflection along a
diagonal. It follows that Φ(ρ) and Φ(σ) generate the entire dihedral group D6, that is,
Φ(G) = Isom(H).

Before we enter the core of the argument for the “if” implication in Proposition 2.5.1,
we will now introduce some notation and state some technical results that will be useful
throughout both this section and the following one.

Lemma 2.5.8. Let k ≥ 2, m ≥ 2k + 1, and let h be such that k ≤ h ≤ m − k − 1. Let
A,B be two 2-distant h-punctured discs in Dk(Σm) such that π(A) 6= π(B) and there
exists a (m−h− 1)-punctured disc D such that D = ∆(A,B), the common neighbour as
in Definition 2.5.4. Then there exists a unique marked point in π(A) \ π(B).

We remark that the technical hypothesis on the two discs A,B in the previous lemma,
which we be a recurrent condition in many other statements to follow, is always satisfied
for a couple of discs which are 2-distant vertices of an alternating hexagon.

We will now give a couple of definitions, descending from the previous result, which
will be useful later.

Definition 2.5.9. Under the hypotheses of the previous lemma, we will denote with
p(A,B) the unique marked point in π(A) \ π(B).

Moreover, we define M(A,B) to be the (closure of) the connected component of
A ∩Bc containing p(A,B).

We observe that the objects we have just defined are not symmetrical: indeed, it
always holds p(A,B) 6= p(B,A) and M(A,B) 6= M(B,A).

We will now prove the lemma.

Proof of Lemma 2.5.8. Since π(A) 6= π(B) it follows that the set π(A) ∪ π(B) has
cardinality at least h+ 1, and it has cardinality at most h+ 1 since it is a subset of the
(h + 1)-punctured disc Dc. It follows that the set π(A) ∪ π(B) has cardinality exactly
h+1 and an application of the Inclusion-Exclusion Principle yields that π(A)∩π(B) has
cardinality exactly h− 1, so |π(A) \ π(B)| = 1.

We introduce the following.

Definition 2.5.10. Let k ≥ 2, m ≥ 2k + 1, and let h be such that k ≤ h ≤ m− k − 1.
Let A be a h-punctured disc in Σm and B a (m− h− 1)-punctured disc disjoint from A.
The region Ac ∩ Bc is a pair of pants (to be precise surface of type S2

0,1) which will be
denoted with P (A,B).

We remark that the previous condition is always satisfied for two adjacent discs in
an alternating hexagon. Moreover, we notice that the previous definition is symmetrical,
that is, P (A,B) = P (B,A).

There are three different types of arcs in the previously introduced pair of pants,
which we will classify as follows.
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Definition 2.5.11. Let P (A,B) be the pair of pants as in Definition 2.5.10. Then we
define the following types of (parametrised) arcs in P (A,B):

Mixed arcs are arcs with one endpoint on ∂A and one on ∂B.

TA-arcs are arcs with both endpoint of the same curve ∂A.

TB-arcs are arcs with both endpoint of the same curve ∂B.

All of these arcs will be considered up to isotopy which keeps each endpoint on the same
boundary component (although does not necessarily fix it) at all times.

Since the subsurface P (A,B) is a pair of pants the following lemma is immediate.

Lemma 2.5.12. Under the aforementioned hypotheses, every two nontrivial parametrised
TA-arcs (resp. TB-arcs, mixed arcs) are isotopic up to orientation.

We can now observe the following lemma.

Lemma 2.5.13. Let k ≥ 2, m ≥ 2k + 1, let h be such that k ≤ h ≤ m − k − 1. Let
A,B be two 2-distant h-punctured discs in Σm such that π(A) 6= π(B) and there exists a
(m− h− 1)-punctured disc D such that D = ∆(A,B). Then the region M(A,B), as in
Definition 2.5.9, is a once-punctured disc whose boundary is the union of a single arc of
∂A and a single arc of ∂B.

Proof. First we observe that, given two parametrised disjoint TB-arcs, say a, a′, the set
Bc \ (a ∪ a′) is composed of three connected components, and only one is such that its
boundary contains both arcs. It follows that the two arcs are isotopic if and only if said
component contains no punctures.

Every arc of (∂A) \ B is a TB-arc in P (B,D), so they are all isotopic to each other
due to Lemma 2.5.12. From the previous observation it follows that every component of
A ∩ Bc whose boundary contains multiple TB-arcs cannot contain any puncture in it.
In particular it cannot contain p(A,B), and it follows that such a component cannot be
M(A,B).

Given the previous result, we can now give the following definition.

Definition 2.5.14. Under the same hypotheses as in the previous lemma we will denote
the closure of the component ∂M(A,B) ∩ ∂A, which is an arc thanks to Lemma 2.5.13,
with s(A,B) ⊆ ∂A.

Moreover, we will denote with t(B,A) ⊆ ∂B the closure of the arc ∂B \M(A,B).

Once again, we stress the fact that the notation we have just introduced is not sym-
metrical.

Thanks to Lemma 2.5.13 we can now introduce a convenient simplification, and de-
scribe the component M(A,B) as an arc, rather than as a subsurface.

Definition 2.5.15. Under the same hypotheses as in Lemma 2.5.13, let l(A,B) be the
unique arc in M(A,B) with one endpoint on ∂B ∩M(A,B) and p(A,B) as the other
one, up to isotopy which fixes p(A,B) and keeps the other endpoint on ∂B ∩M(A,B)

at any time.
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Once again, we remark that the previously introduced notation is not symmetrical.
Uniqueness of the arc l(A,B), up to isotopy, follows immediately from the fact

that M(A,B) is a once-punctured disc, and that ∂B ∩ M(A,B) is connected, which
is Lemma 2.5.13.

We observe that M(A,B) is isotopic to a closed small regular neighbourhood of
l(A,B). Conversely, given two arcs in Bc with one endpoints on ∂B and p(A,B) as the
other one, two sufficiently small regular neighbourhoods are isotopic if and only if the
two arcs are. Thanks to these observations from now on, instead of studying the isotopy
class of the region M(A,B), we will study that of the arc l(A,B).

We can observe the following simple but crucial facts.

Lemma 2.5.16. Let k ≥ 2, m ≥ 2k + 1, let h be such that k ≤ h ≤ m − k − 1. Let
A,B be two 2-distant k-punctured discs in Σm such that π(A) 6= π(B) and there exists a
(m− h− 1)-punctured disc D such that D = ∆(A,B). Then the region M(A,B) ∪B is
a punctured disc isotopic to ∆(A,B)c.

Moreover, the curve s(A,B) ∪ t(B,A) is isotopic to ∂∆(A,B). In particular, if ζ is
a curve in Σm disjoint from ∂B it follows that

i(∂∆(A,B), ζ) = i(s(A,B), ζ).

Proof. The region X = M(A,B) ∪B contains h+ 1 marked points and is contained in
the (h + 1)-punctured disc ∆(A,B)c. It follows that X = ∆(A,B)c. Moreover, ∂X is
the simple closed curve given by the union of the two arcs s(A,B) ∪ t(B,A).

For the second part We have

i(ζ, ∂∆(A,B)) = i(ζ, s(A,B)) + i(ζ, t(B,A)) = i(ζ, s(A,B))

since t(B,A) ⊆ ∂B and ∂B and ζ are disjoint.

We are now ready to start approaching the proof of the “if” direction in Proposi-
tion 2.5.1 for the case regular hexagons. In doing so we will consider non-standard
regular alternating hexagons. Since these hexagons are non-standard Proposition 2.5.2

implies that there exist two 2-distant vertices whose boundaries intersect more that twice,
but the topological type of those discs is not specified. In order to simplify our arguments
we show that it is not restrictive to assume those two vertices to be n-punctured discs.

Lemma 2.5.17. Let k ≥ 2, n ≥ k. Let H be a non-standard regular alternating hexagon
in Dk(Σk+n+1). Then there exists two 2-distant vertices representing n-punctured discs
A,B such that i(∂A, ∂B) > 2.

Proof. The statement follows from the same argument as in the proof of Proposi-
tion 2.5.2. Indeed, we can argue by contradiction and the argument we used there can be
replicated to prove that the n-punctured vertices can be simultaneously identified with
the three n-punctured vertices of the standard alternating hexagon in Definition 2.2.7,
hence applying Lemma 2.5.3 to conclude that the hexagon is standard. In fact, the
only hypothesis needed for the aforementioned argument would be that for each pair of
n-punctured discs in the hexagon their boundaries intersect exactly twice.
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An alternative direct argument is the following. Let H = (D1, . . . , D6) be a nonstan-
dard hexagon and let γi = ∂Di. Let us argue by contradiction and suppose that for every
two n-punctured discs in H their boundaries intersect exactly twice. Since the hexagon
was not standard, due to Proposition 2.5.2 we can assume, without loss of generality, that
odd vertices are k-punctured, and that i(γ1, γ3) > 2. An application of Lemma 2.5.16

with A = D1, B = D3 and ζ = γ4 yields:

2 = i(γ2, γ4) = i(s(D1, D3), γ4) =
1

2
i(γ1, γ3) i(γ1, γ4) ≥ i(γ1, γ3) > 2

and we have found a contradiction. In the third equality we have used the fact that
γ1∩D4 ⊆ γ1 \D3, and the fact that all the arcs of γ1 \D3 are isotopic to s(D1, D3), since
they are TD3-arcs in P (D3, D2), thanks to Lemma 2.5.12. That, combined with the fact
that the number of those arcs is half the intersection number between γ1 and γ3, proves
the equality we were looking for. Lastly, for the second to last inequality we use the fact
that i(γ1, γ4) ≥ 2, as the discs D1 and D4 are not disjoint as, for instance, they have
intersecting projections to the extended Kneser graph, thanks to Proposition 2.4.3.

Thanks to the previous lemma, the following proposition proves Proposition 2.5.1 for
regular hexagons, and we will devote the rest of this section to its proof.

Proposition 2.5.18. Let k ≥ 2 and n ≥ k. Let (D1, D2, D3, D4) be four vertices of
Dk(Σk+n+1) such that, for i = 1, 2, 3, Di is adjacent to Di+1. Moreover, let D1 be a
k-punctured disc, and assume that i(∂D2, ∂D4) > 2. Then there exists at most one pair
of discs (D5, D6) such that (D1, . . . , D6) is a regular nonstandard alternating hexagon.

From now on let (D1, D2, D3, D4) be as in the hypotheses of the previous proposition,
and let (D5, D6) be such that (D1, . . . , D6) is a non-standard alternating regular hexagon.
Moreover let γi = ∂Di. We will now study how rigid this structure has to be: our final
goal is to prove that, given the first four curves, the other two are uniquely determined.

For the remain of this section we will simplify the notation we employ by writing
d = l(D5, D3) ⊆ D5 and z = s(D1, D3) ⊆ γ1.

Moreover, we will write P = P (D2, D3). Since the hexagon (D1, . . . , D6) is regular
Proposition 2.4.3 implies that p(D5, D3) = p(D5, D1): we will denote this puncture with
p.

Moreover, we recall that, thanks to Proposition 2.4.3, there exists a partition of the
set of marked points as Π = U t V t {p, q, r} where |U | = k − 1 and |V | = n − 1 such
that the following holds:

π(D1) = U ∪ {r} ;

π(D2) = V ∪ {p} ;

π(D3) = U ∪ {q} ;

π(D4) = V ∪ {r} ;

π(D5) = U ∪ {p} ;

π(D6) = V ∪ {q} .

Throughout the rest of the section we will often use this information about the projection

59



to the extended Kneser graph.
We will now define a subdivision for the arc d.

Definition 2.5.19. We now fix an orientation on d by having the first endpoint being
on γ3 and p as the second one. We define a subdivision of the arc d as

d = d0 ∪ · · · ∪ dj

where the di’s are closures of connected components of d\γ2 ordered using the orientation
of d, and such that the intersection of two consecutive arcs is a single point.

The number j is function of the discs D2 and D4 only, as the following lemma shows.

Lemma 2.5.20. We have that j = i(d, γ2) = i(s(D5,D3),γ2)
2 = i(γ4,γ2)

2 ≥ 2.

Proof. The second equality follows from the fact that

∂M(D5, D3) = s(D5, D3) ∪ t(D3, D5),

and for every intersection of d with γ2 the boundary of its regular neighbourhood
M(D5, D3) will have two.

Moreover, since t(D3, D5) ⊆ γ3 and γ2 are disjoint, the third equality follows from
Lemma 2.5.16 with A = D5, B = D3 and ζ = γ2.

Since j = i(d, γ2) ≥ 2 it follows that the arc d1 has both endpoints on γ2. The set
D2 \ d1 is hence composed of two components whose closures are punctured discs. We
will denote those discs with L1, L2.

We will now start studying how marked points are distributed between the aforemen-
tioned regions, and will later study which are the regions whose interior can intersect the
arc d. The final goal is to prove that every arc di with i ≥ 2 lies in a region which is
topologically sufficiently simple to uniquely determine the isotopy type of the arc. Our
final goal will be to prove that the entire arc d is uniquely determined by the first four
vertices of the hexagon, that is, by (D1, . . . , D4).

First, we will state a trivial technical observation that will be at the core of many
arguments to follow.

Lemma 2.5.21. Let X,Y ⊆ Σk+n+1 be two connected closed subsets such that X∩Y 6= ∅
and ∂X ∩ ∂Y = ∅. Then either X ⊆ Y or Y ⊆ X. In particular, if X contains strictly
fewer marked points than Y , We have that X ⊆ Y .

A more directly applicable statement we will use in many upcoming arguments is the
following corollary. We recall that in all of our applications the technical condition about
the existence of the common neighbour ∆(A,B), as in Definition 2.5.4, is automatically
satisfied for any two 2-distant vertices in an alternating hexagon.

Corollary 2.5.22. Let k ≥ 2, m ≥ 2k + 1, and let h be such that k ≤ h ≤ m − k − 1.
Let A,B be two 2-distant h-punctured discs such that π(A) 6= π(B) and there exists a
(m−h−1)-punctured disc D such that D = ∆(A,B). Let X ⊆ Σm be a connected closed
subsurface such that ∂X ⊆ A∪B. If X ∩∆(A,B) 6= ∅ then ∆(A,B) ⊆ X. In particular
X contains every marked point in π(∆(A,B)).

60



Proof of Corollary 2.5.22. Since ∂∆(A,B) is disjoint from ∂X ⊆ A∪B it follows from
Lemma 2.5.21 that either X ⊆ ∆(A,B) or ∆(A,B) ⊆ X. The former case is impossible
since ∆(A,B) is disjoint from A ∪B.

We are now ready to study how the marked points in π(D2) are split among the two
components L1, L2. Let us recall that π(D2) = V ∪ {p}.

Lemma 2.5.23. One of the regions L1, L2 contains every marked points in V , while the
other only contains p = p(γ5, γ3).

Proof. Let us suppose by contradiction that both L1 and L2 contain at least one marked
point of V . It follows that both L1 ∩ D6 and L2 ∩ D6 are not empty. In particular it
follows that there exists an arc c ⊆ γ6 with one endpoint on ∂L1 ∩ γ2 and the other on
∂L2 ∩ γ2, and whose interior does not intersect D2. The subspace (Dc

2 ∩Dc
3) \ c has at

least two connected components, one of which contains d0, another one of which contains
d2. We will denote the component containing d0 by Z, and the one containing d2 by W .

We claim that the component Z must intersect D1. Indeed, if c is disjoint from D3

it follows directly that D3 ⊆ Z, as an immediate consequence of Lemma 2.5.21 applied
with X = D3 and Y = Z. Since D1 ∩D3 6= ∅ it follows that D1 ∩ Z 6= ∅.

Let us now suppose that c intersects D3. Every arc of γ5∩Dc
3 is isotopic to s(D5, D3),

which is a consequence of Lemma 2.5.12 as they are all TD3-arcs in P (D3, D4). Thanks to
this observation it follows from Lemma 2.5.21, applied withX = W∩D3 and Y = D3∩D5,
that D3∩D5 ⊆ Z. In particular π(D3)∩π(D5) = π(D1)∩π(D5) ⊆ Z, hence Z∩D1 6= ∅.

It follows from Corollary 2.5.22, applied with A = D2, B = D6 and X = Z, that Z
contains all the marked points in π(D1). Given that the only marked point in Dc

2∩Dc
3 is

p(D1, D3) ∈ π(D1), it follows thatW ∩Dc
3 contains no marked points. Since d2 ⊂W ∩Dc

3

it follows that s(D5, D2) forms an empty bigon with γ2, hence γ5 does. We have found
a contradiction to minimal position, and hence proven the lemma.

With the previous lemma in mind, from now on we will call L1 is the region containing
the marked points in V , while L2 will be the one only containing p.

We will now study the intersection of the arc d with L1.

Lemma 2.5.24. The interior of the region L1 (containing the punctures in V ) does not
intersect d.

Proof. Let us argue by contradiction. Let us consider the set of arcs di’s whose interior
is contained in the interior of L1 (so it must hold i ≥ 3), and suppose this set is non
empty. Let dh be an outermost one among those arcs, that is, such that one of the
regions of L1 \ dh does not intersect the interior of any of the dj arcs. We will denote
this outermost region by Y . Let x, x′ be the endpoints of dh, and let a be the arc of γ2

between them whose interior does not intersect d. These and the following constructions
are pictured in Figure 2.11.

At least one of the marked points in V must be contained in Y , otherwise the arcs
dh and a would form an empty bigon, contradicting minimal position. We will denote
the set of marked points in this region by Q = Y ∩ Π. Now, let y, y′ be the intersection
of dh−1, dh+1 with z, such that the interior of the subarc of dh−1 (resp. dh+1) between x
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Figure 2.11: The gray region is Z.

and y (resp. x′ and y′) does not intersect z. Let z′ be the subarc of z between y and y′.
Let

β = di−1 ∪ di ∪ di+1 ∪ z′.

Let Z be the connected component of Σm \β containing Y . Let us observe that We have
∂Z ⊆ β ⊆ D5 ∪D1. From Corollary 2.5.22, applied with A = D1, B = D5 and X = Z,
it follows that π(D6) ⊆ Q. But this is absurd since We have Q ⊆ π(D2), and hence
we would have π(D6) ⊆ π(D2), which is impossible since the hexagon (D1, . . . , D6) is
regular, hence π(D2) = V ∪ {p} and π(D6) = V ∪ {q} thanks to Proposition 2.4.3. We
have reached a contradiction and the lemma is proven.

We have just proven that, for i ≥ 2, the arc di lies in P if i is even, and it lies in L2

when i is odd. From now on let d̃ = d2 ∪ · · · ∪ dm.
Let N be a small regular neighbourhood of d0 not containing any marked point and

not intersecting any arc di with i ≥ 2. Let X be the closure of the region

(P ∪ L2) \N.

The region X, represented in Figure 2.12, only contains two marked points, which are
p = p(D5, D3) and r = p(D1, D3) and its boundary is connected and contained in
D3 ∪N ∪ L1, hence X is a pair of pants (in particular a surface of type S1

2). It follows
that d̃ is an arc in the pair of pants X with one endpoint (d1 ∩ d2) on the boundary and
p as the other endpoint.

We will now use this information to study the isotopy type of d, and hence the isotopy
type of M(D5, D3). That is, the content of the following.

Lemma 2.5.25. Let k ≥ 2 and n ≥ k. Let (D1, D2, D3, D4) be four vertices of
Dk(Σk+n+1) such that, for i = 1, 2, 3, Di is adjacent to Di+1. Suppose that D1 a k-
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Figure 2.12: The gray region is X.

punctured disc, and let γi = ∂Di. Let us suppose that i(γ2, γ4) > 2. Let (D5, D6) and
(D′5, D

′
6) be such that both (D1, . . . , D5, D6) and (D1, . . . , D

′
5, D

′
6) are both non-standard

alternating regular hexagons. Let d = l(D5, D3) and d′ = l(D′5, D3) be arcs as in Defini-
tion 2.5.15. Then the arc d is isotopic to the arc d′.

Given that, as previously observed, the subsurface M(A,B) as in Definition 2.5.9 is
isotopic to a small regular neighbourhood of the arc l(A,B), the following corollary is
immediate.

Corollary 2.5.26. Under the hypotheses of the previous lemma the two components
M(D5, D3) and M(D′5, D3) are isotopic.

Before we move into the proof of the previous lemma we will state without proof a
technical classification of isotopy classes of some arcs in a pair of pants, whose proof is
straightforward, but is nonetheless an useful precise statement to give.

Lemma 2.5.27. Let S be a surface of type S1
2 . Let x ∈ ∂S be a point of the boundary

and let y, z be the two marked points. Let l be an essential simple arc in S \{y, z} with x
as one of the endpoints and the other on ∂S, and whose interior does not intersect either
∂S nor any of the marked points. Let a, b be two properly embedded simple oriented
parametrised arcs in S \ {z} with the first endpoint on x and y as the second endpoint,
and whose interior does not intersect either ∂S nor any of the marked points. Suppose
that i(a, l) = i(b, l). Then there exists an isotopy relative to the endpoints between the
arcs a and b.

We can now move to the proof of Lemma 2.5.25.

Proof of Lemma 2.5.25. Let d′ = d′0∪· · ·∪d′j′ be defined analogously to the subdivision
of the arc d given in Definition 2.5.19. We fix an orientation on d′ by having the first
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endpoint being on γ3 and p as the second one and let us subdivide it as

d′ = d′0 ∪ · · · ∪ d′j′

where the di’s are closures of connected components of d\γ2 ordered using the orientation
such that the intersection of two consecutive arcs is a point. Lemma 2.5.20 proves that
j′ = j. Moreover let L′1, L′2 the closure of the two components of D2 \ d′1. Thanks to
Lemma 2.5.23 we will assume L′1 to contain all the marked points in V and L′2 to only
contain p.

We first want to show that d0 is isotopic to d′0. Lemma 2.5.12 implies that all the
mixed arcs in P are parallel so, up to an isotopy, we have that d0 = d′0.

We claim that the arc d1 is isotopic to d′1. This naively follows from the fact that
those are arcs in the disc D2 which split the marked points in the same way. The
following construction can be visualised in Figure 2.13. More formally speaking let us
argue by contradiction assuming the two arcs to be distinct and in minimal position to
each other and, up to an isotopy, we can assume they share the endpoints. Let u be the
first endpoint, that is, {u} = d0 ∩ d1 = d′0 ∩ d′1 and let v be the first intersection, that is,
the point of d1 ∩ d′1 such that the interior of the subarc of d between u and v does not
intersect d′. Let f ⊆ d1 (resp. f ′ ⊆ d′1) be the subarc of d1 (resp. d′1) between u and v.
Because of how the marked points are split it follows that, f ′ ⊂ Li if and only if f ⊂ L′j
for i 6= j, with i, j ∈ {1, 2}. It follows that f and f ′ cobound a region of either L1∩L′2 or
L2 ∩ L′1. Neither of these regions contains any marked point, hence f, f ′ form an empty
bigon contradicting minimal position. It follows that, up to an isotopy, d1 = d′1.

We have already observe that the arcs d̃ = d2 ∪ · · · ∪ dj and d̃′ = d′2 ∪ · · · ∪ d′j are arcs
in the pair of pants X both with w as their first endpoint, that is,

{w} = d1 ∩ d2 = d′1 ∩ d′2 ⊂ ∂X,

and p as the second one, and such that their interiors do not contain r. Let now g be the
arc γ2∩L2∩X between w and u, where {u} = d0∩d1. We have i(d̃, g) = j−1 = i(d̃′, g).
An application of Lemma 2.5.27 with l = g, a = d̃ and b = d̃′ now proves that d̃ is
isotopic to d̃′ relatively to the endpoints. It follows that such an isotopy can be glued
with the previous ones so the entire arc d is isotopic to d̃.

Thanks to the fact that the isotopy type of the arc d only depends on (D1, . . . , D4)

we can now prove that the disc D6 fitting in the alternating hexagon is also uniquely
determined.

Lemma 2.5.28. Let k ≥ 2 and n ≥ k. Let (D1, D2, D3, D4) be four vertices of
Dk(Σk+n+1) such that, for i = 1, 2, 3, Di is adjacent to Di+1. Suppose that D1 a k-
punctured disc, and let γi = ∂Di. Let us suppose that i(γ2, γ4) > 2. Let (D5, D6) and
(D′5, D

′
6) be such that both (D1, . . . , D5, D6) and (D1, . . . , D

′
5, D

′
6) are both non-standard

alternating regular hexagons. Then the disc D6 is isotopic to D′6.

Proof. Let Y = D1∪M(D5, D3). Let Z be the closure of Σk+n+1\Y . The constructions
in this paragraph are pictured in Figure 2.14. Since the hexagons are nonstandard the arc
d2 is a nontrivial TD2-arc in P = P (D2, D3): it follows that the component M(D5, D3)
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Figure 2.13: The gray component is the empty bigon cobounded by f and f ′.

must intersect the arc z = s(D1, D3) ⊂ D1, hence Y is connected. It follows that every
connected component of Z can only have one boundary component. An application of
Corollary 2.5.22 with A = D1, B = D5 and any component of Z as X proves that every
component of Z is either disjoint from D6 or contains it. Let W be the component such
that D6 ⊆ W . Since the hexagon (D1, . . . , D6) is regular Proposition 2.4.3 implies that
the marked points in Z are exactly the ones of π(D1)c ∩ π(D5)c = V ∪ {q} = π(D6). It
follows that Z is composed of a number of discs an a single n-punctured disc, that is, W .
Since D6 is a n-punctured disc itself it follows that, up to isotopy, D6 = W .

We can now perform the same construction for the pair of discs (D′5, D
′
6) obtaining a

new region W ′ isotopic to D′6. In order to construct W (resp. W ′) we have just used the
disc D1 and the region M(D5, D3) (resp. M(D′5, D3)) and, thanks to Corollary 2.5.26,
We have that, up to isotopy, M(D5, D3) = M(D′5, D3). From this it also follows that
W = W ′ and hence D6 is isotopic to D′6.

We are now ready to complete the proof of Proposition 2.5.18.

Proof of Proposition 2.5.18. Let both (D1, . . . , D4, D5, D6) and (D1, . . . , D4, D
′
5, D

′
6)

be two regular alternating hexagons. Lemma 2.5.28 proves that D6 = D′6, and an
application of Lemma 2.5.3 with A = D1 and B = D6 = D′6 now proves that it also
holds D5 = D′5, and the proof is complete.
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2.6 Irregular Alternating Hexagons

In this section we will complete the proof of Proposition 2.5.1 by dealing with the case
of irregular alternating hexagons, that is„ , hexagons whose projection to the extended
Kneser graph is not an hexagon, as in Definition 2.4.5. An example of an irregular
alternating hexagon, alongside its projection to the extended Kneser graph, is shown in
Figure 2.15.

· · ·

D1

D1 D2

D2

D3

D3

D4

D4D5D5 D6

D6 ⊂ Dk

⊂ K∗· · ·

π

π(D6)

π(D3)π(D1) = π(D5)

π(D2) = π(D4)

Figure 2.15: An irregular alternating hexagon.

We start studying irregular hexagons from their projections to the extended Kneser
graph. In Proposition 2.4.6 we proved that the image of such a projection must be a
tree. In Corollary 2.4.7 we have identified the possible configurations for the image of
this projection. These are a single edge, two consecutive edges, three edges with a vertex
in common (a “tripod”), or three consecutive edges, as in Figure 2.15. When k ≥ 3, the
last case is the only one which can be realised. However, as already stated, the proof
of this fact cannot rely on combinatorial arguments only, but requires a good amount of
topology, and will take most of this section.

We will begin with a statement implying that an irregular alternating hexagon cannot
project to either a single edge or two adjacent edges. We remark that the following result
still holds for k = 2.

Proposition 2.6.1. Let k ≥ 2 and n ≥ k. Than there exists no alternating hexagon
(D1, . . . , D6) in Dk(Σk+n+1) such that π(D1) = π(D3) = π(D5) and π(D2) = π(D4).

In order to prove the previous proposition we will argue by contradiction. Let
(D1, . . . , D6) be an alternating 6-cycle in Dk(Σk+n+1) such that π(D1) = π(D3) = π(D5)

and π(D2) = π(D4). Moreover, let us assume D1 6= D3 and D2 6= D4. Let γi = ∂Di.
We start by defining some objects that will be useful later in the proof. A picture of the
following constructions is provided in Figure 2.16.

Let p be the only marked point in π(D1) \ π(D2).
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P (D1, D2)

· · ·

Figure 2.16: We recall that the arc l(D6, D4) is only defined when π(D4) 6= π(D6).

All the arcs of γ3∩Dc
1 must be parallel to each other due to Lemma 2.5.12 since they

are nontrivial TD1-arcs in the pair of pants P (D1, D2) = Dc
1∩Dc

2 (see Definition 2.5.10).
The nontriviality follows from the fact that D1 6= D3.

Let c be the innermost of these arcs, that is„ , such that the interior the component
of P (D1, D2) \ c containing p is disjoint from γ3. Let us denote this component, which is
a once-punctured disc, with C.

Let a be the arc of γ1 between the endpoints of c whose interior does not intersect
γ3, that is„ , such that ∂C = a ∪ c.

The region Y = D3 ∪ C is a disc containing the punctures

π(D3) ∪ {p} = π(D1) ∪ {p} = π(D2)c = π(Dc
2).

We claim that C ∩D2 = ∅: if not Corollary 2.5.22, applied with A = D1, B = D3 and
X = C would imply that D2 ⊆ C, which is clearly impossible. It follows that the disc Y
is contained in Dc

2 and it contains all the marked points in it, hence Y is isotopic to Dc
2.

We claim that D4 ∩ Dc
2 6= ∅. Indeed, if such intersection were empty it would hold

that D4 ⊆ D2, but since those discs have the same number of marked points it would
follow that D2 = D4, contradicting the 6-cycle being embedded.

