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Abstract. In this paper, we improve some estimates from [7] for solutions
of the heat equation with initial conditions that are large ‘at infinity’
and employ them to obtain suitable estimates on the solutions of the
Ornstein—Uhlenbeck semigroup [solutions of u; — Au = o - V] for the
same class of unbounded data.

Mathematics Subject Classification. 35B40, 35K05, 35K08, 35K1.

Keywords. Heat equation, large solutions, estimates, Ornstein—Uhlenbeck
semigroup, asymptotic behaviour, blow-up.

1. Introduction
In two previous papers [6,7], we considered solutions of the heat equation
up—Au=0, 2 € R t >0, wu(x,0)=muo(z) (1.1)

given by

1 _|z—y\2 d
u(z,t) = S(t)up(z) == (imt)i72 /Rde o ug(y)dy, = €RY ¢>0, (1.2)

with initial data in the weighted spaces of Radon measures

M) i= {iu € Muc®D) s [ puta)dll) < oo
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or of locally integrable functions

D) = {7 € Lh®: [ @l i < oo

for 1 < p < co with the norm

sz = ([ @@ as) (1.3

and for p = oo

D) = { £ € LERY : sup )l f(o)] < o0}
z€R?
with the norm || f[| Lo (ra) 1= sup,epa pe ()| f(x)]. Here, the weight functions
pe, € > 0, are given by

£\ /2 —elz|?
pe(x) = (;) e—cl=l, /Rd pe(z)da = 1.

These spaces satisfy
LP(RY) ¢ LYRY) C LY(RY) ¢ M. (RY), 1<g<p<oo,

and the last inclusion is an isometry.

We showed in [6] that since these spaces allow initial data which may
be very large at infinity, these solutions may not exist for all time, by a
mechanism of mass moving from infinity. Indeed, for a non-negative initial
data in M_(R?), the solution may only exist up to T'(e) = 7=. We also
characterized in [6] those initial data and the points at which the solution
blows up. As a consequence of the results above, the heat equation defines a
global semigroup in the Fréchet spaces

LyRY) = [V LIRY),  MoRY) = [ M(RY),

e>0 e>0
LA(RY) = ﬂ LP(R%), and  LP(RY) = ﬂ L>(RY)
e>0 e>0

which satisfy

LE(RY) € LERY) € LH(R?Y) € Mo(R?), 1<g<p<oo.
This semigroup is shown in [7] to be analytic and to have suitable smoothing
estimates.

In particular, in [7], we obtain quantitative smoothing estimates for the
semigroup of the type

(1+45t) (=)
(@) L2, @) < CMW” wollzr, e (1.4)
or1§p§q<oowithany5>0and5(t):m.

One of our main goals here is to provide an improved set of estimates

drl 1
1+ 4pdt 2(=a) pé
[u(®)ll e, ray < pg (4]?&) lollzg, ey, 0p(8) = T

(1.5)
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for 1 <p<qg< 0.

Both (1.4) and (1.5) share some common features. First, to estimate
the solution at time ¢ in a fixed space Lg s(RY), it is necessary to measure the
initial data in the space L7, (R?) or Ly o (R%), respectively, which changes
with time, requiring better and better integrability of ug as t increases, since

describes the time singularity of the solution for short times, an algebraically
increasing term (1 + 4515)%(1_%) or (1+ 4(5t)%(%_%), respectively, appears,
reflecting the fact that we are dealing with functions that are very large
at infinity. This term reflects the mechanism of mass moving from infinity
that was shown in [6] to be able to produce nonlinear-like behaviour in the
solutions of (1.1).

On the one hand, since pd(t) > 0,(t), Lf;p(t) (RY) C Lgé(t)(Rd) with an
inclusion constant that is bounded in ¢ > 0 and then (1.4) implies an estimate
like (1.5) but with a worse time-dependent constant. On the other hand,
(1.5) does not imply (1.4). Notice that (1.5) requires stronger integrability
conditions on the initial data than (1.4), but the time-dependent constant
is bounded in the former and unbounded in the latter as ¢ — oo provided
p> 1.

In the next section, we prove (1.5) along with new versions of the other
estimates in [7] that can be improved in a similar way. In particular, we refine
the conditions on the initial data required to guarantee that the solution
remains bounded or decays to zero as t — oco; see Proposition 2.6.

These improved estimates will have an impact in the forthcoming anal-
ysis in [8] for the non-autonomous linear problem and applications to elliptic
equations. In this paper, we demonstrate the utility of (1.5) by applying these
estimates to the Ornstein—Uhlenbeck semigroup in Sect. 3

uy — Au=azr-Vu, xR t>0, u(z,0) = uo(z); (1.6)

see [1,3-5]. Here, we deal simultaneously with the cases a > 0 and o <
0, and our results are consequences of the improved estimates above: they
cannot be obtained using the earlier estimates (1.4). In particular, we show
optimal results for global existence or blow-up in finite time. For solutions
that exist for all times, we obtain a complete set of smoothing estimates,
including derivatives. Those estimates use suitable Fréchet spaces when a > 0
and extend and recover some known estimates in the “invariant measure
spaces” when a < 0; see the references above. We also obtain results on
the asymptotic behaviour and decay of solutions, including the complexity of
behaviour for o > 0.

