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Abstract. In this paper, we improve some estimates from [7] for solutions
of the heat equation with initial conditions that are large ‘at infinity’
and employ them to obtain suitable estimates on the solutions of the
Ornstein–Uhlenbeck semigroup [solutions of ut − Δu = αx · ∇u] for the
same class of unbounded data.
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1. Introduction

In two previous papers [6,7], we considered solutions of the heat equation

ut − Δu = 0, x ∈ R
d, t > 0, u(x, 0) = u0(x) (1.1)

given by

u(x, t) = S(t)u0(x) :=
1

(4πt)d/2

∫
Rd

e− |x−y|2
4t u0(y) dy, x ∈ R

d, t > 0, (1.2)

with initial data in the weighted spaces of Radon measures

Mε(Rd) :=
{

μ ∈ Mloc(Rd) :
∫
Rd

ρε(x) d|μ|(x) < ∞
}

;
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or of locally integrable functions

Lp
ε(R

d) :=
{

f ∈ Lp
loc(R

d) :
∫
Rd

ρε(x)|f(x)|p dx < ∞
}

for 1 ≤ p < ∞ with the norm

‖f‖Lp
ε(Rd) :=

(∫
Rd

ρε(x)|f(x)|p dx
) 1

p

; (1.3)

and for p = ∞

L∞
ε (Rd) :=

{
f ∈ L∞

loc(R
d) : sup

x∈Rd

ρε(x)|f(x)| < ∞
}

with the norm ‖f‖L∞
ε (Rd) := supx∈Rd ρε(x)|f(x)|. Here, the weight functions

ρε, ε > 0, are given by

ρε(x) =
( ε

π

)d/2

e−ε|x|2 ,
∫
Rd

ρε(x) dx = 1.

These spaces satisfy

Lp
ε(R

d) ⊂ Lq
ε(R

d) ⊂ L1
ε(R

d) ⊂ Mε(Rd), 1 ≤ q ≤ p < ∞,

and the last inclusion is an isometry.
We showed in [6] that since these spaces allow initial data which may

be very large at infinity, these solutions may not exist for all time, by a
mechanism of mass moving from infinity. Indeed, for a non-negative initial
data in Mε(Rd), the solution may only exist up to T (ε) = 1

4ε . We also
characterized in [6] those initial data and the points at which the solution
blows up. As a consequence of the results above, the heat equation defines a
global semigroup in the Fréchet spaces

L1
0(R

d) =
⋂
ε>0

L1
ε(R

d), M0(Rd) =
⋂
ε>0

Mε(Rd),

Lp
0(R

d) =
⋂
ε>0

Lp
ε(R

d), and L∞
0 (Rd) =

⋂
ε>0

L∞
ε (Rd)

which satisfy

Lp
0(R

d) ⊂ Lq
0(R

d) ⊂ L1
0(R

d) ⊂ M0(Rd), 1 ≤ q ≤ p < ∞.

This semigroup is shown in [7] to be analytic and to have suitable smoothing
estimates.

In particular, in [7], we obtain quantitative smoothing estimates for the
semigroup of the type

‖u(t)‖Lq
qδ(R

d) ≤ cp,q
(1 + 4δt)

d
2 (1− 1

q )

(4δt)
d
2 (

1
p − 1

q )
‖u0‖Lp

pδ(t)(R
d) (1.4)

or 1 ≤ p ≤ q < ∞ with any δ > 0 and δ(t) = δ
1+4δt .

One of our main goals here is to provide an improved set of estimates

‖u(t)‖Lq
qδ(R

d) ≤ cp,q

(
1 + 4pδt

4pδt

) d
2 (

1
p − 1

q )

‖u0‖Lp
δp(t)(R

d), δp(t) =
pδ

1 + 4pδt

(1.5)



MJOM Estimates for the Heat Flow in Optimal Spaces Page 3 of 21 70

for 1 ≤ p ≤ q < ∞.
Both (1.4) and (1.5) share some common features. First, to estimate

the solution at time t in a fixed space Lq
qδ(R

d), it is necessary to measure the
initial data in the space Lp

pδ(t)(R
d) or Lp

δp(t)
(Rd), respectively, which changes

with time, requiring better and better integrability of u0 as t increases, since
pδ(t) and δp(t) are decreasing. Second, besides the typical term t−

d
2 (

1
p − 1

q ) that
describes the time singularity of the solution for short times, an algebraically
increasing term (1 + 4δt)

d
2 (1− 1

q ) or (1 + 4δt)
d
2 (

1
p − 1

q ), respectively, appears,
reflecting the fact that we are dealing with functions that are very large
at infinity. This term reflects the mechanism of mass moving from infinity
that was shown in [6] to be able to produce nonlinear-like behaviour in the
solutions of (1.1).

On the one hand, since pδ(t) > δp(t), Lp
δp(t)

(Rd) ⊂ Lp
pδ(t)(R

d) with an
inclusion constant that is bounded in t > 0 and then (1.4) implies an estimate
like (1.5) but with a worse time-dependent constant. On the other hand,
(1.5) does not imply (1.4). Notice that (1.5) requires stronger integrability
conditions on the initial data than (1.4), but the time-dependent constant
is bounded in the former and unbounded in the latter as t → ∞ provided
p > 1.

In the next section, we prove (1.5) along with new versions of the other
estimates in [7] that can be improved in a similar way. In particular, we refine
the conditions on the initial data required to guarantee that the solution
remains bounded or decays to zero as t → ∞; see Proposition 2.6.

These improved estimates will have an impact in the forthcoming anal-
ysis in [8] for the non-autonomous linear problem and applications to elliptic
equations. In this paper, we demonstrate the utility of (1.5) by applying these
estimates to the Ornstein–Uhlenbeck semigroup in Sect. 3

ut − Δu = αx · ∇u, x ∈ R
d, t > 0, u(x, 0) = u0(x); (1.6)

see [1,3–5]. Here, we deal simultaneously with the cases α > 0 and α <
0, and our results are consequences of the improved estimates above: they
cannot be obtained using the earlier estimates (1.4). In particular, we show
optimal results for global existence or blow-up in finite time. For solutions
that exist for all times, we obtain a complete set of smoothing estimates,
including derivatives. Those estimates use suitable Fréchet spaces when α > 0
and extend and recover some known estimates in the “invariant measure
spaces” when α < 0; see the references above. We also obtain results on
the asymptotic behaviour and decay of solutions, including the complexity of
behaviour for α > 0.

2. Improved Lp
ε (R

d) Estimates

In this section, we improve several estimates obtained in [7]; in particular, we
will obtain (1.5). For this, a crucial tool is a result from [7] that characterizes
Lp

pε(R
d), for 1 < p < ∞, as the complex interpolation spaces between L1

ε(R
d)
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and L∞
ε (Rd), that is

Lp
pε(R

d) = [L1
ε(R

d), L∞
ε (Rd)] 1

p′ (2.1)

with norm

|||f |||p,ε := ‖f‖[L1
ε(R

d),L∞
ε (Rd)] 1

p′
= ‖fρε‖Lp(Rd) =

(
ε

π

) d
2 (1− 1

p ) 1
pd/2p

‖f‖Lp
pε(Rd);

(2.2)
see [2]. Note that the natural norm on the interpolation space differs from
the norm on Lp

pε(R
d) by a factor that depends on both p and ε.