Moreover, since D4 is disjoint from D3 it follows that D4∩C 6= ∅. Hence, there exists
an arc of γ4 inside C with both endpoints on a. This arc is isotopic to c, as it would
otherwise form an empty bigon with a. Let d be the innermost one among these arcs,
that is„ , the arc such that the interior of the component of C \ d containing p, which we
will denote with D, does not intersect γ4.

We are now ready to prove Proposition 2.6.1. In order to do so we need to consider
two cases: the first one is when π(D6) = π(D2) = π(D4), while the second one is for
π(D6) 6= π(D2) = π(D4). We start by proving that the former is impossible.

Lemma 2.6.2. Let k ≥ 2 and n ≥ k. Let (D1, . . . , D6) be an alternating hexagon in
Dk(Σk+n+1) such that π(D1) = π(D3) = π(D5) and π(D2) = π(D4). Then we have that
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π(D6) 6= π(D2).

Proof. The constructions in this proof are pictured in Figure 2.17

· · ·

D

d

D1 D2

p

P (D1, D2)

· · ·

· · ·

e0

e1

e2

Figure 2.17: The gray region is a possible choice for Z.

We claim that the discs D2 and D5 intersect. Indeed, if they were disjoint, due to
the uniqueness of common neighbours property stated in Lemma 2.5.3, we would have
D2 = ∆(D1, D5) = D6, where ∆(D1, D5) is as in Definition 2.5.4, contradicting the fact
that (D1, . . . , D6) is an alternating hexagon. The claim is proven. In particular it follows
that D2 and γ5 intersect.

Let e be an arc of γ5 ∩ Dc
1 intersecting D2. We can write e = e0 ∪ · · · ∪ em where

the ei’s are closure of connected components of e \ γ2 such that ei ∩ ej is nonempty if
and only if |i− j| = 1 and in that case it is a single point. Every component of e ∩Dc

2

with both endpoints on γ2 cannot intersect either D1 nor D4, and hence d. From an
application of Lemma 2.5.21 with A = D1, B = D4 and X = D it follows that such arc
must lie in the annulus P (D1, D2) \D: since such subspace contains no marked points,
then the arc must be trivial. From minimal position it follows that every arc of e ∩Dc

2

has one endpoint on γ2 and the other on γ1. It follow that m = 2.
It follow that the set Dc

1\e has two connected components, and both of them intersect
D2: let Z be one of them. Since the arc e1 does not form a bigon with γ2 it follows that
both components of D2 \ e contain some of the marked points in π(D2), but cannot
contain all. In particular, Z contains a strict subset of the marked points in π(D2). We
have ∂(Z ∪D1) ⊆ D1 ∪D5, hence ∂(Z ∪D1) is disjoint from γ6. Lemma 2.5.21, applied
with X = Z ∪ D1 and Y = D6 proves that either (Z ∪ D1) ⊆ D6 or D6 ⊆ (Z ∪ D1).
In either case it is impossible to have π(D6) = π(D2). Indeed, if (Z ∪ D1) ⊆ D6 a
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contradiction follows from the fact that Z ∪ D1 contains some marked points not in
π(D2); if D6 ⊆ (Z ∪ D1) contradiction descends from the fact that Z ∪ D1 does not
contain all the marked points in π(D2).

We are now left proving that the case of hexagons where π(D6) 6= π(D2) = π(D4) is
impossible, as well.

Lemma 2.6.3. Let k ≥ 2 and n ≥ k. Let k ≥ 2 and n ≥ k. Let (D1, . . . , D6) be a
6-cycle in Dk(Σk+n+1) such that π(D1) = π(D3) = π(D5) and π(D2) = π(D4) 6= π(D6).
Then such cycle is not embedded.

Proof. If the first four vertices (D1, . . . , D4) are not pairwise distinct we are clearly
done. We are hence going to assume that they are, and prove that D3 = D5. Notice
that D6 6= D2 and D6 6= D4 since they have different projections to the extended Kneser
graph.

Since π(D6) ⊆ π(D1)c = π(D2) ∪ {p} but π(D6) 6= π(D2) it follows that p ∈ π(D6).
We recall that M(D6, D4), defined as in Definition 2.5.9, is the component of D6 ∩ Dc

4

containing the puncture p. It follows that M(D6, D4) ∩ D 6= ∅. We claim that this
component M(D6, D4) is contained in D. If this were not true we would have that the
interior of the arc l(D6, D4), which is the only arc in M(D6, D4) between p and γ4 as in
Definition 2.5.15, intersects ∂D ⊆ d∪γ1. It would follow that the arc l(D6, D4) intersects
a ⊂ D1, which is absurd since l(D6, D4) ⊂ D6. The claim is proven.

In particular, we have that M(D6, D4) is disjoint from D3. The region

Z = D4 ∪M(D6, D4)

contains exactly all the marked points of π(D4) ∪ {p} = π(Dc
3) and it is contained in

Dc
3: it follows that Z = Dc

3. From Lemma 2.5.16, applied with A = D6, B = D4 and it
follows that Z is isotopic to Dc

5, too. From this it follows that D3 = D5, hence the cycle
is not embedded.

This completes the proof of Proposition 2.6.1.
We can now move to proving that there exists no “tripods” in the graph of discs, that

is„ , the content of the following proposition. For this result, we will need the stronger
hypothesis that k ≥ 3. Indeed, an example of an alternating hexagon in C2(Σ5) which
projects to a “tripod” is provided in Figure 2.18. This is the only reason why we need
such hypothesis in Corollary 2.6.10 and Proposition 2.6.11, although the proof of the
latter could probably be adapted to the case of k = 2 with some extra work. However,
we have already noticed how the result with k ≥ 3 will still suffice our needs.

Proposition 2.6.4. Let k ≥ 3 and n ≥ k. There does not exists any alternating hexagon
(D1, . . . , D6) in Dk(Σk+n+1) such that π(D1) = π(D3) = π(D5) and such that we have
π(Di) 6= π(Dj) for every i, j ∈ {2, 4, 6} with i 6= j.

We have the following information about the projection to the extended Kneser graph.

Lemma 2.6.5. Let (D1, . . . , D6) be an alternating hexagon in the graph Dk(Σk+n+1)

such that we have π(D1) = π(D3) = π(D5) and such that π(Di) 6= π(Dj) for every
i, j ∈ {2, 4, 6} with i 6= j. Let γi = ∂Di.
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π(D4)
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Figure 2.18: A hexagon in D2(Σ5) projecting onto a “tripod” in K∗(5, 2).

There exists a partition of the marked points as Π = U ∪ V ∪ {p, q, r} such that

π(D1) = π(D3) = π(D5) = U ;

π(D2) = V ∩ {p, q} ;

π(D4) = V ∩ {p, r} ;

π(D6) = V ∩ {q, r}

where either |U | = k and |V | = n− 2 or |U | = n and |V | = k − 2 .

We recall that we are assuming n ≥ k ≥ 3, hence all the sets mentioned in the
aforementioned lemma are nonempty.

Proof of Lemma 2.6.5. Since (π(D1), . . . , π(D6)) is an alternating 6-cycle in the ex-
tended Kneser graph K∗(k + n + 1, k), for i even we have that π(Di) and π(Di±2) are
distinct and have π(Di±1) as a common neighbour. We can now apply Lemma 2.4.1

proving that
|π(Di) ∩ π(Di±2)| = |π(Di)| − 1.

Since π(D2) ∪ π(D4) ∪ π(D6) = π(D1)c, an application of Inclusion-Exclusion Principle
yields

|π(D2) ∩ π(D4) ∩ π(D6)| = |π(D2)| − 2,

and the lemma follows.

The following constructions, which are somewhat similar to the ones performed before,
are pictured in Figure 2.19. We retain the hypotheses of the previous lemma.

The marked point r = p(D4, D2) ∈ π(D4) \ π(D2), as in Definition 2.5.9, does not
belong to either π(D3) = π(D1) or to π(D2), hence it is the only marked point in the
pair of pants P (D1, D2), as in Definition 2.5.10.

All the arcs of γ3∩Dc
1 must be parallel due to Lemma 2.5.12 since they are nontrivial

TD1-arcs in the pair of pants P (D1, D2). Analogously to what we have done before, let
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Figure 2.19: The gray region is Z. We recall that E = E′ ∪ E′′.

c be the innermost of these arcs, that is„ , such that the interior of the component of
P (D1, D2) \ c containing r is disjoint from D3. Let us denote this component, which is
a once-punctured disc, with C. Let a be the arc of γ1 between the endpoints of c whose
interior does not intersect D3, that is„ , such that ∂C = a ∪ c.

Since r ∈ π(D4) it obviously follows thatM(D4, D2)∩C 6= ∅, whereM(D4, D2) is the
component of D4 ∩Dc

2 containing r, as in Definition 2.5.9. Let D be the component of
M(D4, D2)∩C containing r. The region D is a once-punctured disc and ∂D is composed
of a single arc of γ4, which we will denote with d, and a single arc of γ1.

Similarly, the only marked point which is contained in the pairs of pants P (D1, D6) is
p = p(D2, D6) = p(D4, D6). All the arcs of γ5 ∩Dc

1 are isotopic thanks to Lemma 2.5.12,
since they are all TD1-arcs in P (D1, D6). Let e be the innermost one, that is„ , such that
the interior of the component of Dc

1 \ e containing p, whose closure we will denote by
E, does not intersect γ5. Similarly to what we have done before, let e = e0 ∪ · · · ∪ em ,
where ei is the closure of a component of e \ γ2 such that ei ∩ ej is nonempty if and only
if |i− j| = 1 and in that case it is a single point. We have the following.

Lemma 2.6.6. We have that m = 2. The arc e1 ⊂ D2 is such that D2 \ e1 is composed
of exactly two connected component, one of which is E′ = E ∩D2 and only contains the
marked point p. The closure of the other component, which is D2 \ E′, contains all the
marked points in π(D2) ∩ π(D6) = V ∪ {q}.

We will denote with B the closure of the component D2 \ E′.

Proof of Lemma 2.6.6. If it heldm > 2 it would follow that the arc e2 would be a TD2-
arc in P (D1, D2). Since e ⊂ D5 it does not intersect D4, so the arc e2 would actually
lie in the annulus P (D1, D2) \ D, hence it would form a bigon with γ2, contradicting
minimal position.
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The arc e1 separates D2 into two components. The region E′ = E ∩D2 is a subset
of E so it can only contain p. All the marked points in the other component are those
of π(D2) ∩ π(D6) = V ∪ {q}.

The arcs e0 and e2 are mixed arcs in P (D1, D2), hence E is a punctured disc. We
observe that its boundary is composed of e and a single arc of γ1. We claim the following.

Lemma 2.6.7. The component D is disjoint from E. In particular the subspace defined
by E ∩ P (D1, D2) is a disc with no marked points. Moreover, the boundary of said
subspace is composed of the arcs e0, e2, a single arc of γ1 and a single arc of γ2.

We will denote the disc E ∩ P (D1, D2) as E′′.

Proof of Lemma 2.6.7. Since D ⊆ D4 we have D ∩ e = ∅, hence either D ⊆ E or they
are disjoint. If it held D ⊆ E we would have that r = p(D6, D2) = p(D4, D2) ∈ E.
In particular, E would contain exactly the two marked points p, r. Since ∂E ⊆ e ∪ γ1,
Lemma 2.5.21, applied with X = E and Y = D6 would imply that either E ⊆ D6 or
D6 ⊆ E. The former is impossible since E contains p = p(D2, D6) /∈ π(D6). The latter
is also impossible, since D6 contains at least k ≥ 3 marked points, while E only contains
the marked points r, p and p /∈ π(D6).

For the second part it is enough to notice that E only contains the marked point
p = p(D2, D6) ∈ D2 so p /∈ P (D1, D2). It follows that E∩P (D1, D2) contains no marked
points.

Since the arcs c and d are isotopic we can assume that c is contained in a small regular
neighbourhood of d, and hence disjoint from the arc e. Moreover, every arc of γ5 ∩Dc

1

is isotopic to e, so we can assume it to be contained in a small regular neighbourhood of
e, and in particular it to be disjoint from C.

Since p(D2, D6) = p(D4, D6) = p, it follows that p ∈ D4 and hence D4 ∩ E′ 6= ∅. We
claim that γ4 intersects the arc b = γ2 ∩ E. If not, Lemma 2.5.21, applied with X = E′

and Y = D4 would imply that E′ ⊆ D4 which is impossible since ∂E′ ∩D5 = e1 6= ∅.
We recall that B denotes the closure of D2 \ E′. Let b′ = γ2 ∩ B. Since k ≥ 3 the

set V of Lemma 2.6.5 is not empty, hence it follows from Lemma 2.6.6 that at least
one puncture in B must belong to π(D4). In particular we have that D4 ∩ B 6= ∅ and
γ4 ∩ b′ 6= ∅. The second claim follows with an argument very similar to the one in the
previous paragraph. Indeed, either γ4∩b′ 6= ∅ or Lemma 2.5.21, applied with X = B and
Y = D4 implies that B ⊆ D4, which is impossible since q = π(D2, D4) ∈ B but q /∈ D4.

Since γ4 intersects both b and b′ it follows that there must exist an arc of γ4 with one
endpoint on b and the other on b′. Since this arc cannot intersect e ⊂ D5 it follows that
it must intersect D1 ∪ C. We will eventually prove this causes a contradiction. We first
start by proving that such an arc must intersect C, that is„ , the following.

Lemma 2.6.8. Any arc of γ4 with one endpoint on b and the other on b′ intersects C.

Proof. For a picture of the constructions to follow we still refer to Figure 2.19.
We argue by contradiction: let u be an arc of γ4 with one endpoint on b and the other

on b′ not intersecting C. Up to substituting u with a subarc, we can assume without loss
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of generality that the interior of u does not intersect γ2 . Since an arc from b to b′ inside
D2 must intersect e1 ⊂ γ5 it follows that u ⊂ Dc

2.
The space Dc

2 \ u has exactly two connected components: let Z be the closure of the
one not containing C. We have that ∂Z ⊆ γ2 ∪ γ4 and D3 ⊆ Z, since Z does not contain
the arc c. It follows from Corollary 2.5.22, applied with A = D2, B = D4, and X = Z,
that Z ⊆ Dc

3. Since Z ∩D2 has empty interior the only puncture in π(Dc
3) = U ∪{p, q, r}

which can be contained in Z is r, but that puncture is contained in the interior of C,
which is disjoint from Z by definition. It follows that Z cannot contain any puncture,
hence u forms an empty bigon with γ2. We have reached a contradiction to minimal
position and hence proven the lemma.

The last ingredient we are now missing for the proof of Proposition 2.6.4 is the
following lemma. It implies that there cannot exists an arc of γ4 with one endpoint on b
and the other on b′ intersecting C, providing the contradiction we need.

Lemma 2.6.9. The exists no pair of disjoint arcs v, w ⊆ γ4, such that v has one endpoint
on a and the other on b, and w has one endpoint on a and the other on b′.

Proof. A picture of the constructions used in this proof is provided in Figure 2.20.

· · ·C

c

a

D1 D2

r

P (D1, D2)

U∪{q}︷︸︸︷
· · ·

p

E′

E′′
e2

e1

b

b′
· · ·

e0

e′

v

w

B

Figure 2.20: The gray region is Z.

Up to considering subarcs, if needed, we can assume, without loss of generality, that
the interior of neither v nor w intersects neither C nor D2. Let a′ ⊆ a be the arc between
the endpoints of v and w on a. Since ∂a ⊆ γ3 we have that a′ is contained in the interior
of the arc a. In particular, we have a′ ∩D3 = ∅.

Let z = v ∪ w ∪ a′ : this is an arc with one endpoint on b ⊆ γ2 and the other on
b′ ⊆ γ2. It follows that the space Dc

2 \ z has exactly two connected components. Let Z
be the closure of the component of Dc

2 \ z not containing the interior of C.
We have ∂Z ⊆ γ2∪γ4∪a′, hence ∂Z is disjoint from γ3. Moreover, since Z ∩D2 6= ∅,

we have that Z * D3, hence Z ∩ Dc
3 6= ∅. Lemma 2.5.21, applied with X = Z and
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Y = Dc
3 implies that either Dc

3 ⊆ Z or Z ⊆ Dc
3 . The former option is impossible since

r ∈ π(Dc
3) = U ∪{p, q, r} but r ∈ C so r /∈ Z. It follows that Z ⊆ Dc

3 . Since Z is disjoint
from the interior of D2 it cannot contain any of the marked points in π(D2) = U ∪{p, q},
and it does not contains r ∈ C by definition. It follows that Z does not contain any
marked point.

We claim that w∩E′′ = ∅, where E′′ = E∩P (D1, D2). Indeed, since we assumed the
interior of w not to intersect D2, and the endpoints of w are on a and b′, it follows that
every component of w ∩ E′′ must have both endpoints on γ1 ∩ E′′. From this it follows
that such a component arc would form an empty bigon with γ1, since the region E′′ does
not contain any marked point thanks to Lemma 2.6.7, and and ∂E′′ ∩ γ1 is connected.
We have found a contradiction and proven the claim.

We claim that the intersection v ∩ E is composed of a single arc inside E′′ with one
endpoint on γ1 and the other on b ⊆ γ2. Indeed, the intersection v ∩ E′′ is a collection
of arcs, one of which has one endpoint on γ1 and the other on γ2. Any other component
would be an arc in E′′ with both endpoints on γ1. This follows from the fact that
∂E′′ ⊆ γ1 ∪ γ2 ∪ γ5, as we noticed in Lemma 2.6.7, alongside the fact that v ⊂ γ4, hence
it is disjoint from γ5, and the hypothesis that the interior of v does not to intersect
D2. Once again, since E′′ is a disc with no marked points thanks to Lemma 2.6.7, and
∂E′′ ∩ γ1 is connected, it follows that any arc with both endpoints on γ1 would form an
empty bigon with that curve, contradicting minimal position. The claim is proven.

It follows from the previous two claims that the space E′′ \ (v ∪w) = E′′ \ v has two
connected components and one of these components is contained in Z. Up to switching
e0 with e2 we will assume, without loss of generality, that the aforementioned component
contains the arc e0. Let e′ be the arc of γ5 ∩Dc

2 containing e0.
We have previously noticed that we can assume γ5 to be disjoint from C. From this

and the fact that γ5 does not intersect the arcs u, v ⊆ γ4 we have that e′ ⊂ Z and it
has both endpoints on γ2. Since Z does not contain any marked points, and ∂Z ∩ D2

is connected, the arc e′ forms an empty bigon with γ2, hence contradicting minimal
position. We have reached a contradiction and proven the lemma.

We are now ready to conclude the proof of Proposition 2.6.4.

Proof of Proposition 2.6.4. Let us argue by contradiction and assume that a hexagon
(D1, . . . , D6) such as in the statement exists, so all the previous constructions apply.

Since both γ4 ∩ b 6= ∅ and γ4 ∩ b′ 6= ∅ we have already noticed that there exists an arc
t ⊆ γ4 from b to b′. Lemma 2.6.8 implies that t ∩ C 6= ∅, so in particular t ∩ a 6= ∅.

By considering the subarcs between any of the two endpoints and the closest inter-
section with a it follows that there exists two arcs v, w ⊆ t with one endpoint on a and
the other on b (resp. b′). These arcs can intersect at most in their endpoint on a, but in
that case t ⊆ γ4 and a ⊆ γ1 would not be transverse, contradicting general position. It
follows that the arcs v, w are disjoint. Since Lemma 2.6.9 proves such arcs cannot exists,
we have reached a contradiction and concluded the proof.

Proposition 2.6.1 and Proposition 2.6.4, alongside Corollary 2.4.7 complete the study
the projection of irregular hexagons to the extended Kneser graph, and proving that the
only possible configuration was the “folding”.
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Corollary 2.6.10. Let k ≥ 3 and n ≥ k. Let (D1, . . . , D6) be an irregular alternating
hexagon in Dk(Σk+n+1). Then, up to a translation on the indices, we have that

π(D1) = π(D5) 6= π(D3)

and
π(D2) = π(D4) 6= π(D6).

Moreover the projections π(D1), π(D2), π(D3), π(D6) are all different from each other.

We now have complete knowledge about the possible combinatorial configurations
which can arise from the projection of an irregular alternating hexagon to the extended
Kneser graph. We are then ready to prove a criterion to combinatorially distinguish
irregular hexagons from standard ones, hence completing the proof of Proposition 2.5.1.

We would like to have a combinatorial criterion to tell the irregular hexagons apart
from all the regular ones, that is„ , proving that these classes are preserved under graph
automorphism. Once we have proven the rigidity of the graphs this must be true, a
posteriori, but unfortunately we have not been able to find a simple direct a priori proof of
that fact. However, since our goal is to show that the standard hexagons are preserved by
graph automorphisms, being able to only combinatorially distinguish between standard
hexagon and irregular ones will still suffice our needs, since we have proven how to
distinguish regular hexagons from standard irregular ones in the previous section. This
is the content of the next proposition.

Proposition 2.6.11. Let k ≥ 3 and n ≥ k. Let (D1, D2, D3, D4) be four vertices of
Dk(Σk+n+1) such that Di is adjacent to Di+1 for i = 1, 2, 3. Moreover, suppose that
π(D2) = π(D4) and such that π(D1), π(D2), π(D3) are distinct. Then there exists at
most one pair of discs (D5, D6) such that (D1, . . . , D6) is an alternating hexagon.

Proof. Let (D1, . . . , D4, D5, D6) be an alternating hexagons with the required proper-
ties. Let γi = ∂Di. Let us first notice that, due to Corollary 2.6.10, it follows that
π(D1) = π(D5) and π(D6) must be different from all the other projections. Moreover
π(D4) ∩ π(D1) = ∅.

The discs D1 and D4 are not disjoint. If not, both D2 and D4 would be disjoint from
both D1 and D3, hence the uniqueness of common neighbours stated in Lemma 2.5.3

would imply that D4 = D2: this is a contradiction to the injectivity of the 6-cycle. It
follows that the set D1 ∩ D4 is nonempty but it contains no punctures. Hence, if the
boundary of a component of D1 ∩ D4 were composed of a single arc of γ1 and a single
arc of γ4 the two curves would form an empty bigon, contradicting minimal position. It
follows that we must have i(γ1, γ4) ≥ 4.

We claim the set D4∩Dc
1 is composed of at least two connected components. Indeed,

any connected component of γ1 ∩ D4 disconnects D4. Since we have just proven that
i(γ1, γ4) ≥ 4 it follows that γ1 ∩ D4 and γ4 ∩ Dc

1 both have at least two connected
components. If D4 ∩Dc

1 were connected then it would contain all the marked points in
π(D4). Moreover, Jordan Curve Theorem would immediately imply that Dc

1 ∩Dc
4 is not

connected, and that the boundary of every component is composed of a single arc of γ1

and a single arc of γ4. Since there exists only one marked point in π(Dc
1) ∩ π(Dc

4) it
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follows that γ1 and γ4 would form an empty bigon, contradicting minimal position. The
claim is proven.

The constructions performed in the next part of the proof are pictured in Figure 2.21.

p(D6, D4)

l(D6, D4)

D1

D4

Z
· · ·

c1

c2

d1

d2

Figure 2.21: The gray region is Y .

The set Dc
1 ∩ Dc

4 only contains the puncture p(D6, D4), hence it is composed of a
certain number of discs with no marked points and a single once-punctured disc, which
we will denote with Y . The boundary of Y can be written as c1 ∪ d1 ∪ · · · ∪ cm ∪ dm
where the ci’s are pairwise disjoint arcs of γ4 and the di’s are pairwise disjoint arcs of
γ1 , such that ci ∩ di and di ∩ ci+1 are composed of a single endpoint. Distinct arcs ci’s
belong to the boundaries of distinct connected component of D4 ∩Dc

1.
The arc l(D6, D4), defined as in Definition 2.5.15 must be contained in the once-

punctured disc Y . It follows that the isotopy type of the arc l(D6, D4), and hence of
the region M(D6, D4) is now uniquely determined by the arc ci containing the endpoint
that is„ , not p(D6, D4), hence by the component of D4 ∩ Dc

1 containing it, which we
will denote with Z. Without loss of generality let us assume that the arc c1 is the one
containing one endpoints of l(D6, D4).

All the connected components of γ6∩Dc
4 are TD4-arcs in the pair of pants P (D4, D5),

as in Definition 2.5.10. Lemma 2.5.12 hence proves that all of these arcs are isotopic to
each other, and in particular are isotopic to s(D6, D4), as in Definition 2.5.14. It follows
that, up to isotopy, all those arcs are contained in a small neighbourhood of s(D6, D4),
hence in a small neighbourhood of l(D6, D4). In particular, we can without loss of
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generality assume that every component of D6∩Dc
4 is contained in Y and its intersection

with γ4 is contained in c1.
We have just shown that we have D6 ⊆ Y ∪ Z. Let h be the number of marked

points in D6, and hence in D4 (this is either k or n). Since D6 is a h-punctured disc it
follows that the region Y ∪Z must contain at least h marked points, hence the region Z
must contain at least h− 1 marked points. We claim the region Z contains exactly h− 1

marked points. In fact since Z ⊆ D4 it contains at most h, but if it contained h then it
would follow that Z = D4 and hence D1 and D4 would be disjoint, which is impossible.
Since h ≥ k > 2 at most one component of D4 ∩ Dc

1 containing (h − 1) punctures can
exist. It follows that the region M(D6, D4) is uniquely determined by D1 and D4.

Let now (D1, D2, D3, D4, D
′
5, D

′
6) be another alternating hexagons with the required

properties. The previous construction proves that we have M(D6, D4) = M(D′6, D4),
since the isotopy type of that region only was only dependent on D1 and D4. We can now
apply Lemma 2.5.16 to prove that Dc

5 is isotopic to D4 ∪M(D6, D4) = D4 ∪M(D′6, D4),
and that the right-hand side is isotopic to (D′5)c. Since we now have D5 = D′5 it follows
from Lemma 2.5.3 that D6 = D′6, and the proof is complete.

Proposition 2.5.18, and Proposition 2.6.11 now conclude the proof of the recognis-
ability of standard hexagons in the k-separating disc graph, that is, Proposition 2.5.2.
Indeed, the first result is the proof of recognisability of standard hexagons from regular
nonstandard ones, while the second is the proof of the same property for standard and
irregular hexagons.
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2.7 Disc Graphs and Curve Graphs

Before we start approaching the proof of rigidity for the graphs of k-separating discs,
we will relate them and their automorphism groups to graph of curves. This will also
provide us with the important base case for the inductive proof of Theorem B in the
next section.

Practically speaking, our goal for this section will be to construct a group isomorphism

Aut(Dk(Σm))−→Aut(Ck(Σm)),

where Dk(Σm) (resp. Ck(Σm)) is the k-separating disc (resp. curve) graph, as defined in
Definition 1.4.1 (resp. Definition 1.3.6).

In order to be able to define such a homomorphism we will start by giving a description
of k-separating curves, that is, vertices of Ck(Σm), in terms of combinatorial objects
constructed from the graph Dk(Σm).

Definition 2.7.1. Let k ≥ 2 and m ≥ 2k + 1. Let

PCk(Σm) = {{D,Dc} with D ∈ Dk(Σm)}

be the set of pairs of complementary discs in Dk(Σm).

Any automorphism g ∈ Aut(Dk(Σm)) preserves pairs of disjoint discs thanks to
Proposition 2.2.4, hence acts on the set PCk(Σm) by g · {D,Dc} = {g(D), g(Dc)}.

We can now define the map

µ : PCk(Σm) −→ V(Ck(Σm))

given by µ({D,Dc}) = ∂D. This map is well-defined, since ∂D is isotopic to ∂Dc.
Moreover, if D is a h-punctured disc and Dc is a l-punctured disc the curve µ({D,Dc})
is a (min {h, l})-separating curve. Since D,Dc ∈ V(Dk(Σm)) we have that h, l ≤ k, hence
µ({D,Dc}) ∈ Ck(Σm).

We observe that the map µ is a bijection.

Lemma 2.7.2. Let k ≥ 2 and m ≥ 2k + 1. The previously defined map

µ : PCk(Σm) −→ V(Ck(Σm))

is a bijection.

Proof. We will first prove injectivity. Let {A,Ac}, {B,Bc} be such that we have
µ({A,Ac}) = µ({B,Bc}). Up to switching A with Ac, if need be, this means that
either A ⊆ B ⊆ A or A ⊆ B ⊆ Ac. The latter case is clearly impossible, hence it follows
that A = B, so {A,Ac} = {B,Bc} and the map is injective.

To prove surjectivity let us consider a simple essential curve γ ∈ V(Ck(Σm)). Let
D,Dc be the two complementary discs of γ. Since γ is h-separating with h ≥ k each of
those discs must contain at least h ≥ k marked points, so the other one cannot contain
more thanm−h ≤ m−k. It follows that D,Dc ∈ V(Dk(Σm)) and hence γ = µ({D,Dc}),
proving that the map is surjective.
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The inverse map
µ−1 : V(Ck(Σm)) −→ PCk(Σm)

sends a curve γ to the pair of its complementary discs, that it the closures of the two
components of Σm \ γ.

We now want to express edges in C(Σm), that is, disjointness between curves, in terms
of properties of discs. In order to do so we give the following definition.

Definition 2.7.3. Let k ≥ 2 and m ≥ 2k+ 1. We say two pairs of complementary discs
{A,Ac} , {B,Bc} ∈ PCk(Σm) are nested if either A ( B or A ( Bc.

Expressing disjointness between curves in terms of nesting of the complementary discs
is the content of the following result.

Lemma 2.7.4. Let k ≥ 2 and m ≥ 2k+ 1. Let α, β ∈ Ck(Σm). It holds that d(α, β) = 1

if and only if µ−1(α)and µ−1(β) are nested.