2. Improved L?(R%) Estimates

In this section, we improve several estimates obtained in [7]; in particular, we
will obtain (1.5). For this, a crucial tool is a result from [7] that characterizes
Lp_(R?), for 1 < p < 00, as the complex interpolation spaces between L!(R¢)
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and L>(R?), that is

Lp(R) = [LA(RY), L (RY)] (2.1)
with norm
TR
1l = U hzseoy o, = Woellzoen = (£) 7 g wey

(2.2)
see [2]. Note that the natural norm on the interpolation space differs from
the norm on LE_(R?) by a factor that depends on both p and e.

The following basic (end point) estimates were proved in [6] and will be
used further below.

Proposition 2.1. If ug € My(R?), then u(t) = S(t)uo given by (1.2) satisfies
the following estimates for any 6 > 0, t > 0 and §(t) = —2

1446t °
(i)
w1 ®ay < Nluoll gy ®a)y, t>0 (2.3)
with an equality if ug > 0.
ii) For allt >0, u(t) € LP(RY) and
0
14456\ Y2
@l < (S ) Tollag o (24
(iii) For any 1< g < oo
d 1
14456\ 2070
g < () lolggme @29

iv) Ifug € L (RY), then u(t) € LE(RY) for allt > 0 and
0 0
[u(®)]| 3o (may < (1 + 46)|uol| Lze, (ra)- (2.6)

5(t)
Now, we prove the improved regularity estimates (1.5). This result im-
proves Theorem 4.6 in [7].

Theorem 2.2. If ug € LE(RY) with 1 < p < oo, then u(t) € LE(R?) for any
1<p<qg<ooandt>0. Moreover, for any § >0, t > 0, we have

d/2q 45
q 14 4pdt\2'r «
”U(t)”Lzé(Rd) < <p) <4p(5t> ”uO”Lfs)p(t)(Rd)’ (27)
where
po
Op(t) = ———.
p(®) 1+ 4pét
In particular, setting ¢ = p, we have
()l 2z, ey < ol o o (2.8)

For q = oo, we have
d
2

d
S\? [1+4pot\ %
@iz < (2) (So2) luollig e 9
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Proof. (1) We first prove (2.7) for ¢ = p. For this, setting 0 < § = ﬁ, from
(1.2), we have

- "Ez 1 —112 T _w—22
e 0l (2, 1)| < (47”5)61/2/11@6 @l /4 o =le=2/4 | (2)| d.z (2.10)

with ug € L(l)(Rd), 1 < p < o0; by Jensen’s inequality, we get
—pd|z|? P < _
e O <

From this, we obtain

/ e_p6|$‘2|u(m,t)|p dz
Rd

1
< @i / ( / ep””"’“fe'“'”“dx)mo(znpdz
iy Rd Rd

and rearranging squares as

/ e Pl ATy () Pl A g (210)
Rd

T T
of o=z _trE|l 5 P
T T T T
z t tz t+2 t+1I
and using
t_|_£ T 2
P P
exp [ — T — z dx
/]Rd ( 4t% tJr% )

d
At \ 2
pt+T1

I
T

o)

]

i)

|
£+
ﬁH“@H
B
T
~_
o,
8

I
VR
T o
+| 3
S|= 1A
~_
|

I
N

and0<5:ﬁ,we have

¢ 2
7p5|z|2 t pd < 1 47t 2 / - |Z| pd
/]Rd € |u(‘r7 )‘ T > (47’rt)d/2 1 + 4p(5t Rd €xp ( 4(t + 1)>|u0(z)| z

P

1 _

zid/ e 6p(t)|z‘2‘u0(z)|pdz.

(1+ 4pdt)2 Jrd

Therefore
d
po\ 2 1 —5p(8)]212 P

Iy < (2) e [ O o a

L5 (R1) T (1+4p5t)% R

d

d
_ (pé\2 1 T o\ 2 » . »
- (%) ey (55 ) Tty uoy = ool e

(ii) Now, we prove (2.9). For this, from (2.11)

— ZE2 1 - :L’2 T 71722 v
eélu(x’t)|§(47rt)d/2p</we plzl”/4 |u0(z)|pe | |/4tdz>

and rearranging the squares as above, we get

e |z, 1)
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1 B 2 28 )
= Gy </Rd o <_ g | ) o (_4(t+ D)Iuo(z) dz>
1 |Z|2 ) 5
: W </]Rd P <_4(t + %))|uo(z)\ dz)

_ 1 —5p(1)]2[ P
= s ([ o as)”
which leads to

1

—§lxzl? 1 _ 212 P
sup e 15 u(z, )| < (amt)i7% (/Rde 3 (1)l2] |u0(z)|pdz>

zeR4

Then, we get

d

t < d ’ ! U
lh@lezen < () Gnam 50 luollzz @)

S\ [1+4pst\
= . W ||UOHL§p(t)(Rd)
and (2.9) follows.