The following basic (end point) estimates were proved in [6] and will be
used further below.

Proposition 2.1. If u0 ∈ M0(Rd), then u(t) = S(t)u0 given by (1.2) satisfies
the following estimates for any δ > 0, t > 0 and δ(t) = δ

1+4δt .
(i)

‖u(t)‖L1
δ(R

d) ≤ ‖u0‖Mδ(t)(Rd), t > 0 (2.3)
with an equality if u0 ≥ 0.

(ii) For all t > 0, u(t) ∈ L∞
0 (Rd) and

‖u(t)‖L∞
δ (Rd) ≤

(
1 + 4δt

4πt

)d/2

‖u0‖Mδ(t)(Rd). (2.4)

(iii) For any 1 ≤ q < ∞

‖u(t)‖Lq
qδ(R

d) ≤ qd/2q

(
1 + 4δt

4δt

) d
2 (1− 1

q )

‖u0‖Mδ(t)(Rd). (2.5)

(iv) If u0 ∈ L∞
0 (Rd), then u(t) ∈ L∞

0 (Rd) for all t > 0 and

‖u(t)‖L∞
δ (Rd) ≤ (1 + 4δt)d‖u0‖L∞

δ(t)(R
d). (2.6)

Now, we prove the improved regularity estimates (1.5). This result im-
proves Theorem 4.6 in [7].

Theorem 2.2. If u0 ∈ Lp
0(R

d) with 1 ≤ p < ∞, then u(t) ∈ Lq
0(R

d) for any
1 ≤ p ≤ q < ∞ and t > 0. Moreover, for any δ > 0, t > 0, we have

‖u(t)‖Lq
qδ(R

d) ≤
(

q

p

)d/2q (
1 + 4pδt

4pδt

) d
2 (

1
p − 1

q )

‖u0‖Lp
δp(t)(R

d), (2.7)

where

δp(t) =
pδ

1 + 4pδt
.

In particular, setting q = p, we have

‖u(t)‖Lp
pδ(R

d) ≤ ‖u0‖Lp
δp(t)(R

d). (2.8)

For q = ∞, we have

‖u(t)‖L∞
δ (Rd) ≤

(
δ

π

) d
2

(
1 + 4pδt

4pδt

) d
2p

‖u0‖Lp
δp(t)(R

d). (2.9)
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Proof. (i) We first prove (2.7) for q = p. For this, setting 0 < δ = 1
4τ , from

(1.2), we have

e−δ|x|2 |u(x, t)| ≤ 1
(4πt)d/2

∫
Rd

e−|x|2/4τe−|x−z|2/4t|u0(z)|dz (2.10)

with u0 ∈ L1
0(R

d), 1 < p < ∞; by Jensen’s inequality, we get

e−pδ|x|2 |u(x, t)|p ≤ 1
(4πt)d/2

∫
Rd

e−p|x|2/4τ |u0(z)|pe−|x−z|2/4t dz. (2.11)

From this, we obtain∫
Rd

e−pδ|x|2 |u(x, t)|p dx

≤ 1
(4πt)d/2

∫
Rd

( ∫
Rd

e−p|x|2/4τe−|x−z|2/4t dx

)
|u0(z)|p dz

and rearranging squares as

|x|2
τ
p

+
|x − z|2

t
=

t + τ
p

t τ
p

∣∣∣∣∣x −
τ
p

t + τ
p

z

∣∣∣∣∣
2

+
|z|2

t + τ
p

and using
∫
Rd

exp

(
−

t + τ
p

4t τ
p

∣∣∣∣∣x −
τ
p

t + τ
p

z

∣∣∣∣∣
2)

dx

=
∫
Rd

exp

(
−

t + τ
p

4t τ
p

|x|2
)

dx =

(
4πt τ

p

t + τ
p

) d
2

=
(

4πtτ

pt + τ

) d
2

and 0 < δ = 1
4τ , we have

∫
Rd

e−pδ|x|2 |u(x, t)|p dx ≤ 1

(4πt)d/2

(
4πt

1 + 4pδt

) d
2

∫
Rd

exp
(
− |z|2

4(t + τ
p
)

)
|u0(z)|p dz

=
1

(1 + 4pδt)
d
2

∫
Rd

e−δp(t)|z|2 |u0(z)|p dz.

Therefore

‖u(t)‖p

L
p
pδ(R

d)
≤

(
pδ

π

) d
2 1

(1 + 4pδt)
d
2

∫
Rd

e−δp(t)|z|2 |u0(z)|p dz

=

(
pδ

π

) d
2 1

(1 + 4pδt)
d
2

(
π

δp(t)

) d
2

‖u0‖p

L
p
δp(t)(R

d)
= ‖u0‖p

L
p
δp(t)(R

d)
.

(ii) Now, we prove (2.9). For this, from (2.11)

e−δ|x|2 |u(x, t)| ≤ 1
(4πt)d/2p

(∫
Rd

e−p|x|2/4τ |u0(z)|pe−|x−z|2/4t dz

) 1
p

and rearranging the squares as above, we get

e−δ|x|2 |u(x, t)|
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≤ 1

(4πt)d/2p

(∫
Rd

exp

(
− t + τ

p

4t τ
p

∣∣∣∣∣x −
τ
p

t + τ
p

z

∣∣∣∣∣
2)

exp

(
− |z|2

4(t + τ
p
)

)
|u0(z)|p dz

) 1
p

≤ 1

(4πt)d/2p

(∫
Rd

exp
(
− |z|2

4(t + τ
p
)

)
|u0(z)|p dz

) 1
p

=
1

(4πt)d/2p

(∫
Rd

e−δp(t)|z|2 |u0(z)|p dz

) 1
p

,

which leads to

sup
x∈Rd

e−δ|x|2 |u(x, t)| ≤ 1
(4πt)d/2p

(∫
Rd

e−δp(t)|z|2 |u0(z)|p dz

) 1
p

.

Then, we get

‖u(t)‖L∞
δ (Rd) ≤

(
δ

π

) d
2 1

(4πt)d/2p

(
π

δp(t)

) d
2p

‖u0‖Lp
δp(t)(R

d)

=
(

δ

π

) d
2

(
1 + 4pδt

4pδt

) d
2p

‖u0‖Lp
δp(t)(R

d)

and (2.9) follows.
(iii) Using (2.2), we rewrite (2.8) as

|||u(t)|||p,δ ≤
(

δ

π

) d
2 (1− 1

p ) 1
pd/2p

‖u0‖Lp
δp(t)(R

d).

Interpolating this and (2.9), we get for any 0 < θ < 1

‖u(t)‖[Lp
pδ(R

d),L∞
δ (Rd)]θ

≤
(

δ

π

) θd
2

(
1 + 4pδt

4pδt

) θd
2p

(
δ

π

) d
2 (1− 1

p )(1−θ) 1
pd(1−θ)/2p

‖u0‖Lp
δp(t)(R

d).