Proof. Let α, β ∈ Ck(Σm) be such that d(α, β) = 1, that is, they are two distinct disjoint
curves. It follows that α would be contained in one of the complementary discs of β. It
follows that one of the complementary discs of α must be contained in such a disc, as
well. Moreover the inclusion is proper since α is not isotopic to β.

The converse follows the observation that if α and β intersect then each pair of
complementary discs intersects as well, so it is impossible to have any inclusion between
those.

We want to describe the k-separating curve graph Ck(Σm) in terms of combinatorial
objects in Dk(Σm). In order to do so we will now define the graph of pairs of comple-
mentary discs, which is naturally isomorphic to the k-separating curve graph Ck(Σm).

Definition 2.7.5. Let k ≥ 2 and m ≥ 2k + 1. We define the graph of pairs of comple-
mentary discs GPCk(Σm) as the abstract graph such that:

Vertices There is one vertex for every element of PCk(Σm), that is, for every pair of
complementary discs {D,Dc} of Dk(Σm);

Edges There is an edge between two vertices corresponding to two pairs of complemen-
tary discs if they are nested.

Lemma 2.7.2 and Lemma 2.7.4 immediately prove the following.

Proposition 2.7.6. Let k ≥ 2 and m ≥ 2k + 1. The map

µ : PCk(Σm) −→ V(Ck(Σm))

defined by µ({D,Dc}) = ∂D extends to a Mod±(Σm)-equivariant graph isomorphism

µ : GPCk(Σm)
∼−→ Ck(Σm).

In particular we have Aut(GPCk(Σm)) ∼= Aut(Ck(Σm)).
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We make the following simple remark about the relation between topological types
of curves and the topological types of the pairs of discs the are identified with. Given a
h-separating curve γ ∈ Ck(Σm), let γ = µ({D,Dc}). Then, up to exchanging D with Dc

the disc D contains h marked points, and the disc Dc contains m− k.
Since automorphisms of Dk(Σm) preserve inclusion between discs, due to Proposi-

tion 2.2.1, they preserve nestedness, as well, hence induce automorphisms of the graph
GPCk(Σm). Such action induces a group homomorphism

χ : Aut(Dk(Σm)) −→ Aut(GPCk(Σm)).

We are now left to prove this is an isomorphism, which in turns proves that Aut(Dk(Σm))

and Aut(Ck(Σm)) are Mod±(Σm)-equivariantly isomorphic. that is, the content of the
following.

Proposition 2.7.7. Let k ≥ 2 and m ≥ 2k + 1. The map

χ : Aut(Dk(Σm)) −→ Aut(GPCk(Σm))

is a Mod±(Σm)-equivariant isomorphism.

In the previous proposition surjectivity is the harder property to prove, and is the
content of the following lemma.

Lemma 2.7.8. Let k ≥ 2 and m ≥ 2k + 1. Let f ∈ Aut(GPCk(Σm)) be a graph
automorphism. Then f is induced by an automorphism of Dk(Σm), that is, there exists a
graph automorphism ϕ ∈ Aut(Dk(Σm)) such that for every pair of complementary discs
{D,Dc} ∈ PCk(Σm) we have f({D,Dc}) = {ϕ(D), ϕ(Dc)}.

In order to prove the previous lemma, we first need to ensure that a map such as in
the previous lemma preserves the topological types of the pairs of discs.

Thanks to the connection between the k-separating curve graph Ck(Σm) and the graph
GPCk(Σm), we will prove the equivalent property for the k-separating curve graph, since
it will lead to much less cumbersome notation.

The key ingredient is to prove an analogous of Proposition 2.2.3 for the k-separating
curve graphs, that is, topological types of curves are preserved under graph automor-
phisms. In order to do so we give a definition of maximal chains, similar to Defini-
tion 2.2.2, and prove an analogous of Proposition 2.2.3. This entire argument will closely
follow the one in [B2, §5].

We begin with the following.

Definition 2.7.9. Let α, β, γ ∈ V(Ck(Σm)) be three distinct curves. We say that γ
separates α from β if every curve δ ∈ V(Ck(Σm)) which is disjoint from γ is disjoint from
either α or β.

Since it is defined only in terms of disjointness between curves, separation is preserved
by graph automorphisms of Ck(Σm).

Topologically speaking, we have the following characterisation of separation.
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Lemma 2.7.10. Let k ≥ 2 and m ≥ 2k + 1. Let α, β, γ ∈ V(Ck(Σm)) be three distinct
curves. Let D,Dc be the two complementary discs of γ. Then γ separates α, β if and
only if, up to switching the two discs, we have that α ⊂ D and β ⊂ Dc.

Proof. The “if” implication is immediate.
For the converse we argue by contradiction. If, without loss of generality, it held

α, β ⊆ D then there would exists a k-separating curve γ ⊆ D intersecting both α and β,
contradicting separation.

We can now define the concept of maximal chains of curves.

Definition 2.7.11. A chain of curves is a collection of curves (γ0, . . . , γj) ∈ Ck(Σk+n+1)

such that for three indices 0 ≤ h, i, l ≤ j the curve γi separates γh from γl if and only if
h < i < l.

A chain is said to be maximal if it is not a proper subchain of any other chain.

Since separation is recognisable in the k-separating curve graph then chains of curves
are recognisable too.

Differently to what happens to discs we observe that, given a chain (γ0, . . . , γj) then
the (j + 1)-tuple (γj , . . . , γ0) is also a chain.

Given a curve in Ck(Σk+n+1), there exists a maximal chain containing it. The follow-
ing proposition, analogous to Proposition 2.2.3, gives us the characterisation of topolog-
ical types of curves in terms of maximal chains.

Proposition 2.7.12. Let k ≥ 2 and n ≥ k. Let (γ0, . . . , γj) be a maximal chain of curves
in Ck(Σk+n+1). Then j = n − k + 1 and γi is a (min {(k + i), (n+ 1− i)})-separating
curve.

Proof. Let D0 be the the complementary disc of γ0 not containing any other curve in
the chain. We know that such a disc exists thanks to Lemma 2.7.10. Let Di be the
complementary disc of γi containing Di−1. These discs from a chain D0 ( · · · ( Dj , as
in Definition 2.2.2.

We claim the aforementioned chain is maximal. If not, suppose there exists a disc D
and an index h such that Dh ( D ( Dh+1. Since both discs Dh and Dh+1 contain at
least k marked points, so do both D and Dc, hence the curve ∂D belongs to Ck(Σk+n+1).
It would follow that (γ0, . . . , γh, ∂D, γh+1, . . . , γj) would be a chain of curves strictly
containing the original chain, hence contradicting maximality.

We can now apply Proposition 2.2.3 to deduce that the disc Dh contains k+h marked
points, hence Dc

h contains n + 1 − h. It follows that γi is a (min {(k + i), (n+ 1− i)})-
separating curve.

Since maximal chains are preserved by graph automorphisms can now deduce how to
recognise topological types by automorphisms of the k-separating curve graph.

Corollary 2.7.13. Let k ≥ 2 and m ≥ 2k+ 1. Let h be such that k ≤ h ≤ m− k. Let γ
be a vertex of Ck(Σm). Then γ is a h-punctured disc if and only if there exists a maximal
chain (γ0, . . . , γm−2k) such that γ = γh−k. In particular, the topological type of a curve
is recognisable in the graph.
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We can now state an analogous property of preservation of topological types for
GPCk(Σm).

Corollary 2.7.14. Let k ≥ 2 and m ≥ 2k + 1. Let {D,Dc} ∈ PCk(Σm). Then one
of the discs contains h-punctures and the other contains m − h if and only if the curve
µ({D,Dc}) ∈ V(Ck(Σk+n+1)) is (min {h,m− h})-separating. In particular the topologi-
cal types of a pair of complementary discs is preserved by automorphisms of GPCk(Σm).

Proof. Since µ({D,Dc}) = ∂D the first part comes directly from Corollary 2.7.13.
For the second part let f ∈ Aut(GPCk(Σm)). Then µ ◦ f ◦ µ−1 ∈ Aut(Ck(Σm)). It

follows that if µ({D,Dc}) is h-separating then also

µ ◦ f ◦ µ−1(µ({D,Dc})) = µ(f({D,Dc}))

is, so the discs f({D,Dc}) has the same topological type of those in {D,Dc}.

We are now ready to prove that automorphisms of the graph GPCk(Σm) induce
automorphisms of the graph of discs.

Proof of Lemma 2.7.8. Our goal is to define a map ϕ ∈ Aut(Dk(Σm)) such that for
every {D,Dc} ∈ PCk(Σm) we have f({D,Dc}) = {ϕ(D), ϕ(Dc)}. Given a pair of
complementary discs {D,Dc} ∈ PCk(Σm) such that they are not m

2 -punctured we can
define ϕ(D) to be the unique disc in f({D,Dc}) ∈ PCk(Σm) of the same topological type
of D, which exists since f preserves topological types, thanks to Corollary 2.7.14.

Given a pair of complementary m
2 -punctured discs {A,Ac} there exists a pair of

complementary discs {B,Bc} with B a h-punctured disc and k ≤ h < m
2 such that

B ( A, that is, such that {A,Ac} and {B,Bc} are nested. We define ϕ(A) to be the
unique disc in f({A,Ac}) containing ϕ(B), which exists since f preserves nesting. We
will now prove that this is a good definition. Moreover, we observe that, by definition,
we have ϕ(Dc) = ϕ(D)c.

We now claim that if B,B′ are a h-punctured and a h′-punctured discs respectively,
with h, h′ < m

2 , and such that B,B′ ( A, such that {B,Bc} and {B′, (B′)c} are not
nested, then ϕ(B) ( ϕ(A) if and only if ϕ(B′) ( ϕ(A). If not, without loss of gen-
erality we can assume we have ϕ(B) ⊆ ϕ(A), while ϕ(B′) ⊆ ϕ(A)c. It follows that
ϕ(B′) ( ϕ(B)c, hence the pairs {ϕ(B), ϕ(B)c} and {ϕ(B′), ϕ(B′)c} are nested. Since
f−1 preserves nesting, this is a contradiction to the fact that {B,Bc} and {B′, (B′)c}
were not nested. The claim is proven.

Let now A be a m
2 -punctured disc, and let B,B′ ( A be two discs. Then there exists

a disc C ( A such that the pair {C,C ′} is not nested with either {B,Bc} or {B′, (B′)c}.
It follows from the previous claim that ϕ(B) ( ϕ(A) if and only if ϕ(C) ( ϕ(A), which
happens if and only if ϕ(B′) ( ϕ(A). From this, it follows that the map ϕ we have
previously define is well-defined for m

2 -punctured discs, too.
We have a permutation of vertices of Dk(Σm) preserving topological types and in-

ducing the map f . We are now left to prove that this map ϕ is edge-preserving or,
equivalently, it preserves inclusion between discs.

First, let {A,Ac} , {B,Bc} be two nested pairs of complementary discs such that
A has the same topological type of B. Then the discs contain a number of marked
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points which is different from m
2 , otherwise we would have either A = B or A = Bc,

contradicting nesting. For the same reason, it follows that A ⊂ Bc. Moreover, the disc
ϕ(A) contains the same number of marked points as A by definition of ϕ, and hence the
same number of marked points of B and ϕ(B). It follows that if it held ϕ(A) ⊆ ϕ(B) we
would have equality, contradicting nestedness, hence ϕ(A) ( ϕ(B)c.

We will now prove that ϕ preserves inclusion between every pair of discs, indepen-
dently of their topological type. Let us argue by contradiction and suppose there exist two
disjoint discs A,B ∈ V(Dk(Σm)) such that A ( Bc but ϕ(A) ( ϕ(B). If A contains m

2

marked points, then B does not, hence B ( Ac and the inclusion ϕ(B) ⊆ ϕ(Ac) = ϕ(A)c

follows from the previous discussion about the good definition of ϕ(A). Then, up to
considering Ac instead of A, if need be, we can assume A to be h-punctured with h < m

2 .
Up to considering ϕ−1 instead of ϕ we can assume B to be the disc of minimum com-
plexity among {B,Bc}, and it to be l-punctured with l < m

2 . Indeed, the case l = m
2

follows once again from the discussion about the good definition of ϕ(B). Moreover,
the case h = l < m

2 has been proven in the previous paragraph, hence we can assume
that h < l. Since Bc contains m − l > l marked points there exists a l-punctured
disc C ( Bc such that the pairs {A,Ac} and {C,Cc} are not nested. Since {B,Bc}
and {C,Cc} are nested it follows from previous arguments that ϕ(C) ( ϕ(B)c, that is,
ϕ(B) ( ϕ(C)c. If we had ϕ(A) ( ϕ(B) then it would hold that ϕ(A) ( ϕ(C)c, hence
{ϕ(A), ϕ(Ac)} and {ϕ(C), ϕ(Cc)} would be nested and, since f−1 preserves nestedness,
it follows that {A,Ac} and {C,Cc} would be nested, which is a contradiction. It follows
that ϕ(A) ( ϕ(Bc), hence ϕ(A) is disjoint from ϕ(B).

This proves that ϕ is a well-defined graph automorphism of Dk(Σm) inducing the
map f .

We are now ready to prove bijectivity of the previously defined map

χ : Aut(Dk(Σm)) −→ Aut(GPCk(Σm)).

Proof of Proposition 2.7.7. We will start proving injectivity. Let ϕ ∈ Aut(Dk(Σm))

be a graph automorphism such that χ(ϕ) = Id. We claim that ϕ = IdDk(Σm). Let
{D,Dc} be a pair of complementary disc which are not m

2 -punctured, hence they have
two different topological types. Since m ≥ 2k + 1 such a pair of complementary discs
exists. It holds {D,Dc} = χ(ϕ)({D,Dc}) = {ϕ(D), ϕ(Dc)}). Since topological types
of discs are preserved by graph automorphisms, due to Proposition 2.2.3 it follows that
ϕ(D) = D and ϕ(Dc) = Dc. So, ϕ acts as the identity on every disc which is not
m
2 -punctured.

Let now {A,Ac} be a pair of complementary m
2 -punctured discs. Let us argue by

contradiction and assume ϕ(A) = Ac. In particular there exists a h-punctured disc
B ( A with k ≤ h < m

2 . From the argument in the previous paragraph it follows
ϕ(B) = B. Since inclusion between discs is preserved by graph automorphism due to
Proposition 2.2.1 it follows that B ⊆ Ac, which is absurd since B ⊆ A. We have reached
a contradiction and proven that ϕ = IdDk(Σm), hence the homomorpshism χ is injective.

Surjectivity was proven in Lemma 2.7.8.
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2.8 Rigidity of Graphs of Discs

Now that we have proven the core technical results of the chapter, we can proceed to
the proof of first the two main theorems. The core of the argument is straightforward:
starting with the graph Dk we will use surrounding pairs and triples, which we can
recognise thanks to Corollary 2.2.10, to reconstruct the graph Dk−1. We will use that
construction to prove that there exists an injection

Aut(Dk) ↪→ Aut(Dk−1)

between the automorphism groups. At that point, an inductive argument will let us prove
there exists an injection of the automorphism group into the group of automorphisms of
the graph D2. This is the reason why, in Corollary 2.2.10, the hypothesis k ≥ 3 sufficed
our needs. From such map we will construct an injection into the automorphism group
of the regular curve graph, allowing us to apply Ivanov’s Theorem to prove rigidity. This
approach closely mimics the ones used by Bowditch in [B2, §4] and by McLeay in [Mc1].

For the definition of surrounding pairs and triples we refer to Definition 2.1.1 and
Definition 2.1.2. We begin with the following natural definition.

Definition 2.8.1. Let k ≥ 3 and m ≥ 2k + 1. Let O be a (isotopy class of) (k − 1)-
punctured disc in Σm. We say that a surrounding pair {A,B} surrounds O if O ⊆ A∩B
up to isotopy. We say that a surrounding triple {A,B,C} surrounds O if O ⊆ A∩B ∩C
up to isotopy.

We introduce the following notation.

Definition 2.8.2. Let k ≥ 3 and m ≥ 2k+1. Let H(Σm) be the set of surrounding pairs
in Dk(Σm). . Let O be a (isotopy class of) (k − 1)-punctured disc in Σm. We denote by
HO(Σm) the set of surrounding pairs surrounding O.

We have already mentioned that we will use surrounding pairs in the graph Dk to
represent (k− 1)-punctured disc. However, different pairs can represent the same curve,
which happens for example when three curves form a surrounding triple. Hence we need
to mod out by an appropriate equivalence relation, which is defined in the following

Definition 2.8.3. Let k ≥ 3 and m ≥ 2k + 1. We denote by ∼ the minimal equiva-
lence relation on the set of surrounding pairs H(Σm) generated by {A,B} ∼ {B,C} if
{A,B,C} is a surrounding triple.

Since a surrounding pair only surrounds a unique isotopy class of (k − 1)-punctured
discs, there exists a natural bijection between the isotopy classes of (k − 1)-punctured
discs and the family of pairs in HO(Σm). In order to be able to use this identification
for our future purposes, we need to describe these sets in terms of the combinatorial
structure of the curve graphs only. This is not obvious a priori, and it is the content of
the following proposition.

Proposition 2.8.4. Let k ≥ 3 and k ≥ k. Let O be a (k− 1)-punctured disc in Σk+n+1.
The set HO(Σk+n+1) is an equivalence class of H(Σk+n+1) under the relation ∼.
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The previous result could be expressed in terms of connectedness of graphs, in a way
which would be analogous to [B2, Lemma 4.2] and [Mc1, Lemma 3.3]. In this case, a
nice and quick proof, although non constructive could follow from an application of [Pu,
Lemma 2.1] (that is, Lemma 2.3.6), a lemma by Andrew Putman. We will however not
follow such an approach, which requires knowledge about generating sets of the mapping
class group, and give a more elementary and constructive proof.

Before we prove the previous proposition we will follow [B2, Lemma 4.2] and introduce
a nice new description of the k-punctured discs containing a (k − 1)-punctured disc O,
which will really simplify our arguments. We start by giving the following definition.

Definition 2.8.5. Let O be a (k−1)-punctured disc in Σm. An O-arc will be an isotopy
class of arcs in Oc with one endpoint on ∂O and the other on a marked point, such
that its interior does not intersect either ∂O or any of the marked points. The isotopies
considered have to keep the first endpoint on ∂O at any time and the second endpoint
fixed, and at any time the interior of the arc cannot intersect either ∂O or any of the
marked points.

Given a parametrised arc a representing an O-arc let N (O∪a) be a sufficiently small
regular neighbourhood of O ∪ a, that is, such that it does not contain any marked point
not in O∪a. This is a k-punctured disc containing O. Moreover, if a′ is a parametrised arc
isotopic to a then the two neighbourhoodsN (O∪a)andN (O∪a′) are isotopic. This means
that, given an (isotopy class of) O-arc [a] its regular neighbourhood NO([a]) = N (O ∪ ā)

is well defined as an isotopy class of k-punctures discs. We have hence defined a map

NO : {O-arcs} −→ {k-punctured discs containing O}/isotopy.

The map we have just defined is actually a bijection, as shown in the following.

Lemma 2.8.6. Let k ≥ 3 and m ≥ 2k + 1. Let O be a (k − 1)-punctured disc in Σm.
The map NO, defined as above, is a bijection.

Proof. Let A be a k-punctured disc containing O. Up to isotopy, there exists a unique
arc in the pair of pants (to be precise a surface of type S2

1) A∩Oc with one endpoint on
∂O and the marked point as the other one. Clearly N (O ∪ a) is isotopic to the disc A,
hence the map NO is surjective.

Let now a 6= b be two distinct O-arcs such that NO(a) = NO(b), that is, such that, up
to isotopy, N (O∪a) = N (O∪b). In particular, up to isotopy, we have that b ⊂ N (O∪a),
hence it is an arc in the pair of pants N (O ∪ a)∩Oc from ∂O to the only marked point.
We have already noticed that such an arc is unique up to isotopy, hence a = b and the
map NO is injective, as well.

Given O-arcs a, b, c they can always be realised in a way such that they are in minimal
and general position and their endpoints on ∂O are pairwise distinct, hence from now on
we will always assume so, unless otherwise stated.

We are now interested in characterising surrounding pairs and triple in terms of O-
arcs, which is the content of the following.
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Lemma 2.8.7. Let k ≥ 3 and m ≥ 2k + 1. Let O be a (k − 1)-punctured disc in Σm.
Let a, b, c be O-arcs, let A = NO(a), B = NO(b) and C = NO(c). The pair {A,B} is a
surrounding pair surrounding O if and only if the arcs a and b are disjoint. Moreover,
the triple {A,B,C} is a surrounding triple surrounding O if and only if the arcs a, b, c
are pairwise disjoint.

Proof. If the three arcs a, b, c are disjoint the boundaries of the three discs A,B,C
only intersect twice. Moreover, both the triple intersection and any pairwise intersection
contains exactly the k − 1 marked points in O. It follows from Lemma 2.5.6 that any
pair of such arcs form a surrounding pair, and the three of them constitute a surrounding
triple.

Conversely, if {A,B} is a surrounding pair we can assume, up to isotopy, that we
have A ∩B = O. It follows that a (resp. b), which is the unique arc from the boundary
to the marked point in the once-punctured discs A ∩ Bc (resp. Ac ∩ B) is disjoint from
B (resp. A): in particular the arcs a and b are disjoint. The argument for surrounding
triples is completely analogous.

Now that we have introduced the definition of O-arcs, and hence simplified our no-
tation, we can move to the proof of Proposition 2.8.4.

Proof of Proposition 2.8.4. First, we claim that the set of pairs HO(Σk+n+1) is closed
under the relation ∼, so it is entirely contained in a unique equivalence class. Indeed, let
{A,B} ∈ HO(Σk+n+1) and {B,C} be a surrounding pair such that {A,B} ∼ {B,C}.
Up to isotopy, we have that

B ∩ C = A ∩B ∩ C = A ∩B = O,

that is, both pairs {A,B} and {B,C} surround O, where the first two equalities follows
from the fact that the triple {A,B,C} is a surrounding triple. It follows that we have
{B,C} ∈ HO(Σk+n+1). Since the equivalence ∼ is generated by the above relation
then it follows that for every pair {D,E} such that {A,B} ∼ {D,E} it then holds
{D,E} ∈ HO(Σk+n+1). Our claim is proven.

During the remain of the proof we will abuse notation by omitting the map NO and
directly identifying k-punctured discs containing O with O-arcs. In particular, due to
Lemma 2.8.7, an element in HO(Σk+n+1) will be a pair {a, b} of distinct disjoint O-arcs.

We now left to prove that, given two surrounding pairs {a, b} , {c, d} ∈ HO then
{a, b} ∼ {c, d}. We recall that we will always assume all of our O-arcs to be in minimal
and general position with each other and to have different endpoints on O. Moreover we
will write ω = ∂O.

First, we claim that if u, v are two O-arcs there exists an O-arc w which intersects
u and v at most once, and when it does the intersection point is the endpoint of the
O-arcs which is not on ω. The following constructions (in the case where u and v share
an endpoint) are pictured in Figure 2.22. First, let x0 be the endpoint of u on ω. For i
even, let xi+1 be the intersection point of u∩ v such that xi+1 belongs to the component
of u \ {xi} disjoint from ω, and the interior of the subarc of u between xi and xi+1 does
not intersect v. If such a point does not exists let xi+1 be equal to the second endpoint
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Figure 2.22: The red arc is u, while the green one is v.

of u and let N = i+ 1. Let uh be the subarc of u between x2h and x2h+1. For i even, if
xi is not the second endpoint of u, let xi+1 be the intersection point of u ∩ v such that
xi+1 belongs to the component of v \ {xi} disjoint from ω the interior of the subarc of
v between xi and xi+1 does not intersect u. If such a point does not exists let xi+1 be
equal to the second endpoint of v and let N = i+ 1. Let vh be the subarc of u between
x2h+1 and x2h+2. The arc

w =

N⋃
i=0

ui ∪ vi

can be isotoped to only intersect u ∪ v at most in its endpoint not on ω, so the claim is
proven.

Second, we claim that if u, v are two O-arcs intersecting only once, then there exists
an O-arc w which is disjoint from both. Indeed, the space Oc \ (u ∪ v) only has two
connected components, hence both component intersects ω, and the space contains at
least n ≥ 1 marked points, hence at least one component contains at least a marked
points. It follows that such component contains a nontrivial O-arc, which is disjoint
from both u and v. The claim is proven.

We claim that it is sufficient to prove that any two pairs in HO(Σk+n+1) of the form
{u,w}, {v, w} are ∼-equivalent. Indeed, let {a, b} , {c, d} ∈ HO. Let e be an O-arc
intersecting a and c at most once, which exists by the first claim. Let f (resp. g) be an
O-arc disjoint from both e and a (resp. c), which exists due to a previous claim. If our
last claim is true than the following holds:

{a, b} ∼ {a, f} ∼ {f, e} ∼ {e, g} ∼ {e, c} ∼ {c, d}
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· · ·
c

O

xa′ a′′

b′
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· · ·

Figure 2.23: One of the possible cases of the construction (note that the arcs a, b do not
share an endpoint in general).

hence {a, b} ∼ {c, d} due to the transitivity of ∼.
We now move to the proof of the last claim. Let {a, c} , {b, c} ∈ HO(Σk+n+1). We

will argue by induction on the intersection number i(a, b). If that number is zero the
triple {a, b, c} is a surrounding triple, so {a, c} ∼ {a, b} by definition.

If i(a, b) = 1 the subspace Oc \ (a ∪ b ∪ c) has exactly two connected components,
since c is disjoint from a ∪ b, hence both intersect ω. Moreover, such space contains at
least k + n + 1 − (k − 1) − 3 = n − 1 ≥ 1 marked points, hence it contains a nontrivial
O-arc d. The arc d is disjoint from all the three arcs a, b, c. It follows that

{a, c} ∼ {a, d} ∼ {d, b} ∼ {b, c}

hence {a, c} ∼ {b, c}.
We will now assume i(a, b) > 1: a picture of the following construction is provided in

Figure 2.23. Let x ∈ a ∩ b be the intersection point which is closest to ω, that is, such
that the interior of the arc of a between ω and x doe not intersect b. Since i(a, b) > 1 the
point x is not marked. Let a′ (resp. b′) be defined the arcs of a (resp. b) between ω and
x. Let a′′ = a \ a′ . We can now consider the arc ã = b′ ∪ a′′. This arcs is still disjoint
from c and such that i(ã, b) = i(a, b) − 1 and i(ã, a) = 1. We can now use the previous
case and the inductive hypothesis to prove that {a, c} ∼ {ã, c} ∼ {b, c}, and complete
the proof.

From Proposition 2.8.4 we can immediately deduce the following.

Corollary 2.8.8. Let k ≥ 3 and m ≥ 2k + 1. The map O 7→ HO(Σm), is a bijective
correspondence between the collection of sets HO(Σm), O varying among (k−1)-punctured
discs on Σm, and the quotient set H/∼.

Moreover, given a k-punctured disc A, we have O ⊆ A if and only if A is an element
of a surrounding pair in HO(Σm).

89



We have now proven that we can naturally describe (k−1)-punctured discs, alongside
their inclusion inside k-punctured discs, just in terms of objects deriving from the graph
Dk(Σm). Indeed, (k−1)-punctured discs correspond to equivalence classes of surrounding
pairs, which we can recognise in the the graph Dk(Σm), mod out by a relation defined
uniquely in terms of belonging to surrounding triples, which is another property that
can be detected in the graph of discs. In order to be able to reconstruct the entire
graph Dk−1(Σm), hence proceed with the induction, we still need to be able to recognise
disjointness between a (k − 1)-punctured disc and another disc. This is the content of
the following lemma.

Lemma 2.8.9. Let k ≥ 3 and n ≥ k. Let O,O′ be two (k−1)-punctured discs in Σk+n+1.
Let A be a vertex of Dk(Σk+n+1). Then the discs O and O′ are disjoint if and only if
there exist two k-punctured discs C,D with d(C,D) = 1 such that O ⊆ C and O′ ⊆ D.
The discs O and A are disjoint if and only if there exists a k-punctured discs B such that
d(A,B) = 1 and O ⊆ B.

Proof. We will first prove the first part on the lemma. Let O,O′ be two disjoint (k−1)-
punctured discs in Σk+n+1. The region X = Oc ∩O′c contains

k + n+ 1− 2(k − 2) = (n− k) + 3 ≥ 3

marked points. It follows that there exist an O-arc a and an O′-arc b in X which are
disjoint and such that a∩O′ = b∩O = ∅. These arcs represent two disjoint k-punctured
discs C,D such that O ⊆ C and O′ ⊆ D. The converse easily follows from the fact that
O ∩O′ ⊆ C ∩D = ∅.

For the second statement let A be a h-punctured disc disjoint from O. The region
Y = Ac ∩Oc contains

k + n+ 1− (k − 1)− h = n+ 2− h ≥ 1

marked points, since h ≤ n + 1. It follows that there exists an O-arc b in Y , and
B = NO(b) is a k-punctured disc containing O which is disjoint from A. The converse
immediately follows form the fact that O ∩A ⊆ B ∩A = ∅.

We are now ready to describe a graph, constructed by adding some new vertices and
edges to graph Dk(Σm), and we will later prove that this new graph is isomorphic to the
graph Dk−1(Σm).

Definition 2.8.10. Let k ≥ 3 and m ≥ 2k+1. We define the augmentation of the graph
of k-separating discs, which we will denote with D+

k (Σm) as the abstract graph defined
by

Vertices There is a vertex for each vertex of Dk(Σm) and for every element of H/∼ ×
{0, 1};

Edges Edges are defined as follows:

• Between two vertices of Dk if they are adjacent in that graph;
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• Between a disc A and an equivalence class HO(Σm)×{0} if there exists a disc
B adjacent to A in Dk(Σm) and appearing in a surrounding pair in HO(Σm);

• Between two equivalence classes HO(Σm) × {0} and HO′(Σm) × {0} if there
exist discs C andD appearing in a surrounding pair inHO(Σm) andHO′(Σm),
respectively, and adjacent in Dk(Σm);

• Between two equivalence classes HO(Σm)× {0} and HO(Σm)× {1}.