(iil) Using (2.2), we rewrite (2.8) as
50-3) 4
hOls < (2) 7 g ol e
Interpolating this and (2.9), we get for any 0 < 0 < 1

”u(t)||[L25(Rd),Lg°(Rd)]9
(0N ([ 1+ 4ot
—\m 4pot
By reiteration of the interpolation in (2.1), we have that for 6 = 1 — 1;1,
with g > p, we get

S

s\ia-ha-o
- pd(l,g)/gpHuOHLf;pm(Rd)-

™

[Lps(RT), L3 (RY)]s = Lis(RY).

Hence, taking 8 =1 — g, this leads to the estimate

0-2) $3-1) 5\ -1
- 1) 1+ 4pdt 0 1
w6 < | = ot = WHUOHLg’pm(Rd)-

m
(2.12)
From (2.2), we get

s\ q
<7T> WH“@)HL;(RQ

(9 S8 /1 4 apst\ $GD) 15\ 8D
“A\r Apot ™ g 10l 0

which leads to (2.7). O
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We can also obtain the following bounds on the derivatives of the solu-
tions. This result improves Proposition 4.7 in [7].
Proposition 2.3. If ug € LE(RY) with 1 < p < oo, take any multi-inder o €
N any 1 < p<gqg<oo, anyd >0, v > 1 and define 5,(t) =
t>0. Then

Ca,p,q,6,
DUy ) < 25 -

po
T+ 4p~ot for

luoll e (R)

1+ dpyot\ 2 a)
Sp(t)

t

and

d
Caps~ (14 4pydt\ 2
D2y < 02 (20 ol o

Proof. Using, for v > 1
. Coé;y _1lz—y|?
DSut) < s [P T dwle), 213

the right-hand side is a multiple of the solution of the heat equation with
initial data |ug| in a time ¢ = ¢, with the extra factor —4+.
2

t
Hence, we can proceed as in Theorem 2.2 and we can obtain all estimates

there with the right-hand side in terms of #' = ~t and with d,(t) = H+fﬁt"
Writing everything in terms of ¢, we get analogously to (2.9)
o 1+ 4pydt
IDEuO Nz < o (™) g o
and analogously to (2.12)
d 1 1
ca [(14+4pyét\? G=a)
D%u(t < _ P .
IDzaoll, s < 5 (o Juollzz , e
Again, using the norms (1.3) and (2.2), we get the result. O

Notice that all the estimates we have obtained so far in this section
have been for initial data in the spaces Lj(R?), 1 < p < co. Now, we will
use the fact that for 1 < p < oo, the space Lg(Rd) is dense in all spaces
LP(R?) for € > 0; see [7]. Given this, a density argument allows us to extend
the estimates above to initial data in the spaces LP(R?), where solutions of
the heat equation may exist only for finite time; see [6]. This result improves
Proposition 4.10 in [7].

Proposition 2.4. Assume that € > 0 and set T'(e) = ﬁ. For every § > ¢,

define 6,(t) = 1+4p5t For any ug € LY _(RY) with 1 < p < oo and for any
1 <p < g < oo, we have

d 1
1+ 4pot\ 2G—a)
N0 < cna( ) Huolig, a0

d
2p

1+ 4pot
[u()] Lge (ma) < Cp,00 (41)&) luolly @),

which hold for 0 <t < %(T(s) —1T1(5)).
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Proof. For ug € LE_(RY) C L}_(R?), (2.7) and (2.9) remain valid as long as
0 <t<T(pe) = ;T(e) and §,(t) > pe, ice.,, 0 <t < L(T'(e) — T(9)). O

We now rephrase this result, estimating the solution in a norm that de-
pends on time, but the initial space is fixed. This result improves Proposition
4.11 in [7].

Proposition 2.5. Assume that ¢ > 0 and 0 < t < T'(e) = ﬁ, For any ug €
LgE(Rd) with 1 < p < oo and for any 1 < p < g < oo, we have for 0 < t <

T(pe) = %T(E) and €,(t) = =55
1 1
lullzz, ., @) < pq Froey boansmer rumd LU PFACD)
(4pdt) (1 — 4pet)
1
wu(t)|| 7,00 2y < Cpooo Uo|| L2, (R4)-
Iz = o (4pst) 3 (1 — dpet) ol e
Proof. We set 0,(t) = pe, that is, 1 + 4pdt = g and 6 = &,(t) = =7 for
0<t< %T(s). Then, Proposition 2.4 gives the result. O

Notice that estimates on derivatives in Proposition 2.3 can be extended
along the same lines.

As a consequence of the results above, we obtain the following charac-
terization of the initial data for which the solution of the heat equation stays
bounded or decays to zero in the Fréchet spaces L{ (R9). This result improves
parts (ii) and (iii) in Proposition 5.1 in [7].

Proposition 2.6. If ug € LE(R?), 1 < p < oo, then u(t) = S(t)ug is bounded
in L§(RY), p < q < oo if

||u0||Lf(Rd) < Ca € — 07
while it decays to zero in LE(R?) provided that

luoll 2 (ray — 0, € — 0.
Proof. This follows from (2.7) and (2.9) where we set € = 0,(t) = #‘;& — 0

1+4pdt 5 hounded. O

as t — oo, and then, for large ¢, the factor 1pot

Observe that an analogous result can be obtained for the derivatives
D%u(x,t), from (2.13) by adding a factor £/*!/2 to the estimates on ug above.