By reiteration of the interpolation in (2.1), we have that for θ = 1 − p
q ,

with q > p, we get

[Lp
pδ(R

d), L∞
δ (Rd)]θ = Lq

qδ(R
d).

Hence, taking θ = 1 − p
q , this leads to the estimate

|||u(t)|||q,δ ≤
(

δ

π

) d
2 (1− p

q )
(

1 + 4pδt

4pδt

) d
2 (

1
p − 1

q )
(

δ

π

) d
2 (

p
q − 1

q ) 1
pd/2q

‖u0‖Lp
δp(t)(R

d).

(2.12)
From (2.2), we get
(

δ

π

) d
2 (1− 1

q ) 1
qd/2q

‖u(t)‖Lq
qδ(R

d)

≤
(

δ

π

) d
2 (1− p

q )
(

1 + 4pδt

4pδt

) d
2 (

1
p − 1

q )
(

δ

π

) d
2 (

p
q − 1

q ) 1
pd/2q

‖u0‖Lp
δp(t)(R

d),

which leads to (2.7). �
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We can also obtain the following bounds on the derivatives of the solu-
tions. This result improves Proposition 4.7 in [7].

Proposition 2.3. If u0 ∈ Lp
0(R

d) with 1 ≤ p ≤ ∞, take any multi-index α ∈
N

d, any 1 ≤ p ≤ q < ∞, any δ > 0, γ > 1 and define δ̃p(t) = pδ
1+4pγδt for

t > 0. Then

‖Dα
x u(t)‖Lq

qδ(R
d) ≤ cα,p,q,δ,γ

t
|α|
2

(
1 + 4pγδt

t

) d
2 (

1
p − 1

q )

‖u0‖Lp

δ̃p(t)
(Rd)

and

‖Dα
x u(t)‖L∞

δ (Rd) ≤ cα,p,δ,γ

t
|α|
2

(
1 + 4pγδt

t

) d
2p

‖u0‖Lp

δ̃p(t)
(Rd).

Proof. Using, for γ > 1

|Dα
x u(x, t)| ≤ cα,γ

td/2+|α|/2

∫
Rd

e− 1
γ

|x−y|2
4t d|u0|(y), (2.13)

the right-hand side is a multiple of the solution of the heat equation with
initial data |u0| in a time t′ = γt, with the extra factor 1

t
|α|
2

.

Hence, we can proceed as in Theorem 2.2 and we can obtain all estimates
there with the right-hand side in terms of t′ = γt and with δ̃p(t) = pδ

1+4pδt′ .
Writing everything in terms of t, we get analogously to (2.9)

‖Dα
x u(t)‖L∞

δ (Rd) ≤ cα

(
1 + 4pγδt

4pγδt

) d
2p

‖u0‖Lp

δ̃p(t)
(Rd)

and analogously to (2.12)

|||Dα
x u(t)|||q,δ ≤ cα

t
|α|
2

(
1 + 4pγδt

4pγδt

) d
2 (

1
p − 1

q )

‖u0‖Lp

δ̃p(t)
(Rd).

Again, using the norms (1.3) and (2.2), we get the result. �
Notice that all the estimates we have obtained so far in this section

have been for initial data in the spaces Lp
0(R

d), 1 ≤ p ≤ ∞. Now, we will
use the fact that for 1 ≤ p < ∞, the space Lp

0(R
d) is dense in all spaces

Lp
ε(R

d) for ε > 0; see [7]. Given this, a density argument allows us to extend
the estimates above to initial data in the spaces Lp

ε(R
d), where solutions of

the heat equation may exist only for finite time; see [6]. This result improves
Proposition 4.10 in [7].

Proposition 2.4. Assume that ε > 0 and set T (ε) = 1
4ε . For every δ > ε,

define δp(t) = pδ
1+4pδt . For any u0 ∈ Lp

pε(R
d) with 1 ≤ p < ∞ and for any

1 ≤ p ≤ q < ∞, we have

‖u(t)‖Lq
qδ(R

d) ≤ cp,q

(
1 + 4pδt

4pδt

) d
2 (

1
p − 1

q )

‖u0‖Lp
δp(t)(R

d)

‖u(t)‖L∞
δ (Rd) ≤ cp,∞

(
1 + 4pδt

4pδt

) d
2p

‖u0‖Lp
δp(t)(R

d),

which hold for 0 < t ≤ 1
p

(
T (ε) − T (δ)

)
.
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Proof. For u0 ∈ Lp
pε(R

d) ⊂ L1
pε(R

d), (2.7) and (2.9) remain valid as long as
0 < t < T (pε) = 1

pT (ε) and δp(t) ≥ pε, i.e., 0 < t ≤ 1
p

(
T (ε) − T (δ)

)
. �

We now rephrase this result, estimating the solution in a norm that de-
pends on time, but the initial space is fixed. This result improves Proposition
4.11 in [7].

Proposition 2.5. Assume that ε > 0 and 0 < t < T (ε) = 1
4ε . For any u0 ∈

Lp
pε(R

d) with 1 ≤ p < ∞ and for any 1 ≤ p ≤ q < ∞, we have for 0 < t <

T (pε) = 1
pT (ε) and εp(t) = ε

1−4pεt

‖u(t)‖Lq
qεp(t)(R

d) ≤ cp,q
1

(4pδt)
d
2 (

1
p − 1

q )

1

(1 − 4pεt)
d
2 (

1
p − 1

q )
‖u0‖Lp

pε(Rd)

‖u(t)‖L∞
εp(t)(R

d) ≤ cp,∞
1

(4pδt)
d
2p

1

(1 − 4pεt)
d
2p

‖u0‖Lp
pε(Rd).

Proof. We set δp(t) = pε, that is, 1 + 4pδt = δ
ε and δ = εp(t) = ε

1−4pεt for
0 < t < 1

pT (ε). Then, Proposition 2.4 gives the result. �

Notice that estimates on derivatives in Proposition 2.3 can be extended
along the same lines.

As a consequence of the results above, we obtain the following charac-
terization of the initial data for which the solution of the heat equation stays
bounded or decays to zero in the Fréchet spaces Lq

0(R
d). This result improves

parts (ii) and (iii) in Proposition 5.1 in [7].

Proposition 2.6. If u0 ∈ Lp
0(R

d), 1 ≤ p < ∞, then u(t) = S(t)u0 is bounded
in Lq

0(R
d), p ≤ q ≤ ∞ if

‖u0‖Lp
ε(Rd) ≤ C, ε → 0,

while it decays to zero in Lq
0(R

d) provided that

‖u0‖Lp
ε(Rd) → 0, ε → 0.

Proof. This follows from (2.7) and (2.9) where we set ε = δp(t) = pδ
1+4pδt → 0

as t → ∞, and then, for large t, the factor 1+4pδt
4pδt is bounded. �

Observe that an analogous result can be obtained for the derivatives
Dαu(x, t), from (2.13) by adding a factor ε|α|/2 to the estimates on u0 above.