We recall that the equivalence classes on H/∼ represent (k − 1)-separating curves,
hence for each there are two discs in Dk−1(Σm) having it as boundary curve. In the
previous definition a vertices of type HO(Σm) × {0} represent the (k − 1)- punctured
discs bounded by HO(Σm), while the vertex HO(Σm)×{1} stands for its complementary
(m−k+1)-separating disc. The latter is adjacent to only one disc in Dk−1(Σm), it being
its complementary disc.

It is now possible to define a map

f : Dk−1(Σm) −→ D+
k (Σm)

defined by

f(D) =


D if D ∈ Dk(Σm)

HD × {0} if D is a (k − 1)-punctured disc

HD × {1} if D is a (m− k + 1)-punctured disc.

Moreover, there are two natural embeddings

Dk(Σm) ↪→ Dk−1(Σm)

and
Dk(Σm) ↪→ D+

k (Σm).

Both of these embeddings commute with the map f .
The following lemma holds.

Lemma 2.8.11. Let k ≥ 3 and m ≥ 2k + 1. The map

f : Dk−1(Σm) −→ D+
k (Σm)

is a Mod±(Σm)-equivariant graph isomorphism.

Proof. Corollary 2.8.8 implies that the map f induces a bijection on vertices. Moreover,
Lemma 2.8.9, alongside the definition of edges in D+

k (Σm), immediately implies that
the map is a graph homomorphism and that the edges are in bijective correspondance,
too.

From the previous result it is possible to derive an inductive proof of the connectedness
of the k-separating disc graph, that is, Theorem 2.3.1. We will discuss this line of proof,
alongside a detailed discussion about connectedness results, in Section 2.3.
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Corollary 2.2.10 ensures that automorphisms of Dk(Σm) induce automorphism of the
augmented graph, since they preserve surrounding pairs and triples, hence equivalence
classes of H. This induces the group homomorphism

ϕ : Aut(Dk(Σm)) −→ Aut(D+
k (Σm)).

This homomorphism is defined as follows. Given an automorphism g ∈ Aut(Dk(Σm))

and a vertex D ∈ D+
k (Σm) which corresponds to a disc, that is, a vertex of Dk(Σm),

we simply define ϕ(g)(D) = g(D). For one of the other vertices, say HO ∈ H/∼ we
define ϕ(g)(HO) = g · HO, where the action on a surrounding pair {A,B} is given by
g · {A,B} = {g(A), g(B)} . The homomorphism ϕ is Mod±(Σm)-equivariant.

We can now conjugate ϕ with f to define a second Mod±(Σm)-equivariant group
homomorphism

ψ : Aut(Dk(Σm)) −→ Aut(Dk−1(Σm))

given by
ψ(g) = f−1 ◦ ϕ(g) ◦ f.

We can now prove the key reduction step for our argument.

Lemma 2.8.12. Let k ≥ 3 and m ≥ 2k + 1. The group homomorphism

ϕ : Aut(Dk(Σm)) −→ Aut(Dk−1(Σm))

is injective.

Proof. Let g ∈ Aut(Dk(Σm)) be such that ψ(g) = Id ∈ Aut(Dk−1(Σm)). By conjugation
with f−1 this implies that ϕ(g) = Id ∈ Aut(D+

k (Σm)). In particular, for every vertex v
of D+

k (Σm) representing a h-punctured disc, with k ≤ h ≤ n+ 1, we have v = ϕ(g)(v) =

g(v). It follows that g = Id ∈ Aut(Dk(Σm)), and the homomorphism is injective.

A repeated application of the previous lemma proves the following.

Corollary 2.8.13. Let k ≥ 2 and m ≥ 2k + 1. There exists an injective Mod±(Σm)-
equivariant group homomorphism

Aut(Dk(Σm)) ↪→ Aut(D2(Σm)).

Thanks to the link with automorphisms of the curve graph introduced in the previous
section we are now ready to prove Theorem B.

Theorem B. Let k ≥ 2 and m ≥ 2k+ 1. Then the k-separating disc graph is rigid, that
is, the group homomorphism

ρ : Mod±(Σm) −→ Aut(Dk(Σm))

induced by the natural action is an isomorphism.

Proof. Thanks to Corollary 2.8.13 and Proposition 2.7.7, applied with k = 2, alongside
the observation that C2(Σm) = C(Σm), we have the following commutative diagram:
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Mod±(Σm) Mod±(Σm)

Aut(Dk(Σm)) Aut(C(Σm))

Id

∼=ρ

χ̄

where the two descending arrows are the group homomorphisms induced by the natural
actions of the extended mapping class group. The map χ̄ is injective. The right descend-
ing arrow is an isomorphism thanks to Ivanov’s Theorem (Theorem 1.3.2). In particular
it follows that the map χ̄ ◦ ρ is an isomorphism, in particular it is surjective. It follows
that the map χ̄ must also be surjective, hence it is an isomorphism. From this fact we
can deduce that the map ρ is an isomorphism as well.

Theorem B and Proposition 2.7.7 immediately imply Theorem A, that is, the rigidity
for the k-separating curve graphs.

As another immediate corollary of the proof of the previous theorem it follows that
the group homomorphisms of Lemma 2.8.12, and hence those of Corollary 2.8.13 are not
only injective maps, but actual isomorphisms.
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2.9 Rigidity of Graphs of Regions

In this section we will prove Theorem D. For the definition of graphs of regions, which
will be the main objects of this section, we refer to Definition 1.4.3.

Theorem C. Let m ≥ 5. Let Σm be the m-punctured sphere. Let A ⊆ R(Σm) be a
Mod±(Σm)-invariant collection of regions, and let GA(Σm) be the associated graph of
regions. Then the graph is rigid, i.e. the natural homomorphism

ρ : Mod±(Σm) −→ Aut(GA(Σm))

is an isomorphism, if and only if m ≥ 2νA + 1, and the graph has no vertices with holes
and no cork pairs.

The first part of the section will be devoted to prove two necessary conditions in
order for a graph of regions to be rigid: these conditions will be an upper bound on the
complexity (for whose definition we refer to Definition 1.4.4), and the absence of exchange
automorphisms (which we will introduce in Definition 2.9.2) or, equivalently, the absence
of regions with holes and cork pairs (see Definition 1.4.5 and Definition 1.4.6).

Based on the complexity, with respect to the number of marked points on the sphere,
and the presence of exchange automorphisms the following cases are possible, as we will
prove throughout the section:

m < 2νA The graph GA is discrete, hence it cannot be rigid;

m = 2νA The graph GA is either disconnected or it admits exchange automorphisms, so
it is never rigid;

m > 2νA The graph GA either admits exchange automorphisms or it is rigid.

We will later characterise the pair of vertices which give raise to exchange automor-
phisms in purely topological terms. Such vertices will turn out to be exactly regions with
holes and cork pairs. We will then use this characterisation to give a complete topological
description of all the graph of regions which are rigid, that is Theorem D, whose proof
occupies the latter part of the section.

We begin by proving a first bound on the complexity.

Proposition 2.9.1. Let GA(Σm) be a graph of regions with m < 2νA. Then the graph
GA(Σm) is discrete. In particular

Aut(GA(Σm)) � Mod±(Σm),

hence the graph is not rigid.

Proof. Let us argue by contradiction and assume that there exist two disjoint regions
P,Q ∈ A. The region P is contained in a complementary disc of Q, say D. It follows that
D contains at least ν(P ) marked points, hence the disc Dc contains at most m−νA < νA

marked points. It follows that Dc cannot contain any region in A, but Q ⊆ Dc, which is
a contradiction.
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It follows that GA(Σm) is a discrete graph, hence its automorphism group is isomor-
phic to a permutation group. As remarked in §1.1.7, such a group is either finite or
uncountable, so it is never isomorphic to any extended mapping class group.

We have just shown that a bound on the complexity of the graph is a necessary
condition for rigidity. Such a bound, however, differently from the cases of the graph
of discs or curves, will not be a sufficient condition by itself. Indeed, the existence of a
specific class of automorphisms, called exchange automorphisms, is another obstruction
to rigidity. The definition of those automorphisms, first described by John McCarthy
and Athanase Papadopulus in [MP], is the following.

Definition 2.9.2. Let Γ be a graph. An automorphism ϕ ∈ Aut(Γ) is said to be
an exchange automorphism if there exist two distinct vertices v, w ∈ V(Γ) such that
ϕ(v) = w, ϕ(w) = v and ϕ fixes every other vertex of Γ. In this case we say that ϕ
exchanges v with w.

Let us remark that two vertices v, w admit a graph automorphism exchanging them
if and only if, for every vertex z /∈ {v, w}, the vertex z is adjacent to v if and only
if it is adjacent to w. This property can be expressed in graph-theoretical terms as
link(v) \ {w} = link(w) \ {v}.

We will now prove that a graph of regions which admits exchange automorphisms
cannot be rigid. Although this fact is known in the literature, see for instance [BM2,
Theorem 1.8], this proof is direct and self-contained, avoiding the use of vertices with
holes or cork pairs at any time.

Proposition 2.9.3. Let GA(Σm) be a graph of regions with m ≥ 2νA. Let us suppose
that there exists an exchange automorphism ϕ ∈ Aut(GA(Σm)). Let η be the group
homomorphism

η : Mod±(Σm) −→ Aut(GA(Σm))

induced by the natural action. Then η is not surjective, and in particular GA(Σm) is not
rigid.

The hypothesis m ≥ 2νA may apparently seem restrictive but is actually not. Indeed,
if m < 2νA we already know that the graph of regions GA(Σm) is never rigid, thanks
to Proposition 2.9.1. As a side note we can observe that, since such a graph of regions
is discrete, its automorphism group contains every permutation of the vertices, so in
particular any two vertices can be exchanged.

We will now loosely present a proof of Proposition 2.9.3 which is quite short, but at
the cost of using an extremely powerful tool in Nielsen Realisation, that is, the fact that,
given a finite subgroup of the mapping class group there exists an isomorphic group of
homeomorphisms of the surface inducing it.

Proof of Proposition 2.9.3. If there existed two regions exchanged by an exchange
automorphism then, up to conjugating with appropriate mapping classes, there would
exists infinitely many distinct region which come in pairs each exchanged by an exchange
automorphism. In particular, all of these exchange automorphisms would commute with
each other, hence the group Aut(GA(Σm)) would contain an infinite torsion group iso-
morphic to

(
Z/2Z

)N. However, thanks to Nielsen Realisation (see [FM, Theorem 7.1] for
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a statement for closed surfaces, and [Wh] for a proof which works in the case of punctured
surfaces), there exists an upper bound on the order of finite subgroups of the extended
mapping class group Mod±(Σm) (indeed the proof of [FM, Theorem. 7.4] can be adapted
by choosing the opportune minimal area quotient orbifold), hence the automorphisms in
the group could not be all induced topologically.

As we have seen, Nielsen Realisation Theorem provides a quick proof of Proposi-
tion 2.9.3, but at the price of being a very complicated result itself. This is the reason
why we are interested in presenting a direct constructive proof of Proposition 2.9.3. This
proof will be much longer than the one we have just given, but much more elementary
and hopefully more transparent. We will argue by proving that a mapping class that fixes
every region apart from at most two must actually be the identity. This is the content
of the following proposition, from which Proposition 2.9.3 immediately follows.

Proposition 2.9.4. Let GA(Σm) be a graph of regions with m ≥ 2νA. Let P,Q ∈ A be
two regions. Let f ∈ Mod±(Σm) be an extended mapping class such that for every region
R ∈ A with R 6= P,Q we have f(R) = R. Then f = Id.

We remark that the previous result immediately imply that the natural group action
Mod±(Σm) y GA(Σm) is faithful.

The idea behind the proof of the previous proposition is to prove that an extended
mapping class which fixes every region in GA(Σm) apart from two must also fix every
curve in CνA(Σm) apart from two, and directly prove that this implies the mapping class
is the identity. Indeed, as the two next lemmas show, mapping classes which fix large
enough collections of curves must actually be the identity. We begin with the following,
which is Proposition 2.9.4 for Ck(Σm). Indeed, it states that there are no exchange
automorphisms in Ck(Σm).

Lemma 2.9.5. Let k ≥ 2 and m ≥ 2k + 1. Let α, β ⊂ Σm be two different k-separating
curves. Let f ∈ Mod±(Σm) be an extended mapping class such that for every curve
γ ∈ Ck(Σm) with γ 6= α, β we have f(γ) = γ. Then f = Id.

Proof of Lemma 2.9.5. Let us argue by contradiction and assume there exists a map-
ping class f as in the statement. Let D,Dc be the two complementary discs of α, and
assume that Dc contains k-marked points. Since every k-separating curve contained in
Dc is isotopic to α, and α 6= β, it follows that β ⊂ D. Since D has at least k + 1

marked points it follows that there exists a k-separating curve γ ⊂ D not disjoint from
β. Since f(γ) = γ and f preserves disjointness it is now impossible that f(α) = β, hence
f acts on Ck(Σm) as the identity. Since that graph is rigid (Theorem D) we deduce that
f = Id.

The key ingredient for the proof will actually be the following corollary, which is a
strengthened version of the previous lemma, stating that for a mapping class to be the
identity, it suffices that it fixes all k-separating curves but two, with no need to check
the other curves. We remind the reader that throughout the entire thesis we have always
been assuming m ≥ 5, so that hypothesis is not restrictive.
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Lemma 2.9.6. Let k ≥ 2, m ≥ 2k and m ≥ 5. Let α, β ⊂ Σm be two different k-
separating curves. Let f ∈ Mod±(Σm) be such that for every k-separating curve γ ⊂ Σm

with γ 6= α, β we have f(γ) = γ. Then f = Id.

Proof. We first deal with the case in which m ≥ 2k + 1. Let f be as in the statement.
Thanks to Lemma 2.9.5 if f also fixes every h-separating curve with h > k then f = Id.
It follows that, without loss of generality, we can assume there exists a h-separating curve
δ, with k < h ≤ m

2 , such that f(δ) 6= δ.
Let D be a complementary disc of δ with nonempty intersection with f(δ). Such a

disc contains at least h > k marked points. It follows that there exist infinitely many
k-separating curves in D with nontrivial intersection with f(δ) ∩D. In particular there
exist one such curve which is fixed by f , which is a contradiction, since such a curve is
disjoint from δ but not from f(δ).

We are now left to the case when m = 2k: since m ≥ 5 then k ≥ 3. We first
claim that f fixes every (k − 1)-separating curve. Indeed, let ω be a (k − 1)-separating
curve, and let O be its (k − 1)-punctured complementary disc. The disc Oc contains
l = m − (k − 1) ≥ k + 1 ≥ 3 marked points, hence there exist l disjoint O-arcs, which
correspond to k-separating curves γ1, . . . , γl, such that none of these curves is equal to
either α or β. We observe that there exists a unique (k − 1)-separating curve disjoint
from all these curves, and such a curve is ω. Since f(γi) = γi it follows that f(ω) must
be disjoint from all the curve γi, as well, hence f(ω) = ω. The claim is proven.

Let now α, β be the two different k-separating curves as in the statement. There exists
a (k − 1)-separating curve ω that is disjoint from α but not from β. Since ω = f(ω),
due to the previous claim, it follows that f(α) has to be disjoint from it, so it cannot be
equal to β. It follows that f(α) = α and f(β) = β, hence f acts on Ck−1(Σm) as the
identity: an application of Lemma 2.9.5 yields that f = Id. The proof is complete.

We can now prove Proposition 2.9.4.

Proof of Proposition 2.9.4. Let P,Q ∈ A. Let f ∈ Mod±(Σm) be a mapping class
such that for every region R ∈ A with R 6= P,Q we have f(R) = R.

Let R ∈ A be a region such that ν(R) = νA. If R is an annulus that then the two
curves in ∂R are νA-separating and isotopic to each other. If R is nonannular, since R is
contained in a ν(R)-punctured disc and we have that m ≥ 2ν(R), every boundary curve
of R is a h-separating curve with h ≤ ν(R) = νA. In particular there exists a unique
νA-separating curve in ∂R.

In either of the two cases there exists a unique isotopy class of νA-separating curves
in ∂R, say αR, and it follows that f(αR) is the unique νA-separating curve in ∂f(R).

Since every νA-separating curve is in the Mod±(Σm)-orbit of αR it follows that, for
every k-separating curve γ, there exists a region Z ∈ A such that γ = αZ . In particular
if Z 6= P,Q we have f(αZ) = αf(Z) = αZ . It follows that f fixes all but at most two
νA-separating curves, hence Lemma 2.9.6 proves that f = Id.

We have now proved that the presence of exchange automorphisms constitutes an
obstruction to the rigidity of graphs of regions. We will now prove the characterisation in
topological terms of the vertices giving rise to such automorphisms. As already mentioned
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these two types of vertices are regions with holes (see Definition 1.4.5) and cork pairs (as
in Definition 1.4.6).

We will start by proving that vertices with holes produce exchange automorphisms.
We recall that an annular region cannot be a vertex with a hole.

Lemma 2.9.7. Let GA(Σm) be a graph of regions. Let P be a vertex with a hole. Then
there exists an exchange automorphism ϕ ∈ Aut(GA(Σm)) exchanging P with another
vertex.

Proof. Let D be a complementary discs of P which does not contain any subsurface
representing a region in A. Let X = P ∪ D: this region is a surface of type Sbp with
p+ b ≥ 4. In fact the disc D contains at least two marked points, since its boundary has
to be essential, by definition of region. Since P is non annular then it must contain at
least one marked point, so p ≥ 3. If b = 0 that means that ∂P is connected, hence P is
a punctured disc. It that case then P must contain at least two marked points, so p ≥ 4

and our condition holds. It follows that Mod(X) 6= {Id}, hence there exists a mapping
class f ∈ Mod(X) < Mod±(Σm) such that Q = f(P ) 6= P . It follows that Q ∈ A, that
f(D) is a complementary disc of Q not containing any subsurface representing a region
in A, and such that X = Q ∪ f(D).

We claim that a region R ∈ A is disjoint from P if and only if it is disjoint from
Q. This will prove that there exists an exchange automorphism exchanging P and Q. If
R ∈ A is disjoint from P it follows that it is contained in a complementary disc of P ,
which cannot be D, since D does not admit subsurfaces in A. It follows that R ⊆ Xc,
hence it is disjoint from Q, too. The other implication is completely analogous, and the
lemma is proven.

We will now prove that the existence of cork pairs produce exchange automorphisms,
as well.

Lemma 2.9.8. Let GA(Σm) be a graph of regions. Let (P,D) be a cork pair. Then there
exists an exchange automorphism ϕ ∈ Aut(GA(Σm)) exchanging P with D.

Proof. We only have to prove that a region in A, which is neither P nor D, is disjoint
from P if and only if it disjoint from D. Let Q ∈ A be a region disjoint from P . Since
P is an annulus it follows that either Q ⊆ D or Q ⊆ Dc. In the latter case Q is disjoint
from D and we are done. In the former one, by definition of cork pair, we have that
either Q = D or Q = P .

Since there exists a representative on P which is contained inside D it follows imme-
diately that every region disjoint from D must be disjoint from Q, as well. The lemma
is proven.

Lemma 2.9.7 and Lemma 2.9.8, alongside Proposition 2.9.3 immediately imply the
following.

Corollary 2.9.9. Let GA(Σm) be a graph of regions admitting either a vertex with a hole
or a cork pair. Then group homomorphism

η : Mod±(Σm) −→ Aut(GA(Σm))
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induced by the natural action is not surjective. In particular the graph is not rigid.

Since we are interested in rigid graphs, from now on we will only consider graphs
without regions with holes and cork pairs. We start with a very simple lemma giving an
upper bound on the complexity of regions in such graphs.

Lemma 2.9.10. Let GA(Σm) be a graph of regions without any region with a hole. Let
R ∈ A. Then ν(R) ≤ m− νA.

Proof. Let us first suppose that R is not an annulus with no marked points. Since
R 6= Σm it admits a complementary disc D, hence R ⊆ Dc. Since there exists a region
in A represented in D, which would otherwise be a hole, it follows that D contains at
least νA marked points, hence the bound on ν(R).

If R is an annulus with no marked points, let D,D′ be its complementary discs. Let
h be the number of marked points in D and h′ the number of marked points in D′. It
follows that h+ h′ = m and hence

ν(R) = min {h, h′} = m−max {h, h′} ≤ m− ν(R) ≤ m− νA.

Proposition 2.9.1 proves that the bound m ≥ 2νA is a necessary condition for the
rigidity of a graph GA(Σm). This bound however is not sharp: indeed, as we will see,
even though there exist graphs GA(Σm) such that m = 2νA and no vertices with holes or
cork pairs, those graphs are unfortunately not rigid. It turns out that these graphs are
exactly the graph of k-separating discs Dk and the k-separating curve graph Ck. This is
the content of the following lemma.

Lemma 2.9.11. Let GA(Σm) be a graph of regions without vertices with holes and cork
pairs, and such that m = 2νA. Then either GA(Σm) = Dm

2
(Σm) or GA(Σm) = Cm

2
(Σm).

Instead of directly proving the previous lemma we will immediately deduce it from
the following result, which is a classification of the elements of minimal complexity, which
will be also a technical fact that will turn out to be crucial later. We remark that this
is the only result for which the absence of cork pairs is required, as all the other results
we will state will only require the absence of vertices with holes.

Lemma 2.9.12. Let GA(Σm) be a graph of regions without vertices with holes such that
m ≥ 2νA. Then any region R ∈ A such that ν(R) = νA is either a νA-punctured disc or
an annulus homotopic to a νA-separating curve.

Moreover, if GA(Σm) is also without any cork pair, then every two regions P,Q ∈ A
such that ν(P ) = ν(Q) = νA have the same topological type.

Proof. Let R ∈ A be such that ν(R) = νA. By definition of complexity, there exists
a νA-punctured disc D containing R. If R 6= D there would exists a h-punctured disc
D′ ⊆ D such that R∩D′ = ∅. If h = νA it follows that D′ would be isotopic to D, hence
R would be an annulus. Otherwise if h < νA no region in A could be represented in D′,
hence the region R would have a hole. This prove the first part of the lemma.

For the second statement, if there existed both an annulus P ∈ A representing a νA-
separating curve and a νA-punctured disc Q ∈ A, then, up to the action of the mapping
class group, we could assume Q to be one of the complementary discs of P . However,
this would mean that the pair (P,Q) would be a cork pair, providing a contradiction.
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Our last step in the study of all the graph of regions which are not rigid is to prove
that Dk(Σ2k) and Ck(Σ2k) belong to that class. We have already noticed this behaviour
in §1.3.2 and §1.4.1, but we will restate it formally in the following propositions. We
start with the case of the k-separating curve graph Ck(Σ2k).

Proposition 2.9.13. Let k ≥ 2. The graph Ck(Σ2k) is discrete. In particular

Aut(Ck(Σ2k)) � Mod±(Σ2k),

and the graph is not rigid.

We now deal with the case of the k-separating disc graph.

Proposition 2.9.14. Let k ≥ 2. The graph Dk(Σ2k) is a disjoint union of pairs of
vertices joined by an edge, each corresponding to a pair of complementary discs. In
particular

Aut(Dk(Σ2k)) � Mod±(Σ2k),

and the graph is not rigid.

We can now sum up all the necessary condition for the rigidity of graphs of region we
have discovered so far in the following statement, which is exactly the “only if” direction
of Theorem D.

Corollary 2.9.15. Let GA(Σm) be a graph of regions which is rigid. Then m ≥ 2νA+ 1

and the graph does not contain any region with holes or any cork pairs.

From now on we will prove the “if” direction of Theorem D. Such a proof will closely
resemble that of Theorem B. We will define appropriate objects in the graph GA(Σn),
which will be maximal perfect joins, and prove they are in bijective correspondence with
PCν(A)(Σm), the set of pairs of complementary discs in DνA(Σm), as in Definition 2.7.1.
This will let us define a Mod±(Σm)-equivariant group homomorphism

Aut(GA(Σm)) −→ Aut(Dk(Σm))

which we will prove to be injective. From that fact we can use the rigidity result for the
graph of discs to deduce rigidity of the starting graph of regions.

We will start with the following graph-theoretical definition. See [Hara, p.21] and
[Mc1, §4].

Definition 2.9.16. Let Γ be a graph. Let {Vi}n1 be a collection of pairwise disjoint
subgraphs of Γ such that, for i 6= j, every vertex of Vi is adjacent to every vertex of Vj .
We define the join V = V1 ∗ · · · ∗ Vn as the full subgraph of Γ induced by

⋃n
1 Vi. The

join is said to be nontrivial if at least two of the subgraphs Vi are nonempty. If one of
the Vi is non empty and is not a nontrivial join itself, then it is said to be a component
of the join.

Not having been able to find adequate references in the literature, we will now state
and prove a useful technical lemma concerning the behaviour of joins and components
under the action of graph automorphisms.
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Lemma 2.9.17. Let Γ be a graph. Let f : Γ −→ Γ be a graph automorphism. Let
V = V1 ∗ · · · ∗ Vh and W = W1 ∗ · · · ∗ Wl be joins such that f(V ) ⊆ W . Then for
every i = 1, . . . , h, if Vi is a component of V , there exists some j such that f(Vi) ⊆ Wj.
Moreover, if it also holds that f(V ) = W then f(Vi) is a component of W .

Proof. We argue by contradiction. Since f is invertible we have

Vi = f−1

 l⋃
j=1

(f(Vi) ∩Wj)

 = (Vi ∩ f−1(W1)) ∗ · · · ∗ (Vi ∩ f−1(Wl)).

It follows that if f(Vi) had nonempty intersection with two different Wj then Vi would
be a nontrivial join, hence not a component.

For the second part of the statement we notice that, for every i, i′ ∈ {1, . . . , h} and
j, j′ ∈ {1, . . . , l} such that (i, j) 6= (i′, j′) two vertices w ∈ f(Vi)∩Wj and w′ ∈ f(Vi′)∩Wj′

are adjacent. It follows that we can write W as a join as follows:

W = ∗i,j(f(Vi) ∩Wj).

If Vi is a component then there exists a unique j such that f(Vi)∩Wj is nonempty, hence
f(Vi) ∩Wj = f(Vi). Since Vi is a nontrivial join it follows that f(Vi) is also nontrivial,
hence a component of W .

From the previous lemma, uniqueness of components of a join, which is the content
of the following, follows immediately.

Corollary 2.9.18. Let Γ be a graph. Let V1, . . . , Vj and W1, . . . ,Wl be nonempty sub-
graphs such that V1∗· · ·∗Vj = W1∗· · ·∗Wl. Suppose that all the Vi andWi are components
of the join. Then j = l and, up to a permutation of the indices, we have Vi = Wi for
every i = 1, . . . , j.

We are now ready to define the class of joins we will use as a bridge between the
graph of regions and the graph of discs.

Definition 2.9.19. Let GA(Σm) be a graph of regions. A subgraph V ⊆ GA(Σm) is said
to be a perfect join if it is a join with either two or three components, and is such that
at least one but no more than two components are infinite, and at most one component
is composed of a single vertex.

A perfect join is said to be maximal if it is not properly contained in any other perfect
join.

We will denote the set of maximal perfect joins of GA(Σm) withMPJA(Σm).

Since the previous definition is entirely combinatorial, maximal perfect joins are pre-
served under graph automorphism of GA(Σm), that is Aut(GA(Σm)) acts onMPJA(Σm).

We recall that PCk(Σm) is the set of pair of complementary discs of Dk(Σm), as
defined in Definition 2.7.1.

We give the following definitions.

Definition 2.9.20. Let {D,Dc} ∈ PCν(A)(Σm) be a pair of complementary disc. We
define AD (resp. ADc) as the subgraph of GA(Σm) induced by regions R ∈ A such that
R ⊆ D (resp. R ⊆ Dc), and which are not homotopic to ∂D.

101



We define A∂D to be the set of regions R ∈ A homotopic to ∂D.

The set A∂D is either empty or it only contains an annular region which we will
denote, with a slight abuse of notation, as ∂D. Moreover, we notice that if D (resp. Dc)
contains more than νA marked points then the set AD (resp. ADc) is infinite, since it
contains infinitely many elements of the Mod±(Σm)-orbit of any region of complexity
νA. Lastly, if D contains exactly νA marked points and the graph GA(Σm) does not have
vertices with holes or corks, then it follows from Lemma 2.9.12 that either AD = {D}
and A∂D = ∅ or AD = ∅ and A∂D = {∂D}.

Given {D,Dc} ∈ PCν(A)(Σm) we can define λ({D,Dc}) to be the complete subgraph
of GA(Σm) induced by vertices contained in either D or D′ or, equivalently, disjoint from
∂D. Equivalently, we have that λ({D,Dc}) = AD∗ADc ∗A∂D. The following proposition
proves that the subgraph we have just defined is a maximal perfect join.

Lemma 2.9.21. Let GA(Σm) be a graph of regions without vertices with holes, and such
that m ≥ 2νA + 1. Then the subgraph λ({D,Dc}) ⊆ GA(Σm) is a maximal perfect join.

Proof. Without loss of generality let us assume that D is a h-punctured disc, with
νA ≤ h ≤ m

2 . Since λ({D,Dc}) can be written as a join as AD ∗ADc ∗A∂D we claim that
the three subgraphs AD,ADc ,A∂D are either empty or components of the join satisfying
the conditions of Definition 2.9.19. In particular we have noticed that ADc is always
infinite, since it contains m − h ≥ m

2 > νA marked points, while A∂D is never infinite.
Moreover, if h > νA the subgraph AD is infinite as well, whereas in the case when h = νA

exactly one subgraph between AD and A∂D is nonempty, and it only contains a single
vertex.