3. The Ornstein—Uhlenbeck Semigroup
In this section, we consider the Ornstein—Uhlenbeck semigroup defined by
the solutions of the problem

u — Au=ax-Vu, zcR% t>0, u(z,0) = up(x) (3.1)
with a € R, a # 0. We will derive estimates on the solutions by means

of the results in the previous section. In more general, Ornstein—Uhlenbeck
equations have been thoroughly studied in [1,3-5] and references therein.
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Observe that in the absence of diffusion, integrating along characteristics
leads to

u(z,t) = ug(ze®), xR t>0.
Hence, we look for solutions of (3.1) of the form
u(z,t) = w(ze®, s(t)), s(0)=0.

Theorem 3.1. For e > 0 and ug € M.(R?), the function

2at 1
u(z,t) = w(we®, s(t)), s(t) = 627 5y €ERY t>0
with
1 lu—zI d
w(y,s) = (47rs)d/2/e dug(z), y€eR?, s>0

is a classical solution of (3.1) for 0 <t < Tou(e), where
(i) if @ > =2 and a # 0 then Toy () is the unique solution of s(t) = ;=;
(ii) if a < —2¢, then Toy(e) = oo.
Moreover, for every ¢ € C.(R?) and 0 <t < Toy(¢)

/gpu(t)—>/ pdug, t—07,
Rd Rd

i.e., u(t) — ug as t — 0T in the sense of measures.

Also, if we define (t) := OEZW’ then we have
@)Ly, ®e) < luolla. @e), 0 <t<Toule)

with equality if ug > 0.
Finally, if ug > 0 and is non-trivial, then u(z,t) > 0 for all (z,t).

Proof. Looking for a solution of (3.1) of the form u(z,t) = w(ze™, s(t)),
s(0) =0, gives

1) Aw=o.

Ws 2at

Then, we take s'(t) = e2** which, thanks to the results in [6] for w(y,s),
means that u(z, t) is a classical solution of (3.1) as w is defined for 0 < s < L.
Hence, u is defined as long as s(t) < 1=, that is, for 0 < t < Toy(e). Since
s(t) is increasing and as t — oo
et ] {Qlla if @ <0

— =

st =— -3 |
« « o~ ifa>0,

we get the description of Toy (¢) in the statement.
Also, for every ¢ € C.(R%) and 0 < t < Toy (e

AdwU(t):ed“t4d¢(ye Ywly, s(t)dy = e /S e™")) du,

where we have used the results in [6], and for n € C.(R?), we denote by S(s)n
the solution of the heat equation. Observe then that since |p(z)| < Ae~7e”
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z € R, with v > 2, |p(ze )| < Ae 71" with 5 > ¢ for all ¢ suffi-
ciently close to 0. Hence, by Corollary 3.4 in [6], we have |S(s)p(-e™*")|(z) <
Ce=<l*I* ¢ LY (d|uo|). Also, S(s(t))p(-e)(z) — p(z) for z € R% as t — 0,
see, e.g., Lemma 3.3 in [6], and then, Lebesgue’s theorem gives

[ st@nete ) dn = [ odu,

as t — 0 and we get the result.
Now, observe that for any ¢ > 0 and § > 0, we have

d/2
w(-€**)|| 1 gay = 9 o012 |y (zet) | Az
LL(RY) - »
(56_2at d/2 Se—2at|, |2
_ - | _
= ( - ) /Rde e w(y)| dy = lwllz: ., @a)-

Also, from the results in [6], for 0 < s < T'(¢) and for any § > m > g,

we have w(s) € L}(R?), and if we set £(s) := 4(T(i)78) = {1 then
||w(s)HL;(S)(Rd) < ||u0|\/\,15(]Rd)7 with equality if ug > 0.
Therefore

[y ey = llw(s@)llzr _,., @),

so we choose de~2 = ¢(s(t)), that is, § = 4(T(Z2)a_ts(t)) = (1_521?(1:)) = &(t),

and we get

l[u(®)llLy

=)
3.1. Blow-Up in Finite Time
For a non-negative 0 < ug € Mloc(Rd), define its ‘optimal index’ as
eo(ug) :=inf{e : up € M. (RY)} =sup{e: up ¢ M.(RY)} <oco. (3.2)
Consider now the case @ > 0 or o < 0 and |a] < 2 and define then

Tou(g0) is the unique solution of s(t) = ﬁ.

@) < [luollpm ey, 0<t<Tou(e).

Theorem 3.2. Assume that 0 < ug € Mioc(R?) with optimal index, such that
0 < eg < o0 and either a > 0 or a < 0 and |a| < 2eg.

Then, the solution u of the Ornstein—Uhlenbeck equation given in The-
orem 3.1 is not defined at any point x € R? beyond T = Toy (o) < .

Furthermore, there exists a convex set K C R?, such that for x € K the
limit limy . u(x,t) exists and is finite and for x ¢ K, lim;_p u(x,t) = oo.