3. The Ornstein–Uhlenbeck Semigroup

In this section, we consider the Ornstein–Uhlenbeck semigroup defined by
the solutions of the problem

ut − Δu = αx · ∇u, x ∈ R
d, t > 0, u(x, 0) = u0(x) (3.1)

with α ∈ R, α 
= 0. We will derive estimates on the solutions by means
of the results in the previous section. In more general, Ornstein–Uhlenbeck
equations have been thoroughly studied in [1,3–5] and references therein.



MJOM Estimates for the Heat Flow in Optimal Spaces Page 9 of 21 70

Observe that in the absence of diffusion, integrating along characteristics
leads to

u(x, t) = u0(xeαt), x ∈ R
d, t > 0.

Hence, we look for solutions of (3.1) of the form

u(x, t) = w(xeαt, s(t)), s(0) = 0.

Theorem 3.1. For ε > 0 and u0 ∈ Mε(Rd), the function

u(x, t) = w(xeαt, s(t)), s(t) =
e2αt

2α
− 1

2α
, x ∈ R

d, t > 0

with

w(y, s) =
1

(4πs)d/2

∫
Rd

e− |y−z|2
4s du0(z), y ∈ R

d, s > 0

is a classical solution of (3.1) for 0 < t < TOU (ε), where
(i) if α > −2ε and α 
= 0 then TOU (ε) is the unique solution of s(t) = 1

4ε ;
(ii) if α ≤ −2ε, then TOU (ε) = ∞.

Moreover, for every ϕ ∈ Cc(Rd) and 0 ≤ t < TOU (ε)∫
Rd

ϕu(t) →
∫
Rd

ϕ du0, t → 0+,

i.e., u(t) → u0 as t → 0+ in the sense of measures.
Also, if we define ε̃(t) := εe2αt

(1−4εs(t)) , then we have

‖u(t)‖L1
ε̃(t)(R

d) ≤ ‖u0‖Mε(Rd), 0 < t < TOU (ε)

with equality if u0 ≥ 0.
Finally, if u0 ≥ 0 and is non-trivial, then u(x, t) > 0 for all (x, t).

Proof. Looking for a solution of (3.1) of the form u(x, t) = w(xeαt, s(t)),
s(0) = 0, gives

ws
s′(t)
e2αt

− Δw = 0.

Then, we take s′(t) = e2αt which, thanks to the results in [6] for w(y, s),
means that u(x, t) is a classical solution of (3.1) as w is defined for 0 < s < 1

4ε .
Hence, u is defined as long as s(t) < 1

4ε , that is, for 0 < t < TOU (ε). Since
s(t) is increasing and as t → ∞

s(t) =
e2αt

2α
− 1

2α
→

{
1

2|α| if α < 0

∞ if α > 0,

we get the description of TOU (ε) in the statement.
Also, for every ϕ ∈ Cc(Rd) and 0 < t < TOU (ε)∫

Rd

ϕu(t) = edαt

∫
Rd

ϕ(ye−αt)w(y, s(t)) dy = edαt

∫
Rd

S(s(t))
(
ϕ(·e−αt)

)
du0,

where we have used the results in [6], and for η ∈ Cc(Rd), we denote by S(s)η
the solution of the heat equation. Observe then that since |ϕ(x)| ≤ Ae−γ|x|2 ,
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x ∈ R
d, with γ > 2ε, |ϕ(xe−αt)| ≤ Ae−γ̃|x|2 with γ̃ > ε for all t suffi-

ciently close to 0. Hence, by Corollary 3.4 in [6], we have |S(s)ϕ(·e−αt)|(x) ≤
Ce−ε|x|2 ∈ L1(d|u0|). Also, S(s(t))ϕ(·e−αt)(x) → ϕ(x) for x ∈ R

d as t → 0,
see, e.g., Lemma 3.3 in [6], and then, Lebesgue’s theorem gives∫

Rd

S(s(t))
(
ϕ(·e−αt)

)
du0 →

∫
Rd

ϕ du0,

as t → 0 and we get the result.
Now, observe that for any t > 0 and δ > 0, we have

‖w(·eαt)‖L1
δ(R

d) =
(

δ

π

)d/2 ∫
Rd

e−δ|x|2 |w(xeαt)|dx

=
(

δe−2αt

π

)d/2 ∫
Rd

e−δe−2αt|y|2 |w(y)|dy = ‖w‖L1
δe−2αt (R

d).

Also, from the results in [6], for 0 < s < T (ε) and for any δ ≥ 1
4(T (ε)−s) > ε,

we have w(s) ∈ L1
δ(R

d), and if we set ε(s) := 1
4(T (ε)−s) = ε

(1−4εs) , then
‖w(s)‖L1

ε(s)(R
d) ≤ ‖u0‖Mε(Rd), with equality if u0 ≥ 0.

Therefore

‖u(t)‖L1
δ(R

d) = ‖w(s(t))‖L1
δe−2αt (R

d),

so we choose δe−2αt = ε(s(t)), that is, δ = e2αt

4(T (ε)−s(t)) = εe2αt

(1−4εs(t)) := ε̃(t),
and we get

‖u(t)‖L1
ε̃(t)(R

d) ≤ ‖u0‖Mε(Rd), 0 < t < TOU (ε).

3.1. Blow-Up in Finite Time

For a non-negative 0 ≤ u0 ∈ Mloc(Rd), define its ‘optimal index’ as

ε0(u0) := inf{ε : u0 ∈ Mε(Rd)} = sup{ε : u0 /∈ Mε(Rd)} ≤ ∞. (3.2)

Consider now the case α > 0 or α < 0 and |α| < 2ε0 and define then
TOU (ε0) is the unique solution of s(t) = 1

4ε0
.

Theorem 3.2. Assume that 0 ≤ u0 ∈ Mloc(Rd) with optimal index, such that
0 < ε0 < ∞ and either α > 0 or α < 0 and |α| < 2ε0.

Then, the solution u of the Ornstein–Uhlenbeck equation given in The-
orem 3.1 is not defined at any point x ∈ R

d beyond T = TOU (ε0) < ∞.
Furthermore, there exists a convex set K ⊂ R

d, such that for x ∈ K the
limit limt→T u(x, t) exists and is finite and for x /∈ K, limt→T u(x, t) = ∞.

Conversely, for each convex and closed set K ⊂ R
d and for any ε0, there

exits 0 ≤ u0 ∈ Mloc(Rd) with optimal index ε0, such that for x ∈ K, the limit
limt→T u(x, t) exists and is finite, and for x /∈ K, limt→T u(x, t) = ∞.