To prove that AD ∗ ADc ∗ A∂D is a perfect join we are left to prove that the three
subgraphs which are not empty are not nontrivial joins themselves, hence they are com-
ponents of the join. Let P,Q ∈ ADc be two distinct regions: we want to show that
there exists a region R ∈ ADc which intersects both, thus proving that ADc cannot be a
nontrivial join. Indeed, if ADc = B ∗ B′, with P ∈ B and Q ∈ B′ then every vertex in
AC would always be adjacent to at least one of P,Q. Lemma 2.9.12 implies that either
νA-punctured discs or annuli representing νA-separating curves are always contained in
A. There always exists one of either such discs or curves intersecting both P and Q,
and R can be chosen to be such a region. If h > νA, that is AD is not a singleton, the
same argument applies there, otherwise AD, as well as A∂D, is either empty or just a
singleton, so in the latter case it cannot be a nontrivial join. Our claim is proven and we
can conclude that λ({D,Dc}) is a perfect join.

We are now left to prove that the perfect join λ({D,Dc}) = AD ∗ ADc ∗ A∂D is
maximal. Let V = V1∗V2∗V3 be a perfect join strictly containing V , with Vi components.
Thanks to Lemma 2.9.17 we know that there exist indices i, j, h ∈ {1, 2, 3} such that
ADc ⊆ Vi, AD ⊆ Vj and A∂D ⊆ Vh. Without loss of generality, we can assume ADc ⊆ V1.
In particular every vertex of V2 or V3 must be disjoint from every region in Dc which is
represented in A, and in particular from every νA-punctured disc in Dc, hence it must
be contained in D. It follows that V2 ∗ V3 ⊆ AD ∗ A∂D.

Since we assumed that λ({D,Dc}) ( V it follows that there exists a region P ∈ V1

such that P /∈ ADc . It follows that such a region P must intersect D nontrivially. This
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means that there exists a region Q ∈ A such that Q ⊆ D, hence such that we have
Q ∈ AD ∗A∂D and which, which is not disjoint from P . From this it follows that Q ∈ V1.
Due to Lemma 2.9.17 it now follows that either AD ⊆ V1 or A∂D ⊆ V1.

In the former case it follows that V2 ∗ V3 ⊆ A∂D hence, without loss of generality,
we can assume that V2 = A∂D and V3 = ∅. If V2 were empty then V would not be
perfect join, as it would only have one component, so V2 = {∂D}. It follows that every
region in V1 must be disjoint from ∂D,hence contained in either D or Dc. It follows that
V1 ⊆ AD ∗ ADc , and hence V ⊆ λ({D,Dc}), which is a contradiction.

On the other hand, if A∂D ⊆ V1 then V2 ∗ V3 ⊆ AD. From Lemma 2.9.17 it follows,
without loss of generality, that AD ⊆ V2 and V3 = ∅. If V2 were empty then V would
only one component, hence it would not be a perfect join. It follows that V2 = AD 6= ∅,
hence every region in V1 must be disjoint from every region of A represented in D, hence
it must be contained in the disc Dc. It follows that V1 ⊆ ADc ∪A∂D, hence we have that
V ⊆ λ({D,Dc}), contradicting our assumptions on V . This concludes the proof of the
maximality of λ({D,Dc}).

From the previous lemma we can deduce that the following map

λ : PCνA(Σm) −→MPJA(Σm),

as defined before Lemma 2.9.21, is defined. The key property of this map λ is to be a
bijective correspondence, that it the content of the following.

Proposition 2.9.22. Let GA(Σm) be a graph of regions with no vertices with holes, and
such that m ≥ 2νA + 1. Then, the map

λ : PCνA(Σm) −→MPJA(Σm),

is bijective.

The proof of the previous proposition is quite long and convoluted, so we will break
it into various statement. The hardest part will be to prove surjectivity of the map λ,
which we will now start dealing with.

Let V = V1 ∗ V2 ∗ V3 be a maximal perfect join, as in Definition 2.9.19, where the Vi
are either empty sets or components of the join. From this join V we want to construct
a punctured disc D ∈ DνA(Σm) such that V1 ∗ V2 ∗ V3 = λ({D,Dc}). Defining such a
disc D is the content of the construction to follow.

Without loss of generality we can assume the component V1 to be infinite and V2 to
be nonempty. Let

X =
⋃
R∈V1

R ⊆ Σm.

First, we claim this is a connected subspace. If not, let C be a connected component of
X. Then we define

V C1 = {R ∈ V1 such that R ⊆ C}

V C
c

1 = {R ∈ V1 such that R ∩ C = ∅} .
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Obviously V C1 is nonempty, and if X has more than one connected component then V C
c

1

is nonempty, as well. Since V1 = V1 ∗ V C
c

1 , it follows that if X is not connected then V1

is a nontrivial join, which is a contradiction. We have proven that X is connected. In
particular each component of Xc is a disc, possibly with marked points.

Let X be the set of connected components of Xc containing strictly fewer than νA

marked points. Let
D = X ∪

⋃
O∈X

O :

this is a connected subsurface of Σm. A region in A is disjoint from every region in V1 if
and only if it is disjoint from D. We will show that D is a punctured disc.

We observe that D 6= Σm. Indeed, if it were, there would exist no region in A disjoint
from every region in V1, hence the join V would only have a single component, thus
contradicting the fact that it is perfect.

We remark that every component of Dc is a disc with at least νA marked points,
since D is the union of X with the complementary discs containing strictly less than νA
marked points.

We observe that, for each of the two component V2, V3, all the regions contained in
that component of the join must be contained in the same connected component of Dc.
Indeed, without loss of generality, let Z be a connected component of Dc containing a
region in V2. Similarly to what we have done before we can define the following:

V Z2 = {R ∈ V2 such that R ⊆ Z}

V Z
c

2 = {R ∈ V2 such that R ∩ Z = ∅} .

Every region in V2 is disjoint from every region in V1, and hence contained in one of the
complementary components of D. It then holds that V2 = V Z2 ∗ V Z

c

2 . Since V2 is not
a nontrivial join, it follows that V Z

c

2 = ∅, that is every region in V2 is contained in the
same component of Dc.

We can now prove that D is the punctured disc we were looking for.

Lemma 2.9.23. Under the previous hypotheses the subsurface D ⊆ Σm is a punctured
disc.

Proof. We will prove that the subspace Dc is connected, which is equivalent to D being
a punctured disc. Indeed, let us argue by contradiction and assume there exist two
distinct connected components of Dc, say Z,W , such that every region in the component
V2, which we assumed to be nonempty, is contained in Z. There are two possible cases:
either every region in V3 is also contained in Z or, without loss of generality, every region
in V3 is contained in W .

We observe that there exists at least one marked point which is not contained in either
Z or W . If not, components Z and W would be a h-punctured and a l-punctured disc,
respectively, with h + l = m, hence complementary discs. It would follow that the only
region disjoint from both Z and W would be the annular region homotopic to ∂Z = ∂W .
It would follow that the component V1 can contain at most one region, contradicting
the assumption that it is infinite. It follows that Zc contains at least νA + 1 marked
points. It follows that there exists a region Q ∈ A such that Q ⊆ D ∪W and it has
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nontrivial intersection with both D, W . Moreover, when the component V3 is nonempty
and every region in it is contained in W , we can assume the region Q to nontrivially
intersect at least one region in V3. In particular Q /∈ V . Indeed, in Zc there exists either
a νA-punctured discs, or an annulus homotopic to a νA-separating curve satisfying the
previous properties, and one of those types of regions is always contained in A, thanks
to Lemma 2.9.12.

We first deal with the case where V3 is either empty or every region in it is also
contained in Z. It follows that V ′ = (V1 ∪ {Q}) ∗ V2 ∗ V3 is a nontrivial join strictly
containing V . We claim that V1 ∪{Q} is not a nontrivial join, hence V ′ is a perfect join.
Let V1 ∪ {Q} = E ∗ F . Since V1 = (V1 ∩E) ∗ (V1 ∩ F ) and V1 is not a nontrivial join, as
it is a component of V , it follows that, without loss of generality, we have F ∩ V1 = ∅,
hence V1 ⊆ E. It follows that either F ∩ {Q} = ∅, hence V1 ∪ {Q} is a trivial join, or
F = {Q}. However, the latter case is impossible, since Q is not disjoint from D, so there
exists at least one vertex in V1 which is not adjacent to it. We have proven that V ′ is a
perfect join strictly containing V , which is a contradiction to the maximality of V . This
concludes the proof in this case.

We are now left with the case where V3 is nonempty, and every region in it is contained
in W . We claim that the graph induced by V1 ∪ V3 ∪ {Q} is not a nontrivial join. Let
V1 ∪ V3 ∪ {Q} = E ∗F . Since V1 = (E ∩ V1) ∗ (F ∩ V1) and V1 is not a nontrivial join, as
it is a component of V , it follows that, without loss of generality, we have F ∩ V1 = ∅,
hence V1 ⊆ E. From an analogous argument we deduce that either V3 ⊆ E or V3 ⊆ F .
In the former case, either F = ∅, hence the join E ∗ F is trivial, or F = {Q}, which
is also impossible, since Q was not disjoint from D, hence from at least one region in
V1. On the other hand, suppose V3 ⊆ F : then both E and F each contain a region
which is not disjoint from Q, hence Q cannot belong to either E or F , providing a
contradiction. We have proven that V1 ∪ V3 ∪ {Q} is not a nontrivial join hence the join
V ′′ = (V1 ∪ V3 ∪ {Q}) ∗ V2 is a perfect join strictly containing V , which contradicts the
maximality of V . This concludes the proof.

Since the disc D contains at least one region in A, then it must contain at least νA
marked points. Similarly, we have observed that its complementary disc must contain at
least νA marked points. It follows that {D,Dc} ∈ PCνA(Σm). We are left to show that
{D,Dc} is the preimage of the maximal perfect join V = V1 ∗ V2 ∗ V3 under λ, which is
the content of the following.

Lemma 2.9.24. Under the previous hypotheses we have λ({D,Dc}) = V .

Proof. The proof will be split into two cases: first, when there exists another infinite
component of the join V other than V1; second, when both V2 and V3 are finite (one
possibly empty).

We first consider the case when the join V admits another infinite component which we
can assume to be V2, without loss of generality. From an argument completely analogous
to the one employed before, it follows that there exists a punctured disc D′ such that a
region is disjoint from every region in V2 if and only if it disjoint from D′. In particular
the disc D′ is disjoint from every region in V1, hence it is disjoint from D.

We will now prove that D′ = Dc. We argue by contradiction and suppose we have
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D′ ( Dc. There exists either a νA-punctured discs, or an annulus homotopic to a νA-
separating curve R with the following properties: we have R ⊆ Dc, but R is not contained
in D′; the region R has nontrivial intersection with D′, hence with at least one region in
V2; moreover, when V3 is nonempty, then R has nontrivial intersection with at least one
region in V3; lastly, R /∈ V3, which is possible since V3 is finite. Thanks to Lemma 2.9.12

we have R ∈ A. We claim that V2 ∪ V3 ∪ {R} is not a nontrivial join. In order to prove
the claim let V2 ∪ V3 ∪ {R} = E ∗ F . Since V2 = (E ∩ V2) ∗ (F ∩ V2) and V2 is not a
nontrivial join, as it is a component of V , it follows that, without loss of generality we
can assume F ∩V2 = ∅, hence V2 ⊆ E. Similarly, either V3 ⊆ E or V3 ⊆ F . In the former
case, either F = ∅, hence the join E ∗ F is trivial, or it must hold F = {R}, which is
impossible, since R is not disjoint from every region in V2. Suppose that V3 ⊆ F , and
V3 6= ∅: there exists a region in both V2 and V3 which is not disjoint from R, hence the
region R cannot belong to either E or F . If V3 = ∅ then F = {R}, which is once again
impossible. We have proven our claim, and V2 ∪ V3 ∪ {R} is not a nontrivial join. It
follows that the join V1 ∗ (V2 ∪V3 ∪{R}) is perfect and strictly contains V , contradicting
maximality of V . We have proven that D′ = Dc.

Since every region in V3 must be disjoint from both D and D′ = Dc, it follows that V3

is either empty of composed of the single vertex given by the annular region homotopic
to ∂D. It follows that V ⊆ AD ∗ ADc ∗ A∂D = λ({D,Dc}) and since V is maximal, and
λ({D,Dc}) is a perfect join thanks to Lemma 2.9.21, equality holds.

We are now left with the case when both V2 and V3 are finite. Without loss of
generality we can assume V2 6= ∅. We will prove that this implies that Dc contains
exactly νA marked points. Indeed, we have already noticed that Dc contains at least νA
marked points. If it contained more then there would exist infinitely many regions in A
represented in Dc. In particular there would exists either a νA-punctured discs, or an
annulus homotopic to a νA-separating curve R, not contained in either V2 or V3 and with
nontrivial intersection with at least one region in V2. Moreover, if V3 is nonempty, we
can also assume R to have nontrivial intersection with at least one region in V3. Thanks
to Lemma 2.9.12 we have R ∈ A. We now claim that V2 ∪ V3 ∪ {R} is not a nontrivial
join. Indeed, let V2 ∪ V3 ∪ {R} = E ∗ F . Since V2 = (E ∩ V2) ∗ (F ∩ V2) and V2 is not
a nontrivial join, as it is a component of V , it follows that, without loss of generality
we can assume F ∩ V2 = ∅, hence V2 ⊆ E. Similarly, either V3 ⊆ E or V3 ⊆ F . In the
former case, either F = ∅, hence the join E ∗F is trivial, or it must hold F = {R}, which
is impossible, since R is not disjoint from every region in V2. Suppose that V3 ⊆ F ,
and V3 6= ∅: there exists a region in both V2 and V3 which is not disjoint from R, hence
the region R cannot belong to either E or F . If V3 = ∅ then F = {R}, which is once
again impossible. We have proven our claim, that is V2 ∪ V3 ∪ {R} is not a nontrivial
join. It follows that the join V1 ∗ (V2 ∪ V3 ∪ {R}) is a perfect join strictly containing V ,
contradicting maximality of V : this proves that Dc contains exactly νA marked points.

Since Dc contains exactly νA marked points then, thanks to Lemma 2.9.12, there
exists a unique region represented in Dc. This region is the only vertex of V2, which
equals either ADc or A∂D, and we have V3 = ∅. It follows that V ⊆ AD ∗ ADc ∗
A∂D = λ({D,Dc}) and, since V is maximal, and λ({D,Dc}) is a perfect join thanks to
Lemma 2.9.21, equality holds.
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We are now ready to conclude the proof that the map λ is a bijection.

Proof of Proposition 2.9.22. Surjectivity of λ follows from the previous discussion, in
particular Lemma 2.9.24.

We will now prove injectivity. Let {B,Bc} , {C,Cc} ∈ PCνA(Σm) be such that
λ({B,Bc}) = λ({C,Cc}). Since the two joins are equal Lemma 2.9.17 implies that the
component must be equal in pairs. Without loss of generality we can assume AB = AC ,
and that this component is infinite. It follows that every region in ABc ∗ A∂B is disjoint
from every region of A represented in C, hence must be contained in Cc. From this we
can deduce that actually Bc ⊆ Cc, and an analogous argument proves that Cc ⊆ Bc,
hence {B,Bc} = {C,Cc}. Injectivity is proven.

Let now g ∈ Aut(GA(Σm)). We can define the map

Φ(g) : PCνA(Σm) −→ PCνA(Σm)

given by conjugation by λ, that is

Φ(g) = λ−1 ◦ g ◦ λ.

Our goal is to use this map to induce an automorphism of GPCνA(Σm). In order to
achieve such a result, and thanks to Lemma 2.7.8, we need to express nesting between
pairs of complementary discs (Definition 2.7.3) in terms of a combinatorial property of
maximal perfect joins. To do so we start by giving the following definition, which is a
slight variation to the one presented in [Mc1, §4].

Definition 2.9.25. We say that two joins V,W ∈ MPJA(Σm) are compatible if they
can be written as V = V1 ∗ V2 and W = W1 ∗W2, where V1 and W1 are components of
V and W , respectively, and V1 (W1.

We remark that the Corollary 2.9.18 proves that if two joins V,W are compatible
then V 6= W .

The following result relates the notion of nesting for pairs of complementary discs,
that is adjacency in the graph GPCνA(Σm), and compatibility between maximal perfect
joins.

Lemma 2.9.26. Let {B,Bc} , {C,Cc} ∈ PCνA(Σm). Then {B,Bc} and {C,Cc} are
nested if and only λ({B,Bc}) and λ({C,Cc}) are compatible.

Proof. Let {B,Bc} , {C,Cc} ∈ PCνA(Σm) be nested, that is, without loss of general-
ity B ( C. In particular nestedness implies that {B,Bc} 6= {C,Cc}, hence we have
λ({B,Bc}) 6= λ({C,Cc}), thanks to injectivity of λ. Following the notation introduced
in Definition 2.9.20, the join λ({B,Bc}) can be written as either AB ∗V or A∂B ∗V , and
λ({C,Cc}) = AC ∗W . Since B ( C it follows that AB ( AC and A∂B ( AC , and at
least one of the left hand sides is nonempty, hence the two joins are compatible.

For the converse, let us assume that λ({B,Bc}) = V ∗ V ′ and λ({C,Cc}) = W ∗W ′

are distinct maximal joins with V,W components and V (W .
If V = AB then either AB ( AC or AB ( ACc , where equality cannot happen as

it would imply λ({B,Bc}) = λ({C,Cc}). Indeed, if it held AB ( A∂C then AB would
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have to be empty, as it would be strictly contained in A∂C , which contains at most one
element. It follows that every region contained in B is contained in C, hence B ( C.
Strict inclusion follows from the fact that there exists at least a region belonging to AC
but not to AB , hence contained in C but not in B. It follows that {B,Bc} and {C,Cc}
are nested. If V = ABc the argument is completely analogous.

We are now left to the case when V = A∂B . The inclusion A∂B ( A∂C is impossible,
as either sets contain at most one vertex, so in order to have a proper inclusion the set
A∂B would have to be empty. It follows that, up to exchanging C with Cc, it must hold
that A∂B ( AC . In particular ∂B ⊆ C hence either B ⊆ C or Bc ⊆ C. Equality is
impossible since it would imply {B,Bc} = {C,Cc} and hence λ({B,Bc}) 6= λ({C,Cc}),
which is a contradiction to the compatibility of the two joins. It follows that the two
pairs are nested.

Lemma 2.7.8 and Lemma 2.9.26 prove that there exists a group homomorphism

χ̃ : Aut(GA(Σm)) −→ Aut(DνA(Σm))

which is defined, for g ∈ Aut(GA(Σm)) and for {D,Dc} ∈ PCk(Σm), as

χ̃(g) · {D,Dc} = λ−1(g · λ({D,Dc})).

The key property of this map we will use to prove rigidity of the graphs of regions is
injectivity, which is the content of the following.

Proposition 2.9.27. Let GA(Σm) be a graph of regions with no vertices with holes and
cork pairs such that m ≥ 2νA + 1. The map

χ̃ : Aut(GA(Σm)) −→ Aut(DνA(Σm))

is a Mod±(Σm)-equivariant injective group homomorphism.

In order to prove the previous proposition we will make use of the fact that a graph
homomorphism which fixes all the minimal complexity regions must be the identity. This
result will be a key component in our proof of injectivity (which differs from the one in
[Mc1, Proof of Theorem 3]), since the joins corresponding to pairs {D,Dc} with D a
νA-punctured discs are particularly nice, and indeed characterised as follows.

Lemma 2.9.28. Let GA(Σm) be a graph of regions with no vertices with holes and cork
pairs. Given a νA-punctured disc D, the maximal perfect join λ({D,Dc}) corresponds
to the join of an infinite set (ADc) with a subgraph made of a single vertex, which is the
nonempty set between AD = {D} and A∂D = {∂D}.

We will call a join as in the previous lemma a cone.
The proof of the previous result follows directly from the definition of the map

λ (Definition 2.9.20) and the classification of minimal complexity surfaces given by
Lemma 2.9.12, which is the reason why the absence of cork pairs is required in both
the previous and the following lemma.

108



Lemma 2.9.29. Let GA(Σm) be a graph of regions with no vertices with holes and no
cork pairs such that m ≥ 2νA + 1. Let g ∈ Aut(GA(Σm)) such that for every region
R ∈ A with ν(R) = νA we have g(R) = R. Then g = Id.

Proof. Let R ∈ A be a region such that ν(R) > νA. Let D be a complementary disc of
R: we claim that D contains at least νA marked points. If not, no region in A could be
represented in D, and the only possibility for R not to have a hole would be if it were
an annular surface. It that case, up to isotopy, we would have R ⊆ D, hence ν(R) ≤ νA,
which is a contradiction. We claim that, up to isotopy, the region g(R) is disjoint from
D. Indeed, if g(R) had nontrivial intersection with D, which contains at least νA marked
points, there would exists a minimal complexity region P ∈ A such that P ⊆ D but
P ∩ g(R) 6= ∅. Since P and R are disjoint, hence joined by an edge in GA(Σm), the
regions g(P ) = P and g(R) must be disjoint, as well: this is a contradiction, and the
claim is proven.

We have just shown that, up to isotopy, we have g(R) ⊆ R. If ν(g(R)) > νA we
can apply the previous argument once again to the automorphism g−1, obtaining that
R = g−1(g(R)) ⊆ g(R), hence g(R) = R. If ν(g(R)) = νA then g−1 fixes g(R), hence we
have that R = g−1(g(R)) = g(R). This proves that g(R) = R for every region R ∈ A,
hence g = IdGA(Σm).

We can now prove the injectivity of the homomorphism χ̃.

Proof of Proposition 2.9.27. Let g ∈ Aut(GA(Σm)) such that χ̃(g) = IdGPCA(Σm). We
claim that g = IdGA . Thanks to Lemma 2.9.29 we only have to prove that g fixes every
minimal complexity vertex.

Let R ∈ A such that ν(R) = νA. Thanks to Lemma 2.9.12 R is either a νA-punctured
discs or an annular surface representing a νA-separating curve. In the first case letD = R,
in the second one let D ⊆ Σm be the only νA-punctured disc containing R. As we have
noticed the join λ({D,Dc}) has two component: one is infinite and the other is composed
of the single vertex R. Since by definition we have that

{D,Dc} = χ̃(g) · {D,Dc} = λ−1(g · λ({D,Dc}))

it follows that λ({D,Dc}) = g · λ({D,Dc}). Thanks to Lemma 2.9.17 the component of
λ({D,Dc}) composed of the single vertex R is mapped onto a component of λ({D,Dc}):
since it cannot be exchanged with the infinite component, it has to be fixed. From this
it follows that g(R) = R and the proposition is proven.

We are now ready to state Theorem D once again and prove it.

Theorem D. Let νA ⊆ R(Σm) and let GA(Σm) be the associated graph of regions. Then
the graph is rigid, i.e. the natural homomorphism

ρ : Mod±(Σm) −→ Aut(GA(Σm))

is an isomorphism, if and only m ≥ 2νA + 1 and the graph has no vertices holes and no
cork pairs.
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Proof. Corollary 2.9.15 proves the “only if” direction of the statement.
For the “if” direction Proposition 2.9.27 provides us with the following commutative

diagram

Mod±(Σm) Mod±(Σm)

Aut(GA(Σm)) Aut(DνA(Σm))

Id

ρη

χ̃

where the vertical maps are the homomorphism induced by the natural actions. Since
m ≥ 2νA + 1 Theorem B proves that ρ is an isomorphism, hence the composition χ̃ ◦ η
is an isomorphism as well. It follows that χ̃ must be surjective, hence an isomorphism.
This implies that η is an isomorphism, as well.
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Chapter 3

Exhaustions by Finite Rigid Sets

3.1 Outline of the Chapter

In this chapter we will prove Theorem E and its direct corollary Theorem F . Moreover,
we recall the definition of rigidity we will use throughout this chapter.

Definition 3.1.1. Let Γ be a graph. A subgraph X ⊆ Γ is said to be rigid if for every
graph embedding i : X ↪→ Γ there exists a graph automorphism ϕ ∈ Aut(Γ) such that
i = ϕ|X . A graph which is rigid, as a subgraph if itself, is said to be co-Hopfian.

Theorem E. Let S = Σ7 or S = Σ8. Then the strongly separating curve graph Css(S)

admits an exhaustion by finite rigid sets⋃
i∈N

Xi = Css(S).

Moreover, every subgraph Xi has trivial pointwise stabiliser.

Theorem F. Let S = Σ7 or S = Σ8. Then, for every injective graph self-embedding
i : Css(S) ↪→ Css(S), there exists an extended mapping class f ∈ Mod±(S) such that
i = f , that is the self embedding i coincides with the map induce on the curve graph by
the mapping class f .

The objects we will mostly deal with, throughout this chapter, will be the strongly
separating curve graphs for the 7-holed sphere Css(Σ7) and 8-holed sphere Css(Σ8), in-
troduced in Definition 1.3.3. We recall that these graphs correspond to the 3-separating
curve graphs C3(Σ7) and C3(Σ8), as in Definition 1.3.6.

We observe that every curve in the graph Css(Σ7) is 3-separating, hence such graph
is the same as the strict 3-separating curve graph C(3)(Σ7), also introduced in Defini-
tion 1.3.6. On the other hand, the strongly separating curve graph of the 8-holed sphere
includes both 3-separating and 4-separating curves (see Definition 1.3.5 for the definition),
hence the strict 3-separating curve graph C(3)(Σ8), which is induced by the 3-separating
curves only, is a proper subgraph of Css(Σ8). This graph will play an important role in
Section 3.5, and we will prove that it also admits an exhaustion by finite rigid sets.

In order to expand such subgraph we will employ the action of a suitable finite
collection G of mapping classes, such that 〈G〉 = Mod±(Σm). The exhaustion we are
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looking for is given by the recurring definition Xi+1 = G ·Xi. The fact that G generates
the entire mapping class group, hence it acts transitively on vertices in the relevant
ambient graph, will imply that the sequence we have defined exhaust the entire graph.

The hardest part to prove is the rigidity of the subgraphs Xi. Indeed, such a subgraph
can easily be written as a union of rigid subgraphs. Unions of rigid subgraphs are not
rigid, in general, but, when the stabilisers of the pairwise intersections are trivial, they
are. The arguments described so far can be stated in purely graph-theoretical terms, and
we will develop such general machinery in Section 3.2.

Aside from the graph-theoretical arguments, the most part of our proof will actually
be dedicated to the choice of a suitable collection of mapping classes, and the proof of
the various rigidity property needed to apply the aforementioned general results. These
arguments will be both combinatorial, as they involve the study of projections to Kneser
graphs, and topological. These are the instances in which the differences between the
rigid subgraphs will make our arguments, although analogous in spirit, divergent from a
technical viewpoint.

The structure of the chapter will be as follows. In Section 3.2 we will introduce the
graph-theoretical machinery we will use to produce exhaustions. Moreover, we will prove
that graphs which admit an exhaustion by rigid sets are co-Hopfian, which is another
purely graph-theoretical result, hence proving that Theorem F immediately follows from
Theorem E.

In Sections 3.4 and 3.5 we will verify the hypotheses in order to apply the aforemen-
tioned graph-theoretical machinery, for the case of the 7-holed sphere and the 8-holed
sphere respectively. From the arguments in these section another proof of the combina-
torial rigidity of such graphs, that is Theorem 1.3.4 for g = 0 and p = 7, 8, will follow.

Lastly, in Section 3.6 we will produce an example of a graph which admits many nice
metric and combinatorial properties but which is not co-Hopfian, and deduce that it does
not admit any exhaustion by rigid sets. The example we will use will be a graph of loops
on a infinite-type surface, and our observations allow for many similar examples to be
developed.
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3.2 Graph-Theoretical Machinery

In this section we will introduce the graph-theoretical machinery we will use to produce
exhaustions, and prove that Theorem E implies Theorem F .

From now on let Γ be a graph. The idea of our construction is to start with a rigid
subgraph X0 ⊆ Γ and a finite collection of graph automorphism H ⊂ Aut(Γ) and let it
repeatedly act on said subgraph X to obtain an exhaustion.

We will mostly be interested in subgraphs with trivial pointwise stabiliser for the
action of the group of graph automorphisms. A subgraph X ⊆ Γ with this property
is such that for every graph automorphism ϕ ∈ Aut(Γ) such that ϕ|X = IdX we have
ϕ = IdΓ. This property is what Aramayona and Leininger call weak rigidity in [AL2, Def-
inition 3.6]. However, since this property is not implied by rigidity (as in Definition 1.6.1;
it would be if a uniqueness property were also required in that definition) we will avoid
such terminology. In what follows, when we refer to the stabiliser of a subgraph, unless
otherwise stated, it has to be interpreted as the pointwise stabiliser for the action of the
group of graph automorphisms.

The following useful lemma is an immediate observation.

Lemma 3.2.1. Let Γ be a graph. Let X ⊂ Y ⊂ Γ be subgraphs, such that X has trivial
pointwise stabiliser. Then Y has trivial pointwise stabiliser.

Opposite to what happens with the previous proposition a superset of a rigid subgraph
is in general not rigid (for an example of this behaviour see [AL2, Proposition 3.2]). This
makes expanding rigid sets to bigger rigid sets tricky in general, but luckily the following
statement is what will make it possible in our cases.

Lemma 3.2.2. Let Γ be a graph. Let X,Y ⊂ Γ be rigid subgraphs such that X ∩ Y has
trivial pointwise stabiliser. Then X ∪ Y is rigid and has trivial pointwise stabiliser.