Conwersely, for each convex and closed set K C R and for any ¢¢, there
exits 0 < ug € Mioc(RY) with optimal index o, such that for v € K, the limit
lim; 7 u(x, t) exists and is finite, and for x ¢ K, im;_,p u(x,t) = oco.

Proof. From [6], we have that w(y, s) in Theorem 3.1 is not defined at any
point in R% beyond time s = T = ﬁ. Also, there exists a convex set K, such

that for y € K, the limit lim__ ;w(y,s) exists and is finite and for y ¢ K,
lim_ ;w(y,s) = oo. Then, we obtain the result for u(z,t) = w(ze™, s(t)) as
t — T, since s(T) =T and for v € K = e T K.
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Conversely, for each convex and closed set K c R? and for any €, there
exits 0 < up € Mioe(R?) with optimal index &g, such that for y € K the
limit lim__ w(y, s) exists and is finite and for y ¢ K, lim Tw(y, s) = o0,
where 7' = . Again, we obtain the result for u(z,t) = w(ze®,s(t)) as

t — T, since s(T) =T and forz e K =e °TK. O
3.2. Estimates for All Times
Hereafter, we will set

Mo(RY) =(.og M(RY), ifa>0

MOU(Rd) _ J e>0 € ]
M o (R?) ifa<0
2

the set of Radon measures, such that the solution of (3.1) given in Theo-
rem 3.1 exists for all times. Analogously, we denote for 1 < p < 0o

LA(RY) = LP(RY), ifa>0

Ly (B = ,f iy o D

LY, (RY) ifa<0

and L%, (RY) € Moy (RY).
Now, we derive estimates in Lebesgue spaces for solutions of (3.1).

Proposition 3.3. For 1 <p <q < oo and ug € Lp(Rd)

—dat «a %(%_%)
el < e | @y luoll Lo (ray, t>0.

Ifug >0
[w(t) ]| ray = € luoll 2 @ay, ¢ > 0.
Proof. The result follows from the fact that:
() agray = 5 [lw () o(ray,

the standard estimates for the solutions of the heat equation

lw(s)ll Lamay < (47“9)7%(’“ a HuOHLP(Rd)v for every s >0 and 1 < p < ¢ < o0,
and then
—dat de1_1
u(t) ey = e 7 fw(s(t))l| pagay < e 5 (4ms(t)) 2G5 |ug|l 1o ma)-

Now, we use the estimates in Proposition 2.1 on the heat equation to
derive the following estimates for the solutions of the Ornstein—Uhlenbeck
equation.

—2at

Proposition 3.4. For ug € Moy (R?) and § > 0 and S(t) = m for
t>0

(i)
[l Ly rey < lluolladg,,, @

with equality if ug > 0.
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(i)
1+ 46e=2at5()\ /2
dat
@l < o (s 0 vty -
(iii)
d 1
1+ 460~2%s(t) | 270
d/2q( 2T 2% °\Y)
a0z < 0 (s oLty a5
(iv)
[u(®)|| oo (ray < e (1+ 45672at5(t))d||uo||L§?t>(1Rd)-
Proof. Observe that for § > 0,if 1 < ¢ < c©
/2
Loty _ @ 7q5|z|2 aty|q
lw(-e )HL‘;S(]Rd) = (ﬂ) /Rde |w(xe®)|? dz
_ qée‘Q‘“ 4/2 —qde— 20t |y)2 a B B
= (=) [ 0"y = ulls oy
(3.3)
while for ¢ = oo
aat o é 4z —5|x|? at
lw(-e"pge@ey = sup { =) e |w(ze™)]
z€R
_dat 56—204 2 —seT 20ty _ doat
e 555( ) e ) = ol @
(3.4)

Then, (3.3) combined with (2.3) gives
w1y = ||w(3(t))||L;e_2m(Rd) < HUOHMSM(Rd)

with S(t) = IH‘;‘Z%ZZZS(W with equality if ug > 0.
In the same way, from (2.4)

lu()ll g ray = e lw(s(t))l| e

Se—2at

—2at d/2
< edat 1+ 46e7**s(t) luoll e, (re-
- 47s(t) 5(t)

(R9)

From (2.5)

Hu(t)||L35(Rd) = ||w(3(t))||Lgde,2m(Rd)
d 1
1+ 46e—20tg(t)\ 2170
/2
<q% q<456_20‘ts(t) ||U0H/v15(t)(ned)-

Finally, from (2.6)
[u()l|go ey = " lw(s(E)lpeo_, ey < ™ (1+ 45672at5(t))dHUOHLE?”(]Rd)'

So—2at

O
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Observe that in the proof above that if a > 0, then §(¢) < de2° < §
and S(t) — 0 as t — oo. Therefore, as in Sect. 2 for the heat equation, to
estimate the solution of (3.1) for large times, we need to estimate the norm
of the initial data in stronger norms.

On the other hand, if @ < 0 and ug € Ms(R?) with § < %‘7 then

5§5(t)=1+45c:7228(t)§%‘fort>0and5(t)—>%ast—>oo.Onthe

other hand, if ug € Moy (R?) C M;s(R?) with ‘%l <, then %‘ <o) <9
for t > 0 and g(t) — % as t — oo. Therefore, in this case, the estimates
on the solution for large times are given essentially in terms of the norm of

M%(Rd).