Proof. From [6], we have that w(y, s) in Theorem 3.1 is not defined at any
point in R

d beyond time s = T̂ = 1
4ε0

. Also, there exists a convex set K̂, such
that for y ∈ K, the limit lims→T̂ w(y, s) exists and is finite and for y /∈ K,
lims→T̂ w(y, s) = ∞. Then, we obtain the result for u(x, t) = w(xeαt, s(t)) as
t → T , since s(T ) = T̂ and for x ∈ K = e−αT K̂.
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Conversely, for each convex and closed set K̂ ⊂ R
d and for any ε0, there

exits 0 ≤ u0 ∈ Mloc(Rd) with optimal index ε0, such that for y ∈ K̂, the
limit lims→T̂ w(y, s) exists and is finite and for y /∈ K̂, lims→T̂ w(y, s) = ∞,
where T̂ = 1

4ε0
. Again, we obtain the result for u(x, t) = w(xeαt, s(t)) as

t → T , since s(T ) = T̂ and for x ∈ K = e−αT K̂. �

3.2. Estimates for All Times

Hereafter, we will set

MOU (Rd) =

{
M0(Rd) =

⋂
ε>0 Mε(Rd), if α > 0

M |α|
2

(Rd) if α < 0

the set of Radon measures, such that the solution of (3.1) given in Theo-
rem 3.1 exists for all times. Analogously, we denote for 1 ≤ p ≤ ∞

Lp
OU (Rd) =

{
Lp
0(R

d) =
⋂

ε>0 Lp
ε(R

d), if α > 0
Lp

|α|
2

(Rd) if α < 0

and Lp
OU (Rd) ⊂ MOU (Rd).

Now, we derive estimates in Lebesgue spaces for solutions of (3.1).

Proposition 3.3. For 1 ≤ p ≤ q ≤ ∞ and u0 ∈ Lp(Rd)

‖u(t)‖Lq(Rd) ≤ e
−dαt

q

(
α

2π(e2αt − 1)

) d
2 (

1
p − 1

q )

‖u0‖Lp(Rd), t > 0.

If u0 ≥ 0

‖u(t)‖L1(Rd) = e−dαt‖u0‖L1(Rd), t > 0.

Proof. The result follows from the fact that:

‖w(·eαt)‖Lq(Rd) = e
−dαt

q ‖w(·)‖Lq(Rd),

the standard estimates for the solutions of the heat equation

‖w(s)‖Lq(Rd) ≤ (4πs)
− d

2 ( 1
p

− 1
q
)‖u0‖Lp(Rd), for every s > 0 and 1 ≤ p ≤ q ≤ ∞,

and then

‖u(t)‖Lq(Rd) = e
−dαt

q ‖w(s(t))‖Lq(Rd) ≤ e
−dαt

q (4πs(t))− d
2 (

1
p − 1

q )‖u0‖Lp(Rd).

Now, we use the estimates in Proposition 2.1 on the heat equation to
derive the following estimates for the solutions of the Ornstein–Uhlenbeck
equation.

Proposition 3.4. For u0 ∈ MOU (Rd) and δ > 0 and δ̃(t) = δe−2αt

1+4δe−2αts(t) for
t > 0

(i)

‖u(t)‖L1
δ(R

d) ≤ ‖u0‖Mδ̃(t)(R
d)

with equality if u0 ≥ 0.
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(ii)

‖u(t)‖L∞
δ (Rd) ≤ edαt

(
1 + 4δe−2αts(t)

4πs(t)

)d/2

‖u0‖Mδ̃(t)(R
d).

(iii)

‖u(t)‖Lq
qδ(R

d) ≤ qd/2q

(
1 + 4δe−2αts(t)

4δe−2αts(t)

) d
2 (1− 1

q )

‖u0‖Mδ̃(t)(R
d).

(iv)

‖u(t)‖L∞
δ (Rd) ≤ edαt(1 + 4δe−2αts(t))d‖u0‖L∞

δ̃(t)
(Rd).

Proof. Observe that for δ > 0, if 1 ≤ q < ∞

‖w(·eαt)‖q

L
q
qδ(R

d)
=

(
qδ

π

)d/2 ∫
Rd

e−qδ|x|2 |w(xeαt)|q dx

=

(
qδe−2αt

π

)d/2 ∫
Rd

e−qδe−2αt|y|2 |w(y)|q dy = ‖w‖q

L
q

qδe−2αt (R
d)

,

(3.3)

while for q = ∞

‖w(·eαt)‖L∞
δ (Rd) = sup

x∈Rd

(
δ

π

)d/2

e−δ|x|2 |w(xeαt)|

= edαt sup
y∈Rd

(
δe−2αt

π

)d/2

e−δe−2αt|y|2 |w(y)| = edαt‖w‖L∞
δe−2αt (R

d).

(3.4)

Then, (3.3) combined with (2.3) gives

‖u(t)‖L1
δ(R

d) = ‖w(s(t))‖L1
δe−2αt (R

d) ≤ ‖u0‖Mδ̃(t)(R
d)

with δ̃(t) = δe−2αt

1+4δe−2αts(t) , with equality if u0 ≥ 0.
In the same way, from (2.4)

‖u(t)‖L∞
δ (Rd) = edαt‖w(s(t))‖L∞

δe−2αt (R
d)

≤ edαt

(
1 + 4δe−2αts(t)

4πs(t)

)d/2

‖u0‖Mδ̃(t)(R
d).

From (2.5)

‖u(t)‖Lq
qδ(R

d) = ‖w(s(t))‖Lq

qδe−2αt (R
d)

≤ qd/2q

(
1 + 4δe−2αts(t)

4δe−2αts(t)

) d
2 (1− 1

q )

‖u0‖Mδ̃(t)(R
d).

Finally, from (2.6)

‖u(t)‖L∞
δ (Rd) = edαt‖w(s(t))‖L∞

δe−2αt (R
d) ≤ edαt(1 + 4δe−2αts(t))d‖u0‖L∞

δ̃(t)
(Rd).

�
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Observe that in the proof above that if α > 0, then δ̃(t) ≤ δe−2αt ≤ δ

and δ̃(t) → 0 as t → ∞. Therefore, as in Sect. 2 for the heat equation, to
estimate the solution of (3.1) for large times, we need to estimate the norm
of the initial data in stronger norms.

On the other hand, if α < 0 and u0 ∈ Mδ(Rd) with δ ≤ |α|
2 , then

δ ≤ δ̃(t) = δe−2αt

1+4δe−2αts(t) ≤ |α|
2 for t > 0 and δ̃(t) → |α|

2 as t → ∞. On the

other hand, if u0 ∈ MOU (Rd) ⊂ Mδ(Rd) with |α|
2 < δ, then |α|

2 < δ̃(t) < δ

for t > 0 and δ̃(t) → |α|
2 as t → ∞. Therefore, in this case, the estimates

on the solution for large times are given essentially in terms of the norm of
M |α|

2
(Rd).
In particular, we get the following result.

Corollary 3.5. Assume α < 0. Then, the space MOU (Rd) = M |α|
2

(Rd) is
invariant and the Ornstein–Uhlenbeck flow is a contraction in this space.
Moreover, we have the following smoothing estimates:

‖u(t)‖L∞
|α|
2

(Rd) ≤
( |α|

2π

)d/2 (
1

1 − e−2|α|t

) d
2

‖u0‖M |α|
2

(Rd).

and for 1 ≤ q < ∞

‖u(t)‖Lq

q
|α|
2

(Rd) ≤ qd/2q

(
1

1 − e−2|α|t

) d
2 (1− 1

q )

‖u0‖M |α|
2

(Rd).