Proof. Let i : X ∪ Y ↪→ Γ be an injective graph homomorphism. Since X,Y are rigid
there exists two automorphisms ϕ,ψ ∈ Aut(Γ) such that ϕ|X = i|X and ψ|Y = i|Y . Since
ϕ|X∩Y = i|X∩Y = ψ|X∩Y the triviality of the stabiliser of X ∩ Y proves that ϕ = ψ.
It follows that the embedding i is the restriction of the automorphism ϕ = ψ, hence
X ∪Y is rigid. Since X ∩Y ⊆ X ∪Y triviality of the stabiliser follows immediately from
Lemma 3.2.1.

In what follows we will use the following corollary, which is a generalised version of
the previous result.

Corollary 3.2.3. Let Γ be a graph. Let X1, . . . , Xn ⊂ Γ be rigid subgraphs such that,
for every i 6= j, the graph Xi ∩ Xj has trivial pointwise stabiliser. Then the subgraph
X1 ∪ · · · ∪Xn is rigid and has trivial pointwise stabiliser.

Proof. We will proceed on induction on n. If n = 2 then the statement is exactly
Lemma 3.2.2. Let us now suppose the thesis to be true for n and prove we have for n+1.
It this case X1 ∪ · · · ∪ Xn+1 = (X1 ∪ · · · ∪ Xn) ∪ Xn+1 where Y = (X1 ∪ · · · ∪ Xn) is
rigid by inductive hypothesis. Moreover X1 ∩ Xn+1 ⊂ Y ∩ Xn+1 hence the right hand
side has trivial pointwise stabiliser due to Lemma 3.2.1. An immediate application of
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Lemma 3.2.2 now proves that Y ∪ Xn+1 is rigid. Triviality of the pointwise stabiliser
follows immediately from Lemma 3.2.1.

We are now ready to sum up the previous observation into the machinery we will use to
produce rigid exhaustions, which is a graph-theoretical version of [AL2, Proposition 3.13].

Proposition 3.2.4. Let Γ be a graph. Let H ⊆ Aut(Γ) be a finite set of automorphisms,
such that IdΓ ∈ H and H−1 = H. Let X ⊂ Γ be a rigid subgraph such that for every
g ∈ H the graph g ·X ∩X has trivial pointwise stabiliser. Then the sequence defined by

X0 = X and Xi+1 = H ·Xi

is an ascending sequence of rigid sets with trivial pointwise stabilisers.
Moreover, if X intersects every orbit of vertices of Γ under the action of 〈H〉 the

aforementioned sequence is an exhaustion.

Proof. First we prove that (Xi) is an ascending sequence of rigid sets, by proceeding by
induction on i. The graph X0 is rigid by hypothesis. We will now assume Xi to be rigid
and that for every j ≤ i we have Xj ⊂ Xi. For every g ∈ H it follows immediately that
g ·Xi is rigid, as it is an isomorphic copy of Xi. Moreover for every g′ ∈ H we have that
(g′)−1 ∈ H, and hence

g ·X0 ∩X0 ⊆ g ·Xi ∩ g′ · (g′)−1 ·Xi−1 ⊆ g ·Xi ∩ g′ ·Xi,

as g′·Xi−1 ⊆ Xi, hence g·Xi∩g′·Xi has trivial pointwise stabiliser thanks to Lemma 3.2.1,
so Xi does as well.

We can now apply Corollary 3.2.3 to the collection {g ·Xi}g∈H proving that Xi+1 is
rigid. Moreover we have

Xi =
⋃
g∈H

g ·Xi−1 ⊆
⋃
g∈H

g ·Xi = Xi+1

and the ascending property is proven.
Let us now suppose that X intersects every orbit of vertices of Γ under the action of

Aut(Γ). We will now prove that we have⋃
Xi = Γ.

Indeed, for every vertex v ∈ Γ there exist a vertex x ∈ X and a graph automorphism
ϕ ∈ 〈H〉 such that ϕ(x) = v. Therefore there exists some n ∈ N such that ϕ ∈ Hn,
where Hn is the set of products of n elements of H. It follows that

v ∈ Hn ·X0 ⊆ Xn.

This concludes the proof.

We will apply the previous result to the case of graphs of curves in the following
sections.
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We will now conclude the section by showing that Theorem F follows from Theo-
rem E. That will follows from the following more general result, which will also be useful
in §3.6.

Proposition 3.2.5. Let Γ be a graph admitting an exhaustion by rigid sets (Xj) with
trivial pointwise stabiliser. Then Γ is co-Hopfian, that is, for every injective graph ho-
momorphism i : Γ ↪→ Γ there exists a graph automorphism ϕ ∈ Aut(Γ) such that i = ϕ.

Proof. Since every subgraph Xj is rigid for every j there exists a graph automorphism
ϕj ∈ Aut(Γ) such that i|Xj = ϕj |Xj . Such graph automorphism is unique thanks to
the fact that the pointwise stabilisers of the graphs Xj are trivial. For j < k we have
Xj ⊆ Xk hence we have that ϕk|Xj = ϕj |Xj , and thanks to the uniqueness property we
have that ϕj = ϕk. From now on we will denote this automorphism by ϕ.

Let v be a vertex of Γ: since the sequence (Xj) is an exhaustion there exists an index
k such that v ∈ Xk. Hence it follows that i(v) = ϕk(v) = ϕ(v). Since this holds for every
vertex we conclude that i = ϕ.

The following statement is an alternative version of Proposition 3.2.4 and Proposi-
tion 3.2.5, expressed in terms of group actions on the graphs. Its proof only requires
minor changes in the arguments presented in this section.

Proposition 3.2.6. Let Γ be a graph. Let H ⊆ Aut(Γ) be a finite set of automorphisms,
such that IdΓ ∈ H and H−1 = H. Let X ⊂ Γ be a subgraph such that for every graph
embedding i : X ↪→ Γ there exists a graph automorphism ϕ ∈ 〈H〉 such that i = ϕ|X (we
will denote this property by saying that X is 〈H〉-rigid). Moreover, let us assume that
if g ∈ H the graph g · X ∩ X has trivial stabiliser under the action of 〈H〉. Then the
sequence defined by

X0 = X and Xi+1 = H ·Xi

is an ascending sequence of 〈H〉-rigid sets with trivial stabilisers for the action of 〈H〉.
Moreover, if X intersects every orbit of vertices of Γ under the action of 〈H〉 the

aforementioned sequence is an exhaustion. In that case we have 〈H〉 = Aut(Γ).

We can observe that in the previous result we have required the stronger hypothesis of
X being 〈H〉-rigid, and not only rigid, but at the same obtained a combinatorial rigidity
result for the graph in the equality 〈H〉 = Aut(Γ). In the two cases of interest to us
we will be able to apply Proposition 3.2.6, hence getting another proof of combinatorial
rigidity for the strongly separating curve graphs of the 7 and the 8-holed sphere, that
is Theorem 1.3.4. However, we will only cursorily remark about the application of the
previous proposition, since the application of Proposition 3.2.4 is more straightforward
ans still suffices our needs.
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3.3 One-Third Dehn Twists

One major point the cases of the 7 and 8-holed sphere cases will have in common is the
types of maps used in the collection of mapping classes used to generate the exhaustion.
Indeed, such collection, will be composed of (right) half Dehn twists and some other roots
of Dehn twists, which we will later introduce and will call one-third Dehn twists.

We recall that, given a 2-separating curve γ on Σm the (right) half Dehn twist around
γ is well defined, and we will denote it with Hγ . The half-Dehn twist around a 2-
separating curve is a self-homeomorphism of the surface that is supported in a twice-
punctured disc, which can be visualised as lying in a plane, fixes its boundary, and
exchanges the two marked points by rotating them of half a twist around a central pivot.
For a precise definition we refer to [FM, §9.1.3]. This mapping class constitutes a square
root of the Dehn-twist Tγ around γ.

Similarly, a one-third Dehn twist around a curve γ is defined when such curve is 3-
separating, and constitutes a cubic root of the twist Tγ . In this case, however, the choice
of a curve and an orientation is not enough to provide a unique definition of such twists,
hence we will need more information in order to define such a mapping class. What
follows is an informal description of one-third Dehn twists.

Since the curve γ bounds a subsurface of type S1
0,3 the goal is to define a mapping

class which fixes γ and rotates the three marked points by an angle of 2π
3 , that is it

cyclically permutes them. If the bounded surface is thought as an Euclidean disc centred
at the origin with the three marked points being the vertices of an equilateral triangle
centred at the origin, this map is easily understood: the boundary curve is fixed, the
triangle and its inside is rotated by a 2π

3 angle, and every point in between is rotated of
an angle which continuously decreases the closer to the boundary curve.

The issue with the previously highlighted construction is that the identification of a
surface of type S1

0,3 with an Euclidean disc with three marked points is far from being
canonical. It follows that, in stark contrast with the case of a half Dehn-twist, which
was determined by a simple choice of the left or right direction, some extra data is
needed in order to define a one-third Dehn-twist. In particular, the information which
is needed are the three “sides” of the triangle, that is three simple arcs which cyclically
connect the marked points and only pairwise intersect in one of the endpoints. Given
this, a homeomorphism with the Euclidean disc, which maps the arcs to the edges of the
triangle, is now well defined up to isotopy (this fact is not completely trivial and will
be proven in Lemma 3.3.2), and the one-third Dehn-twist can be defined by using this
identification.

We now formally give the definition of one-third Dehn twists.

Definition 3.3.1. Let B(0, 2) ⊂ C be the closed disc around the origin of the complex
plane C of radius 2, with marked points x̄k = e

2πi
3 k for k = 0, 1, 2, and consider the

oriented arcs āk : [0, 1] −→ C to be ak(t) = e
2πi
3 (k+t). We define the homeomorphism

R : B(0, 2) −→ B(0, 2) as

R(z) =

e
2πi
3 z for ||z|| ≤ 1

e
2πi
3 (2−||z||)z for ||z|| > 1.
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Let now S be a surface. Let γ ⊂ S be a 3-separating curve. Let X be the closure of
the component of S \ γ of type S1

0,3. Let x0, x1, x2 be the three marked points of X,
and, for k = 0, 1, 2, let ak be three pairwise disjoint oriented simple parametrised arcs
such that ak has xk as its first endpoint and xk+1 as the second one, where subscripts
are taken modulo 3. Up to a homeomorphism we can identify X with B(0, 2), sending
marked points to marked points and arcs to arcs. Any two such homeomorphisms are
isotopic due to Lemma 3.3.2. This identification induces a homeomorphism R : X −→ X

such that R|∂X = Id∂X . We can now define the one-third Dehn-twist around γ along
arcs a0, a1, a2 as

Ra0,a1,a2
γ : S −→ S

by extending the previously defined map R to be the identity on Xc. This homeomor-
phism is well defined up to isotopy, hence as a mapping class Ra0,a1,a2

γ ∈ Mod(S).

The technical fact we needed in the previous definition is the following.

Lemma 3.3.2. We will follow the notation we have introduced in Definition 3.3.1. Let
f, g : X −→ B(0, 2) be two homeomorphisms such that, for every k = 0, 1, 2, we have
f(xk) = g(xk) = x̄k and f(ak) = g(ak) = āk, preserving the orientation. Then the
homeomorphisms h = g ◦ f−1 : B(0, 2) −→ B(0, 2) is isotopic to the identity relatively to
the three marked points x̄0, x̄1, x̄2 (but not to the boundary).

Proof. First, we notice that, defined C = ∂B(0, 1), we have h(C) = C. From this it
also follows that h(B(0, 1)) = B(0, 1), and hence, defining A = B(0, 2) \B(0, 1), we have
h(A) = A. From the homogeneity of B(0, 1) it follows that, up to an isotopy supported
in the interior of B(0, 1), hence relative to C, and hence to the three marked points, we
can assume that h(0) = 0. We will use this property later in the proof.

Second, we claim that there exists an isotopy G : C × [0, 1] −→ C such that we have
G(0, ·) = h|C and G(1, ·) = IdC , relative to the marked points. Indeed, for every arc āk
such an isotopy for the restriction map h|āk relative to the boundary, which is {x̄k, x̄k+1},
exists. These isotopies can be glued together to obtain the isotopy G.

We now claim that, up to an isotopy of the entire disc B(0, 2) relative to the marked
points, we can assume that h|C = IdC . A homotopy doing the trick is, for instance, the
map F : B(0, 2)× [0, 1] −→ B(0, 2), defined as follows:

F (z, t) =


0 for z = 0
G( z
||z|| ,t)

h( z
||z|| )

h(z) for z 6= 0

which is well defined as h(w) 6= 0 for every w 6= 0. Indeed, for z ∈ C we have that
z
||z|| = z hence, for t = 0 we have that F (0, z) = h(z) as G

(
z
||z|| , 0

)
= h

(
z
||z||

)
. For

t = 1, on the other hand, we have G
(

z
||z|| , 0

)
= z, hence F (z, t) = z. Since the existence

of a homotopy between two homeomorphisms implies the existence of an isotopy, due to
general results (see §1.1.3), the claim is proven.

Since we can now assume that h|C = IdC , it follows that there exists an isotopy of
the disc B(0, 1), relative to the boundary C, between h|B(0,1)

and the identity Id
B(0,1)

.
Moreover, there exists an isotopy of the annulus A, relative to C (but not to the other
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boundary component), between hA and IdA. By gluing these isotopies we get a global
isotopy between h and Id

B(0,2)
, relative to C, hence to the three marked points. The

proof of the lemma is complete.

Practically speaking, we are mostly interested in the action these one-third Dehn-
twists have on other curves. For a picture of this see, for instance, Figure 3.8. In all
of the cases we will be interested in we will study the action of a one-third Dehn-twist
around a curve γ only on curves α such that i(γ, α) = 2. It will be enough to understand
how a one-third Dehn-twist acts on a nontrivial arc b with both endpoints on γ. Let us
fix an arbitrary orientation on the arc. We will keep on using the notation introduce in
Definition 3.3.1. Since the arc is non trivial it will first intersect one of the arcs ah and
then another arc al. Up to reversing orientations we can assume that l = h+ 1 modulo
3. The arc Ra1,a2,a3

γ (b) will have the same endpoints but will now intersect the arc ah+1

first and then the arc ah+2, while “rotating” of an angle 2π
3 outside of the triangle given

by the three arcs ak in the direction provided by the orientation of such arcs.
We remark that

(Ra0,a1,a2
γ )−1 = Ra2

∗,a1
∗,a0

∗

γ

where ak∗ is the arc ak with its orientation reversed.
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3.4 Exhaustion for Css(S0,7)

In this section we will prove Theorem E for the 7-holed sphere Σ7 = S0,7.
In all the figures which will appear from now on, we will always draw the 7-holed

sphere as the doubling of a heptagon, for instance see Figure 3.1. The vertices of the
heptagon in the figure will be the seven marked points of the surface. As it usually
happens, a dotted arc in the picture has to be intended as an arc on the “back” of the
doubled heptagon, whereas a continuous arc is to be intended as on the front. The only
exception to this will be for the curves The curves γi in Figure 3.1, which will be the
doubling of the arcs depicted in the picture, as we will now explain.

We are now ready to define the rigid graph which will be the starting point of our
argument. We first recall that, given a set X, its disjoint union with itself is the set
X tX = (X × {0}) ∪ (X × {1}).

Definition 3.4.1. Let H be a regular hexagon in R2, with vertices {v1, . . . , v7} cyclically
ordered. Let li be the side between vi and vi+1.

Let S = H tH /∼ be the doubling of the heptagon, where (x, 0) ∼ (y, 1) if and only
if x = y ∈ ∂H . The marked surface (S, {v1, . . . , v7}) is a 7-holed sphere.

Let di be the segment in H from the midpoint of l3i−3 and the midpoint of l3i, where
the subscripts are taken modulo 7. Let γi be the curve isotopic to the doubling of di.

We will denote the graph in Css(Σ7) induced by the curves γi as H.

The curves γi are represented in Figure 3.1. It can be noted that the graph H is an
embedded 7-cycle with no diagonals: we will call such a graph a heptagon.

γ1

γ2

γ3

γ4γ5

γ6

γ7

γ1

γ2

γ3

γ4

γ5

γ6

γ7

1

2

3

45

6

7

Figure 3.1: The heptagon H ⊂ Css(Σ7).

The heptagon H is rigid thanks to [B2, Proposition 3.1].
We will now introduce the mapping classes we will apply Proposition 3.2.4 to. This

will be composed of some one-third Dehn twists around the curves γi, alongside some half
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Dehn twists. In order to define the one-third Dehn twists we need we have to introduce
the following notation.

Definition 3.4.2. We will follow the notation we have introduced in Definition 3.4.1.
Let 1 ≤ i ≤ 7 and j = 1, 2, 3. In what follows the indices i are to be considered modulo
7. We define the arcs aij as follows:

• The arc ai1 is the isotopy class of oriented simple arcs from the marked point v3i−2

to v3i−1 isotopic to the side l3i−2.

• The arc ai2 is the isotopy class of oriented simple arcs from the marked point v3i−1

to v3i isotopic to the side l3i−1.

• The arc ai3 is the isotopy class of oriented simple arcs from the marked point v3i

to v3i−2 isotopic to the segment in the “back” heptagon H × {1} ⊆ S between the
two endpoints.

We define the following one-third Dehn twists, as introduced in Definition 3.3.1,

Ri = R
ai1,a

i
2,a

i
3

γi ∈ Mod(Σ7).

The oriented arcs aij are represented in Figure 3.2. These arcs are not doubled. The
arcs ai3, which are dotted, are intended to be on the back side of the sphere. The indices
of these arcs aij , which we will only use to define the one-third Dehn twists Ri, should
be interpreted as follows: the index i = 1, . . . , 7 indicates the curve γi around which the
twist is made, while the index j = 1, 2, 3 refers to the cyclic ordering of the three arcs.

γ1

γ2

γ3

γ4γ5

γ6

γ7

a1
3

a2
3

a3
3

a4
3

a5
3

a6
3

a7
3

a1
1 = a3

2

a6
1 = a1

2

a4
1 = a6

2

a2
1 = a4

2

a7
1 = a2

2

a5
1 = a7

2

a3
1 = a5

2

Figure 3.2: The heptagon H ⊂ Css(Σ7) with the arcs aij .

We will now introduce a collection of 2-separating curves, around which the half-Dehn
twists we need will be.

Definition 3.4.3. Let αi be the unique essential simple closed curve on Σ7 which is
disjoint from every curve in H apart from γi+3 and γi−3, where subscripts are taken
modulo 8.
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We define mapping classes Hi ∈ Mod(Σ7) to be the right half-Dehn twists around
the curve αi.

The curves αi are pictured in Figure 3.3. It is immediate to check that these curves
are 2-separating, so the half Dehn-twists around them are defined.

α1

α2

α3

α4

α5

α6

α7

1

2

3

45

6

7

Figure 3.3: The curves αi.

Throughout both this and the following section we will often encounter statements
which are more neatly expressed by condensing various cases which arise from the choice
of a sign. In order to avoid ambiguity, in those statement we will use ε ∈ {1,−1} instead
of the more common notation ±.

We are now ready to define the finite sets of mapping classes which we will need in
order to apply Proposition 3.2.4.

Definition 3.4.4. We define

G = {IdΣ7
} ∪ {Rεi }

ε=±1
i=1,...,7 ⊂ Mod(Σ7).

Moreover we define

G = G ∪ {Hε
i }
ε=±1
i=1,...,7 ⊂ Mod(Σ7).

The discussion in [FM, § 4.4.4] proves that the collection {Hε
i }, hence G, generates

the entire mapping class group Mod(Σ7).
Our final goal is to apply Proposition 3.2.4 with Γ = Css(Σ7), H = G and X = G ·H.

The hardest hypothesis to check will be the rigidity of G · H, which is the following
statement, whose proof will occupy most of the remainder of the section.
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Proposition 3.4.5. Let H be the heptagon of Css(Σ7) defined in Definition 3.4.1. Let G
be as in Definition 3.4.4. Let i : G · H ↪→ Css(Σ7) be an injective graph homomorphism.
Then there exists an extended mapping class f ∈ Mod±(Σ7) such that i = f .

In particular, the graph G · H is rigid.

In the previous statement we have willingly highlighted the fact that any embedding
of the graph the graph G · H is induced by an extended mapping class that is, in the
language of Proposition 3.2.6, G·H is Mod±(Σm)-rigid. This stronger property obviously
follows from rigidity, once the combinatorial rigidity for Css(Σ7), that is Theorem 1.3.4 or
Theorem A, is assumed. However, in the proof of the previous statement, we will never
have to explicitly use such rigidity result. Hence our proof, alongside Proposition 3.2.6

constitutes another independent proof that Aut(Css(Σ7)) ∼= Mod±(Σ7).
We will start by showing that G·H = G·H, where the collections G,G are as defined in

Definition 3.4.4. This means that the curves created by the action of the half Dehn-twists
Hi are already included in the ones arising from the one-third Dehn-twists T εi , hence it
is enough to focus on the action of the latter. The reason why we still have to use the set
of mapping classes G is the fact that G alone does not generate the entire mapping class
group, as it only induces even transpositions on the marked points; it is possible that it
still acts transitively on strongly separating curves, but this is currently unknown, and
seems a hard problem unlikely to be solved shortly. In order to prove the aforementioned
equality we will now prove the following relations between half Dehn-twists and one-third
Dehn-twists.

Lemma 3.4.6. Let the curves γi and the mapping classes Ri and Hi be defined as before.
Then the following relations hold:

1. Hiγi+3 = Ri+3
−1γi+1;

2. Hiγi−3 = Ri−1γi−3;

3. Hi
−1γi+3 = Ri+1

−1γi+3;

4. Hi
−1γi−3 = Ri−3γi−1;

where the subscripts are intended to be modulo 7.

Proof. Equalities 1, 2, 3, 4 are proven in Figures 3.4, 3.5, 3.6, 3.7 respectively.

Corollary 3.4.7. We have G · H = G · H.

Proof. By definition every curve αi is disjoint from every curve inH apart from γi+3 and
γi−3, hence for j 6= i±3 it follows that Hε

i γj = γj = Rjγj ∈ G ·H. From this observation
combined with Lemma 3.4.6 it follows that for every i we have αi · H ⊆ G · H, hence
G · H ⊆ G · H. The other inclusion is trivial.

The next step in the proof of rigidity is to find some relations between different one-
third Dehn-twists. Indeed, the graph G · H is the union of the heptagons Rεi · H, which
are glued together according to these relations, which will be the key property to prove
rigidity. Without further ado we will now prove the following.
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γi+3

αi

Hiγi+3

γi+3

γi+1

R−1
i+3γi+1

Figure 3.4: Equality 1 of Lemma 3.4.6.

γi−3

αi

Hiγi−3

γi−3

γi−1

Ri−1γi−3

Figure 3.5: Equality 2 of Lemma 3.4.6.

Lemma 3.4.8. Let the curves γi and the mapping classes Ri and Hi be defined as before.
The following relations hold:

1. Riγi+4 = Ri+4
−1γi+2;

2. Riγi+2 = Ri+4
−1γi;

3. Ri−1γi−4 = Ri−4γi−2;

4. Ri−1γi−2 = Ri−4γi;

5. Riγi+3 = Ri−3
−1γi+1;

where subscripts are taken modulo 7.

Proof. Equalities 1, 2, 3, 4, 5 are pictured in Figures 3.8, 3.9, 3.10, 3.11, 3.12 respectively.
The color scheme employed is chosen to be consistent with curves in Figure 3.1 with
i = 1.
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γi+3

αi

H−1
i γi+3

γi+3

γi+1

R−1
i+1γi+3

Figure 3.6: Equality 3 of Lemma 3.4.6.

γi−3

αi

H−1
i γi−3

γi−3

γi−1

Ri−3γi−1

Figure 3.7: Equality 4 of Lemma 3.4.6.

Alongside the relations of the previous lemma we recall that if γi and γj are disjoint
(possibly equal) then Riγj = γj . This first implies that every heptagon Rεi · H intersects
H in three consecutive vertices.

We will approach the rigidity of G·H by studying the rigidity of some of its subgraphs,
at first. In particular the subgraphs we will study will be the union of H with two
other heptagons obtained by applying some one-third Dehn-twist. Indeed, we define the
following.

Definition 3.4.9. Let ε ∈ {+1,−1}. For j = 1, . . . , 7 let

Zεj = H ∪ (Rj
ε · H) ∪ (Rj+4

−ε · H),

where subscripts are taken modulo 7.

A picture of the graph Z+
1 is provided in Figure 3.13.

Before we move forward with our argument we need to introduce a particular extended

124



γi
γi+4

Riγi+4

γi+4

R−1
i+4γi+2

γi+2

Figure 3.8: Equality 1 of Lemma 3.4.8.

γi

Riγi+2

γi+4

R−1
i+4γi

γi

γi+2

Figure 3.9: Equality 2 of Lemma 3.4.8.

γi
R−1
i γi−4 γi+4

Ri−4γi−2

γi−2

γi−4

Figure 3.10: Equality 2 of Lemma 3.4.8.
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γi

R−1
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γi+4

Ri−4γi
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Figure 3.11: Equality 4 of Lemma 3.4.8.

γi

Riγi+3

γi+4

R−1
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γi+3

Figure 3.12: Equality 5 of Lemma 3.4.8.
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γ1 = R1γ1

γ2 = R1γ2γ7 = R1γ7

γ6 = R−1
5 γ6

γ5 = R−1
5 γ5 γ4 = R−1

5 γ4

γ3
R1γ6

R−1
5 γ7

R1γ5 = R−1
5 γ3 R1γ4 = R−1

5 γ2

R1γ3 = R−1
5 γ1

Figure 3.13: The graph Z+
1 .

mapping class: the mirror reflection.

Definition 3.4.10. We follow the notation introduce in Definition 3.4.1. Let r : S −→ S

the homeomorphism defined by r(x, 0) = (x, 1) and r(y, 1) = (y, 0). We will denote the
isotopy class of r as the mirror reflection ρ ∈ Mod±(Σ7).

The mirror reflection we have just defined exchanges the “front” and the “back” of the
doubled heptagon we are identifying with Σ7. This is an orientation-reversing automor-
phism of order two. Moreover, we notice that the mirror reflection ρ fixes all the curves
γi.

We observe the following, which is the computation of the stabiliser of the heptagon
H under the action of the extended mapping class group.

Lemma 3.4.11. Let H be the heptagon as in Definition 3.4.1. Let f ∈ Mod±(Σ7) such
that f|H = IdH. Then either f = Id, if it preserves the orientation, or f = ρ, if it is
orientation-reversing.

Proof. Up to composing f with ρ we can assume f to be orientation-preserving. From
now on, we will abuse notation and confuse the mapping class f with one of its represen-
tatives. The collection of curves γ1, . . . , γ7 satisfies the hypotheses of Proposition 1.2.6.

We claim that f preserves the orientation of every curve γi, hence we can apply
Proposition 1.2.6 and deduce that f is isotopic to the identity.

The claim follows from the fact that if a surface homeomorphism fixes a curve but
changes its orientation, then it must exchange the two connected components of the
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complementary of the curve. In particular, for this to be possible the two complementary
discs of the curve need to be of the same topological type. However, every curve γi bounds
a 3-punctured disc on one side and a 4-punctured disc on the other, so f must preserve
its orientation. The claim is proven and the proof is complete.

We observe the following corollary, which will be useful later to check the hypothesis
of Proposition 3.2.4 regarding triviality of the pointwise stabiliser.

Corollary 3.4.12. Let i, j be such that j 6= i − 1, i, i + 1 modulo 7. Then the subgraph
Y = H∪{Riγj} has trivial pointwise stabiliser under the action of the extended mapping
class group Mod±(Σ7). In particular Y has trivial pointwise stabiliser for the action of
Aut(Css(Σ7)).

Proof. Let f ∈ Mod±(Σ7) be an extended mapping class such that f|Y = IdY . Then,
since f|H = IdH it follows from Lemma 3.4.11 that either f = Id or f = ρ. Since
ρ(Riγj) 6= Riγj it follows that f = Id. Triviality of the stabiliser follows from the fact
that Aut(Css(Σ7)) ∼= Mod±(Σ7), that is Theorem 1.3.4.

We remark that the first part of the previous proposition is exactly the property
needed in order to apply Proposition 3.2.6, and deduce rigidity from there.

We will from now on turn our attention towards the proof the following, which,
combined with [B2, Proposition 3.1], proves rigidity for the graphs Zε(i).

Proposition 3.4.13. Let i : Zεj ↪→ Css(Σ7) be an injective graph homomorphism such
that i|H = IdH. Then either i = IdZεj or i = ρ|Zεj .

From now on, in order to make the notation less cumbersome, during the proofs we
will only deal with the graph Z+

1 , the other cases being completely analogous. The first
step to prove the previous rigidity result is to study the combinatorics of the marked
points enclosed by curves in the graph. Let

π : Css(Σ7) −→ K(7, 3)

be the projection of the strongly separating curve graph onto the Kneser graphK(7, 3), as
defined in §1.5.1. We recall that, given a strongly separating curve γ ⊂ Γ7 its projection
π(γ) is the set of three punctures contained in the 3-puncture complementary disc of γ.

The action of a one-third Dehn-twist the Kneser graph is easily understood: indeed,
such a mapping class cyclically permutes the three punctures x1, x2, x3 as in Defini-
tion 3.3.1, hence it acts on the Kneser graph as the 3-cycle (x1x2x3). For example the
mapping class T1 acts on the Kneser graph K(7, 3) as the permutation (123).

A heptagon in the Kneser graph is rigid thanks to [B2, Proposition 3.3]. We will now
prove a rigidity result, similar in spirit to Proposition 3.4.13, for the projection of the
graphs Zεi .

Lemma 3.4.14. Let i : Zεj ↪→ Css(Σ7) be an injective graph homomorphism such that
we have i|H = IdH. Then π ◦ i|Zεj = π|Zεj .

Proof. Thanks to [B2, Proposition 3.3] we can assume, up to a relabelling of punctures,
that the heptagon H has the following projection:
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• π(γ1) = {1, 2, 3};

• π(γ2) = {4, 5, 6};

• π(γ3) = {7, 1, 2};

• π(γ4) = {3, 4, 5};

• π(γ5) = {6, 7, 1};

• π(γ6) = {2, 3, 4};

• π(γ7) = {5, 6, 7}.