In particular, we get the following result.

Corollary 3.5. Assume o < 0. Then, the space Moy (R%) = M o (R?) is
2

invariant and the Ornstein—Uhlenbeck flow is a contraction in this space.
Moreover, we have the following smoothing estimates:

\a| d/2 1 4
Hu(t)”LTigL(]Rd) < <27T> (1—6_2|a|t> ||U0||M‘%‘(Rd)~

and for 1 < g < oo

1 41-1)
”u(t)”L“la‘(Rd) < g% (1__2a|t> llwollat , ®a)-
95 e 2

The space L, (RY) is also invariant and

[
2

d|a|t

||U(t)||L7<;| (Rd) S € ||U0||Lm (Rd)-
2 2

Proof. From part (i) Proposition 3.4, observe that S(t) = 1—4—41((3;;72215(15) =90

if and only if § = ‘%I and we get that the Ornstein—Uhlenbeck flow is a
contraction in Mo (R?).

“e_QQts(t) = ¢, parts (ii)

For the smoothing estimates, using () = TFije 27500

and (iii) in Proposition 3.4 lead to the results.
For L3¢, (RY), the result follows from part (iv) in Proposition 3.4. [
=

Now, the estimates in Theorem 2.2 give us the following.
Theorem 3.6. For 1 < p < ¢ < oo and ug € LY,;(RY), we have

[0l 3,0y < T Ollolsy oy ¢ >0

‘ - 5 —2at
with 0y (t) = trbse=zarsyy and

o (t) B g d/2q 1+ 4p5672at8(t)) %(%_%) o0
PO\ p dpde—2et5(t) '
Also, forq=00,1<p< o0

[w®)lLe ®e) < Ppoo()uolle  @ey >0

Sp(t)
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S\? (14 4pse—2etg(t)\
(I)Z%OO(t) =\ = T oot .
0 4pde s(t)
In particular, if p=q < 00
||u(t)||L25(Rd) < ||u0||L§p(t)(Rd) t> 0.

Proof. Observe that (3.3), (3.4) combined with (2.7) give for 1 < ¢ < 00
lu(®)l L2, ey = [w(s(t))ll e

gse—2at

_ q d/2q 1+4p5e_20‘t8(t)) 455 ol
—\p dpde—22t5(t) LG, B

(R?)

with 8, (t) = #jiis@. The case p = ¢ follows from this or from (2.8).

Also, for ¢ = 0o, (2.9) gives
[u)ll g ey = e lw(s@)lpe_,., ma)

dat (et 3 1+ 4pde=2ots(t)\ >» ol
€ U P
™ dpoe—2ots(t) ONLE, (1 R
d
g

(9 1+ 4pde2ots(t) %” |
A\r dpde—2otg(t) HONLE, () RD:

As observed before Corollary 3.5, if a > 0, then Sp(t) < pde~2at < pg§
and 0,(t) — 0 as t — co. Again, estimates for large times require estimates
of the initial data in stronger norms.

On the other hand, if a < 0 and uo € LE(R?) with § < 121 then

péggp(t):%§‘0‘7|fort>0and5p(t)—>%ast—>oo. On the

other hand, if uy € L%, (R?) C LA(RY) with 12l < ps, then 121 < §,(t) < 6
fort>0and5p(t)—>‘%|ast—>oo.
In particular, we get the following result.

IA

Corollary 3.7. Assume o < 0. Then, the spaces L', (R?), 1 < p < oo are

o
imvariant and the Ornstein—Uhlenbeck flow is a contraction in them.

Also

|u(t)|L°§;<Rd>§<7T> (H_mau) luollzy, ),

2

and for 1 <p<qg< o

q d/2q 1 $G:—3)
||u(t)||L‘fl2‘7(;‘ (Rd) < (p) (1_6—2|at> HUOHLL\ (rd) t> 0.

2

Proof. From Theorem 3.6 with p = ¢, observe that Sp(t) = %jzism =pd
if and only if § = % and we get a contraction in LY (RY), 1< p < .

2
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Also, using Sp(t) = %jztts(w =pd = lal  Theorem 3.6 leads to

=5,
4/2 431
q 1 2'\p g
i) () oo
5\% 1 e
f0r1§p§q<ooand (Dp,oo(t): (71') (W) . O

For derivatives, we have the following estimates.

Proposition 3.8. Assume a < 0. If ug € Moy (R?), then we have the follow-
ing estimates.
(i) For any multi-index 3 € N? and 1 < q < 0o, for any § > 0,t >0,y > 1

~ —2at
and 57(t) = l—i-ll(;see_i%"ys(t)

ay2q P11 4 462 ys(t)
S g ms)

(1-1)

||u0||M(§—y(t)(Rd)

(SEY

|D2u(®) s, ) < 500

and

eld+lBDat 71 + 46e= 20ty () %” |
U - .
s(t)'% Amys(t) MM B

(i) If up € LY, (RY) with 1 < p < oo for any multi-index 3 € N? and

for any 1 < p < q < o0, then for any 6 > 0, t > 0, v > 1 and
S’Y(t) _ pée—Z(yt
P 1+4pde—2tys(t)