The space L∞
|α|
2

(Rd) is also invariant and

‖u(t)‖L∞
|α|
2

(Rd) ≤ ed|α|t‖u0‖L∞
|α|
2

(Rd).

Proof. From part (i) Proposition 3.4, observe that δ̃(t) = δe−2αt

1+4δe−2αts(t) = δ

if and only if δ = |α|
2 and we get that the Ornstein–Uhlenbeck flow is a

contraction in MOU (Rd).
For the smoothing estimates, using δ̃(t) = δe−2αt

1+4δe−2αts(t) = δ, parts (ii)
and (iii) in Proposition 3.4 lead to the results.

For L∞
|α|
2

(Rd), the result follows from part (iv) in Proposition 3.4. �

Now, the estimates in Theorem 2.2 give us the following.

Theorem 3.6. For 1 ≤ p ≤ q < ∞ and u0 ∈ Lp
OU (Rd), we have

‖u(t)‖Lq
qδ(R

d) ≤ Φp,q(t)‖u0‖Lp

δ̃p(t)
(Rd) t > 0

with δ̃p(t) = pδe−2αt

1+4pδe−2αts(t) and

Φp,q(t) =
(

q

p

)d/2q (
1 + 4pδe−2αts(t))

4pδe−2αts(t)

) d
2 (

1
p − 1

q )

t > 0.

Also, for q = ∞, 1 ≤ p ≤ ∞
‖u(t)‖L∞

δ (Rd) ≤ Φp,∞(t)‖u0‖Lp

δ̃p(t)
(Rd) t > 0
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with δ̃∞(t) = δ̃1(t) and

Φp,∞(t) =
(

δ

π

) d
2

(
1 + 4pδe−2αts(t)

4pδe−2αts(t)

) d
2p

.

In particular, if p = q < ∞
‖u(t)‖Lp

pδ(R
d) ≤ ‖u0‖Lp

δ̃p(t)
(Rd) t > 0.

Proof. Observe that (3.3), (3.4) combined with (2.7) give for 1 ≤ q < ∞
‖u(t)‖Lq

qδ(R
d) = ‖w(s(t))‖Lq

qδe−2αt (R
d)

≤
(

q

p

)d/2q (
1 + 4pδe−2αts(t))

4pδe−2αts(t)

) d
2 (

1
p − 1

q )

‖u0‖Lp

δ̃p(t)
(Rd)

with δ̃p(t) = pδe−2αt

1+4pδe−2αts(t) . The case p = q follows from this or from (2.8).
Also, for q = ∞, (2.9) gives

‖u(t)‖L∞
δ (Rd) = edαt‖w(s(t))‖L∞

δe−2αt (R
d)

≤ edαt

(
δe−2αt

π

) d
2

(
1 + 4pδe−2αts(t)

4pδe−2αts(t)

) d
2p

‖u0‖Lp

δ̃p(t)
(Rd)

=
(

δ

π

) d
2

(
1 + 4pδe−2αts(t)

4pδe−2αts(t)

) d
2p

‖u0‖Lp

δ̃p(t)
(Rd).

As observed before Corollary 3.5, if α > 0, then δ̃p(t) ≤ pδe−2αt ≤ pδ

and δ̃p(t) → 0 as t → ∞. Again, estimates for large times require estimates
of the initial data in stronger norms.

On the other hand, if α < 0 and u0 ∈ Lp
δ(R

d) with δ ≤ |α|
2 , then

pδ ≤ δ̃p(t) = pδe−2αt

1+4pδe−2αts(t) ≤ |α|
2 for t > 0 and δ̃p(t) → |α|

2 as t → ∞. On the

other hand, if u0 ∈ Lp
OU (Rd) ⊂ Lp

δ(R
d) with |α|

2 < pδ, then |α|
2 < δ̃p(t) < δ

for t > 0 and δ̃p(t) → |α|
2 as t → ∞.

In particular, we get the following result.

Corollary 3.7. Assume α < 0. Then, the spaces Lp
|α|
2

(Rd), 1 ≤ p < ∞ are

invariant and the Ornstein–Uhlenbeck flow is a contraction in them.
Also

‖u(t)‖L∞
|α|
2p

(Rd) ≤
(

δ

π

) d
2

(
1

1 − e−2|α|t

) d
2p

‖u0‖Lp
|α|
2

(Rd),

and for 1 ≤ p ≤ q < ∞

‖u(t)‖Lq
q|α|
2p

(Rd) ≤
(

q

p

)d/2q (
1

1 − e−2|α|t

) d
2 (

1
p − 1

q )

‖u0‖Lp
|α|
2

(Rd) t > 0.

Proof. From Theorem 3.6 with p = q, observe that δ̃p(t) = pδe−2αt

1+4pδe−2αts(t) = pδ

if and only if δ = |α|
2p and we get a contraction in Lp

|α|
2

(Rd), 1 ≤ p < ∞.
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Also, using δ̃p(t) = pδe−2αt

1+4pδe−2αts(t) = pδ = |α|
2 , Theorem 3.6 leads to

Φp,q(t) =
(

q

p

)d/2q (
1

1 − e−2|α|t

) d
2 (

1
p − 1

q )

t > 0

for 1 ≤ p ≤ q < ∞ and Φp,∞(t) =
(

δ
π

) d
2

(
1

1−e−2|α|t

) d
2p

. �

For derivatives, we have the following estimates.

Proposition 3.8. Assume α < 0. If u0 ∈ MOU (Rd), then we have the follow-
ing estimates.

(i) For any multi-index β ∈ N
d and 1 ≤ q < ∞, for any δ > 0, t > 0, γ > 1

and δ̃γ(t) = δe−2αt

1+4δe−2αtγs(t)

‖Dβ
xu(t)‖Lq

qδ(R
d) ≤ cβ,γqd/2q eα|β|t

s(t)
|β|
2

(
1 + 4δe−2αtγs(t)

4δe−2αtγs(t)

) d
2 (1− 1

q )

‖u0‖Mδ̃γ (t)(R
d)

and

‖Dβ
xu(t)‖L∞

δ (Rd) ≤ cβ,γ
e(d+|β|)αt

s(t)
|β|
2

(
1 + 4δe−2αtγs(t)

4πγs(t)

) d
2

‖u0‖Mδ̃γ (t)(R
d).