It is worth noting that, while every labelling is the same up to a permutation, the one
we have chosen differs from the one employed in [B2]. Moreover, we observe that [B2,
Lemma 3.2] proves that two 2-distant vertices in K(7, 3) have intersection exactly 2. We
notice that the fact that i|H = IdH implies that π(i(γj)) = π(γj) for every j.

From this, keeping in mind the structure of Z+
1 given in Figure 3.13, which is the same

graph structure as i(Z+
1 ), it follows that π(i(R1γ6)) has intersection 2 with the vertices

π(i(γ1)) = {1, 2, 3}, π(i(γ4)) = {3, 4, 5} and π(i(γ6)) = {2, 3, 4}. Since π(i(R1γ6)) is also
disjoint from π(i(γ7)) = {5, 6, 7} it follows that

π(i(R1γ6)) = {1, 3, 4} = (123) · {2, 3, 4} = π(R1γ6).

Since π(i(R1γ5))) is disjoint from both π(i(R1γ6)) = {1, 3, 4} and π(i(γ4)) = {3, 4, 5}
it follows that

π(i(R1γ5))) = {2, 6, 7} = (123) · {6, 7, 1} = π(R1γ5).

Similarly π(i(R1γ4)) has intersection 2 with π(i(γ4)) = {3, 4, 5}, π(i(R1γ6)) = {1, 3, 4}
and π(i(γ2)) = {4, 5, 6}, while being disjoint from π(i(R1γ5))) = {2, 6, 7}. It follows that

π(i(R1γ4)) = {1, 4, 5} = (123) · {3, 4, 5} = π(R1γ4).

Since π(i(R1γ3))) is disjoint from both π(i(R1γ4)) = {1, 4, 5} and π(i(γ2)) = {4, 5, 6}
it follows that

π(i(R1γ3))) = {2, 3, 7} = (123) · {7, 1, 2} = π(R1γ3).

In the same vein π(i(R−1
5 γ7))) is disjoint from both π(i(R1γ3)) = {2, 3, 7} and

π(i(γ6)) = {2, 3, 4}, hence it follows that

π(i(R1γ7))) = {1, 5, 6} = (123) · {5, 6, 7} = π(R1γ7).

This concludes the proof.

Now that we have dealt with the combinatorics it is time to employ topological
arguments to prove the rigidity property of the graphs Zε(i). As a preliminary step to
this we observe that rigidity of H implies that, given any two non-adjacent curves β, β′
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Figure 3.14: The curves are doubling of the pictured arcs.

in a heptagon, we have i(β, β′) = 2. Moreover, the following uniqueness of neighbour
property, analogous to Lemma 2.5.3, also holds for Css(Σ7).

Lemma 3.4.15. Let α, β be two vertices of Css(Σ7). Then there exists at most one vertex
γ ∈ Css(Σ7) which is adjacent to both α and β.

Proof. Let γ, γ′ be two 3-separating curves disjoint from α and β. Let Xα (resp.
Xβ , Xγ , Xγ′) be the unique complementary disc of α (resp. β, γ, γ′) containing exactly
3 marked points. Each pair of curves is disjoint if and only if their 3-punctured comple-
mentary discs are disjoint. Lemma 2.5.3, applied with A = Xα and B = Xβ implies that
Xγ = Xγ′ hence γ = ∂Xγ = ∂Xγ′ = γ′, and we are done.

Thanks to these observations we can now move to the proof of Proposition 3.4.13.

Proof of Proposition 3.4.13. Let β = i(R1γ5). We first claim that either β = R1γ5 or
β = ρ(R1γ5). For every j let Bj be the 3-punctured complementary disc of γj and let
Oj be the 4-punctured one. For a quick way to visualise the relations used throughout
the proof we refer to Figure 3.13.

Since we have observed that i(β, γ1) = i(γ4, γ1) = 2 both a = β∩O1 and a′ = γ4∩O1

are single arcs with both endpoints on γ1. Moreover, Equality 1 in Lemma 3.4.8, applied
with i = 1, proves thatR1γ5 = R5

−1γ3, hence it is adjacent toR−1
5 γ4 = γ4. It follows that

R1γ5 and γ4 are disjoint, so in particular the arcs a and a′ are. Thanks to Lemma 3.4.14

we know that one component of O1 \a contains the marked points {4, 5}, while the other
contains {6, 7}, and the same hold for a′. It follows that the two arcs a, a′ are isotopic.
This construction is shown in Figure 3.14.
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From the previous argument it follows that the isotopy type of the arc b = β ∩ B1

determines the entire curve β. Since b is disjoint from γ4 it then lies in the closure of one
of the two components of B1 \ γ4, one of which is a once-punctured disc, the other being
a 2-punctured one. If b were contained in the once-punctured disc, then b would either
form a bigon with γ1, which would violate minimal position, or be isotopic to γ4 ∩ B1.
In the latter case we would have β = γ4 = i(γ4) which is impossible, as R1γ5 and γ4 are
adjacent, hence distinct, vertices in the heptagon R1 · H, as shown in Figure 3.13, and
the map i is injective.

It follows that the arc b must be contained in the region X = B1 ∩ O4, which is a
2-punctured disc containing the marked points {1, 2}. The curve γ6, which intersects
both γ1 and γ6 exactly twice and separates the marked point 1 from 2, cuts X into two
once-punctured discs X ′, X ′′. Without loss of generality we can assume the curves to be
arranged in a way such that the curves are still in minimal position and transverse, but
there are two triple points, that is the triple intersection γ1∩γ4∩γ6 contains exactly two
points, as in Figure 3.14. Let X ′ be the once-punctured disc such that ∂X ′ ⊂ γ1 ∪ γ6.
Let X ′′ be the component such that ∂X ′ ⊂ γ4 ∪ γ6. We have ∂X ∩ ∂X ′′ = γ6 ∩B1.

Since β = R1γ5 = R−1
5 γ3, due to Equality 1 of Lemma 3.4.8 applied with i = 1,

the curve β is nonadjacent to γ6 in R−1
5 · H, hence i(β, γ6) = 2 thanks to a previous

observation. It follows that b ∩X ′′ is a single nontrivial arc with both endpoints on γ6.
Since there exists only one nontrivial arc in X ′′ with both endpoints on γ6, the arc b∩X ′′

is uniquely determined. The component of X ′′ \ b which does not intersect γ4 contains
the marked point 2.

It now follows that b ∩X ′ is composed of two arcs, each one with an endpoint on γ1

and the other on γ6: we claim these arcs are isotopic. If not, the region of X ′ \ b whose
boundary contains the two arcs would contain the marked point 1, hence the two marked
points 1, 2 would both belong to the same component of Σ7 \β, which is impossible, since
Lemma 3.4.14 implies that

π(β) = π(R1γ5) = (123) · {6, 7, 1} = {6, 7, 2} .

It follows that there are only two possibilities for b, and hence for β: those possibilities
are pictured in Figure 3.15, and it can be noticed that those are exactly the curves R1γ5

or ρ(R1γ5), as can be seen by comparison with Figure 3.16. The claim is proven.
Up to postcomposing with the mirror image ρ we can now assume i(R1γ5) = R1γ5.

A completely analogous argument can now be applied to R−1
5 γ2 = R1γ4, which is rep-

resented in Figure 3.17, proving that either i(R1γ4) = R1γ4 or i(R1γ4) = ρ(R1γ4).
However, the latter case is impossible since R1γ5 and ρ(R1γ4) are not disjoint, as shown
in Figure 3.18.

We have shown that if i(R1γ5) = R1γ5 then i also fixes R1γ4. Since i(γ7) = γ7

Lemma 3.4.15, applied with α = R1γ5 and β = γ7 proves that i(R1γ6) = R1γ6. Since
i(γ2) = γ2 Lemma 3.4.15, applied with α = R1γ4 and β = γ2 proves that we have
i(R1γ3) = R1γ3. Equality 2 in Lemma 3.4.8 proves that R1γ3 = R−1

5 γ1. Another
application of Lemma 3.4.15, applied with α = R−1

5 γ1 and β = γ6 proves that we have
i(R−1

5 γ7) = R−1
5 γ7. This proves that i = IdZ+

1
.

If i(R1γ5) = ρ(R1γ5), instead, composition with ρ proves that i = ρ|Z+
1
, and the
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Figure 3.16: The curve in yellow is R1γ5.
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γ1
γ4

R1γ4

Figure 3.17: The curve in yellow is R1γ4.

ρ(R1γ4)

R1γ5

Figure 3.18: The purple curve is R1γ5 while the yellow curve is ρ(R1γ4).
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γi+4

Ri+4γi

γi
Ri+4γi

ρ(Ri+4γi)

Figure 3.19: The yellow curve is Rj+4γi while the olive one is ρ(Rj+4γi).

proposition is proven.

We are now almost ready to prove rigidity of G ·H: first we prove the following, which
is a “global version” of Proposition 3.4.13.

Lemma 3.4.16. Let i : G · H ↪→ Css(Σ7) be an injective graph homomorphism such that
i|H = IdG·H. Then either i = IdZ or i = ρ|G·H.

Proof. Proposition 3.4.13 proves that for every j the injection i restricts to either the
identity or the mirror image on Zεj . We claim that these restrictions are consistently either
always the identity or the mirror image. In order to prove this we argue by contradiction:
if our claim were not true there would exist an index j such that i|Zεj = IdZεj and
i|Z−εj+4

= ρ|Z−εj+4
. This follows from the fact that the sequence Zεnjn where in+1 = in + 4

modulo 7 and ε0 = 1 and εn+1 = −εn exhausts all the possible subgraphs Zεj .
Let j be as above. We notice that R−εj+4γj belongs to both Zεj and Z−εj+4. It follows

that
R−εj+4γj = i(R−εj+4γj) = ρ(R−εj+4γj).

Since ρ(R−εj+4γi) 6= R−εj+4γj , as proven in Figure 3.19 (for the + case), we get a contradic-
tion and the lemma is proven.

We are now ready to prove the rigidity of G · H, that is Proposition 3.4.5.

Proof of Proposition 3.4.5. Let i : G · H ↪→ Css(Σ7) be an injective graph homomor-
phism. Then, thanks to [B2, Proposition 3.1], up to postcomposing with an orientation
preserving mapping class ϕ ∈ Mod(Σ7) we can assume ϕ ◦ i|H = IdH. It now follows
from Lemma 3.4.16 that either i = ϕ−1

|G·H or i = ρ ◦ϕ−1
|G·H and both maps are induced by

extended mapping classes.

We can now conclude the proof of Theorem E for the 7-holed sphere.

Proof of Theorem E for Σ7. We can now apply Proposition 3.2.4 with Γ = Css(Σ7),
H = G, and X = Ḡ · H.
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Rigidity of X is Proposition 3.4.5. The triviality of stabilisers follows from the fact
that every set subgraph of the form (g · X) ∩ X contains H and another curve of the
form Tiγj for j 6= i − 1, i, i + 1, hence it is a superset of a subgraph which has trivial
pointwise stabiliser due to Corollary 3.4.12, hence its stabliser is also trivial thanks to
Lemma 3.2.1.

Lastly, Mod(Σ7) = 〈H〉 acts transitively on strongly separating curves in Σ7, since
they are all of the same topological type, hence there is only one orbit of vertices, so the
requirement to have an exhaustion is fulfilled.
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3.5 Exhaustion for Css(S0,8)

In this section we will prove Theorem E for the 8-holed sphere Σ8.
The proof will closely follow the path of Section 3.4, and many of the arguments will

be similar, although the graphs we study will differ and there will be more technical
complications. Once again the goal is to verify the hypotheses of Proposition 3.2.4 in
order to get an exhaustion.

We will now introduce the objects we will use for the argument: similarly to Sec-
tion 3.4 the 8-holed sphere will be represented as the doubling of an octagon. We will
now introduce new curves γi, similarly to what we have done in Definition 3.4.1. We recall
that, given a set X, its disjoint union with itself is the set XtX = (X×{0})∪(X×{1}).

Definition 3.5.1. Let O be a regular hexagon in R2, with vertices {v1, . . . , v8} cyclically
ordered. Let li be the side between vi and vi+1.

Let S = O t O/∼ be the doubling of the heptagon, where (x, 0) ∼ (y, 1) if and only
if x = y ∈ ∂O. The marked surface (S, {v1, . . . , v8}) is a 8-holed sphere.

Let di be the segment in O from the midpoint of l3i−3 and the midpoint of l3i, where
the subscripts are taken modulo 8. Let γi be the curve isotopic to the doubling of di.

We will denote the graph in Css(Σ8) induced by the curves γi as O.

The curves γi are pictured in Figure 3.20. This graph O is an embedded 8-cycle which
also have edges between opposite vertices: we will refer to this graph as an “octagon with
(long) diagonals”.

γ1

γ1

γ2

γ2

γ3

γ3

γ4

γ4

γ5

γ5

γ6

γ6

γ7

γ7

γ8

γ8

1 2

3

4

56

7

8

Figure 3.20: The octagon with diagonal O ⊂ Css(Σ8).

Let O′ ⊆ O be an embedded 8-cycle. When a property (usually distance between two
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vertices) is satisfied in O′, we say that such property holds “in an octagon inside O”. We
will also call copy of O a subgraph (in any graph) which is isomorphic to O.

The curves γi are all 3-separating, hence O is a subgraph of C(3)(Σ8) and [B2,
Lemma 7.2] proves that it is a rigid subgraph there. However, this does not imply a
priori that the graph O is rigid as a subgraph of Css(Σ8), as a graph embedding could
potentially map 3-separating curves to 4-separating ones. We will see that such a rigidity
result actually holds, but this will require some extra technical work we will take care
of later. Indeed, we will initially prove rigidity of some subgraphs in C(3)(Σ8), obtaining
an exhaustion by rigid sets for that graph along the way, and then use those results to
construct the exhaustion for the entire strongly separating curve graph of the 8-holed
sphere.

First, we need to define the mapping classes which will form the set H as in the
statement of Proposition 3.2.4. Similarly to Definition 3.4.2 we first define the one-third
Dehn-twists which will be part of H.

Definition 3.5.2. We will follow the notation we have introduced in Definition 3.5.1.
Let 1 ≤ i ≤ 8 and j = 1, 2, 3. In what follows the indices i are to be considered modulo
8. We define the arcs aij as follows:

• The arc ai1 is the isotopy class of oriented simple arcs from the marked point v3i−2

to v3i−1 isotopic to the side l3i−2.

• The arc ai2 is the isotopy class of oriented simple arcs from the marked point v3i−1

to v3i isotopic to the side l3i−1.

• The arc ai3 is the isotopy class of oriented simple arcs from the marked point v3i

to v3i−2 isotopic to the segment in the “back” heptagon O × {1} ⊆ S between the
two endpoints.

We define the following one-third Dehn twists, as introduced in Definition 3.3.1,

Ri = R
ai1,a

i
2,a

i
3

γi ∈ Mod(Σ8).

The oriented arcs aij are represented in Figure 3.21. These arcs are not doubled. The
arcs ai3, which are dotted, are intended to be on the back side of the sphere.

Analogously to Definition 3.4.3, we will now introduce a collection of 2-separating
curves, around which the half-Dehn twists we need will be.

Definition 3.5.3. Let αi be the unique essential simple closed curve on Σ7 which is
disjoint from every curve in H apart from γi and γi+1, where subscripts are considered
modulo 8.

We define mapping classes Hi ∈ Mod(Σ8) to be the right half-Dehn twists around
the curve αi.

The curves αi are pictured in Figure 3.22. It is immediate to check these curves are
2-separating, so the half Dehn-twists around them are defined.

We are now ready to give the following definition, which is analogous to Defini-
tion 3.4.4.

137



γ1 γ2

γ3

γ4

γ5γ6

γ7

γ8

a1
1 = a6

2

a4
1 = a1

2

a7
1 = a4
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Figure 3.21: The arcs aji .
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Figure 3.22: The curves αi.

Definition 3.5.4. We define

G = {IdΣ8} ∪ {Rεi }
ε=±1
i=1,...,8 ⊂ Mod(Σ8).

Moreover we define

G = G ∪ {Hε
i }
ε=±1
i=1,...,8 ⊂ Mod(Σ8).

Once again the discussion in [FM, § 4.4.4] proves that the collection {Hε
i }, hence G,

generates the entire mapping class group Mod(Σ8).
Our final goal will be to apply Proposition 3.2.4 with H = G and a suitable subgraph

X ⊆ Css(Σ8), in order to obtain an exhaustion. It should be noticed that the octagon
with diagonals O, or any graph obtained by the action of mapping classes onto it, is
unsuitable as a candidate. This is for such a graph only contains 3-separating curves,
hence does not intersect all the orbits of vertices under the action of the mapping class
group. To take care of this problem we will expand the graph O to a bigger one. In order
to do so we start with the following lemma.

Lemma 3.5.5. For every i = 1, . . . , 8 there exists a unique curve ζ ∈ Css(Σ8) which is
disjoint from γi, γi+1, γi+4, and γi+5. Moreover, this curve is 4-separating.

Proof. It is clear from Figure 3.23 that the surface

S \ (γi ∪ γi+1 ∪ γi+4 ∪ γi+5)

is composed of four surfaces of type S1
0,1, two surfaces of type S1

0,2, and a surface of
type S2

0,0, say A. A curve with the required disjointness property must lay in one of
those subsurfaces. Any curve lying in a once-punctured discs is isotopic to the puncture,
hence it is nonessential. Every essential curve lying in a twice-punctured disc is isotopic
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γi

γi+1

γi+4

γi+5

A

ζ

Figure 3.23: The yellow curve is the curve ζ.

to the boundary, hence it bounds a twice-punctured disc itself and so it is not strongly
separating. It follows that the only strongly separating curve which is disjoint from the
four aforementioned curves if isotopic to the boundary of the annular region, that is the
curve in Figure 3.23, which is a 4-separating curve.

Given the previous lemma we give the following definition.

Definition 3.5.6. Let γi be as defined in Definition 3.5.1. Let ζ be the unique curve
disjoint from γ1, γ2, γ5, γ6, provided by Lemma 3.5.5.

We now define the subgraph O∗ as the full subgraph of Css(Σ8) induced by the vertices
representing curves γi and ζ.

The graph O∗ is obtained from O by adding a new vertex and new edges connecting
it to γ1, γ2, γ5, γ6. A picture of such graph is provided in Figure 3.24.

We can notice that this graph is not symmetric, and the missing three 4-separating
curves generated by Lemma 3.5.5 might be added in order to make it so, but our definition
will be enough for our purposes and minimises the amount of cumbersome notation and
technical checks needed in the proofs.

The graph O∗ now contains both 3 and 4-separating curves, that is it contains curves
of every topological type represented in Css(Σ8). It follows that the graph G · O∗ now
intersects every orbit of vertices under the action of Mod(Σ8), hence it is now a valid
candidate for the subgraph X in the hypotheses of Proposition 3.2.4. Our main goal
will now be to prove that this graph is rigid, that is the following statement, which is
analogous to Proposition 3.4.5.

Proposition 3.5.7. Let O∗ be as defined in Definition 3.5.6. Let G be as in Defini-
tion 3.5.4. Let i : G · O∗ ↪→ Css(Σ8) be an injective graph homomorphism. Then there
exists an extended mapping class f ∈ Mod±(Σ8) such that i = f .
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Figure 3.24: The graph O∗.

In particular the graph G · O∗ ⊆ Css(Σ8) is rigid.

In order to prove the previous proposition we will first prove rigidity of G · O as
a subgraph of C(3)(S0,8). Indeed, the most part of the reminder of this section will
ultimately be devoted to the proof of the following.

Proposition 3.5.8. Let O be as defined in Definition 3.5.1. Let G be as in Defini-
tion 3.5.4. Let i : G · O ↪→ C(3)(Σ8) be an edge-preserving graph homomorphism. Then
there exists an extended mapping class f ∈ Mod±(Σ8) such that i|G·O = fG·O.

In particular, the graph G · O ⊆ C(3)(Σ8) is rigid.

As for Proposition 3.4.5, in the last two statements we have willingly remarked that
any injection is induced by a mapping class, rather than by a generic graph automor-
phism. In fact, this would allow us to apply Proposition 3.2.6 and deduce the combinato-
rial rigidity of the graphs, that is that Aut(Css(Σ8)) ∼= Mod±(Σ8), which already followed
from Theorem 1.3.4 or Theorem A, and Aut(C(3)(Σ8)) ∼= Mod±(Σ8), which follows from
Theorem D.

The structure of the proof of the previous proposition will be almost exactly the same
as for the proof of Proposition 3.4.5, the main difference being having to use different
graphs, hence different relations between vertices. Similarly to the case of the 7-holed
sphere we start by proving that we can reduce to the study of G · O, and in order to do
so we state the following lemma, analogous of Lemma 3.4.6.

Lemma 3.5.9. Let the curves γi and the mapping classes Ri and Hi be defined as before.
Then the following relations hold:

1. Hiγi = Ri−2γi;
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αi

Hiγi

γi γi

Ri−2γi

γi−2

Figure 3.25: Equality 1 of Lemma 3.5.9.

αi

Hiγi+1

γi+1
γi+1

Ri−2γi+1

γi−2

Figure 3.26: Equality 2 of Lemma 3.5.9.

2. Hiγi+1 = Ri−2γi+1;

3. H−1
i γi = R−1

i+3γi;

4. H−1
i γi+1 = R−1

i+3γi+1;

where the subscripts are intended to be modulo 8.

Proof. For the proof of Equalities 1, 2, 3 and 4, respectively, we refer to Figures 3.25,
3.26, 3.27, 3.28.

The following corollary is analogous to Corollary 3.5.10.

Corollary 3.5.10. We have G · O = G · O.

Proof. By definition every curve αi is disjoint from every curve in O apart from γi

and γi+1, hence for j 6= i, i + 1 it follows that Hε
i γj = γj = Rjγj ∈ G · O. From this

observation combined with Lemma 3.5.9 it follows that for every i we have αi ·O ⊆ G ·O,
hence G · O ⊆ G · O. The other inclusion is trivial.
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Figure 3.27: Equality 2 of Lemma 3.5.9.

αi

H−1
i γi+1

γi+1
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R−1
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γi+3

Figure 3.28: Equality 4 of Lemma 3.5.9.
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Figure 3.29: The graph W ε
j .

Similarly to the previous section we observe that if γi and γj are disjoint (possibly
equal) then Riγj = γj . This implies that O ⊂ G · O, and that every octagon with
diagonal Rεi · O will intersect with O in four vertices, which are γi−1, γi, γi+1, and γi+4.
Note that three of these vertices are consecutive, while the forth is the one “opposite” to
the middle of the consecutive ones.

Similarly to the case we dealt with in the previous section, rigidity of G ·O will follow
from the rigidity of some of its subgraphs. The subgraphs we will study, which will play
the same role as those in Definition 3.4.9 while being slightly more simply defined, are
the following.

Definition 3.5.11. Let O be as in Definition 3.5.1. Let Ri be the one-third Dehn-twists
defines in Definition 3.5.2. Let ε ∈ {+1,−1}. For i = 1, . . . , 8 let

W ε
j = O ∪ (Rj

ε · O).

A picture of W ε
j is provided in Figure 3.29.

Analogously to Definition 3.4.10, we will now define the mirror reflection mapping
class.

Definition 3.5.12. We follow the notation introduce in Definition 3.5.1. Let r : S −→ S

the homeomorphism defined by r(x, 0) = (x, 1) and r(y, 1) = (y, 0). We will denote the
isotopy class of r as the mirror reflection ρ ∈ Mod±(Σ8)

The mirror reflection we have just defined exchanges the “front” and the “back” of the
doubled heptagon we are identifying with Σ8. This is an orientation-reversing automor-
phism of order two. Moreover, we notice that the mirror reflection ρ fixes all the curves
γi.
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γi
Riγi+2

γi+2

Riγi+2

ρ(Riγi+2)

Figure 3.30: The yellow curve is Riγi+2 while the olive one is its mirror image ρ(Riγi+2).

We observe the following, which is the computation of the stabiliser of the octagon
with diagonal O.

Lemma 3.5.13. Let O be the octagon with diagonals defined in Definition 3.5.1. Let
f ∈ Mod±(Σ8) be an extended mapping class such that f|O = IdO. Then either f = Id,
if it preserves the orientation, or f = ρ, if it is orientation-reversing.

Proof. The proof is very similar to the one for Lemma 3.4.11.
Up to composing f with ρ we can assume f to be orientation-preserving. From now

on, we will abuse notation and confuse the mapping class f with one of its representatives.
The collection of curves γ1, γ4, γ5, γ7 satisfies the hypotheses of Proposition 1.2.6.

We claim that f preserves the orientation of every one of the aforementioned curves,
hence we can apply Proposition 1.2.6 and deduce that f is isotopic to the identity.

The claim follows from the fact that if a surface homeomorphism fixes a curve but
changes its orientation, then it must exchange the two connected components of the
complementary of the curve. In particular, for this to be possible the two complementary
discs of the curve need to be of the same topological type. However, every curve γi is
3-separating, hence it bounds a 3-punctured disc on one side and a 5-punctured disc on
the other, so f must preserve its orientation. The claim is proven.

Analogously to Corollary 3.4.12, we have the following corollary, which will be useful
later to check hypothesis of Proposition 3.2.4 regarding the triviality of the stabilisers.

Corollary 3.5.14. Let i, j be such that j 6= i − 1, i, i + 1, i + 4 modulo 8. Then the
subgraph Y = O ∪ {Riγj} has trivial pointwise stabiliser under the action of Mod±(Σ8).
In particular, such subgraph has trivial pointwise stabiliser.

Proof. Let f ∈ Mod±(Σ8) be an extended mapping class such that f|Y = IdY . Then,
since f|O = IdH it follows from Lemma 3.4.11 that either f = Id or f = ρ. Since
ρ(Riγj) 6= Riγj , as can be seen in Figures 3.30, 3.31, 3.32, 3.33 for j = i+2, i+3, i+5, i+6,
respectively, it follows that f = Id.

We will focus our attention towards the proof the following proposition, which will be
the key intermediate step toward the proof of rigidity for G · O, and is a sort of rigidity
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γi

Riγi+3

γi+3

Riγi+3

ρ(Riγi+3)

Figure 3.31: The yellow curve is Riγi+3 while the olive one is its mirror image ρ(Riγi+3).

γi
Riγi+5

γi+5

Riγi+5

ρ(Riγi+5)

Figure 3.32: The yellow curve is Riγi+5 while the olive one is its mirror image ρ(Riγi+5).

γi
Riγi+6

γi+6

Riγi+6

ρ(Riγi+6)

Figure 3.33: The yellow curve is Riγi+6 while the olive one is its mirror image ρ(Riγi+6).

146



γiRiγi+5
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Figure 3.34: Equality 1 in Lemma 3.5.16.

result for the subgraphs W ε
i . However, we will not prove that such subgraphs are rigid

in the sense of Definition 1.6.1, as we will only prove that the embeddings which are
restrictions of embeddings of the entire G · O are topologically induced. However, this
will suffice for our needs.

Proposition 3.5.15. Let i : G · O ↪→ C(3)(S0,8) be an injective graph homomorphism
such that i|O = IdO. Then for everyW ε

j we have that either i|W ε
j

= IdW ε
j
or i|W ε

j
= ρ|W ε

j
.

Before we proceed we will highlight some relations between the actions of some one-
third Dehn-twists on some curves, which will be needed later. The following statement
is similar to Lemma 3.4.8, although it contains fewer relations.

Lemma 3.5.16. Let the curves γi and the mapping classes Ri and Hi be defined as
before. The following relations hold:

1. Riγi+5 = R−1
i+2γi;

2. Riγi+2 = R−1
i+2γi+5;

where subscripts are taken modulo 8.

Proof. For the proof of Equalities 1 and 2, respectively, we refer to Figures 3.8 and 3.9.
The colour scheme is chosen to be consistent with the one employed in Figure 3.20, for
i = 1.

The consequences of the previous lemma which will really be useful for us are con-
tained in the following corollary.

Corollary 3.5.17. Let the curves γi and the mapping classes Ri be defined as before.
The following facts hold:

1. The curves Riγi+2 and γi+2 are non-adjacent vertices in a copy of O inside G · O;

2. The curves Riγi+2 and γi+3 are 2-distant vertices in an octagon of a copy of O
inside G · O;
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Figure 3.35: Equality 2 in Lemma 3.5.16.

R−1
i+2γi = Riγi+5 R−1

i+2γi+1 = γi+1

R−1
i+2γi+2 = γi+2

R−1
i+2γi+3 = γi+3

R−1
i+2γi+4R−1

i+2γi+5 = Riγi+2

R−1
i+2γi+7

R−1
i+2γi+6 = γi+6

Figure 3.36: The graph R−1
i+2 · O.

3. The curves Riγi+5 and γi+6 are 2-distant vertices in an octagon of a copy of O
inside G · O;

4. The curves Riγi+2 and γi+6 are adjacent in G · O.

Proof. The proof follows immediately from the application of the relations we have
stated in Lemma 3.5.16 to the octagon with diagonals R−1

i+2 · O ⊆ G · O, as pictured in
Figure 3.36.

From now on, in order to make the notation less cumbersome, during the proofs we
will only deal with the graph W+

1 , the other cases being completely analogous. The first
step to prove the previous rigidity result is to study the projection to the Kneser graph

π : C(3)(S0,8) −→ K(8, 3)

as defined in §1.5.1.
As in the case of the 7-holed sphere one-third Dehn-twists acts on the Kneser graph

as 3-cycles: for example the mapping class R1 acts on the Kneser graph K(8, 3) as the
permutation (123).
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A copy of O in the Kneser graph is rigid thanks to [B2, Lemma 7.1]. Similarly to
what we did in Lemma 3.4.14 we will now prove a sort of rigidity result for the projection
of the graphs W ε

i , once again only considering restrictions of embeddings of the entire
G · O. Indeed, as in Proposition 3.5.15, we will only consider restriction of embeddings
of the entire G · O.