HDgu(t)HLgé(Rd)

. <q>d/2q eoc\mt (1+4p562at’}/$(t)>
P\ p s(t)'s \ 4pde=20tys(t)

| DS u(t) L3 ey < s

R

(l_

)
[|uo ”ngm (R4)

Q=

and

§ ) 5 (dtshat <1 + 4dpde 2 ys(t)

2p
8
D200l 50y < e D) uollag,  ae

) s)'s
5 eld+I8Dat Cout 4
||D:cu(t)”Lg°(Rd) < CBy 18l (1+4de vs(t)) HUOHL?‘;; (R4)
S(t)T 330 (1)

with 67 (t) = 67 (t).
Proof. Observe that for any multi-index 3 € N¢, Dfu(x,t) = e*1#I* Dl w(e',
s(t)) and from (2.13), for any v > 1
3 C3 _1 \yfj\z
D) < sz [ et dhul(2)

and the integral term above is a multiple of the solution of the heat equation
with initial data |ug| with the extra factor —4- and at time s’ = ys.

s 2
(i) Hence, from (2.5)

|DZu)] 1, ety = DGO ., e
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alBlt —2at é(1_}1)
< $CB ¢/2a 14 4de "*ys(t) 2 luolla, . ga-
= S EP 1o 20 5(1) "o
Analogously from (2.4)

||D5U(t)”Lg°(]R<d) = e(der')mHDyﬁ ( ( ))”L;C_Qm(Rd)

_ et /14 age2ys(t) %II ||
— = C (7 - .
= s U Ams(h) P M (8D

1D u(®)ll s, ey = eI DJw(s())]y

(ii) From (2.7)

Zse*%ct(ﬂw)

_ e8It . (q)d/Qq (1+4p56—2at75(t)>3(;
T s T \p dpde=2tys(t)

Also, from (2.9)

)

HuOHng(O(Rd)'

Q=

d a
||D§U(t)||Lg°(Rd) = oA tHwa(S(t))”LOQZMW )

d da
2 2p

e (2)F (L s
T osn)'T P \x dpde2etys(t) HONLS (o B
Finally, from (2.6)
IDZu() e ey = D DEw(s()| 20 ., re)
eld+|B)at Lt dge2at
= S(t)\m cp (14 406> ys(t) % |u 0||L§9,<)(Rd)~

As in Corollaries 3.5 and 3.7, we get the following particular estimates

Corollary 3.9. Assume o < 0 and ug € Moy(RY) = M o (R?). Then
2
(i) For any multi-index 8 € N® and 1 < ¢ < 00

1 — e—2laft

2

1 $a-p+igt
IDZu() e o) < Cs.q0€ "“( ) [woll m o) Ry
q 2

with ¢g.q.0 = cﬁqd/2q|a|% and

vl

18]
1 e
||D5U(f)\|v@ (&) < cg.ae™?l (HQMJ ||u0||MJ%|(Rd)
2
Ty
with cg.o = cglal2

(ii) If uo € L, (R?) with 1 < p < oo for any multi-index 3 € N¢ and for
any 1 <p S q < o0

é(;_l)_i_ﬂ
ID2u®)lzs |y < epppae™ ()
x LY, R B,p,q, 1 — e—2laft

HUOHL’I’Q‘ (R4)
2p 2
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, a/2a 1
with ¢gp.g.a = C3 (%) a2 and

d
1 Bt
IDZu(t) s, ey < e @D (1 - e_glalt) luollzr, ey
2p laf

2
5 1l
with ¢z p.o = 3 (4?1‘3) la| = and
181

- 1 =
||D5u(t)HL@ (Rd) < Cﬁﬂe(ml d)at (1 — e_2|at> HUOHLT& (R4)
2

with ¢g.o = 05|a|@

Proof. Notice that 07(t) = 1#% and then as in Corollary 3.5,

p(S’yCiZOd

67(t) = & if and only if § = M. In an analogous way, 57( )= %m

and as in Corollary 3.7, Sg( ) = pd if and only if § = Iapl
In both cases, Proposition 3.8 gives the results. For example, for the
first estimate, since v > 1

L 4ge—2tys(n)\ B0 1 RO 1o\
46e—20ty5(t) B ’yl%‘s(t) = \1—¢2laft :

For case (ii), observe for example that

drl_ 1 .
L apge s\ 1070 (1 \TT o (6D
dpde2tys(t) ,y\gl (t) = \1_ e 2laft :

As in Proposition 2.4 and arguing as in Theorem 3.6, for solutions that
may not exist for all times, we get the following results.

Proposition 3.10. Assume a >0 ande >0 or o < 0 and || < 2e and define

Tou () as the unique solution of s(t) = 4.

For every 6 > ¢, define Sp(t) = #W'

with 1 < p < oo and for any 1 < p < g < 0o, we have

d(1l
1+ dpde22ts(t) 5G9)
R e s

1+ 4pde—2ots(t)
[u(t)]l 3o (Ra) gcp,oo(mem(t) H uollzy |, we)

which hold for 0 < t < (Tou(pe) — Tou (pd)).