(ii) If u0 ∈ Lp
OU (Rd) with 1 ≤ p ≤ ∞ for any multi-index β ∈ N

d and
for any 1 ≤ p ≤ q ≤ ∞, then for any δ > 0, t > 0, γ > 1 and
δ̃γ
p (t) = pδe−2αt

1+4pδe−2αtγs(t)

‖Dβ
xu(t)‖Lq

qδ(R
d)

≤ cβ,γ

(
q

p

)d/2q eα|β|t

s(t)
|β|
2

(
1 + 4pδe−2αtγs(t)

4pδe−2αtγs(t)

) d
2 (

1
p − 1

q )

‖u0‖Lp

δ̃
γ
p (t)

(Rd)

and

‖Dβ
xu(t)‖L∞

δ (Rd) ≤ cβ,γ

(
δ

π

) d
2 e(d+|β|)αt

s(t)
|β|
2

(
1 + 4pδe−2αtγs(t)

4pδe−2αtγs(t)

) d
2p

‖u0‖L
p

δ
γ
p (t)

(Rd)

‖Dβ
xu(t)‖L∞

δ (Rd) ≤ cβ,γ
e(d+|β|)αt

s(t)
|β|
2

(1 + 4δe−2αtγs(t))d‖u0‖L∞
δ̃

γ∞(t)
(Rd)

with δ̃γ
∞(t) = δ̃γ

1 (t).

Proof. Observe that for any multi-index β ∈ N
d, Dβ

xu(x, t) = eα|β|tDβ
y w(eαtx,

s(t)) and from (2.13), for any γ > 1

|Dβ
y w(y, s)| ≤ cβ,γ

sd/2+|β|/2

∫
Rd

e− 1
γ

|y−z|2
4s d|u0|(z)

and the integral term above is a multiple of the solution of the heat equation
with initial data |u0| with the extra factor 1

s
|β|
2

and at time s′ = γs.

(i) Hence, from (2.5)

‖Dβ
xu(t)‖Lq

qδ(R
d) = eα|β|t‖Dβ

y w(s(t))‖Lq

qδe−2αt (R
d)
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≤ eα|β|t

s(t)
|β|
2

cβ,γqd/2q

(
1 + 4δe−2αtγs(t)

4δe−2αtγs(t)

) d
2 (1− 1

q )

‖u0‖Mδ̃γ (t)(R
d).

Analogously from (2.4)

‖Dβ
xu(t)‖L∞

δ (Rd) = e(d+|β|)αt‖Dβ
y w(s(t))‖L∞

δe−2αt (R
d)

≤ e(d+|β|)αt

s(t)
|β|
2

cβ,γ

(
1 + 4δe−2αtγs(t)

4πγs(t)

) d
2

‖u0‖Mδ̃γ (t)(R
d).

(ii) From (2.7)

‖Dβ
xu(t)‖L

q
qδ(R

d) = eα|β|t‖Dβ
y w(s(t))‖L

q

qδe−2αt (R
d)

≤ eα|β|t

s(t)
|β|
2

cβ,γ

(
q

p

)d/2q (
1 + 4pδe−2αtγs(t)

4pδe−2αtγs(t)

) d
2 ( 1

p
− 1

q
)

‖u0‖L
p

δ̃
γ
p (t)

(Rd).

Also, from (2.9)

‖Dβ
xu(t)‖L∞

δ (Rd) = e(d+|β|)αt‖Dβ
y w(s(t))‖L∞

δe−2αt (R
d)

≤ e(d+|β|)αt

s(t)
|β|
2

cβ,γ

(
δ

π

) d
2

(
1 + 4pδe−2αtγs(t)

4pδe−2αtγs(t)

) d
2p

‖u0‖L
p

δ
γ
p (t)

(Rd).

Finally, from (2.6)

‖Dβ
xu(t)‖L∞

δ (Rd) = e(d+|β|)αt‖Dβ
y w(s(t))‖L∞

δe−2αt (R
d)

≤ e(d+|β|)αt

s(t)
|β|
2

cβ,γ(1 + 4δe−2αtγs(t))d‖u0‖L∞
δ̃

γ
1 (t)

(Rd).

As in Corollaries 3.5 and 3.7, we get the following particular estimates.

Corollary 3.9. Assume α < 0 and u0 ∈ MOU (Rd) = M |α|
2

(Rd). Then

(i) For any multi-index β ∈ N
d and 1 ≤ q < ∞

‖Dβ
xu(t)‖Lq

q
|α|
2

(Rd) ≤ cβ,q,αeα|β|t
(

1
1 − e−2|α|t

) d
2 (1− 1

q )+
|β|
2

‖u0‖M |α|
2

(Rd)

with cβ,q,α = cβqd/2q|α| |β|
2 and

‖Dβ
xu(t)‖L∞

|α|
2

(Rd) ≤ cβ,αeα|β|t
(

1
1 − e−2|α|t

) d
2+

|β|
2

‖u0‖M |α|
2

(Rd)

with cβ,α = cβ |α| d
2+

|β|
2 .

(ii) If u0 ∈ Lp
|α|
2

(Rd) with 1 ≤ p ≤ ∞ for any multi-index β ∈ N
d and for

any 1 ≤ p ≤ q ≤ ∞

‖Dβ
xu(t)‖Lq

q|α|
2p

(Rd) ≤ cβ,p,q,αeα|β|t
(

1
1 − e−2|α|t

) d
2 (

1
p − 1

q )+
|β|
2

‖u0‖Lp
|α|
2

(Rd)
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with cβ,p,q,α = cβ

(
q
p

)d/2q

|α| |β|
2 and

‖Dβ
xu(t)‖L∞

|α|
2p

(Rd) ≤ cβ,p,αe(d+|β|)αt

(
1

1 − e−2|α|t

) d
2p+ |β|

2

‖u0‖Lp
|α|
2

(Rd)

with cβ,p,α = cβ

(
|α|
2πp

) d
2 |α| |β|

2 and

‖Dβ
xu(t)‖L∞

|α|
2

(Rd) ≤ cβ,αe(|β|−d)αt

(
1

1 − e−2|α|t

) |β|
2

‖u0‖L∞
|α|
2

(Rd)

with cβ,α = cβ |α| |β|
2 .

Proof. Notice that δ̃γ(t) = 1
γ

δγe−2αt

1+4δγe−2αts(t) and then as in Corollary 3.5,

δ̃γ(t) = δ if and only if δ = |α|
2 . In an analogous way, δ̃γ

p (t) = 1
γ

pδγe−2αt

1+4pδγe−2αts(t)

and as in Corollary 3.7, δ̃γ
p (t) = pδ if and only if δ = |α|

2p .
In both cases, Proposition 3.8 gives the results. For example, for the

first estimate, since γ > 1
(

1 + 4δe−2αtγs(t)
4δe−2αtγs(t)

) d
2 (1− 1

q )

=
(

1

γ |α|
2 s(t)

) d
2 (1− 1

q )

≤
(

1
1 − e−2|α|t

) d
2 (1− 1

q )

.

For case (ii), observe for example that
(

1 + 4pδe−2αtγs(t)
4pδe−2αtγs(t)

) d
2 (

1
p − 1

q )

=

(
1

γ |α|
2 s(t)

) d
2 (

1
p − 1

q )

≤
(

1
1 − e−2|α|t

) d
2 (

1
p − 1

q )

.

As in Proposition 2.4 and arguing as in Theorem 3.6, for solutions that
may not exist for all times, we get the following results.

Proposition 3.10. Assume α > 0 and ε > 0 or α < 0 and |α| < 2ε and define
TOU (ε) as the unique solution of s(t) = 1

4ε .