Lemma 3.5.18. Let i : G · O ↪→ C(3)(S0,8) be an edge-preserving injection such that
i|O = IdO. Then π ◦ i|W ε

j
= π|W ε

j
.

Proof. In order to simplify our notation we will prove the lemma for W+
1 , the other

cases being completely analogous. Thanks to [B2, Lemma 7,1] we can assume, using
a different labelling of punctures, that the octagon with diagonals O has the following
projection:

• π(γ1) = {1, 2, 3};

• π(γ2) = {4, 5, 6};

• π(γ3) = {7, 8, 1};

• π(γ4) = {2, 3, 4};

• π(γ5) = {5, 6, 7};

• π(γ6) = {8, 1, 2};

• π(γ7) = {3, 4, 5};

• π(γ8) = {6, 7, 8}.

From this we observe that two vertices which are 2-distant in an octagon inside a
copy of O have intersection exactly 1.

Moreover we notice that the fact that i|H = IdH implies that π(i(γj)) = π(γj) for
every j.

Keeping in mind the structure of W+
1 pictured in Figure 3.29 we can observe that the

vertex π(i(R1γ3)) is adjacent to both vertices π(i(γ2)) = {4, 5, 6} and π(i(γ7)) = {3, 4, 5},
hence

π(i(R1γ3)) ⊂ {1, 2, 7, 8} .

Similarly the vertex π(i(T1γ4)) is adjacent to both the vertex π(i(γ5)) = {5, 6, 7} and
π(i(γ8)) = {6, 7, 8}, so

π(i(R1γ4)) ⊂ {1, 2, 3, 4} .

The vertices π(i(R1γ3)) and π(i(R1γ4)) are 2-distant in an octagon in a copy of O due
to Fact 2 in Corollary 3.5.17. Thanks to a previous observation, it follows that they have
nontrivial intersection, so in particular 2 ∈ π(i(R1γ3)). Since π(i(R1γ3)) and π(i(R1γ4))

are disjoint it follows that 2 /∈ π(i(R1γ4)), hence

π(i(R1γ4)) = {1, 3, 4} = (123) · {2, 3, 4} = π(R1γ4).

For the same reason, since 1 ∈ π(R1γ4) it follows that 1 /∈ π(i(R1γ3)), hence we have
that

π(i(R1γ3)) = {2, 7, 8} = (123) · {7, 8, 1} = π(R1γ3).
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In a completely analogous fashion the vertex π(i(R1γ6)) is adjacent to both the vertex
π(i(γ5)) = {5, 6, 7} and π(i(γ2)) = {4, 5, 6}, so

π(i(R1γ6)) ⊂ {1, 2, 3, 8} .

Moreover, the vertex π(i(R1γ7)) is adjacent to both the vertex π(i(γ8)) = {6, 7, 8} and
π(i(R1γ3)) = {2, 7, 8}, as we have just proven, so

π(i(R1γ7)) ⊂ {1, 3, 4, 5} .

The vertices i(R1γ6) and i(γ7) are 2-distant in an octagon in a copy of O due to Corol-
lary 3.5.17 3, hence their projection have nontrivial intersection, from which it follows
that 3 ∈ π(i(R1γ6)). From an argument completely similar the one employed before, it
follows that 1 ∈ π(i(R1γ7)). We now have the following:

π(i(R1γ6)) = {2, 3, 8} = (123) · {8, 1, 2} = π(R1γ6);

π(i(R1γ7)) = {1, 4, 5} = (123) · {3, 4, 5} = π(R1γ7),

and the lemma is proven.

Similarly to what we did in the previous section now that we have dealt with the
combinatorics it is time to move to topological arguments to prove rigidity of the graphs
W ε
i .
Beforehand, we observe that, thanks to the rigidity of O inside C(3)(S0,8), that is

[B2, Lemma 7.2], every two curves which represent non-adjacent vertices in a copy of O
intersect exactly twice. In particular this holds for the curves in Corollary 3.5.17 1)-3).

Moreover, we state the following result, concerning uniqueness of common neighbours
in C(3)(S0,8) for vertices of O.

Lemma 3.5.19. Let α, β be two 2-distant curves in an octagon of a copy of O inside
C(3)(S0,8). Then there exists a unique curve in C(3)(S0,8) which is disjoint from both α
and β.

Proof. Let Xα (resp. Xβ) be the complementary disc of α (resp. β) containing exactly
3 marked points. Since O is rigid ([B2, Lemma 7.2]) from Figure 3.20 (for example by
looking at γ1 and γ3) we can observe that the region D = Xα ∪ Xβ is a 5-punctured
discs, hence the complementary disc Dc contains exactly 3 marked points. Every curve
disjoint from both α and β is either contained in D, or in either of the 2-punctured disc
Xα \Xβ or Xβ \Xα. It follows that the only 3-separating curve which is disjoint from
both α and β is ∂D.

We are now ready to proceed to the proof of Proposition 3.5.15

Proof of Proposition 3.5.15. In order to make the notation less cumbersome we will
only prove the result for W+

1 , the other cases being completely analogous.
We first fix some notation, as in Proposition 3.4.13. For every j let Bj be the 3-

punctured complementary disc of γj and let Oj be the 5-punctured one. For a quick way
to visualise the relations used throughout the proof we refer to Figure 3.29.
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Figure 3.37: The gray area is the region X, the striped area is the region X ′, the dotted
one is the region X ′′.

Let β = i(R1γ3). We first claim that either β = R1γ3 or β = ρ(R1γ3). We have
observed that i(γ1, β) = 2, since the two curves are non-adjacent vertices in R1 · O. It
follows that a = β ∩ O1 is a single arc with both endpoints on γ1 and disjoint from γ2.
Moreover, Fact 4 in Corollary 3.5.17, alongside the fact that the map i is defined on the
entire G · O, proves that β, and hence a, is disjoint from γ7.

Since i(γ7, γ1) = i(γ7, γ2) = 2 it follows that the region X = O1 ∩O2 ∩O7 is a twice
punctured discs containing the marked points {7, 8} ⊆ π(β), thanks to Lemma 3.5.18.
Moreover ∂X is composed of a single arc of γ1, a single arc of γ2 and two disjoint arcs
of γ7.

Let now Bβ be the complementary disc of β containing exactly 3 marked points. The
disc Bβ intersects γ1 while it is disjoint from both γ2 and γ7. It follows that the closure
of the subspace X \Bβ does not contain any marked point, and its boundary contains an
arc of γ2 and two arcs of γ7. It follows that a is isotopic to the closure of ∂X \ γ1, under
an isotopy supported inside X, and which keeps the endpoints on γ1 at every time. This
arc is depicted in Figure 3.37; in particular such arc is uniquely determined.

In order to determine β we are now left to study the topological type of the arc
a′ = β ∩ B1. Since β and γ7 are disjoint it follows that a′ ⊂ B1 ∩ O7, which is a twice-
punctured disc containing the set of marked points {1, 2}. The curve γ4, which intersects
both γ1 and γ7 exactly twice and separates the marked point 1 from 2, cuts B1 ∩O7 into
two once-punctured discs X ′, X ′′. Without loss of generality we can assume the curves
to be arranged in a way such that they are still in minimal position and transverse, but
there are two triple points, that is the triple intersection γ1 ∩ γ4 ∩ γ7 contains exactly
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Figure 3.38

two points, as in Figure 3.37. The component X ′ is a once-punctured disc such that
∂X ′ ⊂ γ1 ∪ γ4, while X ′′ is such that ∂X ′ ⊂ γ4 ∪ γ7, and moreover ∂X ∩ ∂X ′′ = γ4 ∩B1.

We have that i(β, γ4) = 2 as they are two 2-distant vertices in an octagon of a copy
of O thanks to Fact 2 of Corollary 3.5.17. From this it follows that a′ ∩X ′′ is a single
nontrivial arc with both endpoints on γ4, hence it is completely determined. Moreover,
the component of X ′′ \a which does not intersect γ7 contains the marked point 2. It now
follows that a′ ∩X ′ is composed of two arcs each with an endpoint on γ1 and the other
on γ4: we claim these arcs are isotopic. If not, the region of X ′ \ a′ whose boundary
contains the two arcs would contain the marked point 1, hence the two marked points 1, 2

would both belong to the same component of Σ8\β, which is impossible as Lemma 3.5.18

implies that
π(β) = π(R1γ3) = (123) · {7, 8, 1} = {2, 7, 8} .

It follows that there are only two possibilities for a′, and hence for β: those possibilities
are pictured in Figure 3.38, and it can be noticed that those are exactly the curves R1γ3

or ρ(R1γ3), as can be seen by comparison with Figure 3.39. The claim is proven.
Up to postcomposing with the mirror image ρ we can now assume i(R1γ3) = T1γ3.

A completely analogous argument can now be applied to R1γ7, proving that either
i(R1γ7) = R1γ7 or i(R1γ7) = ρ(R1γ7). However, the latter case is impossible since R1γ3

and ρ(R1γ7) are not disjoint, as shown in Figure 3.40. It follows that i(R1γ7) = R1γ7.
Since R1γ4 is adjacent to both i(R1γ3) = R1γ3 and i(R1γ5) = γ5 it follows from

Lemma 3.5.19 that i(R1γ4) = R1γ4. Similarly, since R1γ6 is adjacent to both the vertex
i(R1γ5) = γ5 and i(R1γ7) = γ7, an application of Lemma 3.5.19 proves that we have
i(R1γ6) = R1γ6.
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Figure 3.39: The yellow curve is R1γ3.

R1γ3

ρ(R1γ7)

Figure 3.40: The green curve is T1γ3, the pink one is ρ(T1γ7).
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Figure 3.41: The curves Riγi+5 and Ri+5γi, which are mirror images of one another.

γi

R−1
i γi+5

γi+5 γi
R−1
i+5γi

γi+5

Figure 3.42: The curves R−1
i γi+5 and R−1

i+5γi, which are mirror images of one another.

We can now conclude that if i(R1γ3) = R1γ3 then i|W+
1

= IdW+
1
. Otherwise, if

i(R1γ3) = ρ(R1γ3), composition with ρ proves that i|W+
1

= ρ|W+
1
, and the proposition is

proven.

We can now move to the proof of rigidity for the entire subgraph G · O ⊂ C(3)(Σ8).
Before we do so, we state and prove the following useful lemma.

Lemma 3.5.20. Let γi and Ri defined as before. Let ρ be the mirror reflection map.
The following relation holds:

Rεiγi+5 = ρ(Rεi+5γi)

where subscripts are intended modulo 8.

Proof. We refer to Figure 3.41 and Figure 3.42 for the ε = +1 and ε = −1 cases,
respectively.

We are now ready to prove that we the restriction of embeddings G·O ↪→ C(3)(S0,8) to
subgraphs W ε

i are consistently either always the identity or always the mirror reflection.
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Lemma 3.5.21. Let i : G · O ↪→ C(3)(S0,8) be an injective graph homomorphism such
that i|O = IdO. Then either i = IdG·O or i = ρ|G·O.

Proof. Thanks to Proposition 3.5.15, the map i induces either the identity or the mirror
reflection of each of the subgraphs W ε

j : as in the proof Lemma 3.4.16 the argument will
revolve around proving that the induced map is the same for all graphs.

First, we claim that i|W ε
j

= IdW ε
j
if and only if i|W−εj+2

= IdW−εj+2
. If this were not the

case, up to postcomposing with ρ, from Lemma 3.5.16 1 we would have

Rεjγj+5 = i(Rεjγj+5) = i(R−εj+2γi) = ρ(R−εj+2γi) = ρ(Rεjγj+5)

which is a contradiction, as can be seen in Figure 3.32. The claim is proven.
Second, we now claim that i|W ε

j
= IdW ε

j
if and only if i|W ε

j+5
= IdW ε

j+5
. If not, up to

postcomposing with ρ, thanks to Lemma 3.5.20 we would have

i(Rεj(γj+5)) = Rεj(γj+5) = ρ(Rεj+5γj) = i(Rεj+5γj)

contradicting injectivity of i, as Rεj(γj+5) 6= Rεj+5γj as can be deduced from Figures 3.41
and 3.42.

The set of subgraphs
{
W ε
j

}
can be partitioned into the following four subsets:

P1 =
{
W

(−1)k+1

2k+1

}
;

P2 =
{
W

(−1)k+1

2k

}
;

P3 =
{
W

(−1)k

2k+1

}
;

P4 =
{
W

(−1)k

2k

}
.

The first claim proves that all for all the subgraphs in the same Ph the restriction of i
is consistently the identity or the mirror reflection. Moreover we observe that W+

1 ∈ P1,
W+

6 = W+
1+5 ∈ P2, W+

3 = W+
6+5 ∈ P3 and W+

8 = W+
3+5 ∈ P4. The second claim hence

implies that the choice for the induced map is consistently the same for all the subgraphs
W ε
j . The lemma is proven.

We are now ready to prove rigidity of G ·O inside C(3)(S0,8), that is Proposition 3.5.8.

Proof of Proposition 3.5.8. Let i : G · O ↪→ C(3)(S0,8) be an injective graph homo-
morphism. Then, thanks to [B2, Lemma 7.2], up to postcomposing with an orientation
preserving mapping class ϕ ∈ Mod(S0,8), we can assume that ϕ ◦ i|O = IdO. It now
follows from Lemma 3.5.21 that either i = ϕ−1

|G·O or i = ρ ◦ ϕ−1

|G·O and both maps are
induced by extended mapping classes.

From the results we have proven so far we can deduce the following result, which is
the existence of an exhaustion for the graph C(3)(S0,8).

Theorem 3.5.22. The graph C(3)(Σ8) admits an exhaustion by finite rigid sets with
trivial pointwise stabilisers.

Proof. We can apply Proposition 3.2.4 with Γ = C(3)(Σ8), H = G, and X = G · O.
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Rigidity of X is Proposition 3.5.8. The triviality of stabilisers follows from the fact
that every set subgraph of the form (g ·X)∩X contains O and another curve of the form
Riγj for j 6= i − 1, i, i + 1, i + 4, hence it is a superset of a subgraph which has trivial
pointwise stabiliser due to Corollary 3.5.14, hence its stabiliser is itself trivial. This also
implies that X has trivial pointwise stabiliser, hence every subgraph of the exhaustion
has trivial pointwise stabiliser due to Lemma 3.2.1.

Lastly, Mod(Σ8) = 〈H〉 acts transitively on 3-separating curves in Σ8, since they
are all of the same topological type, hence there is only one orbit of vertices, so the
requirement to have an exhaustion is fulfilled.

We can now move towards the proof of the rigidity of G · O∗ ⊂ Css(Σ8), where O∗

is the augmentation of the octagon with diagonal as in Definition 3.5.6. In order to
complete this proof we will need to make sure that every embedding of O in the strongly
separating curve graph is actually contained in the subgraph C(3)(Σ8). This is the content
of the following.

Proposition 3.5.23. Let i : O ↪→ Css(Σ8) be an injective graph homomorphism. Then
we have i(O) ⊂ S(3)(Σ8).

Before we move to the proof of the previous result we state and prove a technical
lemma which will be useful for the proof of the previous proposition.

Lemma 3.5.24. Let γ ⊂ Σ8 be a 4-separating curve, and let A,B the the two comple-
mentary discs of γ. Let α, α′ ⊂ Σ8 be two different 3-separating curves both disjoint from
γ. Let δ ⊂ Σ8 be a 3 or 4-separating curve disjoint from both α and α′.

The curves α and α′ are disjoint if and only if, up to relabelling the components, we
have α ⊂ A and α′ ⊂ B.

If α and α are not disjoint from each other then either α, α′ ⊂ A or α, α′ ⊂ B.
Moreover, the curve δ is contained in the other component, it is disjoint from γ and, if
it is 4-separating, it is isotopic to γ.

Proof. For the first claim it is enough to notice that the regions A,B are 4-punctured
discs so if one of them contained both α and α′ it would have to contain two disjoint
3-punctured discs, which is clearly impossible.

For the second claim it is clear that both α, α′ belong to the same complementary
disc of γ, since they intersect with each other. Without loss of generality let us assume
that α, α′ ⊂ A. Let us argue by contradiction and suppose that i(δ, γ) > 0. Assuming
that δ and γ are in minimal position it follows that the closure of every component of
A\ δ is a possibly punctured discs and, since the intersection was not trivial, at least two
discs contain at least one puncture, so no one contains more than 3. Since both α and
α′ must be contained in the same component it follows that they are both contained in
a k-punctured disc D, with k ≤ 3. If k < 3 such a containment is straight up impossible;
on the other hand, if k = 3 then it must hold α = ∂D = α′, which is a contradiction.
It follows that δ is disjoint from γ and hence contained in B. In order to conclude
our argument we observe that the only 4-separating curve contained in B is isotopic to
∂B = γ. The lemma is proven.

We will now move to the proof of Proposition 3.5.23.
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Proof of Proposition 3.5.23. Before we commence the proof we observe that three 3-
separating curves on Σ8 cannot be pairwise disjoint (this is equivalent to saying there
are no triangles in C(3)(Σ8)). In particular it follows that if a curve γ is disjoint from two
disjoint 3-separating curves then γ must be 4-separating. Moreover we remark that two
disjoint 4-separating curves in Σ8 must be isotopic. Speaking in terms of the curve graph
this means that in any triangle inside Css(Σ8) exactly one vertex is a 4-separating curve.
Moreover, Lemma 3.5.24 implies that the two 3-separating curves in such a triangle lie
in different complementary components of the 4-separating one.

Let β1 . . . , β8 be an embedding of O into Css(Σ8), that is eight different vertices of
Css(Σ8) such that βi is adjacent to βj for j = i−1, i+1, i+4, where subscripts are taken
modulo 8. We will argue by contradiction and suppose, up to a change of labels, that the
curve β1 is 4-separating. Thanks to the previous observation this implies that the curves
β2, β5 and β8 are 3-separating. For the entire proof let A,B be the two complementary
discs of γ1, each of which contains exactly 4 marked points.

We will first deal with the case when the curve β4 is 4-separating and prove this
leads to a contradiction. The case where β6 is 4-separating is completely analogous up
to a relabelling of the vertices. This case implies that the curve β3 is 3-separating. We
claim that the curves β5 and β8 are disjoint: if not, an application of Lemma 3.5.24 with
γ = β1, α = β5, α′ = β8 and δ = β4 would imply that β1 = β4, which is impossible. Up
to exchanging the components A,B, if needed, it follows from Lemma 3.5.24 that β5 ⊂ A
and β8 ⊂ B.

The curve β2 is disjoint from β1, hence is contained in either A or B. We start by
dealing with the case where β2 ⊂ A. A picture with the edges relevant for the proof
(but which does not include all the edges between the pictured vertices) is provided in
Figure 3.43. An application of Lemma 3.5.24 with γ = β1, α = β2 and α′ = β5 and
δ = β6 proves that β6 is 3-separating and β6 ⊂ B. Similarly, β7 is disjoint from both
β6 and β8 so β7 ⊂ A. Since β3 is disjoint from both β2 and β7 it also follows that
β3 ⊂ B. Since β3 and β8 are both contained in B, another application of Lemma 3.5.24

with γ = β1, α = β3 and α′ = β8 and δ = β4 now proves that β4 = β1, which is a
contradiction.

We will now deal with the case when γ2 ⊂ B. In particular this implies that β2

and β5 are disjoint. Since β2, β5, β6 is a triangle it follows that β6 is 4-separating, hence
β7 is 3-separating. From Lemma 3.5.24, applied with γ = β6, α = β2 and α′ = β5 and
δ = β7, it follows that β7 is disjoint from either β2 or β5. In the first case the three curves
β2, β3, β7 form a triangle of 3-separating curves, which is impossible. A picture containing
the relevant edges in this case (the other being similar) is provided in Figure 3.44. In
the other case, as β5 ⊂ A and β8 ⊂ B, and in particular they are disjoint, the curves
β5, β7, β8 form a triangle of 3-separating curves, which is a contradiction.

We are now left to the case where both β4 and β6 are 3-separating curves. We will
first deal with the case where, after switching components and/or β2 with β8 if need be,
we have β2 ⊂ A and β5 ⊂ B. In particular this implies that β2 and β5 are disjoint, hence
the curves β2, β5, β6 form a triangle of 3-separating curves, which is a contradiction. This
case is pictured in Figure 3.45.

We are now left with the case when, up to switching components, β2, β5, β8 ⊂ A. A
picture with the edges that are relevant to this case is displayed in Figure 3.46. From
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β1

β4

β2 ⊂ A

β5 ⊂ A

β7 ⊂ A

β3 ⊂ B

β6 ⊂ B

β8 ⊂ B

Figure 3.43: The curves β1, β4 are 4-separating.

β1

β4

β2 ⊂ B

β5 ⊂ A

β7

β3

β6

β8 ⊂ B

Figure 3.44: The curves β1, β4, β6 are 4-separating.
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Figure 3.45: The curve β1 is 4-separating.

Lemma 3.5.24, applied with γ = β1, α = β2 and α′ = β5 and δ = β6, it follows that
β6 ⊂ B, in particular it is disjoint from β8, since β8 ⊂ A. The curves β6, β7, β8 form
a triangle, hence from the preliminary observation it follows that β7 is 4-separating. A
completely analogous argument proves that β4 ⊂ B and β3 is 4-separating. It follows
that the two distinct curves β3 and β7 are both 4-separating and disjoint, hence β3 = β7

which is a contradiction. The proof is now complete.

Now that we have taken care of the technical details we are read to prove the rigidity
of G · O∗ ⊂ Css(Σ8).

Proof of Proposition 3.5.7. Let i : G · O∗ ↪→ Css(Σ8) be an edge-preserving injec-
tion. Since G · O is the union of copies of O it follows from Proposition 3.5.23 that the
restriction iG·O is an edge-preserving embedding G · O ↪→ C(3)(Σ8). Then, thanks to
Proposition 3.5.8, up to postcomposing with an extended mapping class ϕ ∈ Mod±(Σ8)

we can assume ϕ ◦ i|G·O = IdG·O.
By Definition 3.5.6 the curve ζ is the unique curve in Css(Σ8) disjoint from γ1, γ2,

γ5 and γ6. It follows that for every j the curve Rjζ is disjoint from Rjγ1, Rjγ2, Rjγ5

and Rjγ6. The curve ϕ ◦ i(Rjζ) (which is ζ itself for j = 1, 2, 5, 6) must be disjoint
from Rjγ1, Rjγ2, Rjγ5 and Rjγ6: Lemma 3.5.5 proves that these curve admit a unique
common neighbour, which is Rjζ hence ϕ ◦ i(Rjζ) = Rjζ. The same argument shows
that for every j we have ϕ◦i(Hjζ) = Hjζ. It follows that ϕ◦i = IdG·O∗ , hence i = ϕ−1

|G·O∗

which was our claim.

We can now conclude the proof of Theorem E for Σ8.

Proof of Theorem E for Σ8. We can now apply Proposition 3.2.4 with Γ = Css(Σ8),
H = G, and X = G · O∗.

Rigidity of X is Proposition 3.5.7. The triviality of stabilisers follows form the fact
that every set of the form g · O∗ ∩ O∗ contains O and another curve Riγj such that
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β1

β4 ⊂ B

β2 ⊂ A

β5 ⊂ A

β7

β3

β6 ⊂ B

β8 ⊂ A

Figure 3.46: The curves β1, β3, β7 are 4-separating.

j 6= i − 1, i, i + 1, i + 4, hence it is a superset of a set with trivial pointwise stabilisers
due to Corollary 3.5.14, hence its stabiliser is itself trivial. This also implies that O∗ has
trivial stabiliser, hence every subgraph of the exhaustion has trivial pointwise stabiliser
due to Lemma 3.2.1.

Lastly, the graph O∗ contains both 3-separating and 4-separating curves, hence it
intersects every orbit of curves under the action of Mod(Σ8). It follows that the require-
ment to have an exhaustion is fulfilled, too.
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3.6 Examples of non-Exhaustable Graphs

In this section we will briefly present a couple of examples of graphs which are combi-
natorially rigid, and with nice metric properties, for which the co-Hopfian property as
in Proposition 3.2.5 fails. We can hence deduce that those graphs do not admit any
exhaustion by rigid sets with trivial stabilisers.

The graphs we will use will be graphs of curves and arcs on infinite-type surfaces
(that is surfaces S such that the fundamental group π1(S) is not finitely generated).
Indeed, under quite weak hypotheses, these graphs are combinatorially rigid, that is
every automorphism is induced by an extended mapping class. Moreover, we can chose
graphs such that the action of the extended mapping class group is transitive on both
vertices and edges. Lastly, it is possible to choose examples which are metrically nice, in
particular which have infinite diameter and are Gromov-hyperbolic (for a definition see
[B1, §6.1], for instance).

The main property of infinite-type surfaces we will use is the fact that they admit
proper subsurfaces which are homeomorphic to the entire surface, but not isotopic to it.
This can be considered a failure of the co-Hopfian property for the category of infinite-
type surfaces, so it should not be surprising that graphs arising from such objects fail to
be co-Hopfian, as well.

The examples we are about to present can be adapted to a large number of infinite-
type surfaces. We will, however, just restrict to the possibly simplest case, that is the
one of a surface with no genus and a Cantor set of marked points. Such a surface will be
called a Cantor tree-surface and is defined as follow.

Definition 3.6.1. A Cantor set is a totally disconnected compact metrisable space such
that every point is an accumulation point (see [Mo, p.83]).

Let C ⊂ S0,0 be a Cantor set on the 2-dimensional sphere. The surface (S,C), that
is a sphere with the Cantor set C as set of marked points, is called a Cantor tree-surface.

Before we move forward, let us notice that the embedding of a Cantor set into R2,
hence into the sphere S0,0, is unique up to homeomorphisms. Indeed, [Mo, Theorem 8,
§ 12] proves that every two Cantor set are (abstractly) homeomorphic, while [Mo, The-
orem 7, §13] stated that every homeomorphism between two Cantor sets embedded into
R2 extends to a homeomorphism of the entire plane. This implies that the Cantor tree-
surface is unique up to homeomorphism.

We will now define the graph for which we are going to show that the co-Hopfian
property does not hold, as defined in [S-C, §5]

Definition 3.6.2. Let (S,C) be the Cantor tree-surface. Let p ∈ S be point on S \X.
Let A(S, p) be the loop graph on S based at the point p, that is the graph such that:

Vertices There is a vertex for every isotopy class of simple parametrised arcs with both
endpoints at p, and whose interior is disjoint from p, where the isotopy is relative
to the endpoints;

Edges There is an edge between two arcs if they admit representatives only intersecting
at p.
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The following result holds.

Theorem 3.6.3. Let (S,C) be the Cantor tree-surface. Let p ∈ S \ C. Let A(S, p) be
the loop graph based at p. The following facts hold:

1. The graph A(S, p) is vertex-transitive, that is, the action of Aut(A(S, p)) on vertices
is transitive;

2. The graph A(S, p) is edge-transitive, that is, the action of Aut(A(S, p)) on edges is
transitive;

3. The graph A(S, p) is rigid, that is Aut(A(S, p)) ∼= Mod±(S);

4. The graph A(S, p) has infinite diameter and is Gromov-hyperbolic;

5. The graph A(S, p) does not admit an exhaustion by rigid sets with trivial pointwise
stabilisers.

Proof. Properties 1 and 2 follow from the fact that every complementary component
of any arc on S is a disc with a Cantor set of marked points, and every two arcs only
intersecting in p separate S into three discs with a Cantor set of marked points.

Property 3 is [S-C, Theorem 1].
Property 4 is [AFP, Theorem 1.1]. It is worth nothing (as also done by the authors)

that the proof of hyperbolicity is essentially the same as the one for hyperbolicity of the
curve graph on finite type surfaces given in [PS], as that proof did not use at any point
the fact that surfaces are of finite type.

Property 5 follow from the fact that A(S, p) admits an embedding onto a proper
subgraph: indeed, if A(S, p) admitted an exhaustion by rigid sets with trivial pointwise
stabilisers then Proposition 3.2.5 would imply that every embedding of the graph is an
automorphism. To see that A(S, p) admits an embedding onto a proper subgraph let γ
be a curve on S disjoint from p. Let Γ ⊂ A(S, p) be the subgraph of loops disjoint from
a. Let S′ be the component of S \ γ containing p. Then Γ = A(S′, p). We have that
S′ is homeomorphic to S (we are abusing notation and treat the puncture of S′ as a
marked point). In particular it follows that the entire loop graph A(S, p) is isomorphic
to A(S′, p) = Γ, which is a proper subgraph.

Another closely related example of a graph having an embedding onto a proper sub-
graph, hence not admitting an exhaustion by finite rigid set with trivial pointwise sta-
bilisers, is the curve graph of the Cantor tree-surface C(S).

Since the surface S is of infinite-type, the curve graph C(S) has diameter 2, so in
particular it is more trivial than the loop graph, at least from a metrical viewpoint.
Apart from this, though, the other properties which we have highlighted for the loop
graph in the previous theorem still hold for C(S).

Theorem 3.6.4. Let (S,X) be the Cantor tree-surface. Let C(S) be the curve graph of
S. The following facts hold:

1. The graph C(S) is vertex-transitive;

2. The graph C(S) is edge-transitive;
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3. The graph C(S) is rigid, that is Aut(C(S)) ∼= Mod±(S);

4. The graph C(S) does not admit an exhaustion by rigid sets with trivial pointwise
stabilisers.

Proof. Properties 1,2, and 4 follow from analogous arguments as Properties 1,2, and 5
in the proof of Theorem 3.6.3.

Property 3 is [HMV, Theorem 2].
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