—2at

For any uy € Lge(Rd)

||U0||L§ ( )(R"')

3.3. Asymptotic Behaviour

We start with the case o < 0. The next result states, in particular, that
solutions converge to a constant. Observe that Corollary 3.9 shows that the
derivatives converge to zero as t — oo.
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Proposition 3.11. Assume a < 0.
(1) If up € M (R?), then
2

lim u(z,t) = /de\a () duo(2)

t—oo T

uniformly for (z,t) € R4 in sets, such that |x|e®t — 0 uniformly as
t — oo (in particular for x in bounded sets of R?). Also

tlim u(t) :/ Ploi (2) dug(z) in Lp (RY) for all1 < p < .
— 00 Rd 2

(ii) On the other hand, if ug & M%( 1) but in (3.2), we have eo(ug) = ‘%l,
then for all x € RY

lim wu(z,t) = co.

t—o0
Proof. (i) With the notations in (3.2), since 50 (up) < ‘ , the function w(y, )
is Theorem 3.1 is defined for 0 < s < T = E > 2‘ £ and then, the solution

of (3.1) is defined for 0 < t < co and for all (z,¢) € R?*! as in the statement

(@, t) = w(ze®™, s(t)) — w (07 ﬁ) - '/Rd p ol (2) duo(2) = E(uo)  as t — oo,

I3
Assume now ug > 0. Then, Fatou’s Lemma gives, using pj.| is a prob-
2
ability density

E(uo) < liminf Ju(t)| 4 loy %) < < lim sup [lu(®)] s lg) %) = ”uO”M;L(Rd) = E(uo),

and this implies u(t) — E(ug) in L{,, (R?) as ¢ — co. This and the uniform

bounds in L

\al

(RY) for t > 1 in Corollary 3.5 imply convergence in LY (]Rd)

foralll§p<oo.

For non-negative ug, we split it into positive and negative parts and
then u(t,up) = u(t,ud) — u(t,uy) and apply the argument above to each
term, since E(ug) — E(ug ) = E(uo).

(ii) On the other hand, if uy ¢ M%(Rd) but eo(ug) = %, then w(y, s) is
defined up to time 7' = ﬁ = ﬁ and then u(x,t) is defined for 0 < ¢t < o0
and for all z € R¢

1
u(z,t) = w(ze®, s(t)) — w(O o |) =00 ast— oo,

since up & M 1ol (RY). O
2
We now consider the case o > 0.

Proposition 3.12. Assume o > 0 and ug € Mo(R?). Then, the solution of
(3.1) in Theorem 3.1 is bounded for all t > 0 in L{(R?), 1 < ¢ < oo

luollm. ey < C, €—0,
while it decays to zero in LE(R?) provided that

||u0||ME(R4) — O, e — 0.



MJOM Estimates for the Heat Flow in Optimal Spaces Page 19 of 21 70

Proof. Since a > 0, 6(t) < de~2%* < § and, in fact, 0(t) = O(e™2%") — 0 as
t — 00. Also, s(t) = O(e2*) as t — .

Then, in Proposition 3.4, observe that in parts (ii) and (iii), the fac-

d/2 4(1-1)

tors edot <W> and (W) ’ are bounded for large
times.

Hence, by parts (i), (ii), and (iii) in Proposition 3.4, the solution remains
bounded or converges to zero provided ||ugl| M, (R) 18 bounded or converges
to 0 for t — oo, respectively. O

Recall that for € > 0 and w as in Theorem 3.1

1
lluoll pm. (rey = w (0, = Uo|>
and that for ug € Mo(R?), u(0,,ug) = w(0,s(t),ug) and then
|u(07t7u0)| < U(O,L ‘UOD = w(07 S(t)7 |’LL0|) = HUOHMﬁ(Rd)
and s(t) — oo as t — oo. Hence, the behaviour of the solution of (3.1) at
x = 0 controls the behaviour of the norms of the solution.
Then, the results in [6] on the heat equation immediately lead to the

following results. The first one shows how the distribution of mass of the
initial data controls the behaviour of u(0,t) for large times.

Theorem 3.13. Suppose that a > 0 and ug € Mo(R?).

1
(i) If supgso —d/ dluo|(z) < M, then u(0, -, |ug|) € L>(0, 00).
R Jrjo<ial<r

(il) Iflimp—oo =
RY Jpya<ioi<r
Assume, in addition, that ug > 0. Then

1
/ dug(z) > 0, then liminf;_, o u(0, ¢, up) > 0.
lz|<R

d|ug|(x) = 0, then u(0,t, |ug|) — 0 ast — oo.

(iii) If liminfr_ o0 R

(iv) Iflimp e dug(z) = o0, then u(0,t,ug) — 00 ast — oo.

RE Ji1<r
The second one shows that typically the behaviour of u(0,t) can be very
complex.

Theorem 3.14. Assume a > 0 and fix an arbitrary sequence of non-negative
numbers {ay . Then
(i) There exists a non-negative ug € L{(R?) and a sequence t, — oo, such
that for every k, there exists a subsequence ty ; with w(0,tx ;) — ai as
j — 00.
(ii) The set of non-negative ug € L§(RY) satisfying (i) above, O, is dense
in the subset of non-negative functions in Ly(R?).
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