For every δ > ε, define δ̃p(t) = pδe−2αt

1+4pδe−2αts(t) . For any u0 ∈ Lp
pε(R

d)
with 1 ≤ p < ∞ and for any 1 ≤ p ≤ q < ∞, we have

‖u(t)‖Lq
qδ(R

d) ≤ cp,q

(
1 + 4pδe−2αts(t)

4pδe−2αts(t)

) d
2 (

1
p − 1

q )

‖u0‖Lp

δ̃p(t)
(Rd)

‖u(t)‖L∞
δ (Rd) ≤ cp,∞

(
1 + 4pδe−2αts(t)

4pδe−2αts(t)

) d
2p

‖u0‖Lp

δ̃p(t)
(Rd)

which hold for 0 < t ≤ (
TOU (pε) − TOU (pδ)

)
.

3.3. Asymptotic Behaviour

We start with the case α < 0. The next result states, in particular, that
solutions converge to a constant. Observe that Corollary 3.9 shows that the
derivatives converge to zero as t → ∞.



70 Page 18 of 21 J. C. Robinson and A. Rodríguez-Bernal MJOM

Proposition 3.11. Assume α < 0.
(i) If u0 ∈ M |α|

2
(Rd), then

lim
t→∞ u(x, t) =

∫
Rd

ρ |α|
2

(z) du0(z)

uniformly for (x, t) ∈ R
d+1 in sets, such that |x|eαt → 0 uniformly as

t → ∞ (in particular for x in bounded sets of Rd). Also

lim
t→∞ u(t) =

∫
Rd

ρ |α|
2

(z) du0(z) in Lp
|α|
2

(Rd) for all 1 ≤ p < ∞.

(ii) On the other hand, if u0 
∈ M |α|
2

(Rd) but in (3.2), we have ε0(u0) = |α|
2 ,

then for all x ∈ R
d

lim
t→∞ u(x, t) = ∞.

Proof. (i) With the notations in (3.2), since ε0(u0) ≤ |α|
2 , the function w(y, s)

is Theorem 3.1 is defined for 0 < s < T̂ = 1
4ε0

≥ 1
2|α| , and then, the solution

of (3.1) is defined for 0 < t < ∞ and for all (x, t) ∈ R
d+1 as in the statement

u(x, t) = w(xeαt, s(t)) → w

(
0,

1

2|α|
)

=

∫
Rd

ρ |α|
2

(z) du0(z) := E(u0) as t → ∞.

Assume now u0 ≥ 0. Then, Fatou’s Lemma gives, using ρ |α|
2

is a prob-
ability density
E(u0) ≤ lim inf

t→∞
‖u(t)‖L1

|α|
2

(Rd) ≤ lim sup
t→∞

‖u(t)‖L1
|α|
2

(Rd) = ‖u0‖M |α|
2

(Rd) = E(u0),

and this implies u(t) → E(u0) in L1
|α|
2

(Rd) as t → ∞. This and the uniform

bounds in L∞
|α|
2

(Rd) for t ≥ 1 in Corollary 3.5 imply convergence in Lp
|α|
2

(Rd)

for all 1 ≤ p < ∞.
For non-negative u0, we split it into positive and negative parts and

then u(t, u0) = u(t, u+
0 ) − u(t, u−

0 ) and apply the argument above to each
term, since E(u+

0 ) − E(u−
0 ) = E(u0).

(ii) On the other hand, if u0 
∈ M |α|
2

(Rd) but ε0(u0) = |α|
2 , then w(y, s) is

defined up to time T̂ = 1
4ε0

= 1
2|α| and then u(x, t) is defined for 0 < t < ∞

and for all x ∈ R
d

u(x, t) = w(xeαt, s(t)) → w

(
0,

1
2|α|

)
= ∞ as t → ∞,

since u0 
∈ M |α|
2

(Rd). �
We now consider the case α > 0.

Proposition 3.12. Assume α > 0 and u0 ∈ M0(Rd). Then, the solution of
(3.1) in Theorem 3.1 is bounded for all t > 0 in Lq

0(R
d), 1 ≤ q ≤ ∞

‖u0‖Mε(Rd) ≤ C, ε → 0,

while it decays to zero in Lq
0(R

d) provided that

‖u0‖Mε(Rd) → 0, ε → 0.
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Proof. Since α > 0, δ̃(t) ≤ δe−2αt ≤ δ and, in fact, δ̃(t) = O(e−2αt) → 0 as
t → ∞. Also, s(t) = O(e2αt) as t → ∞.

Then, in Proposition 3.4, observe that in parts (ii) and (iii), the fac-

tors edαt

(
1+4δe−2αts(t)

4πs(t)

)d/2

and
(

1+4δe−2αts(t)
4δe−2αts(t)

) d
2 (1− 1

q )

are bounded for large

times.
Hence, by parts (i), (ii), and (iii) in Proposition 3.4, the solution remains

bounded or converges to zero provided ‖u0‖Mδ̃(t)(R
d) is bounded or converges

to 0 for t → ∞, respectively. �

Recall that for ε > 0 and w as in Theorem 3.1

‖u0‖Mε(Rd) = w

(
0,

1
4ε

, |u0|
)

and that for u0 ∈ M0(Rd), u(0, t, u0) = w(0, s(t), u0) and then

|u(0, t, u0)| ≤ u(0, t, |u0|) = w(0, s(t), |u0|) = ‖u0‖M 1
4s(t)

(Rd)

and s(t) → ∞ as t → ∞. Hence, the behaviour of the solution of (3.1) at
x = 0 controls the behaviour of the norms of the solution.

Then, the results in [6] on the heat equation immediately lead to the
following results. The first one shows how the distribution of mass of the
initial data controls the behaviour of u(0, t) for large times.

Theorem 3.13. Suppose that α > 0 and u0 ∈ M0(Rd).

(i) If supR>0

1
Rd

∫
R/2≤|x|≤R

d|u0|(x) ≤ M , then u(0, ·, |u0|) ∈ L∞(0,∞).

(ii) If limR→∞
1

Rd

∫
R/2≤|x|≤R

d|u0|(x) = 0, then u(0, t, |u0|) → 0 as t → ∞.

Assume, in addition, that u0 ≥ 0. Then

(iii) If lim infR→∞
1

Rd

∫
|x|≤R

du0(x) > 0, then lim inft→∞ u(0, t, u0) > 0.

(iv) If limR→∞
1

Rd

∫
|x|≤R

du0(x) = ∞, then u(0, t, u0) → ∞ as t → ∞.

The second one shows that typically the behaviour of u(0, t) can be very
complex.

Theorem 3.14. Assume α > 0 and fix an arbitrary sequence of non-negative
numbers {αk}k. Then

(i) There exists a non-negative u0 ∈ L1
0(R

d) and a sequence tn → ∞, such
that for every k, there exists a subsequence tk,j with u(0, tk,j) → αk as
j → ∞.

(ii) The set of non-negative u0 ∈ L1
0(R

d) satisfying (i) above, Oα, is dense
in the subset of non-negative functions in L1

0(R
d).
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